
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 0, \mathrm{N}\mathrm{o}. 0, \mathrm{p}\mathrm{p}. \mathrm{S}515--\mathrm{S}537

CELL POLARITY AND MOVEMENT WITH
REACTION-DIFFUSION AND MOVING BOUNDARY: RIGOROUS

MODEL ANALYSIS AND ROBUST SIMULATIONS\ast 

SHUANG LIU\dagger , LI-TIEN CHENG\dagger , AND BO LI\ddagger 

Abstract. Cell polarity and movement are fundamental to many biological functions. Exper-
imental and theoretical studies have indicated that interactions of certain proteins lead to the cell
polarization which plays a key role in controlling the cell movement. We study the cell polarity
and movement based on a class of biophysical models that consist of reaction-diffusion equations for
different proteins and the dynamics of a moving cell boundary. Such a moving boundary is often
simulated by a phase-field model. We first apply the matched asymptotic analysis to give a rigorous
derivation of the sharp-interface model of the cell boundary from a phase-field model. We then de-
velop a robust numerical approach that combines the level-set method to track the sharp boundary
of a moving cell and accurate discretization techniques for solving the reaction-diffusion equations
on the moving cell region. Our extensive numerical simulations predict the cell polarization under
various kinds of stimuli and capture both the linear and the circular trajectories of a moving cell
for a long period of time. In particular, we have identified some key parameters controlling dif-
ferent cell trajectories that are less accurately predicted by reduced models. Our work has linked
different models and also developed tools that can be adapted for the challenging three-dimensional
simulations.

Key words. cell polarity, cell movement, reaction-diffusion equations, interface dynamics,
matched asymptotic analysis, the level-set method

MSC codes. 65M06, 92C17

DOI. 10.1137/22M1506766

1. Introduction. Cell motility is fundamental to many biological functions,
such as immune response, morphogenesis, cancer metastasis, and wound healing,
and yet it is extremely complicated [7]. The movement of a eukaryotic cell crawl-
ing on a surface is a complex process, involving protrusion, retraction, and adhesion
and exhibiting complex geometrical shapes and motion trajectories. Cell polarity,
the spatially inhomogeneous distribution of different biomolecules such as proteins
Rho GTPases inside a cell, resulting from biochemical interactions of biomolecules
inside the cell, plays a crucial role in the cell movement [24, 32, 40]. As cell polarity
and movement involve multiple spatio-temporal scales and many-body interactions,
understanding rigorously such complex processes is challenging.

Recent years have seen the theoretical and computational developments in study-
ing cell polarity and motility [8, 31, 32]. Among different approaches, continuum
models with reaction-diffusion equations and moving boundaries provide efficient
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S516 SHUANG LIU, LI-TIEN CHENG, AND BO LI

Fig. 1.1. Schematic view of a cell moving on a substrate. The active Rho GTPase is rich in
the front, while the inactive GDP-bound Rho GTPases diffuse fast and are more homogeneously
distributed. The concentrations of these proteins are denoted by u and v, respectively.

simulation tools to understand the key mechanisms in cell polarity and movement
[9, 10, 11, 15, 34, 41, 43, 44, 45, 45, 52, 54]. An advantage of such modeling is that
the motion of a cell boundary, which is directly connected to the reaction and diffusion
of different biomolecules inside the cell, can be simulated and analyzed to link the
molecular basis for the cell polarity to the macroscopic cell movement and to identify
the key parameters that control the cell polarization and movement.

In this work, we study the cell polarity and movement with a class of models that
have been proposed in Mori, Jilkine, and Edelstein-Keshet [33, 34], Shao, Rappel,
and Levine [44], and Camley et al. (see [10, 11, 45]). In such models, the bound-
ary of a moving cell is determined completely by its normal velocity, i.e., the normal
component of the velocity. In addition to geometrical effects, such normal velocity
is controlled by the biochemical interactions of different proteins, such as Rho GT-
Pases. For many different types of cells, each Rho GTPase cycles between an active,
membrane-bound form and an inactive, cytosolic GDP-bound form; cf. Figure 1.1.
The concentration of the active Rho GTPases is high in the front of a moving cell,
while the inactive Rho GTPases diffuse fast and tend to be homogeneously distrib-
uted. Mori, Jilkine, and Edelstein-Keshet [33] propose the wave-pinning mechanism
for the cell polarization: the reaction and diffusion of the active and inactive Rho
GTPases with bistable kinetics and the mass conservation of these proteins lead to
the formation of an interface inside a cell. The interface separates a high from a low
concentration of active Rho-GTPase proteins, and the propagation of such an inter-
face drives the cell polarization that reaches a steady state eventually as the wave is
pinned down. Camley et al. (see [11, 45]) reduce the two-species (active form and
inactive form of Rho GTPase proteins) model proposed in [33] to a single-species
model, and also numerically simulated the cell polarization and movement using a
phase-field method, but carried out analysis with a sharp-interface description of the
cell boundary motion. Simulations by Camley et al. [11] predict linear and circular
trajectories as a result of the wave-pinning dynamics.

To be specific, let us consider a moving cell confined spatially in a bounded region
\Omega \subset \BbbR d (d= 2 or 3). Let us denote the cell boundary by \Gamma (t) at time t and assume it
moves with the normal velocity V = V (x, t) for each point x\in \Gamma (t), where the normal
direction points from the interior to the exterior of the cell. The cell boundary \Gamma (t)
separates the region \Omega into the cell region, denoted by \Omega +(t), from the outer region,
denoted by \Omega  - (t). We denote by u= u(x, t) and v= v(x, t) the concentrations of the
active and inactive Rho GTPases, respectively, inside the cell. Extended from the
one-dimensional model [33] (cf. also [44]), our model of an underlying moving cell is
governed by the following system of equations and boundary conditions:
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CELL POLARITY AND MOVEMENT S517

\tau V = \alpha u - \beta  - \gamma H for x\in \Gamma (t) and t > 0,(1.1)

\partial tu=Du\Delta u+ f(u, v) for x\in \Omega +(t) and t > 0,(1.2)

\partial tv=Dv\Delta v - f(u, v) for x\in \Omega +(t) and t > 0,(1.3)

\partial nu= \partial nv= 0 for x\in \Gamma (t) and t > 0,(1.4)

where

f(u, v) = - ku(u - 0.5c)(u - Cv).(1.5)

In (1.1), \tau is the friction coefficient, \alpha and \beta are the coefficients of F-actin extension
and myosin retraction, respectively, \gamma is the surface tension constant, and H is the
mean curvature of the cell boundary \Gamma (t) (positive for a spherical boundary). In (1.2)
and (1.3), Du and Dv are the diffusion constants for u and v, respectively. We shall
consider the regime thatDv \gg Du. In the reaction term f(u, v) defined in (1.5), k is the
reaction rate relative to an average cell motility, c is a constant value of concentration
u, and C is a unitless conversion parameter. Note that our 0.5c is the quantity h in
[11, 33]. It represents an unstable state of concentration u whose kinetics is governed
by f(u, v) with a constant v value. As u increases or decreases across this value 0.5c,
the region of the cell front decreases or increases in size (cf. Figure 1.1) due to the
mass conservation and fast diffusion of v, and hence the speed of the moving front
changes, providing the possibility of cell rotation; cf. [11, 33, 34] for more details.
Estimated values of these parameters are given in Table 3 in section 4. Note that the
total mass

M =

\int 
\Omega +(t)

[u(x, t) + v(x, t)] dx(1.6)

is a constant with respect to time t.
Assuming that Dv \gg Du and hence that approximately v = v(t) is spatially

homogeneous, Camley et al. [11] propose and study the following single-species model,
reduced from the two-species model (1.1)--(1.4):

\tau V = \alpha u - \beta  - \gamma H for x\in \Gamma (t) and t > 0,(1.7)

\partial tu=Du\Delta u+ f(u, \=v) for x\in \Omega +(t) and t > 0,(1.8)

\partial nu= 0 for x\in \Gamma (t) and t > 0,(1.9)

where \=v= \=v(t) is determined by the mass conservation (1.6), given by

\=v(t) =
1

Area (\Omega +(t))

\Biggl( 
M  - 

\int 
\Omega +(t)

u(x, t)dx

\Biggr) 
.

