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Commutator length: algebraic definition
Given group G , g ∈ [G ,G ],

cl(g) = min{N | g =
N∏
i=1

[xi , yi ], xi , yi ∈ G}

Commutator length: topological definition
Let X be a top. space with π1(X ) ∼= G . Let S be a cpt, oriented surface
with 1 boundary component and a continuous map f : S → X , such that
(f |∂S)∗ = g :

X

S

∂S

f

cl(g) = min{genus(S) | ∃f : S → X , (f |∂S)∗ = g}
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Example: Let G = F (x , y), the free group of rank 2. Take
g = [x , y ] = xyx−1y−1. Consider its powers:

g2 = [x , y ] · [x , y ]

g3 = [x , y ]3 = [xyx−1, y−1xyx−2] · [y−1xy , y2]

A striking fact: cl([x , y ]3) is only 2!

g4 = [x , y ]4 = [xyx−1, y−1xyx−2] · [y−1xy , y2] · [x , y ]

g5 = [x , y ]5 = [w1,w2] · [w3,w4] · [w5,w6]

so that cl([x , y ]5) is, again, only 3.
In general,

cl([x , y ]n) = bn/2c+ 1 (Culler).

Q: What is the “compression ratio” of cl(gn) when the power n of gn

grows unboundedly?
A: The stable commutator length, or scl:

scl(g) := lim
n→∞

cl(gn)

n
.

For g = [x , y ] we have: scl([x , y ]) = 1/2.
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Q: Why is scl interesting?

A:

scl ≈ Gromov–Thurston norm on H2(X );

Bounded cohomology;

Bavard duality;

Dynamics, etc. — see book D.Calegari “scl”

For many important groups scl has gap above zero:

Free groups: ∀g , scl(g) ≥ 1/6 (Culler’81); scl(g) ≥ 1/2
(Duncan–Howie’91, Chen’16);

Baumslag–Solitar groups: scl(g) ≥ 1/12
(Clay–Forester–Louwsma’12);

Hyperbolic groups: scl(g) ≥ f (δ), where δ is the hyperbolicity
constant (Calegari–Fujiwara’10);

Right-angled Artin groups: scl(g) ≥ 1/24 (Fernós–Forester–Tao’16).
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Thm 1. (Forester–S.–Tao’17)

Let G = A(Γ) be a right-angled Artin group whose defining graph Γ has
chromatic number k . Then every nontrivial element g ∈ G satisfies:
scl(g) ≥ 1/(6k).

Thm 2. (Forester–S.–Tao’17)

Let G = A(Γ) be a right-angled Artin group whose defining graph Γ does
not contain triangles. Then every nontrivial element g ∈ G satisfies
scl(g) ≥ 1/20.

Note: Thm 2 is not a consequence of Thm 1, since there exist triangle-free
graphs with large chromatic number.
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Culler’s Proof: G free group, scl(g) ≥ 1/6 for all g ∈ G .

Transversality =⇒ system of nontrivial pairwise disjoint arcs labeled by the
generators. Band = maximal collection of parallel arcs.
A(S) = maximal number of arcs on S that are pairwise non-parallel and
disjoint = number of arcs in an ideal triangulation of S/∂S .

A(S) = 6genus(S)− 3

genus(S) =
A(S)

6
+

1

2
≥ #Bands

6
+

1

2
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Counting bands:

Non-overlapping property: If both u and u−1 are subwords of a word g
in a free group, then |u| ≤ |g |/2.

Corollary: Number of bands in S with ∂S = gn is at least n.

cl(gn) = genus(S) ≥ #Bands

6
+

1

2
≥ n

6
+

1

2

scl(gn) = lim
n→∞

cl(gn)

n
≥ 1

6
.
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Back to RAAGs: G = AΓ, X = Salvetti complex for AΓ:

Now arcs may cross, but when they do, their labels must commute.
k = chromatic number of Γ, V (Γ) = A1 t A2 t · · · t Ak .
a, b ∈ Ai means a, b do not commute. Hence, A(S) ≥ #Bands/k.
All we need to finish the proof is the inequality #Bands ≥ n.

Non-overlapping property for RAAGs:

Suppose w is a word representing the conjugacy class of gn, for g ∈ AΓ. If
both u and u−1 are subwords of w , then |u| ≤ |w |/(2n).

The proof uses geometry of half-spaces in the CAT(0) cover of the Salvetti
complex and all four of axioms of Haglund and Wise for hyperplane
pathologies in special cube complexes, recast in terms of actions.
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Open Questions

Open Question 1: What is the best possible lower bound for scl in
RAAGs?
Breaking News: In February 2018, Nicolaus Heuer has proved using
quasimorphisms that scl(g) ≥ 1/2 uniformly for all RAAGs.

Open Question 2: Is scl computable for RAAGs?

Open Question 3: Is scl rational for RAAGs?

Thank you!
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