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Abstract 

This review explores quantitative genealogical and forensic analyses of genetic 
data, illustrated with case examples that introduce the core principles of probabilistic 
inheritance and analytical techniques for determining ancestral lineages and identity 
matches. The discussion emphasizes the use of short DNA polymorphism variant 
sequences, including single nucleotide polymorphisms (SNPs), short tandem repeats 
(STRs), and microhaplotypes (MHs), as biomarkers. Forensic DNA index system databases 
were discussed 

The illustrative case examples include tracing the ancestral origins of 
domesticated dogs from wolf populations by applying principles of inheritance and 
probabilistic analyses to identify their likely dual-ancestry ancestors. Another example 
tracks common ancestors before the branching of the DRD4-7R dopamine D4 receptor 
gene variant tree, characterized by the 7-repeat variant VNTR (variable number tandem 
repeats), serving as a biomarker to analyze the natural selection process that led to 
beneficial outcomes despite the adverse effects of disorders like ADHD (attention deficit 
hyperactivity disorder) and novelty-seeking behavior. Additionally, another case example 
discusses tools that address the limitations of DNA samples in non-invasive prenatal 
paternity testing (NIPPT) by utilizing maternal blood samples to obtain fetal DNA. 

The alternative artificial intelligence (AI) approach in genealogical analysis was 
discussed, focusing on two distinct AI methods for addressing complex problems. The 
traditional algorithmic AI approach relies on programming analytical methodologies into 
expert systems with clearly defined statistical inference techniques to solve these 
problems analytically. However, it struggles to address unexpected scenarios and cannot 
manage gaps in missing genetic data. 

The alternate branch of the AI approach addresses these issues by employing 
machine learning to derive solutions without specifying the exact methodologies or 
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algorithms needed to tackle these problems. Case studies illustrate the principles and 
history of neural computation alongside machine learning, demystifying the AI magic that 
excels at summarizing large datasets while lacking explainable reasoning in its generated 
results. The advantages and practical limitations of machine learning provide informed 
criteria for evaluating suitable AI model performance. 

The limitations include the requirement for a large dataset for training to identify 
suitable solutions and learn from examples to summarize data through input-output 
correlation, which is a time-consuming process. Depending on the AI models using 
supervised or unsupervised learning paradigms, they may or may not need human 
guidance during training with known solutions. These tools can help fill gaps in 
genealogical databases, and while these outcomes are possible, they may not always have 
a rational explanation. Their solutions may not lead to the optimal one, as other 
alternatives could be more effective. 

Until future AI models improve their reasoning abilities, it is wise to exercise 
caution when concluding. Nonetheless, these systems effectively automate the 
organization of genealogical databases from written and spoken records, and they can 
produce automated responses to users' inquiries by utilizing natural language processing 
to address questions from everyday users. 
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26  
Artificial Intelligence and Genealogy 

 

26.1 INTRODUCTION 

Our uniqueness arises from genetic variations that manifest as distinct phenotypic 
traits. Environmental factors, including epigenetics, also impact gene expression, 
resulting in diverse phenotypes (or characteristics) even among individuals with the same 
genotype (or gene sequences), such as identical twins who vary due to environmental 
influences. The interactions between environments and genes create variations among 
us that contribute to our uniqueness. Without these variations, we would resemble 
factory-produced robots, distinguishable only by their serial numbers. 

26.1.1 AN OVERVIEW OF THE QUANTITATIVE ASSESSMENT OF 
GENETIC DATA 

The methodology for identifying an individual’s or population’s ancestral lineage 
or inherited traits varies based on project objectives, particularly in forensic and 
genealogical studies. This overview discusses methods for quantitatively assessing 
genetic information and includes case examples to illustrate the outcomes of the applied 
analytical techniques. The theoretical principles of these methods are presented to 
facilitate an objective evaluation of the results. Additionally, the advantages and 
disadvantages of each technique are examined to support informed decision-making. 
Data availability, technology options, and performance outcomes can influence the 
selection of analytical tools and the necessity of definitive conclusions for the project’s 
goals. 

26.1.1.1 Rationale for Choosing Specific Biometric Markers 

Evolution offers evidence for tracing generations through inherited patterns in 
gene sequences. These variations assist in identifying genealogical lineages and reveal the 
divergent branches that enhance our understanding of identity and ancestry. The gene 
sequences provide quantitative evidence of inherited patterns transmitted from prior 
generations. 

26.1.1.2 The Use of Genetic Codes as Identifying Markers 

Analyzing gene patterns can reveal previously unknown genealogical lineages 
based on inherited traits in family trees. Constructing a genealogical tree involves 
connecting members according to the likelihood of these patterns being passed down. 
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This process infers a descendant’s inheritance from the similarities and differences in 
gene sequences, organizing the tree by positioning members based on the most probable 
inherited traits. The gene code pattern can be a fingerprint identifier for matching an 
individual’s identity in forensic determinations. 

26.1.1.3 The Human Genome as an Identifying Blueprint 

Deoxyribonucleic acid (DNA) encodes genetic information through its molecular 
sequence found within the genes of all living organisms, from bacteria to humans. DNA 
provides the genetic instructions for protein synthesis, cell replication, and repair. It also 
influences the developmental timing of plants and animals, affecting their resilience and 
survival.  

DNA serves as the genetic code found in a cell’s chromosomes. The complete set 
of chromosomes is referred to as the genome. The human genome consists of 6 billion 
nucleotides organized into 23 pairs of chromosomes. The number of chromosomes varies 
across species; for instance, some butterflies possess over 400, whereas certain single-
celled protozoa have 1600. 

26.1.1.4 The Complete DNA Codes in the Human Genome 

Nucleotides form long polymer chains that create the backbone of a double-
stranded helix composed of deoxyribose and phosphate groups. Strong covalent bonds 
link the nucleotides, while weaker hydrogen bonds connect the strands, resulting in a 
double helix with complementary base pairs. Each strand pairs A with T and G with C at 
corresponding loci on the chromosomes. The complementary base pairs enable one 
strand to predict its counterpart, resulting in 3 billion unique nucleotide codes that reflect 
individual similarities and differences. 

26.1.1.5 The Complexity of Genetic Codes 

Analyzing three billion DNA codes in the human genome is a daunting task, 
whether the goals are to identify individuals for forensics, trace ancestral origins for 
genealogy, or connect genetic factors associated with disorders for medical research. 
Examining the similarities and differences can provide insights into our genetic heritage. 

26.1.2 GENOME-WIDE ASSOCIATION STUDIES (GWAS) 

Although the human genome sample size is substantial, various high-throughput 
techniques allow for the systematic analysis of DNA sequence variations across 
populations in genome-wide association studies (GWAS). These techniques identify 
genomic variants statistically linked to specific traits or the risk of a disease, providing 
insights into the genome's coding and non-coding regions 1,2. 
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26.1.2.1 The Use of Gene Variants to Minimize Size for Comparison 

Human nucleotide sequence variations range from 0.1% to 0.4%. While DNA 
sequences share over 99% similarity, the combinatorial variations remain significant for 
the comparative analysis of three billion-letter codes. Fortunately, most variations consist 
of single nucleotide substitutions or repetitive patterns. Comparing short DNA segments 
with variations in a population is sufficient for tracing or identification. These short 
sequences allow for comparison without needing to sequence the entire genome. 

26.1.3 DISTINCT SHORT DNA SEQUENCES AS BIOMETRIC 
IDENTIFIERS FOR TRACKING 

Even though each individual’s unique genome can serve as a biometric identifier 
that distinguishes one person from another, it is commonly called a biomarker when a 
shorter sequence is used. Variations in these gene biomarkers can verify individual 
similarities and differences, including susceptibility to disorders, behavioral outcomes, 
and forensic tracing. 

26.1.3.1 The Application of Gene Variants in Medical and Genealogical 
Analyses 

These gene variants clearly distinguish individuals, irrespective of their functions 
or the traits they influence. They serve as objective biometric markers for tracing 
ancestry, locating relatives, confirming parenthood, verifying an individual’s identity, 
unveiling genetic predispositions to disorders, and providing insights into heritage. 

26.1.3.2 The DNA Sequences for Analysis 

These DNA sequences are the foundation for all genetic coding information, 
including coding and non-coding regions in the chromosomes. This information can be 
used for forensic or genealogical analysis and to identify genetic links to medical 
disorders. While various forms of data, such as historical records and personal accounts, 
can provide valuable insights for forensic and genealogical tracing, this chapter focuses 
on leveraging DNA data for these purposes. 

26.1.4 THE ROLE OF NON-CODING DNA IN FORENSIC ANALYSIS 

Not all gene sequences encode or regulate gene expression; some are non-coding 
and unexpressed. Coding regions are essential for studying effects on growth, 
development, and medical disorders 3. Since non-coding sequences are not expressed, 
they do not typically influence trait outcomes, which can affect analysis. For these 
reasons, non-coding regions are commonly used for forensic or genealogical analysis. 
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26.1.4.1 Effects of Non-Coding DNA on Disorders 

Although non-coding regions are not transcribed, they are associated with specific 
phenotypic variants identified by the GWAS project. Single nucleotide polymorphisms in 
non-coding DNA can influence intron activity and regulatory elements, such as promoters 
and enhancers. These variants may impact DNA methylation, histone modifications, 
transcription factor affinity, alternative splicing, and mRNA stability. These factors suggest 
that they can alter traits even though they are not directly transcribed 4. In forensic 
analysis, it was once assumed that using non-coding regions would not affect traits, but 
emerging evidence may not support this assumption. 

26.1.4.2 Amplification of DNA Sequence for Analysis 

The polymerase chain reaction (PCR) amplification method is widely used to 
replicate a specific DNA sequence for analysis. Sequencing a shorter segment is simpler 
than sequencing the entire genome. Several other amplification and sequencing 
techniques are available for extracting a target DNA sequence for analysis. 

26.1.5 SHORT SEQUENCE VARIANTS AS BIOMARKERS FOR 
IDENTIFICATION 

To reduce the sequence size for analysis, one can select a specific short sequence 
for comparison, provided that the sequence distinguishes differences among individuals 
as identifiable markers. These short sequences can serve as biomarkers for assessing the 
likelihood of inheritance within a lineage, thereby narrowing the scope of comparison. 
When these short nucleotide segments provide sufficient data to trace inherited traits, 
they can yield enough information to create a genetic profile for forensic analysis. 

26.1.5.1 Improve Matching Accuracy with Multiple Biomarkers 

False positives inevitably occur in any testing due to errors, regardless of accuracy. 
Utilizing short-sequence biomarkers can match genetic traits more efficiently than 
analyzing the entire genome; however, false positives persist. Nevertheless, the error rate 
can be significantly reduced by employing multiple biomarker sequences from different 
loci (locations on a gene) instead of relying on just one. 

For example, with a 10% false positive error rate (1 in 10) per sequence tested, 
two sequences result in a 1% error chance (10% x 10% = 1 in 100). Testing three sequences 
reduces this to 0.1% (10% x 10% x 10% = 1 in 1000). With 13 sequences, the false positive 
rate drops to 0.113% or 1 in a trillion. Thus, most forensic analyses use multiple biomarker 
sequences at various loci to determine matches. 
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26.2 AN OVERVIEW OF TRADITIONAL STATISTICAL 
INFERENCE 

Identifying genealogical lineage relies on methods that evaluate the probability of 
inheriting DNA sequences from ancestors or matching individuals through genetic profiles 
instead of depending on fingerprint analysis. Traditional approaches use statistical 
inferences to assess the likelihood of trait transmission, which aids in constructing 
genealogical trees or matching DNA biomarker sequences for forensic analyses. 

26.2.1 FALSE POSITIVES AND STATISTICAL CONFIDENCE 

These methodologies rely on the statistical probability of matching a target 
population or gene sample. However, the possibility of error always exists. To minimize 
the risk of false positives, statistical methods lower error rates by increasing the 
confidence intervals in the analysis. A conclusion can only be drawn when there is 
sufficient statistical probability to establish a genealogical tree or evaluate the likelihood 
of matching an individual to a target sample. 

26.2.2 DEPENDENCY ON A SPECIFIC DATABASE 

However, comparing genetic data requires access to a database of DNA sequences 
from populations potentially related to the individual. The location on the tree can be 
identified if the matching sequences can be traced back to the genetic profiles already 
present in the database. Tracing the location on the tree becomes increasingly difficult 
when related profiles are absent from the database. 

26.3 AN OVERVIEW OF ARTIFICIAL INTELLIGENCE IN 
GENEALOGY 

This overview of using artificial intelligence (AI) in genealogy summarizes the 
capabilities of AI models. It discusses the advantages and limitations of this technology 
before exploring the differences among various AI models that impact genealogical 
analysis. Subsequent sections will present a more detailed discussion, featuring a case 
history and examples to illustrate the principles used in AI, offering objective criteria for 
evaluating the performance of different AI models genealogy. 

26.3.1 THE ALTERNATIVE AI APPROACH BEYOND STATISTICAL 
INFERENCES 

In contrast to the traditional standard approach, artificial intelligence techniques 
can analyze and generalize genetic information more effectively than conventional 
methods. They provide potential solutions that uncover new insights into genealogical 
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inheritance and bridge data gaps through generalizations. Natural language processing AI 
models can automate the categorization of written genealogical records 5 while offering 
human-like interactions to address inquiries related to genealogy by generalizing genetic 
profile information from the training datasets. 

26.3.2 ADDRESSING THE DATA GAPS 

AI effectively addresses issues related to missing data. Current AI technology 
employs machine learning (ML) to integrate extensive datasets and train systems to 
establish connections between data points. Once trained, these connections generate 
outputs from input queries, even when specific data points are absent from the training 
set. The system can interpolate missing information by leveraging the connectivity among 
relevant data. In forensic genealogy, if the database lacks genetic profile information, AI 
can estimate likely tree locations, which traditional algorithms may struggle to 
accomplish. 

26.3.3 GENERALIZING GENEALOGICAL PATTERNS 

Other applications of AI models in genealogy assess relationships without 
depending on traditional statistical methods. Rather than explicitly programming 
analytical techniques into computer software, AI models generate results for input 
queries by generalizing patterns learned from the interactions between inputs and 
outputs in the training dataset. 

26.3.3.1 Responding to Genealogical Inquiries Using Natural Language 
Processing 

For instance, AI can generate natural responses to genealogical inquiries using a 
large language model (LLM), such as ChatGPT. It can automate user requests and provide 
answers without human involvement. Generative AI can create interactive conversations 
with users to address questions based on training with a vast dataset. 

26.3.4 CATALOGING NATURAL LANGUAGE GENEALOGICAL 
RECORDS 

Applying AI in genealogy can extract information from historical records, including 
newspaper articles and oral histories, and organize it into databases. This cataloging 
process is often labor-intensive; automating it would minimize the need for human 
involvement and speed up information retrieval. Users can benefit from organized 
genealogical information for future queries and can pose questions to receive more 
efficient answers. 
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26.3.5 MACHINE LEARNING (ML) FOR LEARNING FROM 
TRAINING DATASETS 

An AI system develops internal models by learning input-output relationships 
through machine learning (ML) without relying on human-provided solutions or 
algorithms. ML automates this process by applying learning rules to establish 
connections, including direct and higher-order relationships among relevant factors. The 
system utilizes a training dataset to improve its internal representations through trial and 
error, using an error minimization methodology to achieve optimal outcomes. It requires 
billions of examples in the dataset and billions of iterations in the trial and error process 
to converge on a solution, effectively linking input queries to system outputs. 

