Uncountably many quasi-isometry classes of groups of type FP

Ignat Soroko

University of Oklahoma

ignat.soroko@ou.edu

Joint work with

Robert Kropholler, Tufts University and Ian J. Leary, University of Southampton

Bielefeld U., April 3-6, 2018

ALGEBRA \rightsquigarrow TOPOLOGY Group $G \rightsquigarrow$ Eilenberg–Mac Lane space X = K(G, 1):

ALGEBRA \rightsquigarrow TOPOLOGY Group $G \rightsquigarrow$ Eilenberg-Mac Lane space X = K(G, 1):

- X is a CW-complex,
- $\pi_1(X) = G$,
- \widetilde{X} is contractible.

ALGEBRA \rightsquigarrow TOPOLOGY Group $G \rightsquigarrow$ Eilenberg-Mac Lane space X = K(G, 1):

- X is a CW-complex,
- $\pi_1(X) = G$,
- \widetilde{X} is contractible.

We build X = K(G, 1) as follows:

- X has a single 0-cell,
- 1-cells of X correspond to generators of G,
- 2-cells of X correspond to relations of G,
- 3-cells of X are added to kill $\pi_2(X)$,
- 4-cells of X are added to kill $\pi_3(X)$,
- etc. . .

If the *n*-skeleton of K(G, 1) has finitely many cells, group G is of type F_n : F_1 = finitely generated groups,

$$F_1 = finitely generated groups,$$

$$F_2 =$$
 finitely presented groups.

 F_1 = finitely generated groups,

 F_2 = finitely presented groups.

If K(G,1) has finitely many cells, group G is of type **F**.

 F_1 = finitely generated groups,

 F_2 = finitely presented groups.

If K(G,1) has finitely many cells, group G is of type **F**.

If X = K(G, 1), G acts cellularly on \widetilde{X} and we have a long exact sequence

$$\cdots \longrightarrow C_i(\widetilde{X}) \longrightarrow \cdots \longrightarrow C_1(\widetilde{X}) \longrightarrow C_0(\widetilde{X}) \longrightarrow \mathbb{Z} \longrightarrow 0$$

consisting of free $\mathbb{Z}G$ -modules. This leads to a definition:

 $F_1 = finitely generated groups,$

 F_2 = finitely presented groups.

If K(G,1) has finitely many cells, group G is of type F.

If X = K(G, 1), G acts cellularly on \widetilde{X} and we have a long exact sequence

$$\cdots \longrightarrow C_i(\widetilde{X}) \longrightarrow \cdots \longrightarrow C_1(\widetilde{X}) \longrightarrow C_0(\widetilde{X}) \longrightarrow \mathbb{Z} \longrightarrow 0$$

consisting of free $\mathbb{Z}G$ -modules. This leads to a definition:

A group G is of type FP_n if the trivial $\mathbb{Z}G$ -module \mathbb{Z} has a projective resolution which is **finitely generated** in dimensions 0 to n:

$$\cdots \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

 $F_1 = finitely generated groups,$

 F_2 = finitely presented groups.

If K(G,1) has finitely many cells, group G is of type F.

If X = K(G, 1), G acts cellularly on X and we have a long exact sequence

$$\cdots \longrightarrow C_i(\widetilde{X}) \longrightarrow \cdots \longrightarrow C_1(\widetilde{X}) \longrightarrow C_0(\widetilde{X}) \longrightarrow \mathbb{Z} \longrightarrow 0$$

consisting of free $\mathbb{Z}G$ -modules. This leads to a definition:

A group G is of type FP_n if the trivial $\mathbb{Z}G$ -module \mathbb{Z} has a projective resolution which is **finitely generated** in dimensions 0 to n:

$$\cdots \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

If, in addition, all $P_i = 0$ for i > N, for some N, group G is **of type FP**. Clearly,

 $F_1 = finitely generated groups,$

 F_2 = finitely presented groups.

If K(G,1) has finitely many cells, group G is of type **F**.

If X = K(G, 1), G acts cellularly on X and we have a long exact sequence

$$\cdots \longrightarrow C_i(\widetilde{X}) \longrightarrow \cdots \longrightarrow C_1(\widetilde{X}) \longrightarrow C_0(\widetilde{X}) \longrightarrow \mathbb{Z} \longrightarrow 0$$

consisting of free $\mathbb{Z}G$ -modules. This leads to a definition:

A group G is of type FP_n if the trivial $\mathbb{Z}G$ -module \mathbb{Z} has a projective resolution which is **finitely generated** in dimensions 0 to n:

$$\cdots \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

If, in addition, all $P_i = 0$ for i > N, for some N, group G is **of type FP**. Clearly,

$$FP_n \supset FP_{n+1}$$
 and $F_n \supset F_{n+1}$.
 $FP_n \supset F_n$, and $FP \supset F$.

