PART I. PRESENTATIONS AND LINEARITY OF SOME LOW GENUS
MAPPING CLASS GROUPS

IGNAT SOROKO

CONTENTS
1. Introduction 1
2. Preliminary lemmas 2
3. Genus 0: (g,b,n) = (0,m,n), m>1 4
4. Genus 1,b+n=2: (g,b,n) = (1,2,0),(1,1,1),(1,0,2) 8
5. Genus 1,b+n=3: (¢g,b,n) =(1,3,0),(1,2,1),(1,1,2),(1,0,3) 13
References 20

1. INTRODUCTION

Let Sy, denote the compact orientable surface of genus g with b boundary components
and n punctures. Let PMod,;, denote the (pure) mapping class group of orientation-
preserving diffeomorphisms of Sy, identical on the boundary and not permuting punctures,
via the isotopies identical on the boundary and not permuting punctures.

It is a well-known open problem to find out if the mapping class group PModg,, admits
a faithful linear representation for arbitrary values of g, b, n. In her article [BIR, Problem
18], Joan Birman mentions that for the following triples (g, b, n):

(1,0,0),(1,1,0),(1,0,1),(0,1,n),(0,0,n),(2,0,0)

the mapping class group PMod, ;. is known to be linear, and she asks if this list can be
extended to contain any other triples.

In Part I, by following the approach of [LP], we provide detailed proofs of the known
presentations for mapping class groups with some small values of (g, b, n). Then, by analyzing
these presentations, we show that the list of mapping class groups which are linear can be
extended to include the following triples (g, b, n):

(0,m,n), m>1, (1,2,0),(1,1,1),(1,0,2),(1,3,0),(1,2,1),(1,1,2),(L,0,3).
The main result of this Part can be stated as follows:

Theorem. The following table lists the isomorphism types of mapping class groups PModgp
for some small values of g, b, n:
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] (g,b,m) [ PModg,, |
(0,m,n), m>1[Z™"' x PByim-1
) 7 X B4
) B,

) By/Z(B4)
)

)

)

Z2 X A(D4)
Z x A(D4)
A(Dy)

Here B,, denotes the braid group on n strands, PB,, is the pure braid group on n strands,
A(Dy) is the Artin group of type Dy, and Z(G) denotes the center of a group G.

The genus 0 case is proved in section 3 below (proposition 1), the case of ¢ = 1 and
b+n = 2 is proved in section 4 (propositions 2, 3, 4) and the case of g =1 and b+n = 3 in
section 5 (propositions 5, 6, 7).

Corollary. All mapping class groups from the Theorem are linear.

Proof. Braid groups are linear by the results of Krammer [KRA] and Bigelow [Bic]. That
Artin groups of spherical type are linear (in particular, A(D,)), was proved by Cohen-
Wales [CW] and Digne [D1G]. The fact that if a group G is linear then the quotient group
G/Z(@G) is also linear, follows from Theorem 6.4 in [WEHR] (see lemma 6 below). O

2. PRELIMINARY LEMMAS

We will use a few well-known results.

Lemma 1 (Birman exact sequence, [FM, Th.4.6]). Let S be a surface with x(S) < 0, and
let S* be S\ {x} for a point x in the interior of S. Then the following sequence is exact:
1 —s m (S, z) -2 PMod(S*) - PMod(S) — 1

where p is the “point-pushing map” and F is the forgetful map which treats all maps S* to
S* as maps S to S which send x to x. O

Lemma 2 (Properties of the point-pushing map, [IvA, Lemma 4.1.1, 4.1.C], [FM, Fact 4.7,
4.8]).
(a) Let o be a simple loop in a surface S representing an element of m(S,z). Then
p(le]) ="t

where [a] is the class of the loop o in m (S, x), a and b are the isotopy classes of the simple
closed curves in S* = S\{x} obtained by pushing a off itself to the left and right, respectively,
and tg, t, denote the right Dehn twists about a, b.