26.3.5.1 Biases in Training Databases 

The model may unintentionally introduce bias by optimizing internal 
representations based on a particular training dataset. While large datasets are essential, 
biased outcomes can arise if counterexamples are excluded. Due to the limited 
genealogical databases, conclusions drawn from specific datasets might be flawed. 
Furthermore, outliers are often misrepresented during the generalization process. 

26.3.5.2 Limitations of Artificial Intelligence 

The process by which the AI system reaches its conclusions is often unclear. It 
generates outputs by learning correlations from extensive datasets. Consequently, AI 
models excel at generalizing key data to produce results. They do not apply logical 
reasoning or specific rationale to deduce answers, such as using physiological or genetic 
knowledge of inheritance or employing statistical principles to infer outcomes. Therefore, 
AI outputs typically lack explanations unless explainable AI (XAI) is used to clarify the 
reasons based on the analysis of statistical input-output patterns. Without logical 
inferences and reasoning rationales, the AI system’s conclusions may be plausible yet lack 
rationality. 

26.4 GENEALOGICAL ANALYSIS METHODOLOGIES 

Methods for genealogical analysis rely on the interactions between genotypes and 
phenotypes. Variations in DNA sequences can lead to differences in genotypic and 
phenotypic traits. These genotypes influence our physical characteristics, closely linking 
them to phenotypic qualities. Such variations emerge through the mixing and matching 
processes during DNA replication and recombination. Analyzing these sequences can 
uncover the genetic influences on inherited traits, which may offer survival advantages or 
disadvantages. As we examine probabilities on a genealogical tree, these variations can 
affect lineage branching and extinction. 
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26.4.1 ANALYSIS OF DNA PATTERNS 

As mentioned earlier in the introduction, genetic codes are represented by the 
four-letter symbols A, C, G, and T. These sequences correspond to their respective 
chromosome pairs, with A pairing with T and C pairing with G. The analytical methodology 
focuses on the patterns of similarities and differences among a series of DNA sequences. 

26.4.1.1 The Degree of Similarity and Difference 

In genealogical tracing, the degree of similarity can indicate a level of relatedness. 
Identifying lineage becomes straightforward when comparing identical and non-identical 
codes in a DNA sequence as measures of relatedness. However, exact and non-identical 
sequences do not necessarily correlate with similarities or dissimilarities or imply 
inheritance for the reasons explained below. 

26.4.1.2 The Difference Defined by a Single Nucleotide Sequence 

When a DNA sequence varies by one or two nucleotides, should it be considered 
similar or different compared to a group? Classification is relative to the population with 
which it is compared and is influenced by levels of variability. Similarities or differences 
can change depending on the subpopulation used for comparisons. Assigning an 
individual to a lineage tree depends on their similarities and variations compared to other 
groups. The analysis involves more than just genetic similarities and differences; it 
requires additional methods to trace lineages based on how descendants inherit genes 
and survive. 

26.4.2 PRINCIPLES OF INHERITANCE 

Various factors influence inheritance patterns in sexual reproduction. This 
reproductive method accelerates the evolutionary rate by mixing recombinant DNA more 
effectively than random mutations, thereby enhancing survival. Consequently, the 
recombinant DNA sequences differ from those of either parent, while descendants inherit 
some traits but not all. Understanding these processes could assist in identifying suitable 
analytical tools for genealogical analysis. 

26.4.2.1 Inheritance via Asexual Reproduction 

In asexual reproduction through cloning from a single parent, the offspring's DNA 
is identical to that of the parent, as they are exact replicas of the organism. When cloned, 
the progeny of asexual reproduction inherit 100% of the parent’s traits, assuming there 
are no mutations or replication errors during reproduction. The process of inheritance in 
asexual reproduction is straightforward and certain. However, inheritance in sexual 
reproduction, which involves recombinant DNA, is more complex and probabilistic rather 
than certain. 
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26.4.2.2 Inheritance via Sexual Reproduction 

Sexual reproduction combines DNA from both parents, producing offspring that 
inherit half of their traits from each. It accelerates evolution by mixing and matching in a 
trial-and-error recombinant reproductive process. Unlike asexual reproduction, the 
inheritance patterns in sexual reproduction are not definitive; they are probabilistic and 
depend on numerous factors that affect genealogical analysis. 

26.4.2.3 Single-Stranded Chromosomes in Haploid Cells 

During sexual reproduction, meiosis is a type of cell division that separates 
chromosomes into unpaired forms, resulting in haploid gametes, specifically sperm and 
egg cells. Each gamete contains one copy of each chromosome, made up of a single DNA 
strand. The chromosomes remain unpaired until fertilization when the sperm and egg 
fuse together. 

26.4.3 DOUBLE-STRANDED CHROMOSOMES IN DIPLOID CELLS 

During fertilization, a sperm cell inserts its nucleus into an egg, recombining 
chromosomes into paired strands. One unpaired chromosome is inherited from the 
mother and another from the father, resulting in a diploid cell. The fertilization process 
recombines unpaired DNA strands, giving the embryo half of the traits from each parent, 
while the chance of inheriting a specific strand remains probabilistic. 

26.4.3.1 The Randomness of Producing a Male or Female Offspring 

Sexual reproduction demonstrates the randomness of inheriting specific sex 
chromosomes. Parents can produce offspring with either XX chromosomes (indicating 
females) or XY chromosomes (indicating males) (see Figure 26.1). This process occurs by 
chance during fertilization. The likelihood of having a boy or a girl is a probabilistic 
phenomenon rather than an absolute certainty. 
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Figure 26.1. The diagram illustrates the recombinant X and Y chromosomes, showing a 
50% (2 out of 4) probability of inheriting either an XX chromosome for a girl or an XY 
chromosome for a boy. 

26.4.3.2 The Probability of Having a Girl or a Boy 

The probability of inheriting a particular sex chromosome, such as the XX 
chromosome, is 50% (2 out of 4) for girls and 50% (2 out of 4) for boys (see Figure 26.2), 
assuming the fertilization process is not manipulated. It indicates the chance of having a 
girl or a boy is 50/50. This example illustrates the random chance involved in inheriting 
traits through sexual reproduction. 

 

Figure 26.2. The inheritance table illustrates the recombinant XX and XY chromosomes 
from the mother and the father, similar to the inheritance shown in Figure 26.1. 

26.4.4 THE INFLUENCE OF SURVIVAL RATES ON PREVALENCE 
STATISTICS 

Due to survival rates, population prevalence statistics can overestimate or 
underestimate inheritance probabilities. For example, females tend to live longer, leading 
to a male-to-female ratio of 49% to 51%. Prevalence data may misrepresent the 
frequency of gene variants based on survival rates: a male-linked variant shows a bias 
toward 49%, while a female-linked variant exhibits a bias toward 51%. This example 
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illustrates how survival hazard functions influence age-specific incidence statistics. 
Therefore, prevalence statistics may not accurately reflect occurrences of gene variants 
unless age-specific survival rates are considered. 

26.4.4.1 The Hazard Function of Survival Rate for Each Age Group 

The hazard function represents the cumulative distribution until death occurs. If a 
gene variant leads to early childhood deaths, those cases will not be counted if the deaths 
occurred before the population survey. Furthermore, if parents do not have children, the 
chances of passing down genes are nonexistent, not due to death but rather a lack of 
reproduction. The prevalent statistics can adjust for the survival rate within each age 
group for a more accurate representation. 

26.4.4.2 Factors Influencing Parental Inheritance 

Although all offspring’s genes can be traced back to their parents, one-half of the 
parent’s chromosomes are absent in the offspring. When a gene variant is used to track 
inheritance, that variant may or may not be present in the descendent’s genes. The 
offspring might inherit the normal gene from the heterozygous carrier parent and receive 
a regular copy instead of the variant. 

Forensic and genealogical tracing requires an analysis of how genes are passed 
down from each parent, which is crucial for drawing reliable conclusions. The probability 
of passing a gene variant to offspring depends on whether one or both parents carry it 
and whether they are heterozygous or homozygous carriers.  

26.4.5 ESTIMATING THE LIKELIHOOD OF INHERITING A GENE 
VARIANT 

Unlike asexual reproduction, the probability of passing this variant to the next 
generation is generally considered to be 50% for an offspring inheriting one chromosome 
from each parent. This scenario assumes that one parent is normal. In contrast, the other 
parent carries the variant and is heterozygous for that gene variant, meaning one 
chromosome copy has the variant. In contrast, the other is normal, similar to the rest of 
the population. 

26.4.5.1 Inheritance Patterns as a Random Recombinant Process 

Figure 26.3 illustrates how inheritance patterns vary depending on whether one 
or both parents are homozygous or heterozygous for the gene variant. The corresponding 
figure panel displays the likelihood of inheriting a specific gene variant. There are four 
possible combinations for transmitting a gene variant from the parents. One or both 
parents may be carriers of the variant, either as heterozygous or homozygous carriers. 
Figure 26.3 shows the associated probability of inheritance. 
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Figure 26.3. The table illustrates the inheritance patterns of gene variants passed on to 
the next generation. The probability of inheritance depends on whether one or both 
parents are heterozygous or homozygous. (The gene variant is indicated by a blue dot in 
the DNA sequence, while white dots represent the normal gene sequence.) 

26.4.5.2 The Probability of Inheriting from a Heterozygous Parent and a 
Normal Parent 

If one parent is a heterozygous carrier with one copy of the gene variant and the 
other is normal, there is a 50% chance that the offspring will inherit the variant (see Figure 
26.3A). The offspring have a 50% chance of inheriting a heterozygous gene variant. 

26.4.5.3 The Probability of Inheriting from Two Heterozygous Parents 

The likelihood of inheritance rises to 75% when both parents are heterozygous 
(see Figure 26.3B). It suggests there is a 25% (1 in 4) chance of inheriting the variant from 
both parents, a 50% (2 in 4) chance of inheriting it from either parent, and a 25% (1 in 4) 
chance of not inheriting it. Therefore, the average probability remains 75% (3 in 4). 
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26.4.5.4 The Probability of Inheriting from Homozygous Parents 

If one or both parents are homozygous, the likelihood increases to 100% (see 
Figure 26.3C&D). The offspring will undoubtedly inherit it with complete certainty. 
Therefore, the inheritance pattern varies depending on whether the parents are 
heterozygous or homozygous. 

26.4.5.5 The Probability of Inheritance for Parents without Children 

The preference for these variant traits in mate selection could significantly 
increase prevalence statistics, provided that the mating pairs have offspring. The 
likelihood of passing these variants to the next generation is nonexistent if they do not 
have children. This example illustrates how mate selection and reproductive success 
affect population prevalence statistics beyond random chance. 

26.4.6 HARDY-WEINBERG EQUILIBRIUM 

Genetic variation within a population will remain stable across generations if the 
reproductive process is entirely random. This phenomenon is referred to as Hardy-
Weinberg equilibrium. It assumes random mating and reproduction within a large 
population free from disruptive influences. As a result, genotype and allele frequencies 
will remain unchanged. 

26.4.6.1 Factors Influencing Hardy-Weinberg Equilibrium 

However, real-world factors such as mutations, meiotic drive, natural selection, 
non-random mate selection, genetic drift, gene flow, and harmful alleles can disrupt this 
equilibrium. These factors may influence the estimated probability, especially when a 
conditional probability depends on a prior probability. Conversely, when tracing ancestral 
history, an offspring inherits one copy of each pair of gene sequences directly from each 
parent with certainty. Thus, the probability of inheritance relies on the direction of tracing 
and the analysis performed. 

26.5 NUCLEOTIDE VARIANTS AS BIOMARKERS 

Forensic analysis often emphasizes potential lineage over the effects of variations 
in gene expression. It typically selects non-coding regions that are not expected to be 
transcribed for polymorphism analysis. These short sequences act as biomarkers for 
identification rather than provide a comparison of the entire genome. A single nucleotide 
base in a DNA sequence may change due to mutations, replication errors, inheritance, or 
other factors. Nevertheless, there is at least a 50% chance that it will be passed on to the 
next generation since offspring inherit one chromosome from each parent. 



 Artificial Intelligence and Genealogy 26-19 

26.5.1 SINGLE NUCLEOTIDE POLYMORPHISM 

Single nucleotide polymorphisms (SNPs) are variations of a single nucleotide 
within an identical DNA sequence (see Figure 26.4). Polymorphism refers to the 
substitution of one nucleotide for another within a sequence. It can arise from mutations, 
replication errors, or other initial causes. The substituted nucleotide is then passed down 
to subsequent generations, leading to variations among similar individuals in a 
population. 

  

Figure 26.4. A single nucleotide polymorphism (SNP) in a single-stranded DNA sequence 
represents a variation at a specific nucleotide position within an otherwise identical DNA 
sequence, differing solely at that position. There are four possible variants of an SNP, each 
corresponding to substituting one of the four different nucleotide bases, assuming that 
deletion or insertion is excluded. 

26.5.1.1 Homozygous and Heterozygous Alleles 

An allele is one of two or more variations of a DNA sequence (a single base or a 
segment of bases) found at a specific genomic location. An individual inherits two alleles 
– one from each parent (see Figure 26.5). If the two alleles are identical, the individual is 
homozygous for that allele; if they are different, the individual is heterozygous.  
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Figure 26.5. A single nucleotide polymorphism (SNP) in a double-stranded DNA sequence. 
One strand is inherited from the mother, while the other comes from the father. This 
diagram illustrates a variation in a single nucleotide within an otherwise identical DNA 
sequence across four individuals. 

26.5.2 POLYMORPHIC SEQUENCES AS BIOMARKERS 

The biomarker sequence is frequently chosen for its polymorphic characteristics, 
which exhibit nucleotide variations in gene sequences among individuals within a 
population. Common biomarkers include single nucleotide polymorphisms, short tandem 
repeats, and microhaplotypes. They are the most prevalent polymorphisms. 

26.5.2.1 Polymorphism Tracing 

If the nucleotide alteration originated from a mutation in a parent, then the 

descendant’s inheritance is unique to that parent. However, if it was passed down from 
previous generations, the likelihood of inheriting the polymorphism depends on its 
statistical incidence in the population. This probability can be estimated by comparing it 
to the occurrence in the target population. 

26.5.3 SINGLE NUCLEOTIDE POLYMORPHISM AS A BIOMARKER 

When inherited, a single nucleotide difference can serve as a unique biomarker to 
trace a direct lineage from a parent instead of comparing complete genomic sequences. 
This similarity arises because the sequence matches the entire population, differing by 
only a single nucleotide passed down from that ancestor during ancestry tracing. Even a 
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single nucleotide variation can distinctly identify an individual based on these DNA 
variants. 

26.5.3.1 Comparison with a Target Population 

Suppose a single base substitution differentiates an individual’s DNA sequence 

from the general population. In that case, it may be inherited from the mother, father, or 
both parents since each chromosome strand originates from one parent. This variation 
aids in identifying descendants from a specific subpopulation and provides insights into 
their ancestral characteristics. Additionally, it can help identify individuals based on 
inherited patterns. For analysis, the likelihood of inheriting a particular polymorphism is 
compared to its frequency in the target population 6. 

26.5.4 CASE EXAMPLE: TRACING THE ANCESTRY OF 
DOMESTICATED DOGS 

The methodologies for tracing the ancestry of dog domestication are illustrated 
through a case study. While it is widely accepted that gray wolves are the ancestors of 
dogs, there is no consensus on when, where, and how this transition took place. This case 
study will demonstrate the analytical principles used to trace the ancestral origin. 

