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Abstract

In [8] one of the authors constructed uncountable families of groups of type FP
and of n-dimensional Poincaré duality groups for each n ≥ 4. We show that the
groups constructed in [8] comprise uncountably many quasi-isometry classes. We
deduce that for each n ≥ 4 there are uncountably many quasi-isometry classes of
acyclic n-manifolds admitting free cocompact properly discontinuous discrete group
actions.

1 Introduction

Throughout this article, the phrase ‘continuously many’ will be used to describe sets
having the cardinality of the real numbers. In [8] one of the authors exhibited continuously
many isomorphism types of groups of type FP , extending the work of Bestvina and
Brady [1], who constructed the first examples of groups of type FP that are not finitely
presented. We extend these results still further, by showing that the groups constructed
in [8] fall into continuously many quasi-isometry classes.

Bestvina-Brady associate a group BBL to each finite flag complex in such a way that
the homological properties of the group BBL are controlled by those of the flag complex L.
In particular, in the case when L is acyclic but not contractible, BBL is type FP but
not finitely presented. In [8], a group GL(S) is associated to each connected finite flag
complex L and each set S ⊆ Z in such a way that the homological properties of GL(S)

are controlled by those of L and its universal cover, L̃. In the case when L and L̃ are both
acyclic, each GL(S) is type FP . The construction of GL(S) generalizes that of BBL, and
in particular GL(Z) is BBL. Our first main theorem is as follows.
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Theorem 1. For each fixed finite connected flag complex L that is not simply-connected,
there are continuously many quasi-isometry classes of groups GL(S).

The invariant that we rely on to distinguish the groups GL(S) is the invariant that
was introduced by Bowditch [2] in his construction of continuously many quasi-isometry
classes of 2-generator groups. (Grigorchuk’s construction of such a family, using growth
rate to distinguish the groups [7], is no help to us because the groups GL(S) all have
exponential growth.)

To a graph Γ Bowditch associates a set H(Γ) of natural numbers, consisting of the
lengths of loops in Γ that are taut in the sense that they are not consequences of shorter
loops. He describes the relationship between H(Γ) and H(Γ′) in the case when Γ and Γ′

are quasi-isometric. When Γ is the Cayley graph associated to a group presentation
satisfying the C ′(1/6) small cancellation condition, the set H(Γ) is equal to the set of
lengths of the relators of the presentation.

Our proof involves estimating the set H(Γ(S)), where Γ(S) is the Cayley graph as-
sociated to the natural generating set for GL(S). The natural presentation for GL(S)
contains relators whose lengths are parametrized by the absolute values of the members
of S, but it also contains many relators of length 3, and does not satisfy the C ′(1/6)
condition. To apply Bowditch’s technique we need a lower bound for the word lengths of
elements in the kernel of the map GL(S) → GL(T ) for S ⊆ T , in terms of T − S. The
Cayley graph Γ(S) embeds naturally in a CAT(0) cubical complex. Our lower bound on
word length uses this embedding and an easy lemma concerning maps between CAT(0)
spaces. In the statement, the singular set for a map consists of all points at which it is
not a local isometry.

Lemma 2. Let f : X → Y be a continuous map of CAT(0) metric spaces, and suppose
that x 6= x′ but f(x) = f(x′). Then the distance dX(x, x′) is at least twice the distance
from x to the singular set for f .

In the final section of this article, we study the behaviour of the Bowditch length
spectrum of a Cayley graph under the operation of taking certain semi-direct products
with infinitely generated right-angled Coxeter groups. Such semi-direct products arise
when applying Davis’s trick to the groups GL(S) [5, 6]. For each S ⊆ Z one constructs
a group J(S) which is the semi-direct product of GL(S) and a suitable Coxeter group,
together with maps J(S) → J(T ) for S ⊆ T . Our aim is to estimate H(Λ(S)), where
Λ(S) is a Cayley graph of the group J(S). Once again, the main problem is to give lower
bounds for the word lengths of elements of the kernel of the map J(S)→ J(T ). Roughly
speaking, we show that short elements in this kernel give rise to short elements in the
kernel of GL(S)→ GL(T ). The main result of this section, Theorem 13, is too technical
to state in this introduction, but instead we give one of its applications.

Corollary 3. For each d ≥ 4 there is a closed aspherical d-manifold admitting continu-
ously many quasi-isometry classes of regular acyclic covers.

