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century with the works of
Fuchs, Klein and Poincaré.
The modern revival was led
by Thurston, Sullivan and
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“Séminaire Sullivan”, IHES 1983.

Dennis Sullivan in the early '80s
indicated a possibility of developing
the theory of discrete groups acting
by hyperbolic isometries on the open
unit ball of a separable Hilbert
space.
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“Séminaire Sullivan”, IHES 1983.
Dennis Sullivan in the early '80s
indicated a possibility of developing
the theory of discrete groups acting
by hyperbolic isometries on the open
unit ball of a separable Hilbert
space.

Geometric Group Theory, Sussex
1991.

Asymptotic invariants of infinite groups
Misha Gromov refers to infinite
dimensional hyperbolic spaces as
.."cute and sexy” ..."“long neglected
by geometers and algebraists alike.”
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Geometric Group Theory, Sussex
1991.

Asymptotic invariants of infinite groups

Misha Gromov refers to infinite
dimensional hyperbolic spaces as
.."cute and sexy” ..."“long neglected
by geometers and algebraists alike.”

Gromov+Sullivan IHES
2007, Copyright: MFO



Gromov hyperbolicity

Definition
Let (X, d) be a metric space. For three points x,y,z € X,
we define the Gromov product of x and y with respect to z
by
1
<X’y>2 = E[d(X,Z) + d(y,Z) - d(X7y)]

!Denotes an additive asymptotic.
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Definition

Let (X, d) be a metric space. For three points x,y,z € X, Gromov hyperbolic
) ) spaces

we define the Gromov product of x and y with respect to z

by )
(xly)z = Sld(x,2) + d(y, 2) = d(x, y)].

Definition
(X, d) is hyperbolic (or Gromov hyperbolic) if
for every four points x,y,z, w € X we have

(X12)w 2 P min((x]y)w, (y|2)w)-

We will refer to this inequality as Gromov's inequality.

!Denotes an additive asymptotic.



Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,
the following examples are Gromov hyperbolic:

Rigidity in infinite-
dimensional
hyperbolic spaces.

Tushar Das

Gromov hyperbolic
spaces



Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,
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» Standard hyperbolic space H"
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,
the following examples are Gromov hyperbolic:

» Standard hyperbolic space H"
» Complex and quaternionic hyperbolic space

» Infinite-dimensional hyperbolic space H® C ¢?
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,

the following examples are Gromov hyperbolic:

v

v

v

v

Standard hyperbolic space H"

Complex and quaternionic hyperbolic space
Infinite-dimensional hyperbolic space H>® C ¢?
Any R-tree
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,

the following examples are Gromov hyperbolic:

v

v

v

v

Standard hyperbolic space H"

Complex and quaternionic hyperbolic space
Infinite-dimensional hyperbolic space H>® C ¢?
Any R-tree

A “generic” finitely presented group with its Cayley
metric
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Examples of Gromov hyperbolic spaces 8 mensionsl

hyperbolic spaces.
Tushar Das
Every CAT(-1) space is Gromov hyperbolic. In particular,
the following examples are Gromov hyperbolic:

Gromov hyperbolic
spaces

» Standard hyperbolic space H"
» Complex and quaternionic hyperbolic space

Infinite-dimensional hyperbolic space H>® C ¢?

>
> Any R-tree
> A “generic” finitely presented group with its Cayley
metric
Definition

A Gromov hyperbolic space X is proper if the distance function
d(0,-) : X — R is proper, or in other words if for all r > 0 the set

B(0,r)

is compact. Here 0 is a distinguished point that we fix in X.



The boundary of a hyperbolic space

Any Gromov hyperbolic space X has a Gromov boundary
0X, analogous to the sphere at infinity of standard
hyperbolic space. It is defined in a similar way to the
completion of a metric space, with the quantity

e—(xv)o

playing a role analogous to the distance function.
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Any Gromov hyperbolic space X has a Gromov boundary Cromor hyperbalc
0X, analogous to the sphere at infinity of standard spaces
hyperbolic space. It is defined in a similar way to the

completion of a metric space, with the quantity

e_<X|y>0
playing a role analogous to the distance function.