26.5.4.1 Tracing the Distribution of Ancient Wolves Across Time and 
Space 

Archaeological evidence from skeletal remains indicates that modern dogs first 
appeared approximately 14,000 years ago. Genetic data shows their divergence from 
wolves occurred between 40,000 and 14,000 years ago. Identifying genetic diversity in 
wolves over time and across regions may clarify which populations were most closely 
related to the ancestors of dogs.  

26.5.4.2 Tracing Ancestral Origins Using SNP Biomarkers 

SNP genotypes were collected from a dataset covering the past 100,000 years, 
including data from contemporary wolves, ancient dogs, and various canids. An ancient 
dhole genome served as a control outgroup 7. The analysis indicated that 69% of the 
wolves were male, based on X-chromosome DNA sequencing from 66 genomes across 
Europe, Siberia, and northwestern North America. This finding corresponds with a similar 
overrepresentation of males observed in the genomes of ancient woolly mammoths, 
bison, brown bears, and domestic dogs. If ancient dogs had different affinities with wolves 
before domestication, then gene flow from dogs could not have impacted wolves. 
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26.5.5 PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) uncovers hidden factors in datasets by 
identifying essential variables. This versatile tool is applicable to various data types, 
revealing latent variables as linear combinations of the original ones. PCA identifies the 
main contributing factors by rotating the principal component axes to minimize deviation. 
This iterative process continues until the remaining variables contribute negligibly. The 
first few components capture the most variance in descending order, thereby reducing 
dimensionality by excluding variables that contribute minimally. The new variables 
simplify analysis without compromising data fidelity. Although abstract variables capture 
the essence of the data, they may lack direct physical interpretation unless connected to 
recognizable phenomena such as thought or consciousness. These variables emerge from 
quantifiable neural processing that PCA reveals. 

26.5.5.1 Data Analysis of Unidentified Latent Factors 

PCA is an analytical method for exploratory analysis that identifies latent factors 
influencing results. This technique provides unbiased insights into datasets. If unsure 
which factors affected your data, PCA can reveal them by analyzing variables through new 
combinations to highlight significant ones. Even without prior knowledge of the factors, 
this method uncovers them using a best-fit model, yielding insightful outcomes.  

26.5.5.2 Case Example: Abstract Factors Revealed by PCA 

PCA creates abstract factors from multiple variables, streamlining complex data 
into more straightforward representations. For instance, census data on income, 
education, rent, car value, and postal code may seem unrelated. The data exists in a five-
dimensional space with five variables, making visualization challenging. PCA addresses 
this by generating a single factor that combines all five variables into one, positioning data 

points along an axis that best fits. It identifies an abstract “socioeconomic” axis that aligns 
with the data, effectively reducing the five variables to one and clarifying the impact of a 
single factor on society more effectively than the original variables did. 

26.5.5.3 The Versatility of Principal Component Analysis 

Unlike AI tools that often lack explanations, PCA uses statistical models to 
represent data across new dimensions of contributing variables. This versatile technique 
applies to most data types. It offers statistical transparency, reliability, and 
reproducibility, even for those with limited statistical knowledge. It uncovers unknown 
factors without prior knowledge of the contributing variables that govern the data. 
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26.5.5.4 Factors Identified by PCA 

The major factors are the principal components that account for most of the 
overall variance, while the remaining factors are insignificant as they contribute little to 
that variance. Mapping the data into the principal components reduces dimensionality 
while preserving the essence of the data. When PCA extracts features using a variable, 
the principal component axes represent the feature vectors. When it describes the 
variations in the data through an equation, that variable becomes a feature, with the 
feature vector pointing toward the principal component axes. 

26.5.6 PEARSON CORRELATION FOR IDENTIFYING 
POPULATION CLUSTERS 

When PCA is applied to a matrix representing shared genetic drift, it indicates that 
ancient wolves cluster by age rather than geography. This finding is corroborated by the 
Pearson correlation coefficient, which measures the linear relationship between datasets. 
The Pearson correlation assesses the similarity between two datasets by comparing their 
attributes, producing a score that ranges from -1 to +1. A high score signifies strong 
similarity, while a score close to zero indicates no correlation. 

26.5.7 GENE FLOW DIRECTIONALITY ANALYSIS 

The analysis of gene flow directionality indicated that Siberian ancestry spread to 
Europe via the Bering land bridge from Alaska and the Yukon around 10,000 years ago, 
but not vice versa. This allows for the deduction of ancient wolf migration patterns. 

26.5.8 MATERNAL LINEAGE ANALYSIS USING MITOCHONDRIAL 
DNA 

Mitochondrial DNA is inherited solely from mothers, making it a valuable marker 
for tracing maternal lineage. Analyzing maternal mitochondrial DNA inheritance sheds 
light on the ancestry of wolves as they migrated from Siberia to Europe. Maternal 
inheritance acts as a powerful tool for defining inheritance patterns. 

26.5.9 ANALYSIS OF ALLELE PREVALENCE IN NATURAL 
SELECTION 

Natural selection was confirmed by analyzing allele preferences in a dataset 
spanning approximately 100,000 years (around 30,000 generations). The study assessed 
each variant regarding allele frequency and timeframe across 72 ancient and 68 modern 
wolves within 24 genomic regions while accounting for genetic drift to reduce false 
positives. The survival of Pleistocene wolves resulted in rapid adaptations in selected 
alleles. 
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26.5.10 DUAL ANCESTRY MODEL 

PCA rejected a single ancestor for Near Eastern dogs. A wolf admixture model 
similarly confirmed varying ancestry proportions that accounted for asymmetries. The 
dual ancestry model indicates that Arctic dogs experienced less Western influence, while 
the Western components in Near Eastern and African dogs are associated with Near 
Eastern wolves. 

26.5.10.1 Dual Origins of Ancestral Trees 

The conclusion suggests two independent domestication events: one from 
Eastern and Western ancestors and another from a separate occurrence in the East, 
accompanied by Western admixture across multiple lineages 7. Therefore, the assumption 
that a single origin must be identified should be cautiously approached in genealogical 
tree analysis. 

26.5.11 CONSIDERATIONS IN HYPOTHESIS TESTING 

The above example illustrates the importance of using appropriate analytical 
techniques to draw valid conclusions. Misleading results can occur without the proper 
analytical tools or assessments to address underlying assumptions. 

If the hypothesis is based on a single lineage assumption, it may overlook potential 
evidence of dual ancestry. Dog domestication likely happened independently among 
various geographical populations due to their ability to respond to commands and assist 
in hunting during the evolution of human hunter-gatherers. 

26.5.11.1 Self-fulfilling Prophecy 

Proving a hypothesis with supportive evidence is insufficient for concluding and 
requires analysis that challenges the hypothesis. A hypothesis is only valid if it cannot be 
disproven. Proving a conjecture without disproof can lead to a self-fulfilling prophecy. 
Proving a conjecture without disproof reflects a subconscious bias when the proof focuses 
solely on validating evidence without considering its potential invalidity. 

26.5.11.2 Challenging the Validity of Assumptions 

This caveat often occurs when conclusions depend on preconceived notions 
assumed to be validated before any analysis. Consequently, the analysis selectively 
incorporates only supporting evidence while disregarding contradictory evidence. These 
represent subconscious biases in any analysis that one should be aware of. 
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26.5.11.3 Validating Hypothesis Testing Without Refuting It 

The common fallacy in hypothesis testing is presenting only evidence that 
supports the hypothesis while failing to disprove it. A hypothesis is considered proven 
only if it cannot be refuted. Confirming its validity without showing that it might be 
incorrect reinforces a self-fulfilling prophecy. 

26.5.11.4 Including an Opposing Hypothesis in the Analysis 

Proposing an alternative hypothesis is essential to avoiding premature 
conclusions. A robust hypothesis must be backed by strong evidence and a 
counterargument. An alternative hypothesis helps to dispel myths and offers a possible 
explanation if the evidence does not support the original hypothesis. 

26.6 CONSIDERATIONS FOR LIMITED DNA QUALITY AND 
QUANTITY 

Utilizing a short DNA segment for forensic analysis is particularly crucial when DNA 
samples are of low quality or limited quantity, as this ensures accurate human 
identification or paternity testing. Only a small amount of fetal DNA is found in maternal 
blood samples without performing an amniocentesis for prenatal paternity testing. In 
forensic analysis at crime scenes, a small amount of degraded DNA may be available. 
Consequently, specialized techniques will be essential to perform DNA analysis on limited 
sample sizes and quality. 

26.6.1 CASE EXAMPLE: NON-INVASIVE PRENATAL PATERNITY 
TESTING 

Conventional prenatal paternity testing involves invasive amniocentesis, which 
carries a risk of miscarriage during the collection of amniotic fluid or umbilical cord blood. 
An alternative method is to obtain fetal DNA samples from maternal blood, though the 
quantity is limited. Fortunately, techniques are available to analyze insufficient fetal DNA 
for conclusive paternity identification. Non-invasive prenatal paternity testing (NIPPT) 
collects small amounts of fetal DNA from maternal blood for analysis, thereby eliminating 
the risks associated with amniocentesis. 

26.6.1.1 Limited Quantity of Fetal Fraction DNA in Maternal Blood 
Samples 

Fetal fraction refers to the proportion of cell-free fetal DNA present in maternal 
plasma. It varies among individuals and is influenced by gestational age and weight. It is 
about 15% on average, ranging from less than 4% to over 30%. This parameter is crucial 
for the accuracy of cfDNA-based prenatal paternity tests 8. 
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26.6.1.2 Maternal Cell-Free Fetal DNA Analysis 

Maternal cfDNA paternity testing typically utilizes STR or SNP genotyping. The 
increased polymorphism of STRs benefits forensic Combined Paternity Index (CPI) and 
Cumulative Probability of Exclusion (CPE) analyses. However, cfDNA sizes ranging from 
140 to 160 bp may exceed STR coverage, requiring additional techniques. 

26.6.1.3 Improved Analytical Models for NIPPT 

Models that incorporate fetal fraction and genotype probability improve the 
evaluation process. The Poisson-based fetal fraction model offers accurate estimates of 
fetal fractions without depending on known biological parents. Meanwhile, the genotype 
probability model enhances statistical power by merging the Poisson distribution with 
sequencing error rates. New CPI and CPE models provide more precise estimates based 
on NIPPT characteristics. Additionally, a T-test model can identify sample contamination 
due to its sensitivity to abnormal data 8. 

26.7 VARIABLE NUMBER TANDEM REPEATS AS 
BIOMARKERS 

In addition to single nucleotide polymorphisms, other types of DNA variants exist 
as repeated patterns in succession. These variants often comprise short sequences of 
repeats on the chromosome that vary from one individual to another. The number of 
tandem repeats can differ within the general population. 

26.7.1 VARIABLE NUMBER TANDEM REPEATS 

Short tandem repeats (STRs) are short DNA sequences made up of tandemly 
repeated units of 1 to 6 base pairs (bp), leading to sequences that can differ in length by 
up to 100 nucleotides (nt) (see Figure 26.6). Due to the variation in the number of 
repetitions among individuals, they are also known as variable number tandem repeats 
(VNTRs). Furthermore, they are also called microsatellites or simple sequence repeats. 

 

Figure 26.6. Short tandem repeats (STRs) are short, identical DNA sequences that repeat 
consecutively several times. 
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26.7.2 SHORT TANDEM REPEATS AS BIOMARKERS 

The frequency of short tandem repeats (STRs) is significantly higher in the general 
population. These tandem repeats comprise over 50% of the human genome and notably 
exceed the prevalence of single nucleotide polymorphisms (SNPs) 9. Consequently, STRs 
are often employed as biomarkers to monitor inheritance patterns due to their 
widespread presence in the general population 10. 

26.7.3 MULTIPLE-LOCUS VARIABLE NUMBER TANDEM 
REPEATS AS BIOMARKERS 

Multiple-locus VNTR fingerprinting (MLVF) employs VNTRs from various loci as 
biomarkers for identification. It requires calculating the repeat numbers for each locus. 
However, it does not allow for a straightforward and unambiguous determination of 
individual repeat counts at each locus. The primary drawback of this method is the 
absence of direct result comparisons among laboratories. Conventional electrophoresis 
on low-resolution agarose gels presents amplicons only as banding patterns and does not 
provide accurate repeat counts or correlations to PCR targets 3. 

26.8 EPIDEMIOLOGICAL STUDIES CONNECTING STRS TO 
DISEASES 

Epidemiological studies often clarify the genetic link to human diseases through 
disease-associated STRs. Examples include the genome-wide search for common STRs 

related to the genetic risk of Parkinson’s disease 11 and the variants of the VNTR of the 
DRD4 gene associated with novelty-seeking personality traits and ADHD (attention-deficit 
hyperactivity disorder). The number of tandem repeats can trace the ancestral origin of 
these variants linked to ADHD and determine whether their prevalence results from 
chance or selection. 

26.8.1 CASE EXAMPLE: LINKING DRD4-7R VNTRS TO ADHD 

When the number of repeats is exactly seven, the 7-repeat phenotypic expression 
of the DRD4-7R allele is strongly associated with personality traits like novelty-seeking 
and ADHD (attention-deficit hyperactivity disorder) among European Caucasians, South 
Americans, and individuals of Middle Eastern descent 12. In the general population, the 
number of tandem repeats for the DRD4 gene, which codes for dopamine D4 receptors, 
ranges from 2 to 11. 

26.8.1.1 The Number of DRD4 Repeats in the General Population 

The number of repeats in the general population ranges from 2R to 11R for the 
48-bp VNTR variants of the DRD4 gene, situated near the telomere of chromosome 11p 



 Artificial Intelligence and Genealogy 26-28 

in exon 3, which encodes the dopamine D4 receptor. The variants 2R, 4R, and 7R comprise 
over 90% of allelic diversity, with 4R being the most prevalent, whereas the frequencies 
of 2R and 7R vary significantly depending on geographic location 13,14. 

26.8.2 THE USE OF HOMOZYGOUS VARIANTS TO TRACE 
ANCESTRAL HISTORIES 

The frequency of occurrence can trace specific ancestral events that lead to the 
inheritance of identical gene variants from both parents. For the DRD4 gene, the most 
common homozygous variants are 2R/2R, 4R/4R, and 7R/7R, which help determine 
whether these specific variants arise by chance or through non-random selection. This 
polymorphism also assists in determining allele ages, indicating when the genetic lineage 
began to diverge. 

26.8.2.1 Tracing the Divergence of the Ancestral 2R, 4R, and 7R Variants 

In other words, one can trace the events that led to the divergence of the 2R, 4R, 
and 7R variants within specific subpopulations in certain geographic regions. This 
outcome also highlights the migration patterns in human history that have shaped the 
current demographic distribution. This finding is a clear example of the genealogical 
methodologies and analyses required to trace the ancestral events that caused the 
divergence of the genetic traits of the DRD4 gene variants. 

26.8.2.2 Linkage Disequilibrium Analysis 

Linkage disequilibrium (LD) refers to the non-random association of alleles at 
different loci, serving as a sensitive indicator of the population genetic forces shaping a 
genome 15. The LD between alleles and traits facilitates fine-scale gene mapping through 
genome-wide association studies, aiding in identifying SNPs linked to complex diseases 15. 

