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Abstract

A hands-free, wearable brain—computer interface (BCI) with fault tolerance is proposed for individuals with quadriplegia, enabling safe
wheelchair control. It anticipates operational failures with fault-recovery methods to mitigate catastrophic outcomes. A multimodal
system validates decoded signals for sensor consistency and confirms user intentions. The primary imaging system utilizes optical
sensors to monitor brain signals, while a supplementary system employs accelerometers and gyroscopes to detect head movements. A
third subsystem recognizes voice commands via built-in microphones. The primary control decodes the direction of movement, and the
secondary confirms this through head tilting. A third redundancy uses voice commands to confirm or override wheelchair operations.
Although cumbersome, head movements and voice commands are essential for users who are paralyzed and unable to press buttons
in emergencies. Head motion sensors also detect headset slippage, halting operations immediately in the event of a headset drop. An
adaptive voting system employing a majority-rule method filters out inconsistent outliers by utilizing historical patterns of consistency
in the weight-sum voting process. To validate the interpretation of optical data collected from brain signals in the prefrontal cortex
(PFC) using functional near-infrared spectroscopy (fNIRS), motor task experiments were conducted with human subjects performing
horizontal hand movements in four orthogonal directions. The results indicated that oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin
(deoxy-Hb) signals exhibited directional specificity, with responses reversing during opposing movements. It suggests that neural
activity reflects the direction of movement. The consistency of the decoded results is verified by hemodynamic variables, with oxy-Hb and
deoxy-Hb signals covarying inversely. Phase relationships between hemodynamic variables also changed depending on the direction of
movement. An analysis revealed that the dynamics of vasodilation and vasoconstriction varied, indicating conditions where the oxygen
supply could not meet metabolic demand in specific movement directions. The design allows users to choose a lightweight headband for
cost-effective PFC monitoring or a helmet for whole-brain signal detection. The wearable design also provides wireless or wired headset
options for communication with the controller located on the wheelchair. Future developments will address headset slippage challenges
through adaptive signal processing, ensuring the commercial viability and reliability of the product.
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1. Introduction

A second-generation brain—computer interface (BCI) device for
wheelchair control is proposed to demonstrate the feasibility of
using non-invasive optical brain signals to decode movement di-
rection. Experimental evidence will support the interpretation of
hemodynamic signals to validate accuracy, without relying on an
ad hoc feature-extraction algorithm often deemed physiologically
uninterpretable. Independent hemodynamic variables effectively
validate movement intentions. Both oxy-Hb and deoxy-Hb hemo-
dynamic responses can represent movement direction, while their
phase relationships confirm these intentions. Neuro-responses
(represented by deoxy-Hb levels), cardio responses (represented
by oxy-Hb levels), and the dynamics of oxygen supply provide
redundant metrics to validate physiological representations. This
second-generation design addresses operational issues to mitigate
catastrophic failure, rather than focusing solely on the accuracy
concerns of first-generation devices. It integrates sensors from mu-

Itiple modalities for redundancy, incorporating head motion detec-
tion and voice commands to confirm or cancel unintentional oper-
ations. A majority-rule voting scheme is employed for consistency
checking, as congruent signals are more likely to be accurate than
inconsistent ones.

Additionally, endpoint specification simplifies control by eliminat-
ing the need for continual updates to the path trajectory from brain
signals, thereby delegating path planning and obstacle avoidance
to a semi-autonomous navigation subsystem. The device offers a
choice between a lightweight headband for prefrontal cortex (PFC)
recording and a helmet-based whole-brain headset for enhanced
user adoption. The wearable device separates lightweight headset
sensors from the heavier controller on the wheelchair via wireless
or wired communication. However, practical issues such as sensor
slippage must be addressed before commercializing the device.
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1.1. First-generation brain—computer interface designs
with microelectrode implants

Recent advancements in multi-electrode recording techniques
have demonstrated that neurons in the primary motor cortex (M1)
can compute vector sums to decode movement directions [1-7].
Each neuron fires most effectively in its preferred direction and
contributes to movement by firing at a rate corresponding to the
vector projection at that angle. The resulting movement is defined
by the population vector, the vector sum of the neural firings [7, 8].
It has been demonstrated that a robotic arm can be controlled
by brain signals recorded using implanted microelectrodes [9].
The first-generation BCI device utilized motor cortex neuron firing
rates to control robotic arm movements [10]. It decoded neural
responses by computing the vector sum to determine the intended
movement direction.

1.1.1. Neural population vector representation of
movement direction

The population vector hypothesis suggests that neural firing rates
collectively encode the intended direction of movement. Each neu-
ron fires most strongly in its preferred direction, diminishing its
firing rate in other directions. Thus, firing rates act as a vector in
polar coordinates, peaking at the preferred angle and varying ac-
cording to the cosine projection. The vector sum of the firing rates
from all participating neurons indicates the intended direction of
movement. When a neuron fires uniformly across all movement
directions, it encodes only magnitude as a scalar.

In contrast, varying firing rates according to direction adds a
movement-related aspect. According to the cosine tuning function,
a neuron that fires maximally in one direction while decreasing
in others represents a vector with both magnitude and direction.
This projection encodes the angle; however, symmetric angles may
create ambiguity, which can be resolved through the vector sum
of other neurons. The overall direction corresponds to the angle in
the resultant vector sum, which can be determined by downstream
neurons from the resultant firing vector sum [11]. Knowing all
neurons’ preferred directions and firing rates allows us to predict
the intended direction from the vector sum. A BCI can similarly
infer movement direction using the resultant vector sum; however,
detecting firing rates requires invasive microelectrode implants or
other non-invasive techniques.

Decoding movement requires microelectrode implants to monitor
approximately 100 cortical neurons. Brain movement can cause
electrodes to become unstable, leading to signal loss. Discriminat-
ing neuron firings necessitate specialized neural expertise. Lim-
ited biocompatibility raises safety concerns. Graphene’s flexibility
may offer a durable, biocompatible alternative to metal electrodes,
thereby enhancing the performance of implanted electrodes [12—
14]. Graphene nanoelectrodes present a promising option for neu-
ral recording [15]. However, many paralyzed patients avoid im-
plants due to infection risks, which limits the adoption of first-
generation neuroprosthetic BCI devices.

1.1.2. Brain—computer interface designs using EEG or
ECoG electrodes

Electroencephalogram (EEG) signals are used non-invasively to
detect brain activity for BCI devices [16]. However, a low signal-to-
noise ratio caused by skull filtering and limited spatial resolution

restricts the practical applications of this method. Microvolt-range
EEG signals are highly susceptible to external noise, reflecting
cumulative field potentials rather than the firing rates of individual
neurons. An increase in field potential does not indicate a higher
firing rate; it often represents synchronized firing, especially dur-
ing seizures. Nevertheless, EEG signals can identify the focal source
of epileptic seizures based on synchronized activities [17, 18]. High-
density EEG, utilizing 128 to 256 EEG electrodes, can localize syn-
chronized signal sources [19], as validated by structural MRI [20].

