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ON EXTENSIONS OF PARTIAL ISOMORPHISMS

MAHMOOD ETEDADIALIABADI AND SU GAO

ABSTRACT. In this paper we study a notion of HL-extension (HL standing for
Herwig-Lascar) for a structure in a finite relational language £. We give a
description of all finite minimal HL-extensions of a given finite L-structure.
In addition, we study a group-theoretic property considered by Herwig—Lascar
and show that it is closed under taking free products. We also introduce
notions of coherent extensions and ultraextensive L-structures and show that
every countable L-structure can be extended to a countable ultraextensive
structure. Finally, it follows from our results that the automorphism group of
any countable ultraextensive L-structure has a dense locally finite subgroup.

1. INTRODUCTION

Let Cy,Cs be two structures in a given relational language £. A partial iso-
morphism from € into C3 is an isomorphism of a substructure of C; onto a
substructure of C5. A partial automorphism (or a partial isomorphism) of an
L-structure C' is an isomorphism between two (possibly different) substructures of

C.

Definition 1.1. Let C be a class of L-structures (containing both finite and infinite
structures). C is said to have the extension property for partial automor-
phisms (EPPA) if whenever C; and Cs are structures in C, Cy is finite, C} is a
substructure of Cy, and every partial automorphism of C; extends to an automor-
phism of Cs, then there exist a finite structure C5 in C which extends Cy and every
partial automorphism of C; extends to an automorphism of Cj.

Hrushovski [4], was one of the first papers to consider the question of whether a
certain class of structures has the EPPA. More precisely, he showed that the class
of simple graphs has the EPPA, that is, every finite graph G can be extended to
another finite graph, H, such that every partial isomorphism of G extends to an
automorphism of H. Herwig-Lascar [3], generalized the result of Hrushovski to
finite relational structures.

Definition 1.2. If M is an L-structure and 7 a set of L-structures, we say that
M is T-free if there is no structure 7' € 7 and homomorphism h : T"— M.
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2 MAHMOOD ETEDADIALIABADI AND SU GAO

Here we use the same definition of a homomorphism as in [3]. That is, if M and
N are L-structures, a homomorphism from M to N is a map h : M — N such
that, if n is an integer, R is an n-ary relation symbol of £, and a1, as,...,a, are
elements of M with M F R(ay,as,...,a,), then N E R(h(a1), h(az),...,h(ay)).

Theorem 1.3 (Herwig—Lascar [3]). Let L be a finite relational language and T a
finite set of finite L-structures. Then the class of all finite T -free L-structures has
the EPPA.

Inspired by the Herwig—Lascar theorem, we define the following notions. Let £
be a finite relational language and C' be an L-structure. An HL-extension of C'is a
pair (D, ¢), where D is an L-structure extending the structure C, and ¢ is a map
from the set of all partial isomorphisms of C' into the set of all automorphisms of
D such that ¢(p) extends p. With this notion, the Herwig—Lascar theorem can be
restated as: Every finite T-free L-structure has a finite T-free HL-extension.

If C is an L-structure and (D, ¢) is an HL-extension of C, then we say (D, ¢) is
minimal if for all b € D, there are partial isomorphisms p1,...,p, of C and a € C
such that

b= ¢(p1) - d(pn)(a).

Our first main result of the paper is a description of all finite 7-free, minimal HL-
extensions of a given finite T-free L-structure. To do this, we describe a canonical
collection of finite T -free, minimal HL-extensions from the original construction of
Herwig-Lascar [3], and show that every other finite 7-free, minimal HL-extension
is a homomorphic image of one of the canonical extensions.

Our next result is regarding a group-theoretic property in the profinite topology
considered by Herwig-Lascar in [3]. We call it the HL-property. For comparison,
we say that a group G has the RZ-property (RZ standing for Ribes—Zalesskii) if any
finite product of finitely generated subgroups of G is closed in the profinite topology.
Every group with the RZ-property is residually finite. Ribes-Zalesskii [6] proved the
RZ-property for finitely generated free groups. Herwig—Lascar [3] introduced the
HL-property as a strengthening of the RZ-property, and showed that the Herwig—
Lascar theorem is essentially equivalent to the HL-property for finitely generated
free groups. Coulbois [1] gave a characterization of the RZ-property in terms of
extensions of partial isomorphisms and used it to show that the RZ-property is
preserved under taking free products. Rosendal [7] gave a characterization of the
RZ-property in terms of extensions of partial isometries for finite metric spaces.
Here we give a similar characterization for the HL-property of groups, and show
that the HL-property is also preserved under taking free products.

