Mathematical Research Problems

The problems in these notes were discussed in the Informal Mathematics Research
Problem Session (IMRPS). The IMRPS is a weekly activity sponsored by the Re-
search Training Group (RTG) in Logic and Dyanmics, Department of Mathematics,
University of North Texas. The organizer for the IMRPS is Professor Dan Mauldin.
For more information on the IMRPS, including its schedules and an archive of notes,
visit the RTG website at http://www.math.unt.edu/rtg/.

Question: What is a continued fraction?

Before answering this question, let’s look at the following expression,
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Definition: A finite continued fraction is an expression of the form

N 1
ap+ —— ),
a1+ az+ 1

where ag is an integer, any other a; members are positive integers, and n is a
non-negative integer.

An infinite continued fraction can be written as
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Note that we have yet to make sense of this formal object! The previous expres-
sion illustrates a finite continued fraction. The integers ag, a1, etc., are called



the partial quotients of the continued fraction. We prefer to call them partial
denominators! One can abbreviate a continued fraction as

T = [ao;al,a2,a3]-

Therefore, é—g = [1; 3,2, 5] with our new notation.

The Euclidean algorithm has a close relationship with continued fractions. In
fact, for rationals, the continued fraction algorithm is nothing but the Euclidan
Algorithm! In the worked example above, the GCD(49,38) was calculated, and

the quotients are 1, 3,2 and 5, respectively.

One may draw a picture of what is going on by the successive partitioning of a
rectangle. What will happen if we vary some of those as of a continued fraction?
It may be inferred from the picture that if we increase/decrease the even/odd
partial denominators, the number being represented will increase/decrease.
Let us now move towards making sense of our infinite continued fraction. Con-
sider the following fact, which is natural when seen from the viewpoint of Mobius
transformations or SL(2,Z) and may be proved via an easy induction.

Definiton: If (a,),>0 is given, where ag is an integer and any other a;’s are
positive integers, we define % = [aos a1, ,an].
n
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Observation 1

Then

|:pn+1 Pn} _ [pn pn1:| |:an+1 1]
dn+1  Gn n  Gn-1 1 0]
This equation implies that,
Pn4l = Gnt1Pn+Pn1 p-1=1 p2=0
n+1 = Qpn41Gn +Gn—1 -1 =0 go=1
Observation 2 1 =qy < q1 < g2 <gq3 < ---.
Observation 3 ¢, > 2"3%.

Observation 4 By taking determinants on both sides of (x), we have

Pndn—-1 — Pn—-19n = (71)n+1.

i.e.,
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One may now observe that we have
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Thus we can define
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Note that the alternating series in the definition converges due to Leibniz’s Test,
since the terms are decreasing in absolute value as can be see from Observation
2. Also note that
:pi<...<@<...<a<...<p72n+l <...<Z£.
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One may again interpret these strings on inequalities via a picture. In general, I
recommend you to draw as many pictures as possible to enhance our geometric
intuition for these expansions!

Question: Is « rational? (will be answered later.)

Observation 5
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Dirichlet’s Theorem:
" 1 1
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dn An+19;, qn
Example:
We study 7 = [3;7,15,1,292,1,---]. 2 =[3;7]. 322 =[3;7,15,1]. We have
22 < 1
P -
7 1572
355 1
o— 222 .
113 292 - 1132



Every infinite continued fraction is irrational, and every irrational number can
be represented in precisely one way as an infinite continued fraction. The first
statement answers our question above and may be deduced via Dirichlet’s The-
orem.

Observation 7 a ¢ Q.

Proof: We prove this by way of contradiction.
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Suppose not. Let a = ¢ € Q. Since bgn — b
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For n large enough, 7 =
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One of the most important reasons for the utility of infinite continued fraction
representations for an irrational number is due to its initial segments providing
excellent rational approximations to the number. These rational numbers are
called the convergents of the continued fraction. Remember that even-numbered
convergents are smaller than the original number, while odd-numbered ones are
bigger - see the string of inequalities above Observation 5 and think about
the picture that goes with it.

Convergents are locally best approzimations. Let o = [ag, a1, a2, -] ¢ Q. For
any n > 1, p, ¢ with 0 < ¢ < gy, if 2 # 22, then [p, — gua| < |p—qal, or
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We're almost out of time and so let me give you just a taste for yet another
way to view continued fractions - this time from the perspective of dynamical
systems. Let us make the following

Definition:(Gauss map) Define a map G : [0,1) — [0,1) by z — 1 — |1]. The
map G is called the Gauss map.

The partitioning into intervals of [0, 1) via looking at higher iterates of this

map is related to the Farey sequence, F,, which may be defined as follows

- for any positive integer n is the set of irreducible rational numbers ¢ with

0<a<b<nand (a,b) =1 arranged in increasing order. The first few are



Unfortunately we don’t have time to enter that story. More about the Gauss
Map and the measure-theoretic/probabilistic study of continued fractions may
be found in Khinchin’s book. One will also find here the beautiful theorem of
Lagrange on the periodicity of c.f. expansions for quadratic surds.

To end let me mention that there is no reason to stop at continued fraction
expansions for real numbers! In 1761 Lambert proved that tanx ¢ Q for « €
Q\{0} from which 7 ¢ Q follows easily. He proved this using a remarkable
continued fraction expansion for tan(z), viz.

tan(z) =

More details in the paper by Laczkovich. In fact Euler deduced the irrationality
of e from its continued fraction expansion - for more see the beautiful article by
Shirali written for high school kids.

So we’ve gone over the time limit! One can’t leave without recommending
Wall’s book Analytic Theory of Continued Fractions.

My apologies for not being able to discuss some of the current research
interest in Diophantine Approximation and Continued Fractions - especially
from a dynamical perspective, which is closest to my own. Please feel free to
come by and ask me for details about such. Thank you for your indulgence!

(Discussed by Tushar Das on December 3rd, 2010. Notes taken by Xiaohui Shi.)
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