
Journal of Computational Physics 472 (2023) 111673
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Explicit-solute implicit-solvent molecular simulation with 

binary level-set, adaptive-mobility, and GPU

Shuang Liu 1, Zirui Zhang 1, Hsiao-Bing Cheng 1, Li-Tien Cheng ∗,1, Bo Li 1

Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 December 2021
Received in revised form 27 September 
2022
Accepted 29 September 2022
Available online 13 October 2022

Keywords:
Binary level-set method
GPU implementation
Variational implicit-solvent explicit-solute 
model
Coulomb-field approximation
Molecular mechanical interactions

Coarse-grained modeling and efficient computer simulations are critical to the study of 
complex molecular processes with many degrees of freedom and multiple spatiotemporal 
scales. Variational implicit-solvent model (VISM) for biomolecular solvation is such a mod-
eling framework, and its initial success has been demonstrated consistently. In VISM, an 
effective free-energy functional of solute-solvent interfaces is minimized, and the surface 
energy is a key component of the free energy. In this work, we extend VISM to include the 
solute mechanical interactions, and develop fast algorithms and GPU implementation for 
the extended variational explicit-solute implicit-solvent (VESIS) molecular simulations to 
determine the underlying molecular equilibrium conformations. We employ a fast binary 
level-set method for minimizing the solvation free energy of solute-solvent interfaces and 
construct an adaptive–mobility gradient descent method for solute atomic optimization. 
We also implement our methods on the integrated GPU. Numerical tests and applications 
to several molecular systems verify the accuracy, stability, and efficiency of our methods 
and algorithms. It is found that our new methods and GPU implementation improve the 
efficiency of the molecular simulation significantly over the CPU implementation. Our fast 
computational techniques may enable us to simulate very large systems such as protein-
protein interactions and membrane dynamics for which explicit-solvent all-atom molecular 
dynamics simulations can be very expensive.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Computer simulations are basic tools in the study of complex biomolecular processes with multiple temporal and spatial 
scales and many-body interactions. Efficiency and computational costs, however, are bottlenecks in such simulations for 
large systems with long time scales of biological interest. Examples of such systems include protein-protein interactions, 
membrane dynamics, and aggregation of biopolymer networks. The development of coarse-grained biophysical and mathe-
matical modeling, together with fast numerical algorithms and computer implementation, is therefore critical to the success 
of computational studies of complex biomolecular systems.

* Corresponding author.
E-mail addresses: shl083@ucsd.edu (S. Liu), zzirui@ucsd.edu (Z. Zhang), hscheng@ucsd.edu (H.-B. Cheng), l3cheng@ucsd.edu (L.-T. Cheng), bli@ucsd.edu

(B. Li).
1 All authors have contributed equally.
https://doi.org/10.1016/j.jcp.2022.111673
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111673
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111673&domain=pdf
mailto:shl083@ucsd.edu
mailto:zzirui@ucsd.edu
mailto:hscheng@ucsd.edu
mailto:l3cheng@ucsd.edu
mailto:bli@ucsd.edu
https://doi.org/10.1016/j.jcp.2022.111673


S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Implicit-solvent models are a class of coarse-grained models in which solvent is efficiently treated in comparison with 
explicit-solvent all-atom molecular dynamics simulations. In recent years, variational implicit-solvent model (VISM) has 
shown its initial success in efficient modeling of biomolecular conformations and recognition. VISM is a mesoscale descrip-
tion of the solvation of charged molecules, particularly biomolecules such as proteins, in an aqueous environment [6,7]. The 
central quantity of such a model is a macroscopic free-energy functional of all possible solute-solvent interfaces each of 
which separates the solute molecules from the aqueous solvent (i.e., water or salted water). Minimizing such a functional 
leads to an equilibrium molecular conformation that is often metastable, and the corresponding minimum free energy. The 
free energy consists mainly of the solute-solvent interfacial energy, solute-solvent van der Waals (vdW) interaction energy, 
and the electrostatic interaction energy that can be described by a continuum electrostatics model. Implemented by the 
level-set method, a numerical method for interface motion, VISM is capable of capturing qualitatively or semi-quantitatively 
many key features of charged molecular processes, such as the dry and wet solvation states and the effect of electrostatic 
interactions, and providing reasonably good estimates of the solvation free energy [3,11,12,25,30,33,34]. We note that several 
other solvation models have been developed [1,20,24].

In this work, we extend VISM to include the flexibility of solute atoms, and develop fast algorithms and GPU implemen-
tation for the extended variational explicit-solute implicit solvent (VESIS) simulations of molecular conformational change 
and binding process. This study is motivated by our recent work that couples VISM with Monte Carlos (MC) method to 
simulate the binding of proteins p53 and MDM2 that are treated as rigid bodies, where each MC move is followed by a 
solvation free-energy calculation [32]. A new and fast binary level-set algorithm that we have developed enables us to carry 
out such intensive MC-VISM simulations with hundreds of thousands MC moves. Clearly, the rigid-body approximation can 
hardly make our MC-VISM simulations reach the final p53-MDM2 bound complex. However, explicit-solvent all-atom molec-
ular dynamics (MD) simulations starting from our MC-VISM conformations reach quickly to the final complex. It is therefore 
naturally for us to further develop our mesoscale molecular simulation approach to allow the solute atoms to move around 
as in the real system. This is what we do in our current study.

Our main results include the following:

(1) We extend VISM to include the solute-solute atomic interactions with a usual force field to construct our VESIS model. 
Such interactions include the mechanical bonding, bending, and torsion, vdW interactions modeled by Lennard-Jones 
(LJ) potentials, and the electrostatic interactions by Coulomb’s law. The coupling between these solute interactions and 
the implicit solvent is through the solute-solvent interactions described by a sum of integrals over the solvent region, 
summing over all the solute atoms.

(2) We design an adaptive-mobility gradient descent optimization method to relax all the solute atoms, and couple it with 
our fast binary level-set method to minimize the VESIS free-energy functional.

(3) We implement our methods and algorithms on the integrated GPU, and test our code to verify its accuracy, stability, 
and efficiency.

(4) We apply our VESIS model and GPU implementation to simulate several molecular systems, including the protein BphC 
and the protein complex p53-MDM2, to demonstrate the significant improvement of efficiency of our new algorithms 
and implementation over the CPU implementation.

First introduced in [32], the binary level-set method is based on the approximation of surface area of an interface 
separating two regions by the convolution of the characteristic functions of these regions with a compactly supported 
kernel. This combines two steps, diffusion and threshold, in the method of threshold dynamics [23] (cf. also [8,26–29]) 
into one step. An energy functional of the interface that includes the surface area and other related quantities can then 
be expressed as the sum over finite-difference gird cells. Cells in the two regions separated by the interface are marked 
by −1 and +1. Equivalently, the interface is determined by a binary level-set function taking the value −1 or +1 on all 
the grid cells. The approximated total free-energy value can then be expressed as the sum of those values over all the grid 
cells. When a given interface is spatially perturbed, the energy change only occurs from those cells around the interface. 
The method then proceeds with flipping the cells (i.e., changing the sign of the binary level-set function on the cells) near 
the interface and only accepts the change of sign when the energy is decreased. The algorithm is seemingly simple yet is 
significantly more efficient than the classical continuous level-set method [32]. A key factor contributing to such efficiency 
is that the flipping is done only locally around the interface instead of globally in the computational box [10,18,19].

Our new, adaptive-mobility gradient descent optimization method is designed to efficiently optimize a multi-variable 
objective function that may have many local minima and saddle points and that the gradient may vary significantly. The 
method is of the type of the gradient descent. But the descent is not uniform for all the iteration steps. Instead, mobility 
constants are adaptively changed during the iteration steps. This way, one may speed up the convergence.

In section 2, we describe our VESIS modeling framework. In section 3, we present our fast binary level-set method 
for interface motion and adaptive-mobility optimization method for relaxing atomic positions, as well as the simulation 
algorithm. Section 4 is devoted to the description of our GPU implementation. In section 5, we present the numerical tests 
and applications to several molecular systems, and demonstrate the efficiency of our methods and implementation. Finally, 
in section 6, we draw conclusions and discuss our future work. Appendix collects some calculations and formulas that are 
used in our modeling and numerical methods.
2



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Fig. 1. A schematic view of a solvation system with explicit solute and implicit solvent. The entire system region � is divided by a solute-solvent interface 
into the solvent region �w and the solute region �m containing all the solute atoms at ri (1 ≤ i ≤ N). Two different solute-solvent interfaces are shown. 
One is a tight interface �tight (solid line) and the other a loose interface �loose (dashed line).

2. A variational explicit-solute implicit-solvent model

We consider a few molecules immersed in an aqueous solvent (i.e., water or salted water). This system of molecular 
solvation is confined spatially in a bounded region � ⊂ R3; cf. Fig. 1. We assume that there are N atoms of these solute 
molecules, located at r1, . . . , rN ∈ � and carrying partial charges Q 1, . . . , Q N , respectively. A closed surface � inside � and 
enclosing all the solute atoms ri (1 ≤ i ≤ N) is called a solute-solvent interface or dielectric boundary. Such an interface, 
which may have several disjoint connected components, divides the entire solvation region � into two parts. One is the 
solute region, denoted �m (m stands for molecule), which is the interior of the surface �, and the other is the solvent 
region, denoted �w (w stands for water) and defined by �w = � \ �m (a bar denotes the closure of a set).