26.8.3 NATURAL SELECTION OR RANDOM OCCURRENCES 

No single statistic effectively quantifies linkage disequilibrium (LD); however, local 
and genome-wide LD patterns provide insights into natural selection and historical 
population dynamics 16. Recombination patterns can reveal complex interactions among 
selection, mutation, and genetic drift, all of which influence LD levels. High local LD 
indicates a recently favored allele under strong selection, while low LD suggests random 
selection without preference in mate choice. LD patterns can aid in identifying selected 
loci and estimating allele ages 15. 

26.8.3.1 Evaluating the Selection Preferences of 2R/2R and 4R/4R 

Drawing on ancestry from Africa, Europe, Asia, North and South America, and the 
Pacific Islands, the data for 2R/2R and 4R/4R homozygotes did not achieve statistical 
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significance. It showed minimal linkage disequilibrium (LD). Most other prevalent DRD4 
VNTR variants do not demonstrate a selection preference, suggesting that parental mate 
selection is random for these 2R/2R and 4R/4R alleles. 

26.8.3.2 Evaluating the Selection Preferences of 7R/7R 

In contrast, the 7R/7R homozygote data revealed statistical significance through 

Tajima’s D test 17, highlighting a strong linkage disequilibrium (LD) at most polymorphic 

sites. The evidence for robust LD surrounding the 7R allele is compelling, as all 7R/7R 
individuals (including those from Africa) exhibit a strong selection preference from both 
parents. 

26.8.3.3 Evaluating the Recombination Pattern of 7R/7R Selection 

The recombination pattern of the homogeneous 7R/7R allele suggests that 
selection plays a significant role in inheriting identical gene variants from both parents. 
The 7R variant likely originated from a rare mutation before becoming widespread due to 
positive selection, indicating that this selection was not a chance occurrence.  

26.8.3.4 Selection of Mating Pairs for 7R Variant Traits 

Evidence suggests that strong selection has raised the allele frequency to levels 
surpassing those expected from random genetic drift. The selection of 7R traits by mating 
pairs may result in higher birth and survival rates than other pairs. Beyond random 
selection, the greater prevalence of the 7R variant in human populations likely arises from 

positive selection and the survival advantages associated with this variant’s gene 
expression. 

26.8.4 THE NON-RANDOM SELECTION REFLECTED BY 
HOMOZYGOUS 7R/7R INHERITED FROM BOTH PARENTS 

The non-random selection suggests evolutionary advantages that enhance 
survival rates in phenotypic traits such as novelty-seeking and ADHD associated with the 
7R variant. This variant may confer benefits that have persisted despite the detrimental 
effects of a defective gene variant on regulating impulsive behaviors due to the D4 
receptors’ insensitivity to dopamine signals. 

26.8.4.1 The Survival Advantages of Non-Random Selection for DRD4-
7R Traits 

Dopamine’s role in suppressing choices during decision-making is crucial for 

managing impulses against distracting stimuli. This regulation of decision-making 
distinguishes humans in their intellectual evolution. However, the resulting dysregulation, 
which leads to impulsive and novelty-seeking behaviors, paradoxically increases survival 
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rates compared to the general population. Novelty-seeking may have encouraged human 
ancestors to migrate, explore other continents, and reduce resource competition during 

their migrations, thereby enhancing the group’s survival rate. 

26.8.5 THE COMMON DISORDER-COMMON VARIANT 
HYPOTHESIS 

The common disorder-common variant hypothesis (CDCVH) posits that if a 
heritable disease is prevalent, with a prevalence exceeding 1% to 5% in the population, 
its genetic contributors will also be widespread 18. Genetic markers are identified in 
variants of coding and regulatory regions. This hypothesis applies to specific variants that 
increase susceptibility to complex polygenic diseases, with each variant contributing a 
small additive effect that combines into multiplicative effects on disease phenotypes 18. 

26.8.5.1 The Paradoxical Benefits of DRD4-7R in ADHD as a Disorder 

The link between the 7R allele and ADHD suggests that both environmental and 
genetic factors may influence this prevalent disorder. The statistical prevalence of ADHD 
in the general population ranges from 3% to 5%. Traits associated with DRD4-7R could 
predispose individuals with ADHD to behaviors that may be harmful in certain 
environments but beneficial in others. While the common disorder-common variant 
hypothesis indicates deleterious effects related to a genetic disorder, the 7R traits might 
promote an evolutionarily advantageous strategy that results in positive outcomes rather 
than the negative behavioral consequences typically associated with the common 
disorder. 

26.8.5.2 Single-Step Mutation Random Events for Most DRD4 Variants 

Polymorphic variation is observed across 67 haplotype variants. Most haplotype 
variants, such as 2R-6R, involve a single variant resulting from a one-step mutation. These 
likely represent random occurrences due to mutations or recombination errors. 

26.8.6 MULTI-STEP MUTATION EVENT PATTERN FOR DRD4-7R 
VARIANTS 

The DRD4-7R variant shows a pattern associated with nearby polymorphisms. The 
connection between 7R/7R homozygotes and four adjacent DRD4 polymorphisms 
suggests that they have likely undergone at least six mutations or recombination events. 
This sets it apart from other common variants that contain a single mutation. 



 Artificial Intelligence and Genealogy 26-31 

26.8.6.1 Evidence of a More Recent Origin for Multi-Step Mutation in 
DRD4-7R 

Although rare, this pattern likely spread through non-random mate selection for 
specific traits, resulting in a higher prevalence than random selection for other alleles. 
This prevalence prompted an examination of the linkage disequilibrium (LD) between the 
4R and 7R alleles. The rare multi-step mutation in 7R/7R homozygotes probably occurred 
more recently than in other homozygotes, such as 4R/4R, which underwent a single one-
step mutation. The recombination pattern at these polymorphic sites aligns with the 
selection pattern at DRD4-7R. 

26.8.7 ALLELE AGE CALCULATIONS 

Estimating the age of an allele offers insight into when the variant first emerged. 
This equation summarizes the standard methods for calculating allele age, as represented 
in generations: 

 𝑡 =
1

𝑙𝑛⁡(1−𝑐)
𝑙𝑛⁡

𝑥(𝑡)−𝑦

1−𝑦
 (26-1) 

where 𝑐 is the recombination rate, 𝑥(𝑡) is the frequency in generation 𝑡, and 𝑦 is the 
frequency on ancestral chromosomes. The age of the allele is calculated using the 

formula above when the recombination rate 𝑐 is available, and 𝑥(𝑡) and 𝑦 are derived 
from the genetic survey data 19. 

26.8.7.1 Dating the Ages of Most Other DRD4 VNTR Variants 

Calculating the allele age based on the high global prevalence of DRD4-2R, 4R, and 
7R suggests that these alleles have an ancient origin, estimated to range from 
approximately 300,000 to 500,000 years 14. However, the branching of the common 
ancestor for these variants differs in allele age. 

26.8.7.2 Determining the Age of the Divergence of DRD4-7R from Its 
Common Ancestor 

Strong linkage disequilibrium (LD) exists between the 7R allele and nearby DRD4 
polymorphisms, suggesting that it is 5 to 10 times younger than the common 4R allele. 
Based on the variability of 18 observed intra-allelic heterozygosity sites across the locus, 
the age of the 7R allele is estimated to be approximately ten times younger. An analysis 
of high-heterozygosity sites indicates that the most recent common ancestor of the 7R/7R 
allele emerged between 40,000 and 50,000 years ago 13. 
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26.8.7.3 Likely Mate Selection Preferences of DRD4-7R Variants 

The divergence from their common ancestors likely predates human migration to 
other continents during the Upper Paleolithic period 14. Traits such as novelty-seeking 
may offer survival advantages by encouraging adventurous migration to areas with less 
competition for resources and mate selection. Their mate selection preferences likely 
reinforce themselves when both parents carry the variant traits, ensuring these traits are 
passed down to their descendants. With a subpopulation of either homozygous or 
heterozygous carriers isolated from the general population, the frequency of allele 
prevalence could quickly exceed chance levels due to these self-reinforcing conditions. 

26.8.8 THE DRD4 GENE ENCODES THE DOPAMINE D4 
RECEPTOR 

The functional significance of the number of repeated sequences lies in the 
changes to the dopamine D4 receptors (DRD4) protein within a region that couples with 
G proteins and mediates intercellular cAMP levels 20. Consequently, the expression of the 
7-repeat gene leads to the insensitivity of dopamine D4 receptors to inhibitory signals 
during neural processing. This 7-repeat allele of DRD4-7R is associated with the 
expression of novelty-seeking personality traits and the prevalence of ADHD. 

26.8.8.1 D4 receptors in executive function control for task completion 

D4 receptors are predominantly localized in prefrontal cortex (PFC) neurons, 
where they play a crucial role in regulating behavior and evaluating the importance of 
choices during decision-making. These receptors in postsynaptic neurons respond to 
inhibitory dopamine signals released from presynaptic neurons by binding to them, 
thereby suppressing alternative options in the decision-making process. This mechanism 
is part of the executive functions that help control impulsive behavior, which can lead to 
poor choices. The executive function process involves the interaction of cognitive, 
behavioral, and emotional regulation for making appropriate decisions, much like a CEO’s 
role within the brain. These receptors manage selective attention by focusing on problem-
solving while maintaining working memory to keep track of essential intermediate steps 
for effective planning toward achieving a desired goal. 

26.8.8.2 The Role of Inhibition in Decision-Making Processes 

A decision involves choosing one option from several alternatives. Completing a 
complex task requires decision-making to identify the most crucial options and working 
memory to retain temporary information vital for task completion. Neurons in the PFC 
prioritize these options based on their importance, facilitating the selection of the top 
choice on the list. However, if some options are equally important, a decision must be 
made to resolve the tie; otherwise, one may become trapped in indecision. 
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26.8.8.3 Conflicts in Decision-Making 

A conflict arises when options are mutually exclusive; choosing one negates the 
other. For instance, a conflict occurs when you want to have your cake and eat it too. 
Resolving a conflict requires setting aside competing options to make a desirable choice. 
It involves suppressing alternatives to enable the selection of the preferred option. If the 
other options are not properly suppressed, it will result in an impulsive decision that is 
incompatible with the desired solution. 

26.8.8.4 The Conflict Resolution Process 

Dopamine functions as the inhibitory signal that prevents the selection of 
undesirable options during decision-making. Presynaptic neurons in the prefrontal cortex 
release dopamine to suppress the responses of postsynaptic neurons, enabling them to 
disregard irrelevant options. When D4 receptors become insensitive due to defects in the 
DRD4-7R variant, they fail to respond to the inhibitory signal, leading to poor decisions 
and behaviors such as distraction, impulsivity, and novelty-seeking—key symptoms of 
ADHD. 

26.8.8.5 The Pathology of Inheriting the DRD4 7-Repeat Sequences 

Indecision arises when neurons fail to resolve conflicts between choices, causing 
them to become stuck in indecision. Impulsivity occurs when they select an inappropriate 
response that seems significant as a choice despite being otherwise. Distraction happens 
when they focus on trivial stimuli that compete for attention. This scenario resembles 
driving a car with malfunctioning brakes, which can lead to crashes due to failed stopping 
attempts. This example illustrates the consequences of variations in the number of 
repeated DNA sequences that affect the sensitivity of a receptor binding site, thereby 
influencing behavior and neural processing. However, the prevalence statistics persist, 
suggesting that the disorder may confer beneficial effects on survival, in contrast to the 
assumed detrimental impacts of a disorder associated with novelty-seeking and curiosity 
behaviors, which are crucial for innovation, discovery, and migration away from resource 
competition — factors that likely provide a competitive advantage in survival. 

26.8.8.6 The Unforeseen Impact of a Gene Variant on Global Migration 
and Technological Innovation 

This case example illustrates that tracing ancestral lineage has revealed 
unexpected results from inheriting a gene variant that may confer beneficial effects 
despite the behavioral deficits of impulsivity and distraction. The timing of the ancestral 
gene variant divergence coincided with the onset of global migration, which preceded the 
subsequent discovery of the New World and the innovations associated with the 
technological advancements that began during the Upper Paleolithic. 
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26.9 MICROHAPLOTYPES CONSIST OF TWO OR MORE 
SNPS 

Microhaplotypes (MHs), often called microhaps, are chromosomal segments that 
typically consist of two or more closely located SNPs at the molecular level (less than 300 
bp) 21. When two or more SNPs are positioned near each other, their alleles can be 
inherited together from parent to child. The variants often cluster together. 

26.9.1 THE USE OF MICROHAPLOTYPES AS BIOMARKERS 

Because of the short lengths of microhaplotypes, these sequences are often used 

as genetic markers. They are called “micro” because they cover only a few dozen base 

pairs instead of thousands. Microhaplotypes (MHs) have proven to be highly informative 

in demonstrating the uniqueness of DNA profiles and determining an individual’s 
biogeographic ancestry. Biological relationship tests like paternity tests frequently use 
MHs as biomarkers. 

26.9.1.1 The Use of SNPs, STRs, and MHs as Biomarkers 

Although the polymorphism analyses for each type of biomarker are similar 
regarding their occurrence frequency within the target population, notable differences 
arise in the sequences of variations 6. The SNP variants are limited to four types, as only 
four nucleotide bases can substitute: A, C, G, and T. Thus, there are four SNP variants. In 
contrast, the STR variants depend on the number of repeats, with probabilities of 
occurrence based on this count within the sequence. As the name suggests, VNTR 
indicates a variable number of tandem repeats, and the repeated sequence varies among 
individuals in the population. Identifying the number of repeats in a sample may not be 
precise when using amplification techniques. It is essential to recognize that false 
positives may arise due to sample contamination, which usually results from carryover in 
prior DNA analyses. 

26.9.1.2 The Use of Non-Coding Regions in Forensic Analysis 

Forensic analysis focuses on connecting individuals rather than solely emphasizing 
gene expression or the effects of protein synthesis from coding regions. Excluding coding 
regions from DNA sequences during forensic analysis can simplify the complexities of 
phenotypic expression, which may impact the results. Therefore, polymorphisms in non-
coding areas are typically preferred for DNA analysis. Most DNA sequence databases used 
in forensic analyses primarily consist of non-coding regions. 
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26.10 THE FORENSIC COMBINED DNA INDEX SYSTEM 
DATABASES 

The Combined DNA Index System (CoDIS) is a national DNA index system 
consisting of a collection of databases developed and maintained by the United States 
Federal Bureau of Investigation (FBI) to collect data on various short tandem repeats 
(STRs). This system distinguishes individuals based on the lengths of these alleles. The 
database uses a set of 20 loci tested together to improve the reliability of the analysis 22. 
A locus refers to a specific location on a chromosome for a particular gene or genetic 
marker. The twentieth locus in CoDIS, known as AMEL, is used to identify the sex of 
individuals based on the sex chromosomes 6. 

26.10.1 THE USE OF 20 LOCI AS INDEX FOR IDENTIFICATION 

Using 20 loci significantly reduces the risk of confusing two distinct individuals, as 
individuals often share alleles at specific loci, especially when related. It is analogous to 
using physical characteristics for identification: the more traits used to describe a person, 
the less likely they are to be mistaken for someone else. 

26.10.1.1 Forensic Index System Databases 

The Forensic Index includes profiles derived from biological evidence at crime 
scenes, such as blood or semen samples, which help identify remains when linked to a 
known source 23. DNA profiles in each index are compared to find direct matches or 
potential relationships based on shared genetic data. Searches for familial relationships 
are conducted solely for missing persons and unidentified remains. 