In [8], Solecki proved the EPPA for the class of finite metric spaces. Furthermore,
Siniora—Solecki [9] proved a stronger version of the Herwig—Lascar theorem. They
showed that for a structure C with an HL-extension one can find an HL-extension
(D, ¢) with the property that for every triple (p, g, ) of partial isomorphisms of C
with p = g o we have ¢(p) = ¢(q) o ¢(r). This property has been referred to as
coherence. A similar concept was considered in [5] and [7].
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ON EXTENSIONS OF PARTIAL ISOMORPHISMS 3

In this paper we introduce a slightly different notion of coherence between HL-
extensions. If C7 C Cy are L-structures, (D1, ¢1) is an HL-extension of Cy, and
(D2, ¢2) is an HL-extension of Cy, then we say that (Di,¢1) and (Da,¢2) are
coherent if Dy extends Dy, ¢2(p) extends ¢1(p) for every partial isomorphism p
of Cy, and the map ¢1(p) — ¢2(p), where p ranges over all partial isomorphisms
of C1, induces an isomorphism between a subgroup of all automorphisms of D,
and a subgroup of all automorphisms of Ds. We will show that, if 7 is a finite
set of L-structure each of which is a Gaifman clique, then for any C; C C5 finite
T-free L-structures and (D1, ¢1) a finite T-free HL-extension of C1, there is a finite
T-free HL-extension of Cs coherent with (D1, ¢1). In the proof of this result we
use the above-mentioned coherence result of Siniora—Solecki [9]. We should also
mention that Hubicka, Koneény, and Nesetfil [5] presented a direct combinatorial
construction of HL-extensions with the same coherence property. The technical
assumption in the theorem about 7 is necessary and optimal for the proof.

We call an L-structure U wultraextensive if U is ultrahomogeneous, every finite
C C U has a finite HL-extension (D, ¢) where D C U, and if C; C Cy C U are
finite and (D1, ¢1) is a finite minimal HL-extension of Cy with Dy C U, then there
is a finite minimal HL-extension (D3, ¢2) of Cy such that Dy C U and (D1, ¢1) and
(Ds, ¢2) are coherent.

Recall that ultrahomogeneity means that any finite partial isomorphism can
be extended to an isomorphism of the entire space. Thus ultraextensiveness is a
strengthening of ultrahomogeneity. We will establish the following results about
ultraextensive L-structures.

Theorem 1.4. FEvery countable L-structure can be extended to a countable ultra-
extensive L-structure. Moreover, if T is a finite set of finite L-structures each of
which is a Gaifman clique, then every countable T -free L-structure can be extended
to a countable T -free ultraextensive L-structure.

Theorem 1.5. If U is an ultraextensive L-structure then every countable substruc-
ture C C U can be extended to a countable ultraextensive substructure D C U.

Theorem 1.6. If U is a countable ultraextensive L-structure then the automor-
phism group of U has a dense locally finite subgroup.

The rest of the paper is organized as follows. In Section 2 we give the char-
acterization of finite 7-free, minimal HL-extensions. In Section 3 we study the
HL-property of groups and show that it is preserved under taking free products.
In Section 4 we discuss coherent HL-extensions and ultraextensive structures. The
results in Sections 2 and 4 are analogous to previous work by the authors [2] on
similar concepts in the context of metric spaces.

2. MINIMAL HL-EXTENSIONS

2.1. HL-extensions. We fix some notation to be used in the rest of the pa-
per. Throughout this paper let £ be a finite relational language. Let C,D be
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4 MAHMOOD ETEDADIALIABADI AND SU GAO

L-structures. We say that D is an extension of C if C is a substructure of D. In-
terchangeably, we use the same terminology when D contains an isomorphic copy
of C.

A homomorphism from C to D is a map w : C — D such that for every n-ary
relation R € £ and every aq,...,a, € C,

RC(ay,...,a,) = RP(n(ay),...,7(ay)).

An isomorphism from C to D is a bijection 7 : C — D such that for every n-ary
relation R € £ and every aq,...,a, € C,

R (ay,...,a,) <= RP(n(a1),...,7(ay)).

An isomorphism from C' to C is also called an automorphism of C'. The set of all
automorphisms of C is denoted as Aut(C). Under composition of maps, Aut(C)
becomes a group.

A partial isomorphism of C' is an isomorphism between two finite substructures
of C. The set of all partial isomorphisms of C is denoted as P(C). Although P(C)
is not necessarily a group, it is a groupoid and for each p € P(C) we can speak of

L which is still a partial isomorphism.

the inverse map p~
If D is an extension of C, then every partial isomorphism of C' is also a partial
isomorphism of D. In symbols, we have P(C) C P(D) if C is a substructure of D.

If p,q € P(C), we say that ¢ extends p, and write p C ¢, if

{(a,;p(a)) : a € dom(p)} € {(a,q(a)) : a € dom(q)}.