The most important fact about the Gromov boundary is the
following heuristic:



The boundary of a hyperbolic space 8 mensionsl
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Any Gromov hyperbolic space X has a Gromov boundary S
0X, analogous to the sphere at infinity of standard spaces
hyperbolic space. It is defined in a similar way to the

completion of a metric space, with the quantity

e_<X|y>0
playing a role analogous to the distance function.

The most important fact about the Gromov boundary is the
following heuristic:

The Gromov product can be extended to the boundary in a
way that preserves key formulas.



A metric on 0X

Proposition
For each a > 1 sufficiently small, there exists a complete
metric D, on OX satisfying the following asymptotic:

Da(fﬂ]) =x a~ (o, (2-1)

If X is proper, then (0X, D,) is compact.
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Proposition
.. . Gromov hyperbolic
For each a > 1 sufficiently small, there exists a complete spaces

metric D, on OX satisfying the following asymptotic:
Da(€,n) =<x a~lmo, (2.1)

If X is proper, then (0X, D,) is compact.
D, is a generalization of the spherical metric on the Gromov boundary of

standard hyperbolic space. It is often called a visual metric.



. igidity in infinite-
A metrlc On aX Rg:i:ensionalt

hyperbolic spaces.

Tushar Das

Proposition
Gromov hyperbolic

For each a > 1 sufficiently small, there exists a complete spaces
metric D, on OX satisfying the following asymptotic:

Da(&ﬂ]) =x a~ (o, (2-1)

If X is proper, then (0X, D,) is compact.

D, is a generalization of the spherical metric on the Gromov boundary of

standard hyperbolic space. It is often called a visual metric.

Remark

For CAT(-1) spaces, and in particular for the standard model
of hyperbolic geometry, the above proposition holds for any
1 < a < e. In particular, a = e gives the spherical metric.
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spaces

Definition
Fix a sequence (xp), in X and a point n € X. We say that
(xn)n converges to n if

(xalm)o—r00.

[Idea: a—{xnlmo 0]

In this case, we write x,—.
n



A metric on 0X \ {{}

Lemma
Let E¢ := 0X \ {{} for some fixed £ € 0X. If x, — &, then

ed(O’X")Dxn(Ula n2) —> e*[(m\ﬂ2>0*z,?:1(77i|5>0]‘
n,x
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A metric on 0X \ {{}

Lemma
Let E¢ := 0X \ {{} for some fixed £ € 0X. If x, — &, then

ed(O’X")Dxn(Ula n2) —> e*[(m\ﬂ2>0*z,?:1(77i|§>0]‘
n,x

Herea,,—)bmeans%ﬁ%ﬁ%ﬁK.
n, X
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A metric on 0X \ {{}
Lemma
Let E¢ := 0X \ {{} for some fixed £ € 0X. If x, — &, then

ed(O’X")Dxn(ﬁla n2) —> e*[(’ll\ﬁ2>0*z,?:1<77i|§>o]‘
n,x

Herea,,—)bmeans%ﬁ%f%ﬁK.
n, X

Corollary
There exists a metric

D¢ o(n1, M) =x e_[<771|772>0—2,?:1<m|£)o]_

Note that in CAT(-1) you have a limit and equality
respectively.
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Classification of isometries

Theorem

Let g be an isometry preserving some £ € 9X. Then It € R
such that

A Be(x,g"x) =4 nt
B D¢ o(g"(m),8"(m2)) =x €"*Deo(n1,m2)
We call e~ the dynamical derivative of g at &.
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Classification of isometries

Theorem
Let g be an isometry preserving some £ € 9X. Then It € R
such that

A Be(x,g"x) =4 nt
B D¢ o(g"(m),8"(m2)) =x €"*Deo(n1,m2)
We call e~ the dynamical derivative of g at &.