26.10.1.2 The Unidentified Human Remains Index 

The Unidentified Human Remains index features profiles of human remains. In 
contrast, the Relatives of Missing Persons (RMP) index includes voluntarily collected 
profiles from biological relatives, typically obtained from buccal swabs but sometimes 
sourced from blood or other samples. These profiles are indexed in this database. 

26.10.1.3 The Pedigree Tree Index 

The Pedigree Tree index organizes relatives’ specimens into family groups for 
efficient searches and is compared only to the Unidentified Human Remains index in 
CoDIS. Samples from missing persons are stored in the Missing Person index and may 
include personal items such as toothbrushes or hairbrushes. 
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26.10.1.4 The Convicted Offender Index 

The Convicted Offender Index contains profiles of individuals convicted of 
qualifying offenses. According to state laws, blood or buccal swabs are collected from 
arrestees. Some states also collect additional samples. 

26.10.2 THE USE OF 13 CORE STR LOCI 

A reduced number of loci is sufficient for identifying an individual without 
requiring all 20 loci. The FBI has identified 13 core STR loci as adequate for individual 
identification in the U.S. Conversely, Interpol (the International Criminal Police 
Organization) has determined that 10 core STR loci are sufficient for identification in the 
U.K. and Europe. Interpol is an intergovernmental organization composed of 196 member 
countries that facilitates police collaboration across these nations. In the U.S., the 13-STR 
profile is a standard identification method used to determine human remains, establish 
paternity, or link suspects to crime scenes. 

26.10.2.1 Using 13 Core STR Loci for Identification 

The FBI determined the frequency of each allele for the 13 core STRs across 
various ethnic groups by analyzing DNA from hundreds of unrelated individuals. Assuming 
all 13 STRs exhibit independent permutations, statistical calculations indicate that the 

probability of two unrelated Caucasians sharing identical STR profiles, or “DNA 
fingerprints,” is approximately 1 in 575 trillion 24. 

26.10.2.2 The Matching Fallacy 

However, this probability pertains to pairs of individuals globally. With 100 million 
Caucasians, there are 5,000 trillion pairs, suggesting that approximately eight or nine pairs 
would match at the 13 STR loci. This matching does not indicate which profiles two 
individuals share, and the likelihood of matching a crime-related profile remains very low 
25. 

26.10.2.3 A STR Match 

A laboratory analyzes the allele profiles of 13 core STRs from both samples to 
connect evidence from a crime scene to a suspect. If the STR alleles do not match, the 
individual is excluded as a potential source of the evidence. If they match all 13 STRs, a 
statistical calculation estimates how frequently this genotype occurs in the population, 

considering the prevalence of each STR allele in the individual’s ethnic group. A Hardy-
Weinberg calculation determines the frequency of the observed genotype for each STR, 
and multiplying the frequencies of the individual STR genotypes provides the overall 
profile frequency. 
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26.10.2.4 Analysis of Conditional Probabilities for STR Matching 

If Suspect A is excluded as the source of the crime scene sample, and Suspect B 

matches all 13 STRs, the likelihood that a random member of Suspect B’s ethnic group 
shares this genotype is extremely low. It implies the probability of observing this DNA 
profile if the evidence did not originate from the suspect. Misinterpreting this could 
confuse the probability of the suspect belonging to the ethnic group with the likelihood 

that the suspect is the source. Calculating the transitional probability requires Bayes’ 

theorem and prior conditional probabilities concerning the suspect’s involvement. 
Moreover, the probability increases significantly if a relative of the suspect is the source, 
particularly a sibling. 

26.10.2.5 The Likelihood of a False Positive 

The significance of chance phenomena cannot be overstated; even with an 
extremely low likelihood of a false positive, it can still occur, much like winning the mega 
lottery. Although the odds are one in a billion, winning is possible if you are lucky; if it 
never happens, no one could win the lottery. 

26.10.2.6 The Confounding Variables 

DNA collected from crime scene evidence is often limited in quantity, poorly 
preserved, or degraded, leading to partial profiles. Analyzing fewer than 13 STR loci 
increases the likelihood of random matches. For example, examining fewer than five 
initial STRs significantly raises the chances of encountering that genotype. Additional 
evidence regarding Suspect B should be gathered to exclude potential candidate 

involvement. Moreover, common STR alleles within an individual’s ethnic group can raise 
genotype frequencies, even when all core loci are analyzed. 

26.10.2.7 The Sources of Uncertainty 

Crime scene samples may also contain DNA from multiple sources, complicating 
the analysis. Traditional forensic analysis typically relies on probabilities, which means 
that even a confirmed match cannot establish guilt. Additional evidence is necessary to 
establish the connection beyond a single source. 

26.11 THE ARTIFICIAL INTELLIGENCE APPROACH 

Artificial intelligence serves as an alternative method for solving complex 
problems through expert systems or machine learning capabilities. Recently, AI has 
gained recognition for employing machine learning to tackle intricate issues via examples 
rather than explicit instructional methods. The system discovers solutions by learning 
from the examples in the training dataset. 
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26.11.1 MACHINE LEARNING 

AI provides alternatives to traditional methods for calculating conditional 
probabilities and establishing relationships. It effectively addresses specific inquiries in 
natural language by utilizing large language models (LLMs) to generate suitable 
genealogical responses to user questions. Additionally, it categorizes historical records of 
both written and spoken language and census records and stores genealogical data in 
databases. Furthermore, machine learning speeds up genome analyzers, producing 

millions of short sequencing reads 26. However, it is essential to recognize AI’s strengths 
and weaknesses when evaluating the validity of conclusions. 

26.11.1.1 Automation with Machine Intelligence 

Today’s AI is more accurately described as machine intelligence (MI) because it 

forms internal representations through learning instead of relying solely on 
preprogrammed responses. Rather than adhering to strict algorithms, these models 
transform internal representations from input to output using neural networks that 
extract information from training datasets. 

26.11.1.2 Collective Neural Processing in Computing 

The system generates responses using a vast network of neurons, unlike the single 
CPU logic found in traditional computers. AI output improves through machine learning, 
beginning with random outputs refined through extensive training on billions of examples 
to establish essential input-output relationships. Forming meaningful connections among 
data points in a dataset relies on a highly interconnected network of neurons that 
captures relationships by creating an internal representation of these links. 

26.11.1.3 How an AI system is trained 

An AI neural network generates outputs through interconnected tokens and 
connection weights. It responds to queries based on these tokens and weight matrices 
derived from extensive training datasets, effectively mapping inputs to outputs. Learning 
from billions of examples creates an internal representation of input-output relationships. 
The network applies learning rules to modify interconnectivity and uses criteria to identify 
relevant connections while discarding irrelevant ones. 

26.11.1.4 The Mystery and Magic of AI Uncovered 

Requesting an AI to generate images from text involves mapping inputs to outputs 
through training to minimize errors. This approach aids the system in adjusting its input-
output connections. Pairing descriptions with images form internal representations that 
enhance learning by reducing errors. Trial and error produce random outputs, which are 
compared to target images. A reduction in errors indicates progress, prompting the 
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system to modify its connections accordingly. Repeating this process with a billion 
examples refines the image based on the description and reinforces relevant connections. 
The outcome is an image created from the text description. 

26.11.1.5 AI Responses to User Queries 

A genealogical query can yield plausible results when trained on questions with 
known answers, utilizing billions of examples to develop appropriate responses. Training 

an AI system generally requires billions of examples for the model’s representation to 
align with expected input-output relationships. One unique feature of modern AI systems 
is their ability to generalize and summarize large sets of data or information. 

26.11.2 HOW AI PRODUCES RESPONSES TO UNFAMILIAR 
QUESTIONS 

It can generate appropriate responses even if those inquiries are not included in 
the training dataset. It generalizes answers using internal interconnectivity to map input 
queries to output response relationships. This means it can provide missing information, 
even when the database is incomplete or the inquiries are not part of the original training 
examples. 

26.11.2.1 Consequences of Insufficient Training 

Adequate training on a large dataset can produce reliable responses. However, 
these responses may become inaccurate if the internal model fails to converge properly 
to a stable representation due to insufficient training data. An LLM model typically 
requires a minimum dataset size of 200 billion examples to achieve convergence toward 
a solution.  

If the training dataset is insufficient, AI models may struggle to converge and 
become trapped in local minima during error minimization. Techniques are available to 
help escape these local minima and find better global solutions, although errors may 
occur while overcoming the hump. Without these methods, AI tools might inadvertently 
settle for suboptimal solutions.  

26.11.3 REQUIREMENTS FOR DNA DATASET IN AI TRAINING 

AI for DNA analysis relies on short polymorphisms or genome-wide sequences 
stored in databases. Training an AI system using human genome data composed of 3 
billion nucleotides is possible. Training on short polymorphic DNA sequences requires a 
substantial database to provide sufficient example datasets. GenBank is an open-access, 
annotated repository of nucleotide sequences and their corresponding protein 
translations. It includes 34 trillion base pairs from over 4.7 billion sequences and covers 
over 580,000 protein species. It contains 1.42 million SNPs, averaging one every 1.9 kb. 
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Approximately 60,000 SNPs are present in exons (both coding and untranslated regions), 
with 85% located within 5 kb of the nearest SNP 9. 

26.11.3.1 Exploring Relationships in DNA Datasets 

AI genealogy and forensic analyses depend on accessible datasets. When 
searching for candidate genes associated with diseases or drug responses, reasonable 
suggestions are accepted even without thorough justifications. Researchers investigate 
potential interactions of gene expressions using extensive SNP datasets or genomes, 
refining their search for additional human analysis. Such tasks are labor-intensive and 
time-consuming. AI can accelerate the discovery of possible gene combinations, as the 
matching criteria are less stringent than those used for tracing an individual. 

26.11.3.2 Collective Neural Processing in Computing 

AI generates human-like responses by analyzing vast amounts of data; however, 
it falls short in logical reasoning and genuine creativity. Although this process can be 
automated, it lacks true intelligence, reasoning skills, and a fundamental understanding 
of the world. It produces content based on training datasets, which can lead to absurd 
outputs resulting from misrepresentations of physical phenomena. 

26.12 THE ARTIFICIAL INTELLIGENCE COMPUTING 
APPROACHES 

AI has evolved into two approaches to automated computing, each based on 

distinct methodologies for problem-solving. The term “AI” originated as a theoretical 
concept for information processing in the 1950s, a function that was once exclusive to 
humans before the emergence of automated computing machines. A historical case study 
will demonstrate how AI has advanced from the 1950s to modern-day AI. 

26.12.1 CASE HISTORY: THE TURING MACHINE 

Alan Turing was a brilliant mathematician recognized as a pioneer in laying the 
foundation for modern computing. In 1936, while at the National Physical Laboratory in 
the UK, he published a design for the ACE (Automatic Computing Engine) 27,28, an early 
version of modern computers. He proposed using mechanized computation to automate 

a series of programmable instructions known as the “Universal Turing Machine” 29. 

26.12.1.1 The Predecessors of Modern Computing Machines 

In perspective, the slide rule was a mechanical device used to calculate parabolic 
trajectories while accounting for recoil on naval ships by solving the differential equations 
of its time. Mechanical devices were employed to encode and decode wartime messages 
during WWII. The Colossus computers, modeled after the ACE, operated from 1943 to 
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1945 and were used for the cryptanalysis of the Lorenz cipher. As the first programmable 
computers, they utilized vacuum tubes to process Boolean logic operations. The 

renowned EDVAC, designed by John von Neumann in 1945, was based on Turing’s 
theoretical work 30. 

26.12.1.2 The Turing Test for Artificial Intelligence 

AI dates back to 1950 when Alan Turing introduced the “imitation game” as a test 

for machine intelligence in his paper “Computing Machinery and Intelligence” 31. The test, 

known as the “Turing Test,” poses the question, “Can a machine think?” If a machine’s 
responses are indistinguishable from those of a human, it is considered intelligent. 
However, this test evaluates performance rather than cognitive ability. For example, a 
person with schizophrenia might be mistaken for a machine due to irrational responses, 
indicating that mimicking human interaction does not equate to true intelligence. 
Similarly, a zombie can imitate interactions but lacks conscious intelligence. 

26.12.1.3 Machine Intelligence as an Automated System 

The Turing Test for thinking machines has sparked philosophical discussions that 
extend beyond intelligence to encompass consciousness. Ultimately, the criteria for 
imitation are insufficient to differentiate consciously thinking machines from those that 
are unintelligent. Intelligence requires thinking, while imitation does not. The Turing Test 
fails to address this crucial aspect, leading to ongoing debates about intelligence that are 
both unnecessary and unproductive — debates that persist even today. 

26.12.2 MACHINE LEARNING WITHOUT PREPROGRAMMED 
ALGORITHMS 

Machine intelligence refers to automated systems that use machine learning (ML) 
to process information without predefined algorithms, achieving performance levels 
similar to human interaction. ML emphasizes computational processes rather than 
outcomes. Artificial intelligence encompasses abilities that can surpass human 
capabilities. 

26.12.2.1 Decoding Messages: A Prelude to AI 

Turing worked at Bletchley Park in London during WWII, focusing on cracking the 
Enigma machine code used by German forces 32. Initially, Polish mathematicians 
decrypted Enigma messages; however, the Germans changed the cipher daily. He and 
others at Bletchley conducted cryptanalysis using the Bombe machine and the 
Banburismus technique to decode messages. They successfully deciphered encrypted 
naval communications from German U-boats and the Air Force in 1941. In July 1942, he 
developed the Turingery technique to decrypt the top-secret German communications 
utilized in the Lorenz cipher machine. 
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26.12.2.2 The Demand for Artificial Intelligence in Encryption 

He traveled to the U.S. in December 1942 to share his expertise in Enigma 
encryption and advise U.S. military intelligence. This decryption was crucial in directing 
Allied convoys away from the U-boat wolf packs, significantly changing the Battle of the 
Atlantic in favor of the Allies during WWII 32. 

26.12.2.3 Post-War Recognition of Decryption Technology 

During his visit, Turing learned about the U.S. speech encoding system and 

developed his speech-scrambling device, “Delilah.” In 1945, he was awarded the Most 
Excellent Order of the British Empire (OBE) for his contributions during the war. 
Established by King George V in 1917, the OBE honors achievements in the arts, sciences, 
charitable work, and public service in non-combat roles 33. 

26.12.2.4 The Official Apology 

In 1952, Alan Turing was prosecuted for homosexuality, which was illegal in Britain 
at the time. To avoid imprisonment, he accepted chemical castration and had his security 
clearance revoked. In 1954, he died from cyanide poisoning at the age of 41, a death ruled 

as suicide. Turing’s role in breaking the Enigma code remained classified until the 1970s, 
with the complete story emerging in the 1990s. His conviction was overturned 
posthumously in 2013, 60 years later, and he received a Royal Prerogative of Mercy 
pardon from the Queen. 

26.12.2.5 Turing Award for Excellence in Computing 

Turing’s contributions to computer science are recognized through the annual 
Turing Award, which has been the highest honor in the field since 1966 and is regarded 
as equivalent to a Nobel Prize. Notably, the Nobel Foundation did not establish a category 
for computer science awards in 1895 34. 