Our basic assumption is that an experimentally observed equilibrium solvation system is determined by its solute-solvent 
interface and solute atomic positions that together minimize an effective free-energy functional [4]

G[�,R] = GVISM[�,R] + Gss[R], (2.1)

over all possible solute-solvent interfaces � and solute atomic positions R = (r1, . . . , rN ). Here, the first part is the solvation 
free energy approximated by the VISM free energy and the second part is the solute-solute interaction potential or force 
field.

The VISM free energy is given by [6,7,30,33]

GVISM[�,R] = γ0Area (�) + ρw

N∑
i=1

∫
R3\�m

U (i)
LJ (|r − ri |)dV r

+ 1

32π2ε0

(
1

εw
− 1

εm

) ∫
R3\�m

∣∣∣∣∣
N∑

i=1

Q i(r − ri)

|r − ri |3
∣∣∣∣∣
2

dV r. (2.2)

The first term here is the solute-solvent interfacial energy, where γ0 is the surface tension constant. The second term de-
scribes the van der Waals (vdW) type interactions between the solute atoms located at ri (1 ≤ i ≤ N) and solvent molecules 
that are treated as a continuum, where ρw is the bulk solvent density and each U (i)

LJ is a Lennard-Jones (LJ) potential of the 
form

U L J (r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (2.3)

where the length parameter σ and energy parameter ε can depend on individual solute atoms. The last term in (2.2) is the 
Coulomb-field approximation (CFA) of the electrostatic interaction energy, where ε0 is the vacuum permittivity, and εw and 
εm are the relative permittivities of the solvent and solute, respectively. Note that the integrals in (2.2) are over the region 
R3 \�m, instead of �w which is bounded. This is to account for the long-range effect of the vdW and Coulomb interactions.

We remark that one can include more terms in the VISM free energy. However, to keep our numerical implementation 
robust, we shall focus on this version of VISM free-energy functional.

The solute-solute interaction potential in (2.1) is given by

Gss[R] =
∑ 1

2
Aij(ri j − r0i j)

2 +
∑ 1

2
Bijk(θi jk − θ0i jk)

2

(i, j) (i, j,k)

3



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
+
∑

(i, j,k,l)

6∑
n=0

Cn[1 + cos(nτi, j,k,l − ψn)] +
∑
(i, j)′

U (i, j)
LJ (ri j) +

∑
(i, j)′

Q i Q j

4πε0εwri j
. (2.4)

Here, the first three terms account for the mechanical interaction energy from bonded solute atoms. The first term is the 
bonding energy of solute atoms, where the sum is taken over all pairs (i, j) of bounded solute atoms, ri j = |ri − r j |, and 
r0i j and Aij are the corresponding equilibrium distance and spring constant, respectively. The second term in (2.4) is the 
bending energy of solute atoms, where the sum is taken over all triplets (i, j, k) such that both pairs of solute atoms (ri , r j)

and (r j, rk) are bonded. For such a triplet, θi jk is the angle between the vectors ri − r j and rk − r j , θ0i jk ∈ [0, π ] is the 
corresponding equilibrium angle, and Bijk is a constant parameter. The third term in (2.4) accounts for the torsion energy 
of solute atoms [15]. The sum is taken over all quadruples (i, j, k, l) such that (ri, r j), (r j, rk), and (rk, rl) are all bonded. For 
such a quadruple (i, j, k, l), τi jkl is the torsion angle that is the angle between the plane determined by (ri , r j, rk) and that 
determined by (r j, rk, rl), n is the multiplicity, ψn is the phase factor, and all Cn are constants.

The last two terms in (2.4) account for the interaction energies from non-bonded solute atoms indicated by (i, j)′ in the 
summation. The fourth term is the solute-solute vdW interaction energy, where each U (i, j)

LJ is an LJ potential of the form
(2.3). The last term is the solute-solute Coulomb interaction energy.

3. Numerical methods

We minimize the free-energy functional G[�, R] defined in (2.1) numerically by an iteration scheme. Each iteration step 
consists of two parts. In the first part, we fix the solute atomic positions and minimize numerically the VISM solvation free-
energy functional (2.2) by a binary level-set method to obtain an optimal solute-solvent interface. In the second part, we 
fix the interface obtained in the first part, and minimize the energy functional G[�, R] that is a multi-variable function of 
the solute atomic positions R = (r1, . . . , rN ) by an adaptive-mobility gradient descent method. The binary level-set method 
was introduced and used in our rigid-body MC-VISM simulations of protein binding [32]. Here, we briefly recall the method, 
referring to [32] for more details. We also describe in details our new, adaptive-mobility gradient descent optimization 
method for minimizing the function G[�, R] with � fixed. We present our step-by-step algorithm at the end of this section.

3.1. A binary level-set method

We set the solvation system region to be � = (−L, L)3 for some L > 0. The side length L is chosen to be large enough 
so that the region � includes all the solute atoms ri (1 ≤ i ≤ N) whose geometrical center can be shifted to the origin, if 
necessary; cf. Fig. 1. This region � is also our computational box. We cover it by a uniform finite-difference grid of size h. A 
solute-solvent interface � = ∂�m is approximated by a binary level-set function φ that is defined on all the grid cells with 
φ = −1 and φ = +1 on cells interior and exterior to �, respectively.

We discretize the VISM solvation free-energy functional (2.2) with all the solute atoms fixed at ri (1 ≤ i ≤ N). Let us first 
rewrite this functional as

GVISM[�,R] = γ0Area (�) +
∫

�\�m

U (r)dV r +
∫

R3\�
U (r)dV r, (3.1)

where

U (r) = ρw

N∑
i=1

U (i)
LJ (|r − ri |) + 1

32π2ε0

(
1

εw
− 1

εm

)∣∣∣∣∣
N∑

i=1

Q i(r − ri)

|r − ri|3
∣∣∣∣∣
2

. (3.2)

Approximation of the surface energy. The surface area of the solute-solvent interface � can be expressed as [32]

Area(�) = C0

δ4

∫
x∈�m

∫
y∈�w

K

(
x − y

δ

)
dydx + O (δ2) f or 0 < δ � 1, (3.3)

where

C0 =
⎛
⎜⎝

1∫
0

∫
B(0,1)∩{y3>s}

K (y)dy ds

⎞
⎟⎠

−1

is a constant, B(0, A) for any A > 0 is the ball centered at the origin 0 with radius A, and y3 is the third component of 
the position vector y. The kernel function K = K (x) (x ∈ R3) is chosen to be non-negative, compactly supported in the 
closure of the unit ball B1(0) of R3, and spherically symmetric (i.e., it is a function of |x|). In our implementation, we set 
K (x) = sin2(π |x|) if |x| ≤ 1 and 0 elsewhere. The small parameter δ > 0 is the rescaled kernel radius, defined as the radius 
of the ball of the support of K (|x|/δ).
4



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Discretization of the VISM free energy in the solvation region. By employing the center-point numerical integration rule, 
one can discretize the double-integral in (3.3) with an optimal choice δ = λ

√
h, where λ > 0 is a constant. Consequently, we 

obtain the following expression of an approximation of the surface energy, the first term in (3.1) [32]:

γ0Area (�) = γ0C0h4

λ4

∑
x j∈�m

∑
xk∈�w

|xk−x j |≤λ
√

h

K (x j − xk) + O (h),

where x j ∈ �m and xk ∈ �w are the centers of grid cells in �m and �w, respectively. The second term in (3.1) can be 
approximated by the center-point integration rule:∫

�\�m

U (r)dV r = h3
∑

x j∈�w

U (x j) + O (h).

Therefore, these approximations and (3.1) lead to the approximation

GVISM[�,R] ≈ γ0C0h4

λ4

∑
x j∈�m

∑
xk∈�w

|xk−x j |≤λ
√

h

K (x j − xk)

+ h3
∑

x j∈�w

U (x j) +
∫

R3\�
U (r)dV r. (3.4)

The last integral can be written analytically as iterated integrals using the spherical coordinates and evaluated by one-
dimensional numerical quadrature; cf. [5].

Flipping grid cells to decrease the energy. Given a solute-solvent interface defined by a binary level-set function, we 
relax its VISM free energy (3.4) by flipping the grid cells, i.e., by changing the sign of the binary level-set function on the 
grid cells. The flipping is only done for grid cells that around the interface. This is because that any grid cells centered at 
x j ∈ �m and xk ∈ �w with |x j − xk| > λ

√
h do not contribute to the first term in (3.4).

We pick up a grid cell that is immediate next to be the interface, flip its sign, and calculate the change of the approximate 
energy based on (3.4). Note that the last term in (3.4) does not change if we flip a grid cell. If the cell is centered at x j ∈ �m, 
so the sign of the cell is −1, then the flip of the cell leads to the change of energy

�(Gsolv) j = γ0C0h4

λ4

∑
xk∈�m

|xk−x j |≤λ
√

h

K (x j − xk) − γ0C0h4

λ4

∑
xk∈�w

|xk−x j |≤λ
√

h

K (x j − xk) + U (xj). (3.5)

Otherwise, if the cell is centered at x j ∈ �w, so the sign of the cell is +1, then the flip of the cell leads to the change of 
energy

�(Gsolv) j = γ0C0h4

λ4

∑
xk∈�w

|xk−x j |≤λ
√

h

K (x j − xk) − γ0C0h4

λ4

∑
xk∈�m

|xk−x j |≤λ
√

h

K (x j − xk) − U (xj). (3.6)

After calculating �(Gsolv) j by flipping grid cells near the interface, we put �(Gsolv) j in a Min-Heap. We flip the grid cell 
with the smallest �(Gsolv) j in the heap if �(Gsolv) j < 0. With the new interface, we add energy changes for new grid 
cells near the new interface to the heap, delete old grid cells in the heap which are not near the new interface, update 
�(Gsolv) j for old grid cells near the new interface in the heap, then we sort the Min-Heap. This flipping process stops until 
all �(Gsolv) j ≥ 0, indicating the energy reaches a minimum.