To efficiently track the moving cell boundary in computer simulations, Shao et al.
(see [43, 44]) and Camley et al. [9, 10, 11] have developed a phase-field model. In
such a model, the moving cell boundary is described by a continuous function, often
called a phase field, that takes the value 1 in the cell region and 0 otherwise, and
smoothly changes its value from 0 to 1 in a thin transition layer, representing a
diffuse cell boundary. Let us denote by \phi \varepsilon = \phi \varepsilon (x, t) (x \in \Omega , t \geq 0) such a phase-
field function, where \varepsilon \in (0,1) is a small parameter and t represents time. Let us
also denote by u\varepsilon = u\varepsilon (x, t) and v\varepsilon = v\varepsilon (x, t) the concentrations of the two different
proteins, respectively, as described in (1.2) and (1.3). Note that these functions are
now extended to the entire region \Omega . The phase-field model that corresponds to the
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S518 SHUANG LIU, LI-TIEN CHENG, AND BO LI

system of equations (1.1)--(1.4), which shall be called a sharp-interface model, is then
given by

\tau \partial t\phi \varepsilon = (\alpha u\varepsilon  - \beta )| \nabla \phi \varepsilon | + \gamma 

\biggl[ 
\Delta \phi \varepsilon  - 

1

\varepsilon 2
W \prime (\phi \varepsilon )

\biggr] 
in \Omega \times (0,\infty ),(1.10)

\partial t(\phi \varepsilon u\varepsilon ) =\nabla \cdot Du(\phi \varepsilon \nabla u\varepsilon ) + f(u\varepsilon , v\varepsilon ) in \Omega \times (0,\infty ),(1.11)

\partial t(\phi \varepsilon v\varepsilon ) =\nabla \cdot Dv(\phi \varepsilon \nabla v\varepsilon ) - f(u\varepsilon , v\varepsilon ) in \Omega \times (0,\infty ),(1.12)

\phi \varepsilon = u\varepsilon = v\varepsilon = 0 in \partial \Omega \times [0,\infty ),(1.13)

where all the parameters and the function f are the same as above, and W =W (u)
is a double-well potential given specifically by

W (u) = 18u2(1 - u)2 \forall u\in \BbbR .(1.14)

We remark that the phase-field modeling approach has been widely used to study
many interfacial problems arising from various scientific areas, such as materials
physics, complex fluids, and biomembranes; cf. e.g., [2, 3, 4, 5, 6, 13, 19, 23, 25, 48]
and the references therein. In such an approach, a phase field \phi that minimizes the
energy

E\varepsilon [\phi ] =

\int \biggl[ 
\varepsilon 

2
| \nabla \phi | 2 + 1

\varepsilon 
W (\phi )

\biggr] 
dx,

with W given in (1.14) and 0 < \varepsilon \ll 1, approximates the characteristic function of
the region interior to an underlying closed, sharp interface, and the corresponding
value E\varepsilon [\phi ] approximates the surface area [30, 47]. Note that the \gamma -term in (1.10) is
the surface tension force, given exactly by  - \gamma \delta \phi E\varepsilon [\phi ], where \delta \phi E\varepsilon denotes the first
variation of the functional E\varepsilon . The phase-field or diffuse-interface approach has been
used to study numerically problems with moving boundaries of complex geometries
or with singularities; cf. e.g., [1, 14, 27, 50]. While such an approach can handle
topological changes (such as breaking up and merging) of interfaces, care needs to be
taken in the choice of the modeling parameter \varepsilon that characterizes the width of the
diffuse interface and the size h of an underlying finite element mesh or finite difference
grid to achieve optimal convergence rate.

In this work, we study the reaction-diffusion moving boundary model to under-
stand the mechanisms of cell polarization and movement and the cooperation of these
two processes. Our goal is twofold. One is to understand the differences between
some of the existing models and make connections of such models. The other is to
develop robust computational tools for long-time accurate and efficient simulations of
cell movement. Specifically, we do the following:

(1) We derive rigorously the sharp-interface, reaction-diffusion moving boundary
model (1.1)--(1.4) from the phase-field model (1.10)--(1.13), using the matched
asymptotic analysis. Our derivation justifies the phase-field model, though it
does not prove the convergence as the parameter \varepsilon \rightarrow 0 due to the assumptions
made in the analysis on the phase-field profile.

(2) We develop a robust computational program that combines the level-set
method and high-accurate discretization method for solving reaction-diffusion
equations on a moving cell region and for tracking the moving cell boundary.
We test our numerical methods. Our level-set method is based on the sharp-
interface formulation (cf. (1.1)--(1.4) and (1.7)--(1.9)). It avoids the use of a
very fine grid necessary to resolve a fine interfacial structure as in the phase-
field method.
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CELL POLARITY AND MOVEMENT S519

(3) We apply our numerical methods and algorithms to conduct a series of com-
puter simulations for the cell polarization and movement. We try to answer
several questions: How does a cell respond to an external stimulus to polar-
ize itself and then to move around? How does a cell keep different kinds of
trajectories, such as a linear or a circular trajectory, for a very long time?
Our computational analysis predicts that several important parameters, such
as a finite diffusion constant (instead of taking it to be infinite in a reduced
model), the surface tension constant, and the threshold concentration of an
active Rho GTPase protein, partially control the cell movement.

Our computational tools prepare us well for future, large-scale three-dimensional sim-
ulations of the cell movement, which are currently lacking in the field.

The paper is organized as follows. In section 2, we use the method of matched
asymptotic analysis to derive the sharp-interface limit, the system (1.1)--(1.4), from
the phase-field reaction-diffusion moving boundary model (1.10)--(1.13). In section 3,
we describe a robust and accurate numerical method that combines a high-order
finite difference discretization technique and a level-set method for the simulation
of a moving cell. In section 4, we show our numerical simulations and analyze our
results with various settings. Finally, in section 5, we draw our conclusions and discuss
several issues for further studies.

2. From phase-field to sharp-interface model. In this section, we carry out
the matched asymptotic analysis [16, 17, 18, 26, 39, 42] to derive the sharp-interface
model (1.1)--(1.4) from the phase-field model (1.10)--(1.13). Specifically, we show that
as \varepsilon \rightarrow 0 the solution \phi \varepsilon converges to the characteristic function of the cell region
\Omega +(t), the normal velocity of the cell boundary \Gamma (t) = \partial \Omega +(t) is given by (1.1), and
the solutions u\varepsilon and \varepsilon \varepsilon converge to the solutions to (1.2)--(1.4).

We shall analyze the following more general phase-field model in the setting of
three-dimensional space:

\partial t\phi \varepsilon = h(u\varepsilon , v\varepsilon )| \nabla \phi \varepsilon | + \gamma 

\biggl[ 
\Delta \phi \varepsilon  - 

1

\varepsilon 2
W \prime (\phi \varepsilon )

\biggr] 
in \Omega \times (0,\infty ),(2.1)

\partial t(\phi \varepsilon u\varepsilon ) =\nabla \cdot D1(\phi \varepsilon \nabla u\varepsilon ) + f(u\varepsilon , v\varepsilon ) in \Omega \times (0,\infty ),(2.2)

\partial t(\phi \varepsilon v\varepsilon ) =\nabla \cdot D2(\phi \varepsilon \nabla v\varepsilon ) + g(u\varepsilon , v\varepsilon ) in \Omega \times (0,\infty ),(2.3)

\phi \varepsilon = u\varepsilon = v\varepsilon = 0 in \partial \Omega \times [0,\infty ).(2.4)

Here, \Omega \subset \BbbR 3 is a smooth and bounded domain, \varepsilon \in (0,1) is a small parameter, \gamma > 0,
D1 > 0, and D2 > 0 are all constants, and f , g, and h are all smooth and bounded
two-variable functions. The double-well function W is defined in (1.14). Note that
the analysis for the single-species system (1.7)--(1.9) or for a two-dimensional setting
is similar.

Initial formation of a diffuse cell boundary. We assume the following ex-
pansions:

\phi \varepsilon (x, t) = \phi 0(x, \tau ) + \varepsilon \phi 1(x, \tau ) + \varepsilon 2\phi 2(x, \tau ) + \cdot \cdot \cdot ,
u\varepsilon (x, t) = u0(x, \tau ) + \varepsilon u1(x, \tau ) + \varepsilon 2u2(x, \tau ) + \cdot \cdot \cdot ,
v\varepsilon (x, t) = v0(x, \tau ) + \varepsilon v1(x, \tau ) + \varepsilon 2v2(x, \tau ) + \cdot \cdot \cdot ,

where \tau = \tau (t, \varepsilon ) is a time variable that can be different from the regular time variable
t, and all the functions \phi i = \phi i(x, \tau ), ui = ui(x, \tau ), and vi = vi(x, \tau ) (i= 0,1, . . . ) are
smooth and bounded in \Omega , satisfying the boundary conditions \phi i = ui = vi = 0 on \partial \Omega ;
cf. (2.4).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

2/
23

 to
 1

29
.1

20
.6

7.
52

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



S520 SHUANG LIU, LI-TIEN CHENG, AND BO LI

Considering a fast time scale \tau = t/\varepsilon 2, we have \partial t = \varepsilon  - 2\partial \tau . Plugging the above
expressions of \phi \varepsilon , u\varepsilon , and v\varepsilon into (2.1), using Taylor's expansion, and comparing
terms of the leading orders O(\varepsilon  - 2) and O(\varepsilon  - 1), respectively, we obtain that

O(\varepsilon  - 2) : \partial \tau \phi 0 = - \gamma W \prime (\phi 0) and O(\varepsilon  - 1) : \partial \tau \phi 1 = - \gamma W \prime \prime (\phi 0)\phi 1.