26.13 TWO DISTINCT AI APPROACHES FOR SOLVING 
COMPLEX PROBLEMS 

As AI has developed through advanced computing algorithms capable of solving 
complex problems, two fundamentally different approaches have emerged. The 
traditional approach employs preprogrammed algorithms to outline specific 
methodologies for addressing expert system problems. Conversely, the alternative 
approach utilizes machine learning to uncover solutions to complex issues without 
specifying the precise methods needed to solve them. 
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26.13.1 TRADITIONAL ALGORITHM METHOD 

This approach utilizes symbolic processing and algorithms to automate tasks in 
expert systems. Traditional DNA analysis employs algorithmic methods within expert 
systems to calculate conditional probabilities through database comparisons. This 
illustrates the classical approach to problem-solving by distinctly outlining the 
methodologies for computer automation. 

26.13.1.1 Special Purpose Machines 

This methodology addresses problems by following the algorithm’s explicit 
instructions. The intelligence resides with the programmer, not the machine itself. Expert 
systems are designed to address well-defined issues in specific scenarios within a targeted 
domain. They are not meant to serve as universal problem solvers for other issues and do 
not generalize solutions to different problems. 

26.13.1.2 Limitations Imposed by Its Preprogrammed Algorithms 

Using programmed logic to tackle complex problems may seem straightforward 
and effective, but these algorithms limit their problem-solving capabilities. Unforeseen 
circumstances that surpass the programmed logic remain unaddressed unless the 
algorithms are modified. They cannot incorporate new algorithms or analyses without 
reprogramming. 

26.13.1.3 Unresolvable Missing or Incomplete Information 

Another limitation is its inability to address information gaps when the database 
is incomplete, missing, or contains biased data. The programmer serves as the primary 
source of intelligence rather than the machine. The machine executes automated 
instructions without the intellectual capacity to generate new algorithms or 
independently rectify errors. 

26.13.1.4 The Unresolved “Hard Problems” in Natural Language and 
Image Processing 

For decades, computers have struggled to recognize speech accents in automated 
phone answering systems and transcribe voicemails. Facial recognition, handwriting 
recognition, and natural language processing exemplify the limitations of traditional AI. 
These shortcomings persist because traditional AI relies on pre-set algorithms that cannot 
comprehend anything beyond their programming. Furthermore, chatbots, which do not 
need to process accents, cannot interpret context or extract relevant information from 

users ’inquiries to provide appropriate responses. 
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26.13.2 NEURAL NETWORK MACHINE LEARNING TECHNIQUES 

The neural network approach uses implicit methods to derive solutions from 
examples without depending on explicit algorithms. The Perceptron, an early problem-
solving machine, classifies images by learning from training data. Modern AI systems 
utilize similar learning rules and neural network architectures from the 1980s, scaled and 
trained on datasets of 100 billion, enabling them to address real-world challenges rather 
than merely solving toy problems. 

26.13.2.1 Problem-Solving Using Neural Networks 

Recently, machine learning techniques that utilize neural networks have greatly 
enhanced natural language processing and image recognition. These methods enable 
systems to accurately route calls to the appropriate department for human responses and 
identify faces, handwriting, and speech accents through extensive training on datasets. 

26.13.2.2 General Purpose Problem Solvers 

Machine learning acquires and generalizes solutions to various problems, 
establishing itself as a universal problem solver. It can also address gaps created by 
missing data not included in the training set. This system is trainable and adapts to the 
training datasets. With additional training, it can refine its responses; thus, it is an 

adaptive system that gradually aligns with the user’s environment. 

26.13.3 PRINCIPLES OF NEURAL INTEGRATION: FROM MULTIPLE 
INPUTS 

Neural networks adjust their weights based on training feedback and compute 
outputs across multiple neurons. They employ parallel processing to generate solutions 
from a group of neurons, relying on statistical properties instead of the accuracy of each 
neuron. This contrasts with the serial processing found in traditional CPUs, which utilize 
algorithmic problem-solving. 

26.13.3.1 Learning Rules for Adjusting Connection Weights 

Learning rules decrease errors or employ the auto-associative Hebbian learning 
rule, reinforcing active connections to improve network performance. The learning rule 
used during training can be either a supervised approach (learning with a teacher) or an 
unsupervised approach (learning without a teacher). Incremental weight adjustments 
enable the system to find solutions that minimize errors; therefore, these solutions arise 
automatically through error minimization. 
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26.13.3.2 Limitations of Single-Layer Neural Networks 

The original Perceptron network architecture was overly simplistic, relying on a 
single-layer design to solve problems. This limitation caused researchers in the traditional 
algorithmic AI group to underestimate its problem-solving abilities, claiming that it could 
not tackle real-world challenges. However, this limitation was soon recognized as an 
inherent flaw of a single-layer neural network. In contrast, a multi-layer network 
architecture can tackle problems that a single-layer network cannot solve. 

26.13.3.3 Overcoming Limitations Using Multi-Layer Neural Networks 

Subsequently, it was found that adopting a multi-layer network architecture was 
crucial for addressing these complex issues. Multi-layer network models effectively 
overcame the limitations of single-layer neural networks. They tackled problems 

previously deemed “hard” by the expert system algorithms of that time, such as backing 
up a tractor-trailer. Nevertheless, limited computing resources led to their dismissal for 

many years as mere solutions to “toy problems,” even though they demonstrated the 
capacity to solve unforeseen challenges with limited computing resources. 

26.13.3.4 Recent Popularization of Neural Computing  

The renewed interest in AI and machine learning has recently demonstrated its 
practicality by training on a vast dataset compiled from over a billion websites. The multi-
layered network architecture and learning principles in deep learning are fundamentally 
the same as those used decades ago, only scaled up a billionfold. They utilize the same 
supervised training and reinforcement learning models developed over fifty years ago, 
applied to a training dataset that is billions of times larger.  

26.13.4 COMPUTATIONAL RESOURCES NEEDED FOR NEURAL 
COMPUTING 

This technology has become a powerful tool for delivering solutions that rival 
human capabilities. For instance, ChatGPT employs large language models (LLMs) to 
identify patterns in text and generate human-like conversations. It was trained on data 
from a billion websites, utilizing 500 billion tokens, 175 billion parameters, and extensive 
weight matrices to create a complex neural network. This framework encompasses nearly 
a trillion variables, crucial for computation and storage, facilitating the establishment 
relationships among higher-order text strings as tokens. 

The computing resources are vast, encompassing speed, memory, and storage. 
Generating text dialogues comparable to human conversations required a month of 
calculations on cloud server farms that were previously accessible only to major tech 
companies. Although these dialogues appear related to the topic, they may lack relevance 
without proper context. Current AI models excel at summarizing large datasets by 
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generalizing based on the higher-order correlation of input-output relationships; 
however, they do not yet possess the capability to perform logical reasoning or deduction. 

26.13.4.1 Generating Credible Responses from Patterns without 
Reasoning 

With the computing resources available in cloud server banks, neural networks 
can summarize large volumes of complex data, such as analyzing combinations of genetic 
profiles from extensive DNA datasets to identify interrelated relationships. However, 
these connections represent plausible relationships that may not be based on logic but 
rather on patterns. Therefore, AI-generated genetic matches are plausible but not 
necessarily valid. 

26.13.4.2 Legal Criteria for Validity 

Legal criteria require that forensic analysis exceeds reasonable doubt. Concerns 
regarding AI-generated relationships arise because they may appear valid based on 
random associations instead of logical reasoning. Therefore, they do not inherently satisfy 
the legal standards for conviction or determining parenthood matches. 

26.13.4.3 Less Restrictive Requirements for Plausible Heritage 

Exploring heritage can be an enjoyable exercise in genealogical tracing. It seeks to 
uncover potential lineage rather than adhere to strict criteria for definitive results. 
Therefore, using AI to suggest possible heritage is only a recommendation, even if the 
lineage is hypothetical rather than guaranteed. Examining potential heritage can be a 
rewarding experience. 

26.13.5 BRIDGING THE INFORMATION GAPS 

Unlike traditional expert systems, AI trained through machine learning can 
identify connections even when there are gaps in the training data. This capability 
effectively fills information voids by suggesting plausible links rather than leaving them 
unexplored as unknown. 

26.13.5.1 Unexplained Conclusions 

AI machine learning systems connect inputs to outputs by identifying relationships 
within training datasets. By examining the input-output patterns observed during 
training, we can draw conclusions. However, this method often lacks transparency, 
making understanding how outputs are generated from billions of examples without a 
logical explanation is difficult. 

The connection may be plausible, but it lacks logic. Without understanding the 
reasoning behind the conclusions, precautions should verify the validity of the results. 
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However, even without a strong rationale, the results can still support exploratory 
analysis and highlight specific features for human assessment without entirely dismissing 
them. 

26.13.6 EXPLAINABLE AI (XAI) 

Explainable AI (XAI) research clarifies the reasoning behind AI responses by 
aligning response patterns with logical explanations. This approach promotes 
interpretable conclusions. It enhances confidence in their validity rather than leaving 
them unexplainable. 

26.14 CASE HISTORY: ARTIFICIAL NEURAL NETWORKS 

A historical overview of artificial neural networks and artificial neurons in 
computing is essential for understanding AI systems that exhibit human-like intelligence. 
Understanding these principles enhances our trust in AI-generated outcomes and 
deepens our comprehension of genetics and inheritance. Trainable artificial neural 
systems depend on established physical and mathematical computational principles 
rather than mystical ones. 

26.14.1 BIO-INSPIRED NEURON COMPUTATION 

The theoretical foundation for neural processing in neural networks is based on 
biological neurons’ anatomical and physiological principles of biological neurons. Artificial 
neurons were inspired by the works of neuroanatomist Santiago Ramón y Cajal, 
neurophysiologist Sir Charles Scott Sherrington, and neuropsychologist William James. 
Their theories linked the fundamental functions of neurons to behaviors, establishing a 
connection between the mind and body. 

26.14.1.1 Case Example: The McCulloch-Pitts Neuron 

In 1943, Warren McCulloch and Walter Pitts 35 demonstrated that neurons can 
perform logical operations through threshold activation functions. A perceptron is a 
binary classifier that uses supervised learning rules to derive solutions to classification 
problems from training data without explicit instructions. 

26.14.1.2 Case Example: The Perceptron Neuron 

Artificial neurons (see Figure 26.7) have shown the ability to perform the logical 
OR operation with a threshold of 1 (see Table 1) and the logical AND operation with a 
threshold of 2 (see Table 2). In this model, inputs and outputs are represented as 1 (true) 
or 0 (false), consistent with the original Perceptron model. 
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Figure 26.7. A diagram illustrating a McCulloch-Pitts neuron highlights the relationships 
between inputs, outputs, and connection weights. The connection weight calculates the 
weighted sum of the neuron’s inputs. The threshold activation function determines the 

neuron’s output, activating when the weighted sum reaches a specific threshold. It 
computes the logical OR function when the threshold is set to 1 and the logical AND 
function when set to 2, with both inputs and outputs represented as 1 (true) or 0 (false). 

26.14.1.3 Computing the Boolean Logical OR Operation with Artificial 
Neurons 

A truth table (see Table 1) illustrates the connection weights that define input-
output relationships. In this example, the connection weights are set to 1. By adjusting 
these weights, machines can learn from examples without explicit instructions on solving 
problems. When the threshold is set to 1, the neuron computes the Boolean logical OR 
operation. 

 
Logical OR Operation Using a Threshold of 1 

Input, 
𝒙𝟏(𝒕) 

Input, 
𝒙𝟏(𝒕) 

Weight, 
𝒘𝟏𝟏(𝒕) 

Weight, 
𝒘𝟏𝟏(𝒕) 

Weighted Sum, 
𝚺 = 𝒘𝟏𝟏(𝒕) + 𝒘𝟐𝟏(𝒕) 

Threshold, 
𝜽 = 𝟏 

Output, 
𝒚𝟏(𝒕) 

0 0 1 1 0 Σ < 𝜃, 𝑦1(𝑡) = 𝟎 0 
0 1 1 1 1 Σ ≥ 𝜃, 𝑦1(𝑡) = 𝟏 1 
0 0 1 1 1 Σ ≥ 𝜃, 𝑦1(𝑡) = 𝟏 1 
1 1 1 1 2 Σ ≥ 𝜃, 𝑦1(𝑡) = 𝟏 1 

Table 1. This truth table illustrates the neural computation of the logical OR operation 
with a threshold of 1. The output activates when the weighted sum of inputs exceeds this 
threshold, with inputs and outputs represented as 1 (true) or 0 (false). 

26.14.1.4 Computing the Boolean Logical AND Operation with Artificial 
Neurons 

When the threshold is set to 2, the truth table (see Table 2) illustrates that it 
computes the Boolean logical AND operation. This concept was instrumental in using 
artificial neurons for AI computation. They can also compute other logical NOT (negation), 
NOR (NOT OR), and NAND (NOT AND) operations. 
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Logical AND Operation Using a Threshold of 2 

Input, 
𝒙𝟏(𝒕) 

Input, 
𝒙𝟏(𝒕) 

Weight, 
𝒘𝟏𝟏(𝒕) 

Weight, 
𝒘𝟏𝟏(𝒕) 

Weighted Sum, 
𝚺 = 𝒘𝟏𝟏(𝒕) + 𝒘𝟐𝟏(𝒕) 

Threshold, 
𝜽 = 𝟐 

Output, 
𝒚𝟏(𝒕) 

0 0 1 1 0 𝚺 < 𝜽, 𝒚𝟏(𝒕) = 𝟎 0 

0 1 1 1 1 𝚺 < 𝜽, 𝒚𝟏(𝒕) = 𝟎 0 

0 0 1 1 1 𝚺 < 𝜽, 𝒚𝟏(𝒕) = 𝟎 0 

1 1 1 1 2 𝚺 ≥ 𝜽, 𝒚𝟏(𝒕) = 𝟏 1 

Table 2. This truth table illustrates the neural computation of the logical AND operation 
with a threshold of 2. 

26.14.1.5 Case Example: The Perceptron Machine 

In 1958, Frank Rosenblatt developed a Perceptron machine for image processing, 
enabling it to classify images through training rather than programmed instructions 36. It 
could distinguish between cats and non-cats without needing explicit directions. Although 
it initially generated excitement in AI research, the capabilities of neural computation 
faced criticism due to its single-layer architecture, particularly when it could not solve 
problems like XOR computation. 

26.14.1.6 The AI Winter 

In 1969, Marvin Minsky and Seymour Papert published a book 37critiquing the 
limitations of perceptrons because of their inability to solve the XOR computation. As a 
result, funding for neural network research dwindled for decades. The algorithmic 
approach was preferred over machine learning for addressing complex problems. 

26.14.2 THE DOMINANCE OF TRADITIONAL ALGORITHMIC 
EXPERT SYSTEMS 

A common issue is the lack of sufficient DNA data in databases that compute 
matches, such as the missing genetic profile information in a genetic index database. 
Traditional algorithmic AI approaches have been the gold standard for expert systems in 
addressing these challenges for decades, even though they often struggle with 

straightforward problems humans can easily solve. These “hard” problems remain 
unresolved because no practical, explicit algorithmic solutions exist. 

26.14.2.1 The “Hard” Problems in Algorithmic AI 

Examples of challenging problems for traditional AI include filling in missing 
information in expert systems, such as addressing gaps in DNA databases to trace 
ancestry until a neural network is used to supplement the missing profile information in 
those databases. Other challenging problems that seem obvious for humans to solve 
include speaker-dependent speech recognition, scale- and rotation-invariant handwriting 
recognition, and orientation- and viewpoint-invariant facial recognition in image analysis. 
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These complex issues are now solvable through machine learning. Neural computation 
identifies patterns in training datasets to generalize solutions without needing 
algorithmic instructions. 

