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TOPOLOGY  ALGEBRA
Space X  π1(X ), Hn(X ), πn(X ), etc.

ALGEBRA  TOPOLOGY
Group G  Eilenberg–Mac Lane space X = K (G , 1) :

X is a CW-complex,

π1(X ) = G ,

X̃ is contractible.

We build X = K (G , 1) as follows:

X has a single 0–cell,

1–cells of X correspond to generators of G ,

2–cells of X correspond to relations of G ,

3–cells of X are added to kill π2(X ),

4–cells of X are added to kill π3(X ),

etc. . .
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If the n–skeleton of K (G , 1) has finitely many cells, group G is of type Fn:

F1 = finitely generated groups,
F2 = finitely presented groups.

If K (G , 1) has finitely many cells, group G is of type F.

If X = K (G , 1), G acts cellularly on X̃ and we have a long exact sequence

· · · −→ Ci (X̃ ) −→ · · · −→ C1(X̃ ) −→ C0(X̃ ) −→ Z −→ 0

consisting of free ZG–modules. This leads to a definition:

A group G is of type FPn if the trivial ZG–module Z has a projective
resolution which is finitely generated in dimensions 0 to n:

· · · −→ Pn −→ · · · −→ P1 −→ P0 −→ Z −→ 0

If, in addition, all Pi = 0 for i > N, for some N, group G is of type FP.
Clearly,

FPn ⊃ FPn+1 and Fn ⊃ Fn+1.

FPn ⊃ Fn, and FP ⊃ F .
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Question 1: Are these inclusions strict?
Answer: Yes.

Stallings’63: example of F2 \ F3,

Bieri’76: Fn \ Fn+1

Bestvina–Brady’97: FP2 \ F2.

Bestvina–Brady machine:

Input: A flag simplicial complex L.
Output: A group BBL with nice properties:

L is (n − 1)–connected ⇐⇒ BBL is of type Fn,

L is (n − 1)–acyclic ⇐⇒ BBL is of type FPn.

L is octahedron: π1(L) = 1, π2(L) 6= 0, =⇒ Stallings’s example.
L is n–dimensional octahedron (orthoplex) =⇒ Bieri’s example.
L has π1(L) 6= 1, but H1(L) = 0 =⇒ BBL of type FP2 \ F2.

Question 2: How many groups are there of type FP2?
Answer 1: Up to isomorphism: 2ℵ0 (I.Leary’15)
Answer 2: Up to quasi-isometry: 2ℵ0 (R.Kropholler–I.Leary–S.’17)
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I.J.Leary’s groups GL(S)

Input: A flag simplicial complex L, a finite collection Γ of directed edge
loops in L that normally generates π1(L), a subset S ⊂ Z.

Output: Group GL(S) defined as:

Generators: directed edges of L, the opposite edge to a being a−1.

(Triangle relations) For each directed triangle (a, b, c) in L, two
relations: abc = 1 and a−1b−1c−1 = 1.

(Long cycle relations) For each n ∈ S \ 0 and each (a1, . . . , a`) ∈ Γ, a
relation: an1a

n
2 . . . a

n
` = 1.

Theorem (I.J.Leary)

If L is a flag complex with π1(L) 6= 1, then groups GL(S) form 2ℵ0

isomorphism classes. If, in addition, L is aspherical and acyclic, then
groups GL(S) are all of type FP.

What is a possible example of an aspherical and acyclic flag simplicial
complex L?
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Take the famous Higman’s group:

H = 〈a, b, c , d | ab = a2, bc = b2, cd = c2, da = d2〉.
Let K be its presentation complex. It is aspherical and acyclic. Take L to
be the 2nd barycentric subdivision of K . Then L is a flag simplicial
complex with 97 vertices, 336 edges and 240 triangles. Thus,

GL(S) = 〈336 gen’s | 240× 2 triangle relators, 1 long relator ∀n ∈ S〉.

Theorem (R.Kropholler–Leary–S.)

