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Discrete actions of hyperbolic isometries

The study of discrete
groups acting on two- and
three-dimensional
Euclidean open balls by
hyperbolic isometries
began at the end of 19th
century with the works of
Fuchs, Klein and Poincaré.
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Euclidean open balls by
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began at the end of 19th
century with the works of
Fuchs, Klein and Poincaré.
The modern revival was led
by Thurston, Margulis,
Sullivan and Gromov.
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Discrete actions of hyperbolic isometries

The study of discrete
groups acting on two- and
three-dimensional
Euclidean open balls by
hyperbolic isometries
began at the end of 19th
century with the works of
Fuchs, Klein and Poincaré.
The modern revival was led
by Thurston, Margulis,
Sullivan and Gromov.
Greatly popularized in scientific Circle Limit |, Escher
and artistic circles via the seminal (1958)

work of Mandelbrot and Escher.
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“Séminaire Sullivan”, IHES 1983.

Dennis Sullivan in the early '80s indicated a possibility of Gromav hperbole
developing the theory of discrete groups acting by hyperbolic

isometries on the open unit ball of a separable Hilbert space.



...once more, with (an infinite-dimensional)
feeling

“Séminaire Sullivan”, IHES 1983.

Dennis Sullivan in the early '80s indicated a possibility of
developing the theory of discrete groups acting by hyperbolic
isometries on the open unit ball of a separable Hilbert space.

Geometric Group Theory, Sussex 1991.

Asymptotic invariants of infinite groups

Misha Gromov lamented the paucity of results regarding
such actions and encouraged their investigation:
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...once more, with (an infinite-dimensional)
feeling

“Séminaire Sullivan”, IHES 1983.

Dennis Sullivan in the early '80s indicated a possibility of
developing the theory of discrete groups acting by hyperbolic
isometries on the open unit ball of a separable Hilbert space.

Geometric Group Theory, Sussex 1991.

Asymptotic invariants of infinite groups

Misha Gromov lamented the paucity of results regarding
such actions and encouraged their investigation:

The spaces like this ... look as cute and sexy
to me as their finite-dimensional siblings but they
have been for years shamefully neglected by
geometers and algebraists alike.
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Gromov hyperbolicity

Definition

Let (X, d) be a metric space. For three points x,y,z € X,
we define the Gromov product of x and y with respect to z
by

(y)e = 51d(x,2) + dly. 2) ~ dlx, )]

!Denotes an additive asymptotic.
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Gromov hyperbolicity

Definition

Let (X, d) be a metric space. For three points x,y,z € X,
we define the Gromov product of x and y with respect to z
by

(y)e = 51d(x,2) + dly. 2) ~ dlx, )]

Definition
(X, d) is hyperbolic (or Gromov hyperbolic) if
for every four points x,y,z, w € X we have

(X12)w 2 P min((x]y)w, (y|2)w)-

We will refer to this inequality as Gromov's inequality.

!Denotes an additive asymptotic.
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,
the following examples are Gromov hyperbolic:
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,
the following examples are Gromov hyperbolic:

» Standard hyperbolic space H"
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Every CAT(-1) space is Gromov hyperbolic. In particular,
the following examples are Gromov hyperbolic:

Gromov hyperbolic

» Standard hyperbolic space H" spaces

» Complex and quaternionic hyperbolic space
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,

the following examples are Gromov hyperbolic:

v

v

v

v

Standard hyperbolic space H"

Complex and quaternionic hyperbolic space
Infinite-dimensional hyperbolic space H>® C ¢?
Any R-tree
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,

the following examples are Gromov hyperbolic:

v

v

v

v

Standard hyperbolic space H"

Complex and quaternionic hyperbolic space
Infinite-dimensional hyperbolic space H>® C ¢?
Any R-tree

A “generic” finitely presented group with its Cayley
metric
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Examples of Gromov hyperbolic spaces

Every CAT(-1) space is Gromov hyperbolic. In particular,
the following examples are Gromov hyperbolic:

» Standard hyperbolic space H"

» Complex and quaternionic hyperbolic space
» Infinite-dimensional hyperbolic space H® C 2
> Any R-tree
> A “generic” finitely presented group with its Cayley
metric
Definition

A Gromov hyperbolic space X is proper if d(0,-) : X — R is proper. In other
words, if for all r > 0 the set B(0, r) is compact.
Here 0 is a distinguished point that we fix in X.
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The boundary of a hyperbolic space

Any Gromov hyperbolic space X has a Gromov boundary
0X, analogous to the sphere at infinity of standard
hyperbolic space. It is defined in a similar way to the
completion of a metric space, with the quantity

e_<X|y>0

playing a role analogous to the distance function.
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The boundary of a hyperbolic space

Any Gromov hyperbolic space X has a Gromov boundary
0X, analogous to the sphere at infinity of standard
hyperbolic space. It is defined in a similar way to the
completion of a metric space, with the quantity

e_<X|y>0
playing a role analogous to the distance function.