Initial surfaces. Our method for minimizing the VISM free-energy functional is of steepest descent type. It starts with 
an initial surface and iteratively moves it with the free energy decreased in each step of the iteration. The final free-energy 
minimizing surface is a local minimizer of the functional and depends on the initial surface. Different initial surfaces can 
lead to different (meta)stable equilibrium conformations that are of interest; see Fig. 1. In order to capture multiple local 
minimizers, we often use two types of initial surfaces. One is a loose initial surface that can be a large sphere enclosing 
all the solute atoms. The other is a tight initial surface that wraps up all the solute atoms tightly with vdW radii. Such a 
surface is the zero level-set of the continuous function

ϕ(r) = min
1≤i≤N

(|r − ri| − di),

where di > 0 is the vdW radius of the ith solute atom located at ri (i = 1, · · · , N). The binary level-set function for the 
surface can then be obtained by setting its value at the center of a grid cell to be the sign of ϕ-value at that center. Fig. 2
shows a tight surface constructed by both a continuous and the corresponding binary level-set function.
5



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Fig. 2. A tight initial solute-solvent interface constructed as the union of vdW spheres centered at solute atoms (black dots) by a continuous level-set 
function (Left) and a binary level-set function (Right), respectively.

3.2. Adaptive-mobility gradient descent method for the relaxation of solute atoms

With a fixed solute-solvent interface �, we minimize the free energy G[�, R] defined in (2.1), (2.2), and (2.4) as a function 
of R = (r1, . . . , rN ) by solving for a steady-state solution to the system of the gradient descent equations

d(rn(t))l

dt
= −Mnl(∇rn G[�,R])l, n = 1, · · · , N, l = 1,2,3, (3.7)

where (a)l denotes the lth component of a vector a ∈R3 (1 ≤ l ≤ 3) and all Mnl > 0 are constants (called mobility constants). 
The formula of the gradient ∇rn G[�, R] is given in (A.1) in Appendix. We use the forward Euler method to solve these 
equations iteratively with a fixed time step.

Due to the complex molecular interactions of an underlying system, the gradient of G[�, R] can vary significantly with 
solute atoms and with different components. If the mobility constant Mnl is too large, then the motion of the particle rn in 
its gradient descent direction may possibly overshoot and increase the free energy. If Mnl is too small, the free energy may 
decrease very slowly. To improve the stability and efficiency, we therefore adaptively change the mobility constants Mnl in 
each step of iteration based on the magnitude of gradient and the total free-energy value.

In our implementation, the mobility constants are chosen to be ωM , where the “base” mobility ω is updated in each 
interaction step of the forward Euler method and M is also adjustable. The adjustment of M is based on the decrease 
or increase of the energy with a high energy threshold. It is controlled by a relative energy value δG∗ > 0 depending on 
iteration steps, and a shrinking parameter α ∈ (0, 1) that shrinks M if the energy increases too much and too often tracked 
by a counting number Ncnt which has a threshold value N∗

cnt. Initially, we set M = 1 and Ncnt = 0.
Given all the atomic positions after a forward Euler iteration step, with some M > 0 and 0 ≤ Ncnt < N∗

cnt, and the 
corresponding energy G[�, R] calculated and denoted Gold. We calculate all the gradient of G[�, R] at those positions and 
set

ω = 1

max1≤m≤N,1≤k≤3 |(∇rm (G[�,R])k| . (3.8)

We then move the atomic positions in one time step by the forward Euler iteration for solving (3.7) with all Mnl = ωM . 
We also calculate the energy for the new atomic positions and denote it by Gnew. If Gnew < Gold, then we accept the 
moved solute atomic positions, do not change the value of M , increase Ncnt by 1, and continue the iteration. If Gnew > Gold, 
then we choose the threshold δG∗ to be some fraction of Gold and consider two cases. If Gnew ≥ Gold + δG∗ , then we do 
not update the atomic positions but shrink M to M := αM reset Ncnt = 0 and start over with the next iteration step. If 
Gnew < Gold + δG∗ , then we check the counting number Ncnt and consider two cases:

(1) If Ncnt≥N∗
cnt, which means that the same M has been used for N∗

cnt times, then we do not accept the new positions, 
shrink M to M := αM , and reset Ncnt = 0.

(2) If Ncnt < N∗
cnt, we accept the new atomic positions, keep the same M , and increase Ncnt by 1.

Note that Ncnt is the number of steps where the same M is used consecutively. In our implementation, we choose α = 1/
√

2, 
N∗

cnt = 5, and δG∗ to be 5% of Gold.
6



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
3.3. Numerical algorithm

Step 1. Initialization. Input all the model parameters from (2.2)–(2.4). In particular, position N solute atoms with the center 
of geometry at the origin by a coordinate translation if necessary. Set the computational box � = (−L, L)3 and discretize 
the box with a uniform finite-difference grid. Set an initial binary level-set function φ(0) to define the initial solute-
solvent interface �0, solute region �0

m, and solvent region �0
w.

Set counter Ncnt = 0, count tolerance N∗
cnt = 5, an initial uniform mobility constant M = 1, and the time step dt = 1. 

Set the initial iteration number k = 0 and kmax= 3000. Set the shrinking parameter α = 1/
√

2. Set the error tolerance 
Tol1 = 1e-4 for the gradient and Tol2 = 1e-5 for atomic positions update.

Step 2. Get the optimal solute-solvent interface �k+1 with atomic positions Rk by the binary level-set method.
Step 2.1. Calculate by (3.5) and (3.6) the change of solvation free energy �(Gsolv) j on all grid cells next to the interface 

�k . Sort solvation energy change �(Gsolv) j in a Min-Heap.
Step 2.2. Flipping Process:

while (Smallest �(Gsolv) j < 0) do
Flip : flip the corresponding grid cell with smallest �(Gsolv) j .
Update : check for new grid cells next to the new interface, calculate �(Gsolv) j

for new grid cells, and update �(Gsolv) j for old grid cells in the heap.
Sort : sort solvation energy change �(Gsolv) j in a Min-Heap.

endwhile
Step 2.3. Define �k+1 to be the optimal solute-solvent interface from the flipping process.

Step 3. Update the solute atomic positions by solving the system of equations (3.7).
Step 3.1. Calculate by (A.1) the gradient ∇rn G[�k+1, Rk] for all n = 1, · · · , N .
Step 3.2. Test the convergence. If absolute values of ∇rn G[�k+1, Rk] for each solute atom in each coordinate < Tol1, then 

stop the algorithm.
Step 3.3. Update positions of all moving solute atoms according to equation (3.7) and (3.8). Calculate the total free 

energy change δG[�k+1, Rk+1] = G[�k+1, Rk+1] − G[�k+1, Rk]. Set δG∗ = 5%G[�k+1, Rk].
Step 3.4. Check the total free energy change:

if (δG[�k+1, Rk+1] > δG∗) or ( Ncnt ≥ N∗
cnt and 0 < δG[�k+1, Rk+1] ≤ δG∗)

Put all moving solute atoms back to Rk .
M = αM , Ncnt = 0, go to Step 3.3.
else
Ncnt = Ncnt + 1;
endif

Step 4. Calculate the absolute error �G[�k+1, Rk+1]abs and relative error �G[�k+1, Rk+1]rel.
Step 5. Test the convergence. If either �G[�k+1, Rk+1]rel < Tol2 or �G[�k+1, Rk+1]abs < Tol2 stays continuously for 100 

steps, or if the number of iterations reaches to kmax, stop the algorithm. Otherwise, go to Step 2.

We remark that there are two error tolerances and stopping criteria: One is a small tolerance 1e-4 for the gradient 
descent for updating the solute atomic positions. The other stop criterion is a small tolerance of relative difference or 
absolute difference of the total free energy. In our experiments, we set the relative difference stop criterion to be 1e-5, and 
absolute difference stop criteria to be 1e-5. To avoid the situation that the free energy functional decreases slowly because 
of small mobility factor Mnl , we determine that the system stops only when the relative difference stop criterion or the 
absolute difference stop criterion is satisfied continuously for 100 steps.

4. GPU implementation

In this section, we discuss the parallel implementation of aspects of our free-energy functional minimization algorithm 
for the fast execution of our programs.

Parallel computing concerns strategies for performing simultaneous computations, usually through the use of multiple 
processors. This approach has become more and more important as the abilities of individual processors reach their limits 
under Moore’s law. Integrated GPUs are nearly ubiquitous in today’s client devices such as laptops and desktops. Much 
like dedicated GPUs, the integrated GPUs are also capable of general–purpose computation in addition to the traditional 
graphics role. Furthermore, modern integrated GPUs work the same way as those dedicated cards with the exception that 
they use system memory that is shared with the CPU [9]. The recent advent of the use of the graphics processing unit 
(GPU) for general purpose parallel computing, instead of traditionally multiple central processing units (CPU’s), has allowed 
for algorithms that can take advantage of its high throughput and hundreds or thousands of cores to achieve new heights 
in speed. This has, for example, revolutionized the subject of deep learning in artificial intelligence.

We introduce parallel programming, using OpenCL, employing the integrated GPU for operations in our free-energy 
functional minimization algorithm. The operations that are particularly amenable to this kind of parallelization are usually 
made up of a large number of smaller, simpler ones, to take advantage of the large number of cores in the GPU that, 
alternatively, must work in lockstep. We find such operations in our computations of the LJ and CFA of the electrostatics 
7



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
in the VISM free energy (2.2), the solute-solute interaction energy (2.4), and all of their derivatives, combined in (A.1). We 
separate the parallelization into two cases that are treated differently, one handling VISM LJ and electrostatic terms, and 
their derivatives, and the other handling solute-solute interaction terms and their derivatives.

