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Abstract. In a recent article, Cumplido and Paris studied the question of commensurability be-
tween Artin groups of spherical type. Their analysis left six cases undecided, for the following pairs
of Artin groups: (F4, D4), (H4, D4), (F4, H4), (E6, D6), (E7, D7), and (E8, D8). In this note we
resolve the first two of these cases, namely, we show that the Artin groups of types F4 and H4 are
not commensurable with that of type D4. As a key step, we realize the abstract commensurator of
the Artin group of type D4 as the extended mapping class group of the torus with three punctures.
We also find the automorphism group of the Artin group of type D4 and obtain a description of
torsion elements, their orders and conjugacy classes in all irreducible Artin groups of spherical type
modulo their centers.

1. Introduction

Artin groups (also called the Artin–Tits groups) are a natural generalization of the classical braid
groups. They admit a presentation in which the only defining relations are (generalized) braid
relations between some pairs of generators, which is usually encoded via a graph whose vertices
are generators and edges are labeled by {3, . . . ,∞} (the associated Coxeter graph, see Section 2
for definitions). Among all Artin groups, one subclass stands out for richness of their structure
and intrinsic beauty, the class of Artin groups of spherical type. They are exactly the Artin groups
whose associated Coxeter group is finite. The latter were described in terms of their defining graphs
by Coxeter himself, who completely classified all connected graphs corresponding to finite Coxeter
groups. The answer is a list of four infinite series An, Bn, Dn, I2(m) and six standalone groups E6,
E7, E8, F4, H3, and H4, presented in Figure 1. This list also describes all directly indecomposable
Artin groups of spherical type up to isomorphism, as was shown in [Par04]. One can also ask which
Artin groups of spherical type are commensurable, i.e. allow embeddings into one another ‘up to
finite index’. This question was studied in the article of Cumplido and Paris [CP19], where the
authors show that to be commensurable two Artin groups of spherical type must have the same
ranks, and their irreducible components should be pairwise commensurable. Cumplido and Paris
completely resolve the question of commensurability when one of the groups is of type An, and
their result states that for each rank n ≥ 3, the only spherical Artin group commensurable with
the Artin group of type An is that of type Bn, whereas for rank n = 2 all Artin groups of type
I2(m), m ≥ 3, are commensurable with A2. To obtain the complete classification of Artin groups
of spherical type up to commensurability, six remaining cases need to be resolved, for Artin groups
corresponding to the pairs: (F4, D4), (H4, D4), (F4, H4), (E6, D6), (E7, D7), and (E8, D8). In this
note we resolve the first two out of these six cases. Namely, we prove:

Theorem 1. Artin groups of types F4 and H4 are not commensurable with the Artin group of
type D4.

The proof of this theorem is given in Propositions 10 and 12 below. Note that we still do not
know if Artin groups of types F4 and H4 are commensurable with each other.
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Let A[Γ] denote the Artin group of a spherical type Γ, A[Γ] denote its quotient by the center,
and Comm(G) be the abstract commensurator of a group G (see Section 2 for definitions).

To establish the non-commensurability of A[Γ] with A[An] Cumplido and Paris implement the
following strategy. An assumption that A[Γ] and A[An] are commensurable implies that there exists

an embedding Φ of A[Γ] into the abstract commensurator Comm(A[An]) of A[An], which is known
to be isomorphic to the extended mapping class group of the sphere with punctures. To prove that
such an embedding Φ does not exist, Cumplido and Paris analyze its projections onto the finite
quotient of Comm(A[An]) by a certain bi-orderable group (isomorphic to the pure braid group).
Assisted by computer, they classify all such projections, and in most of the cases they are able to
exhibit a generalized torsion element in the (bi-orderable) kernel of the projection, which gives a
contradiction. The remaining ‘hard’ cases are dealt with by finding an element in the image of Φ
which is pseudo-Anosov but whose centralizer is not virtually cyclic, thus yielding a contradiction
as well.

Our approach is similar: we use a realization ofA[D4] as the pure mapping class group PM(Σ1,0,P3)
of the torus with three punctures [Sor20] (a fact which deserves to be more broadly known in the

mathematical community). This yields a description of the commensurator Comm(A[D4]) ofA[D4]
as the extended mapping class group M∗(Σ1,0,P3) in Theorem 5. As in [CP19], we need to prove

that embeddings of A[H4] and A[F4] into Comm(A[D4]) do not exist. To show this for A[H4], we

look at the torsion elements. It turns out that there exist elements of order 15 in A[H4] but not in

Comm(A[D4]), which yields a contradiction. To prove that an embedding ofA[F4] to Comm(A[D4])

does not exist, we classify all epimorphisms from A[F4] onto the finite quotient of Comm(A[D4])
by the (bi-orderable) pure Artin group of type D4 modulo center. The target finite group is quite
large (it has order 1156), so we use the computer algebra system Magma [BCP97] for that, which
has a functionality (due to Derek Holt) for computing all homomorphisms, including non-surjective
ones, from a finitely presented group to a finite group, up to the conjugacy in the latter. In all cases
but one we are able to exhibit generalized torsion elements in the bi-orderable kernel, which gives
a contradiction. The remaining ‘hard’ case appears in the analogous situation as in [CP19], but in
the case of the punctured torus we do not have a handy theorem that allows us to use properties
of pseudo-Anosov elements. Instead, to obtain a contradiction, we utilize the symmetry of the
Coxeter graph of F4, together with the result of Behrstock and Margalit [BM06] which states that
every injection of a finite index subgroup of the extended mapping class group M∗(Σ1,0,P3) into
M∗(Σ1,0,P3) is induced by a conjugation in M∗(Σ1,0,P3).

Our article is organized as follows. Section 2 contains the necessary definitions and key auxiliary
results that we use. In Section 3, by realizing A[D4] as the extended mapping class group of the

torus with three punctures (Σ1,0,P3), we describe the abstract commensurator Comm(A[D4]), and
answer a question of Crisp and Paris from [CP05] about the structure of the automorphism group

and the outer automorphism group for A[D4] and A[D4]. Namely, we establish in Theorem 5 and
in Corollary 6 that:

Comm(A[D4]) ∼= Aut(A[D4]) ∼= Aut(A[D4]) ∼=A[D4] o (S3 × Z2) ∼=M∗(Σ1,0,P3),

Out(A[D4]) ∼= Out(A[D4]) ∼= S3 × Z2,

where S3 is the symmetric group on three elements and Z2 is the cyclic group of order two. In
Section 4 we describe the orders of torsion elements in all Artin groups of spherical type modulo
their centers, and give representatives of the torsion elements of each order up to the conjugacy
(Theorem 7 and Corollary 9). Using this information, we establish in Section 5 that the Artin
groups A[H4] and A[D4] are not commensurable (Proposition 10). Using the strategy outlined
above, we establish in Section 6 that the Artin groups A[F4] and A[D4] are not commensurable
(Proposition 12).
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In [Waj06] Wajnryb asks which Artin groups admit embeddings into mapping class groups of
compact surfaces (with or without boundary). Since all boundary Dehn twists are central in the

mapping class group, it is natural to ask the following related question for the central quotientsA[Γ]:

Question 2. For which Artin groups A[Γ] their central quotients A[Γ] admit embeddings into
mapping class groups of punctured surfaces?