Here B¢(x,y) := liminf,_,¢[d(z,x) — d(z,y)] is the Busemann function. In
Hilbert space, it describes the signed horospherical distance between

horospheres centered at £ through x and y respectively.
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Classification of isometries R

hyperbolic spaces.

Theorem Tushar Das
Let g be an isometry preserving some £ € 9X. Then It € R

such that

A B&(X, an) X+ nt Classification of

B D¢ o(g"(m),8"(m2)) =x €"*Deo(n1,m2)
We call e~ the dynamical derivative of g at &.

Here B¢(x,y) := liminf,_,¢[d(z,x) — d(z,y)] is the Busemann function. In
Hilbert space, it describes the signed horospherical distance between
horospheres centered at £ through x and y respectively.

Definition

Let g be an isometry preserving some £ € 0X.

a £ is called indifferent fixed point if t =0

b £ is called attracting fixed point if t > 0

c £ is called repelling fixed point if t <0



Rigidity in infinite-
dimensional
hyperbolic spaces.

Definition

. . . Tushar Das
A group of isometries G is

a elliptic if the orbit of some base point is bounded.

b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic.

Classification of
isometries

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.
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A group of isometries G is
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a elliptic if the orbit of some base point is bounded.

b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic.

Classification of
isometries

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.

Theorem
Every group is exactly one of the 3 types above.
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A group of isometries G is
a elliptic if the orbit of some base point is bounded.
b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic. ~ {2sficationof

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.

Theorem
Every group is exactly one of the 3 types above.

Remark

» One can therefore classify isometries according to their cyclic group.



Definition

A group of isometries G is

a elliptic if the orbit of some base point is bounded.

b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic.

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.

Theorem
Every group is exactly one of the 3 types above.

Remark

» One can therefore classify isometries according to their cyclic group.

» Note that this proves the existence of fixed points for isometries with
unbounded orbits. However in Gromov hyperbolic spaces, there may be
an elliptic group without a fixed point.
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Almost recurrent parabolics

Example

There are examples of parabolic isometries whose orbits
accumulate at their fixed point on the boundary but recur
infinitely often to some bounded region in the interior.

The earliest examples we could find were discovered in a different context by

Edelstein in the '60s.
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Kleinian groups

Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

We say that a group is Kleinian if it is strongly discrete.
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Kleinian groups

Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

We say that a group is Kleinian if it is strongly discrete.

A Kleinian group G is non-elementary if there is no finite set
F C 90X or bounded set F C X such that G(F) = F.
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Kleinian groups

Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

We say that a group is Kleinian if it is strongly discrete.

A Kleinian group G is non-elementary if there is no finite set
F C 90X or bounded set F C X such that G(F) = F.

Observation
If X is proper, then strong discreteness is equivalent to a variety of notions of
discreteness; however this is not true in general.
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Kleinian groups

Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

We say that a group is Kleinian if it is strongly discrete.

A Kleinian group G is non-elementary if there is no finite set
F C 90X or bounded set F C X such that G(F) = F.

Observation

If X is proper, then strong discreteness is equivalent to a variety of notions of
discreteness; however this is not true in general. The simplest counterexample,
say in Hilbert space, is an infinite-rank parabolic group.
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Radial convergence

Observation

Fix a sequence (x,), in X and a point n € 9X. Suppose

that d(0, x,)—00, and that either of the following equivalent
n

asymptotics holds:

(0[n)x, < 0
{xalm)o =< d(0, xp).

Then x,—1.
n
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Radial convergence

Observation

Fix a sequence (x,), in X and a point n € 9X. Suppose

that d(0, x,)—00, and that either of the following equivalent
n

asymptotics holds:

(0[n)x, < 0
{xalm)o =< d(0, xp).

