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Abstract
What will happen when two invasive species are competing and invading the envi-
ronment at the same time? In this paper, we try to find all the possible scenarios in
such a situation based on the diffusive Lotka-Volterra competition system with free
boundaries. In a recent work, Du andWu (Calc Var Partial Differ Equ, 57(2):52, 2018)
considered a weak-strong competition case of this model (with spherical symmetry)
and theoretically proved the existence of a “chase-and-run coexistence” phenomenon,
for certain parameter ranges when the initial functions are chosen properly. Here we
use a numerical approach to extend the theoretical research of Du and Wu (Calc Var
Partial Differ Equ, 57(2):52, 2018) in several directions. Firstly, we examine how the
longtime dynamics of the model changes as the initial functions are varied, and the
simulation results suggest that there are four possible longtime profiles of the dynam-
ics, with the chase-and-run coexistence the only possible profile when both species
invade successfully. Secondly, we show through numerical experiments that the basic
features of the model appear to be retained when the environment is perturbed by
periodic variation in time. Thirdly, our numerical analysis suggests that in two space
dimensions the population range and the spatial population distribution of the success-
ful invader tend to become more and more circular as time increases no matter what
geometrical shape the initial population range possesses. Our numerical simulations
cover the one space dimension case, and two space dimension case with or without
spherical symmetry. The numerical methods here are based on that of Liu et al. (Math-
ematics, 6(5):72, 2018, Int J Comput Math, 97(5): 959–979, 2020). In the two space
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dimension case without radial symmetry, the level set method is used, while the front
tracking method is used for the remaining cases. We hope the numerical observations
in this paper can provide further insights to the biological invasion problem, and also
to future theoretical investigations. More importantly, we hope the numerical analysis
may reach more biologically oriented experts and inspire applications of some refined
versions of the model tailored to specific real world biological invasion problems.

Keywords Diffusive competition model · Free boundary · Longtime dynamics ·
Invasive behaviour

Mathematics Subject Classification 35K51 · 92D25 · 65M22

1 Introduction

The ecological impacts of invasive species is a widespread concern. For example,
invasive cane toads (Rhinella marina) in Australia impose great danger to the survival
of many native species, and extensive research has been performed on the ecological
interactions between the cane toads and native frogs in Australia (Shine 2014). To pre-
dict the long-term dynamical behaviour and impact of invasive species, mathematical
modelling plays an important role. After the pioneering works of Fisher (1937) and
Kolmogorov et al. (1937), diffusive equations have been widely used in invasion ecol-
ogy to analyse the spreading behaviour of invasive species. For two competing species
invading into unbounded space, the following Lotka-Volterra competition system has
been widely used to understand their dynamical behaviour (see, for example, Okubo
et al. 1989):

{
ut = d1�u + u(a1 − b1u − c1v), x ∈ R

N , t > 0,
vt = d2�v + v(a2 − b2v − c2u), x ∈ R

N , t > 0,
(1.1)

where u(x, t) and v(x, t) denote the population densities of the two competing species
at time t and spatial location x ; the positive constants di , ai , bi and ci (i = 1, 2) are
the diffusion rates, intrinsic growth rates, intra-specific competition rates, and inter-
specific competition rates, respectively.

For mathematical analysis, the number of parameters in (1.1) can be reduced. By
using the scalings

û(x, t) := b1
a1

u

(√
d2
a2

x,
t

a2

)
, v̂(x, t) := b2

a2
v

(√
d2
a2

x,
t

a2

)
,

D := d1
d2

, γ := a1
a2

, k := a2c1
a1b2

, h := a1c2
a2b1

,
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and then omitting the hat signs, system (1.1) can be rewritten into the following simpler
form,

{
ut = D�u + γ u(1 − u − kv), x ∈ R

N , t > 0,
vt = �v + v(1 − v − hu), x ∈ R

N , t > 0.
(1.2)

The system (1.2) has four constant equilibriumsolutions (u, v) = (0, 0), (1, 0), (0, 1)
and (u∗, v∗), where (u∗, v∗) = ( 1−k

1−hk ,
1−h
1−hk

)
ismeaningful onlywhen (1−k)(1−h) >

0. If the entire Euclidean space RN in (1.2) is replaced by a bounded open domain,
and zero Neumann (no-flux) boundary conditions are imposed at the boundary of this
domain, then it is well known that the asymptotic behaviour of the solution of system
(1.2) with initial functions u(x, 0), v(x, 0) > 0 can be classified into the following
four cases (see, for example, de Mottoni 1979):

(i) If 0 < k < 1 < h, then

lim
t→∞

(
u(x, t), v(x, t)

) = (1, 0).

(i i) If 0 < h < 1 < k, then

lim
t→∞

(
u(x, t), v(x, t)

) = (0, 1).

(i i i) If 0 < h, k < 1, then

lim
t→∞

(
u(x, t), v(x, t)

) = (u∗, v∗).

(iv) If h, k > 1, then (depending on the initial condition)

lim
t→∞

(
u(x, t), v(x, t)

) = (1, 0) or (0, 1) or (u∗, v∗).

Cases (i) and (i i) are known as the weak-strong competition cases (u strong and
v weak in case (i)). Case (i i i) is called the weak competition case and case (iv)

is referred to as the strong competition case.

To use (1.2) to describe the spreading behaviour, one typically assumes that the
initial populations u(x, 0) and v(x, 0) are positive in a bounded region of RN , and
then uses the diffusive system to see how the populations evolve as time t increases.
In the weak-strong competition case, say in case (i), the evolution of

(
u(x, t), v(x, t)

)
can often be explained by a traveling wave solution of the system with a certain speed
c > 0. This speed c is usually interpreted as the invading speed of u (and retreating
speed of v). The dynamics can be more complex though; see Girardin and Lam (2019)
for a very recent study of this case in space dimension N = 1.

A shortcoming of (1.2) as a populationmodel is that, although the initial population
ranges may be assumed to be bounded regions in space, that is, both {x ∈ R

N :
u(x, 0) > 0} and {x ∈ R

N : v(x, 0) > 0} are bounded sets, once t > 0, the
population ranges {x ∈ R

N : u(x, t) > 0} and {x ∈ R
N : v(x, t) > 0} coincide
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with R
N . Therefore (1.2) does not provide information for the evolution of the range

boundaries of the species. To address this problem, recently several diffusive systems
with free boundaries have been proposed and used to describe the spreading behaviour;
see, for example, Du and Lin (2014), Du et al. (2017), Du and Wu (2018), Guo and
Wu (2012, 2015), Tian and Ruan (2018), Wang and Zhang (2017), Wang et al. (2019),
Wu (2013, 2015) for the case of two interacting competing species. The inclusion of
free boundaries has significantly increased the level of difficulty to treat these already
very challenging models with rich dynamics.

