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Abstract
We develop a universally applicable embedded boundary finite difference method, which
results in a symmetric positive definite linear system and does not suffer from small cell
stiffness. Our discretization is efficient for the wave, heat and Poisson equation with Dirichlet
boundary conditions.When the system needs to be inverted we can use the conjugate gradient
method, accelerated by algebraic multigrid techniques. A series of numerical tests for the
wave, heat and Poisson equation and applications to shape optimization problems verify
the accuracy, stability, and efficiency of our method. Our fast computational techniques
can be extended to moving boundary problems (e.g. Stefan problem), to the Navier–Stokes
equations, and to the Grad-Shafranov equations for which problems are posed on domains
with complex geometry and fast simulations are of great interest.

Keywords Algebraic multigrid · Embedded boundary method · Line-by-line interpolation ·
Radial basis function interpolation

1 Introduction

Fast and accurate simulation of problems arising in engineering and the sciences is of great
importance. Often such problems are posed on domains with complex geometry and the
numericalmethods used in the simulationsmust account for this. There are numerousmethods
that are capable of handling geometry, among them are the finite element method [11] and
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other methods using unstructured grids, overset grid methods [9, 37, 39] and embedded
boundary methods.

In element based methods a volumetric grid must be generated and in both two and
three dimensions this can be a time consuming task, especially if the grids are to be of high
quality. On the other hand there are well developed open source unstructuredmesh generators
available. In methods that use the overset grid (also known as composite grid, or overlapping
grid) framework the grids are overset and a Cartesian background grid is coupled through
interpolation to local boundary fitted narrow grids near the geometry. The locality of the
boundary fitted grids makes the grid generation easier and the quality of the grids is typically
very high. The hole-cutting, the process where the interpolation operators between grids are
constructed, can be done efficiently [9] and in parallel but there are relatively few software
packages available.

In embedded boundary (EB) methods, which is the topic of this paper, the geometry is
represented by curves in two dimensions and surfaces in three dimensions. These curves or
surfaces are, as the name suggests, embedded in a uniform Cartesian grid that covers the
computational domain. In an embedded boundary method there is no need to generate a
grid and the geometry is instead incorporated through modified stencils near the boundary
that explicitly incorporate boundary conditions. It is straightforward to write an EB mesh
generator for the simple geometries we consider in this work. However, while the CAD
description of a geometry can be used directly in an EB mesh generator there are, to our
knowledge, no such freely availableEBmeshgenerators. This is a drawback forEB, compared
to methods using unstructured meshes. In applications such as uncertainty quantification and
model order reduction for problems with geometric parameters or parameters determining
geometry [19], using a fixed mesh for different geometries to avoid interpolation between
solutions associated with different meshes is highly desired and the EBmethod then becomes
an attractive choice.

The purpose of this work is to introduce a universal embedded boundary method that
can be used to efficiently solve the wave, heat or Poisson equation with Dirichlet boundary
conditions. This is achieved by designing a method that:

• is symmetric and positive definite, so that the conjugate gradient (CG) method can be
used,

• is diagonally dominant and with eigenvalues and eigenvectors that closely resemble
those of the periodic problem, so that the conjugate gradient method can be accelerated
by algebraic multigrid (AMG) techniques,

• and, does not suffer from small cell stiffness so that the wave equation can be marched
in time by an explicit method.

The basic ingredient to obtain a symmetric embedded boundary discretization is to use
an approximation for the boundary condition that only modifies the diagonal element in the
matrix approximating the second derivative. Themost straightforward approach is to approx-
imate the second derivative dimension-by-dimension and use linear extrapolation based on
the boundary condition and the numerical solution at the interior point to assign the value of
the numerical solution at an outside ghost-point. In one dimension this modifies the diagonal
element from−2 to−(1/θ +1)where θ ∈ (0, 1] depends on how the boundary cuts the grid.
This does not change the symmetry of the matrix and it also does not change its definiteness.
It does however change the spectrum of the matrix, introducing an eigenvalue that scale as
1/θ . If used directly for the wave equation this approach will thus suffer from small cell
stiffness, forcing the stable time-step to be excessively small. This can be mitigated by the
local time-stepping proposed by Kreiss, Petersson and Yström in [21] resulting in a provably
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stable and efficient embedded boundary method. The same approach was also introduced by
Gibou et al. [16] for the Poisson equation and the heat equation with implicit time-stepping.
Then, as the time-stepping is already implicit the small cell does not reduce the time-step,
however the very large eigenvalues that result from the small cells can result in matrices with
large condition numbers and care has to be taken when choosing an iterative solver.

Here we expand on the ideas in [16, 21] but just as in our earlier work [1] we enforce the
Dirichlet boundary conditions by interpolating to interior boundary points rather than extrapo-
late to exterior ghost-points. This subtle yet crucial difference improves previous second-order
accurate approaches by removing the small-cell stiffness problem.Moreover, placing bound-
ary points inside the computational domain allows the solution to be “single-valued” for
slender geometries, leading to significant algorithmic simplifications. For geometry that is
convex it is still possible to use a line-by-line linear interpolation to enforce boundary con-
ditions, but when the geometry is concave this procedure can break down. For such cases
we introduce a combined polynomial and radial basis function interpolation that prevents
breakdown. We also propose a simple criterion that can be used to test if the system matrix
is SPD.

Embedded boundary methods have been used to successfully solve a variety of problems
from elasticity [41] to incompressible [34] and compressible flows [32]. Here we do not aim
to provide a complete literature survey but rather to mention contributions relevant to the
method we introduce. As mentioned above [16] develops a symmetric second order method
by imposing the boundary condition through linear extrapolation. This method is analyzed
and expanded to quadratic boundary treatment in [18]. To obtain second order accuracy in
both the solution and its gradient, [31] proposes a non-symmetric discretization based on a
quadratic extrapolation. Adaptive mesh refinement (AMR) techniques for the method in [31]
were considered in [6, 7]. Finite volume solvers with embedded boundaries using bilinear
interpolation were considered in [17, 36]. Higher order accurate methods for the Poisson
and the heat equation can be found in [10, 15]. For wave equations the early works by
Kreiss, Petersson and Yström [20–22] provided analysis of second order accurate methods
with external ghost-points and Dirichlet, Neumann and interface conditions. Higher order
accurate methods for the wave equation include [1, 5, 23, 26–29, 38, 40].

The rest of the paper is organized as follows. In Sect. 2, we first present the overall algo-
rithm. Then, we show the details of how interior boundary points are located, the formulation
of the line-by-line and radial basis function (RBF)-based interpolation as well as the sym-
metric positive definite (SPD) checking criteria. In Sect. 3, the performance of the proposed
method is demonstrated through a series of numerical experiments. In Sect. 4, we summarize
and conclude.

2 Universal Embedded Boundary Discretization of the Laplacian

Our goal is to design an embedded boundary finite difference method, which results in a
symmetric positive definite linear system and does not suffer from small cell stiffness. Our
discretization can thus be efficient for solving wave, heat and Poisson equation. We now
describe the different components of our method one at a time but note that the entire method
is summarized in Algorithm 2.

