Commensurability of spherical Artin groups

Ignat Soroko

Florida State University soroko@math.fsu.edu

World of GroupCraft, 8/25-26/2021

Artin groups

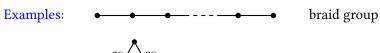
- ► *S* finite set of generators
- ► $M = (m_{s,t})_{s,t \in S}$ a symmetric matrix of $\{0, 1, ..., \infty\}$

The **Artin group** corresponding to (S, M) is given by the presentation:

$$A = \left\langle S \mid \underbrace{stst...}_{m_{s,t}} = \underbrace{tsts...}_{m_{s,t}}, \quad \forall s, t \in S, \ m_{s,t} \neq \infty \right\rangle$$

encoded by a graph (the Coxeter graph) with edges labeled by $m_{s,t}$:

Convention: $m_{s,t} = 2$: no edge, $m_{s,t} = 3$: label omitted



Natural questions:

- W word problem solvable?
- C conjugacy problem solvable?
- T torsion-free?
- Z center is trivial/cyclic?
- **B** biautomatic?

Classes of Artin groups for which we know the affirmative answers:

- ▶ **Spherical:** the Coxeter group $W = A/\langle s^2 \rangle$ is finite W, C, T, Z, B
 - ▶ **Right-angled:** all $m_{s,t}$ are either 2 or ∞ W, C, T, Z, B
- **Extra large:** all $m_{s,t} \ge 4$ W, C, T, B
- ► **Affine/euclidean:** given by 'extended Dynkin diagrams' W, T, Z
- ► FC-type: non-infinite labeled edges span a spherical group W

Spherical Artin groups (Coxeter (1935), Paris (2004))

$$A_n, (n \ge 1)$$
:
 E_6 :

 $B_n, (n \ge 2)$:
 E_7 :

 E_8

Q: Which spherical Artin groups are quasi-isometric? (mostly) open

Q: Which spherical Artin groups are commensurable?
Partial answers by: Cumplido-Paris (2021), S. (2021)

Recall that two groups are **commensurable** (\approx) if they have isomorphic subgroups of finite index. (commensurable \Rightarrow quasi-isometric)

Theorem (Cumplido-Paris (2021))

- 1. If two spherical Artin groups are commensurable, then their ranks are equal and the corresponding irreducible components are commensurable to each other.
- 2. The only irreducible spherical Artin groups commensurable with that of type A_n are:

$$A(A_n) \approx A(B_n)$$
 and $A(A_2) \approx A(I_2(m))$.

This leaves six cases to be determined:

$$(F_4, D_4), \quad (H_4, D_4), \quad (F_4, H_4), \quad (D_6, E_6), \quad (D_7, E_7), \quad (D_8, E_8).$$

Theorem (S. (2021))
$$A(F_4) \not\approx A(D_4)$$
 and $A(H_4) \not\approx A(D_4)$.

Methods of Cumplido and Paris

Commensurability: $A(B_n) \leq_{f.i.} A(A_n)$ and $F_2 \leq_{f.i.} I_2(m)$, for all m.

Non-commensurability: Need to prove that there is no embedding

$$\overline{A(\Gamma)} \longrightarrow \operatorname{Comm}(\overline{A(A_n)})$$

where $\overline{A(\Gamma)} = A(\Gamma)/\text{center}$, and Comm(G) is the abstract commensurator.

$$\operatorname{Comm}(\overline{A(A_n)}) \cong \left(\begin{array}{c} \operatorname{extended\ m.c.g.\ of\ sphere} \\ \operatorname{with\ } n+2\ \operatorname{punctures} \end{array} \right) \cong \overline{A(A_n)} \rtimes \{\pm 1\}$$

They classify with the help of GAP all homomorphisms

$$\overline{A(\Gamma)} \longrightarrow \operatorname{Comm}(\overline{A(A_n)}) \longrightarrow \operatorname{Comm}(\overline{A(A_n)})/\operatorname{pure\ braids} = \mathfrak{S}_{n+2} \times \{\pm 1\}$$

and produce generalized torsion in the bi-orderable kernel (pure braid group), which yields contradiction.

My approach:

Theorem (S. (2020,2021))

$$\operatorname{Comm}(\overline{A(D_4)})\cong \left(egin{array}{c} \textit{extended m.c.g. of torus} \\ \textit{with 3 punctures} \end{array} \right)\cong \overline{A(D_4)}\rtimes (\mathfrak{S}_3\times\{\pm 1\})$$

For nonexistence of $\overline{A(H_4)} \hookrightarrow \mathrm{Comm}(\overline{A(D_4)})$ I classified all torsion elements in groups $\overline{A(\Gamma)}$.

For nonexistence of $\overline{A(F_4)}\hookrightarrow \mathrm{Comm}(\overline{A(D_4)})$ I classified with the help of MAGMA all homomorphisms

 $A(\Gamma) \longrightarrow \operatorname{Comm}(A(D_4))/\operatorname{bi-orderable}$ f.i. subgroup = group of order 1156.

Open problems:

P1: Establish non/commensurability for pairs (D_6, E_6) , (D_7, E_7) , (D_8, E_8) . (work in progress)

P2*: Establish non/commensurability for the pair (F_4, H_4) .

P3*: Problem of quasi-isometry classification of spherical Artin groups.

References

- María Cumplido, Luis Paris, Commensurability in Artin groups of spherical type. Revista Matematica Iberoamericana 2021, in press.
- ▶ Ignat Soroko, Linearity of some low-complexity mapping class groups. *Forum Mathematicum*, 32 (2020), no. 2, 279–286.
- ▶ Ignat Soroko, Artin groups of types F_4 and H_4 are not commensurable with that of type D_4 , *Topology and its Applications*, 300 (2021), 107770.

Thank you!