(b) For any h € PMod(S*) and any o € m1(S,x) we have

p(h.(a)) = hpla)h™*.
O

Lemma 3 (Capping the boundary, [FM, Prop.3.19]). Let S be the surface obtained from
a surface S by capping the boundary component 5 with a once-punctured disk. Let
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Cap: PMod(S) — PMod(S’) be the induced homomorphism obtained by extending homeo-
morphisms of S to the once-punctured disk by the identity. Then the following sequence is
exact:

1 — Z — PMod(S) <2 PMod(S') — 1
where 7. is generated by the twist around . O

The following group-theoretic lemma describes the presentation of an extension of two
finitely presented groups. Suppose we have a short exact sequence of groups:

1—>KL>GL>Q———>1

and suppose that groups K and @ have presentations K = (Sk | Rx), @ = (So | Rg). For
each © € Sp consider an element & € G such that ¢(Z) = 2 and let

SQZ{CYT‘SEESQ}.

Also set Sy = t(Sk).
For every relator r € Rg, consider its decomposition r = z* ... x." where all z; € Sp,
and the corresponding element 7 = Z1*...Z* € G. Since r represents 1 in ), we have

o(7) = r = 1, and therefore 7 € ((K), so we can express 7 as a word w, in elements of Sk
Set
Rywo = {Fw; " | r € Ro}.

For every 7 € SQ and for every y € Sk we can consider element Zyz~'. Since t(K) is normal
in G, this element belongs to ¢(K'), so we can represent Zyz~' as a word v, in the elements
of g K- Set _ _

Reonj = {Zyi vy, | T € S,y € Sk}
Finally, set Rye be the set of words in «(K) obtained from Ry by replacing each y € Sk by
Wy) € Sy wherever it appears.

Lemma 4 ([JOHN, Proposition 10.2.1]). With the above notation, the group G has a pre-
sentation:

G = (Sk U Sy | Rier U Rquo U Reony)-
O

We will also make use of the following obvious restatements of the braid relation aba = bab.

Lemma 5. Let a,b be two elements of a group, and let @,b denote a™',b™", respectively.
Then the following relations are equivalent:

(bl) aba = bab;
(b2) aba = bab.
(b3) aba = bab;
(b4) aba = bab;
(b5) aba = bab;
(b6) aba = bab.

The following fact is a very useful tool to establish linearity:

Lemma 6. If G is a linear group then the quotient group by its center G/Z(QG) is also linear.



PART 1. PRESENTATIONS AND LINEARITY OF SOME LOW GENUS MAPPING CLASS GROUPS 4

Proof. The Theorem 6.4 of [WEHR] states that if G is a linear group and H is a Zariski
closed normal subgroup then GG/ H isomorphic to a linear group. Since the center of a linear
group is closed in Zariski topology, the result follows. U

3. GENUS 0: (g,b,n) = (0,m,n), m >1

In this section, by using the known presentation of the pure braid group on n strands PB,,
we obtain the following description of the mapping class group PModg , 1

Proposition 1. Form > 1, n > 0,
PModomn &£ Z™ ' X PBryn-1 2 Z™ X PBrin-1/Z(PBpin_1).

This result is not new and there are articles where similar results are mentioned (see
e.g. [HAR, Lemma 3.4]). But we were unable to find a detailed proof of it anywhere, so we
supply it in this section.

We will make use of the following results.

Lemma 7 ([FM, 9.3]).
PMOdO,l,n = PBn

Lemma 8 ([FM, 9.2,9.3]).
PMOdO’Q,n = PBn_l/Z<PBn_1).
O

Remark 1. For small n, the mapping class groups from lemmas 7 and 8 are the following
(see [FM, 4.2.4,9.3]):
PMody0,0 = PModg0,1 = PModg g2 = PModg 03 = PModg 1,0 = PModg1,, =1,
PModg4 = Fa, PModg 12 = Z, PModg 13 = Fo X Z
where F5 denotes the free group of rank 2.

We reproduce here a remarkable result about pure braid groups.

Lemma 9. The extension
11— Z(PB,) — PB, — PB,/Z(PB,) — 1

is split, i.e.
PB, = PB,/Z(PB,) x Z.