In contrast to the geometric methods used throughout the rest of the article, the proof
of Theorem 13 is purely algebraic. It would be interesting to have a geometric proof of
this theorem and conversely to have algebraic proofs of our results concerning GL(S).
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2 Background

There are various types of Cayley graphs, but we shall need just one type which we shall
call the simplicial Cayley graph Γ(G,S) associated to the group G and generating set S.
This is the simplicial graph with vertex set G and edge set the 2-element sets of the form
{g, gs} for some s ∈ S. This definition could be made for any S ⊆ G; the fact that S
generates G is equivalent to the graph Γ(G,S) being connected. Any simplicial graph
with a free, transitive G-action on its vertex set is isomorphic as a graph with G-action
to Γ(G,S) for some S. The action of G on the edges of Γ(G,S) is free if and only if S
contains no element of order two.

Next we recall some material from [2] concerning quasi-isometries and Bowditch’s
taut loop length spectrum. Since we change the language slightly we restate some of the
results from [2] in our terms: the proofs are identical to the originals. Each graph Γ that
we consider will be connected, simplicial, and will be viewed as a metric space via the
path metric dΓ, in which each edge has length one. The induced metric on the vertex
set of a Cayley graph Γ(G,S) is thus the S-word length metric on the group G. For
k > 0 an integer, recall that a function f : X → Y between metric spaces is k-Lipschitz
if dY (f(x), f(x′)) ≤ k.dX(x, x′) for all x, x′ ∈ X. Following Bowditch [2], we say that
graphs Γ and Λ are k-quasi-isometric if there exist a pair of k-Lipschitz maps of vertex
sets φ : V (Γ)→ V (Λ) and ψ : V (Λ)→ V (Γ) so that dΓ(x, ψ ◦φ(x)) ≤ k for each vertex x
of Γ and similarly dΛ(y, φ ◦ ψ(y)) ≤ k for each vertex y of Λ. Graphs are quasi-isometric
if they are k-quasi-isometric for some integer k > 0.

We remark that the above definition is not the standard one; see for example [3, I.8.14]
for the standard definition of a quasi-isometry between metric spaces. We leave it as an
exercise to check that graphs Γ, Λ are quasi-isometric as above if and only if the metric
spaces (Γ, dΓ) and (Λ, dΛ) are quasi-isometric in the usual sense.

An edge loop of length l in a (simplicial) graph Γ is a sequence v0, . . . , vl of vertices
such that v0 = vl and {vi−1, vi} is an edge for 1 ≤ i ≤ l. For a graph Γ and an integer
constant l, let Γl denote the 2-complex whose 1-skeleton is the geometric realization of Γ,
with one 2-cell attached to each edge loop in Γ of length strictly less than l. An edge
loop of length l in Γ is said to be taut if it is not null-homotopic in Γl. Bowditch’s taut
loop length spectrum H(Γ) for the graph Γ is the set of lengths of taut loops.

We are interested in the 2-complex Γl only to define taut loops: if Γ′ is any subcomplex
with Γ ⊆ Γ′ ⊆ Γl so that the induced map on fundamental groups π1(Γ′)→ π1(Γl) is an
isomorphism, then an edge loop is taut if and only if it is not null-homotopic in Γ′.

Bowditch defines subsets H,H ′ ⊆ N to be k-related if for all l ≥ k2 +2k+2, whenever
l ∈ H then there is some l′ ∈ H ′ with l/k ≤ l′ ≤ lk and vice-versa. He then proves

Lemma 4. If (connected) graphs Γ and Λ are k-quasi-isometric, then H(Γ) and H(Λ)
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are k-related.

In our terms, the lemmas that Bowditch uses to prove the above result are as follows.

Lemma 5. H(Γ) is equal to the set of l ∈ N for which the induced map of fundamental
groups π1(Γl)→ π1(Γl+1) is not an isomorphism.

For any fixed l, let iΓ,l denote the inclusion of Γ in the 2-complex Γl.

Lemma 6. If φ : Γ→ Λ and ψ : Λ→ Γ form a k-quasi-isometry between Γ and Λ, then
for any l ≥ k2 + 2k + 2 there are homotopies

iΓ,l ◦ ψ ◦ φ ' iΓ,l and iΛ,l ◦ φ ◦ ψ ' iΛ,l.

Next we review some material from [1, 8]. A flag complex or clique complex is a
simplicial complex in which every finite set of mutually adjacent vertices spans a simplex.
Let T denote the circle R/Z, viewed as a CW-complex with one vertex at 0 + Z ∈ R/Z
and one edge. For a finite set V let TV denote the product

∏
v∈V Tv, where Tv denotes a

copy of T. Non-empty subcomplexes of TV are in bijective correspondence with simplicial
complexes with vertex set contained in V . If L is a flag complex with vertex set V , let
TL denote the corresponding subcomplex of TV . This complex is aspherical, and its
fundamental group is the right-angled Artin group AL associated to L, with generators
corresponding to the vertices of L, subject only to the relations that v and w commute
whenever {v, w} is an edge of L.