Most EEG-based BCIs utilize motor imagery paradigms [21] to
link neural signals with motor activity for feature detection and
classification [22]. The classified features in the frequency domain
often relate to muscle activation, such as the opening and closing
of orthotic limbs using actuators [23] for discrete intentions, rather
than decoding movement directions, as in population firing vector
representation. It is crucial to control a wheelchair’s movement
direction using a 360° angle instead of on/off signals or ad hoc
methods, which can extract features without accounting for the
physiological encoding of neural firings, such as vector firing pro-
jections. Neurofeedback can enhance BCI functionality to improve
the extracted representations, for instance, by combining EEG
and fMRI (functional magnetic resonance imaging) [24]. How-
ever, this increases the weight and size of BCI sensors, and MRI
machines may be too heavy for mobile wheelchair control. An
electrocorticogram (ECoG) offers a superior signal-to-noise ratio
compared to EEG by placing electrodes directly on the cortical
surface [25, 26]. However, placement requires brain surgery. A
32-electrode ECoG has been demonstrated to control 3D cursor
movements [27], but most people avoid neurosurgery unless it is
necessary to locate seizure sources.

1.1.3. Brain—computer interface designs using magnetic
signals

Magnetic signals can non-invasively detect brain activity. Func-
tional magnetic resonance imaging (fMRI) identifies paramag-
netic deoxy-hemoglobin (deoxy-Hb) through blood-oxygen-level-
dependent (BOLD) signals, which indicate neurovascular coupling
related to blood flow, oxygenation, and metabolism. The roles of
astrocytes, pericytes, and neurons in regulating brain blood flow
remain unclear [28]. Deoxy-Hb levels rise in response to neural ac-
tivity, reflecting metabolic demand and indirectly indicating neural
firing [29]. However, oxy-Hb cannot be magnetically detected.
Magnetic imaging thus captures contributions to oxygenation. The
Results section will demonstrate that additional oxy-Hb signals
enhance movement direction decoding beyond those of deoxy-Hb
signals. The temporal resolution of fMRI limits the functionality
of real-time BCI for wheelchair control, as scans last one second
and require users to remain still. Moreover, wheelchair movements
may interfere with the operation, even if the magnets are minia-
turized. Additionally, MRI machines are too bulky and expensive
for mobile BCI applications, making alternative imaging methods
more practical.

1.2. Brain—computer interface designs using optical
signals

Optical imaging provides a non-invasive method for detecting
brain signals that reflect neural firing rates, similar to fMRI. This
principle relies on the modified Beer—Lambert law (mBLL) [30, 31]
to identify variations in oxy-Hb and deoxy-Hb levels within tissues.
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Using the deoxy-Hb signal is analogous to the BOLD signal in
fMRI for detecting neural activity, serving as a proxy for oxygen
extraction from Hb during increased metabolic activity resulting
from neural firing. Near-infrared light (NIR) penetrates tissues,
making it particularly suitable for imaging the brain. If neural
responses are specific to the direction of movement, these hemo-
dynamic signals can be employed to decode intended movements
for BCI-controlled wheelchairs.

Fingertip oximeters exemplify the use of optical imaging in medical
devices. These monitors measure pulse rate and blood oxygen
levels by detecting hemoglobin absorption through a finger using
infrared or visible light [32]. The emitter and detector are posi-
tioned on opposite sides of the fingertip to analyze light absorption.
Photoplethysmography measures changes in oxy-Hb and deoxy-
Hb levels based on their light absorption characteristics, similar to
optical brain imaging, which detects hemodynamic signals to infer
neural activity. Pulse rate is based on variations in oxy-Hb levels.

Meanwhile, blood oxygen saturation (SpO2) is the ratio of oxy-
Hb to the blood volume, as indicated by the sum of oxy-Hb and
deoxy-Hb [33]. These oximeters are a routine optical imaging
technology that provides reliable measurements in medical photo-
plethysmography [34]. Utilizing dependable technology reinforces
the acceptance of optical imaging as a trusted device.

1.2.1. Hemodynamic representation of neural activity

Functional near-infrared spectroscopy (fNIRS) detects brain sig-
nals using NIR light, similar to fingertip oximeters [35—39]. Op-
todes are lightweight sensors used in mobile BCI headsets. fNIRS
employs absorption spectroscopy by directing light onto the tis-
sue and identifying the molecular content through the absorption
spectrum. It detects oxy-Hb and deoxy-Hb levels for hemodynamic
analyses. While fMRI relies on a single hemodynamic deoxy-Hb
signal, fNIRS improves BCI design by utilizing both the deoxy-Hb
and oxy-Hb signals. The dynamics of oxygen supply and metabolic
demand also reveal changes in neural representation during move-
ment, as shown below.

1.2.2. Non-invasive design requirements for optical
brain imaging

The design specifications for non-invasive optical brain imaging re-
quire positioning emitter—detector pairs on the scalp without need-
ing probe insertion. Ray tracing utilizes light-scattering physics
to facilitate this process, as light refracts back to the scalp’s sur-
face due to scattering. Scattered light follows a banana-shaped
path, returning to the emitter surface [30, 40] (see Figure 1).
Emitter—detector pairs can monitor brain signals optically from
absorption along the light path. This methodology is employed
in most commercially available fNIRS instruments. Computations
convert optical density to concentration changes using the mBLL,
which is incorporated into the hardware—software optical imaging
system.

The depth of the light path depends on the distance between the
emitter and detector. Greater distances facilitate deeper tissue
detection, but scattered noise limits this depth to 2—3 cm from
the scalp surface [38, 41, 42]. The noise restrictions enable op-
tical recordings to detect cortical activity. However, deep-brain
activity can be predicted with 70% accuracy, as validated by fMRI
co-registration [39]. Fortunately, cortical signals are sufficient for

movement decoding, particularly from the primary motor cortex,
premotor cortex, supplementary motor cortex, or PFC, which in-
volve motor execution, planning, bilateral coordination, and deci-
sion making for movement intentions.

Emitter Detector

ol 4

light path

Figure 1 ¢ The diagram illustrates light traveling along a curved
path to the surface of the emitter, creating a banana-shaped light
trajectory without a detector probe positioned within the tissue.
This method enables non-invasive brain imaging using emitter—
detector pairs placed on the surface of the scalp.

1.2.3. Brain—computer interface experimental designs

Most fNIRS BCI experiments focus on motor imagery and cognitive
tasks for feature extraction rather than on movement angles [43].
Additionally, they often combine fNIRS with EEG to enhance neu-
ral signals [44, 45], relying on various signals for validation instead
of solely optical signals. Most fNIRS BCIs use motor imagery tasks,
which cannot validate fictive movements without physical activity.
Furthermore, these tasks often require the suppression of real
movements, which can potentially diminish neural signals. Gait
control experiments aid motor rehabilitation but lack evidence for
predicting movement directions [46]. Finger-tapping tasks classify
go or no-go signals without defining movement angles. Although
these tasks [47, 48] can tackle signal analysis, movement direction
is continuous, not discrete.