Proof. ([FM, 9.3], for algebraic proof see [DM, Lemma 1.5].) It is sufficient to exhibit an
epimorphism ¢: PB, — Z = Z(PB,) such that the composition Z — PB, — Z is
identical on Z. Consider f: PB, — PBy = Z, the homomorphism of forgetting the last
n — 2 strands, and g: Z = (¢}) — Z = (A2?), an isomorphism sending the generator o2 of
P B, onto the generator A2 of the center of PB,,. Then the composition ¢ = go f: PB, —
Z(PB,) will have the desired properties. Indeed, we can see from the geometric description

of the central element that f(A2) = o7 and g(0?) = A? by definition. O

Corollary.
PBy = Fy X 7
where F, denotes the free group of rank 2.
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Proof. The proof follows from lemma 8 and the fact that PModgos = Fy (see Remark 1
above). O

We will also need the following presentation of the pure braid group PB,, (which is a slight
modification of the Artin’s presentation for PB,):

Lemma 10 ([MMcC, Th.2.3]). The pure braid group PB, has the following presentation:
Generators: a;;, 1<i<j<n.
Relations:
(a) lapg,ars] =1 forall p<qg<r<s;
(b) laps,ag] =1 forall p<qg<r<s;
() QprlgrOpg = QgrOpgQpr = ApglprQqr  forall p<q<r;
(d) larsapra;l ag) =1  forall p<g<r<s. O

If we identify PB, with PMody 1, as in lemma 7, then the generator a;; will correspond
to the right Dehn twist around the curve ¢;; which encircles i-th and j-th punctures only:

1 2 c "

L4 @ .- LT a e ®

We treat all words in generators a;; as written in the functional notation, i.e. the rightmost
element is applied first. Now we are ready to prove the

Proposition 1. Form > 1,n >0,
PMOdO,m,n = Zm—’] X PBm—!—n——l = 7" x PBm+11—1/Z(PBm+n—1)'

Proof. The second isomorphism follows from lemma 9. To prove the first isomorphism, we
argue by induction. By lemma 7, PModg 1, = PB, = Z'*! x PBi,,_;, which gives us the
case of m = 1 (and arbitrary n > 0). Suppose that the statement is true for PModg m.n
(with m fixed and n arbitrary) and we prove it for PModgme1,. By lemma 3, we have a
short exact sequence

1 — Z — PModgmstn <% PModgm ey — 1
s s MmN+

where the map Cap: PModg n11,n — PModgm n+1 is obtained by attaching a once-punctu-
red disk to one of the boundary components and extending all maps to it by the identity.
By the inductive assumption, PModg 1 = Z" ' x PB,,., where the group PB,, ., is
generated by elements a;; from lemma 10, and Z™! is generated by the boundary twists
around any m — 1 out of m boundary components. By using lemma 4, we obtain the
presentation for PModg y,+1,. In the notation of lemma 4 we have:

K = 7 = (dm+1), where dp,+1 is the right Dehn twist about the (m + 1)-st boundary
component;

Q) = PModg m n+1 with the presentation:

Generators:
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ag, 1<i<j<n

dp, 2<k<m, (dis the right Dehn twist around the k-th boundary component).
Relations: (a),(b),(c),(d) from lemma 10, plus the commutation relations:

(e) [dr,aij]=1 [dp,d))=1 forallk,I, alli,j.

According to lemma 4, the group G = PModg m+1,, Will have generators:
So U Sk
where
So={ay,dp|1<i,5<n,2<k<m}, Sk={dn1}.
and relations
Ry U Ryuo U Reonj-

It is easy to notice, that we can choose as a;; the Dehn twists about the same curves ¢;;
but now considered as transformations of the surface Sg+1,.. So it will be convenient for
us to denote them with the same letters a;;. Similarly, dy, (k=2,...,m) can be chosen as
boundary twists of the surface Sg 41, S0 it is convenient to identify dy, with dy,.

Therefore we may assume that PModg 41, is generated by all a;; and dy, k= 2,..., m+1.

To find relations R U Rquo U Reonj. We notice that Rg = & since K = Z, a free group.
Since K is generated by the boundary twist d,,+1, which commutes with all other mapping
classes, relations Reopj are:

Reonj = {[dm+1, a5l =1, [dms1,del =1, 1<i<j<n, 2<k<mi.