The universal covering space XL of TL has a natural cubical structure, and is a CAT(0)
cubical complex. The additive group structure in T = R/Z defines a map l : TV → T,

and hence a map lL : TL → T. Define T̃L to be the regular covering of TL induced
by pulling back the universal covering of T along lL. The Bestvina-Brady group BBL

is defined to be the fundamental group π1(T̃L), or equivalently the kernel of the map
AL → Z of fundamental groups induced by l : TL → T. Bestvina and Brady showed that
many properties of BBL are determined by properties of L. In the case when L is acyclic
but not simply connected, BBL is type FP but not finitely presented [1].

Let fL : XL → R be the map of universal coverings induced by lL. This map has the
following properties: if we identify each n-cube of XL with [0, 1]n then its restriction to
each n-cube is equal to an affine map; the image of each vertex of XL is an integer; the
image of each n-cube of XL is an interval of length n. We view fL as defining a height
function on XL. There is a regular covering map XL → T̃L, with covering group BBL.

In [8] this is generalized, under the extra assumption that L be connected. For each

set S ⊆ Z, a CAT(0) cubical complex X
(S)
L is defined, together with a regular branched

covering map X
(S)
L → T̃L, and the group GL(S) is by definition the covering group for this

covering. The only branch points of this covering are the vertices of X
(S)
L whose height

is not in S, and the stabilizer in GL(S) of each branch point is a subgroup isomorphic to
the fundamental group π1(L). (In particular, the construction is non-trivial only when
L is not simply-connected.) If S ⊆ T ⊆ Z, there is a regular branched covering map

X
(S)
L → X

(T )
L , branched only at vertices of height in T − S, and the branched covering

X
(S)
L → TL factors through this. If S ⊆ T then there is a surjective group homomorphism

GL(S) → GL(T ), and the branched covering map X
(S)
L → X

(T )
L is equivariant for this

homomorphism. The group GL(Z) is equal to BBL.
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The height function on XL induces a GL(S)-invariant height function on X
(S)
L for

each S ⊆ Z. Since T̃L has only one vertex of each integer height, the group GL(S) acts

transitively on the vertices of X
(S)
L of each height. The intersection of the 2-skeleton

of X
(S)
L and the 0-level set (i.e., the points of height 0) is a simplicial graph Γ whose

0-skeleton is the vertices of height 0. Orbits of edges in Γ correspond to AL-orbits of
squares in XL, or equivalently to edges of L. If 0 ∈ S then GL(S) acts freely on Γ, and
so Γ can be identified with a simplicial Cayley graph for GL(S). This gives a natural
choice of generators for GL(S) when 0 ∈ S, in bijective correspondence with the directed
edges of L. Under the composite map GL(S) → GL(Z) = BBL → AL the element
corresponding to the directed edge from vertex x to vertex y maps to the element xy−1.
To give a presentation for GL(S) with this generating set, we first fix a finite collection
Ω of directed loops in L that normally generates π1(L). In other words, if one attaches
discs to L along the loops in Ω, one obtains a simply-connected complex. Three families
of relators occur in this presentation, which we call P (L,Ω):

• (Edge relations) for each directed edge a with opposite edge a, the relation aa = 1;

• (Triangle relations) for each directed triangle (a, b, c) in L the relations abc = 1 and
a−1b−1c−1 = 1;

• (Long cycle relations) for each n ∈ S − {0} and each (a1, . . . , al) ∈ Ω the relation
an

1a
n
2 · · · an

l = 1.

Another crucial property of these presentations is that only the long relations corre-
sponding to n ∈ S hold in GL(S): if (a1, . . . , al) ∈ Ω is not null-homotopic in L, then
an

1a
n
2 · · · an

l 6= 1 for n /∈ S ∪ {0}.
We close by giving some references for more general background material. For CAT(0)

spaces we suggest [3], and for homological finiteness conditions such as the FP property
we suggest [4]. Each of these topics is also covered briefly in the appendices to [6], which
is our recommended source for Coxeter groups.

3 Bounding word lengths by CAT(0) distances

Our first task is to establish Lemma 2, as stated in the Introduction. Recall that a
singular point of a map between CAT(0) spaces is a point at which the map is not a local
isometry.

Proof. (Lemma 2). As in the statement, let x, x′ ∈ X be distinct points such that
f(x) = f(x′), and suppose that the geodesic arc γ from x to x′ does not pass through
the singular set. In this case, f ◦ γ is a locally geodesic arc in Y , whose end points are
both equal to f(x). In a CAT(0) space any locally geodesic arc is a geodesic arc, and
the unique geodesic arc from f(x) to f(x′) = f(x) is the constant arc of length 0. This
contradiction shows that γ must pass through the singular set. The claim follows.