We let 1¢ denote the identity automorphism on C, i.e., 1¢(a) = a for all a € C.
Let Pc denote the set of all p € P(C) such that p € 1. We refer to elements of
P as nonidentity partial isomorphisms of C. Note that if p € Pg then p~! € P
and p~1 # p.

The main concept we study in this paper is that of an HL-extension.

Definition 2.1. Let C be an L-structure. An HL-extension of C is a pair (D, ¢),
where D is an extension of C, and ¢ : Pc — Aut(D) such that ¢(p) extends p for
all p € Pe.

Note that if (D, ¢) is an HL-extension of C' then we can always modify ¢ so that
for all p € Po, ¢(p~t) = ¢(p)~t. We will tacitly assume this property for all the
HL-extensions we consider.

Note that an equivalent restatement of Herwig-Lascar theorem (Theorem 1.3)
is that every finite T-free L-structure has a finite 7-free HL-extension.

We will need the following notion of homomorphism between HL-extensions.

Definition 2.2. Let C be an L-structure, and let (D1, ¢1) and (D3, ¢2) be both HL-
extensions of C. A homomorphism from (D1, ¢1) to (Da, ¢2) is amap ¥ : D1 — Do
such that 9 is a homomorphism from the structure D to Do, ¢ | C is the identity
map on C, and for all p € Pg, 1 0 ¢1(p) = da(p) 0 9.

We also define the notion of minimality for an HL-extension as follows.
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ON EXTENSIONS OF PARTIAL ISOMORPHISMS 5

Definition 2.3. Let C be an L-structure and (D, ¢) be an HL-extension of C'. We
say that (D, ¢) is minimal if for all b € D\ C there are p1,...,p, € Pc and a € C

such that b = ¢(p1) ... d(pn)(a).

2.2. A canonical HL-extension. In this subsection we describe a canonical con-
struction of an HL-extension that is essentially due to Herwig—Lascar [3]. In the
rest of the paper let 7 be a fixed finite set of finite L-structures.

First, note that for every finite L-structure C there is a unique partition of C'
into substructures {C; : ¢ = 1,...,n} such that each C; is a maximal subset of
C satisfying that for every a,b € C;, the map that sends a to b (that is, the map
{(a,b)}) is a partial isomorphism of C'. In other words, we partition C' into maximal
subsets whose elements satisfy the same unary predicates. We call this partition
with a specific point from each set a natural factorization of C'. That is, a natural
factorization of C is of the form {(C;,a;) : i =1,...,n}, where each a; € C;.

Let C be a finite T-free L-structure. Let {(C;,a;) : i =1,...,n} be a natural
factorization of C'. For every 1 < i < n we define

H; ={g €F(Pc) : gla;) = a;},

where F(P¢) is the free group with the generating set Po (with the convention that
the inverse of p € Pc in F(P¢) coincides with p~1). By g(a;) = a; we mean that if
g=mp1-Pm With p1,...,pm € Pc, then p1(- - (pm(a;)) -+ ) is defined and

p1(- - (Pmlas)) ) = a;.

Each H; is a subgroup of F(P¢).
Let T be the L-structure with domain

F(Pc)/Hy U---UF(Pc)/H,y,

and such that for every m-ary relation symbol R € £, we have R' (g1 H,, ..., gmH;,)

iff there are py, ..., pm € Pc and g € F(Pc) such that p;(a;;) is defined for each j =

L...,m, (g1 Hiy, . gmH:,) = (gp1Hiys - .., gpmHi,, ), and RE (p1(ai, ), - - ., pm(ai,,)).
Note that C' can be viewed as a substructure of I'. In fact, consider the map

7w :C — I defined as

r(a) = H; if a = ay,
| pH;, ifa# a; and p € P satisfies p(a;) = a,

for a € C;. Tt is easy to see that 7 is well-defined and is indeed an isomorphic
embedding from C into T'.

Given any v € F(P¢), the map @, defined by ®,(g9H;) = vgH; is an automor-
phism of I". Thus, (T', ®) is an HL-extension of C' with ® : Po — Aut(I') defined
as ®(p) = ®,. Note that by definition, (T', ®) is a minimal HL-extension of C.

Assume C has a T-free HL-extension (D, ¢). Consider the map ¢ : I' — D

defined by ¥(gH;) = ¢(g)(ai), where ¢(g) = ¢(p1) - -+ #(pm) if g =p1...pm. Then
1) is a homomorphism. It follows that I' is also T-free.
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6 MAHMOOD ETEDADIALIABADI AND SU GAO

2.3. Finite HL-extensions. Let C be a finite T-free L-structure as before. We
give a description of all finite 7-free, minimal HL-extensions of C. For this we
first describe a finite T-free, minimal HL-extension by replacing each group H; in
the above canonical I with a larger group of the form N;H;, where N; is a normal
subgroup of F(P¢) of finite index.