26.14.3 COMPUTATIONS USING ARTIFICIAL NEURONS 

An artificial neuron processes input signals from multiple sources to produce a 
single output (see Figure 26.7). It is analogous to a biological neuron, which receives 
thousands of synaptic inputs through its dendrites and transmits output via a single 
axonal pathway to other neurons. The application of artificial neurons for computation 
was inspired by the anatomical structure of biological neurons, which possess dendritic 
branches resembling tree branches. 

26.14.3.1 Simultaneous Parallel Processing with Artificial Neurons 

The design of neural computing uses neurons to gather inputs from thousands of 
other neurons, performing weighted-sum operations concurrently rather than 
sequentially. Each neuron operates as an independent processor, allowing it to process 
information simultaneously with other neurons in the network. This emphasizes the 
distinction between parallel processing in neural computation and serial processing in 
traditional digital CPUs. 

26.14.3.2 Differences Between Neural and Conventional Digital 
Processing 

Neural computing processes thousands of inputs simultaneously and in parallel, 
while conventional digital computing handles multiple inputs sequentially, addressing 
one or two at a time. This serial method creates bottlenecks at the CPU when dealing with 
a large number of inputs. The speed advantage in neural computing arises from 
processing signals in parallel instead of in series. 

26.14.3.3 The Neural Processing Chip Hardware Accelerator 

Neural computing can be computationally expensive for large-scale matrix 
multiplications involving floating-point and logical operations (see sections below). 
Conventional digital computing alleviates CPU bottlenecks by enhancing processing 
speed. However, modern AI systems utilizing large-scale LLM models analyze billions of 
inputs; for instance, processing 100 billion mathematical operations with a trillion 
parameters at 10 GHz takes 10 seconds for a single step in this context. Training a general-
purpose neural network requires billions of iterative steps before the system converges 
on a potential solution. Estimates indicate that power consumption by AI servers will 
exceed 20% of total power consumption in the U.S. within the next five years. 
Nevertheless, a smaller, special-purpose AI system designed for customized solutions will 
consume significantly fewer resources and necessitate less training data. 
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26.14.3.4 Computational Bottlenecks 

To alleviate bottlenecks, neural computing chips are designed to execute matrix 
operations as a unified computing unit instead of sequentially on a conventional CPU. 
Furthermore, processing thousands of inputs necessitates a substantial memory 
footprint, which requires on-chip memory banks. Analog computing, similar to biological 
neurons, could significantly enhance speed and reduce power consumption. 

26.14.3.5 Accelerating Computational Speed with Analog Signals in 
Neurons 

Biological neurons evolved to overcome computational bottlenecks by employing 
analog signal processing. They process signals electrically through membrane potentials, 
integrating thousands of inputs as analog signals. Excitatory inputs generate positive 
potentials, while inhibitory inputs create negative potentials for summation. The 
membrane potentials aggregate synaptic inputs as graded potentials.  

26.14.4 MATHEMATICAL COMPUTATION IN BIOLOGICAL 
NEURONS 

They perform mathematical operations for addition and subtraction using both 
positive and negative potentials. The attenuation adjusts the weighted sum by scaling the 
potential amplitude along the path to the integration zone. Signals are attenuated based 
on the impedance of the signal path and the distance from the synapse to the axon hillock. 
Most signal paths from a synapse follow a dendritic branch unless the synapses are 
located on the soma. 

26.14.4.1 Nonlinear Operations as a Threshold in Biological Neurons 

The firing threshold defines the threshold function for activation based on 
whether the weighted sum surpasses it. The gating mechanisms of the ionic channels 
embedded in the membrane convert analog signals into digital signals in the form of 
action potentials, which are transmitted to the next neuron for processing.  

26.14.4.2 Digital Sigal Transmission in Biological Neurons 

To maintain signal transmission integrity, neurons transmit digital pulse-coded 
signals encoded by action potentials over long distances along the axonal membrane. 
Upon reaching the axon terminal, these action potential signals are converted into 
chemical signals that act as neurotransmitters. This system primarily functions as a hybrid 
for processing electrochemical signals. By analogy, most batteries also operate as hybrid 
electrochemical systems. 
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26.14.4.3 Chemical Sgnal Transmission in Biological Neurons 

Before transmitting signals to the next neuron, neurons convert electrical signals 
into chemical signals in the form of neurotransmitter packets that encode excitatory or 
inhibitory responses. An excitatory response increases the likelihood of the next neuron’s 
firing, while an inhibitory response decreases this probability. This neurotransmitter 
release process acts as a universal mechanism for encoding both types of signals to 
regulate the firing of the subsequent neuron. 

26.14.4.4 Transmission of excitatory and inhibitory signals in neurons 

An excitatory synapse uses specific neurotransmitters as chemical signals that 
bind to receptors, converting these pulse codes into a positive membrane potential in the 
next neuron and facilitating addition. Conversely, an inhibitory synapse employs a 
different neurotransmitter that binds to a distinct receptor, transforming the signals into 
a negative potential in the subsequent neuron and enabling subtraction. 

26.14.4.5 Parallel Processing in Biological Neural Networks 

Each neuron processes both analog and digital signals using the same 
mechanisms, accelerating the overall process by concurrently managing signals among 
billions of neurons in the brain. This capability enables massive parallel neural computing, 
effectively addressing the limitations of serial computing. Although the processing speed 
of biological neurons is a million times slower than that of electronic computers, the brain 
can simultaneously compute at high speeds by processing computations across billions of 
neurons. 

26.14.5 THRESHOLD PROCESSING IN BIOLOGICAL NEURONS 

The gating mechanisms of ionic channels at the trigger zone initiate action 
potentials at the axon hillock. When the summed membrane potential exceeds this 
threshold, the weighted-sum analog signal is converted into a digital signal as an action 
potential. 

26.14.5.1 Digital Signal Processing in Biological Neurons 

The action potential is a digital pulse signal produced by a neuron. It is 
characterized by a consistent amplitude and width, which encode the neural response as 
a time series of action potentials. The neuron transmits these digital signals along the 
axon as outputs for the next neuron to process. 
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26.14.5.2 Hybrid Chemical and Electrical Signal Processing in Biological 
Neurons 

The signal is converted into a chemical signal through neurotransmitters released 
at the synapse. This chemical signal can be either excitatory or inhibitory, depending on 
whether it transmits a go or no-go signal to continue or block communication. The 
processing advances to the next layers of neurons, resulting in collective rather than 
individual computation by neurons. 

26.14.5.3 Voltage-Gated Channels as Differential Equation Solvers for 
Biological Neurons 

The firing threshold is regulated by a set of ionic channels embedded in the 
membrane. Each ionic channel in a neuron has voltage gates that govern a series of 
differential equations related to voltage activation. A typical neuron contains sodium (Na) 
channels and potassium (K) channels that regulate this threshold 38. As Alan Hodgkin and 
Andrew Huxley described, these thresholds were controlled by gating channels and 
rectifiers between 1948 and 1952 39–45. Each neuron effectively processes a set of 
differential equations through analog signal processing, driven by the regulation of 
threshold voltage. Hodgkin and Huxley were awarded the Nobel Prize in 1963 for their 
contributions to neural computation, particularly for discovering the gating properties of 
these ionic channels 46 before their existence was confirmed. 

26.14.5.4 Neural Computation with Voltage-Gated Channels 

Erwin Neher and Bert Sakmann later employed the patch-clamp technique to 
confirm the existence of gating currents generated by these ionic channels. They were 
also awarded the Nobel Prize in 1991 47. This exemplifies a case of discovering biological 
neural computations that inspired processing with artificial neurons. 

26.14.5.5 Synaptic Relays in Biological Neurons 

The synapse is where electrical signals travel between neurons across a narrow 
gap. Neurotransmitters transport these signals across the gap, converting them into 
voltage in the following neuron. Biological neurons process information using electrical 
signals, relaying results to the next neuron through a complex transformation into 
chemical signals before returning to electrical signals for further processing. 

Each connection influences firing, with certain connections having a greater 
impact due to their synaptic strength and proximity to the soma (cell body). A neuron 
activates when the total synaptic inputs at the axon hillock exceed a threshold, generating 
action potentials (nerve impulses). 



 Artificial Intelligence and Genealogy 26-54 

26.14.6 MATHEMATICAL WEIGHTED SUM IN BIOLOGICAL 
NEURONS 

A neuron acts as an adder, summing inputs from earlier layers in the neural 
network. When this computational process occurs for all neurons in a network, signals 
are processed progressively along the pathways of each neuron in parallel. In other 
words, as conventional computers do, neural computation distributes processing across 
all neurons without depending on a single CPU. 

26.14.7 NEURONS AS A VOTING SYSTEM: COUNTING VOTES 
FROM SYNAPTIC INPUTS 

Each connection to a neuron carries a weight that influences its responses. When 
all weights are equal, the neuron receives unbiased inputs. It operates like a voting 
system, gathering input votes to determine the output based on a threshold. This 
threshold signals whether the votes are sufficient to declare a winner, similar to a simple 
majority or a supermajority in decision-making. The neuron activates its output when the 
total count exceeds the threshold, reflecting the outcome of the voting process. 

26.14.7.1 The Use of Input Bias in Neural Computation 

In a fair election, each vote is counted equally. This means all connection weights 
are unbiased and treated the same when calculating the total. However, if some 
connection weights are greater than others, those votes hold more significance. Biological 
neurons manipulate biases in vote counting to adjust the importance of specific inputs 
for learning and survival.  

26.14.7.2 Adjusting Relevant Inputs via Connection Weights 

To survive, one must focus on essential stimuli and ignore irrelevant ones. If all 
stimuli were equally significant, sensory overload could overwhelm an individual. 
Therefore, learning emphasizes inputs related to survival while filtering out unimportant 
ones. By adjusting synaptic weights based on learning principles, the system hones in on 
crucial stimuli and dismisses those that provide less relevant information.  

26.14.8 THE “USE IT OR LOSE IT” PRINCIPLE OF SYNAPTIC 
PLASTICITY 

Biological neurons utilize Hebbian learning to modify synaptic weights. This 
activity-dependent rule reinforces connections when neural inputs are activated 
simultaneously. It reflects the “use it or lose it” principle. Cognitive decline in Alzheimer’s 
patients is mitigated when they participate in mental activities. 



 Artificial Intelligence and Genealogy 26-55 

26.14.8.1 The Auto-Associative Hebbian Learning Rule 

The Hebbian learning rule is an auto-associative learning mechanism employed 
for unsupervised learning, meaning it does not require a “teacher” to train the system. It 
learns to associate relevant inputs that are activated simultaneously. The closer the 
temporal proximity, the stronger the association. 

26.14.8.2 Learning Rules for Modifying Connection Weights 

The learning rule is simple: strengthen important connections and diminish less 
significant ones. By modifying connection weights, the system prioritizes responses to 
critical stimuli. Over time, this process slowly enhances suitable responses by emphasizing 
positive feedback while ignoring negative feedback. As a result, adjusting connection 
weights to favor selected inputs improves our overall effectiveness. 

26.14.8.3 The Choice of Feedback for Adjusting Connection Weights 

Determining which stimuli to prioritize depends on the value of the feedback. 
Similarly, neurons select specific types of feedback to guide the learning rules for 
adjusting their connection weights. Because some feedback is more effective than others, 
this decision ultimately influences the results of appropriate responses. 

26.14.9 PRINCIPLES OF NEURAL COMPUTATION: THE WEIGHTED 
SUM 

If 𝑥𝑖(𝑡) represents the 𝑖-th input to the neuron at time 𝑡, and 𝑤𝑖(𝑡) denotes the 

connection weights (see Figure 26.7 and Figure 26.9), then the weighted sum 𝑠(𝑡) is 
computed as follows: 

 𝑠(𝑡) = 𝑤1(𝑡)𝑥1(𝑡) + ⋯+𝑤𝑖(𝑡)𝑥𝑖(𝑡)⋯+𝑤𝑛(𝑡)𝑥𝑛(𝑡) (26-2) 

=෍𝑤𝑖(𝑡)𝑥𝑖(𝑡)

𝑖=𝑛

𝑖=1

 

26.14.9.1 The Vector Representation of Neural Inputs 

This indicates that an input vector 𝑿
→
(𝒕) represents all 𝑛 inputs to the neuron: 

 𝑿
→

(𝒕) = ൥
𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)
൩ (26-3) 
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26.14.10 PRINCIPLES OF MATRIX MULTIPLICATION IN A 
NETWORK LAYER 

In a simple layer of 𝑚 input neurons, each with 𝑛 inputs and 𝑤𝑖𝑗(𝑡) representing 

the connection weights of the 𝑗-th neuron, the weighted sum is computed using the 
following matrix equation: 

 ൥
𝑠1(𝑡)
⋮

𝑠𝑚(𝑡)
൩ = ൥

𝑤11(𝑡) ⋯ 𝑤𝑛1(𝑡)
⋮ ⋱ ⋮

𝑤1𝑚(𝑡) ⋯ 𝑤𝑛𝑚(𝑡)
൩ ൥
𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)
൩ (26-4) 

26.14.11 PRINCIPLES OF INTERNAL REPRESENTATION BY WEIGHT 
MATRICES 

Represent the above equation using matrix notation as follows: 

 𝑺
→

(𝒕) = 𝑾
→

(𝒕) ∙ 𝑿(𝒕)
→

 (26-5) 

The equation above illustrates the matrix multiplication performed by each 

neuron. The matrix 𝑾
→
(𝒕) represents the connection weights 𝑤𝑖𝑗(𝑡) from the 𝑖-th neuron 

to the 𝑗-th neuron during the matrix multiplication process: 

 𝑾
→
(𝒕) = ൥

𝑤11(𝑡) ⋯ 𝑤𝑛1(𝑡)
⋮ ⋱ ⋮

𝑤1𝑚(𝑡) ⋯ 𝑤𝑛𝑚(𝑡)
൩ (26-6) 

This matrix computation occurs before a threshold function is applied to 
determine the output. If the weighted sum exceeds this threshold, the neuron activates 
its output and transmits activation information to the next neuron for further processing. 
If it does not exceed the threshold, the neuron remains inactive until the next time step, 
repeating the same process. 

26.14.12 THE SIZE PRINCIPLE OF NEURAL NETWORKS 

A biological neuron typically receives about 10,000 to 100,000 synaptic inputs 
from other neurons and performs weighted-sum calculations in a single step that takes 
less than a millisecond. The human brain contains approximately 100 billion neurons, 
each with an average of 10,000 to 100,000 inputs, and its computational requirements 
are comparable to those of current AI systems. 
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26.14.12.1 The One-Step Processing Principle in Neural Computation 

Processing speeds improve when all neurons carry out these mathematical 

operations simultaneously instead of one node at a time. In today’s AI networks, each 
artificial neuron can have over a trillion parameters to update at each time step. The 
bottleneck arises from the serial processing performed on conventional multi-core CPUs. 

26.14.12.2 Bio-inspired Neuron-Based Weighted Sum Computation 

Biological neurons inspire neural processing in artificial neurons. Each biological 
neuron has thousands of synaptic inputs on its dendritic branches and soma, resembling 
the leaves of a tree branch. It integrates synaptic potentials at the axon hillock to 
determine whether to fire, but only if the summed voltage reaches a certain threshold. It 
enhances matrix computation by summing voltages as analog signals from distant 
synaptic inputs, weighted by the attenuation along the dendritic tree branch. 