Lemma 7. Let L be a finite flag complex of dimension d. For any S ⊆ Z the distance
from the 0-level set in the CAT(0) space X

(S)
L to a vertex of height n is |n|/

√
d+ 1.
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Proof. By symmetry it suffices to consider the case n > 0. Let γ be a path starting at
a vertex v of height n, and moving at unit speed in X

(S)
L to the 0-level set. Minimizing

the length of γ is equivalent to maximizing the speed of descent, i.e., minimizing the
derivative of fL ◦ γ.

The initial direction of travel of the path γ can be represented by a point of the link,
LkX(v), of v in X = X

(S)
L . This is a simplicial complex in which each m-cube C of

X
(S)
L that is incident on v contributes one (m− 1)-simplex, consisting of the unit tangent

vectors at v that point into C.
If we identify an m-cube C of X

(S)
L with [0, 1]m, then fL restricted to C is equal to

(t1, . . . , tm) 7→ t1 + t2 + · · · + tm + r for some integer r. The gradient of fL on the cube
C is the vector (1, 1, . . . , 1), of length

√
m. Thus any path γ of fastest descent leaves v

travelling in the direction of the long diagonal of a cube C of maximal dimension whose
highest vertex is v.

If
√
m < n then the path will reach the unique lowest vertex v′ of C before it reaches

the 0-level set; at this vertex a new choice of cube C ′ of maximal dimension with v′ as
its highest vertex should be made.

If w is any vertex of X = X
(S)
L then the cubes of X that have w as their highest

vertex correspond to a subcomplex of LkX(w) called the descending or ↓-link, Lk↓X(w).

Each descending link Lk↓X(w) is isomorphic to either L or its universal covering space L̃,
depending only on whether the height of w lies in S. In particular, each descending link
has dimension equal to d, the dimension of L.

It follows that we can always find at least one unit speed path γ starting at v with
constant rate of descent

√
d+ 1 and there is no path descending faster. Hence the distance

from v to the 0-level set is n/
√
d+ 1 as claimed.

For S ⊆ Z, define m(S) := min{|n| : n ∈ S}.
Lemma 8. Suppose that L is d-dimensional and that 0 ∈ S ⊆ T ⊆ Z, and take the
standard generating set for GL(S) and GL(T ). The word length of any non-identity
element in the kernel of the map GL(S)→ GL(T ) is at least m(T − S)

√
2/(d+ 1).

Proof. The Cayley graph Γ(S) for GL(S) is embedded in the 0-level set in X := X
(S)
L ,

and similarly Γ(T ) is embedded in the 0-level set in Y := X
(T )
L . Moreover the branched

covering map X → Y induces the natural quotient map Γ(S) → Γ(T ). Let v be a

height 0 vertex of X = X
(S)
L . Each standard generator for GL(S) is represented by the

diagonal of a square of X so for any g ∈ GL(S) the triangle inequality tells us that
the word length l(g) satisfies dX(v, gv) ≤

√
2l(g). Now g is in the kernel of the map

to GL(T ) if and only if gv and v map to the same vertex of Y . Singular points for
the map X → Y are vertices w whose heights lie in T − S, and by Lemma 7 these have
dX(v, w) ≥ m(T−S)/

√
d+ 1. By Lemma 2 it follows that dX(v, gv) ≥ 2m(T−S)/

√
d+ 1

and hence l(g) ≥ dX(v, gv)/
√

2 ≥ m(T − S)
√

2/(d+ 1).

4 Digression on convexity

The arguments used in the previous section can be used to show that the 0-level sets are
very rarely convex or even quasi-convex. The material in this section is not needed for
our main theorem.
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Corollary 9. The 0-level set in X
(S)
L is convex if and only if L is a single simplex. In

this case X
(S)
L = XL does not depend on S.

Proof. If L is a d-simplex then X
(S)
L = XL is a copy of Rd+1 and the 0-level set is an affine

subspace. For the converse, if L is any flag complex other than a single simplex, then
L will contain at least two maximal simplices. If v is any vertex of X

(S)
L of height one,

the directions defined by the barycentres of these two maximal simplices give distinct
geodesic paths from v to the 0-level set that are both locally distance minimizing, with
end points x, x′ of height 0. Within the geodesic arc from x to x′, at most one point can
locally minimize distance to v; the assumption that this geodesic arc lies in the 0-level
set leads to a contradiction.

Corollary 10. If either L contains two simplices of maximal dimension d, or L̃ does and
Z− S is infinite, then the 0-level set in X

(S)
L is not quasi-convex.