Since W \prime (s) = 0 if and only if s = 0, 1/2, or 1, with 0 and 1 being local minima
of W and 1/2 being a local maximum of W , given any point x \in \Omega and any initial
data \phi 0(x,0) \not = 1/2, \phi 0(x, \tau ) \rightarrow 0 or 1 exponentially as \tau \rightarrow \infty . Once \phi 0 falls into
( - \infty , (3  - 

\surd 
3)/6) \cup ((3 +

\surd 
3)/6,\infty ), the convex region of W , then \phi 1(x, \tau ) \rightarrow 0

exponentially as \tau \rightarrow \infty . If we consider the next fast time scale \tau = t/\varepsilon , then we have
\partial t = \varepsilon  - 1\partial \tau . Similar calculations lead to the leading-order equations

O(\varepsilon  - 2) : W \prime (\phi 0) = 0 and O(\varepsilon  - 1) : \partial \tau \phi 0 = - \gamma W \prime \prime (\phi 0)\phi 1.

Again, we see that \phi 0 = 0, 1/2, or 1, and since W \prime \prime (\phi 0) \not = 0, we have \phi 1 = 0. Results
are the same if we consider the regular time scale \tau = t.

We can therefore assume that the region \Omega is divided by the phase-field function
\phi \varepsilon into an outer region O\varepsilon (t) := \Omega  - 

\varepsilon (t)\cup \Omega +
\varepsilon (t), where

\Omega  - 
\varepsilon (t) = \{ x\in \Omega : \phi \varepsilon (x, t) =O(\varepsilon 2)\} and \Omega +

\varepsilon (t) = \{ x\in \Omega : \phi \varepsilon (x, t) = 1+O(\varepsilon 2)\} ,

and an inner region I\varepsilon (t) := \Omega \setminus O\varepsilon (t), where \phi \varepsilon changes from 0 to 1, representing
the diffuse cell boundary. The region \Omega +

\varepsilon (t) is the cell region at t. Note that, by the
imposed boundary conditions u\varepsilon = 0 on \partial \Omega , the boundary \partial \Omega is included in the closure
of \Omega  - 

\varepsilon (t). We further assume that the inner region I\varepsilon (t) is an O(\varepsilon )-neighborhood of
a closed and smooth surface \Gamma (t), independent of \varepsilon , that is the limit of \{ x \in \Omega :
\phi \varepsilon (x, t) = 1/2\} as \varepsilon \rightarrow 0. Moreover, the interior and exterior of \Gamma (t), denoted by \Omega +(t)
and \Omega  - (t), are the limit as \varepsilon \rightarrow 0 of \Omega +

\varepsilon (t) and \Omega  - 
\varepsilon (t), respectively, with \Omega +(t) being

the cell region. We note that the terms inner region and outer region are defined with
respect to an interface. They are commonly used in matched asymptotic analysis
for the passage of a phase-field model to its sharp-interface limit; cf. [39] and the
references therein.

Outer expansions. We assume the following expansions in the outer region
O\varepsilon (t):

\phi \varepsilon (x, t) = \phi 0(x, t) + \varepsilon \phi 1(x, t) + \varepsilon 2\phi 2(x, t) + \cdot \cdot \cdot ,
u\varepsilon (x, t) = u0(x, t) + \varepsilon u1(x, t) + \varepsilon 2u2(x, t) + \cdot \cdot \cdot ,
v\varepsilon (x, t) = v0(x, t) + \varepsilon v1(x, t) + \varepsilon 2v2(x, t) + \cdot \cdot \cdot ,

where the functions \phi i(x, t), ui(x, t), and vi(x, t) (i= 0,1, . . . ) are smooth and bounded
and are independent of \varepsilon . They also satisfy the boundary conditions \phi i = ui = vi = 0
on \partial \Omega . Note that these functions are different from those in the expansions with a
different time scale \tau . Since \phi 0 = O(\varepsilon 2) in \Omega  - 

\varepsilon (t), there will be no equations for u\varepsilon 

and v\varepsilon at leading order O(1), and we shall assume that u\varepsilon = 0 and v\varepsilon = 0 in \Omega  - 
\varepsilon (t). If

we plug the above expansion of \phi \varepsilon , u\varepsilon , and v\varepsilon into (2.1), (2.2), and (2.3), we obtain
that, up to the leading order O(1),

\partial tu0 =D1\Delta u0 + f(u0, v0) in \Omega +(t)\times (0,\infty ),(2.5)

\partial tv0 =D2\Delta v0 + g(u0, v0) in \Omega +(t)\times (0,\infty ).(2.6)
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CELL POLARITY AND MOVEMENT S521

Local coordinates for the inner region. Let x \in I\varepsilon (t), and denote by s(x, t)
the signed distance from x to \Gamma (t), with s(x, t) > 0 if x is inside \Gamma (t) and s(x, t) < 0
otherwise. Note that s(x, t) = O(\varepsilon ) and | \nabla s(x, t)| = 1. Now let y = P (x, t) \in \Gamma (t)
be the projection of x onto \Gamma (t), defined by | x - P (x, t)| = | s(x, t)| . (We use | \cdot | to
denote both the absolute value of a number and the Euclidean norm of a vector.) For
0 < \varepsilon \ll 1, the projection y = P (x, t) \in \Gamma (t) is unique, and the vector x - P (x, t) is
normal to the surface \Gamma (t) at y = P (x, t). Let z = s(x, t)/\varepsilon . Let n= n(y, t) =\nabla s(y, t)
be the unit normal at y \in \Gamma (t) pointing from the exterior to the interior of \Gamma (t). Then
we have a unique expression of x\in I\varepsilon (t) as

x= y+ \varepsilon zn.(2.7)

We call (y, z) the local coordinate of x \in I\varepsilon (t) with respect to the surface \Gamma (t). We
have for 0< \varepsilon \ll 1 that [18, 39, 42, 26, 16]

\nabla xz = \varepsilon  - 1n(y, t) +O(1),(2.8)

\Delta xz = 2\varepsilon  - 1H(y, t) +O(1),(2.9)

\partial tz = - \varepsilon  - 1V (y, t),(2.10)

\nabla xyj(x, t) \cdot n(y, t) = 0 (j = 1,2,3),(2.11)

where H(y, t) is the mean curvature of the surface \Gamma (t) at the point y= P (x, t), V (y, t)
is the normal velocity of the point y= P (x, t)\in \Gamma (t) defined by

V (y, t) = \partial ty \cdot n(y, t) = \partial tP (x, t) \cdot n(y, t),(2.12)

and yj (j = 1,2,3) are the components of y= y(x, t). Let f = f(x, t) and \~f = \~f(z, y, t)
be smooth functions such that f(x, t) = \~f(z, y, t), with x \in I\varepsilon (t) and (y, z) related
by (2.7). Then, by (2.8)--(2.12) and the chain rule, we obtain for 0 < \varepsilon \ll 1 that
[16, 18, 26, 39, 42]

\nabla xf(x, t) = \varepsilon  - 1n\partial z \~f(y, z, t) +O(1),(2.13)

\Delta xf(x, t) =
\bigl( 
\varepsilon  - 12H(y, t)\partial z + \varepsilon  - 2\partial 2

zz

\bigr) 
\~f(y, z, t) +O(1),(2.14)

\partial tf(x, t) = - \varepsilon  - 1V (y, t)\partial z \~f(y, z, t) +O(1).(2.15)

Inner expansions. We now assume the following expansions in the inner region
I\varepsilon (t):

\phi \varepsilon (x, t) = \~\phi 0(y, z, t) + \varepsilon \~\phi 1(y, z, t) + \varepsilon 2 \~\phi 2(y, z, t) + \cdot \cdot \cdot ,
u\varepsilon (x, t) = \~u0(y, z, t) + \varepsilon \~u1(y, z, t) + \varepsilon 2\~u2(y, z, t) + \cdot \cdot \cdot ,
v\varepsilon (x, t) = \~v0(y, z, t) + \varepsilon \~v1(y, z, t) + \varepsilon 2\~v2(y, z, t) + \cdot \cdot \cdot ,

where x \in I\varepsilon (t) and (y, z) are related by (2.7), and all \~\phi i = \~\phi i(y, z, t), \~ui = \~ui(y, z, t),
and \~vi = \~vi(y, z, t) (i= 0,1, . . . ) are smooth and bounded functions. Let us substitute
\phi \varepsilon , u\varepsilon , and v\varepsilon in (2.1)--(2.3) with these expansions. By (2.13)--(2.15) and a series of
calculations, we obtain