To demonstrate the discretization of the Laplacian operator, consider Poisson’s equation
in an irregular two-dimensional domain (x, y) ∈ �:

∇ · (β(x, y)∇u) = f (x, y), (x, y) ∈ �, (1)
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Fig. 1 An illustration of an
interior problem with the
boundary consisting of four
disconnected curves

closed by Dirichlet boundary conditions

u(x, y) = u(l)
D (x, y), (x, y) ∈ �l , l = 1, . . . , ntot. (2)

The boundary of the domain � is a collection of ntot smooth curves �l . A possible set-up for
an interior problem is shown in Fig. 1, where one curve encloses the other ntot − 1 curves.

Without loss of generality, we assume that all the boundary interfaces describing the
geometry � are contained inside the uniform Cartesian grid (see Fig. 2)

(xi , y j ) = (xL + (i − 1)h, yL + ( j − 1)h), i = 1, . . . , Nx , j = 1, . . . , Ny,

discretizing the rectangular domain [xL , xR] × [yL , yR] where xL and yL are given and
xNx = xR and yNy = yR are determined so that they align with the grid.

To this end we will approximate the Laplacian operator by the central difference scheme:

∇ · (β(xi , y j )∇u(xi , y j )) ≈
βi+ 1

2 , j ui+1, j −
(
βi+ 1

2 , j + βi− 1
2 , j

)
ui, j + βi− 1

2 , j ui−1, j

h2

+
βi, j+ 1

2
ui, j+1 −

(
βi, j+ 1

2
+ βi, j− 1

2

)
ui, j + βi, j− 1

2
ui, j−1

h2
.

(3)

As mentioned in the introduction, a novelty of our method is to enforce boundary condi-
tions through interpolation to interior boundary points. This avoids small cell stiffness. To
identify interior boundary points, we first set up a mask grid function mi, j defined to be one
inside the geometry and zero outside. That is:

mi, j =
{
1, (xi , y j ) ∈ �,

0, otherwise.

For example, if the boundary of � is determined by the signed level-set function ψ(x, y)=0,
then the value of the mask mi, j follows by the sign of ψ(xi , y j ). An example of a mask grid
function is shown in Fig. 2.

We denote grid points inside � but adjacent to the boundary as boundary points and we
denote the remaining interior grid points as computational points. Precisely we define:
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Fig. 2 Embedded boundaries of an interior problem in a rectangular mesh. a Discretization of the geometry
without the mask shown. bDiscretization of the geometry with the mask shown, grid points with a filled circle
have mi j = 1, grid points without a filled circle have mi j = 0

• A boundary point (xi , y j ) satisfies:

(1) mi, j = 1,
(2) mi+1, j + mi−1, j + mi, j+1 + mi, j−1 < 4.

In other words, (xi , y j ) is inside �, but at least one of its nearest neighbors is outside.
• A computational point (xi , y j ) satisfies:

(1) mi, j = 1,
(2) mi+1, j + mi−1, j + mi, j+1 + mi, j−1 = 4.

In other words, (xi , y j ) and all its nearest neighbors are all inside �.

2.1 Imposing the Boundary Condition at Boundary Points

We now describe how we use interpolation together with the boundary conditions to assign
values to the solution at interior boundary points. We use two strategies, line-by-line inter-
polation and radial basis interpolation. We first describe the line-by-line approach.

2.1.1 Line-by-Line Interpolation

We describe the line-by-line approach for a case such as the one depicted in the left image
of Fig. 3.

Let (xi , y j ) be a computational point and (xBP, yBP) = (xi−1, y j ) be a boundary point
associated with the boundary �. If the point (xi−2, y j ) is outside �, we introduce a local
one-dimensional coordinate system ξ along the grid line in x passing through (xBP, yBP).
We denote the intersection of the horizontal line y = y j and the boundary � by ξ� , and the
boundary value at ξ� by u� . The ξ� satisfies the scalar equation ψ(ξ�, y j ) = 0 and can be
found by a root-finding algorithm such as the secant method.
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Fig. 3 Enforcing Dirichlet boundary conditions by a line by line approach using interior boundary points (left)
or exterior ghost points (right)

Let u� be the value of the boundary condition at (ξ�, y j ). We introduce an interpolating
polynomial

IPu(ξ) = u�g�(ξ) + u1g1(ξ), (4)

where g� and g1 are the Lagrange polynomials

g�(ξ) = ξ − ξ1

ξ� − ξ1
, g1(ξ) = ξ − ξ�

ξ1 − ξ�

. (5)

Then, the value of the solution at the boundary point uBP can be approximated to second
order accuracy by evaluating the interpolant

uBP = IPu(ξBP) = u�g�(ξBP) + u1g1(ξBP) = u�

ξBP − ξ1

ξ� − ξ1
− u1

ξBP − ξ�

ξ� − ξ1
. (6)

The placement of the boundary point inside the boundary is the subtle yet important
distinction from previous methods like those in [16, 20–22]. In previous work, the point is
placed outside (and is usually referred to as a ghost point), see the right image of Fig. 3. Then
the linear interpolant will contain a factor

ξGP − ξ1

ξ� − ξ1

which can be arbitrarily large when ξ� is close to ξ1. This causes small-cell stiffness or
numerical overflow in the assembly process of the system of equations.

For the Poisson equation the boundary interface can be moved to the interior points if
ξGP−ξ1
ξ�−ξ1

< threshold ≈ O(h), [16], however, this will introduce an eigenvalue that scale as

O( 1h ). Such a large eigenvalue will lead to a very restrictive time step for the wave equation.
In contrast, for the approach suggested above, ξ� ≤ ξBP < ξ1 = ξBP + h, and thus

|g�(ξBP)| =
∣∣∣∣
ξBP − ξ1

ξ� − ξ1

∣∣∣∣ ≤ 1

and |g1(ξBP)| =
∣∣∣∣
ξBP − ξ�

ξ� − ξ1

∣∣∣∣ ≤ 1.
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Table 1 Comparison between the Kreiss/Gibou and our approach to determine values near the boundary and
the finite difference approximation to the second derivative in the first available interior point

γ 10 (−5) 10 (−4) 10 (−3) 10 (−2) 10 (−1) 0.9

uGP [Kreiss/Gibou] 7.18 (−1) 7.18 (−1) 7.17 (−1) 7.06 (−1) 6.03 (−1) 3.92 (−2)

uBP [Our method] 3.68 (−6) 3.68 (−5) 3.68 (−4) 3.66 (−3) 3.45 (−2) 1.91 (−1)

D+D−u1 [Kreiss/Gibou] 6.32 (−1) 6.32 (−1) 6.31 (−1) 6.21 (−1) 5.25 (−1) 4.20 (−3)

D+D−u2 [Our method] 3.17 (−2) 3.17 (−2) 3.20 (−2) 3.51 (−2) 6.32 (−2) 2.03 (−1)

Clearly the errors in the Kreiss/Gibou approach saturate quickly for small values of γ while the new approach
is more robustly accurate over the entire range of values of γ . See the text for details

Substituting the value of uBP into the central difference approximation for (βux )x

βi− 1
2 , j uBP − (βi− 1

2 , j + βi+ 1
2 , j )ui j + βi+ 1

2 , j ui+1, j

h2
,

we have

1

h2

(
(−1 + g1(ξBP))βi− 1

2 , j ui j − βi+ 1
2 , j (ui j − ui+1, j ) + g�(ξBP)u�βi− 1

2 , j

)
.