For the first case, we begin by describing the procedure introduced in [32] for the LJ and CFA contributions, though in 
more general terms. These contributions notably both contain integrals of the form∫

R3\�m

f (r) dV r,

where f has some complexity in the computation of its values; in the case of LJ, f (r) = ∑N
i=1 U L J (|r − ri |), which requires 

some computation when the number of solute atoms is large. With far-field approximations handling the integral outside 
the computational box �, numerical quadrature for the rest takes the general form∑

k∈I

αk f (rk)�xk,

where xk are grid points of a grid in �, and for some αk ∈R. This summation is computationally intensive as f needs to be 
evaluated over the grid; in fact, in our problem this needs to be performed each time step, when the atoms move. A GPU 
parallel implementation is introduced in [32] to handle the evaluation of f over the grid which parallelizes over the grid 
points, passing out the computation of f at each to the cores. This works especially well because there of the large number 
of grid points, typically hundreds of thousands or millions, the GPU cores can work on. Note, in the parlance of OpenCL, the 
grid points form the work-items, which are instead known as threads under CUDA.

We apply this idea here not only to LJ and electrostatic terms, but also to their derivative terms found in the gradient 
of the VISM free-energy (A.1). These terms also have integrands that grow in complexity with the number of solute atoms, 
thus slowing down computations in the case of large numbers of moving atoms. Thus, the same parallelization techniques 
can be adopted to improve runtimes.

For the solute-solute interaction terms and their derivatives, no integration is present and no grid points are involved. 
Instead, all terms involve a summation of some interaction between solute atoms. Consider, for example, a system’s solute-
solute LJ interactions:∑

1≤i≤N

∑
j 
=i

U L J (|ri − r j|).

For our parallel implementation, we consider separately the terms∑
j 
=i

U L J (|ri − r j|),

and parallelize by passing out these computations for each 1 ≤ i ≤ N to the cores. Note, however, there are far fewer solute 
atoms, typically in the hundreds or thousands, compared to the hundreds of thousands or millions of grid points. Thus, the 
parallelization may not be as efficient in comparison with that of our first case.

One additional note is that while double-precision machine numbers and their arithmetic are commonly available in 
CPU architectures, they are not universally supported on GPU’s, where, for traditional graphical purposes, single-precision 
has been adequate. And though more and more GPU architectures now do support double-precision, due to the expansion 
of GPU’s for general purpose computing, single-precision and even half-precision arithmetic operations are still used for 
faster calculations. The drawback in the use of single-precision instead of double-precision is in increased round-off error. 
This especially is of concern when performing a large number of operations, where round-off errors can accumulate to 
intolerable levels. In our application, we find such large numbers of operations in our sums, with sums over solute atoms, 
which can be in the thousands, and over grid points, which can be in the millions. For our sums, we adopt the strategy of 
summing-by-pairs [31], a binary tree-based approach to order the operations in such a way as to reduce round-off error. In 
our applications, we find this to result in a nearly negligible amount of error compared to double-precision results, allowing 
us to take advantage of the speed afforded by single-precision computations. In future work, we may consider computing 
with mixed-precision machine numbers to better balance round-off error and speed.

As we shall show below (cf. Tables 2, 3, and 7), the combined results of our choices in parallelization and operation 
orders for sums for single-precision arithmetic significantly improve in runtimes even in comparison to a ported CPU par-
allelization, where the program for parallelization using the GPU instead uses available CPU cores. In addition, the table 
reveals that there are few negative effects in our use of single-precision machine numbers rather than double-precision. Our 
resulting parallel GPU implementation serves as the linchpin of our computations, as without it, we would not be able to 
obtain results in any reasonable amount of time due to the requirements of the moving atoms.

All calculations are performed on a 2017 iMac, with 3.50 GHz Intel (R) Core (TM) i5-7600 CPU, and the integrated GPU 
is AMD Radeon Pro 575, where the maximum number of compute units is 32. In our work, all sequential computations are 
executed on 1 CPU core, and all parallel computations are executed on the integrated GPU with OpenCL 1.2 using all 32 
compute units.
8



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Table 1
Model parameters.

Parameter Symbol Value Unit
temperature T 298 K
solvent number density ρw 0.0333 Å−3

surface tension γ0 0.174 kBT/Å
2

solute dielectric constant εm 1
solvent dielectric constant εw 80

Fig. 3. Stable 3D equilibrium solute-solvent surfaces of the two parallel charged plates obtained by the binary level set VISM calculations with loose (top 
row) or tight (bottom row) initial interface at d = 9 Å, d = 13 Å, and d = 16 Å. Atomic charges are (+0.2e,+0,2e).

5. Numerical experiments and applications

We first apply the binary level-set method and its GPU implementation to two molecular systems with fixed solute 
particles, a system of two parallel charged plates, and the protein BphC, and show that the binary level-set method is 
accurate in qualitatively reproducing the known results of those two systems. We then consider the full application of our 
model and numerical methods to two small molecular systems, a two-particle system and the ethane molecule, to show 
the convergence of our algorithm. Finally, we study the p53-MDM2 binding process with solute mechanical interactions to 
demonstrate the efficiency of our methods and GPU implementation. Table 1 summarizes the continuum model parameters 
used in all these numerical computations.

5.1. Free-energy minimization with fixed solute atoms

We consider two molecular systems each with fixed solute atomic positions, and apply the binary level-set method with 
GPU implementation to minimize the solvation free-energy functional (2.2) of solute-solvent interfaces � with all atomic 
positions ri (1 ≤ i ≤ N) fixed. Both systems have been studied extensively with continuous level-set method and CPU 
computations [30,33,35]. Here we show the qualitative accuracy, and efficiency, of our new algorithm and implementation.

Two parallel charged plates. Each of these two plates consists of 6 × 6 C H2 atoms with a square length of about 3 nm. The 
two plates are placed at a center-to-center distance d. In the following, we investigate how (a) the capillary evaporation, 
(b) the hydrophobic attraction, and (c) a possible hysteresis in the free energy are affected by charging up the plates. To 
this end, we assign central charges q1 and q2 to the first and second plates, respectively, with |q1| = |q2|. The total charges 
of these two plates are 36q1 and 36q2, respectively. We study like-charged and oppositely charged plates by choosing the 
values of (q1, q2) to (+0.2e, +0.2e), and (+0.2e, −0.2e). The atom-water LJ parameters are ε = 0.262 kBT, σ = 3.15365 Å, 
and the atom-atom LJ are ε = 0.265 kBT and σ = 3.54 Å.

We first investigate the VISM surfaces of the two plates at different distances with the like-charge (+0.2e, +0.2e) with 
different initial configurations. Fig. 3 shows a few snapshots of stable 3D equilibrium solute-solvent surfaces of the two 
parallel charged plates system obtained by the binary level set VISM calculations with loose or tight initial interface at 
d = 9 Å, d = 13 Å, and d = 16 Å. In the top row of Fig. 3, with the loose initial interface, a stable capillary bubble remains 
between the two charged parallel plates at d = 9 Å and d = 13 Å, and the bubble becomes tighter along the enlarging 
distance. At d = 16 Å, the bubble disappears. Comparatively, with the tight initial interface, the equilibrium state is wet at 
d = 9 Å, d = 13 Å, and d = 16 Å.

We now examine the potential of mean force (PMF) of the two-plate system with respect to the plate-plate separation 
distance d. This is the VISM free-energy value as a function of d, with an additive constant such that the free energy is 0 at 
the infinite plate-plate separation. For a given d, we may have two VISM free-energy minimizing solute-solvent interfaces 
9



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Fig. 4. Different parts of the PMF of the two parallel charged plates with respect to the separation distance d, with loose and tight initial surfaces. (a) The 
geometrical part Gpmf

geom. (b) The vdW part Gpmf
vdW. The solute-solute vdW interactions are excluded in the curves in the main frame but included in those in 

the inset. (c) The electrostatic part Gpmf
elec . The solute charge-charge interactions are excluded in the curves in the main frame but included in those in the 

inset. (d) The total PMF Gpmf
tot . The values of (+0.2e, −0, 2e) with tight initial interface are used as reference values to show the difference.

Table 2
Comparison of GPU (single precision) and CPU (double precision) for free energy (kBT) and its components of two parallel charged plates with different 
charges (+0.2e, −0, 2e) at distance d = 10 Å. The unit of time is second.

Grid 
Points

Total Energy Surface Energy vdW Energy CFA Total Time
GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU

723 -2099.5 -2099.5 631.8 631.8 -98.3 -98.3 -2632.9 -2633.0 0.6 3.0
1443 -2090.8 -2090.8 640.3 640.3 -97.9 -97.9 -2633.1 -2633.2 4.0 21.2
2883 -2082.0 -2082.0 648.3 648.3 -110.4 -110.4 -2619.9 -2619.9 29.9 163.9

corresponding to a tight and a loose initial surface, respectively. We denote by Gpmf
VISM(d) the corresponding minimum free 

energy of one of the two branches, and denote by Gpmf
geom(d), Gpmf

vdW(d), and Gpmf
elec(d) the components of the PMF, correspond-

ing to the first, second, and third terms in (2.2), respectively. Precise definition is given in Appendix.
Fig. 4 displays the bimodal behavior and hysteresis of the two different PMF branches stemming from the equilibria 

of wet and dry states, i.e., the VISM free-energy minimizing surfaces corresponding to initial tight and loose surfaces. 
Atomic charges considered here are (+0.2e,-0,2e) and (+0,2e, +0,2e), respectively. We can see that like-charged and oppositely 
charged plates give different free-energy branches and hysteresis. For the like-charged cases in Fig. 4, a strong hysteresis is 
presented for 8 � d � 15 Å. For the oppositely charged plates, strong hysteresis is presented for 6 � d � 8 Å.