Groups GL(S) form 2ℵ0 classes up to quasi-isometry.

Recall that groups G1, G2 are quasi-isometric (qi), if their Cayley graphs
are qi as metric spaces, i.e. there exists f : Cay(G1, d1)→ Cay(G2, d2),
and A ≥ 1, B ≥ 0, C ≥ 0 such that for all x , y ∈ Cay(G1):

1

A
d1(x , y)− B ≤ d2(f (x), f (y)) ≤ Ad1(x , y) + B,

and for all z ∈ Cay(G2) there exists x ∈ Cay(G1) such that
d2(z , f (x)) ≤ C .
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and for all z ∈ Cay(G2) there exists x ∈ Cay(G1) such that
d2(z , f (x)) ≤ C .
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How to distinguish groups up to qi?

Grigorchuk’84: growth functions of groups.
Bowditch’98: a concept of taut loops in Cayley graphs. These are the
loops which are not consequences of shorter loops. More formally:
If Γ is the Cayley graph of G , we can form a sequence of 2–complexes
Γ ⊂ Γ1 ⊂ Γ2 ⊂ Γ3 ⊂ . . . , where

Γ` = Γ`−1 ∪
⋃
|γ|≤`

Cone(γ).

We get π1(Γ)→ π1(Γ1)→ π1(Γ2)→ . . . . A loop γ ⊂ Γ of length ` is
taut if it lies in the kernel ker

(
π1(Γ`)→ π1(Γ`+1)

)
.

Let TL(G ) ⊂ N be the spectrum of lengths of taut loops in the Cayley
graph of a group G .
Bowditch: Groups G1 and G2 quasi-isometric =⇒ TL(G1) and TL(G2)
quasi-isometric in R.
I.e. there exist constants A,B,N > 0 such that for every l1 ∈ TL(G1),
l1 > N, there exist an l2 ∈ TL(G2) such that l1 ∈ [Al2,Bl2] and vice versa.
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Goal: to engineer groups with taut loops spectra “wildly interspersed” in
N, this will make the linear relation above impossible.

Bowditch does this for small cancellation groups: he proves that there exist
continuously many qi classes of 2–generator small cancellation groups.

Recall: GL(S) has:

(Triangle relations) For each directed triangle (a, b, c) in L, two
relations: abc = 1 and a−1b−1c−1 = 1.

(Long cycle relations) For each n ∈ S \ 0 and each (a1, . . . , a`) ∈ Γ, a
relation: an1a

n
2 . . . a

n
` = 1.

Intuitively, we expect TL(GL(S)) ≈ ` · S .

Many triangles =⇒ no small cancellation. Use CAT(0) geometry of
branched covers of cubical complexes to get estimates for the taut loops
spectra. We proved:

If S ⊂ {C 2n | n ∈ N}, for some C > 7,

then TL(GL(S)) lies in some multiplicative [A,B] neighborhood of S .
Now there are uncountably many subsets S in the above set, and these
give 2ℵ0 quasi-isometry classes of groups GL(S).
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Connection to the Relation Gap problem

If G is arbitrary group, G = 〈a1, . . . , am | r1, . . . , rn〉 = F/R, where
F = F (a1, . . . , am) and R = 〈〈r1, . . . , rn〉〉.
F acts on R by conjugation, so it induces an action of G on
Rab = R/[R,R], the relation module.

Rank(Rab) as a ZG–module ≤ min number of normal generators of R.

The difference of the two is the relation gap.
Bestvina–Brady kernels BBL have infinite relation gap, and so do GL(S).
Open Question: Are there groups with nonzero finite relation gap?

Take our group G = GL(S) with infinite S . Exhaust S by finite sets:

∅ ⊂ S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ S

GL(∅)→ GL(S1)→ GL(S2)→ GL(S3)→ · · · → GL(S)

Fact: they all have the same relation module! Their relation gaps are:

0 ? ? ? ? . . . ∞
So groups GL(Si ) for finite Si are candidates to have finite relation gap!
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