Other BCI studies on PFC activity predict executive functions.
Thus, it is challenging to validate neural representations without
confirming accurate movement execution. through cognitive or
emotional tasks, such as mental workload [49], emotional va-
lence [50], or impulsivity, rather than motor intentions [51]. This
study employs a real hand movement task to identify directionality
and link it to neural representations, allowing for unrestricted
physical movements. Patients with spinal cord injuries can gen-
erate brain signals for motor control, even if those signals do
not reach their limbs. Therefore, wheelchair control tasks should
involve actual horizontal movements toward intended endpoints
for validation, correlating them with neural signal representations
to ensure physiological accuracy.

2. Second-generation BCI design
specifications

2.1. A reliable wearable design with redundancy for fault
recovery

The second-generation BCI design decodes brain signals for
wheelchair control using a redundant multi-sensor approach,
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which minimizes catastrophic failures from component malfunc-
tions and decoding errors. It utilizes physiologically interpretable
neural signals to validate movements. Unlike first-generation
devices, this hands-free design for users with paralysis priori-
tizes managing component failures over decoding accuracy, as
quadriplegic users cannot press an emergency button if the device
slips or falls. The design incorporates built-in failure-detection
mechanisms for effective error management and recovery.

To enhance versatility, it should be a lightweight, wearable device
that detects brain signals non-invasively, eliminating the need for
surgery or implants. It must operate using a fail-safe methodology
to prevent accidents and alleviate anxiety. To cut costs, it uses off-
the-shelf components instead of custom designs. It should be user-
friendly to encourage broader adoption, requiring minimal effort
or training. The minimum specifications are as follows:

1. Non-invasive neural signal detection;
2. Mobile, lightweight, wearable, and detachable device;
3. Multiple independent brain signal variables for validation;

4. Integrated multimodal sensor technologies with brain signals
for redundant control;

5. Afault-tolerant system capable of recovering from faults while
exhibiting graceful degradation;

6. Atrusted, proven technology ensuring reliable operations;

7. The utilization of commercially available components for
cost-effectiveness.

2.2, Utilizing multiple independent and derived brain
signal variables for control

Experimental evidence will be provided to differentiate the move-
ment direction for wheelchair control as proof of concept. Various
analytical methods will redundantly decode brain signals, using
hemodynamic variables to validate wheelchair operations. These
variables include, but are not limited to:

e The oxy-Hb variable (A [HbO]) is used to assess the cardio-
vascular responses related to oxygen delivery and availability.

e The deoxy-Hb variable (A [Hb]) is used to determine neuro-
responses related to oxygen extraction, provided sufficient
oxygen is available.

The physiological interpretations of derived variables from the
original hemodynamic variables include:

e Variables representing the combined amount of oxy-Hb and
deoxy-Hb indicate the total blood volume, which is used to
identify responses related to vasodilation and vasoconstric-
tion;

e Phase relationship variables between oxy-Hb and deoxy-Hb
(representing the time-lag and time-lead responses);

e The hemodynamic ratio of oxy-Hb to deoxy-Hb represents
the relative amount of oxygen availability, indicating whether
conditions are in surplus or deficit and highlighting the dy-
namics of oxygen supply and demand.

The Results sections below illustrate how these independent and
derived hemodynamic variables are utilized to validate and confirm
the accuracy of the decoded movement directions as redundant
measures for consistency checks. They demonstrate the applica-
tion of multiple methodologies for decoding direction from these
variables, serving as proof of concept for wheelchair control.

2.3. Multi-sensor redundancy consistency check for
reliable operation

Good engineering design acknowledges that component failures
occur due to normal wear and tear, thereby mitigating the risks of
catastrophic failure through fault recovery. Utilizing multiple sen-
sors and hemodynamic variables ensures accuracy through consis-
tency checking. It integrates a multi-sensor system with optical sig-
nals, head movements, and voice commands for redundancy. The
system verifies movement direction through brain signals and head
tilt, while the primary control decodes the intended movement
using optical signals confirmed by head motions. Voice commands
clarify intentions and serve as a panic button for quadriplegic users
who are unable to push a button physically. They can override
errors and abort unintentional wheelchair operations during emer-
gencies.

This fault-tolerant design reduces catastrophic failures by gradu-
ally degrading functions. It employs a majority-rule voting system
to mitigate sensor inconsistencies and background noise. This
method assumes accuracy over outliers, dismissing inconsisten-
cies as invalid. It utilizes a weighted voting scheme to ensure
consistent outcomes while enhancing accuracy and minimizing
errors. It resembles adaptive neural network learning in adjusting
weights, accompanied by a verification scheme to prevent error
propagation. The consistency-checking system resolves ambient
noise, interference, and crosstalk issues by rejecting outliers and
inconsistent signals. Noises are non-signals unrelated to brain
or head tilt motion. Contaminated brain signals are treated as
non-signals and are automatically rejected by the system.

Commercial voice recognition systems enable user-specific speech
detection without requiring extensive development. If the system
fails to recognize a voice due to interference during emergen-
cies, any voice command can override all operations and shut it
down, rendering signal interference irrelevant. The system contin-
uously monitors brain signals but interprets them on demand for
wheelchair control. It does not require the constant decoding of
brain signals for semi-autonomous navigation. Interference from
subsystems during non-decoding periods is irrelevant, since they
only activate in response to user commands to alter navigation.

2.4. Interchangeable options for wearable helmets and
headband headsets

The current design offers various headset sensor versions, provid-
ing users with options based on cost and convenience. The full ver-
sion includes a helmet-mounted headset with embedded optodes
that monitor brain signals while blocking ambient infrared light.
It fits better and allows for precise sensor positioning. However,
hair affects NIR light absorption; darker hair absorbs more light,
which reduces optical brain signals. Alternatively, the headband is
a lightweight option worn on the forehead. It detects PFC signals
without interference from hair, ensuring optical quality. It is more
affordable than the helmet version but has fewer brain signal
Sensors.
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The headset features an optical sensor, accelerometer, and mi-
crophone for voice recognition. The accelerometer and gyroscope
track head motion and function as shock sensors. It connects
to the wheelchair’s BCI controller wirelessly or through a wired
connection. The wireless version requires a battery, while the wired
option communicates via tethered wires and supplies power. The
removable design relocates heavy components to the wheelchair’s
BCI controller, enabling versatility with interchangeable options,
including a helmet or headband, suitable for wired or wireless
communication.

2.5. A schematic diagram of the BCI device

A schematic diagram (Figure 2) illustrates the block diagram of
the subsystem components for the BCI device. It shows a detach-
able headset, a BCI controller, and a wheelchair navigation con-
troller subsystem. The headset wirelessly communicates with the
BCI controller for signal processing and wheelchair control, func-
tioning as a helmet for whole-brain monitoring or as a headband
for PFC activity. Alternatively, a tethered wired option is available
to eliminate the need for a battery on the headset. It includes
sensors for recording optical signals and detecting head motion,
and a microphone for voice recognition and analysis. The BCI
controller, mounted on the wheelchair, manages signal processing
and control. Battery packs power the headset and controllers, while
the wheelchair navigation controller interprets signals from the
BCI controller to operate the wheelchair.