 - \varepsilon  - 1V \partial z \~\phi 0 = \varepsilon  - 1h(u0, v0)
\bigm| \bigm| \bigm| \partial z \~\phi 0

\bigm| \bigm| \bigm| + \varepsilon  - 2\gamma 
\Bigl[ 
\partial zz \~\phi 0  - W \prime (\~\phi 0)

\Bigr] 
+ \varepsilon  - 1\gamma 

\Bigl[ 
2H\partial z \~\phi 0 + \partial zz \~\phi 1  - W \prime \prime (\~\phi 0)\~\phi 1

\Bigr] 
+O(1),
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S522 SHUANG LIU, LI-TIEN CHENG, AND BO LI

where V = V (y, t) and H = H(y, t) are the normal velocity and mean curvature,
respectively, at y = P (x, t). Note that, unlike \phi \varepsilon , which varies from 0 to 1, the
concentration fields u\varepsilon and v\varepsilon should not vary largely in the inner region. In par-
ticular, we have \~u0(y, z, t) = \~u0(y,0, t) + O(\varepsilon ) and \~v0(y, z, t) = \~v0(y,0, t) + O(\varepsilon ), as
| x  - y| = | x  - P (x, t)| = O(\varepsilon ) for any x \in I\varepsilon (t) with the local coordinate (y, z).
Therefore, we obtain from the above equation that

 - \varepsilon  - 1V \partial z \~\phi 0 = \varepsilon  - 1h(\~u0(y,0, t), \~v0(y,0, t))
\bigm| \bigm| \bigm| \partial z \~\phi 0

\bigm| \bigm| \bigm| + \varepsilon  - 2\gamma 
\Bigl[ 
\partial zz \~\phi 0  - W \prime (\~\phi 0)

\Bigr] 
+ \varepsilon  - 1\gamma 

\Bigl[ 
2H\partial z \~\phi 0 + \partial zz \~\phi 1  - W \prime \prime (\~\phi 0)\~\phi 1

\Bigr] 
+O(1).

Now, equating the terms with the same order O(\varepsilon  - 2) and O(\varepsilon  - 1), respectively, we
get

O(\varepsilon  - 2) : 0 = \partial zz \~\phi 0  - W \prime (\~\phi 0),(2.16)

O(\varepsilon  - 1) :  - V \partial z \~\phi 0 = h(\~u0(y,0, t), \~v0(y,0, t))
\bigm| \bigm| \bigm| \partial z \~\phi 0

\bigm| \bigm| \bigm| 
+ \gamma 

\Bigl[ 
2H\partial z \~\phi 0 + \partial zz \~\phi 1  - W \prime \prime (\~\phi 0)\~\phi 1

\Bigr] 
.(2.17)

Similarly, we can plug the inner expansions of \phi \varepsilon , u\varepsilon , and v\varepsilon into (2.2) and (2.3) to
get in the leading order that

O
\bigl( 
\varepsilon  - 2
\bigr) 
: 0 =D1

\Bigl( 
\partial z \~\phi 0\partial z\~u0 + \~\phi 0\partial zz\~u0

\Bigr) 
,(2.18)

O
\bigl( 
\varepsilon  - 2
\bigr) 
: 0 =D2

\Bigl( 
\partial z \~\phi 0\partial z\~v0 + \~\phi 0\partial zz\~v0

\Bigr) 
.(2.19)

Inner-outer matching and the sharp-interface limit. Since in the outer
region \phi \varepsilon = O(\varepsilon 2) in \Omega  - 

\varepsilon (t) and \phi \varepsilon = 1 + O(\varepsilon 2) in \Omega +
\varepsilon (t), we have the following

matching conditions for the leading-order terms of the inner and outer solutions of
the phase field \phi \varepsilon :

lim
z\rightarrow  - \infty 

\~\phi 0(y, z, t) = 0 and lim
z\rightarrow \infty 

\~\phi 0(y, z, t) = 1.(2.20)

These, together with (2.16), determine completely that \~\phi 0 is

\~\phi 0(y, z, t) =
1

2
+

e3z  - e - 3z

2(e3z + e - 3z)
\forall z \in \BbbR .

In particular, \~\phi 0 does not depend on y and t. One can verify that \partial z \~\phi 0 > 0 and that\int \infty 

 - \infty 
(\partial z \~\phi 0)

2dz = 1.(2.21)

By matching the inner expansion and outer expansion, we have \partial z \~\phi 0(\pm \infty ) = \partial zz \~\phi 0(\pm \infty ) =
0. Thus, by integration by parts and (2.16), we have\int \infty 

 - \infty 
\partial z \~\phi 0

\Bigl[ 
\partial zz \~\phi 1  - W \prime \prime (\~\phi 0)\~\phi 1

\Bigr] 
dz =

\int \infty 

 - \infty 
\partial z

\Bigl[ 
\partial zz \~\phi 0  - W \prime (\~\phi 0)

\Bigr] 
\~\phi 1 dz = 0.(2.22)

Now, by multiplying both sides of (2.17) by \partial z \~\phi 0 and then integrating the resulting
equation over z \in ( - \infty ,\infty ), we have by (2.21) and (2.22) that

V (y, t) = - h(u0(y,0, t), v0(y,0, t)) - 2\gamma H(y, t) \forall y \in \Gamma (t).(2.23)
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CELL POLARITY AND MOVEMENT S523

It follows from (2.18) and (2.19) that \partial z(\~\phi 0\partial z\~u0) = \partial z \~\phi 0\partial z\~u0 + \~\phi 0\partial zz\~u0 = 0 and
similarly \partial z(\~\phi 0\partial z\~v0) = 0 for all z \in \BbbR . These and the matching conditions (2.20) imply
that

0 = lim
z\rightarrow  - \infty 

\~\phi 0(y, z, t)\partial z\~u0(y, z, t) = lim
z\rightarrow \infty 

\~\phi 0(y, z, t)\partial z\~u0(y, z, t) = lim
z\rightarrow \infty 

\partial z\~u0(y, z, t),

0 = lim
z\rightarrow  - \infty 

\~\phi 0(y, z, t)\partial z\~v0(y, z, t) = lim
z\rightarrow \infty 

\~\phi 0(y, z, t)\partial z\~v0(y, z, t) = lim
z\rightarrow \infty 

\partial z\~v0(y, z, t).

Matching the inner expansions and outer expansions, we thus have

\partial nu0(x, t) = lim
z\rightarrow \infty 

\partial z\~u0(y, z, t) = 0 \forall x\in \Gamma (t),(2.24)

\partial nv0(x, t) = lim
z\rightarrow \infty 

\partial z\~u0(y, z, t) = 0 \forall x\in \Gamma (t),(2.25)

where u0 and v0 are the leading-order terms in the outer expansion of u\varepsilon and v\varepsilon and
satisfy (2.5) and (2.6), respectively.

We summarize our analysis in the following.

Theorem 2.1. Under the assumption that there exists a closed and smooth in-
terface \Gamma (t), the outer and inner expansions above for the solutions \phi \varepsilon , u\varepsilon , and v\varepsilon are
valid, and the corresponding matching conditions are satisfied, the following hold true
in the limit \varepsilon \rightarrow 0:

(1) The phase-field function \phi \varepsilon converges to 1 in \Omega +(t) and 0 in \Omega  - (t), respec-
tively.

(2) The concentrations u\varepsilon and v\varepsilon converge to the solution to the boundary-value
problem of the reaction-diffusion equations (2.5) and (2.6), and (2.24) and
(2.25).

(3) The normal velocity V = V (x, t) of the sharp cell boundary \Gamma (t) is given by
(2.23).

3. Numerical methods. We describe our numerical methods for solving the
system of equations (1.1)--(1.4) in the two-dimensional setting in the following nondi-
mensionalized form for the rescaled normal velocity V = V (x, y, t) on the rescaled cell
boundary \Gamma (t) at time t with rescaled concentrations u = u(x, y, t) and v = v(x, y, t)
defined on the cell region \Omega +(t), respectively:

V = u - u\ast  - \chi H for (x, y)\in \Gamma (t) and t > 0,(3.1)

\partial tu=Du\Delta u+ f(u, v) for (x, y)\in \Omega +(t) and t > 0,(3.2)

\partial tv=Dv\Delta v - f(u, v) for (x, y)\in \Omega +(t) and t > 0,(3.3)

\partial nu= \partial nv= 0 for (x, y)\in \Gamma (t) and t > 0,(3.4)

where H is the rescaled curvature, all u\ast , \chi , Du, Dv, K, and C are positive constants,
and

f(u, v) = - Ku(u - 0.5)(u - Cv).