Our results give partial answer to this question. Namely, Corollary 11 establishes that the group
A[H4] does not admit any embedding into the extended mapping class group M∗(Σ1,0,P3) of the
three times punctured torus, and Proposition 12 implies that there does not exist an embedding of
A[F4] into M∗(Σ1,0,P3) such that the image has finite index in the latter. In the Example 13 we

analyze a natural ‘geometric’ candidate for an embedding of A[F4] into M∗(Σ1,0,P3), which sends

the standard generators of A[F4] to Dehn twists and half-twists, and show that (unfortunately) it
is not injective.
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2. Preliminaries

In this section we collect the relevant definitions and key auxiliary results used in this work.
Recall that a Coxeter matrix over a finite set S is a symmetric matrix (mst)s,t∈S with entries in

{1, 2, . . . ,∞}, such that mss = 1 for all s ∈ S and mst = mts ≥ 2 if s 6= t. A Coxeter matrix can
be encoded by the corresponding Coxeter graph Γ having S as the set of vertices. Two distinct
vertices s, t ∈ S are connected with an edge in Γ if mst ≥ 3, and this edge is labeled with mst if
mst ≥ 4. The Artin group associated to Γ is the group A[Γ] given by the presentation:

A[Γ] = 〈S | prod(s, t,mst) = prod(t, s,mts), for all s 6= t, mst 6=∞〉,
where prod(s, t,mst) is the word stst . . . of length mst ≥ 2. The Coxeter group W [Γ] of Γ is the
quotient of A[Γ] by all relations of the form s2 = 1, s ∈ S. The Artin group A[Γ] is of spherical
type if the corresponding Coxeter group W [Γ] is finite. The group A[Γ] is called irreducible if the
corresponding Coxeter graph Γ is connected. All Artin groups of spherical type are classified up
to isomorphism in [Par04]: two such groups are isomorphic if and only if their Coxeter graphs are
isomorphic (as edge-labeled graphs). The list of all Coxeter graphs corresponding to irreducible
Artin groups of spherical type is given in Figure 1. (Note that for small values of n,m we have
the following isomorphisms of labeled graphs: B1

∼= A1, D3
∼= A3, I2(3) ∼= A2, I2(4) ∼= B2, so we

specified inequalities on n,m to obtain a duplicate-free list.)
It is known [BS72] that the center of any irreducible Artin group of spherical type is an infinite

cyclic group. We denote A[Γ] the quotient of the Artin group A[Γ] by its center. We also denote
by CA[Γ] the kernel of the natural projection A[Γ] −→W [Γ], which is called the pure Artin group

corresponding to Γ. Denote CA[Γ] the quotient of CA[Γ] by its center Z(CA[Γ]). In the following

Proposition we collect some properties of the groups CA[Γ] and CA[Γ] that we will use:

Proposition 3. Let A[Γ] be an irreducible Artin group of spherical type. Then:
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s1 s2 s3 sn−1 sn
An, (n ≥ 1):

s1 s2 s3 sn−1 sn

4
Bn, (n ≥ 2):

s1

s2

s3 s4 sn−1 sn
Dn, (n ≥ 4):

s1 s3 s4 s5 s6

s2

E6:

s1 s3 s4 s5 s6 s7

s2

E7:

s1 s3 s4 s5 s6 s7 s8

s2

E8:

s1 s2 s3 s4

4
F4:

s1 s2 s3 s4

5
H4:

s1 s2 s3

5
H3:

s1 s2

mI2(m),
(m ≥ 5, m 6=∞)

:

Figure 1. Coxeter graphs of irreducible Artin groups of spherical type.

(1) The center Z(CA[Γ]) of CA[Γ] is an infinite cyclic group [CP19, Cor. 3.2]1;

(2) CA[Γ] has trivial center and embeds intoA[Γ] as a subgroup of finite index [CP19, Cor. 3.2]1;

(3) CA[Γ] ∼= CA[Γ]× Z(CA[Γ]) [CP19, Prop. 3.1 (2)]1;

(4) CA[Γ] (and hence CA[Γ]) is bi-orderable [Mar07, Th. 3]. �

Let G be a group. Recall that an element α ∈ G is called a generalized torsion element if there
exists n ≥ 1 and elements β1, . . . , βn ∈ G such that (β1αβ

−1
1 )(β2αβ

−1
2 ) . . . (βnαβ

−1
n ) = 1. It is

known that if a group G is bi-orderable it cannot have generalized torsion elements [RZ98]. In
particular, groups CA[Γ] for irreducible Artin groups of spherical type do not contain generalized
torsion elements, by Proposition 3.

Recall that two groups G1 and G2 are called commensurable if there exist finite index subgroups
H1 ⊆ G1, H2 ⊆ G2 such that H1 is isomorphic to H2. For each group G there is a canonically
constructed group Comm(G) called the (abstract) commensurator of G, which is defined as follows.

Let C̃omm(G) be the set of all triples (U, V, f) where U, V are finite index subgroups of G and

f : U → V an isomorphism. Let ∼ be the equivalence relation on C̃omm(G) such that (U, V, f) ∼
(U ′, V ′, f ′) if there exists a finite index subgroup W of U ∩ U ′ such that f |W = f ′|W . As a set,

the commensurator Comm(G) is equal to Comm(G) = C̃omm(G)/∼. If [f1], [f2] ∈ Comm(G)

are two equivalence classes corresponding to triples (U1, V1, f1), (U2, V2, f2) ∈ C̃omm(G), then
the composition of classes [f1] ◦ [f2] is defined as the equivalence class corresponding to the triple(
f−12 (U1∩V2), f1(U1∩V2), (f1◦f2)|f−1

2 (U1∩V2)
)
. It can be shown that under this operation Comm(G)

forms a group, and if two groups G1 and G2 are commensurable, then their commensurators are
isomorphic. A very readable account of basic properties of commensurators is given in the survey
of Studenmund [Stu14].