2.6. User-friendly semi-autonomous system design

A semi-autonomous design reduces user effort by utilizing autopi-
lot for wheelchair navigation, eliminating the need for detailed
driving instructions. It minimizes brain signal misinterpretation
by specifying endpoints instead of updating intermediate steps.
This motor control mimics cerebellum functions, enabling fluid
coordination without extensive control directives. The autopilot
manages path planning and obstacle avoidance, allowing users
to focus on movement without complex navigational instructions,
making it more straightforward than BCI-controlled 3D robotic
arms.

2.7. Adaptive control design for sensor slippage

The system must adapt to brain signals over time to compensate
for inaccurate detection caused by sensor slippage. Biofeedback
calibrates sensor signals to brain control, particularly during ini-
tial training phases. The headset’s motion detector detects slip-
page caused by rapid acceleration or deceleration. It detects drops
through shock sensors that measure sudden g-forces, employing
impulse and jerk functions to assess rapid deceleration changes.

Optical sensors detect brain signals from specific locations, so
repositioning them captures signals from different areas. The de-
coding algorithm adjusts for this shift. Adaptive decoding recovers
from errors. When decoding is vetoed due to inconsistencies, it
may indicate headset slippage, regardless of the accelerometer’s
detection. The system must recalibrate to ensure accurate signal
interpretation.

Detachable Mobile BCI Headset
components:
Either a helmet or a headband

Sensors components:
Embedded Optical Sensors
Embedded Head Motion Detectors
Embedded Voice Detectors

Auxiliary components:
Wireless Communication Unit
Battery Unit

Wireless
Communication

BCI Controller components:
CPU Processors & Memory Unit
User Display Unit

Wireless Communication Unit
Power Supply Unit

Wheelchair components:
Wheelchair Navigation Control Unit
Wheelchair Seat & Wheels
Battery Power Pack

Figure 2 ¢ A schematic diagram of the wheelchair BCI device
features a headset, similar to a helmet or headband, equipped with
sensors for optical signals, head movements, and voice commands.
It includes a wireless unit with a battery that communicates with
the BCI controller on the wheelchair, which contains navigation
controls and a battery pack.

3. Methods

3.1. Experimental methods
3.1.1. Orthogonal direction motor tasks

Human subjects were recruited to perform a motor task while
recording optical brain signals to assess neural representations of
movement directions. The task involved executing arm movements
across a desk surface (see Figure 3). Participants moved their
dominant hands in right—left or front—back directions, indicating
movement intentions along the x-axis and y-axis on a horizontal
plane, which is relevant for controlling a wheelchair. Alternate
right and left movements occurred in each trial, signaled by a sound
cue (see Figure 3). Front and back movements were performed in
separate trials, corresponding to neural responses that decoded in-
tended movements. This repeated movement paradigm facilitates
event-triggered signal averaging in subsequent analyses.
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Figure 3 ¢ The diagram illustrates the protocol for the motor tasks (top panels). A sound tone signaled the onset of movement. The
bottom panel shows the horizontal desk surface used for the trials. Right—left and front—back movements were recorded with optical

signals synchronized with sound cues.

Subjects moved their hands 30 cm across the desk, pausing for
cues for the next movement. The tone repeated every 4.3 s for a
total of two minutes. Orthogonal directions streamlined the exper-
iment, enabling the inference of diagonal movements from firing
vector projections using the vector sum encoding hypothesis. If a
center-out task [3—7] were used, it would require returning to the
starting point before the subsequent trial; however, this return is
not counted due to the off-center origin. Since movement direc-
tions are independent of origin, this approach reduces the number
of experimental trials by half using alternating opposing-direction
movements instead of the center-out design.

3.1.2. Simultaneous optical signal recordings

Simultaneous optical brain imaging was conducted during motor
tasks using the fNIRS Imagent™ from ISS, Inc., Champaign, IL,
USA Fiber optic cables transmitted 690 and 830 nm wavelengths
to the headsets, digitizing the signals at a rate of 10 Hz across
64 channels. The system converts optical density signals into two
hemodynamic time series (oxy-Hb and deoxy-Hb) while record-
ing synchronized movement event markers. The headset employs
concentric circles of emitters and detectors to image brain regions
of interest (ROIs). Other vendors offer compact headsets featuring
LED emitters arranged in rectilinear grids, which facilitate the de-
tection of multiple brain locations. This LED design eliminates the
need for tethered fiber optic cables, allowing for wireless or wired
transmission to the processing unit. The proposed BCI headset will
utilize the wireless LED option as a mobile device. The Imagent™
headset features concentric circle emitters and detectors to target
specific brain regions.

The PFC was selected for this experiment due to its comfortable fit
on the forehead, which minimizes signal loss caused by hair inter-
ference. Subjects remained stationary for five seconds before and
after each trial to establish a baseline of brain activity and relaxed
before the subsequent trial. The Institutional Review Board (IRB)
approved the protocol, and participants signed informed consent.

The data were anonymized to protect the subjects’ identities. A total
of 96 healthy college-aged individuals, including both males and
females, participated.

3.2. Analytical methods
3.2.1. Signal preprocessing

Hemodynamic data were preprocessed using a moving average to
reduce noise. Physiological signals exhibit serial correlation and
gradual changes. A moving average smooths abrupt fluctuations
while preserving the similarity of sequential data points. This
method relies on the principle that sequential trends are serially
related, while noise is serially independent. It minimizes artificial
alterations to the original signal by assuming and filtering specific
bandwidths as noise.

An offset is added to achieve a zero mean, facilitating the inter-
pretation of responses as activation or deactivation. Activations
are positive values indicating increases, while deactivations are
negative values representing decreases. Since the dataset is based
on a calibrated reference level from the start of the experiment
using mBLL, adding an offset does not affect the relative temporal
changes in the signal. This offset enables BCI decoding algorithms
to automatically characterize responses.

3.2.2. Identifying physiological responses

Decoding brain signals requires identifying specific physiological
responses. Mapping signal features to classifications or utilizing an
artificial intelligence (AI) classifier may aid BCI control; however,
these methods lack physiological interpretability. A reliable BCI de-
vice decodes interpretable physical phenomena rather than relying
on arbitrary mappings from brain signals to wheelchair control.
Thus, the goal is to detect physiological responses from available
optical signals. Identifying relevant physiological responses is cru-
cial for decoding brain signals. Using a classifier to map features or
applying AI for BCI control lacks the necessary interpretability for
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validation. A reliable device should deliver interpretable decod-
ing of physical phenomena, not merely map data to control a
wheelchair. Therefore, this study aims to identify decodable phys-
iological responses.