In this paper, we will start by focusing on the competition system with free bound-
aries in a radially symmetric setting considered in Du and Wu (2018), Guo and Wu
(2015), which has the form (together with several other equations to be described
below)

{
ut = D�r u + γ u(1 − u − kv) for 0 < r < s1(t), t > 0,
vt = �rv + v(1 − v − hu) for 0 < r < s2(t), t > 0,

(1.3)

where u(r , t) and v(r , t) represent the population densities of the two competing
species at spatial location r(= |x |) and time t , and�rφ := φrr + (N−1)

r φr is the usual
Laplacian operator in spherical coordinates with radial symmetry in RN . We will also
consider some more general versions of (1.3), including the non-radial case in two
space dimension, and cases of time-periodic environment.

In (1.3), the population range of u at time t is the ball {r < s1(t)} and that for v

is the ball {r < s2(t)}. The populations are assumed zero on and outside their range
boundaries, namely

{
u(r , t) ≡ 0 for r ≥ s1(t) and t > 0,
v(r , t) ≡ 0 for r ≥ s2(t) and t > 0.

(1.4)

Since the solutions are assumed spherically symmetric, at r = 0, the following
conditions must hold:

ur (0, t) = vr (0, t) = 0 for t > 0. (1.5)

For the problem to be well-posed, equations governing the evolution of s1(t) and
s2(t), as well as associated initial conditions, should be supplied. Following Du and
Lin (2010), the following Stefan type conditions are used for s1(t) and s2(t) (see
Bunting et al. (2012) for an interpretation based on ecological assumptions):

{
s′
1(t) = −μ1ur (s1(t), t) for t > 0,
s′
2(t) = −μ2vr (s2(t), t) for t > 0,

(1.6)

where μ1 and μ2 are positive constants measuring the intention to spread into new
territories of the species u and v respectively. The spheres {r = si (t)}, i = 1, 2, are
known as free boundaries, which are part of the unknowns in the question, and the
equations in (1.6) are called the free boundary conditions.
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The initial conditions are

s1(0) = s01 , s2(0) = s02 , u(r , 0) = u0(r), v(r , 0) = v0(r) for r ∈ [0,∞), (1.7)

where

⎧⎪⎪⎨
⎪⎪⎩

s01 > 0 and s02 > 0,
u0 ∈ C2([0, s01 ]) and v0 ∈ C2([0, s02 ]), u′

0(0) = v′
0(0) = 0,

u0(r) > 0 for r ∈ [0, s01 ), u0(r) = 0 for r ≥ s01 ,
v0(r) > 0 for r ∈ [0, s02 ), v0(r) = 0 for r ≥ s02 .

(1.8)

It is known from Du andWu (2018) that the equations (1.3) through to (1.7) always
have a unique solution

(u, v, s1, s2) = (u(r , t), v(r , t), s1(t), s2(t)),

which is defined for all t > 0. Moreover, the long-time behaviour of the solution
(u, v, s1, s2) is examined theoretically in Du andWu (2018) for the weak-strong com-
petition case

0 < k < 1 < h,

namely u and v are the strong and weak competitors, respectively.
The purpose of this paper is to numerically investigate this weak-strong competition

case of (1.3)-(1.7) in several directions which are difficult to treat theoretically, and
therefore not covered by Du and Wu (2018).

Let us now describe what has been obtained in Du and Wu (2018) and what we
would like to gain through a numerical approach in this paper. We need to introduce
two key numbers s∗

μ2
and c∗

μ1
first. By Propositions 2.1 and 2.2 of Bunting et al. (2012)

(see also Theorem 6.2 in Du and Lou (2015) for a more general result), the following
problem

{
q ′′ + sq ′ + q(1 − q) = 0, q > 0 in (−∞, 0),
q(0) = 0, q(−∞) = 1

(1.9)

has a unique solution qs for every s ∈ (0, 2), and for each μ2 > 0, there exists a
unique s = s∗

μ2
∈ (0, 2) such that q ′

s(0) = −s/μ2. The ecological meaning of s∗
μ2

is
the following (see Du and Lin (2010)):

The asymptotic spreading speed of v is s∗
μ2

when its competitor u is absent.

The number c∗
μ1

is determined in Theorem 1.3 of Du et al. (2017). With
D, γ, k, h, μ1 as in (1.3)-(1.7), there exists a unique c = c∗

μ1
> 0 such that the
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following semi-wave problem

⎧⎪⎪⎨
⎪⎪⎩

cU ′ + DU ′′ + γU (1 −U − kV ) = 0, −∞ < ξ < 0,
cV ′ + V ′′ + V (1 − V − hU ) = 0, −∞ < ξ < ∞,

U (−∞) = 1, U (0) = 0, U ′(ξ) < 0 = U (−ξ), ξ < 0,
V (−∞) = 0, V (+∞) = 1, V ′(ξ) > 0, ξ ∈ R,

(1.10)

has a unique solution (Uc, Vc) satisfying c = μ1U ′
c(0). The ecological meaning of

c∗
μ1

is (see Du et al. (2017)):

If the competitor v is a well-established native species in the model 1,
then u may invade into the territory of v with speed c∗

μ1
.

Du and Wu (2018) find that the long-time dynamical behaviour of (1.3)-(1.7) are
strikingly different between the cases c∗

μ1
< s∗

μ2
and c∗

μ1
> s∗

μ2
. In the latter case, at

least one species will fail to establish, and vanish in the long-run, but when c∗
μ1

<

s∗
μ2

holds, for certain initial functions u0 and v0, the two species can both establish
and successfully spread in the long-run; moreover, the unique solution (u, v, s1, s2)
satisfies (Du and Wu 2018)

⎧⎪⎨
⎪⎩
limt→∞ s1(t)

t = c∗
μ1

, limt→∞ s2(t)
t = s∗

μ2
,

limt→∞(u(r , t), v(r , t)) = (1, 0) uniformly for r ∈ [0, (c∗
μ1

− ε)t],
limt→∞ v(r , t) = 1 uniformly for r ∈ [(c∗

μ1
+ ε)t, (s∗

μ2
− ε)t],

(1.11)

for every small ε > 0.
The results described in (1.11) indicate that the population range of the stronger

competitor u spreads at asymptotic speed c∗
μ1
, while that of the weaker competitor

v spreads with faster asymptotic speed s∗
μ2
, and the population mass of u roughly

concentrates on the expanding ball {r < c∗
μ1
t}, while that for v concentrates on the

expending spherical shall {c∗
μ1
t < r < s∗

μ2
t} which shifts to infinity as t → ∞.

Note also that, apart from a relatively thin region near the sphere {r = c∗
μ1
t}, the

populationmasses of u and v are largely segregated for all large time. The phenomenon
described by (1.11) may be interpreted by saying that the weak competitor v survives
the competition from u by outrunning it with a faster speed. For this reason, we will
refer to this phenomenon as chase-and-run coexistence.