Let Ny,..., N, <F(P¢) be normal subgroups of finite index. We define

F]V = F(Pc)/NlHl e F(Pc)/Nan

The structure on I' ; is defined analogously to the structure on the canonical HL-
extension I'. More precisely, to define the structure on I' g, let R € £ be an m-ary
relation symbol. Then R'~ (g1 N;, H;,, ..., gmN;, H; ) iff there are py, ..., p, € Po
and g € F(P¢) such that p;(a;;) is defined for each j =1,...,m,

(1 Ni,Hiy s oo s gmNi,, Hi, ) = (9p1Noy Hiy s - - gpm Ni,, Hi, ),

and R (p1(as,),- - pm(ai,,))-
Consider the map 7y : C — ' defined by

7T-'(a) o NzHu ifa:ai,
NYY pNH;,  if a # a; and p € Pe satisfies p(a;) = a,

for a € C;. Then mg is well-defined. Under suitable assumptions (that will be
discussed in Theorem 2.4), my becomes an isomorphic embedding. In this case
73(C) is an isomorphic copy of C' as a substructure of I' 5.

We define ® 3 : Po — Aut(I'g) by letting

@ 5 (p)(gN:H;) = pgN;H;.

Assuming the above map 7 is an isomorphic embedding, and noting that there is
a canonical surjective homomorphism from I' to I' g, it follows from the minimality
of (', @) that (I, ® ) is also a minimal HL-extension of C.

We are now ready to describe any finite T -free, minimal HL-extension of C as
a homomorphic image of some (I';, ® ), which is itself a finite 7-free, minimal
HL-extension of C.

Theorem 2.4. Let C be a finite T-free L-structure and (D, @) be a finite T -free,
minimal HL-extension of C. Then, there are Ni,..., N, IF(P¢c) of finite index
such that (L', ® ) is a finite T-free, minimal HL-extension of C and there is a
homomorphism from (I' g, ® ) onto (D, ).

Proof. For each i =1,...,n, let D; = {¢(g)(a;) : g € F(Pc)}. We define
N; ={g € F(Pc) : #(g9)(a) = a for every a € D;}.

Then N; <F(P¢). Since D is finite, each N; is of finite index.

LetI'y and g : C — I' i be defined as above. We claim that 7 g is an isomorphic
embedding. To see this, let a,a’ € C; with a # o’. Let p,p’ € Pc with p(a;) = a
and p’(a;) = a’. We show that p~'pH; N N; = (), which implies pN; H; # p'N; H,.
For this, let g € H;. Since

¢ 'pg)(a:) = 6" )o(p)d(9)(ai) = ¢(0') "' plai) # ai,
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ON EXTENSIONS OF PARTIAL ISOMORPHISMS 7

we have that p'~'pH; N N; = (). This shows that 75 is injective. It is easy to see
that 7 is an isomorphism between the structures C' and 7 3(C).

Now we define ¢ : 'y — D by ¢ 5(gN:H;) = ¢(g)(a;). Note that ¢ is well-
defined since if gflgg € N, H; then by definition of N;, H; we have (b(gflgg)(ai) =aq;
and therefore ¢(g1)(a;) = ¢(g2)(ai). ¥y is onto since D is minimal. It is also easy to
verify that g is a homomorphism. It follows that I' i is T-free, and thus (I' g, ® 5)
is a finite 7 -free, minimal HL-extension of C.

Finally, it is routine to check that for every p € Pc, ¢(p) o ¥y = ¥y o 5(p).
Thus 95 is a homomorphism from (' g, ® ) onto (D, ¢). |

3. THE HL-PROPERTY OF A GROUP

In this section we consider a property for a group G analogous to the existence
of HL-extensions for free groups.

3.1. The HL-property. First, we need the following definitions.

Definition 3.1 (Herwig—Lascar [3]). Let G be a group and let Hy,...,H, < G.
A left system of equations on Hy,..., H, is a finite set of equations with variables
r1,...,ZT, and constants gi, ..., g such that each equation is of the form

vilj = gpHj or x;Hj = 2,9, H,
where 1 <i4,r <m, 1 <k<land1<j<n.

Definition 3.2. Let G be a group. We say that G has the HL-property if for every
finitely generated Hy, ..., H, < G and left system of equations on Hy,..., H, that

does not have a solution, there exist normal subgroups of finite index Ny, ..., N, <G
such that the same left system of equations on N1 H;,..., N, H, does not have a
solution.

By results of [3], Section 3, the Herwig—Lascar theorem (Theorem 1.3) implies
the HL-property for all free groups with finitely many generators. Our results below
will imply that they are actually equivalent.