3.2.3. Time-series analysis

Time-series analysis examines hemodynamic signals that change
over time. A response shows deviations from a specific baseline. A
trend refers to non-random variations in a consistent direction over
time, which can reflect physiological responses. Trend analysis
identifies these changes by determining their onset and endpoint.
Cumulative sum (CUSUM) analysis detects trends in non-random
deviations from a baseline [52]. It identifies serially correlated
patterns and establishes dependence statistics over time. The cri-
teria focus on consecutive non-random changes, revealing trends
obscured by noise fluctuations while remaining within normal lev-
els. This method successfully identifies significant trends when se-
quential changes are non-random. CUSUM statistics were initially
developed to detect faulty batches in manufacturing quality control
due to consecutive failures in parts [52]. Trends are identified by
sliding a V-shaped control chart along the increasing cumulative
sum function.

CUSUM slope analysis detects trends using a moving window
based on the slope [53]. Noise, being serially independent, results
in random fluctuations that offset each other, leading to a zero.
Sequential variations in the same direction cause the slope to
deviate from zero, increasing or decreasing in response to those
changes. While the CUSUM slope remains a non-monotonic func-
tion for noise, significant monotonic deviations from zero indicate
the onset of a trend, while a return to zero signifies its end [53].
This method eliminates the need for a sliding control chart and
automates the detection of the BCI device’s movement direction.

3.2.4. Scalar sum signal analysis

Optical signals detect neural activity from deoxy-Hb, capturing col-
lective rather than individual firings. Unlike extracellular record-
ings of action potentials, hemodynamic signals reflect a weighted
average of group firings along the light path. A population vector
requires both magnitude and direction for decoding, but optical
signals detect only magnitude. If neurons in a group have randomly
distributed preferred directions, their scalar sum may cancel. How-
ever, if group firing indicates their preferred direction without can-
celation, adjacent neurons likely process similar directional infor-
mation. If the group firing of optical signals is movement-direction
specific, then it may represent a vector rather than a scalar sum
that is direction-specific. The Results section demonstrates that
hemodynamic responses are directionally specific, confirming that
clusters of neurons process movement in a directionally consistent
manner. Downstream neurons or BCI devices could decode move-
ment direction based on the vector sum.

3.2.5. Oxygen supply and demand analysis

Hemodynamic signals detect changes in oxy-Hb and deoxy-Hb
during motor tasks, revealing the dynamics of oxygen supply and
demand. These metrics are often inversely related; as demand
rises, oxygen extraction increases, leading to higher deoxy-Hb and
lower oxy-Hb levels. Oxygen supply typically lags, illustrating the

phase relationship between oxy-Hb and deoxy-Hb and their shifts
in response to the direction of movement.

The relationship between oxy-Hb and deoxy-Hb relies on a con-
stant total oxygen blood supply, which may not hold during peak
metabolic activity when the supply is insufficient. Both levels de-
crease, altering their relationship from inverse to direct. If this
occurs during movement, it indicates an extreme oxygen demand
and helps detect direction. Phase-space analysis can identify this
transition, providing a method to confirm movement direction
from hemodynamic variables for BCI decoding algorithms.

3.2.6. Phase-space analysis

A phase-space plot graphically displays the covarying relationships
between two time series x (t) and y (t) based on their quadrant
locations (x,y) [54, 55]. For hemodynamic analysis, the two time
series are x = A [HbO] and y = A [Hb], denoted by brackets to
indicate concentration. A phase-space plot illustrates the evolving
relationship over time through its trajectory [56]. It identifies the
specific relationships between the A [HbO] and A [Hb] variables,
including proportionality, phase relationships, and time lead/lag
according to quadrant position. Additionally, the hemodynamic
ratio A [HbO] /A [Hb] quantitatively describes changes in covari-
ation, providing another variable for the BCI decoding algorithm
to validate movement direction.

The first quadrant (+x, +y) shows both variables increasing pos-
itively along a diagonal. The third quadrant (—x, —y) indicates
that both variables decrease simultaneously, demonstrating neg-
ative covariation. The second quadrant (—x, +y) reveals an inverse
relationship: as one variable increases, the other decreases. The
fourth quadrant (4x, —y) similarly shows that as one variable
increases, the other decreases, reflecting another inverse relation-
ship. Changes in movement direction can alter the covarying hemo-
dynamic relationships, quantified by the phase-space quadrant
that the trajectory traverses (see further details below).

The shape of the trajectory reveals the phase relationship and
oxygen delivery delays during the extraction of neural tissue. If
oxy-Hb and deoxy-Hb change in sync, the trajectory appears as a
line. A time lead or lag results in an elliptical or circular path; more
significant deviations indicate longer delays. Movement-related
phases can be quantified by trajectory deviations from the negative
diagonal.

In a zero-mean adjusted time series, data points center around
the origin (0,0) of the phase space, dividing the phase relation-
ships into four quadrants. The negative diagonal trajectories re-
veal inversely proportional relationships. Typically, the hemody-
namic variables A[HbO] and A [Hb] are coupled: an increase
in oxygen consumption leads to a decrease in supply, as in-
dicated by a negative diagonal trajectory. This negative diago-
nal line A[HbO] = —A[Hb] divides the phase space into upper
and lower regions, representing the hemodynamic ratio r(t) =
A[HbO] / A[Hb] = —1 for movement direction decoding if the
covarying relationship changes with direction.

3.2.7. Zero-sum hemodynamics

If blood flow is constant, it exhibits a zero-sum response A[HbO]+
A [Hb] = 0 when the changes are equal and opposite A [HbO] =
—A [Hb]. This relationship occurs in aerobic metabolism when
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the oxygen supply meets demand, represented by the negative
diagonal. Total blood volume can vary in one direction while re-
maining constant in another. This negative diagonal line divides
the phase space: trajectories below show oxy-Hb changes exceed-
ing deoxy-Hb when A[HbO] < —A [Hb]. Trajectories above the
diagonal quantify the converse. Suppose blood flow is constant in
one direction but varies due to vasoconstriction or vasodilation
in another. In that case, zero-sum hemodynamics can measure
these differences using the phase-space quadrant, the slope of the
negative diagonal, and the hemodynamic ratio.

Oxygen availability depends on delivery and extraction levels. A
surplus occurs when the delivered oxygen exceeds the extraction
when A[HbO] > A[HDb], which is indicated by trajectories located
below the negative diagonal in phase space. However, lower extrac-
tion does not always signify a surplus; it can result from insufficient
availability, as extraction cannot exceed what is available during
a bottleneck. Therefore, reduced extraction may reflect a deficit
rather than a surplus. Thus, an additional condition is the mag-
nitude needed to differentiate between a surplus and a deficit. The
slope of the diagonal trajectory determines the magnitude of the
phase-space difference.

Oxygen surplus occurs only when both conditions
A[HbO] > A[Hb] and |A[HbO]| > |A[Hb]| exist, and it
is detectable by trajectories below the negative diagonal
A[HbO] > A[Hb] with a slope magnitude less than -1,
|A[HbO]| / |A [Hb]| < —1. A positive change indicates a surplus,
while a negative change shows a deficit.