The most important fact about the Gromov boundary is the
following heuristic:
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The boundary of a hyperbolic space

Any Gromov hyperbolic space X has a Gromov boundary
0X, analogous to the sphere at infinity of standard
hyperbolic space. It is defined in a similar way to the
completion of a metric space, with the quantity

e_<X|y>0
playing a role analogous to the distance function.
The most important fact about the Gromov boundary is the

following heuristic: The Gromov product may be extended to
the boundary while preserving key formulas!
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A metric on 0X

Proposition
For each a > 1 sufficiently small, there exists a complete
metric D, on OX satisfying the following asymptotic:

Da(&ﬂ]) =x a~ (o, (2-1)

If X is proper, then (0X, D,) is compact.
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A metric on 0X

Proposition
For each a > 1 sufficiently small, there exists a complete
metric D, on OX satisfying the following asymptotic:

Da(fﬂ]) =x a~ (o, (2-1)

If X is proper, then (0X, D,) is compact.

D, is a generalization of the spherical metric on the Gromov boundary of

standard hyperbolic space. It is often called a visual metric.
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A metric on 0X

Proposition

For each a > 1 sufficiently small, there exists a complete
metric D, on OX satisfying the following asymptotic:

Da(&ﬂ]) =x a~ (o, (2-1)

If X is proper, then (0X, D,) is compact.

D, is a generalization of the spherical metric on the Gromov boundary of

standard hyperbolic space. It is often called a visual metric.

Remark

For CAT(-1) spaces, and in particular for the standard model
of hyperbolic geometry, the above proposition holds for any
1 < a < e. In particular, a = e gives the spherical metric.
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Convergence of sequences

Definition
Fix a sequence (xp), in X and a point n € 0X.
(xn)n converges to n if

(xalm)o—r00.

[Idea: a—{xnlmo 0]

In this case, we write x,—.
n

We say that
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Let E¢ := 0X \ {{} for some fixed £ € 0X. If x, — &, then
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A metric on 90X \ {¢} ey
infinite-

dimensional
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Lemma Tushar Das
Let E¢ := 0X \ {{} for some fixed £ € 0X. If x, — &, then

Gromov hyperbolic
spaces

ed(O’X")Dxn(ﬁla n2) —> e*[(’ll\ﬁ2>0*z,?:1<77i|§>o]‘
n,x

Herea,,—)bmeans%ﬁ%f%ﬁK.
n, X

Corollary
There exists a metric

D¢ o(n1, M) =x e_[<771|772>0—2,?:1<m|£)o]_

Note that in CAT(-1) you have a limit and equality
respectively.
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Classification of isometries

Theorem

Let g be an isometry preserving some £ € 9X. Then It € R
such that

A Be(x,g"x) =4 nt

B Deo(g"(m), 8" (12)) <x €™ D¢ o(n1,12)

We call e~ the dynamical derivative of g at &.

Here B¢ (x,y) := liminf,_,¢[d(z,x) — d(z,y)] is the Busemann function. In

Hilbert space, it describes the signed horospherical distance between

horospheres centered at £ through x and y respectively.
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Classification of isometries

Theorem
Let g be an isometry preserving some £ € 9X. Then It € R
such that

A Be(x,g"x) =4 nt
B D¢ o(g"(m),8"(m2)) =x €"*Deo(n1,m2)
We call e~ the dynamical derivative of g at &.

Here B¢(x,y) := liminf,_,¢[d(z,x) — d(z,y)] is the Busemann function. In
Hilbert space, it describes the signed horospherical distance between

horospheres centered at & through x and y respectively.
Definition

Let g be an isometry preserving some £ € 0X.
a £ is called indifferent fixed point if t =0

b £ is called attracting fixed point if t > 0

c £ is called repelling fixed point if t <0
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Definition
A group of isometries G is
a elliptic if the orbit of some base point is bounded.

b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic.

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.
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Definition
A group of isometries G is
a elliptic if the orbit of some base point is bounded.

b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic.

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.

Theorem
Every group is exactly one of the 3 types above.
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a elliptic if the orbit of some base point is bounded.

b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic.

Classification of
isometries

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.

Theorem
Every group is exactly one of the 3 types above.

Remark

P> One can therefore classify isometries according to their cyclic group.
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A group of isometries G is Tushar Das

a elliptic if the orbit of some base point is bounded.

b parabolic if there exists a £ that is an indifferent fixed
point for every element of the group and G is not elliptic.

Classification of
isometries

¢ hyperbolic if there exists some attracting or repelling fixed
point for the group.

Theorem
Every group is exactly one of the 3 types above.

Remark

P> One can therefore classify isometries according to their cyclic group.

P> Note that this proves the existence of fixed points for isometries with
unbounded orbits.



Almost recurrent parabolics

Example

There are examples of parabolic isometries whose orbits
accumulate at their fixed point on the boundary but recur
infinitely often to some bounded region in the interior.

The earliest examples we could find were discovered in a different context by

Edelstein in the '60s.
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Kleinian groups

Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

We say that a group is Kleinian if it is strongly discrete.
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Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

We say that a group is Kleinian if it is strongly discrete.