Recall that we say a group G has the RZ-property if for any finitely gener-
ated subgroups Hi,...,H, < G, Hy---H, is closed in the profinite topology of
G. Equivalently, a group G has the RZ-property iff for any finitely generated
Hy,...,H, <G and g ¢ Hy--- H, there exist a normal subgroup N < G of finite
index, such that gN N Hy --- H,, = (. Ribes—Zalesskii [6] proved the RZ-property
for free groups with finitely many generators. As noted in [3], the HL-property is
a strengthening of the RZ-property, and therefore the Herwig—Lascar theorem is a
strengthening of the Ribes—Zalesskii result.

Rosendal in [7] considered the RZ-property and showed that it is equivalent to
a statement about extensions of partial isometries for finite metric spaces which
he called finite approxzimability. Earlier, Coulbois [1] gave a characterization of the
RZ-property in terms of extensions of partial isomorphisms of finite structures, and
used it to show that the RZ-property is closed under taking finite free products.
Below we give a characterization of the HL-property also in terms of extensions
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8 MAHMOOD ETEDADIALIABADI AND SU GAO

of partial isomorphisms of finite structures. Our characterization is analogous to
Rosendal’s notion of finite approximability.

To state the theorem, we need the following notions. Let G be a group acting
on sets X and Y and let A C X and F' C G be arbitrary subsets. An F-map from
A toY is a function 7 : A — Y such that for all ¢ € F and = € A, if g(x) € A,
then 7(g(x)) = g(mw(x)). Moreoever, if X and Y are L-structures, then = is called
an F'-embedding if w is an injective F-map that is an isomorphism between A and
m(A).

An L-structure C'is called a Gaifman clique if for every a, b € C there is a relation
symbol R € £ with arity m > 2 and ¢1,...,¢,, € C with a,b € {c1,...,¢n} and
R(c1,. . scm).

Theorem 3.3. Let G be a group. Then the following are equivalent:

(i) G has the HL-property;

(ii) Let L be a finite relational language with unary relation symbols S, ..., S, €
L. Let T be a finite set of finite L-structures. Let D be a T -free L-structure
such that {SP,...,SPY is a partition of the domain of D. Let C be a fi-
nite substructure of D. Let F' be a finite subset of G. Suppose that G acts
faithfully by isomorphisms on D and that G acts transitively on each SP
fori=1,...,n. Then there exists a finite T -free L-structure D' on which
G acts by isomorphisms, and an F-embedding from C to D’.

(iii) Clause (i) with the additional assumption that every structure T € T is a
Gaifman clique.

The next two subsections are devoted to a proof of Theorem 3.3. We will show
(i)=(ii)=-(ili)=-(i). Since (ii)=-(iii) is obvious, we focus on showing (i)=-(ii) and
(ii))=(i).

3.2. Proof of Theorem 3.3 (i)=-(ii). We assume G has the HL-property. Let
C C D be T-free L-structures, where C' is finite. For 1 < i < n, let D; = SiD and
C; = S¢. Then {D; : 1 < i < n} is a partition of D and {C; : 1 <i < n}isa
partition of C. Without loss of generality, assume D; # @) for every 1 < ¢ < n. Then,
by extending C, we may assume that C; # @) for every 1 < i < n. Let {(C;,a;) :
1 < i < n} be a natural factorization of C. Since G acts transitively on each
D;, we have D; = G(a;). By minimizing the structure on D, we may also assume
that for any m-ary relation symbol R € L and for any dy,...,d,, € D, we have
RP(dy,...,dy,) iff there are c;,...,¢,, € C and g € G such that R%(cy,...,cm)
and (dy,...,dmn) = (9(c1), ..., 9(cm)).

Define p : G — P(C) by letting, for any g € G and ¢ € C, p(g)(c) = g(c), if
g(c) € C; p(g)(c) is undefined otherwise. Since G acts by isomorphisms on D, if
c € C; for some 1 < i < n and p(g)(c) is defined, then p(g)(c) € C;. Since C is
finite, the set p(G) NP = {p(g) € Pc : g € G} is finite.

Let F' C G be finite. Since the action of G on D is faithful, by extending C with
finitely many points, we may assume that p(F \ {1¢}) C Pc. Pick a finite K C G
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such that F C K, K~! = K and p(K \ {1¢}) = p(G \ {1¢}) N Pc. Define

Hi={p1--p : p1,....,; € K and p(p1)(--- p(p1)(ai) ---) = a;}.

Since C and K are finite, H; is finitely generated. To see this, consider an edge-
labeled directed graph on C' defined as follows: there is an edge from ¢; to co labeled
by p if p € K is such that p(c1) = ¢a. Note that this graph can have multiple edges
and loops. The generators of H; are precisely those p; ---p; that give a minimal
cycle from a; back to a;.