Proof. We give only a sketch. Let θ = θ(d) be the angle in Rd+1 between the vector
(1, 1, . . . , 1) and one of the coordinate hyperplanes. Let v be a vertex of height N in

X := X
(S)
L . If L has a unique simplex of dimension d, then N should be chosen in Z−S,

otherwise N may be arbitrary. In this case there are two distance-minimizing geodesic
paths from v to the 0-level set, with end points x and x′ as above, corresponding to leaving
v in the directions given by the barycentres of two distinct d-dimensional simplices of the
descending link. We view x, x′ and other points that depend on them as functions of N .
The angle at v between these two geodesics is at least the constant 2θ. The geodesic
triangle with vertices x, x′ and v is isoceles with angle at least 2θ between the two equal
sides. The length of the equal sides is N/

√
d+ 1. If y is the midpoint of the geodesic arc

from x to x′, it follows that dX(v, y) ≤ N cos(θ)/
√
d+ 1. By increasing N this distance

can be made arbitrarily smaller than N/
√
d+ 1, the distance from v to the 0-level set.

Hence for any k, there is an N so that y is not in the k-neighbourhood of the 0-level set.
Thus the 0-level set is not quasi-convex.

5 Taut loop length spectra for GL(S)

Throughout this section we fix a finite connected non-simply connected flag complex L.
For S a subset of Z containing 0, let Γ(S) denote the Cayley graph of GL(S) with respect
to the standard generators. We give partial information concerning the taut loop length
spectrum H(Γ(S)). As in [2], it will be convenient to assume that elements of S grow
quickly.

Define α = α(L) by α =
√

2/(d+ 1), where d is the dimension of L. For a finite set Ω
of loops in S that normally generates π1(L), let β(L,Ω) be the maximum of the lengths
of the loops in Ω, and define β(L) to be the minimum value of β(L,Ω) over all such Ω.
Choose an integer constant C = C(L) so that C > β/α and Cα > 3. For F any subset
of N, define S(F ) = {0} ∪ {C2n

: n ∈ F}. With these definitions we prove a statement
that is identical to [2, Proposition 1].

Proposition 11. If F, F ′ are subsets of N so that Γ(S(F )) and Γ(S(F ′)) are quasi-
isometric then the symmetric difference of F and F ′ is finite.
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Theorem 1 follows immediately from this proposition. To prove the proposition we
first describe H(Γ(S(F ))).

Theorem 12. For any F ⊆ N, the set H(Γ(S(F ))) is contained in the disjoint union
{3} ∪

⋃
n∈N[αC2n

, βC2n
]. The set H(Γ(S(F )))∩ [αC2n

, βC2n
] is non-empty if and only if

n ∈ F . Also 3 is in H(Γ(S(F ))) if and only if L is not 1-dimensional.

Proof. The choice of C ensures that 3 < αC20
and that for all n βC2n

< αC2n+1
which

implies that the union is disjoint. Since Γ = Γ(S(F )) is a simplicial Cayley graph, the
edge relations aa = 1 do not contribute to H(Γ), but the triangle relations imply that
3 ∈ H(Γ) whenever L has dimension at least two. If F = ∅ then the presentation P (L,Ω)
contains only relations of length at most 3, so H(Γ) is either empty if L is 1-dimensional
or is equal to {3} otherwise.

It remains to establish three statements

• If n ∈ F then H(Γ(S(F ))) ∩ [αC2n
, βC2n

] 6= ∅;

• If n /∈ F then H(Γ(S(F ))) ∩ [αC2n
, βC2n

] = ∅;

• If k > 3 and k /∈
⋃

n∈N[αC2n
, βC2n

] then k /∈ H(Γ(S(F ))).

The second and third of these statements can be grouped together into a single fourth
statement:

• If k > 3 and k /∈
⋃

n∈F [αC2n
, βC2n

] then k /∈ H(Γ(S(F ))).

For the first statement, let F ′ = F −{n}, and consider the covering map Γ(S(F ′))→
Γ(S(F )). The group GL(S(F ′)) acts freely on Γ(S(F ′)), so we may attach free orbits of
2-cells to Γ(S(F ′)) to make a simply-connected Cayley 2-complex ∆. Now let K be the
kernel of the map GL(S(F ′)) → GL(S(F )), or equivalently the covering group for the
regular covering Γ(S(F ′))→ Γ(S(F )). The quotient ∆/K is a 2-complex with 1-skeleton
the graph Γ(S(F )) and fundamental group K. We know that any non-identity element
of K has word length at least αC2n

and that there is a non-identity element of K of word
length βC2n

. The shortest non-identity element of K defines a loop in Γ(S(F )) ⊆ ∆/K
that must be taut, since it is not null-homotopic in ∆/K whereas every strictly shorter
loop in Γ(S(F )) is null-homotopic in ∆/K.