Then x,—1.
n

Definition

In the situation above, we say (x,), converges radially to 7.
We say that (x,), converges uniformly radially to 7 if it
converges radially and if the distances (d(xn, Xn+1))n remain
bounded.
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Equivalent definition of radial convergence

As in the case of standard hyperbolic space, radial
convergence can also be defined in terms of shadows;

however we must generalize what we mean by “shadow”:
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Equivalent definition of radial convergence

As in the case of standard hyperbolic space, radial
convergence can also be defined in terms of shadows;

however we must generalize what we mean by “shadow”:

Definition
For each 0 > 0 and x € X, let

Shad(x,o) = {n € 90X : (0|n)x < o}.
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Equivalent definition of radial convergence

As in the case of standard hyperbolic space, radial
convergence can also be defined in terms of shadows;
however we must generalize what we mean by “shadow”:

Definition
For each 0 > 0 and x € X, let

Shad(x,o) = {n € 90X : (0|n)x < o}.
Observation

Suppose that d(0, x,)—00. Then x,—n radially if and only
n n
if there exists o > 0 such that for all n € N,

n € Shad(xp, o).
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Limit sets of a Kleinian group

Definition
Let G be a Kleinian group. The sets
L(G) :={n € 0X : 3gn(0)—n}
L.(G) := {n € 0X : 3gn(0)—n radially}
L (G) := {n € 0X : 3g»(0)—n uniformly radially}

denote the limit set, radial limit set, and uniformly radial
limit set, respectively.

Rigidity in infinite-
dimensional
hyperbolic spaces.
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The theorem of Bishop and Jones

For each s > 0, we define the Poincaré series for G with
exponent s to be the series

To(G) =) a0s0)
geaqG
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The theorem of Bishop and Jones

For each s > 0, we define the Poincaré series for G with
exponent s to be the series

To(G) =) a0s0)
geaqG

We define the critical exponent of G to be the number

J(G) :==inf{s > 0: X (G) < oo}.
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The theorem of Bishop and Jones

For each s > 0, we define the Poincaré series for G with
exponent s to be the series

To(G) =) a0s0)

geai

We define the critical exponent of G to be the number

J(G) :==inf{s > 0: X (G) < oo}.

Definition
A measure p is Ahlfors s-regular if

w(B(x,r)) <« r°.
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Theorem
Let G be a non-elementary Kleinian group. For every s < 6,

there exists p supported on L, (G) such that y is Ahlfors
s-regular.

Theorems on the
radial limit set
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Theorem

Let G be a non-elementary Kleinian group. For every s < 6,
there exists p supported on L, (G) such that y is Ahlfors
s-regular.

COI’O”aI’y Theorems on the
radial limit set

For any nonelementary Kleinian group G,

HD(Lr(G)) = HD(Lur(G)) = (S(G)
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Theorem

Let G be a non-elementary Kleinian group. For every s < 6,
there exists p supported on L, (G) such that y is Ahlfors
s-regular.

COI’O”aI’y Theorems on the
radial limit set

For any nonelementary Kleinian group G,

HD(Lr(G)) = HD(Lur(G)) = (S(G)

Bishop and Jones (Acta '97) proved this theorem in the case
where X is a finite-dimensional hyperbolic space.
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Example

There exists a group G with:

a HD(L,(G)) < o0

bd=00

c G is “parametrically discrete”
d G acts irreducibly on H*

Theorems on the
radial limit set
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Example

There exists a group G with:

a HD(L,(G)) < o0

b =00

c G is “parametrically discrete” Theorems on the

radial limit set
d G acts irreducibly on H*>

ldea.

Start with a Schottky group H generated by two elements
that are both “rotations” - i.e. cycle through all the
coordinates, and let G := {g : g(H(0)) = H(0)}. Then
L(G) = L(H) but #Stabo(G) = oo and so G is not strongly
discrete. Ol



Rigidity in infinite-

Quasiconformal measures dimensional
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Definition Tushar Das
Fix s > 0. A measure p on 0X is said to be

s-quasiconformal with respect to G if for every Borel set

A C 90X and for every g € G, we have

1(g(A)) <x /A a8 ) q(n).