While sufficient conditions on the initial functions u0 and v0 are given in Du and
Wu (2018) for the above chase-and-run coexistence phenomenon, these conditions
are rather restrictive, and one naturally wonders what would happen to the solution
when these conditions are not satisfied. The first aim of this paper is to numerically
investigate how the long-time dynamical behaviour of the model changes as the initial
functions are varied. For this purpose, we consider initial functions u0 and v0 which
vary continuously with some parameters, say u0 = u0(r; λ1), v0 = v0(r; λ2). We
vary the parametersλ1 andλ2 in a suitable range, and examine numerically the solution

1 Which means s2(t) ≡ ∞ and infr≥0 v(r , 0) > 0. See Du et al. (2017) for precise statement.
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of the model and demonstrate that, at least in the checked parameter ranges, the long-
time dynamics can be classified into the following four cases, namely

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) chase-and-run coexistence as described in (1.11)above,

(ii) vanishing of u with v invading successfully,

(iii) vanishing of v with u invading successfully,

(iv) vanishing of both u and v.

(1.12)

This is carried out in Sect. 2 below.
Secondly, we investigate what happens if in the model the homogeneous environ-

ment is changed to a time-periodic one, which is a natural situation since most species
are affected by daily or seasonal changes of the natural world. Our numerical analysis
indicates that the basic features of themodel are retained under this change. The details
are given in Sect. 3.

Thirdly, we numerically simulate the model when the spherical symmetry in the
model is violated. For a single species model, such a non-spherical case was theoret-
ically investigated in Du and Guo (2012), Du et al. (2014), and it was shown that the
basic features of the long-time dynamical behaviour of the model are similar to the
spherically symmetric case, and moreover, when spreading is successful, the popu-
lation range becomes more and more like an enlarging ball as time increases. Here
for the two species model, we demonstrate a similar phenomenon through numerical
experiments. This is the content of Sect. 4 (see also Sect. 2.4).

Numerical treatment of related diffusive systems with free boundary conditions has
been developed in several recent works; see, for example, Liu et al. (2020), Liu and Liu
(2018), Liu and Liu (2020), Piqueras et al. (2017). These works mainly focus on the
numerical techniques that can accurately simulate this type of free boundary problem,
while our work here focuses on the long-time dynamical behaviours of a specific
model. The numerical methods employed here are based on Liu et al. (2020), Liu
and Liu (2018). More precisely, for the 1 space dimension case and the spherically
symmetric case in 2 space dimension, we use the front tracking method, while for
the non-symmetric case in 2 space dimension, the level set method is employed. We
note that in order to observe the long time dynamical behaviour of our solutions
here, time-consuming calculations are necessary, and to make our study tractable in
a reasonable amount of CPU time, we have to modify the numerical methods in Liu
et al. (2020), Liu and Liu (2018) to use explicit, rather than implicit, time integration
(the implicit methods take much longer time for the same calculation). The details
on the numerical methods used in this paper, as well as further explanations on the
numerical experiments carried out here can be found in the Appendix of Khan et al.
(2020), which is a fuller version of the current paper.

Needless to say, the numerical observations obtained in this paper are based on a
particular way of choosing the initial functions, and should be interpreted with great
care. For example, there could be borderline cases which are not picked up by the
numerical experiments and therefore missing from the above listed cases (i)-(iv). It
is also possible (though we believe it is unlikely) that by choosing the parametrised
initial functions differently, different phenomena may occur. Nevertheless, we hope
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the numerical observations in this paper can provide helpful insights to the biological
problem as well as to future theoretical investigations.

2 Change of dynamical behaviour as the initial functions are varied

The purpose of this section is to use numerical simulations to find all possible long-time
dynamical behaviour of the model, by varying the initial functions. Since it is impossi-
ble to exhaust all possible initial functions, in practicewewill examine a parameterized
family of initial functions (u0(., λ1), v0(., λ2)) with λ1 and λ2 the parameters. As will
be seen below, we have the following observations from the numerical experiments.

Observation 1 In the case c∗
μ1

< s∗
μ2
, depending on the initial states of the two species,

there are four types of long-time behaviour of the system, as described in (1.12).

2.1 The 1D case

In this subsection, we use the front tracking method similar to that described in Liu
and Liu (2018), Liu et al. (2020) to simulate the evolution of the invasion modelled
by (1.3)–(1.7) in one space dimension (1D), and confirm Observation 1 in this case.

We first choose the parameters in the model such that 0 < k < 1 < h and
c∗
μ1

< s∗
μ2
. For (D, h, k, γ, μ1, μ2) = (2, 2, 0.5, 2, 0.1, 1), it can be estimated from

our simulations that2

c∗
μ1

≈ 0.045094, s∗
μ2

≈ 0.364366.

As for the initial functions, we take

u0 = u0(x, λ1) and v0 = v0(x, λ2)

with

u0(x, λ1) =
{
1, if x ∈ [0, λ1π

2 ]
sin(x/λ1), if x ∈ [λ1π

2 , λ1π ] (2.1)

v0(x, λ2) =
{
sin(ε), if x ∈ [0, ελ2]
sin(x/λ2), if x ∈ [ελ2, λ2π ] (2.2)

where ε = arcsin(0.1). The parameters λ1 and λ2 will be chosen from the interval
[0.1, 20]. Correspondingly,

s01 = λ1π and s02 = λ2π.

In our simulations, we firstly fix λ1 to a value from the set {0.01, 0.05, 0.10, 0.15,
0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.75, 0.85, 1, 1.5, 2, 2.5,

2 Here we have used (1.11) to estimate (c∗μ1
, s∗μ2

) by (s′1(t), s′2(t)) for large enough t , with a suitably
chosen initial function pair.
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3, 4, 5, 6, 7} and then vary the values of λ2 to see how the long-time dynamics of
the model changes. We will call this group of simulations “type A test". This test
ultimately shows that the long-time behavior of each of the four cases described in
Observation 1 above can be detected, and only these four cases occur. We remark that
near any critical value of λ2 (with a fixed λ1 in the set given above), a sequence of
nearby values of λ2 with very small spacing are used in the test.

We also run a “type B test", where the roles of λ1 and λ2 are largely reversed in the
simulations, namely, we fix λ2 to a value in the set {0.01, 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.32, 0.35, 0.40, 0.45, 0.50, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7}, and then vary λ1 to
see how the long-time dynamics changes. Again all four types of behaviour described
in Observation 1 can be detected, and only these four cases occur.

Numerical results from our type A and type B tests are summarized in Fig. 1, where
the parameter region (λ1, λ2) ∈ [0.01, 3] × [0.01, 3] is divided into 4 subregions,
with each region yielding a different long-time dynamical behavior of the model; for
example, if (λ1, λ2) lies in the yellow region, then chase-and-run coexistence happens
when the initial functions in (2.1) and (2.2) take this pair of (λ1, λ2) values. Figure 2
gives the precise set of values of (λ1, λ2) for which we have done the numerical
simulations. The complete list of values of λ1 and λ2 used in our type A test and type
B test, which are used to generate Fig. 1, and the approximate critical values where
change of behavior occurs, are given in Tables 1 and 2 in the “Appendix” of Khan
et al. (2020).