In Table 2, we show a comparison of the calculation speed and different parts of the free energy using the binary level-set 
method between GPU single precision code and CPU double precision code of the two charged parallel plates system. Three 
different grid sizes are shown. We can observe that the results for free-energy estimates from CPU double precision code 
and GPU single precision code are nearly the same. The improvement of speed using GPU can be obtained by comparing 
the time. The cost time of CPU code is around 5 times of the GPU code with three different grid sizes.

The protein BphC. In this example, we consider biphenyl-2, 3-diol-1, 2-dioxygenase (BphC), an enzyme protein (PDB code: 
1dhy). The functional unit of this protein is a homo-octamer, and each subunit consists of two domains. We set up a series 
of configurations where the two domains are increasingly separated from d = 0 to d = 20 Å apart, perpendicular to their 
interface. The domain separation d is chosen here to be the reaction coordinate. Note that the zero domain separation 
corresponds to the native configuration in the crystal structure.
10



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Fig. 5. Stable 3D equilibrium solute-solvent surfaces of the BphC system obtained by the binary level set VISM calculations with loose (top) or tight (bottom) 
initial interface at d = 8 Å, d = 12 Å, and d = 16 Å.

Fig. 6. Different parts of the PMF of BphC with respect to the domain separations, with loose and tight initial surfaces. (a) The geometrical part Gpmf
geom. 

(b) The vdW part Gpmf
vdW. The solute-solute vdW interactions are excluded in the curves in the main frame but included in those in the inset. (c) The 

electrostatic part Gpmf
elec . The solute charge-charge interactions are excluded in the curves in the main frame but included in those in the inset. (d) The total 

PMF Gpmf
tot . The solute-solute vdW interactions are excluded in the curves in the main frame but included in those in the inset.

Three pairs of stable equilibrium solute-solvent interfaces of BphC at d = 8 Å, d = 12 Å, and d = 16 Å with tight or loose 
initial interfaces are presented in Fig. 5. The top row is with the loose initial interfaces, and the bottom row is with the 
tight initial interfaces. We observe that the equilibria of the loose initial interface wrap the two domains of BphC at d = 8 Å
and d = 12 Å, and the equilibria surface becomes tighter along the increasing distance. At d = 16 Å, the interfaces of two 
domains separate, changing to the wet state. In contrast, with the tight initial interface, all equilibria states are wet.

In Fig. 6, different parts of the PMF of BphC with respect to the separation of two domains, from d = 0 to d = 20 Å
obtained by our binary level set calculations using tight and loose initial surfaces are displayed. These PMFs exclude the 
solute-solute vdW interactions. We observe the bimodal hydration behavior: the branches of different parts of the PMF of 
BphC between 4 Å and 14 Å, indicating that initial interfaces can strongly affect the PMF of BphC.
11



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Table 3
Comparison of GPU (single precision) and CPU (double precision) for free energy (kBT) and its components of BphC with the native configuration in the 
crystal structure. The unit of time is second.

Grid 
Points

Total Energy Surface Energy vdW Energy CFA Total Time
GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU

503 52133.7 52134.2 1588.2 1588.2 53116.8 53117.4 -2571.2 -2571.3 4.1 60.6
1003 52251.8 52252.3 1658.3 1658.3 53130.4 53131.0 -2537.0 -2537.0 4.9 381.1
2003 52303.7 52304.2 1654.3 1654.3 53146.7 53147.3 -2497.3 -2497.3 13.5 2911.0

Fig. 7. The free-energy minimization for a two-atom system. Top: Experiment 1.1.a. The snapshots are taken at (a) initial stage step 0, (b) step 5, (c) step 
10, and (d) step 63, reaching nearly the steady state. Bottom: Experiment 1.1.b. The snapshots are taken at (e) initial stage step 0, (f) step 2, (g) step 4, and 
(h) step 53, reaching nearly the steady state. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In Table 3, we show a comparison of the calculation speed and different parts of the free energy with the binary level-set 
method between GPU single precision code and CPU double precision code of the BphC. Three different grid sizes are shown. 
We observe that the results from CPU double precision code and GPU single precision code are nicely consistent. With the 
grid size of 503, 1003, and 2003, the time cost of CPU code is around 15 times, 78 times, and 216 times correspondingly to 
the time cost of the GPU code.

5.2. Explicit-solute implicit-solvent free-energy minimization

In this section, we conduct numerical experiments on two molecules that are treated as nonpolar systems (i.e., no 
charges) to demonstrate the efficiency of our free-energy minimization algorithm.

A two-atom molecule. We consider an artificial molecular system of two atoms. The solute-water LJ parameters are σ =
3.57 Å and ε = 0.431 kBT. We additionally assume that the two atoms are bonded, with the spring constant in the bond 
stretching energy A = 800 kBT/Å2. We set the computational box to be (−8, 8)3 Å3.

We design two sets of experiments on the optimization process and equilibria with different initial configurations. In 
the first set of experiments, Experiment 1.1.a and Experiment 1.1.b, we set the equilibrium bond length r0 = 3 Å. In the 
second set of experiments, Experiment 1.2.a and Experiment 1.2.b, we set the equilibrium bond length r0 = 8 Å. In each set 
of experiments, we test two types of initial configurations. In Experiment 1.1.a and Experiment 1.2.a, we place initially the 
two solute atoms far away from each other so that their distance is much larger than the equilibrium bond length. We 
place the two solute atoms at positions (7, 0, 0) and (−7, 0, 0), respectively. In Experiment 1.1.b and Experiment 1.2.b, we 
place initially the two solute atoms very close to each other so that their distance is smaller than the equilibrium distance. 
Specifically, we place the two solute atoms initially at positions (0.5, 0, 0) and (−0.5, 0, 0), respectively.

In Fig. 7, the minimization processes of Experiment 1.1.a and Experiment 1.1.b are displayed. The red dots represent two 
atoms, and the blue segment represents the bond. In the top row of Fig. 7, we can see that initially surface consists of two 
disconnected spheres, then two atoms get closer, and spheres merge, until the system reaches an equilibrium state. In the 
bottom row of Fig. 7, initially, the two atoms are very close to each other, then the atoms are pushed apart due to the force 
from strong bonding energy, the interface is moved accordingly, and then the system reaches to an equilibrium state.

We observe from Table 4 that atoms have the exact same positions and free energy in the equilibrium from the two 
experiments 1.1.a and 1.1.b, indicating that the molecular system in the two simulations reached the same equilibrium.

Fig. 8 shows the minimization processes of Experiment 1.2.a and Experiment 1.2.b. In the top row of Fig. 8, we can 
see that initially surface consists of two disconnected spheres, then two atoms get closer, until the system reaches an 
equilibrium state. Comparing with the equilibrium of Experiment 1.1.a, the spheres are not merged due to a larger bond 
length 8 Å. In the bottom row of Fig. 8, initially, the two atoms are very close to each other, then the atoms are pushed 
apart due to the force from strong bonding energy, the interface moves and then splits apart, then the system reaches to an 
12



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Table 4
Comparison of experiments 1.1.a and 1.1.b of a two-atom system.

Experiment Initial position Final position Bond length Free Energy

1.1.a (7,0,0) (-7,0,0) (1.50,0,0) (-1.498,0,0) 3.00 21.85
1.1.b (0.5,0,0) (-0.5,0,0) (1.50,0,0) (-1.498,0,0) 3.00 21.85

Fig. 8. The free-energy functional minimization algorithm for a two-atom system. Top: Experiment 1.2.a. The screenshots are taken at (a) initial stage step 
0, (b) step 2, (c) step 5, and (d) the steady state step 62. Bottom: Experiment 1.2.b. The screenshots are taken at (e) initial stage step 0, (f) step 3, (g) step 
7, and (h) the steady state step 64.

Table 5
Comparison of Experiments 1.2.a and 1.2.b of a two-atom system.

Experiment Initial position Final position Bond length Free Energy

1.2.a (7,0,0) (-7,0,0) (4.00,0,0) (-4.00,0,0) 8.00 33.93
1.2.b (0.5,0,0) (-0.5,0,0) (4.00,0,0) (-4.00,0,0) 8.00 33.93

equilibrium state with which the interface consists of two separate spheres. Table 5 shows that the two experiments 1.2.a 
and 1.2.b reach the same equilibrium.

An ethane molecule. We consider an ethane molecule C2 H6 in water and take from [13,14,17] the solute atomic po-
sitions and force field parameters. Other parameters are as follows: the carbon-water LJ parameters σ = 3.4767 Å and 
ε = 0.2311 kBT, the hydrogen-water LJ parameters σ = 3.1017 Å and ε = 0.0989 kBT, the carbon-carbon LJ parameters 
σ = 3.4 Å and ε = 0.344 kBT, the carbon-hydrogen LJ parameters σ = 3.025 Å and ε = 0.147 kBT, and the hydrogen-hydrogen 
LJ parameters σ = 2.650 Å and ε = 0.063 kBT.