To obtain relations Rqy,, we need to ‘lift’ all relations (a)—(e) above from @ = PModg m n+1
to G = Pl\ﬁ)do,m—i-l,n:

(a):  [apgars) =1 forall p<g<r<s.

The relations of type (a) are disjointness relations, since a,, and a,, are right Dehn twists
around disjoint curves ¢, and c;,:

r <

rs

The corresponding Dehn twists in G will also commute so the same relation holds in G.

(b)  laps.ag| =1 forall p<g<r<s.
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These relations are also disjointness relations, as the following picture shows.

P

S

CP.S

(C)  CprlgrOpg = Qgrlpglpy = QpgGpraq,  forall  p<q<r.

The configuration of curves c¢,q, ¢, and cg, is exactly the configuration of curves from the
lantern relation (see e.g. [IvA, Lemma 4.1.H] or [FM, Prop. 5.1]) which says that these triple
products are all equal to the product of the four right Dehn twists ¢,, ¢,, t, and the twist
tper around the curve enclosing all three punctures p, g, r:

AprQgrOpg = GgrlpgOpr = Gpgprlgr = tptgtrlpgr (lantern relation)

In particular, relations of type (c) hold in the group G as well.

(d)  apsaprar) ags) =1 forall p<g<r<s.
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These relations are also disjointness relations: the map arsapra;:gl is the right Dehn twist
around the curve a,4(cp) (according to the well-known formula ft,f~" = tf()) which is
disjoint from the curve cg,:

Therefore the relations of type (d) also hold in the group G.

(e) ldk,aiyl=1, [dp,dj)=1 forallk,l, alli,j.

These relations hold in G since all twists d are boundary twists.

To summarize, we just established that all relations (a)—(e) hold as they are in the group
G = PModg m+1,, as well. Thus, the set of relations Ry, is just the relations (a)-(e) above.
Therefore, the group G has all the generators and relations of the group H = PModg 41
plus one additional generator d,,.; which commutes with all other generators.

Thus, PModg p41,n & Z x PModg pny1 & Z™ X PB4y, which finishes the proof. O

4. GENUS 1, b+n=2: (g.b,n)=(1,2.0),(1,1,1),(1,0,2

In this section we prove that PMod, ; ; is isomorphic to the braid group on four strands,
and obtain presentations for PMod, 2y and PMod, (2 as corollaries.

1<y

Proposition 2.

PMOdLLl = B-/l = <A B.C

ABA =BAB,AC = CA.BCB = CBC),
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where A,B,C are right Dehn twists about the curves shown in the picture:

Proof. According to lemma 1, there is a short exact sequence
1 — 7T1(Sl7170) —P——>?M0d1’1,1 —>?N[Od1’1,0 — 1

where p denotes the point-pushing map. It is a well-known fact (see for example [FM, 3.6.4])
that

PMod, 10 = By = (A,B | ABA = BAB)
where A and B denote the right Dehn twists as in the picture below:

A

The fundamental group m1(S11,0) is a free group on two generators «, (3, shown in the
picture below:

and the Birman exact sequence takes the form:

1 —(a,f|) -2 Mody, — (A, B| ABA= BAB) — 1

Generators. We will adopt now notation from lemma 4.

Clearly, as a set S'Q of representatives of twists A, B € PMod; 1 (see picture 2) we can
take the corresponding twists A, B € PMod; 11 (see picture 1). As a set S . of generators
of m1(51,1,0), viewed as elements of PMod; 1,1, we take Sy = {a,b| a=pla), b=p(B)}.

Relations. According to lemma 4. the set of relations of PMod;;; is the union of three
sets: Ryer U Rquo U Reonj-

Clearly, Ryer = @ since m1(S51,1,0) is a free group.

Since the only relation in PMod; ;¢ is the braid relation ABA = BAB, the corresponding
twists in PMod, 1, also satisfy it, so we see that it lifts to PMod, ;; without any change,
and we have Ry, = {ABA = BAB}.