It remains to prove the fourth statement. Fix an integer k > 3 that is not an element
of

⋃
n∈F [αC2n

, βC2n
]. Choose n ∈ N maximal so that βC2n

< k, if such n exists, and
define n := −1 in the case when 3 < k < αC. Now let F ′ := F ∩[0, n], where by definition
[0,−1] = ∅. Once again, consider the covering map Γ(S(F ′)) → Γ(S(F )). Since every
relator in the presentation for GL(S(F ′)) has length at most βC2n

, we may build a Cayley
2-complex ∆ with 1-skeleton Γ(S(F ′)) in which each 2-cell is attached to a loop of length
at most βC2n

. Now suppose that γ is a loop of length k in Γ(S(F )). If γ lifts to a loop
in Γ(S(F ′)) then it cannot be taut, since every loop in Γ(S(F ′)) is null-homotopic in ∆.
If on the other hand γ lifts to a non-closed path in Γ(S(F ′)) then it corresponds to a
non-identity element of the kernel of the map GL(S(F ′))→ GL(S(F )) of word length at
most k. But the shortest element in the kernel of this map has length at least αC2m

,
where m is the least element of S(F ) − S(F ′). By choice of n, we have that k ≤ βC2m

,
and by hypothesis k /∈ [αC2m

, βC2m
]. This contradiction shows that the loop γ cannot

be taut.
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Proof. (Propostion 11). For any l ∈ [αC2n
, βC2n

] and l′ ∈ [αC2n+m
, βC2n+m

] for some
m > 0, we have that l′/l ≥ C2n

. Hence if H(Γ(S(F ))) and H(Γ(S(F ′))) are k-related
and n is in the symmetric difference of F and F ′ then C2n

< k.

6 Semidirect products

A right-angled Coxeter group is a group W admitting a presentation in which the only re-
lators are that each generator has order two and that certain pairs of generators commute.
A simplicial graph K gives rise to a right-angled Coxeter group WK , with generators the
set V (K) of vertices of K and as commuting pairs the ends of each element of the edge
set E(K).

Now suppose that a group G acts as automorphisms of the graph K. This induces
an action of G on WK by automorphisms, permuting the given generators for WK , and
so there is a semidirect product group J = WKoG. Identify G with its image inside the
semidirect product J . A choice of generating set for G together with a choice of G-orbit
representatives in V (K) gives rise to a generating set for J .

Now suppose that S 7→ G(S) is a functor from the category of subsets of Z with
inclusions as morphisms to the category of finitely generated groups and surjective ho-
momorphisms; for example S 7→ GL(S) is such a functor for any connected finite flag
complex L. Suppose further that G(∅) acts freely cocompactly on a (simplicial) graph
K(∅) in such a way that any two vertices in the same G(∅)-orbit are at edge path distance
at least four. For S ⊆ Z, define K(S) to be the quotient of K(∅) by the kernel of the
map G(∅)→ G(S), so that G(S) acts freely cocompactly on the graph K(S).

For S ⊆ Z, define J(S) to be the semidirect product WK(S)oG(S). Then S 7→ J(S)
is another functor from subsets of Z and inclusions to finitely generated groups and
surjective group homomorphisms. Fix a finite generating set for J(∅) consisting of a
finite generating set for G(∅) and a set of V ′ of G(∅)-orbit representatives in V (K(∅)).
As generating set for J(S), take the image of our given generating set for J(∅), and as
generating set for G(S) take the image of our given generating set for G(∅). For each S,
the generating set for G(S) is a subset of the generating set for J(S), and its complement
consists of generators that are in the kernel of the map J(S)→ G(S).

It will be useful to have a presentation for J(S) in terms of our generating set. Since
G(∅) acts freely on the graph K(∅), the Coxeter relators between all of the generators for
WK(∅) are consequences of a finite set of relators indexed by the orbit representatives of
vertices and edges in K(∅). To describe these relations, we choose a set E ′ of G(∅)-orbit
representatives of edges in K(∅), in such a way that each e ∈ E ′ is incident on at least
one v ∈ V ′. For each u ∈ V = V (K(∅)), let gu ∈ G(∅) be the unique element such that
gu.u ∈ V ′. Now define an integer N1 by

N1 := max{l(gu) : u is incident on some edge in E ′},

where l(g) denotes the word length of g ∈ G(∅). The relations in our presentation for
J(S) are of the following kinds:

• v2 for each v ∈ V ′;

• relators (vguug
−1
u )2, where e ∈ E ′, u and v are the vertices incident on e and v ∈ V ′;
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• the relators in a presentation for G(S).

Note that J(S) is finitely presented whenever G(S) is, and that the relators of the second
kind are of length at most 4N1 + 4.

In the theorem below we write lJ(S) and lG(S) for the word length with respect to these
generating sets.

Theorem 13. Take notation and hypotheses as in the paragraphs above, and define N :=
2N1. For all S ⊆ T ⊆ Z, if w ∈ J(S) is in the kernel of J(S)→ J(T ) and lJ(S)(w) > N
then there is g ∈ G(S) − {1} with lG(S)(g) ≤ lJ(S)(w) so that g is in the kernel of
G(S)→ G(T ).