Kleinian groups

A Kleinian group G is non-elementary if there is no finite set
F C 90X or bounded set F C X such that G(F) = F.
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Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

Kleinian groups

We say that a group is Kleinian if it is strongly discrete.

A Kleinian group G is non-elementary if there is no finite set
F C 90X or bounded set F C X such that G(F) = F.

Observation
If X is proper, then strong discreteness is equivalent to a variety of notions of
discreteness; however this is not true in general.
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Definition
Let G be a group of isometries acting on a hyperbolic space
X. We say that G is strongly discrete if for every r > 0

#{g € G:g(0)e B(0,r)} < .

Kleinian groups

We say that a group is Kleinian if it is strongly discrete.

A Kleinian group G is non-elementary if there is no finite set
F C 90X or bounded set F C X such that G(F) = F.

Observation

If X is proper, then strong discreteness is equivalent to a variety of notions of
discreteness; however this is not true in general. The simplest counterexample,
say in Hilbert space, is an infinite-rank parabolic group.
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that d(0, x,)—00, and that either of the following equivalent
n

asymptotics holds:

<0‘77>Xn = 0 Kleinian groups
{xn|mo = d(0, xn).

Then x,—1.
n



Dynamics and

Radial convergence seamery
dimensional
hyperbolic spaces
Observation Tushar Das
Fix a sequence (x,), in X and a point n € 9X. Suppose

that d(0, x,)—00, and that either of the following equivalent
n
asymptotics holds:

<0‘77>Xn = 0 Kleinian groups
{xn|mo = d(0, xn).

Then x,—1.
n

Definition

In the situation above, we say (x,), converges radially to 7.
We say that (x,), converges uniformly radially to 7 if it
converges radially and if the distances (d(xn, Xn+1))n remain
bounded.



Equivalent definition of radial convergence

As in the case of standard hyperbolic space, radial
convergence can also be defined in terms of shadows;

however we must generalize what we mean by “shadow”:
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Equivalent definition of radial convergence

As in the case of standard hyperbolic space, radial
convergence can also be defined in terms of shadows;

however we must generalize what we mean by “shadow”:

Definition
For each 0 > 0 and x € X, let

Shad(x,o) = {n € 90X : (0|n)x < o}.
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Dynamics and

Equivalent definition of radial convergence g

infinite-
dimensional
hyperbolic spaces

As in the case of standard hyperbolic space, radial
convergence can also be defined in terms of shadows;
however we must generalize what we mean by “shadow”:

Tushar Das

Definition
For each 0 > 0 and x € X, let

Kleinian groups

Shad(x,o) = {n € 90X : (0|n)x < o}.

Observation

Suppose that d(0, x,)—00. Then x,—n radially if and only
n n

if there exists o > 0 such that for all n € N,

n € Shad(xp, o).
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Definition
Let G be a Kleinian group. The sets
L(G) :={n € 0X : 3gn(0)—n}
L.(G) := {n € 0X : 3gn(0)—n radially}
L (G) := {n € 0X : 3g»(0)—n uniformly radially}

Kleinian groups

denote the limit set, radial limit set, and uniformly radial
limit set, respectively.



The theorem of Bishop and Jones

For each s > 0, we define the Poincaré series for G with
exponent s to be the series

To(G) =) a0s0)

geai
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The theorem of Bishop and Jones

For each s > 0, we define the Poincaré series for G with
exponent s to be the series

To(G) =) a0s0)

geai

We define the critical exponent of G to be the number

J(G) :==inf{s > 0: X (G) < oo}.
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The theorem of Bishop and Jones

For each s > 0, we define the Poincaré series for G with
exponent s to be the series

To(G) =) a0s0)

geai

We define the critical exponent of G to be the number

J(G) :==inf{s > 0: X (G) < oo}.

Definition
A measure p is Ahlfors s-regular if

w(B(x,r)) <« r°.
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Theorem

Let G be a non-elementary Kleinian group. For every s < 6,

there exists p supported on L, (G) such that y is Ahlfors
s-regular.
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Theorem

Let G be a non-elementary Kleinian group. For every s < 6,
there exists p supported on L, (G) such that y is Ahlfors

s-regular.

Corollary

For any nonelementary Kleinian group G,

HD(L:(G)) = HD(Lw(G))

5(G).
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Theorem Tushar Das
Let G be a non-elementary Kleinian group. For every s < 6,

there exists p supported on L, (G) such that y is Ahlfors
s-regular.

Corollary

For any nonelementary Kleinian group G, Theorems on the

radial limit set

HD(Lr(G)) = HD(Lur(G)) = (S(G)

Bishop and Jones (Acta '97) proved this theorem in the case
where X is a finite-dimensional hyperbolic space.
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A group for which 6 # HD(Ly,)

Example

There exists a group G with:

a HD(L,(G)) < o0

bd=00

c G is “parametrically discrete”
d G acts irreducibly on H*
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There exists a group G with:
a HD(L,(G)) < o0
bd=00

c G is “parametrically discrete”

Theorems on the

d G acts irreducibly on H*> radial [imit set

ldea.