Theorems on the
radial limit set

Here Bn(O,g_l(O)) := (g7 *(0)|n)o — <0|77>g*1(0)'



Rigidity in infinite-

Quasiconformal measures e
hyperbolic spaces.
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Fix s > 0. A measure p on 0X is said to be
s-quasiconformal with respect to G if for every Borel set
A C 90X and for every g € G, we have

1(g(A)) <x /A a8 ) q(n).

Theorems on the
radial limit set

Here B,(0,g7(0)) := (g~ '(0)|n)o — (0ln)g-1(0)-
> Interpret the expression
2Bn(0.671(0))

as being “the derivative of g at n".



Rigidity in infinite-

Quasiconformal measures dimensional

hyperbolic spaces.

Definition Tushar Das
Fix s > 0. A measure p on 0X is said to be

s-quasiconformal with respect to G if for every Borel set

A C 90X and for every g € G, we have

1(g(A)) <x /A a8 ) q(n).

Theorems on the
radial limit set

Here B,(0,g7(0)) := (g~ '(0)|n)o — (0ln)g-1(0)-
> Interpret the expression
2Bn(0.671(0))

as being “the derivative of g at n".
» If X is a CAT(-1) space, then this interpretation can be
made explicit, i.e.
B1(0871(0) _ iy 9(8E87)
¢ d(&m)



Existence and uniqueness of d-quasiconformal
measures

Definition
A Kileinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Y5(G) = 0.
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Existence and uniqueness of d-quasiconformal
measures

Definition
A Kileinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Y5(G) = 0.
Theorem

If G is a nonelementary Kleinian group of divergence type,
then there exists a d-quasiconformal measure 11 on 0X.
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Existence and uniqueness of d-quasiconformal
measures

Definition
A Kileinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Y5(G) = 0.

Theorem

If G is a nonelementary Kleinian group of divergence type,
then there exists a d-quasiconformal measure 11 on 0X.

It is unique up to equivalence: if v is another
d-quasiconformal measure then p =<y v.

Rigidity in infinite-
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Definition

A Kileinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Theorems on the

25(G) = OQ. radial limit set

Theorem

If G is a nonelementary Kleinian group of divergence type,
then there exists a d-quasiconformal measure 11 on 0X.

It is unique up to equivalence: if v is another
d-quasiconformal measure then p =<y v.

Furthermore, 1 is supported on the radial limit set L.



There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight

Rigidity in infinite-
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interesting to highlight
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Given a non-elementary Kleinian group G and a conformal
measure [,
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There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight

Theorem
Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.

Rigidity in infinite-
dimensional
hyperbolic spaces.

Tushar Das

Theorems on the
radial limit set



There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight

Theorem
Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.

Ahlfors provides Thurston's proof of this theorem in the case that X is
standard hyperbolic space and G is of the first kind, i.e.
L(G) = X = S4mX=1 3nd § = dimX — 1.
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used when proving the last theorem, which may be
interesting to highlight

Theorem
Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.

Ahlfors provides Thurston's proof of this theorem in the case that X is
standard hyperbolic space and G is of the first kind, i.e.
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There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight

Theorem
Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.

Ahlfors provides Thurston's proof of this theorem in the case that X is
standard hyperbolic space and G is of the first kind, i.e.
L(G) = X = S4mX=1 3nd § = dimX — 1.

[dea.

» Move to CechStone(X), where X = X UdX
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There is a theorem “dual” to the Bishop-Jones result that is Rigidity in infinite-

dimensional

used when proving the last theorem, which may be hpperiahe axess,
interesting to hlghllght Tushar Das
Theorem

Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.