• Stallings'63: example of $F_2 \setminus F_3$,

- Stallings'63: example of $F_2 \setminus F_3$,
- Bieri'76: $F_n \setminus F_{n+1}$

- Stallings'63: example of $F_2 \setminus F_3$,
- Bieri'76: $F_n \setminus F_{n+1}$
- Bestvina–Brady'97: $FP_2 \setminus F_2$.

- Stallings'63: example of $F_2 \setminus F_3$,
- Bieri'76: $F_n \setminus F_{n+1}$
- Bestvina–Brady'97: $FP_2 \setminus F_2$.

Bestvina-Brady machine:

Input: A flag simplicial complex *L*. **Output:** A group *BB_L* with nice properties:

- *L* is (n-1)-connected $\iff BB_L$ is of type F_n ,
- L is (n-1)-acyclic $\iff BB_L$ is of type FP_n .

- Stallings'63: example of $F_2 \setminus F_3$,
- Bieri'76: $F_n \setminus F_{n+1}$
- Bestvina–Brady'97: $FP_2 \setminus F_2$.

Bestvina-Brady machine:

Input: A flag simplicial complex *L*. **Output:** A group *BB*_{*L*} with nice properties:

- *L* is (n-1)-connected $\iff BB_L$ is of type F_n ,
- L is (n-1)-acyclic $\iff BB_L$ is of type FP_n .

L is octahedron: $\pi_1(L) = 1$, $\pi_2(L) \neq 0$, \Longrightarrow Stallings's example. *L* is *n*-dimensional octahedron (orthoplex) \Longrightarrow Bieri's example. *L* has $\pi_1(L) \neq 1$, but $H_1(L) = 0 \Longrightarrow BB_L$ of type $FP_2 \setminus F_2$.

- Stallings'63: example of $F_2 \setminus F_3$,
- Bieri'76: $F_n \setminus F_{n+1}$
- Bestvina–Brady'97: $FP_2 \setminus F_2$.

Bestvina-Brady machine:

Input: A flag simplicial complex *L*. **Output:** A group *BB_L* with nice properties:

- L is (n-1)-connected $\iff BB_L$ is of type F_n ,
- L is (n-1)-acyclic $\iff BB_L$ is of type FP_n .

L is octahedron: $\pi_1(L) = 1$, $\pi_2(L) \neq 0$, \Longrightarrow Stallings's example. *L* is *n*-dimensional octahedron (orthoplex) \Longrightarrow Bieri's example. *L* has $\pi_1(L) \neq 1$, but $H_1(L) = 0 \Longrightarrow BB_L$ of type $FP_2 \setminus F_2$.

Question 2: How many groups are there of type FP_2 ? **Answer 1**: Up to isomorphism: 2^{\aleph_0} (I.Leary'15) **Answer 2**: Up to quasi-isometry: 2^{\aleph_0} (R.Kropholler–I.Leary–S.'17)

Input: A flag simplicial complex *L*, a finite collection Γ of directed edge loops in *L* that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$.

Input: A flag simplicial complex *L*, a finite collection Γ of directed edge loops in *L* that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$. **Output:** Group $G_L(S)$ defined as:

- Generators: directed edges of L, the opposite edge to a being a^{-1} .
- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Input: A flag simplicial complex *L*, a finite collection Γ of directed edge loops in *L* that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$. **Output:** Group $G_L(S)$ defined as:

- Generators: directed edges of L, the opposite edge to a being a^{-1} .
- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Theorem (I.J.Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.

Input: A flag simplicial complex *L*, a finite collection Γ of directed edge loops in *L* that normally generates $\pi_1(L)$, a subset $S \subset \mathbb{Z}$. **Output:** Group $G_L(S)$ defined as:

- Generators: directed edges of L, the opposite edge to a being a^{-1} .
- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Theorem (I.J.Leary)

If L is a flag complex with $\pi_1(L) \neq 1$, then groups $G_L(S)$ form 2^{\aleph_0} isomorphism classes. If, in addition, L is aspherical and acyclic, then groups $G_L(S)$ are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial complex L?

Take the famous Higman's group:

$$H = \langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle.$$

Let K be its presentation complex. It is aspherical and acyclic. Take L to be the 2nd barycentric subdivision of K. Then L is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

 $G_L(S) = \langle 336 \text{ gen's} | 240 \times 2 \text{ triangle relators}, 1 \text{ long relator } \forall n \in S \rangle.$

Take the famous Higman's group:

$$H = \langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle.$$

Let K be its presentation complex. It is aspherical and acyclic. Take L to be the 2nd barycentric subdivision of K. Then L is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

 $G_L(S) = \langle 336 \text{ gen's} | 240 \times 2 \text{ triangle relators}, 1 \text{ long relator } \forall n \in S \rangle.$

Theorem (R.Kropholler–Leary–S.)