Cumplido and Paris established the following important result, which is key to the proofs
in [CP19] and in the present article:

Theorem 4 ([CP19, Prop. 3.1 (3),(4)]1). Let A[Γ] and A[Ω] be two irreducible Artin groups of
spherical type. Then

1(Added June 12, 2024) These are the corrected references, the numbering of items in the journal article [CP19] has
changed compared to the arxiv version, and it has not caught the author’s attention before this paper was published.
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(1) A[Γ] and A[Ω] are commensurable if and only if A[Γ] and A[Ω] are commensurable;

(2) The group A[Γ] injects into its commensurator Comm
(
A[Γ]

)
. �

One more ingredient that we will need is the mapping class group of a surface, the definition
of which we briefly recall. Let Σ = Σg,b be the orientable surface of genus g with b boundary
components, and let Pn be a collection of n different points in the interior of Σg,b. The mapping class
groupM(Σg,b,Pn) of the pair (Σg,b,Pn) is the group of orientation-preserving homeomorphisms of
Σg,b, identical on the boundary and permuting the set Pn, considered up to isotopies identical on
the boundary and fixing Pn pointwise. If we allow orientation-reversing homeomorphisms in the
above definition, we get the notion of the extended mapping class group of the pair (Σg,b,Pn), which
is denoted M∗(Σg,b,Pn). If a surface Σ has nonempty boundary, then M∗(Σ,Pn) = M(Σ,Pn),
otherwise M(Σ,Pn) is a subgroup of index 2 in M∗(Σ,Pn). The pure mapping class group of the
pair (Σg,b,Pn) is the finite index subgroup PM(Σg,b,Pn) of M(Σg,b,Pn) which fixes the set Pn
pointwise.

3. The mapping class group of the torus with three punctures

It is known that the pure mapping class group of the three times punctured torus is isomorphic
to A[D4], the Artin group of type D4 modulo its center. This fact is implicit in the description
of the general presentations for the mapping class groups of punctured surfaces given by Labruère
and Paris in [LP01], and can also be deduced from the Gervais presentation [Ger01], as it was

shown in [Sor20]. We will use it to describe the abstract commensurator of A[D4] in the following
theorem.

Theorem 5. The abstract commensurator Comm(A[D4]) of A[D4] is isomorphic to the extended
mapping class group M∗(Σ1,0,P3) of the torus with three punctures, which has the following struc-
ture:

Comm(A[D4]) ∼=M∗(Σ1,0,P3) ∼=A[D4] o (S3 × Z2),

where A[D4] ∼= PM(Σ1,0,P3) is the pure mapping class group of (Σ1,0,P3), S3 is the symmetric
group of order 6 consisting of rotations of the torus permuting the punctures, and Z2 is gener-
ated by the orientation-reversing reflection fixing all punctures pointwise (i.e. the reflection in the
‘horizontal’ plane of the torus in Figure 2).

In the Dehn twist generators a1, a2, a3, a4 about the curves in Figure 2, the group PM(Σ1,0,P3)
has a presentation:

PM(Σ1,0,P3) = 〈a1, a2, a3, a4 | a1a3a1 = a3a1a3, a3a2a3 = a2a3a2, a3a4a3 = a4a3a4,

a1a2 = a2a1, a1a4 = a4a1, a2a4 = a4a2, (a1a2a3a4)
3 = 1〉,

which coincides with the standard presentation of A[D4]. If we denote a pair of transpositions in S3

as σ1, σ2, and the generator of Z2 as ι, we will have: S3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2, σ
2
1 = σ22 = 1〉,

Z2 = 〈ι | ι2 = 1〉, and the semidirect product structure onM∗(Σ1,0,P3) can be given by the following
conjugation action:

aσ11 = a2, aσ12 = a1, aσ13 = a3, aσ14 = a4,

aσ21 = a4, aσ24 = a1, aσ22 = a2, aσ23 = a3,

σι1 = σ1, σι2 = σ2, aιk = a−1k , for k = 1, 2, 3, 4.

Proof. It is known that for an arbitrary surface Σ with a set of n punctures Pn (and possibly with
boundary), the groups PM(Σ,Pn) and M(Σ,Pn) fit into the short exact sequence:

1 −→ PM(Σ,Pn) −→M(Σ,Pn) −→ Sn −→ 1,
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a4

a2

a1
a3 a3

a4

a2

a1

σ1

σ2

Figure 2. The Dehn twist generators of A[D4] and the action of S3 on them.

where the group Sn is generated by the images of half-twists in M(Σ,Pn) permuting points of Pn
(see e.g. [LP01]). In the case of the torus with three punctures we can choose representatives of
S3 as rigid rotations of the torus which send P3 to itself. We conclude that the above sequence
splits: M(Σ1,0,P3) ∼= PM(Σ1,0,P3) o S3. (An explicit relation between the rotations σ1, σ2
and the corresponding half-twists which induce the same permutation of the punctures is given by
formulas (**) in Section 6.) Similarly, the orientation-reversing reflection forms an order 2 subgroup
in Homeo±(Σ1,0,P3), hence M∗(Σ1,0,P3) splits as well: M∗(Σ1,0,P3) ∼= M(Σ1,0,P3) o Z2. If we
take as the generator of Z2 the reflection ι in the horizontal plane in Figure 2, we observe that ι
leaves every puncture fixed and commutes with all of S3, and hence we have the decomposition:
M∗(Σ1,0,P3) ∼= PM(Σ1,0,P3)o(S3×Z2). The commutation action formulas given in the theorem
are checked by direct inspection.

The fact that PM(Σ1,0,P3) is isomorphic to A[D4] with the given presentation on Dehn twist

generators as the standard Artin generators for A[D4] was shown in [Sor20, Corollary 9]. It follows
from Korkmaz’s work [Kor99] that Comm(M∗(Σ1,0,P3)) is isomorphic toM∗(Σ1,0,P3), see [BM06,

Theorem 3.1]. Since A[D4] is a subgroup of finite index in M∗(Σ1,0,P3), we have:

Comm(A[D4]) ∼= Comm(M∗(Σ1,0,P3)) ∼=M∗(Σ1,0,P3). �

As a byproduct we get a description of the automorphism groups of A[D4] and A[D4], which
answers the question of Crisp and Paris for the case of D4 [CP05].

Corollary 6.

(1) Aut(A[D4]) ∼= Aut(A[D4]) ∼=A[D4] o (S3 × Z2) ∼=M∗(Σ1,0,P3);
(2) Out(A[D4]) ∼= Out(A[D4]) ∼= S3 × Z2;

(3) for G = A[D4], A[D4] the following short exact sequence splits:

1 −→ Inn(G) −→ Aut(G) −→ Out(G) −→ 1.