To obtain Reej, we need to conjugate generators a, b of p(m(Sy1,0)) with right Dehn
twists A, B. By lemma 2(b), we have:

AaA™t = plAla)) = pla) =«
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We adopt here the functional notation for multiplication of loops: in the notation Sa,
loop « is traversed first.

BbB™' = p(B(f)) = p(B) = b.
Therefore, by lemma 4, the group PMod, ; ; has a presentation:

Generators: a,b, A, B.

Relations: (i) ABA = BAB;
(1) AaA™! =g
(2) AbA™! = ba;
(3) BaB™! = b71q;
(4) BbB~! =b.

Simplification of the presentation. In what follows, the bar () will denote the inverse
element in a group.

Let’s introduce a new generator C' which is the right Dehn twist denoted by the letter C'
in picture 1. Then, by lemma 2(a),

a=pla)=A"'C=AC

and this allows us to eliminate generator a from the presentation.
We can also eliminate generator b by expressing it in terms of A, B, and a.
Indeed, as we can see from the pictures, BA(f) = a:

Thus, S = (BA) ! (a), and, by lemma 2(a),
b=p(B) = (BA)'pla)(BA) = (BA) *a(BA) = AB - AC - BA.
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Thus we can assume that our group is generated by A, B, C only.
Now plugging the expression a = AC' into relation (1) and performing obvious simplifica-
tions, we see that (1) is equivalent to the following sequence of relations:

AaA™ =a
A-AC-A=AC (cancel A - A)
CA=AC
AC =CA

So we obtained a new relation:
(ii) AC = CA.

Similarly, plugging the expressions for a and b into relation (3), we see that (3) is equivalent
to the following relations:

BaB™ ' =b"ta
B-AC -B=AB-CA-BA-AC (exchange C and A by (ii), cancel A - A)
BA-CB=ABA-CBC (apply (i) and lemma 5, (b6))
BA-CB = BAB -CBC (cancel)

CB = BCBC
BCB = CBC
BCB = CBC

Thus we got yet another relation which we denote
(iii) BCB = CBC.
\Let us show now that the remaining relations (2) and (4) are consequences of relations (i),
(uRe(llélzlt)lon (2) holds true since it is equivalent to the following sequence of relations:
AbA™! = ba
(f—lB AC-B i@é = (AB-AC . BMC (cancel)
B-AC -B=ABA-C-BC  (apply (i) and lemma 5, (b2))
BACB = BAB - BCRB (cancel)
BACB = BACB (holds true)
In a similar vein, relation (4) is true since it is equivalent to the following relations:
BbB =1
B-AB-AC-BA.-B=AB-AC-BA (apply (i)4(b3) and (ii))
BAB-AC -ABA=AB-CA-BA (cancel on both sides)
ABA-A= AB (cancel)
AB = AB (holds true)
This finishes the proof that
PMod; 1, =(A4,B,C' | ABA= BAB,AC =CA.BCB = (CBC) =
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O
Corollary. There ezist a split short exact sequence:
1—>F2—i—>B4L>B3—->1
where Fy = F(a, () is a free group on two generators, and
By = (z,y | zyz = yay),

By=(A,B,C | ABA=BAB,AC =CA,BCB = CBC)

are braid groups on 3 and 4 strands respectively. The inclusion i is given by o — A™'C,
G (BA)™! - (A71C) - (BA) (so that i(Fs) is the normal closure in By of element A='C),
and the projection 7 is given by A— x, B—y, C — . O

Remark 2. We just obtained a topological proof of the remarkable fact that
ker(By —— B3) & F,. For algebraic proofs of this result, see [Gas, Th.7], [GL, Th.2.6]
or [KR, Prop.2.13].

Proposition 3. PMod, 5 is isomorphic to Z x By = (A, B,C,D | ABA = BAB,AC =
CA,BCB = CBC,AD = DA,BD = DB,CD = DC) where A,B,C,D are right Dehn
twists about the curves shown in the picture:

Proof. By lemma 3, we have a short exact sequence:
1—7Z — PMOdLQ,O — PMOdl,Ll — 1

where Z is generated by the boundary twist D.
Using the presentation from proposition 2 for PMod, ; ; and applying lemma 4, we get:

PMOdl,Q,O = <A, B, C, D ‘ Rker U uno U Rconj>'

Again, Ry, = @ since Z is a free group.