Groups $G_L(S)$ form 2^{\aleph_0} classes up to quasi-isometry.

Take the famous Higman's group:

$$H = \langle \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \mid \mathsf{a}^{\mathsf{b}} = \mathsf{a}^2, \mathsf{b}^{\mathsf{c}} = \mathsf{b}^2, \mathsf{c}^{\mathsf{d}} = \mathsf{c}^2, \mathsf{d}^{\mathsf{a}} = \mathsf{d}^2 \rangle.$$

Let K be its presentation complex. It is aspherical and acyclic. Take L to be the 2nd barycentric subdivision of K. Then L is a flag simplicial complex with 97 vertices, 336 edges and 240 triangles. Thus,

 $G_L(S) = \langle 336 \text{ gen's} | 240 \times 2 \text{ triangle relators}, 1 \text{ long relator } \forall n \in S \rangle.$

Theorem (R.Kropholler–Leary–S.)

Groups $G_L(S)$ form 2^{\aleph_0} classes up to quasi-isometry.

Recall that groups G_1 , G_2 are **quasi-isometric** (qi), if their Cayley graphs are qi as metric spaces, i.e. there exists $f: Cay(G_1, d_1) \rightarrow Cay(G_2, d_2)$, and $A \ge 1$, $B \ge 0$, $C \ge 0$ such that for all $x, y \in Cay(G_1)$:

$$\frac{1}{A}d_1(x,y)-B\leq d_2(f(x),f(y))\leq Ad_1(x,y)+B,$$

and for all $z \in Cay(G_2)$ there exists $x \in Cay(G_1)$ such that $d_2(z, f(x)) \leq C$.

Ignat Soroko (OU)

Grigorchuk'84: growth functions of groups.

Grigorchuk'84: growth functions of groups. **Bowditch'98**: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally:

Grigorchuk'84: growth functions of groups. **Bowditch'98**: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally: If Γ is the Cayley graph of *G*, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$${\sf \Gamma}_\ell = {\sf \Gamma}_{\ell-1} \cup igcup_{|\gamma| \leq \ell} {\it Cone}(\gamma).$$

Grigorchuk'84: growth functions of groups. **Bowditch'98**: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally: If Γ is the Cayley graph of *G*, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_{\ell} = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} Cone(\gamma).$$

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \dots$ A loop $\gamma \subset \Gamma$ of length ℓ is **taut** if it lies in the kernel ker $(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1}))$.

Grigorchuk'84: growth functions of groups. **Bowditch'98**: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally: If Γ is the Cayley graph of *G*, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_{\ell} = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} Cone(\gamma).$$

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \dots$ A loop $\gamma \subset \Gamma$ of length ℓ is **taut** if it lies in the kernel ker $(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1}))$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.

Grigorchuk'84: growth functions of groups. **Bowditch'98**: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally: If Γ is the Cayley graph of *G*, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_{\ell} = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} Cone(\gamma).$$

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \dots$ A loop $\gamma \subset \Gamma$ of length ℓ is **taut** if it lies in the kernel ker $(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1}))$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.

Bowditch: Groups G_1 and G_2 quasi-isometric $\implies TL(G_1)$ and $TL(G_2)$ quasi-isometric in \mathbb{R} .

Grigorchuk'84: growth functions of groups. **Bowditch'98**: a concept of **taut loops** in Cayley graphs. These are the loops which are not consequences of shorter loops. More formally: If Γ is the Cayley graph of *G*, we can form a sequence of 2–complexes $\Gamma \subset \Gamma_1 \subset \Gamma_2 \subset \Gamma_3 \subset \ldots$, where

$$\Gamma_{\ell} = \Gamma_{\ell-1} \cup \bigcup_{|\gamma| \leq \ell} Cone(\gamma).$$

We get $\pi_1(\Gamma) \to \pi_1(\Gamma_1) \to \pi_1(\Gamma_2) \to \dots$ A loop $\gamma \subset \Gamma$ of length ℓ is **taut** if it lies in the kernel ker $(\pi_1(\Gamma_\ell) \to \pi_1(\Gamma_{\ell+1}))$.

Let $TL(G) \subset \mathbb{N}$ be the spectrum of lengths of taut loops in the Cayley graph of a group G.

Bowditch: Groups G_1 and G_2 quasi-isometric $\implies TL(G_1)$ and $TL(G_2)$ quasi-isometric in \mathbb{R} .

I.e. there exist constants A, B, N > 0 such that for every $l_1 \in TL(G_1)$, $l_1 > N$, there exist an $l_2 \in TL(G_2)$ such that $l_1 \in [Al_2, Bl_2]$ and vice versa.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups. Recall: $G_{I}(S)$ has:

- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups. Recall: $G_{I}(S)$ has:

- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Intuitively, we expect $TL(G_L(S)) \approx \ell \cdot S$.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups. Recall: $G_{I}(S)$ has:

- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Intuitively, we expect $TL(G_L(S)) \approx \ell \cdot S$.