Because only the diagonal element is modified and |g1(ξBP)| ≤ 1, the resulting linear system
is still symmetric and diagonally dominant with correct sign. As a result, the SPD structure of
the discrete Laplacian operator is preserved, and the method also avoids small cell stiffness.

Consider a one-dimensional example with the exact solution u(x) = e−x/h with a bound-
ary at x = 0 and with a grid point just outside the boundary at x0 = (γ − 1)h and gridpoints
x1 = γ h, x2 = (1 + γ )h, ... inside. Using the Kreiss / Gibou approach we would then
find the exterior ghost-point value u0 = u(0)+(γ−1)u1

γ
and using our approach we would find

the interior boundary point value u1 = u(0)+γ u2
1+γ

. For illustration purposes we consider the
case h = 1 and evaluate the errors in these values as well as in the approximation to the
second derivative at the points x1 and x2 respectively. Numerical errors for various values of
γ corresponding to different numerical approaches are displayed in Table 1. It is clear that
the errors in the Kreiss / Gibou approach saturate very quickly for small values of γ while
our new approach is more robustly accurate over the entire range of values of γ .

2.2 Radial Basis Function (RBF) Interpolation

Unfortunately there are some cases when the line-by-line approach cannot be used. For
example, when the geometry is non-convex (there is an inward pointing smooth corner), as
Fig. 4, it can happen that the intersection between the grid line and the boundary does not exist,
or it is far away. In Fig. 4, the stencil (3) requires that the leftmost interior boundary point is
determined by the interpolant in the x-direction but the intersection with the boundary along
the grid-line may be far away and would result in an inaccurate approximation. Of course, the
value at the boundary point can be specified by interpolating along the y-direction. However,
this strategy would result in a non-diagonal modification of the system matrix and break its
symmetry, so we propose an alternative approach.

For geometries where the interior boundary point cannot be accurately determined by line-
by-line interpolation, we instead use the radial basis function (RBF) interpolation. To do this
we find two suitable distinct points on the boundary of�, and utilize these two points and the
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Fig. 4 An illustration of the
points used to construct the RBF
interpolant for evaluating uBP

interior computational point to interpolate at the interior boundary point with a polynomial
augmented RBF interpolant [42]. In this section, we first present the associated RBF-based
interpolation and then discuss how to choose the two distinct points on the boundary.

Without loss of generality, we consider the case presented in Fig. 4. Let xi j = (xi , y j )
be the computational point where we want the approximation to the Laplacian operator. Let
xBP = (xBP, yBP) be the boundary point needed in the stencil in the x-direction, and let
x�1 and x�2 be the two points on the boundary that we have selected. At these points, the
boundary conditions are u�1 and u�2 respectively.

We use the following RBF and linear polynomial augmentation to interpolate at xBP:

IRBFu(x) = λi jφ(||x − xi j ||) + λ�1φ(||x − x�1 ||)
+ λ�2φ(||x − x�2 ||) + μ1 + μ2x + μ3y, (7)

where x = (x, y), || · || is the standard l2 norm and φ(·) is a radial basis function. The
linear polynomial augumentation is required to obtain second order accuracy [3, 12]. The
coefficients λ = (λi j , λ�1 , λ�2)

T and μ = (μ1, μ2, μ3)
T are determined by solving the

linear system

B

(
λ

μ

)
=

(
A �T

� 0

) (
λ

μ

)
=

(
u
0

)
. (8)

Here, u = (ui j , u�1 , u�2),

A =
⎛
⎝

φ(0) φ(||xi j − x�1 ||) φ(||xi j − x�2 ||)
φ(||x�1 − xi j ||) φ(0) φ(||x�1 − x�2 ||)
φ(||x�2 − xi j ||) φ(||x�2 − x�1 ||) φ(0)

⎞
⎠ and � =

⎛
⎝
1 1 1
xi j x�1 x�2

yi j y�1 y�2

⎞
⎠ .

The purpose of the last equation �λ = 0 is to minimize the far-field growth [13]. The value
at the boundary point xBP is then

uBP = IRBFu(xBP) =
(
φT
BP,p

T
BP

)
B−1

(
u
0

)
(9)

withφBP=(
φ(||xBP − xi j ||), φ(||xBP − x�1 ||), φ(||xBP−x�2 ||)

)T andpBP=(1, xBP, yBP)T .
Then the central difference approximation for ∂x (β∂xu)i j becomes

1

h2

(
(c1ui j + sBC)βi− 1

2 , j − (βi− 1
2 , j + βi+ 1

2 , j )ui j + ui+1, j

)
, (10)
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where c1 = (
φT
BP,p

T
BP

)
B−1[:, 1] and sBC = (

φT
BP,p

T
BP

)
B−1[:, 2 : 3](u�1 , u�2)

T with
B−1[:, 1] being the first column of B−1 and B−1[:, 2 : 3] being the matrix consisting of
the second and the third column of B−1. The only interior computational point involved in
(9) is xi j , hence only the diagonal elements of the discrete Laplacian operator are modified
and the symmetry is preserved. The primary computational cost associated with imposing
boundary conditions is the inversion of the 6 by 6matrix B during the assembly of the discrete
Laplacian operator. However, this cost does not significantly impact the overall computational
efficiency.

We now describe how the two points x�i (i = 1, 2) on the boundary are determined (this
is also described in Algorithm 1.) Our procedure is simple. If the points closest to xBP and xi j
on the boundary are distinguishable, we choose these two points. Otherwise, we choose the
point closest to xBP as x�1 and pick x�2 such that the angle between

−−−−→xBPx�1 and
−−−−→xBPx�2 is

π
4 .

These two cases are geometrically demonstrated in Fig. 5. The rotation angle π
4 consistently

yields good performance in all tested numerical examples. If the rotated line does not intersect
with the boundary, one can rotate with a smaller angle or refine the mesh to better resolve
the geometry.

Algorithm 1:Given the computational point xi j , its neighboring boundary point xBP and
a pre-selected tolerance ε, find the interpolation points x�1 and x�2 .

Find the point x�1 and the x
(0)
�2

such that

x�1
= arg min

x∈�l
||x − xBP|| and x(0)

�2
= arg min

x∈�l
||x − xi j ||. (11)

If

||x�1 − x(0)
�2

|| > εh, (12)

then x�2 = x(0)
�2

(see the left picture in Fig. 5).
Otherwise, rotate the line determined by x�1 and xBP counterclockwise by

π
4 and find

the
intersection of this line with �. Choose the intersection point as x�2 (see the right
picture in Fig. 5).