Relations from PMod, 1 ; are all braid relations, so they lift to PMod; 5 g without changes,
and we have Rqy, = {ABA = BAB,AC = CA,BCB = CBC}.

The conjugation relations Ron; are all trivial since the boundary twist D commutes with
all other generators A,B,C: Reony = {ADA™' = D,BDB~' = D, CDC~! = D}.

Therefore, the presentation of PMod; o is as stated in the Proposition. O
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Proposition 4. PMod, o5 is isomorphic to By/Z(By) = (A,B,C | ABA = BAB,AC =
CA,BCB = CBC,(ABC)* = 1), where A, B, C are right Dehn twists about the curves
shown in the picture:

Proof. By lemma 3, PMod, g is isomorphic to PMody 1, /(D) where D is the boundary

twist in the picture below:

According to the well-known 3-chain relation (see e.g. [FM, Prop.4.12]), the element
(ABC)* is equal to the product DD’ where D’ denotes a right Dehn twist shown on the
picture above. As D' =1 in PMod, 1, we have D = (ABC)*.

Notice that the element (ABC')* generates the center Z(Bjy) of the braid group By (see [KT,
Ex.1.3.2]).

O

5. GENUS 1, b+n=3: (g,b,n) = (1,3,0),(1,2,1),(1,1,2),(1,0,3)

In this section, in a way similar to the one in section 4, we show that the group PMod, 3 »
is isomorphic to the Artin group A(Dy) and obtain presentations for the groups PMod g3,
PMod; 21 and PMod; 35 as corollaries.

Proposition 5.
PMod; 10 = A(Dy) = (A, B,C,D | ABA= BAB,AC = CA, AD = DA,
BCB =CBC,BDB = DBD,CD = DC),

where A, B,C, D are right Dehn twists about the curves shown in the picture:

Prctuae 3

Proof. According to lemma 1, there is a short exact sequence
1 — 7(S111) == PMod; 10 — PMod; ;3 — 1
where p denotes the point-pushing map. As we proved in section 4, proposition 2
PMod; 13 = By = (A.B,C | ABA= BAB, AC = (A, BCB = CBC)
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where A, B, C denote the right Dehn twists as in the picture below:

P \‘C*\*I(Q L'

The fundamental group m;(S1,11) is a free group on three generators oy, ag, § shown in
the pictures below:

and the Birman exact sequence (see lemma 1) takes the form:

1 — <061,Q{2,5 l> _p__) PMOdl’l’g e B4 — 1
As in the proof of proposition 2, we adopt the notation from lemma 4.

Generators. Again, as before, as a set S’Q of representatives of twists A, B,C € PMody 1
(see picture 4) in the group PMody 1, we can choose the corresponding twists A, B, C (see
picture 3). As a set Sk of generators of 71(.51,1,1), viewed as belonging to PMody 1,2, we take

SK ={ay,a2,b|a = plaa), ag = plag), b= p(B)}-

Relations. Again, according to lemma 4, the set of relations of PMod, 1 is the union of
three sets: Ryer U Rquo U Reonj-

As before, it is clear that Ry = @ since m1(S1,1,1) is a free group.

Since the only relations in PMod; 1 are the braid relations, the corresponding twists in
PMod; 12 also satisfy them, so we see that they lift to PMod; 1 without any change, and
we have Ry = {ABA = BAB,AC = CA,BCB = CBC}.

To obtain Re.pnj, we need to conjugate generators ai, asg, b of p(m1(S1.1,1)) with right Dehn
twists A, B, C of PMod; 1.