Details of the nondimensionalization are given in section 4.1 below. Our numerical
methods for the one-species system, which is the sharp-interface limit of the system
(1.7)--(1.9), are similar.

We set our computational box to be \Omega = ( - L,L)2 for some L > 0 and cover it
with a uniform finite-difference grid with step size h in each dimension. We discretize
a time interval [0, T ] with T > 0 the final time of interest by tm =m\Delta t (m= 0,1, . . . )
with time step \Delta t > 0. We denote by \Gamma m, \Omega +

m, and \Omega  - 
m the approximation of \Gamma (tm),

\Omega +(tm), and \Omega  - (tm), respectively, where \Omega  - (t) = \Omega \setminus \Omega +(t) (an overline denotes
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S524 SHUANG LIU, LI-TIEN CHENG, AND BO LI

the closure). For a function w = w(x, y, t) with (x, y) \in \Omega and t \geq 0, we denote
by wm = wm(x, y) the approximation of w(x, y, tm) and by wm

i,j the approximation
of wm(xi, yj) for a grid point (xi, yj) or the center (xi, yj) of a grid cell. Note that
we approximate the level-set function \phi at grid points while we approximate the
concentrations u and v at the centers of grid cells; see below.

The level-set method for the moving cell boundary. We capture the
cell boundary \Gamma (t) at time t by using the level-set method [35, 36], with level-set
function \phi = \phi (x, y, t), i.e., \Gamma (t) = \{ (x, y) \in \Omega : \phi (x, y, t) = 0\} . The level-set function
is determined by the evolution equation \partial t\phi + V | \nabla \phi | = 0, where V = V (x, y, t) is
given in (3.1), which needs to be extended from \Gamma (t) to the entire computational
domain \Omega . The first part of our normal velocity is u(x, y, t) - u\ast . We keep the value
of u = u(x, y, t) in \Omega +(t) and additionally extend it from \Gamma (t) to \Omega  - (t) numerically
in each step of time iteration. Note, for convenience, that we continue to denote
the result by u = u(x, y, t), now for (x, y) \in \Omega . (Details of such extension are given
below.) The curvature H can be extended simply by using H =\nabla \cdot (\nabla \phi /| \nabla \phi | ) for all
(x, y) \in \Omega . Note that implicitly we require that the level-set function be close to the
signed distance to the interface \Gamma (t) with \phi < 0 in \Omega +(t) (the cell region) and \phi > 0 in
\Omega  - (t), at least near \Gamma (t). Therefore, the level-set equation and boundary conditions
now become

\partial t\phi = - (u - u\ast )| \nabla \phi | + \chi 

\biggl( 
\nabla \cdot \nabla \phi 

| \nabla \phi | 

\biggr) 
| \nabla \phi | for (x, y)\in \Omega and t > 0,(3.5)

\partial n\phi = 0 for (x, y)\in \partial \Omega and t > 0.(3.6)

Following [46], we rewrite the curvature part of the normal velocity as

\nabla \cdot 
\biggl( 

\nabla \phi 

| \nabla \phi | 

\biggr) 
| \nabla \phi | =\Delta \phi  - N(\phi ),

N(\phi ) =
\nabla \phi 

| \nabla \phi | 
\cdot \nabla (| \nabla \phi | ) =

\phi 2
x\phi xx + 2\phi x\phi y\phi xy + \phi 2

y\phi yy

\phi 2
x + \phi 2

y

.

With a given initial level-set function \phi (x, y,0) for all (x, y) \in \Omega , we can solve (3.5)
and (3.6) numerically with finite difference schemes in time and over the uniform grid.

Specifically, starting from um
i,j at centers of grid cells, we first use polynomial

interpolation or extrapolation to approximate u at points where the interface intersects
grid lines. Such intersection points are located by the linear interpolation of the values
of \phi at grid points. We then extend these approximate u-values from the points on
the interface to all the grid points in the outer region \Omega +

m, constant in the normal
direction, by the fast sweeping method [51, 53]. We continue to denote the extended
function by um. To get \phi m+1, we then use the semi-implicit scheme

\phi m+1  - \phi m

\Delta t
= - (um  - u\ast )| \nabla \phi m| + \chi \Delta \phi m+1  - \chi N\epsilon (\phi 

m),(3.7)

where N\epsilon (\phi ) is the same as N(\phi ), except the denominator \phi 2
x+\phi 2

y in N(\phi ) is replaced
by \phi 2

x + \phi 2
y + \epsilon in N\epsilon (\phi ) for a small enough \epsilon > 0 to avoid singularities at \nabla \phi = 0

while keeping an accurate approximation away from them. We use \epsilon = 10 - 12 in all
of our simulations. We discretize | \nabla \phi m| by fifth-order WENO [20] within Godunov's
scheme [37] and discretize \Delta \phi and N\epsilon (\phi ) by second-order central differencing.

At the boundary of the computational domain \Omega , we use a second-order scheme
to discretize the Neumann boundary conditions (3.6). The coefficient matrix of the
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CELL POLARITY AND MOVEMENT S525

\Gamma m+1

\Gamma m

III

II

I

Fig. 3.1. Illustration of two consecutive cell regions \Omega +
m and \Omega +

m+1. The cell region \Omega +
m is the

union of parts II and III, enclosed by the cell boundary \Gamma m (blue curve). The cell region \Omega +
m+1 is

the union of parts I and II, marked by red. Black solid dots mark those centers of grid cells that are
in \Omega +

m+1 but not in \Omega +
m.

resulting system of linear equations for all \phi m+1
i,j is sparse and nonsymmetric, with the

nonsymmetry due mainly to the chosen treatment of the boundary conditions. We
solve the linear system of equations using the biconjugate gradient stabilized method
preconditioned with the incomplete LU decomposition. Finally, we reinitialize the
level-set function \phi m+1, performing a few iterations of the algorithm of redistancing
to the signed distance function [49], and continue to denote the result by \phi m+1.

Discretization of the reaction-diffusion equations on a moving cell re-
gion. Given \Gamma m+1, \Omega 

+
m+1, and \Omega  - 

m+1, all specified by the level-set function \phi m+1 on
all the grid points, and also given the concentrations um and vm on all the centers in
\Omega +

m of grid cells, we need to find the approximate solution um+1 and vm+1 on all the
centers of grid cells that overlap with \Omega +

m+1 by the equations and boundary conditions
(3.2)--(3.4). To do so, we first employ a second-order extrapolation method proposed
in [22] to extend um and vm to the centers of grid cells that overlap with the new cell
region \Omega +

m+1 but are not in \Omega +
m; cf. the black solid dots in Figure 3.1. We denote by

\~um
i,j and \~vmi,j the extended u-value and v-value, or the original values um and vm if

they are not extended, at the center of a grid cell in \Omega +
m+1 labelled by (i, j). Note by

(3.2)--(3.4) that the integral of u+ v over \Omega is a constant with respect to time t (cf.
(1.6)), and its value is determined by the initial concentrations u and v at t= 0. We
shall still denote this constant by M . To enforce this conservation of the total mass,
we modify the value \~vmi,j to get vmi,j at the centers of all the grid cells overlapping with

\Omega +
m+1 by

vmi,j =
1

Area (\Omega +
m+1)

\Biggl[ 
M  - 

\int 
\Omega +

m+1

(\~um + \~vm)dA

\Biggr] 
+ \~vmi,j .

Note that we only correct the v-values, as v is the fast diffusion component. The
finally extended u and v values are now denoted by um

i,j and vmi,j ; they are defined on

centers labelled by (i, j) of grid cells overlapping with \Omega +
m+1.