In these simulations, we set a priori a finite range [0,L] for the variable x ,
which is meshed into small intervals of size �x = L

Nx
. The time variable t is dis-

cretized accordingly with step size �t = 0.1×(�x)2

D , where D is the diffusion rate
in the model. L is chosen large enough so that the free boundaries x = s1(t) and
x = s2(t) lie in the interval [0,L] for the time range under simulation. More pre-
cisely, in the simulations for Figs. 1 and 2, the parameters in the model are set as
(D, h, k, γ, μ1, μ2) = (2, 2, 0.5, 2, 0.1, 1), time step �t = 5 × 10−6, space mesh
size �x = 0.01. The calculation for each choice of (λ1, λ2) is run until t = 120, well
after the dynamical behavior of the solution stablizes.

Let us note that once we knowwhich type of dynamical behavior occurs, the known
theoretical results provide a rather precise description of this behavior. Indeed, if case
(i) happens, we know that (1.11) holds for the solution (u(x, t), v(x, t), s1(t), s2(t)).

By Du et al. (2015a), if case (ii) happens, then there exist some constants C1 and
C2 depending on the initial data, such that

⎧⎪⎪⎨
⎪⎪⎩
limt→∞ s1(t) = C1, limt→∞

[
s2(t) − s∗

μ2
t
] = C2, limt→∞ s′

2(t) = s∗
μ2

,

limt→∞ maxx∈[0,s1(t)] u(x, t) = 0,

limt→∞
{
maxx∈[0,s2(t)]

∣∣v(x, t) − ps∗μ2 (x − s2(t))
∣∣} = 0;

123
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Fig. 1 Change of longtime dynamical behavior in the 1D case as (λ1, λ2) varies. The red dotted lines
represent the critical curves where the species change their longtime dynamical behavior as the point
(λ1, λ2) crosses them (color figure online)

Fig. 2 Points of (λ1, λ2) for which simulations are run to produce Fig. 1 are marked with stars

and if case (iii) happens, then there exist some constants C̃1 and C̃2 depending on the
initial data, such that

⎧⎪⎪⎨
⎪⎪⎩
limt→∞

[
s1(t) − s∗

μ1
t
] = C̃1, limt→∞ s′

1(t) = s∗
μ1

, limt→∞ s2(t) = C̃2,

limt→∞
{
maxx∈[0,s1(t)]

∣∣u(x, t) − qs∗μ1 (x − s1(t))
∣∣} = 0,

limt→∞ maxx∈[0,s2(t)] v(x, t) = 0,

123
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Fig. 3 Profiles of u(x, t) (blue curves) and v(x, t) (red curves) with (λ1, λ2) = (10, 10.280) at time
moments t = 0, 50, 100, 150, 200, showing clear traveling wave behaviour for large t (color figure online)

where the constant s∗
μ1

> 0 and the positive function qs∗μ1 are determined by the
following result of Bunting et al. (2012): The problem

{
Dq ′′ + sq ′ + γ q(1 − q) = 0, q > 0 in (−∞, 0),
q(0) = 0, q(−∞) = 1

(2.3)

has a unique solution qs for every s ∈ (0, 2
√
Dγ ), and for each μ1 > 0, there exists

a unique s = s∗
μ1

∈ (0, 2
√
Dγ ) such that q ′

s(0) = −s/μ1.
If case (iv) happens, then it follows fromDu and Lin (2010) that there exist positive

constants Ĉ1 and Ĉ2 depending on the initial data such that

⎧⎪⎨
⎪⎩
limt→∞ s1(t) = Ĉ1, limt→∞ s2(t) = Ĉ2,

limt→∞ maxx∈[0,s1(t)] u(x, t) = 0,

limt→∞ maxx∈[0,s2(t)] v(x, t) = 0.

A numerical sample for case (i) A sample of simulation results for case (i) (chase-
and-run) is presented in Figs. 3 and 4, where snap-shots of the profiles of u(x, t) and
v(x, t) are shown in Fig. 3 for the timemoments: t = 0, t = 50, t = 100, t = 150, and
t = 200. The curves s1(t) and s2(t) are shown in Fig. 4. In this sample, we have taken
λ1 = 10, λ2 = 10.280, and the other parameters are the same as in the simulations
for Figs. 1 and 2, except that now the calculation is run until t = 200.

A numerical sample for case (iii) The above sample is obtained with (λ1, λ2) =
(10, 10.280). If the λ2 value is changed to λ2 = 10.279, while all the other parameter
values are unchanged, the longtime behavior changes from case (i) to case (iii). Our
simulation results are presented in Figs. 5 and 6.

A numerical sample for case (ii) Figures 7 and 8 describe a situation for case
(ii), obtained from numerical simulation for λ1 = 0.60, λ2 = 0.95, while all other
parameters are the same as in the simulations for Figs. 1, 2, 3, 4, 5, 6.

A numerical sample for case (iv) Figures 9 and 10 are obtained from numerical
simulation with λ1 = 0.40, λ2 = 0.26, while all other parameters are the same as
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Fig. 4 Corresponding behaviour of s1(t) (blue curve) and s2(t) (red curve) in Fig. 3, showing eventual
linear growth in time for both functions (color figure online)

Fig. 5 Profiles of u(x, t) (blue curve) and v(x, t) (red curve) with (λ1, λ2) = (10, 10.279) at time t =
0, 50, 100, 150, 200, showing the vanishing of v and the spreading of u like a traveling wave for large time
(color figure online)

Fig. 6 Corresponding behaviour of s1(t) and s2(t) in Fig. 5, showing s2(t) converging to a finite value and
s1(t) growing linearly in time
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Fig. 7 Travelling wave profile of v(x, t) (red curves) and extinction profile of u(x, t) (blue curves) with
(λ1, λ2) = (0.60, 0.95) at time t = 0, 50, 100, 150, 200 (color figure online)

Fig. 8 Corresponding behaviour of s1(t) and s2(t) in Figure 7, showing s1(t) converging to a finite value
and s2(t) growing linearly in time (color figure online)

in the simulations for Figs. 1, 2, 3, 4, 5, 6, 7, 8, showing both u and v vanishing
eventually.

2.2 The 2D radially symmetric case

We now consider the model in 2 spatial dimensions with radial symmetry, and so we
will write r = √

x2 + y2 and denote the solution by (u, v) ≡ (u(r , t), v(r , t)).
The initial functions u0 and v0 used for our simulations are given by

u0(r , λ1) =
{
1, if r ∈ [0, λ1π

2 ],
sin(r/λ1), if r ∈ [λ1π

2 , λ1π ], (2.4)

v0(r , λ2) =
{
sin ε, if r ∈ [0, ελ2],
sin(r/λ2), if r ∈ [ελ2, λ2π ], (2.5)
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Fig. 9 Profiles of u(x, t) (blue curve) and v(x, t) (red curve) with (λ1, λ2) = (0.40, 0.26) at time t =
0, 50, 100, 150, 200, showing the vanishing of both u and v for large time

Fig. 10 Corresponding behaviour of s1(t) and s2(t) in Fig. 9

where ε = arcsin(0.1). Accordingly, we have

s1(0) = λ1π, s2(0) = λ2π.