Start with a Schottky group H generated by two elements
that are both “rotations” - i.e. cycle through all the
coordinates, and let G := {g : g(H(0)) = H(0)}. Then
L(G) = L(H) but #Stabo(G) = oo and so G is not strongly
discrete. Ol
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s-quasiconformal with respect to G if for every Borel set
A C 90X and for every g € G, we have

1(g(A)) <x /A a8 ) q(n).

Here B,(0,71(0)) := (g7*(0)In)o — (0ln)g-1(0).

Patterson-Sullivan
theory
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Quasiconformal measures o
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Definition s

Fix s > 0. A measure p on 0X is said to be Tushar Das
s-quasiconformal with respect to G if for every Borel set
A C 90X and for every g € G, we have

1(g(A)) <x /A a8 ) q(n).

Here B, (0,72(0)) = (g2(0) n}o — (0ln)g-+(o)
> Interpret the expression Fatterson Sullvan
aBW(Ozg_l(O))

as being “the derivative of g at n".



Dynamics and

Quasiconformal measures o
infinite-
Definition e T

Fix s > 0. A measure p on 0X is said to be Tushar Das
s-quasiconformal with respect to G if for every Borel set
A C 90X and for every g € G, we have

1(g(A)) <x /A a8 ) q(n).

Here B, (0,72(0)) = (g2(0) n}o — (0ln)g-+(o)
> Interpret the expression Fatterson Sullvan
aBW(Ozg_l(o))

as being “the derivative of g at n".
» If X is a CAT(-1) space, then this interpretation can be
made explicit, i.e.
B1(0871(0) _ iy 9(8E87)
¢ d(&m)



Existence and uniqueness of d-quasiconformal
measures

Definition
A Kleinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Y5(G) = oo.
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Existence and uniqueness of d-quasiconformal
measures

Definition
A Kleinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Y5(G) = oo.

Theorem

If G is a nonelementary Kleinian group of divergence type,
then there exists a d-quasiconformal measure p supported on
the radial limit set L. C 0X.
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Existence and uniqueness of d-quasiconformal
measures

Definition
A Kleinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Y5(G) = oo.

Theorem

If G is a nonelementary Kleinian group of divergence type,
then there exists a d-quasiconformal measure p supported on
the radial limit set L, C 0X. It is unique up to equivalence:
if v is another §-quasiconformal measure then p <y v.
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Existence and uniqueness of d-quasiconformal
measures

Definition
A Kleinian group G is of divergence type if its Poincaré
series diverges at its critical exponent, i.e. if

Y5(G) = oo.

Theorem

If G is a nonelementary Kleinian group of divergence type,
then there exists a d-quasiconformal measure p supported on
the radial limit set L, C 0X. It is unique up to equivalence:
if v is another §-quasiconformal measure then p <y v.

If X is a CAT(-1) space, then p can be made conformal, and is unique up to a

constant.
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There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight
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There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight

Theorem
Given a non-elementary Kleinian group G and a conformal
measure [,

Dynamics and
geometry in
infinite-
dimensional
hyperbolic spaces

Tushar Das

Patterson-Sullivan
theory



There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight

Theorem
Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.
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There is a theorem “dual” to the Bishop-Jones result that is
used when proving the last theorem, which may be
interesting to highlight

Theorem
Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.

Ahlfors provides Thurston's proof of this theorem in the case that X is
standard hyperbolic space and G is of the first kind, i.e.
L(G) = X = S4mX=1 3nd § = dimX — 1.
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There is a theorem “dual” to the Bishop-Jones result that is Dynamics and

. . try i
used when proving the last theorem, which may be S infinite- |
. . . . di i |
interesting to highlight hyperbolic spaces
Theorem Tushar Das

Given a non-elementary Kleinian group G and a conformal
measure [,

G is of divergence type <= u(L,(G)) > 0.

Ahlfors provides Thurston's proof of this theorem in the case that X is
standard hyperbolic space and G is of the first kind, i.e.
L(G) = X = S4mX=1 3nd § = dimX — 1.

Patterson-Sullivan
theory

Idea for existence of Patterson-Sullivan measure.

» Move to CechStone(X), where X = X UdX

» Standard Patterson-Sullivan theory constructs
conformal p on 9CechStone(X)

» By Ahlfors-Thurston we get that  is supported on L,
» Show that L, C 90X



A group without a conformal measure!

Example

There exists an infinitely generated Schottky group of
convergence type with no conformal measure.
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A group without a conformal measure! et
infinite-
dimens?onal
hyperbolic spaces

Tushar Das

Example
There exists an infinitely generated Schottky group of
convergence type with no conformal measure.

ldea.