Proof. For part (1), we find Aut(A[D4]) first. By Theorem 5, A[D4] is a subgroup of finite index

in M∗ = M∗(Σ1,0,P3). We notice that each automorphism α of A[D4] can be treated as an

injective homomorphism of a finite index subgroup A[D4] of M∗ into M∗. By the Main Theorem
1.2 of [BM06], any injection of a finite index subgroup ofM∗ intoM∗ is induced by a conjugation

with some element of M∗. Since A[D4] is normal in M∗, the automorphisms of A[D4] are induced
by conjugation with the whole ofM∗. We are going to show that the conjugation action ofM∗ on
A[D4] is faithful.

Let ` : A[D4] −→ Z be the homomorphism which maps each generator of A[D4] to 1. Denote
d = `(∆) = 12, where ∆ = (a1a2a3a4)

3 is the generator of the center of A[D4] (see [BS72]).
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Clearly, the center of A[D4] is being mapped onto dZ by `, hence we can define ¯̀: A[D4] −→ Z/dZ
by reducing ` modulo d. Denote as ig the conjugation of M∗ by an element g ∈ M∗. We notice

that if g ∈ A[D4] o S3, then ¯̀◦ ig = ¯̀, whereas if g = ι, then ¯̀◦ ig = −¯̀. Thus, if an element

g ∈ M∗ centralizes all of A[D4], then g actually belongs to M = A[D4] oS3. Furthermore, such
an element g will centralize all Dehn twists about the curves a1, . . . , a4 from Figure 2, and hence
fix the isotopy classes of these curves up to orientation, by [FM12, Fact 3.6]. Now notice that these
curves cut the surface (Σ1,0,P3) into punctured disks, and each such disk is uniquely determined by
the subset of these curves that form its boundary. We conclude that g fixes each one (of the isotopy
classes rel P3) of these punctured disks setwise. Moreover g either induces the trivial mapping class
on each of these punctured disks, or an orientation reversing involution. Since g was orientation
preserving, we conclude that g induces the trivial mapping class on each of these disks, and hence g
induces the identity automorphism of the graph formed by the representatives of the isotopy classes
of oriented curves a1, . . . , a4. By the Alexander method ([FM12, Prop. 2.8]), g must be trivial.

This proves that the kernel of the conjugation action of M∗ on A[D4] is trivial, and hence that

Aut(A[D4]) ∼=M∗.
By Proposition 8 of [CC05], we have Aut(A[D4]) ∼= Aut∗(A[D4]), where Aut∗(A[D4]) is the

subgroup of all automorphisms α ∈ Aut(A[D4]) such that ¯̀◦ α = ±¯̀. We established above that

Aut∗(A[D4]) is actually the whole group Aut(A[D4]), and hence Aut(A[D4]) ∼= Aut(A[D4]).

To prove part (2) we observe that Inn(A[D4]) ∼=A[D4] ∼= Inn(A[D4]) since the center of A[D4] is
trivial. Part (3) follows from parts (1) and (2). �

4. Torsion in Artin groups of spherical type modulo their centers

We will need a description of finite order elements in groups A[D4], A[F4], and A[H4]. Such
description is probably known to experts, although it is not easily available in the literature. For
groups of spherical types An, Bn, Dn, and I2(m), this information is present in [LL11, Sect. 4.4]
(and for type An was known long ago, see references therein). We complement it with the data
on the rest of irreducible Artin groups of spherical type in Theorem 7 below, which we distilled
from several sources and from our own computations using the package CHEVIE [Mic15,GHLMP]
(based on the computer algebra system GAP3 [S+97]), since we believe that this result may have
an independent interest.

It turns out that for each spherical type Γ there exists a finite set of (one, two or three) basic

torsion elements εp such that all other torsion elements of A[Γ] are conjugate to a suitable power
of one of εp. Namely, we have the following Theorem.

Theorem 7. Let A[Γ] be the irreducible Artin group of type Γ (other than A1), and A[Γ] be the
quotient of A[Γ] by its center. Then:

(1) An element of finite order d > 1 exists in A[Γ] if and only if d is listed in the second column
of Table 1.

(2) Any torsion element in A[Γ] is conjugate to a power of one of the basic torsion elements εp
listed in the third column of Table 1.

(3) For any two basic elements εp and εq of orders p and q, respectively, from Table 1, if

d = gcd(p, q), then the power ε
p/d
p is conjugate to ε

q/d
q in A[Γ]. Powers of the same element

εsp and εtp are not conjugate in A[Γ], if s 6= t (mod p).

Remark 8. The basic elements εp from Table 1 were chosen as positive words of minimal length in

the standard generators for A[Γ]. In some cases the expressions for the generators εp and εq could

be chosen with the extra compatibility condition that ε
p/d
p is actually equal to ε

q/d
q for d = gcd(p, q).

When this was possible, we listed this information in the fourth column. Interestingly, for groups
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type Γ orders of torsion basic torsion elements relations

An, n ≥ 2 all divisors of n, n+ 1
εn+1 = s1s2 . . . sn
εn = s1(s1s2 . . . sn)

Bn, n ≥ 2 all divisors of n εn = s1s2 . . . sn

Dn, n even ≥ 4 all divisors of n− 1, n/2
εn−1 = snsn−1 . . . s3s2s1

εn/2 = (sn . . . s3)s2(sn . . . s3)s1

Dn, n odd ≥ 5 all divisors of 2n− 2, n
ε2n−2 = snsn−1 . . . s3s2s1

εn = (sn . . . s3)s2(sn . . . s3)s1

E6 2, 3, 4, 6, 8, 9, 12

ε12 = s4s2 · s3s1 · s5s6
ε9 = s4s2 · s5s4s3s1 · s6s5
ε8 = s4s3s1 · s5s4s2 · s3s6s5

ε412 = ε39

ε312 = ε28

E7 3, 7, 9
ε9 = s4s2 · s3s1 · s5s6s7

ε7 = s4s2 · s7s6s5 · s4s2 · s3s1

E8 2, 3, 4, 5, 6, 10, 12, 15

ε15 = s4s2 · s3s1 · s8s7s6s5
ε12 = s4s2 · s3s1 · s4s3 · s8s7s6s5
ε10 = s4s2 ·s3s1 ·s6s5s4s3 ·s8s7s6s5

F4 2, 3, 4, 6
ε6 = s1s2s3s4

ε4 = s1s2s3s4 · s2s3
ε36 = ε24

H3 3, 5
ε5 = s1s2s3

ε3 = s1s2 · s1s2s3

H4 2, 3, 5, 6, 10, 15

ε15 = s1s2s3s4
ε10 = s1s2 · s1s2s3s4

ε6 = s1s2 · s1s2s3s2 · s1s2s3s4
I2(m), m even ≥ 6 all divisors of m/2 εm/2 = s1s2

I2(m), m odd ≥ 5 all divisors of 2, m
εm = s1s2

ε2 = s1(s2s1)
(m−1)/2

Table 1. Orders of torsion and representatives of basic torsion elements up to
conjugacy in groupsA[Γ]. An element εp has order p, and is written in the standard

generators si of A[Γ] using the numbering presented in Figure 1.

of types E8 and H4 such choices were not possible, as we checked using CHEVIE by computing all
positive conjugates of given elements in the corresponding Artin groups A[Γ].