Due to the radial symmetry of the solutions, for the simulation, we could use
either the front tracking method or the level set method as described in Liu and
Liu (2018). Here we use the front tracking method, with (D, h, k, γ, μ1, μ2) =
(2, 2, 0.5, 2, 0.1, 1), time step �t = 5 × 10−6, space mesh size �r = 0.01, and
the calculation is run until t = 120 or 200.

As in the previous subsection, we run both type A tests and type B tests, to check
whether the statements inObservation1hold.Our numerical simulations again confirm
what we expected. The details of the tested values of the parameters (λ1, λ2) from
(2.4) and (2.5) are summerized in Tables 3 and 4 in “Appendix” B of Khan et al.
(2020).

The figures parallel to those in the previous subsection arising from the simulation
here are listed below (Fig. 11, 12, 13, 14, 15, 16, 17, 18, 19, 20).
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Fig. 11 Change of longtime dynamical behavior in the 2D radial case as (λ1, λ2) varies. Model parameters
(D, h, k, γ, μ1, μ2) = (2, 2, 0.5, 2, 0.1, 1), time step �t = 5 × 10−6, space step �r = 0.01, and the
calculation is run until t = 120

Fig. 12 Points of (λ1, λ2) for which simulations are run to produce Fig. 11 are marked with stars

2.3 Comparison of the fronts in 1D and in 2Dwith radial symmetry

We would like to stress that existing theoretical results indicate that for the radially
symmetric case in two space dimensions, the theoretical descriptions for cases (i)-(iv)
in the previous subsection remain valid when x there is replaced by r = |x |, except
that in case (ii), limt→∞[s2(t) − s∗

μ2
t] = C2 should be replaced by

lim
t→∞

{
s2(t) − [

s∗
μ2
t − c∗

2 ln t]
} = C2 for some C2 ∈ R, (2.6)
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Fig. 13 Sample case (i) in 2D with radial symmetry. Profiles of u(r , t) (blue curve) and v(r , t) (red curve)
with (λ1, λ2) = (10, 10.28) at time t = 0, 50, 100, 150, 200, showing clear traveling wave behaviour for
large t (color figure online)

Fig. 14 Corresponding behaviour of s1(t) (blue curve) and s2(t) (red curve) in Fig. 13, showing linear
growth in time for both (color figure online)

Fig. 15 Sample case (iii) in 2D with radial symmetry. Profiles of u(r , t) (blue curve) and v(r , t) (red curve)
with (λ1, λ2) = (10, 10.27) at time t = 0, 50, 100, 150, 200, showing the vanishing of v and the spreading
of u like a traveling wave for large time (color figure online)
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Fig. 16 Corresponding behaviour of s1(t) (blue curve) and s2(t) (red curve) in Fig. 15, showing s2(t)
converging to a finite value and s1(t) growing linearly in time (color figure online)

Fig. 17 Sample case (ii) in 2D with radial symmetry. Profiles of u(r , t) (blue curve) and v(r , t) (red curve)
with (λ1, λ2) = (1, 1.7) at time t = 0, 50, 100, 150, 200, showing the vanishing of u and the spreading of
v like a traveling wave for large time (color figure online)

Fig. 18 Corresponding behaviour of s1(t) (blue curve) and s2(t) (red curve) in Fig. 17, showing s1(t)
converging to a finite value and s2(t) growing linearly in time (color figure online)
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Fig. 19 Sample case (iv) in 2D with radial symmetry. Profiles of u(r , t) (blue curve) and v(r , t) (red curve)
with (λ1, λ2) = (0.70, 0.55) at time t = 0, 1, 2, 5, 200, showing the vanishing of both u and v for large
time (color figure online)

Fig. 20 Corresponding behaviour of s1(t) (blue curve) and s2(t) (red curve) in Fig. 19, showing both s1(t)
and s2(t) converging to a finite value (color figure online)

and in case (iii), limt→∞[s1(t) − s∗
μ1
t] = C̃1 should be replaced by

lim
t→∞

{
s1(t) − [

s∗
μ1
t − c∗

1 ln t]
} = C̃1 for some C̃1 ∈ R, (2.7)

where c∗
1 > 0 and c∗

2 > 0 are positive constants independent of the initial data; see
Du et al. (2015b).

These differences between the 1D and 2D cases are known as the “logarithmic
shift" of the spreading for single species models. For two species models, like the one
being considered in this paper, when both species spread successfully, whether there
are similar logarithmic shifts for the spreading fronts is unknown so far. Note that for
cases (ii) and (iii) here, it can be shown that the results of single species models can be
applied, since for large time, the vanishing species can be neglected when examining
the spreading profile of the winning species, that is the reason for the validity of (2.6)
and (2.7).

Take the model parameters (D, h, k, γ, μ1, μ2) = (2, 2, 0.5, 2, 0.1, 1), and λ1 =
10, λ2 = 10.28. Our simulations show that with these choices of parameters, for
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Fig. 21 Comparison of s1(t) and s
′
1(t) in 1D and in 2D with radial symmetry

Fig. 22 Comparison of s2(t) and s
′
2(t) in 1D and in 2D with radial symmetry

both the 1D case and the 2D radially symmetric case, the chase-and-run coexistence
dynamics (namely case (i)) happens.While (1.11) holds regardless of the space dimen-
sion, no further theoretical results are available regarding possible logarithmic shifts
of the free boundaries as in cases (ii) and (iii) mentioned above. In Figs. 21, 22, the
fronts of both species in 1D, and in 2D with radial symmetry are shown. In partic-
ular, at t = 200, the front s1(t) ≈ 40.7909 with spreading speed s′

1(t) ≈ 0.045094
in the 1D case, and s1(t) ≈ 40.3574 with spreading speed s′

1(t) ≈ 0.043409 in the
2D radial case. On the other hand, for the front function s2(t), our simulations give
s2(200) ≈ 92.7642 and s′

2(200) ≈ 0.364366 in the 1D case, and s2(200) ≈ 93.7160
with s′

2(200) ≈ 0.360647 in the 2D radial case. While these simulation results match
those predicted by the theoretical result indicated in (1.11), we are not able to form
any conclusion about the logarithmic shift based on them.
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2.4 2Dwith triangular initial ranges

In two space dimensions without radial symmetry, the model should be formulated in
the following form:

{
ut = D(uxx + uyy) + γ u(1 − u − kv) for (x, y) ∈ 	1(t), t > 0,
vt = vxx + vyy + v(1 − v − hu) for (x, y) ∈ 	2(t), t > 0,

(2.8)

with the evolution of the free boundaries 
i (t) := ∂	i (t), i = 1, 2, determined by

{
u(x, y, t) = 0, (x, y) ∈ 
1(t), t > 0,
v(x, y, t) = 0, (x, y) ∈ 
2(t), t > 0,

(2.9)

and {
w1(x, y, t) = −μ1∇u(x, y, t), t > 0, (x, y) ∈ 
1(t),
w2(x, y, t) = −μ2∇v(x, y, t), t > 0, (x, y) ∈ 
2(t),

(2.10)

wherewi(x, y, t) is the velocity vector of the boundary point (x, y) ∈ 
i (t), i = 1, 2;
and

∇u(x, y, t) := (ux (x, y, t), uy(x, y, t)), ∇v(x, y, t) := (vx (x, y, t), vy(x, y, t)).