In the ethane molecule, each atom is connected to other atoms through bonding, bending, and torsion structure. The 
effect of vdW interaction energy among unbonded pairs of solute atoms is relatively less important when compared with 
molecular mechanical interactions, so in our simulation experiment of the ethane molecule, we neglect the vdW interaction 
energy among unbonded pairs of solute atoms.

We design three different initial configurations of the ethane molecule from its equilibrium:

• In Experiment 2.1.a, we stretch all hydrogen-carbon bonds to be 2 Å.
• In Experiment 2.1.b, we stretch or shrink all hydrogen-carbon bonds such that hydrogen-carbon bonds have the length 

of 1 Å, 1.25 Å, 1.5 Å, 1.75 Å, 2 Å, and 2.25 Å.
• In Experiment 2.2, we introduce a small fluctuation, then rotate one set of three hydrogen-carbon bonds 50 degrees 

with respect to the carbon-carbon bond.

In Table 6, the bond lengths of hydrogen-carbon bonds and the carbon-carbon bond in their equilibrium of Experiment 
2.1.a, Experiment 2.1.b, and Experiment 2.2 are compared. It is clear that in the equilibrium, all hydrogen-carbon bonds in 
three experiments have the same length, which is consistent with the reference length of hydrogen-carbon bond 1.093 Å. 
The carbon-carbon bond in each of the three experiments is the same as the reference length 1.508 Å. This verifies the 
accuracy of our free-energy minimization algorithm.

Fig. 9 displays the snapshots of minimization process of Experiment 2.2. The red dots represent carbon atoms, the blue 
dots represent the hydrogen atoms, the light blue segments and green segments represent the hydrogen-carbon bonds, and 
the black segment represents the carbon-carbon bond. It is captured that during the relaxation, the set of three hydrogen-
carbon bonds rotated back to their equilibrium, and all hydrogen-carbon bonds have the same length. Free energy of steady 
state in Experiment 2.1.a is 3.692 kBT, the free energy of steady state in Experiment 2.1.b is 3.685 kBT, and the free energy 
of steady state in Experiment 2.2 is 3.687 kBT. Thus, the three experiments get to the same equilibria. We remark that the 
free energy here does not include the vdW interaction energy among unbonded pairs of solute atoms.
13



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Table 6
Comparison of bond lengths (Å) of ethane in equilibrium from different initial configurations. Remark: H3, H4, and H5 are hydrogen atoms bonded with 
the carbon atom C1, H6, H7, and H8 are hydrogen atoms bonded with the carbon atom C2.

Experiments Experiment 2.1.a Experiment 2.1.b Experiment 2.2

Bond list Initial Length Final Length Initial Length Final Length Initial Length Final Length

C1-H3 2 1.093 1 1.093 1.090 1.093

C1-H4 2 1.093 1.25 1.093 1.090 1.093

C1-H5 2 1.093 1.5 1.093 1.090 1.093

C2-H6 2 1.093 1.75 1.093 1.090 1.093

C2-H7 2 1.093 2 1.093 1.090 1.093

C2-H8 2 1.093 2.25 1.093 1.090 1.093

C1-C2 1.77 1.508 1.77 1.508 1.540 1.508

Fig. 9. The free-energy minimization for ethane from Experiment 2.2. Snapshot taken at step 0 (Left), step 200 (Middle), and step 1500, reaching to a steady 
state (Right).

Fig. 10. The free energy (kBT) vs. the computational step in the free-energy minimization for an ethane molecule in Experiment 2.1.a and Experiment 2.2. 
First 15 (50) computational steps are specified in the inset of each subfigure.

In Fig. 10, we plot the free energy vs. iteration steps in numerical computations for Experiment 2.1.a and Experiment 
2.2. In Experiment 2.1.a, initially, the free energy is very large, that is because the stretch or shrink of the initial bond 
length causes a large value of the bonding energy. We can see that the free energy decays very fast in the first few steps, 
which is caused by the dominant force from the bonding energy. It takes around 1000 steps to adjust positions of solute 
atoms in ethane molecule to reach the equilibrium. In contrast, the initial free energy of Experiment 2.2 in Fig. 10 is a 
relatively small value, as we only introduced a small fluctuation to the initial atomic positions and the rotation of a set 
of three hydrogen-carbon bonds did not cause large free energy change. We observe that the rate of free-energy change 
at around the 3rd step and 200th computational step becomes slower and slower, which indicates that our free-energy 
minimization algorithm was adjusting the suitable mobility factor M during the minimization process. Although the initial 
free energy is small, it takes more than 1400 steps to rotate the hydrogen-carbon bonds back to the right position and reach 
the equilibrium.
14



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Table 7
Comparison of GPU (single precision) and CPU (double precision) for free energy (kBT) and its components of p53/MDM2 in the steady state. The unit of 
time is minute.

Grid 
Points

Total Energy Surface Energy vdW Energy CFA Total Time
GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU

503 -214.0 -212.0 800.7 802.7 -453.1 -453.0 -561.6 -561.7 10.0 784.7
1003 -157.3 -159.1 833.8 834.0 -441.9 -440.6 -549.2 -552.4 16.7 5128.6
2003 -140.9 - 836.5 - -434.4 - -543.0 - 62.6 -

Fig. 11. The free-energy minimization for p53/MDM2. The snapshots are taken at (a) initial stage, i.e., step 0, (b) step 100, (c) step 200, and (d) step 377, 
reaching nearly the steady state. Note that, in order to show the relative positions of MDM2 and p53, we color each piece of surface according to whether 
its closest solute atom comes from MDM2 (red) or p53 (blue).

5.3. Simulation of protein-protein interactions

In this section, we choose a biologically important and realistic system, the p53/MDM2 protein complex, and investi-
gate the binding behavior using our free-energy minimization model and algorithm. To make the calculations of molecular 
movement easier, the receptor protein MDM2 here is fixed. We use the CHARMM36 force field [2,16,21,22] for our VISM 
simulations for the binding of p53 and MDM2.

Table 7 shows the solvation free energy and its components obtained by our VISM simulations for the bound complex 
p53/MDM2, and the computational times of the simulations with the GPU single precision and the CPU double precision, 
respectively.

During those simulations, we relax the relative difference stop criterion and absolute difference stop criteria to be 1e-3, 
just for the efficiency comparison of the GPU code and the CPU code. We set the initial configuration of p53/MDM2 to be 
a tight initial interface for atomic position with small fluctuations of p53/MDM2 in the bound complex, where the bound 
complex is taken from the Protein Data Bank (PDB code: 1ycr.pdb). It can be observed in Table 7 that the difference between 
GPU code with single precision data type and CPU with double precision data type is less than 1%, but the cost time of 
CPU is more than 78 times, and 307 times slower than the cost time of GPU with number of grid points 503, and 1003, 
correspondingly.

We further investigate the binding behavior of p53 and MDM2 with our free-energy minimization method and algorithm. 
Note that, here we use a grid size h = 0.5 Å, the relative difference stop criterion and absolute difference stop criterion are 
1e-5. We construct the initial configuration with a tight initial interface by pulling p53 away from the MDM2 pocket in the 
bound complex along the line passing through the geometrical centers.

In Fig. 11, a few snapshots of numerical results of p53/MDM2 are displayed, showing the minimization process. The 
position of the protein MDM2 is fixed, positions of p53 atoms are adjusted by the free-energy minimization process. We 
color each piece of surface according to whether its closet solute atom comes from MDM2 (red) or p53 (blue) to show 
the relative positions of MDM2 and p53. In the initial configuration, the protein p53 and the receptor protein MDM2 are 
separated as we can observe a hole between them; that is a small region filled with water. In the process, the relative 
positions of p53 and MDM2 are adjusted, p53 and MDM2 become closer and closer. In the equilibrium, the hole disappears, 
and the two proteins are combined together.

6. Conclusions

This work presents the development of a GPU parallel free-energy minimization method and algorithm with the fast bi-
nary level-set method and an adaptive-mobility gradient descent method for the variational explicit-solute implicit-solvent 
(VESIS) molecular simulations. Minimization of the free-energy functional determines an equilibrium interface and an equi-
librium molecular structure.

Our free-energy minimization is an iterative process with two stages. In the first stage, we fix solute atoms, then min-
imize the solvation free energy to obtain an optimal solute-solvent interface. In the second stage, with a fixed interface, 
we relax the solute atoms using a gradient descent type method. The proposed minimization algorithm is implemented in 
parallel on GPUs with single precision.
15



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
We have presented a series of numerical experiments and have demonstrated the accuracy and efficiency of our nu-
merical methods and algorithm for the free-energy minimization. In particular, our numerical experiments of potentials 
of mean force for two charged systems, two charged parallel plates, and the protein BphC, have shown that VISM with 
the binary level-set method can capture well the sensitive response of capillary evaporation to the charge in hydrophobic 
confinement and the polymodal hydration behavior. Moreover, our numerical experiments for small molecular systems, the 
two-atom system and an ethane molecule, have demonstrated that our algorithm can capture topological changes of the 
solute-solvent interfaces as well as describe the equilibrium molecular structure. A key application of our algorithm is for 
large biomolecular simulations. We have applied our free-energy minimization method and algorithm to a realistic sys-
tem, the p53/MDM2 protein complex. Our model and method describes the relaxation process of the binding of these two 
molecules.

To verify the performance of our algorithm with the parallel implementation on the integrated GPU, we have compared 
for different molecular systems our computational results and computational times with both of the CPU with double 
precision and the GPU with single precision. We observe that the GPU implementation is much more efficient than the 
CPU implementation. The GPU with single precision combining the pairwise summation can efficiently limit the grow of 
round-off errors. For small molecular systems such as the two charged parallel plates the computational time with the 
CPU is around 5 times of that with the GPU. For a relatively large molecular system, such as p53/MDM2, and fine finite-
difference grids, our GPU implementation works especially well, reaching a speed about 100 times faster than that of the 
CPU implementation. In the meantime, both implementations lead to the same minimum free energies and even their 
individual components.