Let T" be the L-structure with domain G/H; U --- U G/H,, such that for i =
1,...,n, S = G/H;, and for any m-ary relation symbol R € £ and for any
91, 9m € G, RV (g1 H;,, ..., g H;,,) iff there are py,...,p, € K and g € G such
that p](az,) € Oij for each j = 1a cee, MM, Rc(pl(ai1)7 e 7pm(aim))a and

(ngi17 s 7gmHim) = (gleila cee agpmHzm)
G acts on I" by left multiplication. Consider the map 7 : C' — I" defined as

H; if ¢ = a;,

pH;, ifce C;,c+# a;, and p € K with p(a;) = c.

m(c) =

Since G acts transitively on each D;, 7 is well-defined. We claim that 7 is an
isomorphic embedding of C into I'. In fact, 7 is injective because of the following
fact:

(C1) For every p,q € K and 1 < i < n, if p(a;),q(a;) € C; and p(a;) # q(a;),
then p~1q ¢ H;.

Furthermore, 7 is an isomorphism between C' and 7(C') because of the following
fact:

(C2) For any p1,...,Dm,q1,---,qm € K such that for all j =1,...,m,
pjlai;), qj(ai;) € Gy
for some 1 <iy,...,4, <n,if
RC(p1(ai,),- . pm(ai,,)) and =R (q1(ai,), - - gm(ai,,)),

then there does not exist g € G such that

(leila v apmHim) = (9111H11 yoee agqulm)

(C2) is true since otherwise in D we would have

RD(pl (a’i1)7 e 7pm(aim)) a'nd ﬁRD(Ql (a’il)) MR Qm(aim))

and yet (pi(ai,),...,pm(ai,)) = (gpi(ai), ..., gpm(a;,)), violating that g is an
isomorphism of the structure D.

Consider the map 9 : I' — D defined by 1(gH;) = g(a;). Then 1 is a homomor-
phism from the structure I onto the structure D. Since D is T-free, so is I'. Thus,
we also have the following

(C3) For every structure T € T there is no homomorphism from T into T
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10 MAHMOOD ETEDADIALIABADI AND SU GAO

Next we demonstrate that conditions (C1)—(C3) can all be equivalently expressed
as certain left systems of equations on Hy, ..., H, not having solutions. To do this,
we first establish some general lemmas.

Lemma 3.4. Let G be a group and H < G. For any v,n € G, v~n & H iff the
following left system with variable x does not have a solution

TH =~H

1
(3.1) TH =nH

Proof. Tt is equivalent to state the lemma as y~!n € H iff the left system (3.1)
has a solution. Now it is obvious that (3.1) has a solution iff yH = nH, which is
equivalent to v~ 'n € H. O

Lemma 3.5. Let G be a group and Hi, Hm < G. For any y1,- - s Ym>Ms---Nm €
G, the following are equivalent:

(i) There does not exist g € G such that (viH1, -, YmHm) = (gmH1, -« o, 90mHm);

(ii) The following left system with variables x,x1, ..., %, does not have a solu-
tion
T1H1 = nH
T1H1 = xmH,
32
TmHm = YmHm

Proof. Again we prove the contrapositives. First, assume that there is g € G such
that (viH1, -, YmHm) = (gmH1, -, gNmHm). Thus we have m equations

Y1 H1 = gmHa

Each equation, which is of the form v;H; = gn;H;, is equivalent to there existing
x; such that

i H = "/ﬂ'lz‘

i H = gniHi,
similar to the proof of Lemma 3.4. Thus the totality of the m equations is equivalent
to there existing solutions for the 2m equations in (3.2). Conversely, if (3.2) has a
solution, then each pair of equations involving x; give rise to an equation of the form
viH; = xn;H;. The solution for x witnesses the existence of the desired element
g € G in clause (i). O

We are now ready to argue that conditions (C1)-(C3) can be equivalently ex-
pressed as certain left systems of equations on Hy, ..., H,, < G not having solutions.
For (C1), simply apply Lemma 3.4 to the appropriate H;,p,q. Then p~1lq ¢ H; is
equivalent to the following system not having a solution

xH; = pH;

(3.3) oo
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ON EXTENSIONS OF PARTIAL ISOMORPHISMS 11

Since K is finite, there are only finitely many such systems. To summarize, there
are finitely many left systems on Hy,..., H, such that (C1) holds iff each of the
left systems does not have a solution.

For (C2), apply Lemma 3.5. The left system correspondent to the condition is

r1Hi, = p1H;,

v Hiy = xq Hy,
34

mmHim = meHim
Again, since K is finite, there are only finitely many such systems, and (C2) holds
iff each of these left systems does not have a solution.