The initial conditions are

{
u(x, y, 0) = u0(x, y), (x, y) ∈ 	1(0),
v(x, y, 0) = v0(x, y), (x, y) ∈ 	2(0).

(2.11)

We would like to point out that the above formulation of the problem is a natural
extension of the one species model in Du and Guo (2012), Du et al. (2014), but for the
competition system with free boundaries here, there is no theoretical result available
so far in this general setting. Our numerical analysis here is the first treatment of the
model with such generality.

In this subsection, we consider the case that the initial population ranges	1(0) and
	2(0) are triangles centred at the origin (0, 0), with 	i (0) the region enclosed by the
straight lines

y = −λi
√
3, y = √

3 x + 2λi
√
3, y = −√

3 x + 2λi
√
3, i = 1, 2.

The initial populations u0(x, y, λ1) and v0(x, y, λ2) are given by

u0(x, y, λ1) = φ0(x, y, λ1), v0(x, y, λ2) = φ0(x, y, λ2),

with

φ0(x, y, λi ) =
( y

λi
+ √

3
)[(√

3 − y

2λi

)2 − 3x2

4λ2i

]
, (x, y) ∈ 	i (0), i = 1, 2.
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Fig. 23 Change of longtime dynamical behavior in 2D with triangular initial ranges as (λ1, λ2) varies

For this case, the level set method developed in Liu and Liu (2018) is applied to
numerically simulate themodel with (D, h, k, γ, μ1, μ2) = (2, 2, 0.5, 2, 0.1, 1), time
step �t = 3.125 × 10−3, space mesh size �x = �y = 0.25 and simulations are run
till t = 120. As in the previous subsections, to check the statements in Observation 1,
we run typeA and typeB tests by varyingλ1 andλ2 in the initial functions, chosen from
a suitable range. Our simulation results again confirm the findings in Observation 1.
The details of the chosen values of λ1 and λ2 are contained in Tables 5 and 6 in the
Appendix of Khan et al. (2020).

Inwhat follows, similar figures to that in the previous subsection are used to illustrate
our numerical results.

These figures clearly exhibit the chase-and-run coexistence phenomenon (case (i)),
as in the 1D and 2D radial cases examined in the previous subsections. Figures 24,
25, 26, 27 further show that both the free boundary and the population profile become
nearly radially symmetric as time increases.

In the figures below, a sample of case (iii) is shownwith (λ1, λ2) = (2.0, 1.9), and a
sample of case (ii) is shown for (λ1, λ2) = (0.9, 1.0), while for (λ1, λ2) = (0.7, 0.5),
we obtain a sample of case (iv).

Remark In order to exhibit the free boundary behavior more clearly without costing
too much CPU time, in the simulations to produce the samples for cases (i)-(iv) here,
we have used (μ1, μ2) = (0.6, 2) instead of (0.1, 1); this change causes the free
boundaries to move faster and therefore reveals the longtime behavior more clearly.

3 Time-Periodic environment

In this section, we use numerical calculation to check whether the chase-and-run
dynamics (case (i)) persists under time-periodic perturbations of the environment, and
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Fig. 24 Sample of case (i) in 2Dwith triangular initial ranges. Profiles of u and v with (λ1, λ2) = (2.0, 2.5)
at t = 0, 48, 96, 120
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Fig. 25 Corresponding snapshots of the moving boundaries 
1(t) and 
2(t) in Fig. 24

Fig. 26 The curves sxi (t) := 
i (t) ∩ {y = 0}, syi (t) := 
i (t) ∩ {x = 0}, i = 1, 2 of the corresponding
moving boundaries in Fig. 25 exhibit linear growth in time

Fig. 27 Profile of u(x, 0, t), u(0, y, t), v(x, 0, t), v(0, y, t) at t = 0, 48, 96, 120 obtained from the popu-
lation distribution in Fig. 24. They propagate like traveling waves in both the x and y directions

123



   23 Page 24 of 43 K. Khan et al.

Fig. 28 Sample of case (iii) in 2Dwith triangular initial ranges. Profiles of u and vwith (λ1, λ2) = (2.0, 1.9)
at t = 0, 48, 96, 120, with that of u becoming circular as time increases
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Fig. 29 Corresponding snapshots of the moving boundaries 
1(t) and 
2(t) in Fig. 28. Note that the
movement of 
2(t) after t = 48 is so small that it cannot be observed here

Fig. 30 Profiles of u(x, 0, t), u(0, y, t), v(x, 0, t), v(0, y, t) at t = 0, 48, 96, 120 obtained from the corre-
sponding population distribution in Fig. 28, where u propagates like a traveling wave in both the x and y
directions

Fig. 31 The curves sxi (t) := 
i (t) ∩ {y = 0}, syi (t) := 
i (t) ∩ {x = 0} (i = 1, 2) obtained from

the moving boundaries in Fig. 29, where sx1 (t) and sy1 (t) grow linearly, while sx2 (t) and sy2 (t) approach a
constant as t increases
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Fig. 32 Sample case (ii) in 2D with triangular initial ranges. Profiles of u and v with (λ1, λ2) = (0.9, 1.0)
at t = 0, 48, 96, 120, with that of v becoming circular as time increases
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Fig. 33 Snapshots of corresponding moving boundaries 
1(t) and 
2(t) in Fig. 32

Fig. 34 Profiles of u(x, 0, t), u(0, y, t), v(x, 0, t), v(0, y, t) at t = 0, 48, 96, 120 obtained from the pop-
ulation distribution in Fig. 32, where v propagates like a traveling wave in both the x and y directions

Fig. 35 Curves sxi (t) := 
i (t) ∩ {y = 0}, syi (t) := 
i (t) ∩ {x = 0} (i = 1, 2) obtained from the moving

boundaries in Fig. 33, where sx2 (t) and sy2 (t) grow linearly, while sx1 (t) and sy1 (t) approach a constant as t
increases
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Fig. 36 Sample of case (iv) in 2Dwith triangular initial ranges. Profiles of u and v with (λ1, λ2) = (0.7, 0.5)
at t = 0, 48, 96, 120
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Fig. 37 Snapshots of corresponding moving boundaries 
1(t) and 
2(t) in Fig. 36. (The movements of the
boundaries are so small that they cannot be observed here after t = 48)

Fig. 38 Profiles of u(x, 0, t), u(0, y, t), v(x, 0, t), v((0, y, t) at t = 0, 48, 96, 120, obtained from the pop-
ulation distribution in Fig. 36

Fig. 39 The curves sxi (t) := 
i (t) ∩ {y = 0}, syi (t) := 
i (t) ∩ {x = 0} (i = 1, 2) obtained from the
moving boundaries in Fig. 37, converging to constants as t increases
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if so, how the spreading speeds of the species are affected. We have the following
observations from the numerical experiments here.