G is constructed so that there exists a B(0, R) such that any

two geodesics between any two of the generating balls atereon Sulivan
intersects B(0, R). This gives us that L,(G) = L(G). theory
Heuristically, the diameters of the generating balls must

converge to zero at a specific rate that forces the group to

be of convergence type. Then Ahlfors—Thurston implies that

there is no conformal measure. O



Sullivan Measurable Rigidity

Theorem
Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups I'1 and I».
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Sullivan Measurable Rigidity

Theorem

Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups I'1 and I».
Suppose T is nonsingular with respect to §-quasiconformal
measures ji1 and pio, viz. pi(A) > 0 < uo(TA) > 0.
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Sullivan Measurable Rigidity

Theorem

Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups I'1 and I».
Suppose T is nonsingular with respect to §-quasiconformal
measures ji1 and pio, viz. pi(A) > 0 < uo(TA) > 0.

If the Poincaré series for ['1 diverges at 9, then

T agrees (u1-a.e.) with a conformal conjugacy between I'y
and r2.
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Sullivan Measurable Rigidity

Theorem

Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups I'1 and I».
Suppose T is nonsingular with respect to §-quasiconformal
measures ji1 and pio, viz. pi(A) > 0 < uo(TA) > 0.

If the Poincaré series for ['1 diverges at 9, then

T agrees (u1-a.e.) with a conformal conjugacy between I'y
and r2.

Note that if we assume T to be Lipschitz, then it suffices to assume that '] is
of divergence type and that p; is d-quasiconformal. In such a case up will turn

out to be J-quasiconformal as well.
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Sullivan Measurable Rigidity

Theorem

Start with a Borel conjugacy T between two actions of
non-elementary strongly discrete groups I'1 and I».
Suppose T is nonsingular with respect to §-quasiconformal
measures ji1 and pio, viz. pi(A) > 0 < uo(TA) > 0.

If the Poincaré series for ['1 diverges at 9, then

T agrees (u1-a.e.) with a conformal conjugacy between I'y
and r2.

Note that if we assume T to be Lipschitz, then it suffices to assume that '] is
of divergence type and that p; is d-quasiconformal. In such a case up will turn
out to be d-quasiconformal as well. We are currently investigating various
ramifications for groups of convergence type and Hopf's dichotomy in our

setting.
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Making use of conformal measures and a Sullivan's
Shadowing Lemma type argument, we prove the following

Theorem
If G is a convex co-bounded group that is strongly discrete,
then it is finitely generated and of compact type.
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Making use of conformal measures and a Sullivan's
Shadowing Lemma type argument, we prove the following

Theorem

If G is a convex co-bounded group that is strongly discrete,
then it is finitely generated and of compact type. In
particular the §g-dimensional Hausdorff and packing
measures on L(G) are finite and positive. They coincide, up
to a multiplicative constant, with the §-conformal measure,
which is Ahlfors regular.
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Making use of conformal measures and a Sullivan’s e
. . infinite-
Shadowing Lemma type argument, we prove the following dimensional
hyperbolic spaces
Theorem Tushar Das

If G is a convex co-bounded group that is strongly discrete,
then it is finitely generated and of compact type. In
particular the §g-dimensional Hausdorff and packing
measures on L(G) are finite and positive. They coincide, up
to a multiplicative constant, with the §-conformal measure,
which is Ahlfors regular.

Remark Patterson-Sullivan
. . . heor:

This theorem may be proved without resorting to the e

thermodynamic formalism a la Bowen-Ruelle-Sinai.



. . , Dynamics and

Making use of conformal measures and a Sullivan’s e
. . infinite-

Shadowing Lemma type argument, we prove the following dimensional

hyperbolic spaces

Theorem Tushar Das
If G is a convex co-bounded group that is strongly discrete,

then it is finitely generated and of compact type. In

particular the §g-dimensional Hausdorff and packing

measures on L(G) are finite and positive. They coincide, up

to a multiplicative constant, with the §-conformal measure,

which is Ahlfors regular.

Remark Patterson-Sullivan
This theorem may be proved without resorting to the e
thermodynamic formalism a la Bowen-Ruelle-Sinai.

However, access to similar geometric results as well as strong

stochastic properties for systems associated to large classes

of infinitely-generated Schottky groups are via extensions of

the thermodynamic formalism to such settings and fine

inducing on (Lai-San) Young towers.
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Thank you for your indulgence

...on this late Saturday afternoon!
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Thank you for your indulgence
...on this late Saturday afternoon!
and especially to Idris

for this wonderfully well thought out workshop.
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Groups of compact type
Definition
A properly discontinuous group G is said to be of compact
type when L(G) is compact.
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Groups of compact type
Definition
A properly discontinuous group G is said to be of compact
type when L(G) is compact.

Theorem
For a properly discontinuous group G, the following are
equivalent:

1.
2.

G is of compact type.

Every infinite subset of G(0) contains an accumulation
point.

. Each sequence (gn(0)) e Such that

limp—oo ||gn(0)|| = 1 has a converging subsequence,
which necessarily accumulates at an element in L(G).