Conversely, oxygen deficits occur when the trajectories fall below
the negative diagonal and have a slope greater than —1. Further-
more, an oxygen deficit arises when demand exceeds supply, as
indicated by trajectories above the negative diagonal, regardless
of the magnitude A[HbO] < A[Hb]. This condition provides an
additional measure to validate BCI decoding, specifically whether
the dynamics of oxygen supply and demand are reversed in rela-
tion to movement direction. However, the BCI decoding algorithm
requires two conditions.

4. Results
4.1. Movement-specific responses for BCI control

The hemodynamic responses were recorded from optode A6 on the
left dorsolateral PFC (dIPFC), displaying neuro-responses (deoxy-
Hb) (see Figure 4 in blue) and cardio-responses (oxy-Hb) (see
Figure 5 in red). The graphs represent event-triggered average
responses aligned with the sound tone of movement onset. To avoid
ambiguity between “right hand” versus “right direction,” the term
“rightward” is used instead of “right” unless the context is clear.

Cumulative sum (CUSUM) trend statistics were used to detect
trends from baseline noise levels [53]. A deviation of 3 standard de-
viations serves as the criterion for indicating significant trend devi-
ations from the baseline noise level, which is considered a physio-
logical response. Statistically significant trends are represented by
a diamond symbol on the data points in the hemodynamic graphs
in Figure 4, Figure 5 and Figure 6. A moving window of 11
data points was used to identify a sequential trend that deviates
from the noise level. Note that trends can be detected even when
obscured by noise. They may fall within the noise fluctuation level;

however, trends consist of consecutive changes serially correlated
as significant responses.

4.2. Hemodynamic responses distinguishing right—left
and front—back movements

4.2.1. Direction-specific neuro-responses

Figure 4 illustrates neuro-responses (deoxy-Hb) for right—left
movements. A small but significant peak (activation) occurred
during rightward movements (right graph), while a trough (de-
activation) was observed during leftward movements (left graph).
Their responses were inversely related: activation during rightward
and deactivation during leftward movements. The analysis indi-
cates an oxygen deficit limited the peak response during rightward
movements. Hemodynamic responses could have been greater
with sufficient oxygen for extraction. However, the responses re-
mained statistically significant despite being reduced. It suggests
that neuro-responses were specific to the movement direction for
the BCI algorithm to decode.

In contrast, the neuro-responses in Figure 4 for orthogonal front—
back movements exhibited a continually decreasing slope for for-
ward movements (top graph) and an increasing slope for backward
movements (bottom graph). They demonstrated inverse trends,
with rising patterns in one direction and decreasing patterns in
the other. Responses were deactivating during forward movements
and activating during backward movements.

The neuro-responses in Figure 4 were inversely related during
opposing movements and varied orthogonally across all four con-
ditions. They peaked during rightward movements and reached
a trough during leftward movements. In contrast, they gradually
increase during forward movements while decreasing during back-
ward movements. This finding shows that optical hemodynamic
signals capture group responses with directional specificity, indicat-
ing that the neural group under an optode shares similar preferred
directions. Despite the scalar sum signals from optodes, one can
determine the firing vector when responses are direction-specific.

4.2.2. Direction-specific cardio responses

Figure 5 illustrates cardio-responses (oxy-Hb) during right—left
movements, displaying peaks in oxygen delivery for leftward move-
ments (left graph) and troughs for rightward movements (right
graph). Oxygen delivery peaked during leftward movements but
decreased to a minimum during rightward movements, suggesting
inverse relationships for opposing directions, parallel to the op-
posing neuro-responses but inversely. Thus, the oxy-Hb variable
can independently validate the direction decoded by deoxy-Hb.
This measure complements hemodynamic data to verify movement
direction for the BCI device as a consistency check.

However, cardio responses continually increased during forward
movements (top graph) but gradually decreased during backward
movements (bottom graph). Oxygen availability increased during
forward motion and decreased during backward motion, exhibit-
ing an inverse trend: increasing availability with forward motion
versus decreasing availability with backward motion. The trends
in oxygen availability (indicated by oxy-Hb) were opposite for each
movement direction, highlighting direction-specific responses for
non-neural hemodynamic variables in BCI movement direction
decoding.
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Figure 4 o Event-triggered average hemodynamic responses during right—left and front—back movements illustrate neuro-responses
(deoxy-Hb levels) for optode A6 in the PFC across four directions. Movement onset aligns with the graph’s origin. Responses peaked
during rightward movements and were lowest during leftward movements. For front—back movements, responses decreased during
forward movements and increased during backward movements. These direction-specific responses are distinguishable in both opposite
and orthogonal directions. (Deoxy-Hb is shown in blue. Error bars represent standard errors. Diamond points indicate significant trends
that deviate from baseline noise, based on CUSUM slope statistics.)

The cardio responses (oxy-Hb) in Figure 5, similar to the
neuro-responses (deoxy-Hb) in Figure 4, exhibited distinct re-
actions across all movement directions. They reflected the neuro-
responses, emphasizing inverse relationships. Note that oxy-Hb
signals are different physiological cardio responses that can inde-
pendently verify the accuracy of direction decoding based on the
firing vectors of neuro-responses.

4.2.3. Coupling relationships between neuro- and cardio
responses

Figure 6 illustrates the coupling between neuro- and cardio re-
sponses by combining Figure 4 and Figure 5. The graphs re-
veal an inversely proportional relationship between changes in
oxy-Hb and deoxy-Hb levels, indicating that they are coupled yet
inversely related. However, neuro- and cardio responses covary
with different time leads or lags depending on movement direction.
Cardio responses exhibited much larger peaks (left graph) and
troughs (right graph) than neuro-responses, |A [HbO]| > |A [Hb]|,
indicating greater variation in oxygen availability for extraction.

The phase relationships that varied with movement direction will
be examined using phase-space analysis below to validate the accu-
racy of decoded movement directions as redundancy measures for
consistency checking, evn though they are dependent variables.

4.2.4. Oxygen surplus and oxygen deficit during
opposing direction movements

An analysis of the physiological responses revealed the oxy-
gen supply and demand dynamics. Comparing oxygen avail-
ability (oxy-Hb) and extraction (deoxy-Hb) showed a surplus,
(A [HbO] 4+ A[Hb]) > 0, for leftward movements (left graph
in Figure 6) and a deficit, (A [HbO] + A [Hb]) < 0, for right-
ward movements (right graph in Figure 6). A positive change,
(A [HbO] 4+ A[Hb]) > 0, in leftward movements is dominated
by cardio responses (supply), which outpaced neuro-responses
(demand), suggesting an available oxygen surplus. However, the
scenario of rightward movements is inverted (right graph in Fig-
ure 6). Cardio responses (oxygen delivery) declined more than
neuro-responses (oxygen extraction), (A [HbO] + A [Hb]) < 0,
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indicating an oxygen deficit. The availability of oxygen decreased
more rapidly than demand, which limited oxygen extraction and
resulted in flattening of neuro-responses (deoxy-Hb) observed in
Figure 6. It shows the supply and demand dynamics were di-
rectionally dependent. There was an oxygen surplus in leftward
movements and a deficit in rightward movements. This finding
suggests that oxygen supply and demand are not necessarily a
zero-sum game under these conditions.