26.14.12.3 Computing Uniform Contributions from Inputs 

If all the weights are equal, the system simplifies to a straightforward sum of the 
inputs. Each input contributes equally, resulting in an unbiased system. Neural 

computation becomes a simple “adder” operation, similar to how a computer performs 

addition within the CPU. The computational processes in both digital and neural 
computing are analogous, illustrating the similarities between these two mechanized 
computations. 

26.14.12.4 Principles for Adjusting Connection Weights According to Input 
Contributions 

If each connection weight changes individually, the neuron adjusts the 
contribution of each input according to its updated weight. It gradually adapts to the 

significance of each input’s contribution, leading to learning through the reorganization 
of its connections with other neurons. 

26.14.13 PRINCIPLES OF COMPUTATION FOR CORRELATION 
FUNCTIONS  

Higher connection weights significantly enhance the weighted sum, resulting in a 
positive correlation. Conversely, negative weights diminish the sum, leading to a negative 
correlation. Time-delayed temporal processing computes the correlation function for a 
time series of pulse-coded action potentials 48. The temporal correlation functions 
generated by biological neurons emerge from their processing of spike trains, which 
creates the association between input signals represented by an internal correlation 
matrix 49–52. Neurons perform temporal integration of synaptic inputs for processing 53,54. 
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This process enables neurons to learn to generate appropriate outputs by recognizing 
higher-order correlations for each connection, even if these are indirectly related. 

26.14.13.1 Principles of Hebbian Learning Rule 

As explained earlier, the learning rule gradually adjusts weights, allowing the 
system to respond to relevant inputs for the desired output. The adjustment rule is 
straightforward: strengthen the connection by increasing the weight when the input is 
relevant and decrease it when it is not. This process modifies the influence of relevant 
inputs on neuron firing when activated. The connection is weakened for irrelevant inputs 
by lowering the weight when not activated. 

26.14.13.2 Principles of Emphasizing Contributions of Relevant Inputs by 
Weights 

The neuron adjusts its connection weights over time, amplifying relevant inputs 
and diminishing irrelevant ones. Eventually, its weights stabilize to reflect the importance 
of these connections. Only relevant inputs affect firing based on their weighted sums, 
while irrelevant inputs have minimal influence. 

26.14.14 PRINCIPLE OF THE OUTPUT ACTIVATION HARD 
THRESHOLD STEP FUNCTION 

The threshold activation function acts as a step function for an artificial neuron 
(see Figure 26.8). It is discrete and discontinuous, defined by a precise threshold. At this 
threshold, differentiation becomes undefined. As a nonlinear function, it cannot be traced 
back from the output to the original inputs. The output activation changes abruptly as a 
step function. It is 1 when the weighted sum exceeds the threshold; otherwise, it is 0: 

 𝑦𝑗(𝑡) =

ە
۔

if,1ۓ ∑
𝑖=1

𝑖=𝑛

𝑤𝑖𝑗(𝑡)𝑥𝑖(𝑡) ≥ 𝜃

0,if ∑
𝑖=1

𝑖=𝑛

𝑤𝑖𝑗(𝑡)𝑥𝑖(𝑡) < 𝜃

 (26-7) 
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Figure 26.8. Graphs illustrating various types of threshold functions. A step function 
threshold is a discrete, discontinuous function that indicates a hard threshold. A sigmoidal 
function threshold is a continuous function that signifies a soft threshold. A linear function 
threshold effectively represents the absence of a threshold. 

26.14.14.1 The Sigmoid Soft Threshold Activation Function 

Other threshold functions, such as the sigmoidal function (see Figure 26.8), 
provide a gradual change in output activation rather than a discrete step change. The 
threshold activation function is smooth and continuous, acting as a soft threshold. It is a 
nonlinear function that cannot be reversed from the output to the original inputs. 

26.14.14.2 Principles for Collapsing Linear Threshold Functions into a 
Single-Layer Network 

A linear threshold (see Figure 26.8) represents a continuous function equivalent 
to no threshold. As a linear function, it does not change the output activation produced 
by the weighted sum. The activation function equals the weighted sum of the inputs. In 
such cases, the series of matrix multiplications can be simplified into a single equivalent 
matrix of a single-layer network, which does not perform any significant processing. 

26.14.15 PRINCIPLES OF MULTI-LAYER NEURAL NETWORKS 

A multi-layer neural network consists of hidden layers situated between the input 
and output layers (see Figure 26.9). Each hidden layer processes and extracts essential 
information to address more complex tasks. Each non-linear layer abstracts information 
related to the input-output relationships, facilitating effective feature extraction. As the 
network learns, it gradually adjusts its internal representation of these relationships. The 
learning rule modifies the connection weights according to the significance of these input-
output relationships. Since these relationships are expressed as matrices, they 
encapsulate the internal model representation. Each hidden layer captures a unique 
representation, extracting different connections to provide higher-order input-output 
relationships. 
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Figure 26.9. A multi-layer neural network illustrating the different layers and their input-
output relationships. The hidden layers between the input and output layers capture 
complex connections among the inputs and outputs. 

26.14.15.1 Principles of Matrix Multiplication in Neural Computation 

Representing the weighted sum of inputs with a matrix results in an output 
activation as follows: 

 𝑦𝑗(𝑡) =

ە
ۖ
۔

ۖ
if,1ۓ ൥

𝑤11(𝑡) ⋯ 𝑤𝑛1(𝑡)
⋮ ⋱ ⋮

𝑤1𝑚(𝑡) ⋯ 𝑤𝑛𝑚(𝑡)
൩ ൥
𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)
൩ ≥ 𝜃

0,if ൥
𝑤11(𝑡) ⋯ 𝑤𝑛1(𝑡)

⋮ ⋱ ⋮
𝑤1𝑚(𝑡) ⋯ 𝑤𝑛𝑚(𝑡)

൩ ൥
𝑥1(𝑡)
⋮

𝑥𝑛(𝑡)
൩ < 𝜃

 (26-8) 

26.14.15.2 Principles of Computed Output Activation Functions 

By utilizing matrix notation to simplify the matrices, the output activation function 
can be expressed by the following equation: 

 𝒀
→

= ൝
1,⁡⁡if𝑾

→

∙ 𝑿
→

≥ 𝜃

0,⁡⁡if𝑾
→

∙ 𝑿
→

< 𝜃
 (26-9) 

26.14.15.3 Principles of Computation with Irreplaceable Hidden Layers 

By cascading the outputs of one layer to the next, the neurons in the intermediate 
layers can use the output of each neuron as input. The intermediate layer plays a crucial 
role in neural computation and signal processing. It addresses the limitations of models 
like the perceptron, which cannot solve the XOR problem due to its single-layer structure. 
Hidden layers facilitate non-linear processing through the threshold function; without 
them, computations may revert to a single layer. 
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26.14.15.4 Principles of Nonlinear Neural Network Computation 

The threshold function, a binary step function that performs Boolean logic, is 
mathematically nonlinear. This nonlinearity prevents the series of matrix multiplications 
from simplifying into a single equivalent multiplication. If it were otherwise, the 
computations of a multilayer network would be reducible to those of a single-layer neural 
network’s matrix multiplication. 

26.14.15.5 The Essential Processing by Intermediate Layers 

The hidden layers are essential for computations in neural networks. Intermediate 
interneurons would be unnecessary if a single-layer equivalent could replace the network. 
Due to nonlinear functions, these layers compute critical behaviors that simpler networks 
cannot replicate. 

26.14.15.6 The Essential Processing of Multilayer Neural Networks 

Logical inference and causal reasoning in network connections stem from 
nonlinear neural processing. These processes are irreversible due to the 
noncommutativity of matrix multiplication, which renders it impossible to trace neural 

networks back to the origins of consciousness’s abilities. This distinction distinguishes AI 
from traditional preprogrammed algorithmic approaches to autonomously solving 
intellectual processing functions. 

26.14.15.7 Principles of Methodologies for Adjusting Internal 
Representations 

The principle involves learning rules to adjust connection weights based on 

network feedback to minimize errors. These five processes will impact the network’s 
performance: 

• The quality and quantity of the dataset for training a network; 
• The learning rules for updating the connection weights between neurons; 
• The selection of relevant feedback for determining the above updates; 

• The network criteria for improving the outcomes of the network outputs; 

• The methodology for avoiding convergence into a non-optimal solution. 

26.14.16 PRINCIPLES OF THE OPTIMIZATION PROCESS IN AI 
TRAINING 

Machine learning in AI models is a mathematical, data-driven methodology that 
optimizes solutions by minimizing errors to align with expected results. It employs a trial-
and-error approach to learn from mistakes. By reducing discrepancies between the 
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system’s output and the anticipated results in each iteration, the system typically 
converges on a solution that achieves the desired outcomes. 

26.14.16.1 Principles of the Generalization Process in AI 

Generalizing a solution requires considerable time and numerous training 
examples to determine expected outcomes by establishing extensive relevant 
connections. This process fosters an internal representation that enables generalization 
from a training dataset, even if the input query is not part of that dataset. The key lies in 
the internal representation created by a network of neural connections that establishes 
higher-order correlations in the input-output relationships. 

26.14.17 EVALUATION OF AI NETWORK PERFORMANCE 

Understanding AI model training is crucial for selecting a model for genealogical 

analysis. A network’s performance hinges on the learning rules used during training and 
its connectivity to determine relevance. This comprehension enables an objective 
evaluation rather than relying solely on vendor marketing. Below is a summary of AI 
methodologies for assessing performance. 

26.14.17.1 Principles of Minimizing Error Methods 

The backprop rule reduces errors by progressively propagating them from the 

output layer to the hidden layers. The error is calculated by comparing the network’s 

outputs with the desired outputs and is then used to update the connection weights for 
each neuron. This method minimizes errors through gradient descent and was developed 
by Cauchy in 1847 55. 

26.14.17.2 Principles of Backprop Networks Commonly Used in AI 

Backprop, short for “back-propagating error correction,” was coined by David 
Rumelhart, Geoffrey Hinton, and Ronald Williams 56,57. Numerous predecessors 
contributed to its application of backprop in neural networks. Shunichi Amari suggested 
training multilayer perceptrons (MLPs) in 1967 58 with end-to-end connections using 
stochastic gradient descent (SGD) 59. The concept of backpropagation was introduced by 

Rosenblatt in 1962. The backprop model gained popularity from the book “Parallel 
Distributed Processing.”  

26.14.17.3 Limitations of the Backprop Machine Learning Model 

The backprop model faces various computational challenges. A supervised 
learning model requires a “teacher” to provide correct answers for training. The model 
adapts to the training set as guided by the trainer. Training a supervised learning AI model 
with human input on correct responses is labor-intensive; for instance, it involves 
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teaching the system to differentiate between male and female faces in facial recognition. 
In contrast, other intelligent systems utilize self-learning through the unsupervised 
learning paradigm to categorize independently without any instructions via auto-
association. 

It uses a gradient descent algorithm to find an optimal solution but may get stuck 
in a local minimum (see below). Further methods are needed for the system to ascend 
before descending to a better solution. 

26.14.18 THE GRADIENT DESCENT METHOD FOR ERROR 
MINIMIZATION 

One method for solving the error minimization problem is gradient descent, which 
follows the gradient downhill (see Figure 26.10). However, the network may converge to 
a solution and become trapped in a local minimum, representing a non-optimal solution. 
Figure 26.10Figure 26.10 illustrates the topology of the solution space. 

 

Figure 26.10. A graph illustrating gradient descent for error minimization highlights the 
risk of encountering local minima. Escaping these non-optimal solutions often requires 
counterintuitive approaches, such as moving against the gradient uphill before 
converging on a more optimal solution. It is often impossible to determine the location of 
the global minimum or to confirm whether the best solution has been found without prior 
knowledge of that optimal solution. 

The discovered solution may be valid but might not be optimal. Often, one must 
ascend before descending into another minimum, which requires using alternative 
methods to counter the gradient descent algorithm. However, achieving a global 
minimum is not guaranteed if the optimal solution is unknown beforehand. 
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26.14.18.1 Methods for Escaping Local Minima 

Various analytical methods aim to escape local minima, often using stochastic and 
probabilistic output activation functions. Semi-random fluctuations help ascend against 
the gradient toward an optimal solution. This approach generates random outputs to 
explore nearby solution spaces while moving against the downward gradient. It employs 
stochastic techniques rather than deterministic ones. Stochastic processing is 
probabilistic, solving problems differently from conventional deterministic approaches 
that specify exact solutions without variations. Some stochastic solutions even tunnel 
through the hill to escape local minima. 

26.14.19 CASE EXAMPLE: THE BOLTZMANN MACHINE 

Hinton employs the Boltzmann machine, drawing on the analogy from statistical 
physics regarding energy to define the exploration function in a search through the 
solution space. Random thermal fluctuations enable the system to acquire enough energy 
to escape from local minima. The temperature of the system’s energy dictates the extent 
of exploration. Instead of the supervised learning model of backprop, the Boltzmann 
machine uses unsupervised learning for auto-association. Hinton received the Nobel Prize 
in 2024 for utilizing statistical physics energy functions to optimize solutions in the 
Boltzmann machine 60. 

26.14.20 PRINCIPLES OF SUPERVISED LEARNING TRAINING 
METHOD 

A drawback of backprop is its dependency on supervised learning for training. This 
approach necessitates prior knowledge of the correct answers, which is unlike 
unsupervised learning, where such knowledge is not required. Moreover, training 
involves direct interaction and demands human guidance. 

Human input is crucial to minimizing AI errors when training self-driving cars to 
recognize pedestrians and traffic lights. This process is labor-intensive and time-
consuming. While they may seem automated, supervised learning AI models necessitate 
significant human training before arriving at an effective solution. 

26.14.21 THE UNSUPERVISED LEARNING TRAINING METHOD 

The unsupervised learning model discovers solutions by forming associations 
between input-output pairs. Donald Hebb initially proposed the biological mechanisms 
for synaptic plasticity, suggesting how neurons modify synaptic strengths. The Hebbian 
learning rule states that simultaneous activation strengthens connections while inactivity 
weakens them. This process allows neurons to adjust weights without an external 
“teacher.” The learning rule essentially establishes correlation functions autonomously, 
reflecting the “use it or lose it” principle introduced earlier. 
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26.15 SUMMARY 

Genealogical and forensic analyses of genetic data are illustrated with case 
examples to introduce the core principles of probabilistic inheritance and analytical 
techniques for determining ancestral lineages and identity matches. Traditional 
algorithmic approaches depend on expert systems that utilize defined statistical inference 
methodologies to address these issues analytically; however, they cannot resolve 
unexpected scenarios and manage missing genetic information. 

Alternative AI methodologies utilize machine learning to demonstrate their 
benefits and practical limitations. Key machine learning principles are summarized to 
provide an informed evaluation of AI tools’ performance without suggesting they possess 
magical abilities in solving genealogical challenges. The AI approach requires extensive 
training on large datasets to identify suitable solutions and learns from examples to 
summarize data through input-output correlation. Consequently, it can bridge gaps in 
genealogical databases, although these outcomes may not always be logically sound. 

Until AI improves its reasoning capabilities, caution is advised when drawing 
conclusions. However, these systems effectively automate the cataloging of genealogical 
databases from various records and can generate automated responses to inquiries using 
natural language processing to answer questions from everyday users. Understanding the 
mechanics of AI machine learning will assist in a thorough evaluation of the performance 
of different AI models for specific genealogical applications. 
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