Theorems on the

Ahlfors provides Thurston's proof of this theorem in the case that X is corems
radial limit set

standard hyperbolic space and G is of the first kind, i.e.
L(G) = X = S4mX=1 3nd § = dimX — 1.

[dea.

» Move to CechStone(X), where X = X UdX

» Standard Patterson-Sullivan theory constructs
conformal p on 9CechStone(X)

» By Ahlfors-Thurston we get that  is supported on L,
» Show that L, C 90X



A group without a conformal measure!

Example

There exists an infinitely generated Schottky group of
convergence type with no conformal measure.
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A group without a conformal measure! 8 mensionsl

hyperbolic spaces.

Tushar Das

Example
There exists an infinitely generated Schottky group of
convergence type with no conformal measure.

Idea . Theorems on the

G will be a Schottky group. There exists a B(0, R) such pesm
that any two geodesics between any two of the generating

balls intersects B(0, R). This gives us that L,(G) = L(G).

Heuristically, the diameters of the generating balls must

converge to zero at a specific rate that forces the group to

be of convergence type. Then Ahlfors-Thurston implies that

there is no conformal measure. O



Sullivan Measurable Rigidity

Theorem
Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups 'y and 5.
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Sullivan Measurable Rigidity

Theorem

Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups 1 and I».
Suppose T is nonsingular with respect to §-quasiconformal
measures p1 and pg, viz. u1(A) > 0 < up(TA) > 0.
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Sullivan Measurable Rigidity

Theorem

Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups 1 and I».
Suppose T is nonsingular with respect to §-quasiconformal
measures p1 and pg, viz. u1(A) > 0 < up(TA) > 0.

If the Poincaré series for I'1 diverges at 0, then

T agrees (u1-a.e.) with a conformal conjugacy between I'y
and F2.
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Sullivan Measurable Rigidity

Theorem

Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups 1 and I».
Suppose T is nonsingular with respect to §-quasiconformal
measures p1 and pg, viz. u1(A) > 0 < up(TA) > 0.

If the Poincaré series for I'1 diverges at 0, then

T agrees (u1-a.e.) with a conformal conjugacy between I'y
and F2.

Note that if we assume T to be Lipschitz, then it suffices to assume that '] is
of divergence type and that p; is d-quasiconformal. In such a case up will turn

out to be d-quasiconformal as well.
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Groups of compact type
Definition
A properly discontinuous group G is said to be of compact
type when L(G) is compact.
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Groups of compact type
Definition
A properly discontinuous group G is said to be of compact
type when L(G) is compact.

Theorem
For a properly discontinuous group G, the following are
equivalent:

1.
2.

G is of compact type.

Every infinite subset of G(0) contains an accumulation
point.

. Each sequence (gn(0)) e Such that

limp—oo ||gn(0)|| = 1 has a converging subsequence,
which necessarily accumulates at an element in L(G).

Every infinite subset of G(0) contains a sequence (z,)n

such that (zp,zm)o — 00 as n,m — oco.
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Groups of compact type
Definition
A properly discontinuous group G is said to be of compact
type when L(G) is compact.

Theorem
For a properly discontinuous group G, the following are

equivalent:
1. G is of compact type.
2. Every infinite subset of G(0) contains an accumulation
point.
3. Each sequence (gn(0)),cr Such that

limp—oo ||gn(0)|| = 1 has a converging subsequence,
which necessarily accumulates at an element in L(G).

4. Every infinite subset of G(0) contains a sequence (z,)n
such that (zp,zm)o — 00 as n,m — oco.

In CAT(-1) spaces, any group of compact type acting properly discontinuously

is strongly discrete.
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Convex-cobounded groups

Say we're in a geodesic Gromov-hyperbolic space. For
w,z € X, let 7, , be the unique geodesic joining w and z.

Ca(G) =

U

£1,£€L(G)

721752 :
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Convex-cobounded groups
Say we're in a geodesic Gromov-hyperbolic space. For
w,z € X, let 7, , be the unique geodesic joining w and z.