2.3 Choice of Interpolation Strategy

We note that the RBF interpolation can always be applied. However, there are two advantages
of the line-by-line interpolation over the RBF interpolation. First, it is more straightforward
and second, it is possible to prove that it will preserve diagonal dominance. In what follows, if
we apply the line-by-line interpolation wherever possible and only use the RBF interpolation
when the line-by-line approach breaks down, we say the embedded boundary method is
mixed. If the RBF interpolation is applied everywhere, we say the embedded boundary
method is RBF-based.

Numerically, we have observed that the condition (inequality (12)) that the two points on
the boundary used in the RBF interpolant always are determined to be distinct for ε = 0.025
if the mixed EB method is used. However, inequality (12) may not always hold if the RBF-
based EB method is used. An often occurring case when this situation may arise is when the
closest points to xBP and xi j are the same point (see the right picture of Fig. 5). Then, in
the mixed EB method, the line-by-line interpolation is used. We emphasize that although we
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Fig. 5 Geometry demonstration of the two cases in Algorithm 1

have not been able to prove that the mixed EB method or the RBF-based method always lead
to a SPD system we have not encountered any numerical examples where the SPD property
is lost. Below in Sect. 2.5, we describe a simple algorithm to a-priori check whether the SPD
structure is preserved. This algorithm does not require the computation of eigenvalues.

2.4 Extension to 3D

Here we briefly discuss how to extend the proposed method from 2D to 3D.
In 3D, the polynomial part of the augmented RBF interpolation isμ1+μ2x +μ3y+μ4z.

As a result, four interpolation points are needed to get an invertible matrix B in (8). Hence
we need an additional point on the boundary, namely x�3 . It can be found as follows.

Let the interpolation point inside� be xi jk . We first find x�1 and x�2 following Algorithm
1. Define xbary = (x�1 +x�2 +xi jk)/3 as the barycenter of x�1 , x�2 , and xi jk , then the normal
direction of the plane determined by x�1 , x�2 , and xi jk is

n = (x�1 − xi jk) × (x�2 − xi jk).

We seek x�3 along the direction

v = cos(θ)n/||n|| + sin(θ)(x�1 − xbary) (13)

where θ is a pre-selected rotation angle. Specifically, x�3 is given by

x�3 = xbary + t0v0 subject to v0 = hv/||v|| and ψ(xbary + t0v0) = 0. (14)

The above procedure can be seen as rotating the line determined by the vector x�1 −xbary and
finding the intersection of the rotated line and the boundary. In practice we solve the scalar
nonlinear equation ψ(xbary + t0v0) = 0 with Newton’s method and zero as the initial guess.
In our numerical tests, we set θ = π

6 , which has been found to be effective for all tested 3D
examples. Note that the main focus of the current paper is on the method in 2D and a more
systematic study for the extension of the proposed method to 3D, such as how to determine
θ , is left for future investigations.
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Algorithm 2: Given a computational domain �, a Cartesian mesh, source f (x, y), and
boundary conditions, compute the numerical solution to (1).

Step 1: Locate the interior computational points and the interior boundary points.
Obtain the total number of computational points NC.
Step 2: Assemble the discrete Laplacian operator L ∈ R

NC×NC and the right hand
side b ∈ R

NC :
apply the difference approximation (3) at the computational points xCk = (xi (k) , y j (k) ),
1 ≤ k ≤ NC. If (xi (k)±1, y j (k)±1) is a boundary point, temporarily neglect its contribution.
Step 3: Impose the boundary condition to correct L and b:
If (xi (k)−1, y j (k) ) is a boundary point:

If i (k) − 2 ≤ 0 or (xi (k)−2, y j (k) ) is outside �, then apply the line-by-line
interpolation to impose boundary condition and correct Lkk and bk .

Otherwise, apply the RBF interpolation to impose the boundary
condition and correct Lkk and bk .
Endif
If (xi (k)+1, y j (k) ) or (xi (k) , y j (k)±1) is a boundary point, impose the boundary condition
similarly.
If the RBF interpolation was used, use the algorithm in Sect. 2.5 to check whether the
SPD structure is preserved.
Step 4: Solve the linear equation Lu = b with the conjugate gradient (CG)
method and an AMG preconditioner.

2.5 An Algorithm to Check the SPD Structure for Constantˇ

It iswell known that the conjugate gradientmethod (CG)with the classical algebraicmultigrid
preconditioner (AMG) [35] is efficient for SPD matrices. The proposed embedded boundary
method always results in a symmetric linear system. For many cases, the resulting linear
system is also diagonally dominant, which is a sufficient condition for symmetric positive
definiteness. However, for certain geometric configurations the matrix may not be diagonally
dominant. For these (rarely occurring) cases we present a simple algorithm to a-priori check
whether the matrix is positive definite.

To derive conditions guaranteeing that the discrete matrix corresponding to our discretiza-
tion of the Laplacian is SPD, we need a result for the one dimensional three-point central
difference discretization for uxx with the same type of boundary modification as in the
embedded boundary methods described above.

Consider a discretization along a grid-line in the x-direction with n grid points. Assume
that the boundary conditions on each side have been imposed by modifying the first and last
diagonal element in the matrix (and the right hand side vector). Then the resulting matrix
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Fig. 6 Left: computational points and non-computational points along a grid line. Here the ordering of the
unknowns would be increasing from left to right. Right: lexicographic ordering of the computational points
results in a block diagonal discretization matrix (here with block sizes 3,1,1. Solid points: computational
points. Empty points: non-computational points

can be written

D(n)(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
a

)
, n = 1,(

a −1

−1 b

)
, n = 2,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1

0 0 0 . . . −1 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n, n ≥ 3.

(15)

The following Lemma (whose proof is given in Appendix A) gives conditions on a and b
which guarantee that D(n)(a, b) is SPD.

Lemma 2.1 The matrix D(n)(a, b) is symmetric positive definite, if one of the following con-
ditions is satisfied:

1.

n = 1, and a > 0. (16)

2.

n = 2, a > 0, and ab > 1. (17)

3.

n ≥ 3, a >
n − 2

n − 1
, b >

n − 2

n − 1
and a >

(n − 2)b − (n − 3)

(n − 1)b − (n − 2)
. (18)

As a result of Lemma 2.1, the following corollary gives us two conditions that are more
straightforward to check.

Corollary 1 The matrix D(n)(a, b) is symmetric positive definite if a > 1 and b > 1.

In general there may be holes in the computational domain and the discretization along a
grid line is then divided into S segments (see the example in the left picture in Fig. 6). Suppose
that the k-th segment contains nk computational points ordered from left to right, then the
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matrices corresponding to the discretization on each grid line segment can be arranged in the
following block diagonal form

Dline =

⎛
⎜⎜⎜⎝

D(n1)(a1, b1)
D(n2)(a2, b2)

. . .

D(nS)(aS, bS)

⎞
⎟⎟⎟⎠ . (19)

The matrix Dline thus contains the discretization of the second derivative along a single, say,
horizontal grid line. As a direct result of Lemma 2.1 and the block structure of (19), we have
the following Theorem.

Theorem 1 The matrixDline, defined in (19), is symmetric positive definite, if for each of the
blocks, D(nk )(ak, bk), the numbers ak, bk, nk satisfy one of the conditions in Lemma 2.1.