For (C3), we consider any T € T. Enumerate the elements of T as t1,...,1.
Introduce variables yi,...,y; correspondent to t1,...,¢;. Suppose first there is a
homomorphism of 7" into I". Then there are g1,...,9; € G and 1 < iy,...,5; < n
such that, for any m-ary relation symbol R € £, whenever R (¢;,,...,t; ) where
1<j1,--,im <1, we have

Rr(gjl Hijl 3t ’gijijm )
Note that RF(gleih,...,gijijm) iff there are p1,...,p, € K and g € G such
that pi(a;;, ) € Gy, forallk=1,....,m,
Rc(pl (a‘ijl )a o 7pm(aijm ))7
and
(9s Hijy oo 95 Hiy ) = (gp1Hig s gpmHi; ).
Applying Lemma 3.5, the above statement is equivalent to the following: there
are 1 < 41,...,4 < n such that for any m-ary relation symbol R € L, whenever
RT(tj,,...,t5,) with 1 < j1,...,jm < I, there are pi,...,p, € K such that
pr(ai,;, ) € Cyy forallk=1,...,m,
Rc(pl(aijl )7 e apm(aijm ))7
and the following left system with variables y1,...,y;, , 21, .. ., 2m has a solution
ZlHih = yleih
ZlHijl =ap1Hj,

35 .
ZmHijm = yijijm
ZmHijnL = xpmHlJm
Here the variables x, 21, . . ., 2, and the left system (3.5) are introduced for each in-

stance of ji, ..., jm and p1, ..., p, € K that satisfy the conditions RT (t;,,...,t; ),
pr(a;;, ) € Cyy forallk=1,...,m, and R (p: (ai; ),y pmlai;, ). We call these
15y Jm and p1, ..., pm € K a set of witnesses. There are only finitely many pos-
sible sets of witnesses. Accumulating all sets of witnesses together, and introducing
a left system (3.5) with distinct variables z, 21, . . ., 2z,, for each set of witnesses, we
obtain a single finite left system that is the union of all these left systems for each
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12 MAHMOOD ETEDADIALIABADI AND SU GAO

set of witnesses. Now this resulting left system has a solution. Conversely, if this
system has a solution, then the solutions for 1, ..., y; will witness a homomorphism
of T into I". Thus the existence of a homomorphism of T" into I" is equivalent to a
single left system having a solution.

Finally, since T is finite, we again have finitely many left systems such that
(C3) holds iff each of the finitely many left systems on Hy, ..., H, does not have a
solution.

In summary, all conditions (C1)—(C3) can be represented as finitely many left
systems on Hq, ..., H, not having a solution. Since G has the HL-property, we can
find Ny, ..., N, <G such that each of the left systems described by (C1)—(C3) does
not have a solution with respect to (N1Hy, ..., N, Hy,). Indeed, for each of the left
system X there are such Ni°,..., N> for the system. For each i = 1,...,n, let N;
be the intersection of all NZ. We thus get Ni, ..., N, which are still of finite index
in G so that all of the left systems on N1 Hq, ..., N, H, still do not have a solution.
This implies that the conditions (C1)—(C3) continue to hold with H; replaced by
Nle

We now define D’ to be the finite L-structure with domain G/NiHy U --- U
G/N, H,, such that S’iD/ = G/N;H; for all i = 1,...,n, and for any m-ary relation
symbol R € £, we have RP'(g1N; H;,, ..., gmN;, H; )iff there are py,...,pm € K
and g € G such that p;(a;;) € C;; for all j =1,...,m, RY(p1(ai,), s pm(ai,,)),
and

(91N Hiys -, gmNi, Hi,, ) = (9p1Niy Hiy s .., gpm Ny, Hi, ).
Consider the map 7’ : C — D’ defined as
() = { N;H;, ifc=a;,
pN;H;, if c€ Cy,c# a;, and p € K with p(a;) = c.

Then conditions (C1) and (C2) with H; replaced by N, H; guarantee that 7’ is an
isomorphic embedding. Condition (C3) with H; replaced by N;H; implies that D’
is T-free. The action of G on D’ is by left multiplication, and each of g € G gives
an isomorphism of the structure D’. Finally, we check that n’ is a K-map, and
therefore an F-map. Let p € K and ¢ € C;, and assume p(c) € C;. Suppose ¢ € K
with g(a;) = ¢ and r € K with r(a;) = p(c). Then 7'(p(c)) = rN;H; = pgN;H; =
p(7'(c)), where r~!pq € H; by the definition of H;. This completes the proof of
(i)=(ii).
3.3. Proof of Theorem 3.3 (iii)=-(i). We assume (iii) holds and show that G
has the HL-property. Suppose Hy,...,H, < G are finitely generated subgroups.
Consider a left system ¥ with [ many equations on Hy, ..., H, that does not have
a solution. Let A be the finite set of g,g~! € G for all constants g appearing in
Y. Let Hy = {l¢} < G be the trivial subgroup. Consider a relational structure D
defined as follows:

a) the domain of D is G/Hy UG/H, U ---UG/H,;

b) there are n + 1 many unary relation symbols Sy, ..., S, such that SP =

G/H; fori=0,...,n;
c) there is a binary relation symbol U such that UP” = D x D;