We now focus on um+1, as vm+1 is similar. We use the semi-implicit scheme

um+1  - um

\Delta t
=Du\Delta um+1 + f(um, vm) for (x, y)\in \Omega +

m+1.
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S526 SHUANG LIU, LI-TIEN CHENG, AND BO LI

Since the interface \Gamma m+1 cuts through grid cells, we employ an embedded boundary
method developed in [38] to discretize the Laplacian operator. Fix a grid cell \scrC i,j
that overlaps with \Omega +

m+1 and that is centered at (xi, yj). Integrating both sides of the
above equation over \scrC i,j \cap \Omega +

m+1, we have by the divergence theorem that

\int 
\scrC i,j\cap \Omega +

m+1

um+1  - um

\Delta t
dA=Du

\int 
\partial (\scrC i,j\cap \Omega +

m+1)

\nabla um+1 \cdot \nu dl+
\int 
\scrC i,j\cap \Omega +

m+1

f(um, vm)dA,

(3.8)

where \nu is the unit vector normal to the boundary \partial (\scrC i,j \cap \Omega +
m+1). The two area

integrals can be approximated by\int 
\scrC i,j\cap \Omega +

m+1

um+1  - um

\Delta t
dA\approx 

um+1
i,j  - um

i,j

\Delta t
Area (\scrC i,j \cap \Omega +

m+1),(3.9) \int 
\scrC i,j\cap \Omega +

m+1

f(um, vm)dA\approx f(um
i,j , v

m
i,j)Area (\scrC i,j \cap \Omega +

m+1).(3.10)

The area can be calculated using the level-set function \phi m+1 [28]. Whether or not the
interface \Gamma m+1 cuts through the grid cell \scrC i,j , by the boundary condition \partial nu

m+1 = 0
on \Gamma m+1, we can approximate the line integral in (3.8) by [38]\int 

\partial (\scrC i,j\cap \Omega +
m+1)

\nabla um+1 \cdot \nu dl\approx 
um+1
i+1,j  - um+1

i,j

h
Li+1/2,j  - 

um+1
i,j  - um+1

i - 1,j

h
Li - 1/2,j

+
um+1
i,j+1  - um+1

i,j

h
Li,j+1/2  - 

um+1
i,j  - um+1

i,j - 1

h
Li,j - 1/2,(3.11)

where Li\pm 1/2,j \in [0, h] and Li,j\pm 1/2 \in [0, h] refer to the length of the corresponding
edge of the grid cell \scrC i,j inside \Omega +

m+1. These lengths can be calculated using the
level-set function \phi m+1 that defines the interface \Gamma m+1 [28].

The coefficient matrix of the resulting system of linear equations is symmetric
positive definite [38], and the system can be solved by the conjugate gradient method
with an incomplete Cholesky preconditioner or by an algebraic multigrid method.

Algorithm.
Step 0. Input all the parameters. Set the computational box \Omega = ( - L,L)2 \subset \BbbR 2,

and cover it with a uniform finite-difference grid with grid size h. Discretize
the time interval [0, T ] of interest with time step \Delta t. Initialize the level-set
function \phi 0 and the concentrations u0 and v0. Set m= 0.

Step 1. Extend the normal velocity from the interface to the entire computational
box. Solve the semi-implicit discretization equation (3.7) to get the updated
level-set function \phi m+1. Reinitialize the level-set function, and still denote it
by \phi m+1.

Step 2. Extend um and vm to the centers of grid cells overlapping with \Omega +
m+1 defined

by \phi m+1. Solve the semi-implicit discretization equations (cf. (3.8)--(3.11))
to obtain um+1 and vm+1.

Step 3. Check whether the cell region \Omega +
m+1 touches the boundary \partial \Omega . If so, shift

the computational box so that the cell is centered in the new computational
box, still denoted by \Omega .

Step 4. Set m :=m+ 1. Repeat Steps 1--3 until the final simulation time is reached.

Convergence test. We have tested our numerical methods and code. In Fig-
ure 3.2, we show that the total mass conservation is captured numerically in a long-
time simulation. We have also used our numerical methods to simulate a moving cell
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CELL POLARITY AND MOVEMENT S527

Fig. 3.2. Numerical conservation of total mass. Here, U = U(t) and V = V (t) at time t are
defined as the integral of u(x, y, t) and v(x, y, t), respectively, over the cell region \Omega +(t), and the total
mass is defined to be the sum U + V .

Fig. 3.3. Simulated cell shapes with the final simulation time T = 10. The initial simulation
box \Omega = ( - 3,3)2 is shifted during the simulation. Left: simulation results with the grid size h= 0.05
and different time steps \Delta t. Right: simulation results with the time step \Delta t= 1.25\times 10 - 3 and with
different number of grid points.

with the final (rescaled) time being T = 10, using different time steps and different
spatial grid sizes. Figure 3.3 shows our simulation results. They indicate that our
numerical method and algorithm converge both in time and space.

To further test the convergence rate of our method, we solve numerically the
following moving boundary problem:\left\{     

\partial tu=\Delta u - u - 4 + x2 + y2 in \Omega +(t),

\partial nu= 2
\sqrt{} 
x2 + y2 on \Gamma (t) = \partial (\Omega +(t)),

V = - H +
\surd 
u on \Gamma (t),

where \Gamma (t) is the moving boundary, \Omega +(t) is the interior region of \Gamma (t), V is the normal
velocity on \Gamma (t), H is the curvature of \Gamma (t), and u = u(x, y, t) with (x, y) \in \Omega +(t).
This system has a radially symmetric solution: the boundary \Gamma (t) is a circle of radius
R(t) and u(x, y, t) = \~u(r, t) with r=

\sqrt{} 
x2 + y2, given by (dropping the tilde)\Biggl\{ 

u(r, t) = r2 for r <R(t),

R(t) =
\sqrt{} 

1 + (R2
0  - 1)e - 2t for t > 0.
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S528 SHUANG LIU, LI-TIEN CHENG, AND BO LI

Table 1
Numerical accuracy for u.

h \Delta t \| u\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}  - u\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{c}\mathrm{t}\| 2 Order \| u\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}  - u\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{c}\mathrm{t}\| \infty Order

0.15 0.15 1.600\times 10 - 3 - 2.200\times 10 - 3 -

7.500\times 10 - 2 7.500\times 10 - 2 3.190\times 10 - 4 2.33 5.135\times 10 - 4 2.10
3.750\times 10 - 2 3.750\times 10 - 2 1.435\times 10 - 4 1.15 1.640\times 10 - 4 1.64

1.875\times 10 - 2 1.875\times 10 - 2 3.295\times 10 - 5 2.12 3.944\times 10 - 5 2.06

9.375\times 10 - 3 9.375\times 10 - 3 6.85\times 10 - 6 2.27 8.943\times 10 - 6 2.14

Table 2
Numerical accuracy for the boundary.

h \Delta t \phi 1
\mathrm{e}\mathrm{r}\mathrm{r} Order \phi \infty 

\mathrm{e}\mathrm{r}\mathrm{r} Order

0.15 0.15 9.030\times 10 - 2 - 1.073\times 10 - 1 -
7.500\times 10 - 2 7.500\times 10 - 2 2.970\times 10 - 2 1.60 3.540\times 10 - 2 1.60

3.750\times 10 - 2 3.750\times 10 - 2 8.600\times 10 - 3 1.79 1.040\times 10 - 2 1.77

1.875\times 10 - 2 1.875\times 10 - 2 2.500\times 10 - 3 1.78 3.100\times 10 - 3 1.75
9.375\times 10 - 3 9.375\times 10 - 3 1.100\times 10 - 3 1.18 1.500\times 10 - 3 1.05

For our level-set numerical simulations, the initial boundary is set to be a circle of
radius R0 = 1.3 centered at the origin. To show the error between the simulated and
exact boundary location at a final time T of simulation, we locate numerically a set
of intersection points \{ P1, . . . , PN\} of the numerical level set \phi appr = 0 at T and the
grid lines using linear interpolation [29], where \phi appr denotes our numerical level-set
function at T. We also denote by \phi exact the signed distance function of the boundary
\Gamma (T ), which is the circle of radius R(T ), and further define

\phi 1
err =

1

N

N\sum 
i=1

| \phi exact(Pi) - \phi appr(Pi)| =
1

N

N\sum 
i=1

| \phi exact(Pi)| ,

\phi \infty 
err = max

1\leq i\leq N
| \phi exact(Pi) - \phi appr(Pi)| = max

1\leq i\leq N
| \phi exact(Pi)| .

In Table 1, we compare our numerical and exact solutions at the final time T = 0.4
with varying grid sizes and time steps for the approximation of the concentration u
inside the simulated boundary defined by \phi appr = 0. In the table, uappr and uexact

denote the numerical and exact solutions, respectively, and \| \cdot \| 2 and \| \cdot \| \infty denote
the L2 and L\infty norms, respectively. In Table 2, we compare our numerical and exact
solutions at the final time T = 0.4 with varying grid sizes and time steps for the
approximation of the boundary. In both tables, h and \Delta t are the grid size of a
uniform spatial grid and the step size of time discretization, respectively. We observe
that the convergence rate for the approximation of u is of second order in both space
and time, better than the expected second order in space and first order in time.
Similarly, our numerical approximation of the boundary location is between the first
and the second order in both space and time, again better than the expected first
order in space. These better convergence results are due to the fact that in our test
problem u= u(r, t) is independent of t.

4. Simulation results and analysis. We perform numerical simulations to
study the cell polarization in response to various external stimuli and the trajectory
of a moving cell and analyze these simulation results in terms of the modeling and
parameters.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

2/
23

 to
 1

29
.1

20
.6

7.
52

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



CELL POLARITY AND MOVEMENT S529

Table 3
Model parameters.