Every infinite subset of G(0) contains a sequence (z,)n

such that (zp,zm)o — 00 as n,m — oco.
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Groups of compact type
Definition
A properly discontinuous group G is said to be of compact
type when L(G) is compact.

Theorem
For a properly discontinuous group G, the following are

equivalent:
1. G is of compact type.
2. Every infinite subset of G(0) contains an accumulation
point.
3. Each sequence (gn(0)),cr Such that

limp—oo ||gn(0)|| = 1 has a converging subsequence,
which necessarily accumulates at an element in L(G).

4. Every infinite subset of G(0) contains a sequence (z,)n
such that (zp,zm)o — 00 as n,m — oco.

In CAT(-1) spaces, any group of compact type acting properly discontinuously

is strongly discrete.
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Say we're in a geodesic Gromov-hyperbolic space. For .. dimensional
N . . .. yperbolic spaces
w,z € X, let 7, , be the unique geodesic joining w and z. Tochar D
Ca(G) = U 721752 :
£1,£€L(G)
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Say we're in a geodesic Gromov-hyperbolic space. For .. dimensional
v . P yperbolic spaces
w,z € X, let 7, , be the unique geodesic joining w and z. Tochar D
Ca(G) = U 751752 :
£1,£€L(G)

Then notice that Cao(G) is G-invariant, i.e. for any g € G,
g(Ca(G)) = Ca(G).
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Convex-cobounded groups
Say we're in a geodesic Gromov-hyperbolic space. For
w,z € X, let 7, , be the unique geodesic joining w and z.

Ca(G) = U 72’1,52 .
&1,62€L(G)
Then notice that Cao(G) is G-invariant, i.e. for any g € G,
g(Ca(G)) = Ca(G).

Definition
A properly discontinuous group G is convex cobounded if
there exists a ball about the origin B(0, r) such that
q[B(0,r) N Ca(G)] = q[Ca(G)]-
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Convex-cobounded groups

Say we're in a geodesic Gromov-hyperbolic space. For

w,z € X, let Yw,> be the unique geodesic joining w and z.
Ca(G) = U vé’l,& .
£1,£€L(G)
Then notice that Cao(G) is G-invariant, i.e. for any g € G,
g(Ca(G)) = Ca(G).

Definition
A properly discontinuous group G is convex cobounded if
there exists a ball about the origin B(0, r) such that

q[B(0,r) N Ca(G)] = q[Ca(G)].

Theorem
Let G be properly discontinuous and of compact type.

TFAE:
1. L(G) = L(G).
2. L, (G) = L(G).
3. The group is convex-cobounded.
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A “remarkable” description of L(G).

Definition
A group G is called elementary whenever #L(G) € {0,1,2}.
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A “remarkable” description of L(G).

Definition
A group G is called elementary whenever #L(G) € {0,1,2}.

Theorem (It's elementary dear .. .)
For every G the following are equivalent:
1. #[L(G)] < oc.
2. Either
» G =(e).
» 1€ € OBy parabolic with G(§) = ¢ and G consists

entirely of parabolics.
» G = (g), with g hyperbolic.

3. Bg, h € G hyperbolic with Fix(g) N Fix(h) = @.
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A “remarkable” description of L(G).

Definition
A group G is called elementary whenever #L(G) € {0,1,2}.

Theorem (It's elementary dear .. .)
For every G the following are equivalent:
1. #[L(G)] < oc.
2. Either
» G =(e).
» 1€ € OBy parabolic with G(§) = ¢ and G consists

entirely of parabolics.
» G = (g), with g hyperbolic.

3. Bg, h € G hyperbolic with Fix(g) N Fix(h) = @.

Theorem (Minimality)

For every non-elementary group G, L(G) is the smallest

closed G-invariant subset of OB, that contains at least 2

points.
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Hilbert version

If you prefer to be concrete, consider real separable Hilbert
space, H = ¢, with the standard orthonormal basis denoted

by (en)n-
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Hilbert version

If you prefer to be concrete, consider real separable Hilbert
space, H = ¢, with the standard orthonormal basis denoted
by (en)n. Of the many models of hyperbolic space, let's
focus on the Poincaré ball B, and the Upper-half space H..
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Hilbert version

If you prefer to be concrete, consider real separable Hilbert
space, H = ¢, with the standard orthonormal basis denoted
by (en)n. Of the many models of hyperbolic space, let's
focus on the Poincaré ball B, and the Upper-half space H..
B :={xeH:|x|| <1}

OBoo ={x € H:|x|| =1}

Ho ={x € H : x > 0}

OHo ={x €H :x =0} U {0}
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Hilbert version

If you prefer to be concrete, consider real separable Hilbert
space, H = ¢, with the standard orthonormal basis denoted
by (en)n. Of the many models of hyperbolic space, let's
focus on the Poincaré ball B, and the Upper-half space H..
B :={xeH:|x|| <1}
OBoo ={x € H:|x|| =1}
Ho ={x € H : x > 0}
OHo ={x €H :x =0} U {0}