In higher dimensions there will be many grid lines and many segments but, assuming
lexicographic ordering (see the right picture in Fig. 6), the discretizationmatrix for the second
derivative in x will still be block diagonal with each block being a tridiagonal matrix on the
form (15). Let this “two dimensional” block diagonal matrix with tridiagonal blocks be
called Dxx . Similarly let the matrix Dyy be a block diagonal matrix with tridiagonal blocks
corresponding to the discretization of the second derivative in y along all grid lines but
now with an ordering of the degrees of freedom that is fast in the y-index. Finally let P
be the permutation matrix that converts between the fast-in-x (lexicographic) and fast-in-
y ordering. Then, using the lexicographic ordering the approximation of the Laplacian is
−L = Dxx + PTDyy P and we have the following theorem.

Theorem 2 Consider a two dimensional embedded boundary discretization on a grid with
Nc computational points and resulting in block diagonal matricesDxx ∈ R

Nc×Nc andDyy ∈
R

Nc×Nc in the fast-in-x and fast-in-y orderings, respectively. Assume that all of the one
dimensional one segment discretization matrices (in both the x and y direction) satisfy the
conditions in Lemma 2.1, then the matrix −L = Dxx + PTDyy P is symmetric positive
definite.

Proof The matrix is manifestly symmetric. Let v ∈ R
NC be an arbitrary non-zero vector.

With Dxx and Dyy being symmetric positive definite, vTDxxv > 0 and vT PTDyy Pv > 0
and so

−vTLv = vTDxxv + vT PTDyy Pv > 0 + 0 = 0. (20)

�	

At the implementation level, when we check the conditions in Lemma 2.1, the width of
each 1D segments can be found based on the mask matrix, and the values of ak and bk can
be computed based on the boundary corrections along the horizontal (or vertical) direction.

3 Numerical Results

We now demonstrate performance of our method through a series of numerical examples
including the Poisson equation, the heat equation and the wave equation. Throughout the l2
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Fig. 7 Poisson’s equation in two dimensions, ∇ · (β∇u) = f , with Dirichlet boundary conditions on a glass-
shaped domain. Left: Numerical solution with N = 1280. Right: The error between the numerical and the
exact solution

error and l∞ error are computed by

El2 =
√∑

i, j

h2
(
ui j − uexact(xi , y j )

)2
, El∞

=max
i, j

∣∣ui j − uexact(xi , y j )
∣∣ (21)

in 2D. Throughout this section, DOF stands for the degrees of freedom. In the RBF inter-
polation, we choose the polyharmonic spline φ(r) = r3 as the radial basis function. For the
Poisson and the heat equation with implicit time stepper, the linear solver is chosen as the
conjugate gradient (CG) method with a classic algebraic multigrid (AMG) preconditioner
[35]. Both the V -cycle andW -cycle are considered in the AMGmethod. The iterative solver
is considered to have converged when the relative residual is smaller than 10−12. In all of our
numerical experiments, we observe that the resulting discrete Laplacian operator is always
SPD.

Our code is implemented in Julia, andwe use theAMGpreconditioner andCG solver from
the open source packages AlgebraicMultigrid.jl and IterativeSolvers.jl.

3.1 Poisson’s Equation in a Non-convex Geometry

Weconsider a glass-shaped and non-convex geometry determined by the level-set function

ψ(x, y) = 0.5 − e−20((x−0.25)2+(y−0.5)2) − e−20((x−0.75)2+(y−0.5)2). (22)

The Dirichlet boundary condition and the source function are chosen such that ψ(x, y) is
an exact solution with the coefficient in (1) to be β(x, y) = −8. An (N + 1) × (N + 1)
uniform mesh partitioning [0, 1] × [0, 1] is used. With this non-convex geometry, the RBF
interpolation will be activated in the mixed EB method.

The numerical solution and error for N = 1280 are presented in Fig. 7. In Fig. 8 the errors
for N = 50 to N = 500 are also displayed. For both the mixed and the RBF-based method,
the l2 and l∞ error converge as O(h2). The error of the gradient ∇u converges as O(h1.7)
in l2 and O(h) in l∞. The total number of iterations for convergence for the W -cycle are
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Fig. 8 Convergence check for the AMG preconditioned embedded boundary method on the glass-shapes
domain. Left: Numerical errors correspond to different grid size h. Middle: Numerical errors of the gradient
for different h. Right: The total number of AMG iterations for convergence for different N2

Fig. 9 Glass shaped geometry: the maximum and minimum eigenvalues of the discrete Laplace operator as a
function of h. Left: the embedded boundary method using mixed interpolation. Right: the embedded boundary
method using RBF-based interpolation

independent of the size of the problem and are always 7 or 8. The number of iterations for
the V -cycle scale as O(DOF0.19).

We also compute the eigenvalues with the smallest and largest magnitude, λSmall and
λLarge, for 50 ≤ N ≤ 500, and plot them in Fig. 9. As can be seen they are all negative and as
expected λSmall scales approximately as O(h−2) while λLarge converges to −8 as the mesh
is refined.

3.2 Poisson’s Equation on a Tilted Square

We take the following example from [31]. The computational domain is [−3, 3]×[−3, 3],
and � is a tilted square determined by the level set function

ψ(x, y) = max
(
max

( | (x̂ − px ) − (ŷ − py) | −1, | (x̂ − px ) + (ŷ − py) |
−1, | (ŷ − py) − (x̂ − px ) | −1

))
,

where x̂(x, y) = x cos(θπ) − y sin(θπ) and ŷ(x, y) = x sin(θπ) + y cos(θπ). We take
px = 0.691 and py = 0.357 so that the center of the tilted square (px , py) does not fall
exactly on a grid point. We take θ = 0.313 so that the tilted square is not symmetric in the
x or y direction. The boundary of the tilted square � has a kink. The exact solution for this

123



40 Page 16 of 29 Journal of Scientific Computing (2023) 97 :40

Fig. 10 Poisson’s equation in two dimensions, ∇ · (β∇u) = f , with Dirichlet boundary conditions on a
tilted-square domain. Left: Numerical solution with N = 1280. Right: The contours of the error between the
numerical and the exact solution

Fig. 11 Convergence check for the AMG preconditioned embedded boundary method on a tilted-square
domain. Left: Numerical errors as a function of h. Middle: Numerical errors of the gradient as a function of
h. Right: The total number of iterations for convergence for different N2

example is u(x, y) = e−x2−y2 and β(x, y) = 1.0. A (N + 1) × (N + 1) uniform mesh is
used.

The numerical solution and error for N = 1280 are presented in Fig. 10. Sweeping from
N = 50 to N = 500, numerical results are presented in Fig. 11. For both the mixed and the
RBF-based method, we observe second order accuracy for the solution in both l∞ and l2.
The error in the gradient ∇u scales as O(h1.13) in l∞ and O(h1.68) in l2. As in the example
above, the total number of iteration for convergence stays fixed at 7 when the W -cycle is
used and scales as O(DOF0.17) when the V -cycle is used.