Parameters Description Estimated values Units

Du diffusion coefficient of u 0.1\sim 0.5 \mu m2/s
Dv diffusion coefficient of v 10\sim 50 \mu m2/s

\alpha coefficient of F-actin extension 0.1 pN/\mu m

\beta coefficient for myosin retraction 0.2 pN/\mu m
\tau friction coefficient 2.62 pNs/\mu m2

\gamma surface tension 1 pN

k relative reaction rate \sim 0.01 s - 1

c concentration of u at the cell front 1 \sim 10 concentration unit

C interconversion parameter 0.5 \sim 0.8 unitless

Table 4
Nondimensionalized parameters.

Parameters Description Estimated values\widehat Du = Du
V0R

Rescaled diffusive coefficient of u 0.1\sim 0.5\widehat Dv = Dv
V0R

Rescaled diffusive coefficient of v 10\sim 50

K = kR\mathrm{c}2

V0
Rescaled reaction rate compared to motility 100\sim 500

\chi = \gamma 
V0\tau R

Relative strength of surface tension 0.1\sim 0.3\widehat u\ast = \beta 
\mathrm{c}\alpha 

Rescaled contractility 0.2\sim 0.45\widehat M = Ntot
\mathrm{c}\mathrm{R}2 Rescaled total amount of protein u and v 6\sim 8

C interconversion parameter 0.5\sim 0.8

4.1. Parameters and nondimensionalization. In Table 3, we collect all the
parameters in the original model (1.1)--(1.4) and describe their meanings and units.
We also provide their estimated values following [11, 44]. To nondimensionalize our
equations (1.1)--(1.4), we follow [11] to introduce two parameters. One is the typical
cell speed V0, which is in the range \sim 0.1\mu m/s. The other is the typical radius
of a cell R, which is in the range \sim 10\mu m. We then introduce nondimensionalized
parameters according to Table 4. We then define \^x = x/R, \^t = (V0/R)t, \^u = u/c,
\^v = v/c, and \widehat V = V/V0 and convert the original system of equations (1.1)--(1.4) into
the nondimensionalized system of equations for \widehat V , \^u, and \^v, which is, after dropping
all the hats, the system (3.1)--(3.4).

4.2. Cell polarization. Inspired by the one-dimensional simulations of the
wave-pinning mechanism [33], we consider a nonmoving or stationary cell that oc-
cupies the fixed region \Omega + whose boundary is the curve

x= (1 - 0.3cos2\theta ) cos\theta , y= (1 - 0.3cos2\theta ) sin\theta \forall \theta \in [0,2\pi ).

We set K = 500, M = 6, C = 0.8, Du = 0.3, and Dv = 30. (Note that \chi and
\mu \ast are not needed, since the boundary is fixed.) The computational box is \Omega =
( - 2.5,2.5)\times ( - 2.5,2.5). Note that \Omega + \subset \Omega . We cover \Omega by a uniform finite-difference
grid of grid size h= 0.05 and set \bigtriangleup t= 0.001.

Random initial value. We choose the initial value u0 to be a random variable
defined on all the grid centers. The values are generated uniformly at random from
[0,0.8]. We also set the initial value v0 to be a constant: v0 = 1.342. We then
solve numerically the reaction-diffusion equations with the zero Neumann boundary
conditions. Figure 4.1(a) shows the cell region bounded by the blue curve. The red
region inside the cell is the set of points at which the initial random concentration
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S530 SHUANG LIU, LI-TIEN CHENG, AND BO LI

Fig. 4.1. Cell polarization with a random initial value u0. (a) Cell region bounded by the blue
curve. A random initial concentration field u0 is distributed at grid points inside the cell region.
The red spot is the set of points at which u0 \geq 0.5. (b) At t = 0.5, the region of u \geq 0.5, bounded
by the red curves, is located in the front of the cell, showing a polarized cell. (c) At t = 2, the cell
polarization has reached an equilibrium.

value u0 \geq 0.5. Figure 4.1(b) shows the part of the cell region, marked by the closed red
curve, at which the concentration u\geq 0.5. This shows that the cell is polarized at this
(rescaled) time t= 0.5. As discussed in [11, 21], the reaction-diffusion system tends to
minimize the length of the interface that separates the high and low u-concentration
regions. Figure 4.1(c) shows that at t = 2 the interface between the high and low
u-concentration regions does not change, indicating the cell polarization reaches an
equilibrium [33].

External stimulus. We introduce an external stimulus and solve the system of
equations

\partial tu=Du\Delta u+ f(u, v) + Sv in \Omega + \times (0, T ],

\partial tv=Dv\Delta v - f(u, v) - Sv in \Omega + \times (0, T ]

with the same boundary conditions \partial nu= \partial nv= 0 on \partial \Omega + and a final simulation time
T . The stimulus function is Sv with S defined on \Omega + \times [0, T ] by

S = S(x, y, t) =

\left\{     
s1(t)(x - 0.7)(y - 1.3) if (x, y, t)\in \Omega + \times [0,1],

s2(t)(x+ 0.7)(y+ 1.3) if (x, y, t)\in \Omega + \times [10,11],

0 elsewhere,

where

s1(t) =

\left\{     
0.07 if 0\leq t\leq 0.5,

0.07(1 - t - 0.5
0.5 ) if 0.5< t\leq 1,

0 elsewhere,

and s2(t) =

\Biggl\{ 
s1(t - 10) if 10\leq t\leq 11,

0 elsewhere.

Note that the stimulus is turned on (i.e., S(x, y, t) \not = 0) for 0 \leq t \leq 1, spatially
weak around (x, y) = (0.7,1.3), and for 10 \leq t \leq 11 is spatially weak around (x, y) =
( - 0.7, - 1.3) but is turned off (i.e., S(x, y, t) = 0) for a longer period 1< t< 10.

We set the initial values of u and v to be constant and solve the reaction-diffusion
equations with the stimulus up to the final simulation time T = 20. When the locally
strong stimulus is turned on from t= 0 to t= 1, the active form u increases locally near
the southwest corner. Such increase then leads to the formation of a spatial interface
in the cell, separating the high and low concentrations of the active form u, which
propagates inside the cell region. Meanwhile, the concentration v of the inactive form
decreases, leading accordingly to the decreasing of u+ = Cv in the kinetic form of
f . As a result, the motion of the internal interface slows down, and is finally pinned
down, and the cell reaches a polarized steady state [33]. Figure 4.2(a) shows such a
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CELL POLARITY AND MOVEMENT S531

Fig. 4.2. Simulation of the cell polarization with stimulus from the initial time t = 0 to the
final simulation time T = 20. (a) At t= 10, the cell is polarized. (b) At t= 20, the cell is polarized
again but with a reversed orientation.

polarized state at t= 10. The cell is repolarized, with a reversed orientation, after the
stimulus is turned on again during 10\leq t\leq 11 but strong in a different spatial region
of the cell; cf. Figure 4.2(b).

4.3. Cell trajectory. We define the cell trajectory of a moving cell to be the
time trajectory of the geometrical center of the cell (Xc(t), Yc(t)), which is defined by

Xc(t) =
1

Area (\Omega +(t))

\int 
\Omega +(t)

xdxdy and Yc(t) =
1

Area (\Omega +(t))

\int 
\Omega +(t)

y dxdy.

We study two typical types of trajectories, straight and circular trajectories, aiming
at a qualitative understanding of controlling parameters for such trajectories. We
shall also compare the two-species and one-species models in terms of the prediction
of different trajectories.

In all the simulations reported below, K = 100, M = 6, and C = 0.8, and all Du,
Dv, \chi , and \mu \ast are varied. The computational box is \Omega = ( - 3,3)\times ( - 3,3), but it will
be shifted during the simulation of cell movement; cf. the algorithm in section 3. The
grid size is h= 0.06, and the time step size is \Delta t= 0.005. The initial cell boundary is
a circle of radius 1.3 centered at (0, - 1). The cell is polarized with the concentration
of u to be 0.8, where y \geq  - 0.8, and u= 0 in the remaining part, while v is uniformly
distributed on the cell domain.

Long-time trajectories. We simulate a moving cell with two different sets of
parameters Du, Dv, \chi , and \mu \ast and plot the cell trajectories in Figure 4.3. We observe
clearly a straight trajectory (cf. Figures 4.3(a) and (b)) and a circular trajectory (cf.
Figures 4.3(c) and (d)). Note that the parameters we use in these simulations are
similar to those used in [11] to capture both the straight and the circular trajectories
as in Figure 4.3 with the final time t = 40, while here we have simulated the cell
movement up to t = 150, indicating that the two patterns are persistent, and the
model and our methods are robust.