P o
a@= U e
£1,£€L(G)
Then notice that Cao(G) is G-invariant, i.e. for any g € G,

g(Ca(G)) = Ca(G).
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Convex-cobounded groups
Say we're in a geodesic Gromov-hyperbolic space. For
w,z € X, let 7, , be the unique geodesic joining w and z.

Ca(G) = U 72’1,52 .
&1,62€L(G)
Then notice that Cao(G) is G-invariant, i.e. for any g € G,
g(Ca(G)) = Ca(G).

Definition
A properly discontinuous group G is convex cobounded if
there exists a ball about the origin B(0, r) such that
q[B(0,r) N Ca(G)] = q[Ca(G)]-
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Convex-cobounded groups

Say we're in a geodesic Gromov-hyperbolic space. For

w,z € X, let Yw,> be the unique geodesic joining w and z.
Ca(G) = U vé’l,& .
£1,£€L(G)
Then notice that Cao(G) is G-invariant, i.e. for any g € G,
g(Ca(G)) = Ca(G).

Definition
A properly discontinuous group G is convex cobounded if
there exists a ball about the origin B(0, r) such that

q[B(0,r) N Ca(G)] = q[Ca(G)].

Theorem
Let G be properly discontinuous and of compact type.

TFAE:
1. L(G) = L(G).
2. L, (G) = L(G).
3. The group is convex-cobounded.
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A “remarkable” description of L(G).

Definition
A group G is called elementary whenever #L(G) € {0,1,2}.
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A “remarkable” description of L(G).

Definition
A group G is called elementary whenever #L(G) € {0,1,2}.
Theorem (It's elementary dear .. .)
For every G the following are equivalent:
1. #[L(G)] < oc.
2. Either
» G=<e>.
» 1€ € OB parabolic with G(§) = ¢ and G consists

entirely of parabolics.
» G =< g >, with g hyperbolic.

3. Bg, h € G hyperbolic with Fix(g) N Fix(h) = @.
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A “remarkable” description of L(G).

Definition
A group G is called elementary whenever #L(G) € {0,1,2}.

Theorem (It's elementary dear .. .)

For every G the following are equivalent:
1. #[L(G)] < oc.
2. Either
» G=<e>.
» 1€ € OB parabolic with G(§) = ¢ and G consists

entirely of parabolics.
» G =< g >, with g hyperbolic.

3. Bg, h € G hyperbolic with Fix(g) N Fix(h) = @.

Theorem (Minimality)

For every non-elementary group G, L(G) is the smallest
closed G-invariant subset of OB, that contains at least 2
points.
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Hilbert version

To fix ideas, let’s start with a real separable Hilbert space,
‘H = {» with the standard orthonormal basis denoted by

(en)n-
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Hilbert version

To fix ideas, let’s start with a real separable Hilbert space,
‘H = l» with the standard orthonormal basis denoted by
(en)n. Of the many models of hyperbolic space, let's focus
on the Poincaré ball B, and the Upper-half space H..
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Hilbert version

To fix ideas, let’s start with a real separable Hilbert space,
‘H = l» with the standard orthonormal basis denoted by
(en)n. Of the many models of hyperbolic space, let's focus
on the Poincaré ball B, and the Upper-half space H..

B :={xeH |x|| <1}

OBo = {x €M x| =1}

Ho ={x € H : x>0}

OHo = {x € H : xo =0} U{o0}
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Hilbert version

To fix ideas, let’s start with a real separable Hilbert space,
‘H = l» with the standard orthonormal basis denoted by
(en)n. Of the many models of hyperbolic space, let's focus
on the Poincaré ball B, and the Upper-half space H..