This geometry can result in stencils that are no longer diagonally dominant. Out of the 451
considered values of N , 25 of them result in a linear system that is not diagonal dominant.
For all the system sizes the criteria to check the SPD property from Sect. 2.5 guarantees that
the matrix is SPD.

3.3 Comparison with Finite Element Method

Asmentioned in the introduction an advantage of using an embedded boundarymethod is that
the mesh generation is local and performed using geometry objects that are one dimension
lower than for an unstructured mesh generator. The locality also helps with parallelization
and load balancing, but this is not considered here. This said, once the mesh is generated

123



Journal of Scientific Computing (2023) 97 :40 Page 17 of 29 40

Fig. 12 Comparison of FEM and EB method for the Poisson equation on the unit disk. Left: L2 error as a
function of number of degrees of freedom. Right: total number of AMG iterations for the convergence of
V-cycle AMG-CG solver with the threshold to determine the strength of connection 0.5

the algebraic problems have similar structure and thus we expect similar performance. In
this example we compare the computational performance of our method with a conforming
piecewise linear Galerkin finite elementmethod (FEM) using unstructuredmeshes. The finite
element method is implemented with Julia library Gridap.jl [2]. We solve −�u = 4 on
the unit disk. The exact solution is u(x, y) = x2 + y2 − 1. For the embedded boundary
method, we partition the computational domain [−1.1, 1.1]2 with a uniform mesh. For the
finite element method, we use Gmsh [14] to generate a series of unstructured meshes by
setting the global mesh size factor as 1, 3

4 ,
1
2 ,

1
4 ,

1
8 , and

1
16 .

The comparison of the two methods are done in two ways: the L2 error and the number
of iterations for the convergence of AMG-CG solver, is shown in Fig. 12. We observe that,
with roughly the same number of DOFs, errors given by the EB-Mixed, EB-RBF, and the
FEM are comparable. With 0.5 as the threshold to determine the strength of connection, the
V-cycle AMG-CG solver converges fast for both EB and FEM methods and needs slightly
less number of AMG iterations for the EB method. We have also done similar comparisons
for other grids and geometries and found that overall, the performance of the EB method and
the FEM method with unstructured mesh is comparable.

3.4 Geometry Determined by Parametric Curves

In our previous examples, � is determined by a level set function. Here we consider a case
when it is determined by a parametric curve:

� = {(x, y) = (x(θ), y(θ)) , θ ∈ [θL , θR]}. (23)

We define the level set function ψ(x, y) as the signed distance function ψSD(x, y). Let the
closet point on the boundary interface � to x = (x, y) be xn = (xn, yn). The amplitude
of ψSD(x, y) is ||x − xn||. The sign of ψSD(x, y) is determined by the cross-product of the
normal vector n = −→xxn and the tangent vector τ of � passing xn, and ψSD(x, y) is negative
for x = (x, y) inside �.

To find the closet point to x = (x, y) on the boundary�, a good initial guess is needed.We
uniformly partition [θL , θR] with Nguess points, and use the point corresponding to θguess =
argmin1≤k≤Nguess{||(x, y) − (x(θk), y(θk))||} as the initial guess.
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Fig. 13 Two grid points xi−1, j
and xi−2, j which border x� . An
approximation of the distance
between a boundary point xi−1, j
and the intersection point x� of
the interface with the line y j by
the linear interpolation of the
level set function

Fig. 14 Poisson’s equation in two dimensions, ∇ · (β∇u) = f , with Dirichlet boundary conditions on a
bone-shape domain. Left: Numerical solution with N = 1280. Right: The contours of the error between the
numerical and the exact solution

When the line-by-line interpolation is applied, we need to approximate the horizontal
or vertical distance from the interior boundary points to the boundary interface �. One can
compute this distance exactly, but here we re-use the infrastructure for the levelset description
of the geometry and instead use a second order approximation of the desired distance. Take
the case in Fig. 13 as an example, xi, j is a computational point, xi−1, j is a boundary point
and xi−2, j is outside �. x� lies on the boundary interface �. Following [8], ||xi−1, j − x�||
can be approximated as:

||xi−1, j − x�|| = ψSD(xi−1, y j )

ψSD(xi−1, y j ) − ψSD(xi−2, y j )
h + O(h2). (24)

3.4.1 Poisson’s Equation on a Bone-Shaped Geometry

We take the example from [16, 24] and solve Poisson’s equation on a bone-shaped
irregular domain in the computational domain [−1.5, 1.5] × [0, 3]. The exact solution is
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Fig. 15 Convergence check for the AMG preconditioned embedded boundary method for a bone-shaped
domain. Left: Numerical errors as a function of h. Middle: Numerical errors of the gradient as a function of
h. Right: The total number of iterations for convergence for different N2

Fig. 16 Bone-shaped geometry: the maximum and minimum eigenvalues of the discrete Laplace operator as a
function of h. Left: the embedded boundary method using mixed interpolation. Right: the embedded boundary
method using RBF-based interpolation

u = ex (x2 sin(y) + y2) and β = 2 + sin(xy). The boundary � is parameterized by

(
x(θ), y(θ)

)
=

(
0.6 cos(θ) − 0.3 cos(3θ), 1.5 + 0.7 sin(θ) − 0.07 sin(3θ) + 0.2 sin(7θ)

)

with θ ∈ [0, 2π]. An (N + 1) × (N + 1) uniform mesh partitioning [−2, 2] × [−1, 3] is
used.

The numerical solution for N = 1280 and its difference from the exact solution are
presented in Fig. 14. Sweeping from N = 50 to N = 500, numerical results are presented in
Fig. 15. For both the mixed and the RBF-based EB methods, we observe O(h1.84) error in
l∞ and O(h1.80) error in l2 for u. The l∞ error of the gradient ∇u scale as O(h0.85) and the
l2 error scale as O(h1.57). The total number of iterations needed by the W -cycle is smaller
than the V -cycle. The former scales as O(DOF0.3) and the later scales as O(DOF0.35).
Note that the cost of one W -cycle is larger than one V -cycle. Except for 4 out of the 451
considered discretization sizes, the resulting linear system is diagonally dominant, and the
proposed criteria to check the SPD structure is never violated. The eigenvalues with the
smallest and largest magnitude λSmall and λLarge are plotted in Fig. 16. They are all negative,
and λSmall scales approximately as O(h−2). Moreover, |λLarge| is smaller than 24, which is
the eigenvalue with largest magnitude of the problem with periodic boundary condition and
conductivity coefficient β̃ = max(|β(x, y|) = 3.
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Fig. 17 The heat equation in two dimensions, ut = ∇ · (β∇u) + f , with Dirichlet boundary conditions on a
disk-shaped domain. Left: Numerical solution using N = 1000. Middle: Numerical error as a function of h
at the final time T = 0.5. Right: Numerical errors of the gradient as a function of h at the final time T = 0.5

3.5 Heat Equation

In this example, we consider the heat equation with Dirichlet boundary conditions

ut = ∇ · (β∇u) + f , (x, y) ∈ �, (25a)

u(x, y, t) = uD(x, y), (x, y) ∈ � and u(x, y, 0) = uI(x, y). (25b)

We consider β(x, y) = 0.25 − x2 − y2, and impose a homogenous Dirichlet boundary
condition. The geometry � is a disk determined by the level set function ψ(x, y) = 0.25 −
x2 − y2. The source f (x, y, t) and the initial condition are chosen such that u(x, y, t) =
e−t (x2 + y2 − 0.25). The computational domain is [−1, 1] × [−1, 1] partitioned by a (N +
1) × (N + 1) uniform mesh.