Effects of diffusion. We now set \chi = 0.1 and u\ast = 0.4 and vary the diffusion
constants Du and Dv to study how the diffusion can affect the cell movement. In
Figure 4.4, we plot our simulation results for three sets of diffusion constants. case
1: Du = 0.1 and Dv = 10; case 2: Du = 0.3 and Dv = 30; case 3: Du = 0.5 and
Dv = 50. In Figure 4.4(a), we observe that the cell trajectory is linear (i.e., straight)
for case 1, while it is circular for cases 2 and 3. Note that the plot in the window is
the zoom-in of the long-time trajectories for cases 2 and 3. In all three cases, there
is a preparation time before the cell starts to move in a straight line for case 1 or in
a circular pattern for cases 2 and 3. In Figures 4.4(b1)--(b3), we plot the x and y
components of the velocity at the geometrical center of the moving cell corresponding
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S532 SHUANG LIU, LI-TIEN CHENG, AND BO LI

Fig. 4.3. Long-time cell movement simulations. In (a) and (b), Du = 0.1, Dv = 10, \chi = 0.2,
and u\ast = 0.2. In (c) and (d), Du = 0.5, Dv = 50, \chi = 0.1, and u\ast = 0.25. The se-
quence of snapshots of cells in (a) are taken at t = 0, 10, 20, 30, 40 and those in (c) are taken
at t = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45. The blue line or curve in (b) or (d) is the space-time cell
trajectory, while the red line or curve in (b) or (d), marked ``projection,"" is the (two-dimensional)
space trajectory of the moving cell.

Fig. 4.4. (a) Cell trajectories predicted with three different sets of diffusion constants Du and
Dv . The small window is the zoom-in of the two circular trajectories. (b1)--(b3) The x and y
components of the velocity at the center of a moving cell predicted by our numerical simulations
corresponding to the three sets of Du and Dv values marked in (a).

to the three cases, respectively. We observe that larger diffusion constants correspond
to a shorter preparation time before the onset of the linear or circular trajectory.
Moreover, fast diffusion is correlated to a smaller circular trajectory.

Contractility. This refers to the cell contraction due to the decreasing of concen-
tration u, the rear part of the cell. In the model, the cell contractility is determined
by the threshold concentration u\ast . To study how the variation of u\ast can affect the
cell trajectory, we fix the diffusion constants Du = 0.4 and Dv = 40 and the rescaled
surface tension constant \chi = 0.1, and we simulate the cell movement with different
values of u\ast : 0.25, 0.3, and 0.4. Figure 4.5(a) shows the three circular trajectories cor-
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CELL POLARITY AND MOVEMENT S533

Fig. 4.5. (a) Cell trajectories corresponding to the three values of u\ast . (b1)--(b3) The area of
the moving cell vs. time t corresponding to the three values of u\ast .

Fig. 4.6. The trajectory of the center of mass of a simulated cell. (Left) a linear trajectory
predicted by the two-species model. (Right) a circular trajectory predicted by the one-species model.

responding to the three u\ast values. We observe that a larger value of u\ast corresponds
to an earlier onset of the circular mode and the circle is smaller. Figures 4.5(b1)--(b3)
show the area of the moving cell vs. time for the three sets of u\ast values as marked
in Figure 4.5(a). We observe again that a larger value of u\ast takes a shorter period of
time before the cell circulates.

Two-species model vs. one-species model. We simulate the cell movement
with both the two-species model and the one-species model in nondimensionalized
forms. The nondimensionalized two-species model consists of (3.1)--(3.4). The nondi-
mensionalized one-species model consists of (1.7)--(1.9) with \gamma = 1, \alpha = 1, and \beta and \gamma 
replaced by u\ast and \chi , respectively. The function f is given by (1.5) with c= 1 and k
replaced by K. We set Du = 0.1, Dv = 10 (only for the two-species model), u\ast = 0.4,
and \chi = 0.1. In Figure 4.6, we plot the center of mass of the cell simulated with
the two-species model (left), which predicts a a linear trajectory, and the one-species
model (right), which predicts a circular trajectory.

To see how some of the key parameters can control cell trajectories, we have
simulated the cell movement with different values of the (rescaled) diffusion coefficients
Du and Dv (Dv is only for the two-species model) and the (rescaled) surface tension
parameter \chi . All the other parameters are the same. Our results are summarized in
Table 5.

It is clear that the combination of the diffusion of active Rho GTPase proteins
with the concentration u and the surface tension with the parameter \chi controls the
trajectory pattern, linear or circular. A large value of \chi corresponds to a large surface
tension and small friction, suppressing the boundary instability during the cell move-
ment, while a larger value of the diffusion coefficient Du more likely causes the cell
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Table 5
Comparison of cell trajectories simulated by one-species (indicated by 1s) and two-species (in-

dicated by 2s) models. The symbol ``\bigcirc "" represents a circular trajectory, ``| "" represents a linear
trajectory, and ``\times "" means that the cell loses polarity and stays still during the movement.

Diffusion coefficients \chi =0.1 \chi =0.15 \chi =0.2 \chi =0.25 \chi =0.3
1s 2s 1s 2s 1s 2s 1s 2s 1s 2s

Du = 0.10, and Dv = 10 for 2s \bigcirc | | | | | | | | | 
Du = 0.15, and Dv = 15 for 2s \bigcirc \bigcirc \bigcirc | \bigcirc | | | \times \times 
Du = 0.20, and Dv = 20 for 2s \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc | \times \times 

circular motion. Similarly, the one-species model with the infinitely fast diffusion of
the inactive Rho GTPase proteins more likely predicts a circular rather than a linear
trajectory of the cell motion.

5. Conclusions. We have studied the cell polarity and movement within the
modeling framework of reaction-diffusion equations and a moving cell boundary. In
particular, we have carefully examined the wave-pinning model, both the two-species
and the reduced one-species models.

Early studies included the one-dimensional analysis of the wave-pinning mecha-
nism [33, 34] and the two-dimensional phase-field simulation and the sharp-interface
analysis with a reduced model for cell polarization and movement [11]. Here, we
have derived the sharp-interface model as the limit of the phase-field model as the
small parameter \varepsilon \rightarrow 0 with a general two- or three-dimensional setting. Our rigorous
analysis provides a close link between these two types of models.

We have also developed and implemented a robust numerical method for the
simulation of cell polarization and movement using the derived sharp-interface model
in two-dimensional space. Our approach combines the level-set method for the moving
cell boundary and accurate discretization techniques for solving the reaction-diffusion
equations on the moving cell region. The method and algorithm pass the convergence
test.

We have done extensive numerical simulations using the full, two-species reaction-
diffusion moving cell boundary model as well as its reduced one-species model in two-
dimensional space. We find that the cell polarization is a robust process that can
be triggered by various external stimuli with a large set of parameters, confirming
the wave-pinning mechanism as proposed in [33, 34]. We have also traced the cell
trajectory during long-time simulations. By choosing different sets of parameters of
the diffusion constants and the threshold value of the concentration of an active Rho
GTPase protein in the normal velocity, we have been able to capture both the linear
and the circular trajectories. It is consistently observed that a larger value of the
(rescaled) diffusion constant more likely leads to a circular motion of the cell, and a
larger value of the (rescaled) surface tension more likely leads to a linear motion of the
cell. These agree with the qualitative analysis by Camley et al. [11]. For a circular
trajectory, a period of preparation time is observed. The full, two-species model and
the reduced, single-species model predict different such preparation times. Therefore,
the infinite diffusion of the second species, which is the assumption of the reduced
model, may need to be corrected for quantitative predictions of different complex
processes of cell motility.

In our simulations we have observed that the cell area and the x and y components
of the velocity at the center of mass of the cell are oscillatory during the period of
preparation time before the cell starts to rotate completely; cf. Figures 4.4 and 4.5.
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These are unlikely caused by numerical errors and instabilities, as no such oscillations
occur once the cell starts to rotate. We will investigate such oscillations further in
our subsequent works.

With our analytical tools, robust numerical methods, and computer code, we can
study further the cell polarity and movement in several directions.

(1) We can include many more biological components in our models and simu-
lations. The first of them is the fluid flow which can be modeled by Stokes
flow [43, 52]. The boundary velocity of a cell moving around within such a
flow can be determined by the force balance. The second component is the
combination of attachment to and detachment from a substrate of a moving
cell [43].

(2) With a similar approach and simulation method, we can study the interaction
and movement of a cluster of cells, where the cell coordination and coopera-
tion will be crucial [8, 40]. Likely, such studies can help better understand the
molecular basis as well as mechanical forces that determine such an important
collective biological process.

(3) With our current work on the model analysis and the development of robust
numerical methods for two-dimensional simulations, it is possible now for
us to simulate the cell movement in a full, three-dimensional setting, with
an extended model that includes more biological effects, particularly those,
such as cell-substrate interactions, that are not easily described by a two-
dimensional model [12, 45].

Acknowledgments. The authors thank Dr. Zirui Zhang and Professor Yanxi-
ang Zhao for helpful discussions.
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