» Consider Boo, Hoo C H:=HU {oo}. The topology on H is defined as

follows: U C H open if and only if UNH is open and H \ U is bounded
if co e U.
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Hilbert version

If you prefer to be concrete, consider real separable Hilbert
space, H = ¢, with the standard orthonormal basis denoted
by (en)n. Of the many models of hyperbolic space, let's
focus on the Poincaré ball B, and the Upper-half space H..
B :={xeH:|x|| <1}
OBoo ={x € H:|x|| =1}
Ho ={x € H : x > 0}
OHo ={x €H :x =0} U {0}

» Consider Boo, Hoo C H:=HU {oo}. The topology on H is defined as

follows: U C H open if and only if UNH is open and H \ U is bounded

if co € U. Now taking closures with respect to the topology on H one
has Boo = {x € H : ||x]] <1} and Hoo = {x € H : x0 > 0} U {o0}.
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Hilbert version

If you prefer to be concrete, consider real separable Hilbert
space, H = ¢, with the standard orthonormal basis denoted
by (en)n. Of the many models of hyperbolic space, let's
focus on the Poincaré ball B, and the Upper-half space H..
B :={xeH:|x|| <1}
OBoo ={x € H:|x|| =1}
Ho ={x € H : x > 0}
OHo ={x €H :x =0} U {0}

» Consider Boo, Hoo C H:=HU {oo}. The topology on H is defined as

follows: U C H open if and only if UNH is open and H \ U is bounded
if oo € U. Now taking closures with respect to the topology on H one
has Boo = {x € H : ||x]] <1} and Hoo = {x € H : x0 > 0} U {o0}.

» Just as in finite dimensions, we have the following formulae for the
associated length elements:

4||dx||2 dx||?
[l x|l and  dsd = I X2|| )

dsﬁ =
(1= [Ix112)? X
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Conformal maps and Liouville’s Theorem
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Conformal maps and Liouville's Theorem

Definition

Let f : M — N be a diffeomorphism. Then f is called
conformal when there exists a differentiable positive function
« : M — R such that for all x € M and for all v,w € T,M

(deF (V). def (W) () = @2 (x) (v, W)x -
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Conformal maps and Liouville's Theorem

Definition

Let f : M — N be a diffeomorphism. Then f is called
conformal when there exists a differentiable positive function
« : M — R such that for all x € M and for all v,w € T,M

(deF (V). def (W) () = @2 (x) (v, W)x -

For each x, we call the number a(x) the scaling constant of the map dxf.

Note that a(x) is equal to the operator norm ||dxf]|.
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Conformal maps and Liouville's Theorem

Definition

Let f : M — N be a diffeomorphism. Then f is called
conformal when there exists a differentiable positive function
« : M — R such that for all x € M and for all v,w € T,M

(deF (V). def (W) () = @2 (x) (v, W)x -

For each x, we call the number a(x) the scaling constant of the map dxf.

Note that a(x) is equal to the operator norm ||dxf]|.

Definition

Let x € H and a > 0. Then the

inversion with respect to the sphere

S(x, «) is the map

ix,o 1 Z @

2

Z—X

llz = x|

+ x
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Conformal maps and Liouville's Theorem

Joseph Liouville
(1809 — 1882)

Theorem (Liouville, 1850)

Let U € H be a non-empty domain,
¢ : U — H be a conformal map.
Then either there exists a unique
quadruple (A, x,y, M) with x > 0;

x,y € H and M € 6(H) such that

¢(2) = AM(ix(2)) +

or ¢ is of the form ¢(z) = AM(z) +y.

As in the finite dimensional case, the map ¢ is

called a Mébius transform.
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Conformal maps and Liouville's Theorem

Joseph Liouville
(1809 — 1882)

Theorem (Liouville, 1850)

Let U € H be a non-empty domain,
¢ : U — H be a conformal map.
Then either there exists a unique
quadruple (A, x,y, M) with x > 0;

x,y € H and M € 6(H) such that

¢(2) = AM(ix(2)) +

or ¢ is of the form ¢(z) = AM(z) +y.

As in the finite dimensional case, the map ¢ is

called a Mébius transform.

Theorem: The conformal map i7e0 V3 H—H

is a homeomorphism between Heo and B, and
an isometry between Hoo and Boo.
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Theorem (Hyperbolic isometry inside, conformal upto
the boundary)

Let Ko be either By, or Hy,. Then TFAE:

(1) g is the restriction of a conformal map g : H—H
which preserves K.

(2) g is the restriction of a Mébius transform g : H — H
which preserves K.

(3) g is an element of Mx.

(4) g preserves the infinitesimal metric, i.e.

g« [u]llg(x),x = llullxx for every x € Ko, and all
ue T, Ky.

(5) g preserves the distance function di, i.e.
dx(gx,8y) = di(x, y) for every x,y € K.
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Dynamics and

Theorem (Hyperbolic isometry inside, conformal upto geometry in

the boundary)
Let Ko be either By, or Hy,. Then TFAE:
(1) g is the restriction of a conformal map g : H—H

which preserves K.