We use our method as the spatial discretization and the Crank-Nicolson method as the
time integrator with a time step size �t = h. In this example only the V -cycle is used in the
AMG. When inverting the linear system, we use the data from last step as initial guess. We
solve the problem for time t ∈ [0, 0.5]. The numerical solution with N = 1000 at t = 0.5 is
presented in Fig. 17. The l2 and l∞ errors in u at t = 0.5 are converging as O(h2), the error
of the gradient ∇u at t = 0.5 converges as O(h) in l∞ and as O(h1.45) in l2. On average, we
need 2 iterations for convergence per time step.

3.6 TheWave Equation

In this example we solve the wave equation with homogenous Dirichlet boundary conditions

∂2u(x,y,t)
∂t2

= ∇2u(x, y, t), (x, y) ∈ � ≡ {x2 + y2 < 1}, t > 0,

u(x, y, t) = 0, (x, y) ∈ � ≡ {x2 + y2 = 1}.
The initial data is chosen so that the solution is a standing mode

umn(r , θ, t) = Jm(rκmn) cosmθ cos κmnt . (26)

Here Jm(z) is the Bessel function of the first kind of order m, (m = 0, 1, . . .) and κmn is
the nth zero of Jm . In this problem we set m = n = 7. Then κ77 = 31.4227941922 and the
period of the solution is 2π

κ77
= 0.1999562886971.

To discretize in time we use the so-called θ -scheme (see e.g. [4])

un+1 − θ�t2∇2un+1 = 2un + (1 − 2θ)�t2un − un−1 + θ�t2∇2un−1. (27)
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Table 2 The table displays max-errors, along with computed rates of convergence (using two subsequent
refinement levels) and average number of AMG-CG iterations per time step, at the final time T

h θ = 0 p θ = 1
2 p iter θ = 1

4 p iter θ = 1
12 p iter

2.2 (−2) 3.6 (−2) ∗ 2.0 (−1) ∗ 6.0 5.7 (−1) ∗ 6.0 5.9(−2) ∗ 3.0

1.1 (−2) 9.2 (−3) 2.0 4.8 (−1) −1.3 6.0 7.6 (−3) 6.2 5.2 2.1 (−2) 1.5 3.0

5.5 (−3) 2.5 (−3) 1.9 6.0 (−2) 3.0 6.0 5.1 (−2) −2.7 5.0 6.1 (−3) 1.8 3.0

2.75 (−3) 6.7 (−4) 1.9 3.5 (−2) 0.8 6.0 1.6 (−2) 1.7 5.0 1.6 (−3) 1.9 3.0

1.375 (−3) 1.7 (−4) 2.0 9.9 (−3) 1.8 5.0 4.3 (−3) 1.9 5.0 4.1 (−4) 2.0 3.0

The results are for the wave equation example

Here θ ≥ 0 is a parameter that can be chosen to obtain different schemes. The values
we consider here are θ = 0, which corresponds to the classic explicit leap-frog scheme,
θ = 1/2, 1/4 which corresponds to second order unconditionally stable implicit methods,
and θ = 1/12 which leads to an implicit method that is fourth order accurate but with a
stability constraint on the time step. Comparing the explicit method and the fourth order
accurate method, the latter can march with a time step that is roughly 50% larger than the
second order explicit method. We discretize the domain (x, y) ∈ [−1.1, 1.1]2 using 100,
200, 400 and 800 grid points and evolve the numerical solution for 10.2 periods. The mixed
EB method is used in the spatial discretization. We use �t/h = (0.7, 2, 2, 0.85) for the
schemes corresponding to θ = (0, 1/2, 1/4, 1/12). The initial data are set using the exact
solution. In Table 2 we report max-errors, along with computed rates of convergence (using
two subsequent refinement levels) and average number of V-cycle AMG-CG iterations per
time step, at the final time. It is clear that for this example there is no benefit to use an
unconditionally stable time stepping method as the temporal errors are dominating the total
error if �t > h. On the other hand, the fourth order method achieves an error that is roughly
equivalent with the explicit scheme and may be a suitable alternative for problems with
solutions that vary rapidly in time. In Figs. 18 and 19 we display the numerical solution and
the error for the four different methods.

3.7 Quantity of Interest Determined by Geometry Parameters

In shape optimization problems, a quantity of interest (QOI) or loss may be determined by
the parameters of the geometry. In order to find the optimal geometry, the gradient of the
QOI or loss with respect to the parameters needs to be computed. If one wants to use an
embedded boundary method as a building block for shape optimization the QOI computed
by the method should be smooth with respect to the parameter. To show the potential of our
method for these type of problems, we consider two prototype examples.

In the first example, we consider Poisson’s equation on an elliptical shape with a fixed
area

x2

a2
+ y2

1/a2
= 1.

Here, a ∈ [0.5, 2], β = 1 and zero Dirichlet boundary conditions are used. The source
function is f (x, y) = 3. The QOI is the value of u at point (0, 0). In Fig. 20, we present
the QOI and compute its derivative with respect to a by the central difference method. Both
the QOI and computed derivative are smooth. We observe that u(0, 0) has the minimum at
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Fig. 18 The wave equation, utt = ∇2u, with zero boundary condition on a disk shaped geometry. Numerical
solutions with θ = (0, 1/2, 1/4, 1/12) correspondingly from left to right, from top to bottom at the final time

a = 1, when the elliptical shape becomes a unit circle. We also observe that the value of
u(0, 0) corresponding to a and 1

a equal to each other.
In the second example, we consider an ellipsoid that is rotated by an angle α and the QOI is

the integration of u in the rectangular domain [−1, 1]×[−0.5, 0.5]. The rotated-ellipse-shape
geometry is determined by the level-set function

ψ(x, y) = (x cos(θ) − y sin(θ))2

16
+ (x sin(θ) + y cos(θ))2

4
− 1. (28)

where θ ∈ [0, 2π).We consider the Poisson equationwithβ = 1 and zeroDirichlet boundary
conditions, and the source function is f (x, y) = 3. A 501 × 501 uniform mesh partitioning
[−5, 5] × [−5, 5] is used. In Fig. 20, we present the QOI and compute its derivative with
respect to θ by the central difference method. Both of the QOI and the derivative are smooth.
Expected symmetry is also observed.

For both examples, the QOI and its derivative computed by our method are smooth, and
the underlying geometric symmetry is also respected.