Proof of Theorem 7. We will prove several claims, from which the Theorem will follow. Recall that
an element of A[Γ] is called periodic if some power of it lies in the center. We will call a periodic
element of A[Γ] primitive, if it is not a nontrivial power of any other element of A[Γ]. Let Z denote
the infinite cyclic center of A[Γ], and let δ ∈ Z denote its standard generator.

Claim 1. Every element of finite order ū ∈A[Γ] has a representative u ∈ A[Γ] which is a power
of some primitive periodic element v ∈ A[Γ]. Indeed, it was proved in [Par04, Prop. 3.4] that there

is an upper bound on finite orders of elements in any givenA[Γ] of spherical type. This means that
for an arbitrary representative u ∈ A[Γ] such that ū = uZ, one cannot take roots of arbitrarily
large degrees out of u in A[Γ], hence there exists a root v of u of maximal degree, which will be
primitive.

Claim 2. All primitive periodic elements v ∈ A[Γ] are roots of the standard generator δ of the
center Z. This was proved by Lee and Lee in [LL11, Th. 3.14].
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Recall that the standard generator δ of the center is equal to ∆κ, where ∆ is the Garside element
of A[Γ], with κ = 2 for Γ of the following types:

An (n ≥ 2), Dn (n odd), E6, I2(m) (m odd), (*)

and κ = 1 otherwise (see [BS72]).
We are going to get a description of which d-th roots of δ exist in A[Γ] and to prove that

they are all conjugate in A[Γ]. These results can be distilled from works of Bessis and Springer.
In [Bes15, Th. 12.4] Bessis proved for a certain central element ι = δh0 ∈ A[Γ], where δ0 the Garside
element of the dual Garside structure on the Artin group of spherical type A[Γ], and h the Coxeter
number of the Coxeter group W [Γ], the following:

Claim 3. For d > 1, a d-th root of ι exists in A[Γ] if and only if d is a regular number in the
sense of Springer [Spr74]. If a d-th root of ι exists, it is unique up to conjugation in A[Γ].

The exact relationship between δ and ι is captured by Theorem 12.3 of [Bes15], which states that

δ is equal to δh
′

0 where h′ = h/ gcd(d1, . . . , dn), and d1, . . . , dn are the degrees of the Coxeter group
W [Γ]. By direct inspection of the lists of degrees for all spherical Coxeter groups [Hum90, p. 59]
we observe that gcd(d1, . . . , dn) = 1 exactly for Artin groups of types (*) above, and it equals 2
otherwise. Since ι = δh0 , we conclude that:

Claim 4. The element ι equals ∆2 in all cases.
Now we are ready to prove the Theorem. For part (1), we point out that in [Spr74, Sect. 5]

Springer listed explicitly the regular numbers for all Artin groups of spherical type (except I2(m),
for which this information can be taken from [LL11, Table 1]). Combined with the first part of
Claim 3, this gives us the description of all roots of ∆2 up to conjugation in A[Γ]. In the cases
when δ = ∆2, i.e. for groups in the list (*) above, this gives the final answer: the orders of torsion

elements of A[Γ] are exactly the regular numbers from [Spr74, Section 5] and [LL11, Table 1].
However for groups not in the list (*), we need to adjust the lists of regular numbers so that they

correspond to roots of δ = ∆, and not of ∆2 (cf. [Shv96]). For that, select the subset of regular
numbers which are maximal with respect to divisibility, say r1, . . . , rk. These numbers correspond
to primitive periodic elements. We notice that all numbers r1, . . . , rk will be divisible by 2 since
by Claim 2 all primitive periodic elements should be divisors of δ. By direct inspection of the data
in [Spr74, Section 5] and [LL11, Table 1] we notice that all numbers ri are bigger than 2. Form

a set r1/2, . . . , rk/2. These numbers will be the orders of basic torsion elements in A[Γ], and the
orders of all other torsion elements will be all the divisors of these. This completes the description
of orders of torsion elements in groups A[Γ], which we list in the second column of Table 1.

Now we prove part (2). Let ū be an element of finite order in A[Γ]. By Claim 1, ū has a
representative u ∈ A[Γ] such that u = vk for some primitive periodic element v ∈ A[Γ] and some
k ∈ Z. By Claim 2, v is a root of δ, and hence of ι. Let εp denote the element of A[Γ] corresponding

to an element εp ∈A[Γ] from the third column of Table 1, i.e. εp is given by the same word in the
standard generators of A[Γ] as εp. We claim that each εp is a root of the p-th degree of δ. This was
proved for the infinite series of types An, Bn, Dn, I2(m) in [LL11, Lemma 4.3], and for standalone
systems of types E6, E7, E8, F4, H3, H4 it can be checked using CHEVIE. We observe that, for
a given A[Γ], the degrees p of elements εp form the set of all maximal elements with respect to
divisibility of the numbers listed in the second column of Table 1. Thus we conclude that elements
εp are primitive roots of δ (and hence of ι), and account for all possible degrees of primitive roots
of δ. Thus, by the second part of Claim 3, v is conjugate to one of the elements εp, and hence

ū = vkZ is conjugate to the k-th power of the corresponding element εp. This proves (2).