To speed up the computations further, our immediate next step is to construct a hybrid CPU-GPU architecture to combine 
CPU parallel computing and the integrated GPU parallel computing together. For the CPU parallel computing, we can use a 
standard domain decomposition approach. The communication between sub-domains is based on the message-passing in-
terface (MPI). Additionally, we would like to explore the high performance efficiency and good scaling of parallel computing 
on dedicated GPUs.

With our fast algorithm and GPU code, we can now carry out flexible VESIS-Monte Carlo simulations for the binding of 
two proteins in which both the solute-solvent interface and the set of solute atomic positions change in each step of the 
Monte Carlo move.

CRediT authorship contribution statement

All authors have contributed equally.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

We plan to release the code after sufficient improvements and validation have been made.

Acknowledgement

This work was supported in part by an AMS Simons Travel Grant (SL), the US National Science Foundation through grant 
DMS-1913144 and DMS-2208465 (LTC & BL), and the US National Institutes of Health through grant R01GM132106 (BL). The 
authors thank Dr. Clarisse G. Ricci (through the support of NIH grant GM31749) and Professor Shenggao Zhou for helpful 
discussions.

Appendix A

Gradient of G[�, R]. Fix n with 1 ≤ n ≤ N . We have

∇rn G[�,R] = 1

8π2ε0

(
1

εw
− 1

εm

) ∫
�w

(
N∑

i=1

Q i(r − ri)

|r − ri |3
)(

Q n

|r − rn|3
)

dV r

+ ρ0

∫
�w

U ′
sw(|rn − r|) rn − r

|rn − r|dV r +
∑
(i, j)′

δni G
′ ss
elec(|ri − r j|) ri − r j

|ri − r j|

+
∑

′
δni U

′
ss(|ri − r j|) ri − r j

|ri − r j| +
∑

δni Ai j(|ri j − r0i j|) ri − r j

|ri − r j|

(i, j) (i, j)

16



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
+
∑

(i, j,k)

∇rn Wbend(ri, r j, rk) +
∑

(i, j,k,l)

∇rn W torsion(ri, r j, rk, rl), (A.1)

where δni = 1 if n = i and 0 otherwise.

Force calculations of molecular mechanical interactions. For fixed ri, r j , and rk , denote the vector from r j to ri by q ji = ri − r j

for any i and j and the length of q ji by q ji = |q ji |. We have

∇rn Wbend(ri, r j, rk) = Bijk(θi jk − θ0i jk)∇rnθi jk, n = i, j,k,

where

∇ri θi jk = 1

sin θi jk

(
q ji · q jk

q3
jiq jk

q ji − 1

q jiq jk
q jk

)
,

∇rk θi jk = 1

sin θi jk

(
q ji · q jk

q3
jkq ji

q ji − 1

q jiq jk
q ji

)
,

∇r j θi jk = 1

sin θi jk

[(
1

q jiq jk
− cos θi jk

q2
ji

)
r ji +

(
1

q jiq jk
− cos θi jk

q2
jk

)
r jk

]
.

Recall for fixed ri, r j, rk , and rl that

W torsion(ri, r j, rk, rl) =
6∑

n=0

Cn[1 + cos(nτ − ψn)],

where ψn is the phase factor, which is introduced to shift the zero of the torsion potential. The phase angles ψn are usually 
chosen so that terms with positive Cn have minima at 180◦ (i.e., for odd n, ψn = 0◦ and for even n, ψn = 180◦). We denote

q1 = qi j, q2 = q jk, q3 = qkl,

u = q1 × q2, v = q2 × q3,

τ = τi jkl, � = �i jkl = cosτ = u · v

|u||v| ,
Cn = Cn,i jkl, n = 1,2,3,4,5,6.

Due to the fact that ψn = 0◦ or 180◦ , we derive

∇rn W torsion(ri, r j, rk, rl)

= ∇rn�[(C1 cos(ψ1) − 3C3 cos(ψ3) + 5C5 cos(ψ5))

+ �(4C2 cos(ψ2) − 16C4 cos(ψ4) + 36C6 cos(ψ6)) + �2(12C3 cos(ψ3) − 60C5 cos(ψ5))

+ �3(32C4 cos(ψ4) − 192C6 cos(ψ6)) + �4(80C5 cos(ψ5)) + �5(192C6 cos(ψ6))],
where

∇ri � = −∇q1�,

∇r j � = ∇q1� − ∇q2�,

∇rk � = ∇q2� − ∇q3�,

∇rl � = ∇q3�,

and

∇q1� = (q2 × v)|u|2 − (u · v)(q2 × u)

|u|3|v| ,

∇q2� = (−q1 × v)|u|2 + (u · v)(q1 × u)

|u|3|v| + (q3 × u)|v|2 − (u · v)(q3 × v)

|u||v|3 ,

∇q3� = (−q2 × u)|v|2 + (u · v)(q2 × v)

3
.
|u||v|

17



S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
Potentials of mean force. The potential of mean force (PMF) is a general term for the effective interaction between solutes 
that stems from direct solute-solute interactions and that is mediated by the solvent. It is usually defined with respect to a 
reaction coordinate as the difference between the free energy of solvated state at a given coordinate d and that at a fixed, 
reference coordinate dref . Here, we recall the definition of PMF for our VISM [30].

For a solute-solvent interface �, we denote by Ggeom[�], GvdW[�], and Gelec[�] the first, second, and last term in GVISM[�]
(2.2), respectively. Fix now a finite coordinate d. Denote by �d a corresponding VISM optimal surface, i.e., a stable equilib-
rium solute-solvent interface minimizing locally the VISM solvation free-energy functional. We define the (total) PMF to be 
the sum of its separate contributions

Gpmf
tot (d) = Gpmf

geom(d) + Gpmf
vdW(d) + Gpmf

elec(d),

where

Gpmf
geom(d) = Ggeom[�d] − Ggeom[�∞],

Gpmf
vdW(d) = GvdW[�d] − GvdW[�∞] +

M∑
i=1

N∑
j=M+1

Ui, j(|xi − x j|),

Gpmf
elec(d) = Gelec[�d] − Gelec[�∞] + 1

4πεmε0

M∑
i=1

N∑
j=M+1

Q i Q j

|xi − xj| .

Here a quantity at ∞ is understood as the limit of that quantity at a coordinate d′ as d′ → ∞. The double-sum terms above 
are the solute-solute vdW and charge-charge interactions.

As d becomes large, the VISM optimal solute solvent interface �d becomes the union of two separate VISM optimal 
solute-solvent interface �I and �I I , both independent of d. They are obtained by minimizing the VISM free energy functional 
for the corresponding groups of fixed, solute atoms. If we denote by G�I and G�I I the corresponding minimum VISM free 
energies for these individual groups of atoms, then G�∞ = G�I + G�I I Similarly, each component of the VISM free energy 
is the sum of that for the two groups of solute atoms, i.e., G in the above equation can be replaced by Ggeom, or GvdW or 
Gelec.

References

[1] P.W. Bates, Z. Chen, Y.H. Sun, G.W. Wei, S. Zhao, Geometric and potential driving formation and evolution of biomolecular surfaces, J. Math. Biol. 59 
(2009) 193–231.

[2] R.B. Best, X. Zhu, J. Shim, P.E.M. Lopes, M. Jeetain, M. Feig, A.D. MacKerell Jr., Optimization of the additive CHARMM all-atom protein force field 
targeting improved sampling of the backbone φ , ψ and side-chain χ1 and χ2 dihedral angles, J. Chem. Theory Comput. 8 (9) (2012) 3257–3273.

[3] L.-T. Cheng, J. Dzubiella, J.A. McCammon, B. Li, Application of the level-set method to the implicit solvation of nonpolar molecules, J. Chem. Phys. 127 
(2007) 084503.

[4] L.-T. Cheng, Y. Xie, J. Dzubiella, J.A. McCammon, J. Che, B. Li, Coupling the level-set method with molecular mechanics for variational implicit solvation 
of nonpolar molecules, J. Chem. Theory Comput. 5 (2009) 257–266.

[5] Li-Tien Cheng, Bo Li, Zhongming Wang, Level-set minimization of potential controlled Hadwiger valuations for molecular solvation, J. Comput. Phys. 
229 (22) (2010) 8497–8510.

[6] J. Dzubiella, J.M.J. Swanson, J.A. McCammon, Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models, Phys. Rev. Lett. 96 
(2006) 087802.

[7] J. Dzubiella, J.M.J. Swanson, J.A. McCammon, Coupling nonpolar and polar solvation free energies in implicit solvent models, J. Chem. Phys. 124 (2006) 
084905.

[8] S. Esdoḡlu, M. Jacobs, P. Zhang, Kernels with prescribed surface tension and mobility for threshold dynamics schemes, J. Comput. Phys. 337 (2017) 
62–83.

[9] P. Gera, H. Kim, H. Kim, S. Hong, V. George, C. Luk, Performance characterisation and simulation of Intel’s integrated GPU architecture, in: 2018 IEEE 
International Symposium on Performance Analysis of Systems and Software (ISPASS), IEEE, 2018, pp. 139–148.

[10] F. Gibou, R. Fedkiw, A fast hybrid k-means level set algorithm for segmentation, in: 4th Annual Hawaii International Conference on Statistics and 
Mathematics, 2005, pp. 281–291.