Many triangles \implies no small cancellation.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups. Recall: $G_{I}(S)$ has:

- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Intuitively, we expect $TL(G_L(S)) \approx \ell \cdot S$.

Many triangles \implies no small cancellation. Use CAT(0) geometry of branched covers of cubical complexes to get estimates for the taut loops spectra.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups. Recall: $G_L(S)$ has:

- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Intuitively, we expect $TL(G_L(S)) \approx \ell \cdot S$.

Many triangles \implies no small cancellation. Use CAT(0) geometry of branched covers of cubical complexes to get estimates for the taut loops spectra. We proved:

$$\text{ If } \quad S \subset \{ C^{2^n} \mid n \in \mathbb{N} \}, \quad \text{ for some } C > 7, \\$$

then $TL(G_L(S))$ lies in some multiplicative [A, B] neighborhood of S.

Bowditch does this for small cancellation groups: he proves that there exist continuously many qi classes of 2–generator small cancellation groups. Recall: $G_{I}(S)$ has:

- (Triangle relations) For each directed triangle (a, b, c) in L, two relations: abc = 1 and $a^{-1}b^{-1}c^{-1} = 1$.
- (Long cycle relations) For each $n \in S \setminus 0$ and each $(a_1, \ldots, a_\ell) \in \Gamma$, a relation: $a_1^n a_2^n \ldots a_\ell^n = 1$.

Intuitively, we expect $TL(G_L(S)) \approx \ell \cdot S$.

Many triangles \implies no small cancellation. Use CAT(0) geometry of branched covers of cubical complexes to get estimates for the taut loops spectra. We proved:

$$\text{ If } \quad S \subset \{ C^{2^n} \mid n \in \mathbb{N} \}, \quad \text{ for some } C > 7, \\$$

then $TL(G_L(S))$ lies in some multiplicative [A, B] neighborhood of S. Now there are uncountably many subsets S in the above set, and these give 2^{\aleph_0} quasi-isometry classes of groups $G_L(S)$.

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**.

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**.

Bestvina-Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$.

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S.

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**.

Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$\varnothing \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**. Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**. Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$arnothing \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

$$G_L(\varnothing) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)$$

Fact: they all have the same relation module!

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**. Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$\varnothing \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

 $G_L(\varnothing) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)$

Fact: they all have the same relation module! Their relation gaps are:

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**. Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$arnothing \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

 $G_L(arnothing) o G_L(S_1) o G_L(S_2) o G_L(S_3) o \cdots o G_L(S_3)$

Fact: they all have the same relation module! Their relation gaps are:

$$0$$
 ? ? ? ? \ldots ∞

If G is arbitrary group, $G = \langle a_1, \ldots, a_m | r_1, \ldots, r_n \rangle = F/R$, where $F = F(a_1, \ldots, a_m)$ and $R = \langle \langle r_1, \ldots, r_n \rangle \rangle$.

F acts on *R* by conjugation, so it induces an action of *G* on $R^{ab} = R/[R, R]$, the *relation module*.

 $\operatorname{Rank}(R^{ab})$ as a $\mathbb{Z}G$ -module \leq min number of normal generators of R.

The difference of the two is **the relation gap**. Bestvina–Brady kernels BB_L have infinite relation gap, and so do $G_L(S)$. **Open Question:** Are there groups with nonzero finite relation gap?

Take our group $G = G_L(S)$ with infinite S. Exhaust S by finite sets:

$$\varnothing \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S$$

$$G_L(\varnothing) \to G_L(S_1) \to G_L(S_2) \to G_L(S_3) \to \cdots \to G_L(S)$$

Fact: they all have the same relation module! Their relation gaps are:

$$0$$
 ? ? ? ? \ldots ∞

So groups $G_L(S_i)$ for finite S_i are candidates to have finite relation gap!

[1] M. Bestvina and N. Brady, *Morse theory and finiteness properties of groups*, Invent. Math. 129 (1997), 445–470.

[2] R. Bieri, Normal subgroups in duality groups and in groups of cohomological dimension 2, Jour. Pure App. Algebra 7, 35–52 (1976).

[3] B. H. Bowditch, *Continuously many quasi-isometry classes of 2-generator groups*, Comm. Math. Helv. 73 (1998), 232–236.

[4] R. Kropholler, I. J. Leary, I. Soroko, *Uncountably many quasi-isometry classes of groups of type FP*, arXiv:1712.05826.

[5] I. J. Leary, Uncountably many groups of type FP, arXiv:1512.06609v2.

[6] J.R. Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Am. J. Math. 85, 541-543 (1963).

Thank you!