Tushar Das

(2) g is the restriction of a Mébius transform g : H — H
which preserves K.

(3) g is an element of Mx.

(4) g preserves the infinitesimal metric, i.e.
g« [u]llg(x),x = llullxx for every x € Ko, and all Patterson-Sullvan
ue T, Ky.

(5) g preserves the distance function di, i.e.
dx(gx,8y) = di(x, y) for every x,y € K.

Notice that

> (1) & (3) says Mg is the group of conformal maps that preserve the
unit ball.



Theorem (Hyperbolic isometry inside, conformal upto
the boundary)

Let Ko be either By, or Hy,. Then TFAE:

(1) g is the restriction of a conformal map g : H—H
which preserves K.

(2) g is the restriction of a Mébius transform g : H — H
which preserves K.

(3) g is an element of Mx.

(4) g preserves the infinitesimal metric, i.e.
g« [u]llg(x),x = llullxx for every x € Ko, and all
ue T, Ky.

(5) g preserves the distance function di, i.e.
dr(gx, gy) = dk(x,y) for every x,y € K.

Notice that

> (1) & (3) says Mg is the group of conformal maps that preserve the
unit ball.

> (1) & (2) follows from Liouville’s Theorem.
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Let us define the Mobius group as follows:

Mg :={g : Koo = Kuo| g preserves (-, )k}
and let

Mg = {g € Mk| g composed of finitely many inversions}.
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Isometries of hyperbolic space

Let us define the Mobius group as follows:
Mg :={g : Koo = Kuo| g preserves (-, )k}
and let
Mg = {g € Mk| g composed of finitely many inversions}.
Remark (M € Mk)

Let g(z) = AM o ix(z) + y for some (\, x,y, M). Then
[g can be written as a finite composition of inversions]
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Isometries of hyperbolic space

Let us define the Mobius group as follows:
Mg = {g : Koo = Koo| g preserves (-, -)x}
and let
Mg = {g € Mk| g composed of finitely many inversions}.
Remark (M}, € Mk)
Let g(z) = AM o ix(z) + y for some (\, x,y, M). Then
[g can be written as a finite composition of inversions]

if and only if
[Fix(M) has finite codimension.]
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Classification of isometries, a la Klein

Theorem (Classification of isometries of hyperbolic
space)

Any isometry of hyperbolic space is conjugate to exactly one
of the following:

Dynamics and
geometry in
infinite-
dimensional
hyperbolic spaces

Tushar Das

Patterson-Sullivan
theory



Classification of isometries, a la Klein

Theorem (Classification of isometries of hyperbolic
space)

Any isometry of hyperbolic space is conjugate to exactly one
of the following:

(1) Elliptic case: A bijective linear isometry on B, i.e.
T [Bo for some T € O(H).
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Classification of isometries, a la Klein

Theorem (Classification of isometries of hyperbolic
space)
Any isometry of hyperbolic space is conjugate to exactly one
of the following:
(1) Elliptic case: A bijective linear isometry on B, i.e.
T [Bo for some T € O(H).
(2) Parabolic case: A bijective affine isometry on Hu, with
no fixed points in the interior.
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Classification of isometries, a la Klein

Theorem (Classification of isometries of hyperbolic
space)
Any isometry of hyperbolic space is conjugate to exactly one
of the following:
(1) Elliptic case: A bijective linear isometry on B, i.e.
T [Bo for some T € O(H).
(2) Parabolic case: A bijective affine isometry on Hu, with
no fixed points in the interior.
(3) Hyperbolic case: A map of the form
g =AM :Hy, — Hy, where 0 < A< 1and M is a
bijective linear isometry on Hy.
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Can one make sense of orientation preserving
transformations in infinite dimensions?
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Can one make sense of orientation preserving
transformations in infinite dimensions?

This does NOT make sense in infinite dimensions.
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Can one make sense of orientation preserving
transformations in infinite dimensions?

This does NOT make sense in infinite dimensions.

If one wanted to define orientation-preserving via the kernel
of a continuous homomorphism O : &(H) — Zy one would
easily fall into a trap ... For example, any reflection in a
hyperplane on ¢>(Z) would be orientation-preserving.
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Dynamics and
geometry in
. . . infinite-
Can one make sense of orientation preserving dimensional
. . R . . hyperbolic spaces
transformations in infinite dimensions?
Tushar Das
This does NOT make sense in infinite dimensions.
If one wanted to define orientation-preserving via the kernel
of a continuous homomorphism O : &(H) — Zy one would
easily fall into a trap ... For example, any reflection in a
hyperplane on ¢>(Z) would be orientation-preserving.
Example

Patterson-Sullivan

For example, for v,w € H, let H, ,, := {x + w|x € v} be theory
the hyperplane determined by v and w and let r, , be

reflection in this hyperplane given by

zZ— (id - 2PV)(z — w) + w, where P, is the projection onto

the hyperplane v. Then O(r,.) can be shown to equal 1,

i.e. be orientation-preserving.
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