[11] Z. Guo, B. Li, J. Dzubiella, L.-T. Cheng, J.A. McCammon, J. Che, Evaluation of hydration free energy by the level-set variational implicit-solvent model 
with the coulomb-field approximation, J. Chem. Theory Comput. 9 (2013) 1778–1787.

[12] Z. Guo, B. Li, J. Dzubiella, L.-T. Cheng, J.A. McCammon, J. Che, Heterogeneous hydration of p53/mdm2 complex, J. Chem. Theory Comput. 10 (2014) 
1302–1313.

[13] T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comput. Chem. 17 (1996) 490–519.
[14] T.A. Halgren, Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions, J. Comput. Chem. 17 

(1996) 520–552.
[15] A.J. Hopfinger, Computer-assisted drug design, J. Med. Chem. 28 (9) (1985) 1133–1139.
[16] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B.L. de Groot, H. Grubmüller, A.D. MacKerell, CHARMM36: an improved force field for folded and 

intrinsically disordered proteins, in: 61st Annual Meeting of the Biophysical Society, 2017, pp. 175a–176a.
[17] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of 

organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225–11236.
[18] J. Lie, M. Lysaker, X.-C. Tai, A binary level set model and some applications to Mumford–Shah image segmentation, IEEE Trans. Image Process. 15 (2006) 

1171–1181.
[19] J. Lie, M. Lysaker, X.-C. Tai, A variant of the level set method and applications to image segmentation, Math. Comput. 75 (255) (2006) 1155–1174.
18

http://refhub.elsevier.com/S0021-9991(22)00736-7/bib233C18EC4D760C1C1D2C862661EA8CE7s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib233C18EC4D760C1C1D2C862661EA8CE7s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib32C3C8D3FD3448AAEA239669BBABCE9Fs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib32C3C8D3FD3448AAEA239669BBABCE9Fs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib12A59D98E5919FBEAA716107E7CE74C0s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib12A59D98E5919FBEAA716107E7CE74C0s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib49848C0840DB61A9A62741B0B1C69AB8s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib49848C0840DB61A9A62741B0B1C69AB8s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib94FA62CE2BED0B15018EB9FAA44D6B7Ds1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib94FA62CE2BED0B15018EB9FAA44D6B7Ds1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibBE33FB6530EEBFA315F4205EAF83D463s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibBE33FB6530EEBFA315F4205EAF83D463s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib26FA05CD3F45382A8F20DAB56FC0B08Bs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib26FA05CD3F45382A8F20DAB56FC0B08Bs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib6C0E7A66CB618A51DF2AB1CDB9BE78C9s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib6C0E7A66CB618A51DF2AB1CDB9BE78C9s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibB8CFA79A2F4ADA593EFA453D1C892D7Fs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibB8CFA79A2F4ADA593EFA453D1C892D7Fs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib0983B7315F19664FCA77A3BE9C500BF4s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib0983B7315F19664FCA77A3BE9C500BF4s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibB3FF6AC9C858233CAD0BEF093D32AE42s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibB3FF6AC9C858233CAD0BEF093D32AE42s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib8E35515AA89C2E20B5802EED816A545Ds1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib8E35515AA89C2E20B5802EED816A545Ds1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib02D935C0E6333BB87D71806E1DB364F0s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibA1C37923EE7DBEB88F46EB8EE81C6F36s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibA1C37923EE7DBEB88F46EB8EE81C6F36s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibF5439897274A419C69E72BB60BD0FD7As1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib5EBA28099DD16D3FA78262146DBA7951s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib5EBA28099DD16D3FA78262146DBA7951s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib9A58D331439E33C7419555CC37056F13s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib9A58D331439E33C7419555CC37056F13s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib2085A3A359011D06560446C7BDAC1B33s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib2085A3A359011D06560446C7BDAC1B33s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibCF688F3E207FD2CE49927102FAAFDF26s1


S. Liu, Z. Zhang, H.-B. Cheng et al. Journal of Computational Physics 472 (2023) 111673
[20] K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales, J. Phys. Chem. B 103 (1999) 4570–4577.
[21] A.D. MacKerell Jr., D. Bashford, M.L.D.R. Bellott, R.L. Dunbrack Jr, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, et al., All-atom empirical 

potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102 (18) (1998) 3586–3616.
[22] A.D. MacKerell Jr., M. Feig, Charles L. Brooks, Improved treatment of the protein backbone in empirical force fields, J. Am. Chem. Soc. 126 (3) (2004) 

698–699.
[23] B. Merriman, J. Bence, S. Osher, Diffusion generated motion by mean curvature, in: J. Taylor (Ed.), Computational Crystal Growers Workshop, Amer. 

Math. Soc., 1992, pp. 73–83.
[24] R. Ramirez, D. Borgis, Density functional theory of solvation and its relation to implicit solvent models, J. Phys. Chem. B 109 (2005) 6754–6763.
[25] C.G. Ricci, B. Li, L.-T. Cheng, J. Dzubiella, J.A. McCammon, Tailoring the variational implicit solvent method for new challenges: biomolecular recognition 

and assembly, Front. Mol. Biosci. 5 (13) (2018).
[26] S.J. Ruuth, Efficient algorithms for diffusion-generated motion by mean curvature, J. Comput. Phys. 144 (1998) 603–625.
[27] S.J. Ruuth, B. Merriman, Convolution-thresholding methods for interface motion, J. Comput. Phys. 169 (2001) 678–707.
[28] S.J. Ruuth, B. Merriman, S. Osher, Convolution generated motion as a link between cellular automata and continuum pattern dynamics, J. Comput. Phys. 

151 (1999) 836–861.
[29] D. Wang, H. Li, X. Wei, X.-P. Wang, An efficient iterative thresholding method for image segmentation, J. Comput. Phys. 350 (2017) 657–667.
[30] Z. Wang, J. Che, L.-T. Cheng, J. Dzubiella, B. Li, J.A. McCammon, Level-set variational implicit solvation with the Coulomb-field approximation, J. Chem. 

Theory Comput. 8 (2012) 386–397.
[31] D.S. Watkins, Fundamentals of Matrix Computations, vol. 64, John Wiley & Sons, 2004.
[32] Z. Zhang, C.G. Ricci, C. Fan, L.-T. Cheng, B. Li, J.A. McCammon, Coupling Monte Carlo, variational implicit solvation, and binary level-set for simulations 

of biomolecular binding, J. Chem. Theory Comput. 17 (2021) 2465–2478.
[33] S. Zhou, L.-T. Cheng, J. Dzubiella, B. Li, J.A. McCammon, Variational implicit solvation with Poisson–Boltzmann theory, J. Chem. Theory Comput. 10 (4) 

(2014) 1454–1467.
[34] S. Zhou, L.-T. Cheng, H. Sun, J. Che, J. Dzubiella, B. Li, J.A. McCammon, LS-VISM: a software package for analysis of biomolecular solvation, J. Comput. 

Chem. 36 (2015) 1047–1059.
[35] S. Zhou, H. Sun, L.-T. Cheng, J. Dzubiella, B. Li, J.A. McCammon, Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial 

fluctuations, J. Chem. Phys. 145 (2016) 054114.
19

http://refhub.elsevier.com/S0021-9991(22)00736-7/bib3861A6DD2AE2595F77F0D3DAF5E7DC12s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib70892694975CB4A1E3BF8E2699E11EACs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib70892694975CB4A1E3BF8E2699E11EACs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib663587E091E76FAC6E44133AF9874DDEs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib663587E091E76FAC6E44133AF9874DDEs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibB5B296F59EF52AFA05EA4A4AA5B53B3Fs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibB5B296F59EF52AFA05EA4A4AA5B53B3Fs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib967EB7856E23AF09FDBE0567DCB7924Ds1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib9BAED4AF07624E7A123AA03A950972A9s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib9BAED4AF07624E7A123AA03A950972A9s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibF3B28883F88568134DDF309962FE48DDs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib193AD720F6089DA4A38DA0216C08A461s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib3431F401DB5B2F9EC5E8E2B2DE317345s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib3431F401DB5B2F9EC5E8E2B2DE317345s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib0FD01E9597065B2CD61674EA7044606Bs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibEDFC642C3C9FA5795E04A970631E9AA0s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibEDFC642C3C9FA5795E04A970631E9AA0s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibB37F3F17E8EABFB60ADCAD34E502E3BCs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibE4EDE86A3D8152EF647CF6ECABFCF54Es1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibE4EDE86A3D8152EF647CF6ECABFCF54Es1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibADD177979B6077B3A269326E26762566s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bibADD177979B6077B3A269326E26762566s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib467DE4C846FFAD1C6FE3F41D85394CD6s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib467DE4C846FFAD1C6FE3F41D85394CD6s1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib93E574849B23198796795A90C3BCEAFBs1
http://refhub.elsevier.com/S0021-9991(22)00736-7/bib93E574849B23198796795A90C3BCEAFBs1

	Explicit-solute implicit-solvent molecular simulation with binary level-set, adaptive-mobility, and GPU
	1 Introduction
	2 A variational explicit-solute implicit-solvent model
	3 Numerical methods
	3.1 A binary level-set method
	3.2 Adaptive-mobility gradient descent method for the relaxation of solute atoms
	3.3 Numerical algorithm

	4 GPU implementation
	5 Numerical experiments and applications
	5.1 Free-energy minimization with fixed solute atoms
	5.2 Explicit-solute implicit-solvent free-energy minimization
	5.3 Simulation of protein-protein interactions

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