By lemma 2(b) we have the following relations because of the disjointness of the underlying
curves:

Aa A7 = p(Alar)) = plow) = ay

Aay A™! = p(Alag)) = plan) = as

CasC™" = p(Clag)) = plaz) = a
BbB™ = p(B(B)) = p(B) =0

We also see from the pictures that

BuyB™' = p(Bl(a)) = p(B ay) = b ay:
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%
and similarly,
BayB™' = p(B(as)) = p(B87 ) = b tas.
(Recall that we use functional notation for the multiplication of loops.)
Also,
Ca,C™ = p(C(an)) = plagtaras) = a5 aras
since C'(a;) = a5 'ajay. Indeed:

-
= oy uly oly

CL)

And also,

As a result, we get a presentation:

Generators: aq,a9,b, A, B, C.

Relations: (i) ABA = BAB:;
(i) BOCB = CBC,
(iii) AC = CA4;
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(1) A(IlA_l = a1,

(2) AGQA_l = Q9;

(3) CCLQC_l = Q2;

(4) BbB~' = b;

(5) CCLlC e Gy " Q1Q2;
(6) BCLlB—l = b‘lal;
(7) BayB™! = b~Lay;
(8) AbA_l = bal,

(9) ObC—! = bas

Simplification of the presentation. As before, we will use the bar (V) to denote the inverse
element in a group.

Let’s introduce a new generator D which corresponds to the right Dehn twist denoted by
the same letter D in picture 3. Then, by lemma 2(a),

as = plag) =C'D=CD

and we can eliminate generator as from the presentation.
We can also eliminate generators a; and b by expressing them in terms of A, B, C, D and
9. (The formulas below are taken from [LP, p.88].)
Indeed we can check that CBC(f) = ao:

p

BC(p) CBC(P)=dy

so that 3= CBC(ay) and b= CBC - ay - CBC.
Similarly, we can check that BDABC () = a5 '

(see mrt page)

)

Therefore, oy = (BDABC) Y (ay') and a; = CBADB - a7 - BDABC.
We got the following expressions for aj, as, b in terms of A,B,C,D:

Uy = CD
b=CBC-(CD)-CBC
(*) a; =CBADB -DC - BDABC

Let’s now modify the relations (1)-(9) above to distill from them the presentation of the
group A(Dy).
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Relation (2) is equivalent to:
Aas A7 = ay
A-CD-A'=CD (use (iii))
C-AD=C DA
AD = DA
We got a new relation which we denote
(iv) AD = DA.

Similarly, relation (3) is equivalent to:

CasC7 ' = ay
C.-CD-C=CD
DC =0CD
CD=DC

So we got a new relation
(v) CD = DC.

Relation (7) is equivalent to:

Ba; B~ = bay
B-CD-B=CBC-DC-CBC-CD (cancel C' and C through D using (v))
B-CD-B=CB-DCB-D (use (v) again)
B-CD-B=CBC-DBD (use (ii) and lemma 5, (b6))
B-CD-B=BCB-DBD (cancel on both sides)
DB = BDBD
DBD = BDE

and we got yet another relation which we denote
(vi) BDB = DBD.

Let’s now show that the remaining relations (1), (4)-(6), (8)—(9) are consequences of
relations (i)—(vi).

Relation (1) is equivalent to the following relations:
Aa A7t = ay (substitute expression (*) for ay)
A-(BDABC)™'.DC-BDABC - A= (BDABC)™.-DC-BDABC
(**)  (BDABC) - A-(BDABC)™'.DC = DC-BDABC - A-(BDABC)™!

Let’s simplify expression (BDABC) - A- (BDABC)™!:

————— (iii

(BDABC)- A- (BDABC)™ = BDABC - A-CBADB Y BDAB - A BADB Y

(vi

— BDA-ABA.ADEB=BD.B-DBEY DBD . DB = D.
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Therefore, relation (**) is equivalent to:

D-DC = DC - D, which holds true due to (v).

Relation (4) is equivalent to:

BbB™'=b
B-CBC-CD-CBC-B=CBC-CD-CBC  (use (v) and cancel C' and C)
B-CBC-D-BC-B=CBC-D-BC (use (ii) and lemma 5, (b2),(b4))
B-BCB-D-CBC=CBC-D-BC (cancel)
CB-D-C=CBC-D  (holds true due to (v)).