Observation 2 The chase-and-run dynamics demonstrated in Sect. 2 are retained
under time-periodic perturbation of the environment, and the spreading speeds of
the species are not altered much by this perturbation.

3.1 Time-periodic perturbation in 1D

For each of the situations examined in Sect. 2 for the 1D case, we replace the growth
functions in the model by

γ u(1 + ε1(t) − u − kv) in the u equation, and v(1 + ε2(t) − v − hu) in the v equation,

where

εi (t) = σi sin

(
2π t

T

)
, i = 1, 2,

with T , σ1, σ2 positive constants. Clearly εi (t) are periodic functions of time t with
period T . Moreover,

∫ T

0
εi (t)dt = 0, i = 1, 2.

In other words, the intrinsic growth rates of u and v in the model are changed from
γ and 1 to γ + γ ε1(t) and 1 + ε2(t), respectively, to reflect the assumption that
the homogeneous environment is now changed to a time-periodic environment with
period T , but with the average effect to the species the same as in the homogeneous
environment. The parameters σ1 and σ2 measure the magnitude of the oscillation of
the environment felt by u and v, respectively.

Figure 40 shows several snapshots of u(x, t) and v(x, t) between times t = 120
and 121, where the parameters values are taken as follows: (D, h, k, γ, μ1, μ2) =
(2, 2, 0.5, 2, 0.1, 1), T = 1, σ1 = σ2 = 1, λ1 = 10, λ2 = 10.5, time step �t =
5 × 10−6, grid size �x = 0.01, and the initial functions (u0, v0) are the same as in
(2.1) and (2.2).

Correspondingly,

s01 = λ1π and s02 = λ2π.

Figure 41 shows the behaviour of the corresponding front functions s1(t) and s2(t).
These figures show that the species exhibit the chase-and-run dynamics, and the

snapshots in Fig. 40 further indicate that, during the spreading process, u and v oscil-
late synchronously with the time-periodic environment. Figure 41 indicates that the
spreading fronts advance linearly in time albeit with small periodic variations of period
1.
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Fig. 40 Population distribution in 1D with time-periodic environment of period T = 1 and magnitude of
the oscillations σ1 = σ2 = 1. Population curve of u at time t = 120 (solid blue curve) coincides with
population curve of u at time t = 121 (magenta dotted curve), and population curve of v at time t = 120
(solid green curve) coincides with population curve of v at time t = 121 (red dotted curve), indicating
time-periodic variation of the population induced by the time-periodic environment during the spreading
process

Fig. 41 Spreading fronts of the species in 1D time-periodic case with period T = 1, magnitude of the
oscillations σ1 = σ2 = 1 up to time t = 120

To see how the time-periodic perturbation affects the spreading speed, we have
checked the influence of the magnitude of the oscillations numerically for a series of
values of σ1, σ2 ∈ (0, 1]. The simulation results are summarized in Tables 1, 2, 3,
where each simulation is run until t = 120 with time step �t = 5× 10−6, space step
�x = 0.01, and all the other parameter values the same as in Figs. 40 and 41. For the
time-periodic cases with T = 1, the average speed

s′
i (t) :=

∫ t+1

t
s′
i (s)ds, i = 1, 2

is used. The simulation results suggest that these time-periodic perturbations do not
change much of the spreading speeds of the two populations.
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Table 1 σ1 = σ2

Table 2 σ1 > σ2

Table 3 σ1 < σ2

Some samples of the speed functions s′
1(t) and s

′
2(t) for the time-periodic case are

shown in Figures 42, 43 and 44, where the magnitude of the environmental oscillation
felt by the species is clearly reflected by the magnitude of the oscillation of the speed
function of the corresponding species, though the average speed is not affected much,
as already mentioned above.

3.2 Time-periodic perturbation in 2D

For the 2D radially symmetric case and the 2D case with triangular initial ranges, we
have run parallel numerical simulations to that in the previous subsection, and similar
findings are observed. The details are omitted.
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Fig. 42 Speed of the spreading front of the species u (left) and v (right) in homogeneous and time-periodic
environment with period T = 1 and magnitude of the oscillations σ1 = 0.1, σ2 = 1

Fig. 43 Speed of the spreading front of the species u (left) and v (right) in homogeneous and time-periodic
environment with period T = 1 and magnitude of the oscillations σ1 = 1, σ2 = 0.1

Fig. 44 Speed of the spreading front of the species u (left) and v (right) in homogeneous and time-periodic
environment with period T = 1 and magnitude of the oscillations σ1 = 1, σ2 = 1

4 Asymptotic shape of the population ranges in 2D

Our simulation results in Sect. 2.4 with triangular initial population ranges reveal the
following findings.

Observation 3 If the species u (resp. v) invades successfully, then the shape of its
invading fronts, namely 
1(t) (resp. 
2(t)) becomes more and more circular as time
increases.

In the case of a single species model, this phenomenon has been rigorously estab-
lished in Du et al. (2014). For models with two species, this is unknown so far.

To obtain further support to the findings in Observation 3, we now look at the
case that the initial population ranges are rectangles in R2, and run parallel numerical
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experiments to that in Sect. 2.4. More precisely, we take 	i (0) the rectangle enclosed
by the straight lines x = ± 3

2λi , y = ±λi (i = 1, 2), and the initial functions are
given by

u0(x, y, λ1) = ψ0(x, y, λ1), v0(x, y, λ2) = ψ0(x, y, λ2),

with

ψ0(x, y, λi ) :=
(
3

2
− x

λi

)(
3

2
+ x

λi

) (
1 − y

λi

)(
1 + y

λi

)
, (x, y) ∈ 	i (0).

Figures 45, 46, 47, 48 display a sample case of chase-and-run dynamics, where
the population ranges (as well as the spatial population distributions) are becoming
more and more circular as time increases. This simulation is done with parameters
(D, h, k, γ, μ1, μ2) = (2, 2, 0.5, 2, 0.6, 2), time step �t = 3.125 × 10−3, grid size
�x = �y = 0.25, and initial data determined by taking λ1 = 2.2 and λ2 = 2.3. The
simulation is run until t = 120.

Figures 49, 50, 51, 52 show a sample case that v vanishes and u invades successfully,
and the population range of u as well as the spatial distribution of u become more
and more circular as time increases. Note, however, that the population range of the
vanishing species v does not become circular as time increases.Here the parameters are
the same as in the Figures immediately above except that the initial data are obtained
with (λ1, λ2) = (2.1, 2.0).