Proof. In the case when w is not in the kernel of the map J(S) → G(S), we may
take g = w, the image of w, since this element is in the kernel of G(S) → G(T ) and
lG(S)(g) ≤ lJ(S)(w).

Before starting the remaining (more difficult) case, we recall Tits’ solution to the word
problem for a right-angled Coxeter group [6, Theorem 3.4.2]. If w = v1v2 · · · vl is a word
in the standard generators for a right-angled Coxeter group that represents the identity,
then w can be reduced to the trivial word using some sequence of moves of two types:

• if v, v′ are Coxeter generators that commute, replace the subword vv′ by v′v;

• replace a subword vv by the trivial subword.

The kernel of the map J(S) → G(S) is the right-angled Coxeter group W (S) :=
WK(S). Let w be in the kernel of this map as well as in the kernel of the map J(S)→ J(T ).
Pick a shortest word in the generators for J(S) representing w, and write this word in
the form w = h0v1h1v2h2 · · ·hn−1vnhn, where each vi ∈ V ′, each hi ∈ G(S), and so that
lJ(S)(w) = n+

∑n
i=0 lG(S)(hi). Now define gi = h0h1 · · ·hi−1 for 1 ≤ i ≤ n. We have that

w = h0v1h1v2h2 · · ·hn1vnhn = (g1v1g
−1
1 )(g2v2g

−1
2 ) · · · (gnvng

−1
n ).

This second expression for w will not be reduced in general, but each subword givig
−1
i is

equal to one of the standard Coxeter generators for the subgroup W (S). By hypothesis
w is non-trivial in W (S) but is in the kernel of the map W (S) → W (T ). Hence there
must be a Tits move that can be applied to the image of this expression in W (T ) that
cannot be applied to the same expression in W (S).

If there is a Tits move of the second type that can be applied in W (T ) but not in
W (S), this implies that there exist i and j with 1 ≤ i < j ≤ n so that gi = gj ∈ G(T ),
but gi 6= gj ∈ G(S). If on the other hand there is a Tits move of the first type that can
be applied in W (T ) but not in W (S), there exist 1 ≤ i < j ≤ n so that gi = gjgu ∈ G(T )
but gi 6= gjgu ∈ G(S), where gu is one of the elements that takes a vertex of some edge
in E ′ to a vertex in V ′, and so by definition of N1, lG(S)(gu) ≤ lG(∅)(gu) ≤ N1.

Define an element of J(S) by w′ := vihivi+1 · · ·hj−1vj, where i and j are as above.
Since the expression w = h0v1h1v2h2 · · ·hnvn is of minimal length in terms of our gener-
ators for J(S), the length of the defining expression for w′ is also minimal. But lJ(S)(w

′)
is greater than or equal to the length of its image in G(S), hihi+1 · · ·hj−1 = g−1

i gj. Thus
lJ(S)(w

′) ≥ lG(S)(g
−1
i gj). Depending which sort of Tits move was applied, g−1

i gj is either a
non-trivial element of the kernel of the map G(S)→ G(T ) or differs from such an element
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by some gu. Let g be this element of the kernel, and note that lG(S)(g) ≤ lG(S)(g
−1
i gj)+N1.

Since w maps to the identity element of G(S) and the image in G(S) of w′ is a path whose
endpoints are at distance at least lG(S)(g

−1
i gj), we see that lJ(S)(w) ≥ 2lG(S)(g

−1
i gj).

Putting these inequalities together we obtain lG(S)(g) ≤ lJ(S)(w)/2 + N1. If lJ(S)(w) >
N = 2N1, this implies that lG(S)(g) ≤ lJ(S)(w) as required.

Now we specialize to the case of interest; the case when G(S) is the group GL(S)
for some finite flag complex L that is connected but not simply connected. In this case,
Theorem 13 allows us to prove an analogue of Theorem 12 for the semidirect product
J(S) := WK(S)oGL(S). We define constants α = α(L), β := β(L) and C := C(L) as in
the previous section, and for F ⊆ N we define S(F ) ⊆ N as before. Finally, we define
M := 4N1 + 4, which depends on both L and on the action of G(∅) on K(∅), and we
denote by Λ(S(F )) the Cayley graph Γ(J(S(F ))).

Theorem 14. For any F ⊆ N, the set H(Λ(S(F ))) is contained in the union [0,M ] ∪⋃
n∈N[αC2n

, βC2n
]. If αC2n

> M , then H(Λ(S(F ))) ∩ [αC2n
, βC2n

] is non-empty if and
only if n ∈ F .