Similarly, if d = gcd(p, q), then both ε
p/d
p and ε

q/d
q are roots of δ of the same degree d, and

hence they are roots of ι of equal degree. By the second part of Claim 3, these elements are

conjugate in A[Γ] and hence ε
p/d
p and ε

q/d
q are conjugate in A[Γ], which proves the first sentence

of part (3). To prove the second sentence of part (3), consider the homomorphism ` : A[Γ] −→ Z,
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which sends every standard generator to 1, and its reduction modulo `(δ), which gives rise to
¯̀: A[Γ] −→ Z/`(δ)Z. Clearly, conjugation in A[Γ] and A[Γ] leaves ` and ¯̀ invariant. Now to prove
that if s 6= t (mod p), the elements εsp and εtp are not conjugate, we may assume without loss

of generality that 0 ≤ s, t ≤ p − 1 and consider the value of ¯̀ on these elements. We observe
from the explicit expressions for elements εp that `(δ) = p`(εp) in each case, and hence we have:
`(εsp) = s`(εp) < `(δ) and `(εtp) = t`(εp) < `(δ). Therefore ¯̀(εsp) 6= ¯̀(εtp), and part (3) is proved. �

We can now describe conjugacy classes of torsion elements in groups A[Γ]. In the following
Corollary, φ denotes Euler’s totient function.

Corollary 9. Let A[Γ] be as in Theorem 7. Then torsion elements of order d > 1 in A[Γ], if they

exist, form φ(d) conjugacy classes, with representatives of the form
(
ε
p/d
p

)`
, where εp is any basic

element from the third column of Table 1 such that d divides p, and ` runs through all positive
integers less than d which are coprime to d.

Proof. By part (2) of Theorem 7, any torsion element x in A[Γ] is conjugate to an element of the
form g = εkp, where εp is a basic torsion element from the third column of Table 1. Since εp has

order p, we conclude that the order of εkp is equal to p/ gcd(p, k). In particular, if d is the order of

a torsion element in A[Γ], d divides p. If g has order d, we have: gd =
(
εkp
)d

= 1, so that kd = `p

for some ` ≥ 1. Since d divides p, we conclude that g = εkp =
(
ε
p/d
p

)`
. Let c = gcd(`, d). If c 6= 1

then gd/c =
(
εkp
)d/c

=
(
ε
p/d
p

)`d/c
=

(
εpp
)`/c

= 1 and d is not the order of g. Hence, ` and d are

coprime. Notice also that
(
ε
p/d
p

)`
=

(
ε
p/d
p

)`+md
for any m ∈ Z, so that we may assume that `

belongs to {1, . . . , d − 1}. If `1 6= `2 are two elements from {1, . . . , d − 1} coprime to d then we
claim that p

d · `1 6=
p
d · `2 (mod p). Indeed, if p

d(`1 − `2) = 0 (mod p) this means that `1 − `2 = md
for some m ∈ Z. But since 0 < `1, `2 < d, we must have m = 0 and `1 = `2. This contradiction

shows that p
d · `1 6=

p
d · `2 (mod p), and by part (3) of Theorem 7, all elements

(
ε
p/d
p

)`
are mutually

non-conjugate when ` runs through all positive integers less than d and coprime to d.
If there exists another basic torsion element εq such that the torsion element x is conjugate to

some power h = εmq , then the above analysis shows that h =
(
ε
q/d
q

)`
. By part (3) of Theorem 7,

ε
q/d
q is conjugate to ε

p/d
p . Thus, any choice of basic element εp such that d divides p will work for

description of representatives for conjugacy classes of elements of order d. �

5. Non-commensurability of Artin groups of types H4 and D4

Proposition 10. The groups A[H4] and A[D4] are not commensurable.

Proof. Suppose that A[H4] is commensurable with A[D4]. Then by Theorem ??, A[H4] and A[D4]

are also commensurable, and moreover A[H4] embeds into Comm(A[H4]) ∼= Comm(A[D4]), which

is isomorphic to A[D4] o (S3 × Z2) due to Theorem 5. Denote Φ: A[H4] ↪−→ A[D4] o (S3 × Z2)

such an embedding, and consider the natural projection θ : A[D4] o (S3 × Z2) −→ S3 × Z2. It is
known [BS72] that the center of A[H4] is generated by the element ∆ = (s1s2s3s4)

15, where si’s
are the standard generators of A[H4] numbered as in Figure 1. By considering the homomorphism
` : A[H4] −→ Z sending each standard generator to 1, we see that the center of A[H4] maps onto
a subgroup 60Z, and hence no power less than 15 of the element µ = s1s2s3s4 lies in the center of
A[H4]. This shows that the image µ̄ of the element µ in A[H4] has order exactly 15. Let M = 〈µ̄〉
be the cyclic subgroup of order 15 in A[H4] generated by µ̄. Clearly, M ∼= Z3 ⊕ Z5. The subgroup
Φ(Z5) of Φ(M) lies in the kernel of θ, since Φ is injective and S3 × Z2 has no elements of order 5.

But Ker θ lies in A[D4], which does not have elements of order 5 either, since the maximal order

of torsion elements in A[D4] is 3, see Table 1. This contradicts the injectivity of Φ and proves that
the Artin groups A[H4] and A[D4] are not commensurable. �
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The following Corollary gives partial answer to Question 2 concerning which central quotients
A[Γ] admit embeddings into mapping class groups of punctured surfaces.

Corollary 11. The group A[H4] does not admit any embedding into the extended mapping class
group M∗(Σ1,0,P3).

Proof. Indeed, in the proof of Proposition 10 we showed that the assumption that there exists
an embedding Φ: A[H4] ↪−→ A[D4] o (S3 × Z2) leads to a contradiction. Since by Theorem 5,

A[D4] o (S3 × Z2) is isomorphic to M∗(Σ1,0,P3), the Corollary follows. �

6. Non-commensurability of Artin groups of types F4 and D4

Proposition 12. The groups A[F4] and A[D4] are not commensurable.

Proof. Suppose that A[F4] is commensurable with A[D4]. Then by Theorem ??, A[F4] and A[D4]

are commensurable, and A[F4] embeds into Comm(A[F4]) ∼= Comm(A[D4]), isomorphic to M∗ =

M∗(Σ1,0,P3) ∼= A[D4] o (S3 × Z2) by Theorem 5. Let Φ: A[F4] ↪−→ M∗ be such an embedding,

and denote K = CA[D4]. We are going to classify all projections of Φ to M∗/K and obtain a
contradiction with the injectivity of Φ.

In what follows the standard generators of A[D4] will be denoted as a1, a2, a3, a4 as in Figure 2,

and the standard generators of A[F4] as s1, s2, s3, s4, with the numeration as in Figure 1.

Recall that K = CA[D4] is normally generated inA[D4] by the squares of the standard generators
{a21, a22, a23, a24}. The conjugation by S3 leaves this set invariant, whereas the conjugation by Z2 = 〈ι〉
sends all these elements to their inverses. This implies that K is normal inM∗ and we can consider
the natural projections

Θ: M∗ −→M∗/K, and ϕ = Θ ◦ Φ.