4.2.5. Vasodilation and vasoconstriction during
opposing direction movements

To illustrate how total blood volume changes during motor tasks,
Figure 7 shows the sum of oxy-Hb and deoxy-Hb, representing
the total blood volume and the overall amount of hemoglobin in
the blood A[HbO] + A [Hb]. Leftward movements revealed va-
sodilation, as indicated by an increased total blood volume (a pos-
itive value). Conversely, vasoconstriction occurred during right-
ward movements due to a decreased in blood volume (a negative
value). Blood volume change is not a zero-sum; it increased during
leftward movements and decreased during rightward movements,

thus differentiating between the right and left sides based on va-
sodilation and vasoconstriction.

4.2.6. Constant blood volume during orthogonal
direction movements

In contrast, blood volume remained constant during front—back
movements, showing no vasoconstriction or vasodilation (top and
bottom graphs in Figure 7). This indicates zero-sum hemody-
namic responses, unlike the non-zero-sum responses observed in
the orthogonal right—left directions. This derived hemodynamic
variable could validate the movement directions represented by
the neuro- or cardio responses by incorporating constant blood
flow, vasodilation, or vasoconstriction as additional measures,
even though they are dependent variables, as their sum.

4.2.7. Direction-specific phase-space representations

The phase-space plots in Figure 8 illustrate the phase trajectory
relationships between oxy-Hb and deoxy-Hb during movement tri-
als. They followed a negative diagonal trajectory, but their angles,
shapes, locations, and trajectories varied in orthogonal directions.
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Figure 5 e Average cardio responses (oxy-Hb) during right—left and front—back movements from the same A6 optode shown in
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Figure 6 « Hemodynamic responses of oxy-Hb and deoxy-Hb during four orthogonal movements by combining Figure 4 and Figure 5

to compare their inverse relationships.

The orientation of the negative diagonal trajectories varies based
on right-left and front—back movements. Right-left movements
follow an elliptical path (Figure 8A). In contrast, front—back
movements exhibit a figure-eight pattern (Figure 8B). As the
hand moves, the hemodynamic relationships change, entering dif-
ferent quadrants of phase space depending on movement direc-
tion. Therefore, phase-space trajectory shapes can confirm various
orthogonal movement directions.

The phase relationship can identify the direction of opposing move-
ment. Figure 8A shows rightward movements (red circles) origi-
nating in the second quadrant (oxy-Hb leads deoxy-Hb). In contrast,
leftward movements (blue circles) begin in the fourth quadrant
(oxy-Hb lags deoxy-Hb). Similarly, Figure 8B reveals oxy-Hb leads
deoxy-Hb in the second quadrant, initiating forward movements
(magenta circles). Conversely, oxy-Hb lags deoxy-Hb in the fourth
quadrant at the onset of backward movements (green circles).

4.2.8. Identifying supply and demand bottlenecks

The trajectory orientation angle can differentiate orthogonal move-
ment directions, albeit in an inversely related manner. All trajecto-
ries trended negatively along a diagonal due to the physiological
inverse relationship between oxy-Hb and deoxy-Hb. However, the
orientation angle indicates whether a zero-sum dynamic occurred

for that movement direction (see Figure 7), in which the
availability-to-consumption ratio remained balanced (orientation
angle = —1) with constant blood flow during front-back direc-
tions (Figure 8B). Conversely, a non-zero sum arises when a
mismatch between supply and demand—such as vasodilation dur-
ing leftward movements and vasoconstriction during rightward
movements—results in a trajectory orientation angle of less than
—1 (Figure 8A).

Furthermore, when supply and demand bottleneck, availability
falls below consumption, reducing the availability-to-consumption
ratio. This occurred in the second quadrant during rightward
movements (red circles in Figure 8A). The second quadrant in-
dicates an oxygen deficit due to a greater loss in availability com-
pared to the increase in demand, which was limited to rightward
movements for identifying movement direction. The total blood
volume also decreased during rightward movements, accompanied
by vasoconstriction (right graph in Figure 7).

In contrast, during leftward movement (blue circles), the trajectory
mainly remained in the fourth quadrants, indicating an oxygen
surplus as increased availability outpaced decreased consumption.
This also coincides with vasodilation (left graph in Figure 7). The
shift from oxygen deficit to surplus dynamics confirms movement
direction based on quadrant location in the phase-space plot.
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5. Discussion
5.1. Direction-specific group firing representations

These results suggest that neighboring neurons within a group
recorded under the optode encode similar preferred directions,
consistent with other cortical neurons coordinating their firing,
such as the visual cortical columns that process similar orien-
tations [57, 58]. Additionally, adjacent neurons process related
signals with slight differences [59]. The scalar sum would not show
a specific preferred direction if signals were distributed randomly.
However, when firing signals exhibit preferred directions—even if
they only capture the scalar sum—they can still decode direction
if responses are direction-specific. This finding confirms that the
PFC encodes direction-specific intentions, while the primary mo-
tor cortex manages the execution of movement. Monitoring PFC
activity can assist stroke patients with motor cortex damage, as
strokes affecting the motor cortex are more prevalent than those
in the PFC.

5.2. Multi-hemodynamic variables for decoding

The results illustrate methods for utilizing multiple optical sig-
nal representations to ascertain and verify movement direction.
The methodology employs derived variables to validate the phys-
iological direction, starting with two independent hemodynamic
variables: oxy-Hb and deoxy-Hb. Oxy-Hb signals indicate cardio-
responses associated with oxygen delivery, provided that the
supply surpasses demand. However, during periods of extreme
metabolic activation, demand may outstrip supply, resulting in
an oxygen deficit and limitations on oxygen extraction. Deoxy-
Hb signals reflect neuro-responses, frequently related to neural
activity in reaction to movement directions. Oxy-Hb signals also
assist in reconstructing these directions from optical data. Both
neuro- and cardio-hemodynamic responses can decode intended
movement directions, offering independent metrics for BCI de-
vices. Additional hemodynamic variables, such as blood volume
changes and oxygen supply dynamics, could further substantiate
decoded directions in tissues.

Even though these additional measures are derived from the in-
dependent A [HbO] and A [Hb] hemodynamics variables, such
as their sum, ratio A [HbO]/A [Hb], and phase relationships
(A [HbO], A [Hb]), they are physiologically relevant for validating
accuracy. They provide redundant measures for checking the con-
sistency of the decoding algorithm, which is crucial for developing
a trustworthy BCI device. Unlike first-generation devices that as-
sume decoding accuracy, the current approach prioritizes failure
prevention through various methodologies.

5.3. Movement direction-specific phase-space
representations

Previous reports have indicated that oxy-Hb and deoxy-Hb levels
vary by movement direction [60, 61]. These neural and cardiovas-
cular variations differentiate responses across directions [56], with
changes potentially decoupled during different movements [60, 61].
Current experiments confirmed these dynamics, offering meth-
ods to verify movement direction through phase-space analysis of
neuro- and cardio responses. Variations reveal differences in neural
activity across movements, as illustrated by the earlier phase-space
diagram [56].