Proof. Since the presentation for GL(S(∅)) has only relators of length at most 3, we see
that our presentation for J(S(∅)) consists of relators of length at most M . This verifies
the claim in the case when F = ∅. As in the proof of Theorem 12, it suffices to verify
two claims:

• If n ∈ F and αC2n
> M then H(Λ(S(F ))) ∩ [αC2n

, βC2n
] 6= ∅;

• If k > M and k /∈
⋃

n∈F [αC2n
, βC2n

], then k /∈ H(Λ(S(F ))).

These statements can be verified exactly as in Theorem 12. For the first, we consider
F ′ := F − {n} and look at the covering map Λ(S(F ′)) → Λ(S(F )). Attach free J(S)-
orbits of 2-cells to Λ(S(F ′)) to make a simply-connected Cayley complex ∆, and let K ′ be
the kernel of the map J(S(F ′))→ J(S(F )). The quotient ∆/K ′ has 1-skeleton Λ(S(F ))
and fundamental group K ′. As before, we know that there is an element of K ′∩G(S(F ′))
of length βC2n

and that any non-identity element of this subgroup has length at least
αC2n

. Since M = 4N1 + 4 > N = 2N1, Theorem 13 tells us that the word length of any
non-identity element of K ′ is also at least αC2n

. Now the shortest non-identity element
of K ′ defines a taut loop in the required range.

For the second statement, given such a k, take n maximal so that βC2n
< k, let

F ′ := F ∩ [0, n], and consider the covering map Λ(S(F ′))→ Λ(S(F )). As before, we can
build a Cayley 2-complex ∆ with 1-skeleton Λ(S(F ′)) in which each 2-cell is attached to
a loop of length at most max{M,βC2n}. If γ is a loop in Λ(S(F )) of length k, then either
γ is not taut, or the lift of γ to Λ(S(F ′)) is a non-closed path. In the second case one
obtains a non-identity element in the kernel of the map J(S(F ′)) → J(S(F )) of length
at most k. Since k > M > N , Theorem 13 tells us that there is a non-identity element of
length at most k in the kernel of the map G(S(F ′)) → G(S(F )), which cannot happen.
This contradiction shows that γ cannot be taut.

The next two corollaries follow easily by the same proofs as in the previous section.

Corollary 15. If F , F ′ are subsets of N so that Λ(S(F )) and Λ(S(F ′)) are quasi-
isometric, the symmetric difference of F and F ′ is finite.

11



Corollary 16. For any L that is not simply-connected, and any graph K(∅) with a free
GL(∅)-action, there are continuously many quasi-isometry classes of groups J(S).

The reason why Corollary 16 is of value concerns the use of the Davis trick [6] to
construct non-finitely presented Poincaré duality groups, as described in [8, Sec. 18]. The
starting point is a 2-complex L for which each GL(S) is type FP ; for this group there is
a finite 2-complex that is an Eilenberg-Mac Lane space K(GL(∅), 1). For any n ≥ 4, one
can find a compact n-manifold V with boundary that is also a K(GL(∅), 1). Now let K be
the 1-skeleton of the barycentric subdivision of a triangulation of the boundary of V , and
let K(∅) be the 1-skeleton of the induced triangulation of the boundary of the universal
cover of V , with GL(∅) acting via deck transformations. For this choice of K(∅), the
group J(∅) contains a finite-index torsion-free subgroup J ′ that is the fundamental group
of a closed aspherical n-manifold M , and such that regular covering M(S) of M with
fundamental group the kernel of J ′ → J(S) is acyclic for each S ⊆ Z. One deduces that
each J(S) contains a finite-index torsion-free subgroup that is a Poincaré duality group
of dimension n. Since the inclusion of a finite-index subgroup is always a quasi-isometry,
Corollary 16 implies

Corollary 17. For each n ≥ 4 there are continuously many quasi-isometry classes of
non-finitely presented n-dimensional Poincaré duality groups.

It remains to prove Corollary 3 from the introduction. This follows from the above dis-
cussion by the Schwarz-Milnor Lemma [3, I.8.19], which tells us that the acyclic covering
manifold M(S) is quasi-isometric to J(S).

References

[1] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent.
Math. 129 (1997), 445–470.

[2] B. H. Bowditch, Continuously many quasiisometry classes of 2-generator groups,
Comm. Math. Helv. 73 (1998), 232–236.

[3] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren
der Mathematischen Wissenschaften 319, Springer-Verlag (1999).

[4] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer-Verlag (1982).

[5] , M. W. Davis, The cohomology of a Coxeter group with group ring coefficients, Duke
Math. J. 91 (1998) 297–314.

[6] M. W. Davis, The geometry and topology of Coxeter groups, London Mathematical
Series Monographs Series 32, Princeton University Press (2008).

[7] R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of
invariant means (English translation) Math. U.S.S.R. Izv. 25 (2) (1985) 259–300.

[8] I. J. Leary, Uncountably many groups of type FP , arXiv:1512.06609v2, 35 pages.

12