3.8 3D Accuracy Test

We solve Poisson’s equation in 3D with the coefficient β(x, y, z) = 1 on the two geometries
displayed in the left column of Fig. 21. The first geometry is the unit ball and the second
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Fig. 19 The wave equation, utt = ∇2u, with zero boundary condition on a disk shaped geometry. Displayed
are the errors for θ = (0, 1/2, 1/4, 1/12) correspondingly from left to right, from top to bottom at the final
time

geometry is defined as the interior of the surface defined by the zero level set of

ψ2(x, y, z) = 0.5 − e−20((x−0.25)2+(y−0.5)2)+(z−0.5)2) − e−20((x−0.75)2+(y−0.5)2+(z−0.5)2).

(29)

We set the computational domain as [−1, 1]3 for the unit ball and [0, 1]3 for the second
(non-convex) geometry. As in two dimensions we use a uniform mesh. We use a V -cycle
AMG-CG solver to solve the resulting linear systems. The l2 errors and number of AMG
iterations for convergence are presented in Fig. 21. The l2 error is computed by

El2 =
√∑

i, j,k

h3(ui jk − uexact(xi , y j , zk))2. (30)

The expected second order accuracy is observed and the V -cycle AMG-CG solver converges
after a few iterations.

4 Conclusion

In summary, we have developed a universal embedded boundary method to solve the Poisson
equation, the heat equation or the wave equation in general two-dimensional domains with
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Fig. 20 Computations of QOIs with geometry parameter. Top left: QOI vs a for the first example. Top right:
the derivative of QOI with respect to a vs a for the first example. Bottom left: QOI vs the rotation angle α

for the second example. Bottom right: the derivative of QOI with respect to α vs the rotation angle α for the
second example

Fig. 21 Geometry, l2 error of the solution and the number of iterations for convergence in 3D accuracy tests.
Top: unit ball. Bottom: the non-convex geometry determined by ψ2
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complex geometries subject to Dirichlet boundary conditions. The two advantages of this
method are: (1) by using interior boundary points instead of placing the ghost point outside
the computational domain, the small-cell stiffness is avoided. (2) to impose the boundary
condition, we apply the line-by-line interpolation or RBF interpolation, which results in a
SPD linear system. The SPD structure of the discrete Laplacian operator can be rigorously
proved for the convex geometry and is numerically verified for non-convex geometries. A
simple criteria to a-priori check the SPD property is also proposed.

An immediate next step is to conduct a more systematic study of extending the proposed
method to 3D. A possible future work is to generalize the current method to problems with
the Neumann boundary conditions. Other possible extensions include combining the current
method with the level set method for moving boundary problems (e.g. Stefan problem) and
the generalization of the method to the Navier–Stokes equations, and the Grad-Shafranov
equations [25, 33].

Finally, we note that while the method presented here is not able to directly handle sin-
gularities due to sharp re-entrant corners, adaptive mesh refinement can be incorporated into
EB methods to maintain the accuracy for such a problem, see for example [30].
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A Proof of Lemma 2.1

For the case n = 1 and n = 2, the lemma can be verified through direct computations of
leading principal minors. We only focus on the case n ≥ 3.

The matrix D(n)(a, b) is manifestly symmetric. To prove that D(n) ∈ R
n×n is SPD, we

use mathematical induction to prove that its leading principal minors are all positive. When
1 ≤ k ≤ n − 1, the k-th order leading principal minor of D(n) ∈ R

n×n is

Q(n)
k (a) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
k×k

, 1 ≤ k ≤ n − 1. (31)
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The n-th order leading principal minor of D(n)(a, b) ∈ R
n×n is

P(n)(a, b) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n×n

. (32)

(1) We first prove that if a > n−2
n−1 , then the first n − 1 principal minors of D(n) ∈ R

n×n ,

namely Q(n)
k (a) (1 ≤ k ≤ n − 1) are all positive.

For n = 3, with direct computations, one can check that if a > 3−2
3−1 = 1

2 then Q(3)
1 (a)

and Q(3)
2 (a) are positive. Now, for the induction case n − 1, we assume if a > n−3

n−2 , then the

first n − 2 principal minors of D(n−1), namely Q(n−1)
k (a) (1 ≤ k ≤ n − 2), are all positive.

With this induction assumption, we will prove that if a > n−2
n−1 then the first n − 1 principal

minors of D(n)(a, b) are all positive.
The definition in (31) implies that Q(n)

k (a) = Q(n−1)
k (a) when 1 ≤ k ≤ n − 2. Moreover,

if a > n−2
n−1 , then a > n−3

n−2 and the induction assumption leads to

Q(n)
k (a) = Q(n−1)

k (a) > 0, 1 ≤ k ≤ n − 2.

Now, we only need to prove that Q(n)
n−1 is positive:

Q(n)
n−1(a) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1 0 . . . 0 0
0 2 − 1

a −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= aQ(n−1)
n−2

(
2 − 1

a

)
. (33)

Moreover, if a > n−2
n−1 > 0, then

2 − 1

a
> 2 − n − 1

n − 2
= n − 3

n − 2
, (34)

and together with the induction assumption for n − 1, we have

Q(n)
n−1(a) = aQ(n−1)

n−2

(
2 − 1

a

)
> 0.

(2) Finally, we prove if a >
(n−2)b−(n−3)
(n−1)b−(n−2) and b > n−2

n−1 , the last principal minor P(n)(a, b)
is positive. We perform an induction proof with respect to n.

For the base case, when n = 3, b > n−2
n−1 = 1

2 and a >
(n−2)b−(n−3)
(n−1)b−(n−2) = b

2b−1 . A direct

computation shows that P(3)(a, b) is positive. Now, we turn to the induction case, for n − 1,
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assume that

b >
n − 2

n − 3
and a >

(n − 3)b − (n − 4)

(n − 2)b − (n − 3)
(35)

implies that P(n−1)(a, b) is positive.
We note that P(n)(a, b) can be related to P(n−1)

(
2 − 1

a , b
)
through the rules of determi-

nants as follows:

P(n)(a, b) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a −1 0 . . . 0 0
0 2 − 1

a −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= aP(n−1)
(
2 − 1

a
, b

)
. (36)

Now, we just need to verify that a > 0 and P(n−1)
(
2 − 1

a , b
)

> 0 under the assumption that

b > n−2
n−1 and a >

(n−2)b−(n−3)
(n−1)b−(n−2) . As b > n−2

n−1 and a >
(n−2)b−(n−3)
(n−1)b−(n−2) , we have

(n − 1)b − (n − 2) > 0, (n − 2)b − (n − 3) ≥ (n − 2)2 − (n − 1)(n − 3)

n − 1

1

n − 1
> 0,

0 <
1

a
<

(n − 1)b − (n − 2)

(n − 2)b − (n − 3)
and a∗ = 2 − 1

a
> 2 − (n − 1)b − (n − 2)

(n − 2)b − (n − 3)

= (n − 3)b − (n − 4)

(n − 2)b − (n − 3)
.

Hence, we have b = n−2
n−1 > n−2

n−3 , and a
∗ >

(n−3)b−(n−4)
(n−2)b−(n−3) . The induction assumption for the

n − 1 case in (35) is satisfied and P(n−1)
(
2 − 1

a , b
) = P(n−1) (a∗, b) > 0.
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