5.4. Direction-specific total blood volume
representations

Experimental evidence shows that oxy-Hb and deoxy-Hb levels
vary during motor tasks. The effects may not be zero-sum, de-
pending on the direction of movement. The results indicated va-
sodilation in one direction and vasoconstriction in the opposite
direction, with minimal changes in the orthogonal direction. Thus,
hemodynamic responses can validate decoded movement direc-
tions from other variables, offering redundant methods for deter-
mining movement from optical brain signals.

Deoxy-Hb signals indicate neuro-responses, while oxy-Hb signals
reflect cardio responses. Different hemodynamic variables exhibit
directional dependence, making multiple measures preferable for
decoding movement directions and enhancing decoding accuracy.
Oxy-Hb is not always anti-correlated with deoxy-Hb; their rela-
tional dynamics vary with direction, which provides verification
for decoded movement and boosts confidence in neural represen-
tation. Their relationship can be analyzed through phase-space
analysis, confirming movement intentions.

5.5. Fault-tolerant BCI designs for fault recovery

Robust engineering design requires fault tolerance, as no machine
is perfect. Components can fail due to wear or unforeseen issues,
resulting in outages. A well-designed system minimizes these fail-
ures and their severe consequences. First-generation BCI devices
prioritize accuracy, while second-generation devices focus on mit-
igating failures. This design incorporates fault-tolerant methods
for the graceful degradation of functions, allowing systems to fail
and recover smoothly. Such a design is essential for paralyzed
patients who cannot physically correct errors in the same way as
non-disabled individuals.

The brain-controlled interface may misinterpret movements, ne-
cessitating alternative methods to stop the wheelchair without rely-
ing on brain signal sensors. One solution is to use voice commands
to halt operations, employing existing voice recognition technology
in smartphone apps. The software must filter out background noise
and recognize specific commands to prevent accidental activations.
Although voice control can be cumbersome for wheelchair naviga-
tion, it can act as an emergency button to stop operations in urgent
situations for users with disabilities.

An alternative method for controlling the wheelchair’s direction
involves using an accelerometer and gyroscope in the headset to
detect tilt and acceleration. Quadriplegic users can nod to confirm
movement. However, using head motion as the primary control
may result in crashes due to unintentional head movements, such
as distractions. Nevertheless, head movement can serve as a sec-
ondary confirmation to verify the intended direction before final-
izing movements.

5.6. Consistency checking for error detection

The system employs a majority rule to verify actions and inte-
grates a multi-sensor redundant subsystem through a central con-
troller. It checks component accuracy using a consistency-checking
scheme. If inconsistencies arise in control signals, the system ve-
toes the outlier through a majority vote, allowing others to override
failures. Voting utilizes a weighted sum to prioritize subsystems,
with weights determined by consistency-check statistics, thereby
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reducing the probability of failure. Greater sensor reliability trans-
lates to higher weights based on accuracy. The likelihood of mul-
tiple subsystem failures is lower than that of a single failure, pro-
moting graceful degradation and ongoing operation. Consistency
checks help prevent catastrophic failures. An emergency brake is
crucial for intervention in subsystem failure, particularly if the user
cannot activate a stop button due to headset detachment.

5.7. User-friendly designs and available options for user
customization

The system design employs endpoint control to create a more intu-
itive user experience, eliminating the need for intermediate naviga-
tion. Smart car sensors and algorithms autonomously handle path
planning and obstacle avoidance using off-the-shelf components,
reducing the user’s effort and attention when operating the BCI
device.

For lightweight headset designs, the BCI controller and battery
packs are offloaded to the wheelchair and communicate wirelessly.
A helmet design accommodates multiple optodes to monitor sig-
nals while blocking infrared interference. A lightweight headband
detects PFC activity on the forehead, eliminating interference from
hair and providing a budget-friendly alternative to helmets. Users
can choose from wireless and wired options based on their budget.
These headsets are interchangeable, allowing for easy swapping of
components.

5.8. User training and adaptive control

Initial user training is crucial for most systems. Biofeedback short-
ens the training curve and boosts system accuracy. Neural adap-
tation manages sensor slippage, much like learning to walk. In
addition to detecting head motion tilts and rotations, head motion
sensors identify headset slippage caused by sudden acceleration or
g-forces, serving as shock sensors during drops. When a headset
drops, the system automatically stops wheelchair operations for
safety reasons. Headset slippage may misplace detected brain loca-
tions for motor decoding, leading to an incorrect interpretation of
movement signals. Detecting sensor slippage requires recalibrating
brain signals or adapting the decoding algorithm before safely
resuming wheelchair operations.

5.9. Practical issues for future considerations

Unlike implants, detectable devices face practical challenges be-
cause sensors may shift with head movements. Optodes capture
signals from different brain regions when the headset slips, lead-
ing to unreliable control. Head motion detectors identify shifts
and pause wheelchair operation until the wheelchair is stabilized.
Adaptation could assist by recalibrating the system for accurate
decoding. Adaptive training may enable the system to learn and
refine algorithms to compensate for motion shifts, even though
these issues remain unresolved. Users must trust the system’s
reliability, as individuals with paralysis cannot adjust a slipping
headset.

5.10. Applications beyond the original designs

Such BCI devices can assist visually impaired individuals in navi-
gation, help ALS patients communicate or control cursors, provide
a hands-free gaming experience without a console, and facilitate

military target selection using brain signals. The device may detect
if a comatose person is dreaming and communicate with them via
the headset. Experiments have shown that comatose patients can
respond to instructions for spatial navigation or playing tennis,
based on brain activity similar to awake individuals, as indicated
by fMRIresponses [62, 63]. Their brain activity indicates responses
related to motor planning and memory recall. Once implemented,
this device will detect and interpret cortical activity for various
applications beyond its initial purpose. Such wearable BCI devices
offer significant potential beyond navigation in wheelchairs.

6. Conclusions

The results showed that optical PFC neural activities correlated
with movement direction, responding oppositely to orthogonal
hand movements. The second-generation BCI design anticipates
operational failures, providing methodologies to prevent catas-
trophic failures for safe wheelchair operation. Hemodynamic anal-
yses confirmed direction-specific cortical responses, demonstrat-
ing the feasibility of optical imaging in detecting movement in-
tentions for wheelchair control. Direction-specific hemodynamic
responses were identified, offering physiologically interpretable
validation. This fail-safe wheelchair utilizes a fault-tolerant, multi-
variable, multi-sensor system for movement detection, integrat-
ing multiple hemodynamic variables, head motion, and voice
control for redundancy. Multi-sensor integration ensures consis-
tency through voting for control confirmation or rejection and
allows for emergency stops with majority verification. It provides a
lightweight headband or helmet option to enhance user adoption.
Removable optical sensors enable wheelchair operation without
implanted electrodes, offering a cost-effective and non-invasive
solution. The wired or wireless headset communicates with the
wheelchair controller, enabling a detectable and lightweight design
for the headset separate from the controller. However, sensor slip-
page affecting signal detection must be resolved before full-scale
commercialization can occur.
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