B :={xeH |x|| <1}

OBo = {x €M x| =1}

Ho ={x € H : x>0}

OHo = {x € H : xo =0} U{o0}

» Consider Boo, Hoo C H=HU {oo}. The topology on H is defined as
follows: U C H open if and only if UNH is open and H \ U is bounded
if co € U.
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Hilbert version

To fix ideas, let’s start with a real separable Hilbert space,
‘H = l» with the standard orthonormal basis denoted by
(en)n. Of the many models of hyperbolic space, let's focus
on the Poincaré ball B, and the Upper-half space H..

Boo

={xeH:|x|| <1}

OBoo ={x € H :|x|| =1}
Hoo ={x € H :x >0}
OHo = {x € H : xo =0} U{o0}

>

>

Consider Boo, Hoo C H=HU {oo}. The topology on H is defined as
follows: U C H open if and only if UNH is open and #H \ U is bounded
if co € U.

OBoo, Boo, OHoo and Heo refer to the boundary and closure with
respect to the topology on H and so Boo = {x € H : ||x|| < 1} and
Hoo = {x € H:x >0} U{co}.

Rigidity in infinite-
dimensional
hyperbolic spaces.

Tushar Das

Sullivan
Measurable
Rigidity



Just as in finite dimensions, we have the following formulae
for the associated length elements:

4| dx |1
ds2 —_—
B (1— =27
and
2
o2 x|
X0
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Just as in finite dimensions, we have the following formulae
for the associated length elements:

4 dx|>

g2 = Aol

(1 — [Ix]?)?
and
2 x|

dSH X2 .

0
Here || - || refers to the usual norm in Hilbert space, i.e.

ol = Y .
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Classification of isometries, a 1a Klein

Theorem (Classification of isometries of hyperbolic
space)

Any isometry of hyperbolic space is conjugate to exactly one
of the following:
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Classification of isometries, a 1a Klein

Theorem (Classification of isometries of hyperbolic
space)

Any isometry of hyperbolic space is conjugate to exactly one
of the following:

(1) Elliptic case: A bijective linear isometry on B, i.e.
T[By forsome T € 0.
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Classification of isometries, a 1a Klein

Theorem (Classification of isometries of hyperbolic
space)

Any isometry of hyperbolic space is conjugate to exactly one
of the following:

(1) Elliptic case: A bijective linear isometry on B, i.e.
T[By forsome T € 0.

(2) Parabolic case: A bijective affine euclidean isometry on
H, with no fixed points in the interior.
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Classification of isometries, a 1a Klein

Theorem (Classification of isometries of hyperbolic

space)

Any isometry of hyperbolic space is conjugate to exactly one

of the following:

(1) Elliptic case: A bijective linear isometry on B, i.e.
T[By forsome T € 0.

(2) Parabolic case: A bijective affine euclidean isometry on
H, with no fixed points in the interior.

(3) Hyperbolic case: A map of the form
g =AM :Hy, — Hy, where 0 < A< 1and M is a
bijective linear isometry of H.
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This does NOT make sense in infinite dimensions.
If one wanted to define orientation-preserving via the kernel
of a continuous homomorphism O : &(H) — Zy one would
easily fall into a trap ... For example, any reflection in a
hyperplane on ¢>(Z) would be orientation-preserving.
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Rigidity in infinite-
dimensional
hyperbolic spaces.

Can one make sense of orientation preserving
transformations in infinite dimensions? Tushar bas
This does NOT make sense in infinite dimensions.

If one wanted to define orientation-preserving via the kernel
of a continuous homomorphism O : &(H) — Zy one would
easily fall into a trap ... For example, any reflection in a
hyperplane on ¢>(Z) would be orientation-preserving.

Sullivan

Example Measarable
For example, for v,w € H, let H, ,, := {x + w|x € v} be e
the hyperplane determined by v and w and let r, , be

reflection in this hyperplane given by

zZ— (id - 2PV)(z — w) + w, where P, is the projection onto

the hyperplane v. Then O(r,.) can be shown to equal 1,

i.e. be orientation-preserving.
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