Relation (5) is equivalent to:

CCL]C_l = 042_1@1(12

C-CBADB-DC-BDABC-C = DC-CBADB-DC - BDABC -CD
BADB - DC-BDAB =D-BADB-DC-BDABD (multiply by D on the left)
D-BADB-DC-BDAB = BADB - DC - BDABD  (use (iv))
D-BDAB-DC-BADB = BDAB - DC - BADBD (use (vi))
BDB-AB-DC-BADB = BDAB - DC - BA-BDB (use (i))
B

D-ABA-DC-BADB = BDAB-DC - ABA-DB (cancel on both sides)
’ ADC = DCA (holds true due to (iii) and (iv)).

Relation (6) is equivalent to to:

Ba, B! =b"tay
-CBADB-DC - BDABC - °BC
.CBADB-DC - BDABC -
ADB - DC - BDABC -

CBC-DC-CBC-CBADB-DC - BDABC
B-D-CADB-DC-BDABC (use (v))
BC-DADB -DC-BDABC  (use (v))
.CBADB-DC - BDABC -B=CBC-DA-DBD-C-BDABC  (use (ii),(iv),(v)
-CBADB-DC -BDABC -B = BCB-AD-BDB-C-BDABC (cancel)
CB-DA-BCB=BCB -DA-BC  (use (i)
CB-DAC-BC=CB-CDA- BC (cancel)
DAC = CDA (holds true due to (iii) and (v)).

oy o o
Il
QY

W W
| QO QY
on]]

s
>
ey

Sy
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Relation (8) is equivalent to:

AbA™Y = ba,
A-CBC-CD-CBC-A=CBC-CD-CBC-CBADB-DC-BDABC  (use (v))
A-CBC-D-BC-A=CBC-CD-C-AD-BDC-BDABC  (use (iv),(v))
A-CBC-D-BC-A=CBC-A-BDC-BDABC  (use (iii))
CA-BC-D-B-AC=C-BC-A-BDC-BDAB-C  (cancel)
ABC-DB-A=B-CAB-DC-BD-AB  (multiply by B and by BA)
BAB - CDB-ABA=CAB-DC-BD (use (i) and (iii))
ABA.CDB-BAB = AC -BDC-BD  (cancel)
BA-CD-AB=C-BDC-BD  (cancel A and A, exchange D and C)
B-CD-B=CBC-DBD  (use (ii) and (vi))
B-CD-B=BCB-BDB  (cancel)
B-CD-B=BCDB (holds true).
Relation (9) is equivalent to:
CbC™! = bay

C-CBC-

°D-CBC-C=CBC-CD-CBC-CD (cancel and apply (ii))
BC - CD-CB=BCB-CD-CB-D (cancel and use (v))
 DB=B-D-BD (use (vi))

DB =05-BDB (holds true).

<

This finishes the proof that relations (1)—(9) are equivalent to relations (i)-(vi), and hence
the proof of the proposition. : O

Proposition 6.

(a) PMOdLQJ =27 x A(D4),
(b) PMOd1’370 = Z2 X A(D4),

Proof. The proof is almost a verbatim reiteration of the proof of proposition 3. U

Proposition 7.

PMod, o5 = A(Dy)/Z(A(Dy)) = (A, B,C,D |ABA = BAB, BOB = CBC, BDB = DBD,
AC = CA. AD = DA,CD = DC,(ABCD)* = 1),
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where A, B, C, D are right Dehn twists about the curves shown in the picture:

Proof. By lemma 3, PMod, 3 is isomorphic to PMody 12 /(D) where D; is the boundary
twist in the picture below:

According to the well-known star relation (see e.g. [FM, 5.2.3], [GER]), the element
(ACDB)? is equal to the product Dy DyD3 where Dy,D5 denote right Dehn twists shown on
the picture above. As Dy = D3 =1 in PMod, ; 2, we have Dy = (ACDB)>.

Notice that the element (ACDB)? is the fundamental element (“Garside element”) of
the Artin group A(D,). It is also equal to (ABC'D)® and it generates the center of A(D,)
(see [BS, Lemma 5.8 and Zusatz, (ii))).

O
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