We notice that M∗/K = (A[D4]/K) o (S3 × Z2) = W [D4] o (S3 × Z2), where W [D4] is the
quotient of the Coxeter group W [D4] by its center. Indeed, the image of Θ has a presentation
with the generators a1, . . . , a4 and the relations listed in Theorem 5, with the additional relations
a21 = a22 = a23 = a24 = 1. According to [Hum90, Corollary 3.19], the center of W [D4] is generated by
the image of ∆ = (a1a2a3a4)

3, the standard generator of the center of A[D4], so modding out ∆
and the squares of the generators a2i can be performed in any order. Notice also that the generator

of Z2 acts trivially on W [D4], so we actually have: M∗/K =
(
W [D4] o S3

)
× Z2, and hence ϕ

decomposes as ϕ = (ψ, ζ) for some ψ : A[F4] −→W [D4] oS3 and ζ : A[F4] −→ Z2.

We can describe all possible ζ easily. Identify Z2 with {1, ι}. Since s1s2s1 = s2s1s2 in A[F4], we
must have ζ(s1) = ζ(s2), and similarly, ζ(s3) = ζ(s4). These two conditions define four possible
homomorphisms ζi given on the standard generators as follows:

ζ1 : (s1, s2, s3, s4) 7−→ (1, 1, 1, 1); ζ3 : (s1, s2, s3, s4) 7−→ (1, 1, ι, ι);

ζ2 : (s1, s2, s3, s4) 7−→ (ι, ι, 1, 1); ζ4 : (s1, s2, s3, s4) 7−→ (ι, ι, ι, ι).

Taking into account torsion elements in A[F4] imposes a significant restriction on possible ho-

momorphisms ϕ. Let v = s1s2s3s4 ∈ A[F4]. By reasoning as in the proof of Proposition 10, we

conclude that v has order 6 in A[F4]. By Proposition 3, K embeds into CA[D4], which is a torsion
free group (since it is bi-orderable). Hence the subgroup 〈v〉 maps isomorphically into M∗/K, i.e.
ϕ(v) must have order 6. Notice that all homomorphisms ζi map v to 1, which means that 〈v〉 maps

isomorphically into W [D4] oS3 and the order of ψ(v) is 6 as well.

To describe all possible homomorphisms ψ : A[F4] −→W [D4]oS3 we use the computer algebra
system Magma [BCP97], which has a functionality of computing all homomorphisms, including
non-surjective ones, from a finitely presented group to a finite group, up to the conjugacy in the
latter (via the command Homomorphisms with the flag Surjective:=false). Performing such a
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computation we get that there exist 286 conjugacy classes of possible homomorphisms ψ. Out of
these classes, only 10 satisfy the condition that ψ(v) has order 6. This number is further reduced

to five if we consider these homomorphisms up to the graph automorphism of A[F4] interchanging
s1 ←→ s4, s2 ←→ s3.

Analyzing these five cases, we observe that in four of them the following property holds: ψ(s1) =
ψ(s2) and the order of this element is either 1 or 2. Hence the same will be true for ϕ = (ψ, ζ) where
ζ is any of the four homomorphisms ζi above, i.e. ϕ(s1) = ϕ(s2) has order either 1 or 2. Now we can
produce generalized torsion elements in K, and this will yield the non-faithfulness of Φ. Indeed, take
α = s1s

−1
2 , β = s1s2 ∈A[F4]. From the above, we have: ϕ(α) = ϕ(β) = 1, hence α, β ∈ Ker Θ = K.

In A[F4] (and even in A[F4]) the following identity holds: α · βαβ−1 · β2αβ−2 = 1, which can be
checked either by hand or using the package CHEVIE. This means that Φ(α) is a generalized torsion
element in K, which is impossible due to the fact that K lies in CA[D4] and the group CA[D4] is
bi-orderable, by Proposition 3 and [RZ98].

In the remaining case out of the five classes of homomorphisms ψ : A[F4] −→W [D4]oS3 found
above, a representative can be chosen in the following form:

ψ : (s1, s2, s3, s4) 7−→ (â3, â2, σ1, σ2),

where â1, . . . , â4 denote the images of the standard generators ofA[D4] in W [D4]. Observe that for

each i the homomorphism ϕ = (ψ, ζi) sends the squares of the standard generators of A[F4] to 1,

and hence Φ
(
CA[F4]

)
⊂ Ker Θ = K. An easy check in GAP [GAP20] shows that, for each i, the

order of the image of ϕ = (ψ, ζi) is 576, which is exactly the order of W [F4] =A[F4]/CA[F4]. This

means that no element of A[F4] \CA[F4] maps into K via Φ, and hence no generalized torsion can
be detected in Im Φ ∩K. Thus, to obtain a contradiction we need to proceed in some other way.

We claim that the image Φ(A[F4]) has finite index in M∗. Indeed, by assumption, A[F4] and

A[D4] are commensurable, hence some finite index subgroup H1 ⊆ A[F4] is isomorphic to a finite

index subgroup H2 ⊆ A[D4]. Since A[D4] has finite index in M∗, it follows that Φ(H1) ⊆ M∗ is
isomorphic to a finite index subgroup H2 ⊆M∗. By the Main Theorem 1.2 of [BM06], any injection
of a finite index subgroup of M∗ to M∗ is induced by an inner automorphism of M∗. This means
that Φ(H1) = gH2g

−1 for some g ∈M∗, and hence Φ(H1) has finite index in M∗. Thus the index

of Φ(A[F4]) in M∗ is also finite.

Consider the automorphism α : A[F4] −→ A[F4] induced by the graph automorphism which

interchanges s1 ←→ s4, s2 ←→ s3. Let Φ′ = Φ◦α : A[F4] ↪−→M∗ be the corresponding embedding.

Since Φ(A[F4]) has finite index in M∗, the same is true for Φ′(A[F4]), and applying the Main
Theorem 1.2 of [BM06] again, we conclude that Φ′(x) = hΦ(x)h−1 for some h ∈ M∗ and all

x ∈A[F4].
Observe now that since ισiι = σi and ιaiι = a−1i , we conclude that for any j = 1, . . . , 4,

ϕ = (ψ, ζj) has the following properties:

ϕ(s2s1) = â2â3 and ϕ(s3s4) = σ1σ2.