Figures 53, 54, 55, 56 describe a sample case that u vanishes and v invades success-
fully, obtained by taking (λ1, λ2) = (1.9, 2.0), with the other parameters unchanged.

It is now clear that these numerical results support the findings in Observation 3 in
the same way as those in Sect. 2.4 where triangular initial ranges were used.

5 Further discussions

In this paper, we have tried to find all the possible scenarios when two invasive species
are competing and invading the environment at the same time, based on a suitablemath-
ematical model. More precisely, we have numerically examined the invasive behavior
of two competing species via a Lotka-Volterra competition model with diffusion and
free boundaries. The parameters in the reaction terms of the model are chosen in such
a way that when spatial variation in the model is ignored, one species will survive
the competition (and thus named the strong species) and the other will vanish (named
the weak species). In 1D and in 2D with radial symmetry, some theoretical results on
this diffusive model with free boundary already exist (see Du and Wu (2018)), but
a full picture of the model is still lacking. Here through numerical experiments with
parametrized initial functions, a classification of four types of longtime dynamical
behavior emerges, namely (i) chase-and-run coexistence, (ii) vanishing of the strong
species with theweak species invading successfully, (iii) vanishing of theweak species
with the strong species invading successfully, (iv) vanishing of both species.
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Fig. 45 Profiles of u and v with (λ1, λ2) = (2.2, 2.3) at t = 0, 48, 96, 120, showing chase-and-run
dynamics, with the profiles of u and v becoming circular as time increases
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Fig. 46 Corresponding behaviour of 
1(t) and 
2(t) in Fig. 45 at time t = 0, 48, 96, 120; their shapes
become circular as time increases

Fig. 47 Profiles of u(x, 0, t), u(0, y, t), v(x, 0, t), v(0, y, t) at t = 0, 48, 96, 120, obtained from the pop-
ulation distribution in Fig. 45. They propagate like traveling waves in both the x and y directions

Fig. 48 The curves sxi (t) := 
i (t) ∩ {y = 0}, syi (t) := 
i (t) ∩ {x = 0} (i = 1, 2) obtained from the
corresponding moving boundaries in Fig. 46, showing linear growth in time
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Fig. 49 Profiles of u and v with (λ1, λ2) = (2.1, 2.0) at time t = 0, 48, 96, 120, exhibiting vanishing of v

with u invading successfully. The profile of u becomes circular as time increases
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Fig. 50 Corresponding behaviour of 
1(t) and 
2(t) in Fig. 49 at time t = 0, 48, 96, 120. 
1(t) becomes
circular as time increases, while 
2(t) barely moves after t = 48

Fig. 51 Profiles of u(x, 0, t), u(0, y, t), v(x, 0, t), v(0, y, t) at t = 0, 48, 96, 120, obtained from the cor-
responding population distribution in Fig. 49, with u propagating like a traveling wave in both the x and y
directions

Fig. 52 The curves sxi (t) := 
i (t) ∩ {y = 0}, syi (t) := 
i (t) ∩ {x = 0} (i = 1, 2) obtained from the

corresponding moving boundaries in Fig. 50. sx1 (t) and sy1 (t) grow linearly, while sx2 (t) and sy2 (t) approach
a constant as t increases
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Fig. 53 Profile of u and v with (λ1, λ2) = (1.9, 2.0) at time t = 0, 48, 96, 120, showing u vanishing and
v invading successfully. The profile of v becomes circular as time increases
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Fig. 54 Corresponding behaviour of 
1(t) and 
2(t) in Fig. 53 at time t = 0, 48, 96, 120. 
2(t) becomes
circular as time increases, and 
1(t) barely moves from t = 48

Fig. 55 Profiles of u(x, 0, t), u((0, y, t), v(x, 0, t), v((0, y, t) at t = 0, 48, 96, 120, obtained from the
corresponding population distribution in Fig. 53, where v propagates like a traveling wave in both the x
and y directions

Fig. 56 The curves sxi (t) := 
i (t) ∩ {y = 0}, syi (t) := 
i (t) ∩ {x = 0} (i = 1, 2) obtained from the

corresponding moving boundaries in Fig. 54, where sx2 (t) and sy2 (t) grow linearly, while sx1 (t) and sy1 (t)
approach a constant as t increases

123



Invasive behaviour under competition via a free boundary… Page 41 of 43    23 

This observation should be taken with care since there could be transition behavior
which occur when the parameters (λ1, λ2) in the initial functions fall into some zero
measure set of R2 (likely some curves, e.g., near the dotted lines in Fig. 11), which is
difficult to observe through this kind of numerical experiments. Therefore it is likely
that some of the transition behaviors are missing from this classification. Fortunately
these possible transition behaviors hardly appear in the real world, though it is often
of intriguing mathematical interest to determine them rigorously. Another limitation
associated with the observation is that only some special types of initial functions are
used in our numerical simulation, although we believe the findings in the observation
are independent of the choice of the type of initial functions.

We would like to stress that for the 2D case without radial symmetry, no theoretical
results are available so far for this model, though that is the most natural case for the
model. We believe the classification of the longtime dynamical behaviors observed
above for the 1D and 2D cases with radial symmetry should persist, at least when
the initial population ranges are not in very strange geometrical shapes, which is
supported by our numerical experiments in this paper. Moreover, for simpler single
species models, theoretical results in Du et al. (2014) indicates that even though the
initial population range may have an arbitrary shape, when spreading is successful,
as time increases, the population range becomes more and more spherical. For two
speciesmodels like the one under investigation here, no such theoretical result is known
yet due to extra technical difficulties. Our numerical experiments with triangular and
rectangular initial ranges suggest that such a property is retained by the two species
competition model here.

The real environment in which invasive species compete and invade is never homo-
geneous, yet theoretical analysis of themodel in heterogeneous environments becomes
extremely difficult. Numerical analysis usually has a big advantage for such a situation,
as the numerical methods which work effectively in the homogeneous case usually
extend easily to the heterogeneous case. This is indeed the situation here. In view
of daily and seasonal variations of the environment in the real world, time-periodic
environment is a very natural and important case for consideration in mathemat-
ical modelling. For our model here, the competitive intensities and variations of
reproductive activities of the species are naturally affected by seasonally fluctuating
environment. We are particularly interested in knowing how these periodic fluctua-
tions affect the spreading of the species. Our numerical analysis indicates that the
basic features of the model are retained under such time-periodic perturbation of the
environment, with the average spreading speed almost the same as in the case of
homogeneous environment.

We hope the numerical observations here not only provide additional biologi-
cal/ecological information which is lacking from existing theoretical work on the
model, but also provide useful insights for further theoretical investigation. Moreover,
we hope the numerical analysis here may inspire applications of some refined versions
of the model tailored to concrete real world biological/ecological invasion problems.
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