This means that

Φ(s2s1) ∈ a2a3K ⊆A[D4] and Φ(s3s4) ∈ σ1σ2K ⊆M∗ \A[D4],

since σ1σ2 is a nontrivial element of S3. But then

Φ′(s2s1) = Φ(s3s4) /∈A[D4] and Φ′(s3s4) = Φ(s2s1) ∈A[D4],

which contradicts the fact that Φ′(x) = hΦ(x)h−1, since A[D4] is normal in M∗.
This contradiction finishes the analysis of the last remaining case of ψ and shows that an em-

bedding Φ: A[F4] ↪−→ M∗, such that Θ ◦ Φ = (ψ, ζi) and Φ(A[F4]) has finite index in M∗, does
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not exist. This implies that the groupsA[F4] andA[D4] are not commensurable and hence that the
groups A[F4] and A[D4] are not commensurable either. �

Remarkably, homomorphisms Ψ: A[F4]→A[D4]oS3 such that their projection to W [D4]oS3 is
given by ψ : (s1, s2, s3, s4) 7−→ (â3, â2, σ1, σ2), do exist. One such homomorphism is constructed in
Example 13 below. To describe it we need to recall the definition and basic properties of half-twists.

Let D be a twice punctured disk and α an embedded arc connecting the two punctures. The right
half-twist along α is a homotopy class of homeomorphisms of D, which we denote τα, described by
Figure 3. If D is embedded in a surface, we extend the right half-twist along α by the identity
outside D to obtain a mapping class of the surface, which we denote by τα as well. If β is an
embedded arc between some other two punctures in the surface, then τβ commutes with τα if and
only if α ∩ β = ∅, and τβτατβ = τατβτα if and only if α and β intersect in a common endpoint.
Let γ be a simple closed curve in the surface transversely intersecting the arc α once in its interior
point, and let aγ be the right Dehn twist about γ. Labruère and Paris observed [LP01, Lemma 2.3]
that the Dehn twist aγ and the half-twist τα satisfy the Artin relation of length four:

aγταaγτα = ταaγταaγ .

α τα

Figure 3. A right half-twist.

Example 13. The above properties of half-twists allow us to engineer the following ‘geometric’
homomorphism from A[F4] to M∗(Σ1,0,P3). Let p1, p2 and p3 denote the three punctures of the
torus, as shown in Figure 4. We denote as τ1 the right half-twist that interchanges punctures p2
and p3, and as τ2 the one that interchanges p1 and p3. Note that our numbering of τi’s matches
the corresponding numbering of flips σi’s according to their action on the punctures. Let also a2,
a3 denote the right Dehn twists around the simple closed curves depicted in Figure 4, as before.
We define a homomorphism Ψ: A[F4]→M∗(Σ1,0,P3) on the standard generators as:

Ψ: (s1, s2, s3, s4) 7−→ (a3, a2, τ2, τ1).

The properties of Dehn twists and half-twists discussed above guarantee that Ψ is a homomorphism.
To prove that Ψ sends the center of A[F4] to the trivial mapping class, we need to express τ1 and
τ2 through the standard generators of M∗(Σ1,0,P3) given in Theorem 5. We have the following
equalities:

τ1 = σ1 ·∆(a1, a3, a2),

τ2 = σ2 ·∆(a1, a3, a4),
(**)

where ∆(a1, a3, a2) = a1a3a2 ·a1a3 ·a1 is (the image in PM(Σ1,0,P3) of) the Garside element of the
Artin subgroup of type A[A3] ⊂ A[D4] on the generators a1, a3, a2, and, similarly, ∆(a1, a3, a4) =
a1a3a4 ·a1a3 ·a1. These equalities can be proven by considering the action of σiτi (i = 1, 2) and the
corresponding Garside elements on the curves underlying the standard Dehn twists a1, . . . , a4 from
Figure 2, and observing that these curves cut the surface into punctured disks ([FM12, Prop. 2.8]).

Now we can treat the right-hand parts of (**) as words in A[D4] o S3 and compute with the
help of the package CHEVIE that Ψ sends the generator (s1s2s3s4)

6 of the center of A[F4] to the
element δ7, where δ = (a1a2a3a4)

3 is the standard generator of the center of A[D4]. Therefore Ψ

defines a homomorphism A[F4] −→A[D4] oS3 =M(Σ1,0,P3) ⊂M∗(Σ1,0,P3).
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τ2

τ1

p3

p2

p1

a2

a3

Figure 4. The images of the standard generators (s1, s2, s3, s4) under the homo-
morphism Ψ from Example 13: right Dehn twists a3, a2, and right half-twists τ2, τ1.

We find with the help of GAP that the projection of Ψ to W [D4] o S3 can be conjugated by
the element â1â3â4â2â3 · σ1σ2σ1 into the homomorphism ψ : (s1, s2, s3, s4) 7−→ (â3, â2, σ1, σ2), and
furthermore, that the image of Ψ has index 9 in M(Σ1,0,P3). Thus the reasoning in the last part
of the proof of Proposition 12 applies to Ψ and shows that Ψ is not injective. A straightforward
computation shows that the element (s1s2s3)

6 ∈A[F4] is nontrivial and lies in the kernel of Ψ.

Inspired by Example 13, we finish this section with the following open question. Recall that we
asked in Question 2 for which Artin groups A[Γ] their central quotientsA[Γ] admit embeddings into
mapping class groups of punctured surfaces. From Proposition 12 we deduce that there does not
exist an embedding ofA[F4] intoM∗(Σ1,0,P3) such that its image has finite index inM∗(Σ1,0,P3).
Unlike the case with A[H4] (see Corollary 11), this leaves open the question of existence of an

embedding of A[F4] into M∗(Σ1,0,P3) which has the image of infinite index.

Question 14. Is there an embedding of A[F4] into M∗(Σ1,0,P3) such that the image has infinite
index in M∗(Σ1,0,P3)?

The analysis in the proof of Proposition 12 shows that without loss of generality (i.e. up to

conjugation inM∗(Σ1,0,P3) and up to the graph automorphisms ofA[F4]) we can assume that such

an embedding, if it exists, has the projection onto W [D4] oS3 given on the standard generators
by the mapping (s1, s2, s3, s4) 7−→ (â3, â2, σ1, σ2).

References

[BM06] Jason Behrstock, Dan Margalit, Curve complexes and finite index subgroups of mapping class groups,
Geom. Dedicata, 118 (2006), 71–85.

[Bes15] David Bessis, Finite complex reflection arrangements are K(π, 1). Ann. of Math. (2) 181 (2015), no. 3,
809–904.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language,
J. Symbolic Comput., 24 (1997), 235–265.

[BS72] Egbert Brieskorn, Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17 (1972), 245–271.
[CC05] Ruth Charney, John Crisp, Automorphism groups of some affine and finite type Artin groups. Math. Res.

Lett., 12, 2005, no. 2–3, 321–333.
[CP05] John Crisp, Luis Paris, Artin groups of type B and D. Adv. Geom. 5 (2005), no. 4, 607–636.
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