Downloaded from https://www.cambridge.org/core. University of North Texas, on 02 Sep 2020 at 19:38:45, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/js1.2020.19


https://doi.org/10.1017/jsl.2020.19
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

ON EXTENSIONS OF PARTIAL ISOMORPHISMS 13

d) for each g € A, there is a binary relation By such that BY = {(hHo, hgHy) :

h e G};
e) for each tuple t = (41,...,%m), where 2 < m <2[+n+1land 0<i; <n
for each j = 1,...,m, there is an m-ary relation symbol R; such that

RtD(ngip . 7gmHim) lﬁ ngil N---N gmHim 7é (Z)

Let £ be the language of D. We claim that the left system 3 has a solution iff a
specific finite L-structure T" has a homomorphic image inside D.

First we turn X into an equivalent left system X* with the same number of
equations. To do this, collect all equations in ¥ of the form zH; = gH; where x
is a variable and g € A. Introduce a new variable y and replace every equation
in the above collection by the equation xH; = ygH;. Denote the resulting left
system as X*. We claim that X has a solution iff ¥* has a solution. First suppose
3 has a solution. Then the solution for ¥ together with y = 1¢ is a solution for
>*. Conversely, suppose ¥* has a solution in which y = A in particular. Then this
solution with every term left-multiplied by A~ is still a solution for £*, which, with
y dropped, is a solution for ¥. Thus, without loss of generality, we may assume
that all equations in X are of the form xH; = ygH; where z,y are variables and
g€ A

Next we note that every equation of the form zH; = ygH,; can be replaced with
two equations of the form xH; = znewH; and znewHo = ygHg, where the last
equation can be rearranged as yHy = Tnewg ' Hp. By repeating this process, we
may obtain an equivalent left system Y’ with < 2/ many equations such that for
any variable z in X, the equations in ¥/ involving x are all of the form zH; = yH;
or xHy = ygH, for some variable y and constant g € A. Note that for the new
variable x,e above, we get two equations Tnew H; = rH; and zn.wHy = ygHg by
moving the cosets for Tpew to the left hand side of the equations. Now for each
variable z in X', consider the left system X, consisting only of the equations in 3’
that involve x. From the above discussion we know that >, can be listed as:

Q?Hik = EkHik

for k < 20 and each ¢; is either a variable y or of the form yg (in which case i; = 0)
for a variable y and a constant g € A. Note that ¥, has a solution iff the following
expression has a solution:

(3.6) xHoNzH N---NazH, Ne H;, N---NeHy, # 0.

In fact, if ¥, has a solution z,y, . .., then x is in the intersection of (3.6). Conversely,
if (3.6) holds for some x,y,... then they become a solution of ¥,. Thus each ¥,
corresponds to a formal relation

(37) Rt(mHo,Z‘Hl,...,J,‘Hn,elHil,...,GkHik)

for a suitable ¢t of length k+n+1 <2l +n+ 1.

Downloaded from https://www.cambridge.org/core. University of North Texas, on 02 Sep 2020 at 19:38:45, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/js1.2020.19


https://doi.org/10.1017/jsl.2020.19
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

14 MAHMOOD ETEDADIALIABADI AND SU GAO

We now describe a finite L-structure 7. The domain of T is the set of all
formal cosets xH; and xgH,, where z is a variable in ¥/, g € A, and ¢ = 0,...,n.
The definition of S} is obvious. Also UT = T x T. For each g € A, let Bl =
{(zHy,xgHy) : = is a variable in 3'}. The above formal relation (3.7) becomes
now the definition of RT. For other relation symbols R;, RI is empty. Note that
T is a Gaifman clique.

It is now clear that ¥’ has a solution iff there is a homomorphism from the
structure 7' into the structure D. Since ¥ does not have a solution, neither does X’
and it follows that D is T-free.

G acts faithfully on D by left multiplication, and it is clear that the left multi-
plication by any g € G preserves the structure of D. It is also clear that G acts
transitively on SP = G/H; for each i =0,...,n.

Let C' be a finite substructure of D whose domain consists of all H; and gH;
for g € Aand i = 0,...,n. Define p : G — P(C) by letting p(g)(c) = g(c) if
¢, g(c) € C; otherwise p(g)(c) is undefined. Since C is finite, the set p(G) is finite.
Let F' C G be a finite subset so that A C F, p(F') = p(G) and for each i = 1,...,n,
F contains a finite set of generators for H;. Since the action of G on SP is transitive
for each i = 0, ..., n, the partial action of p(F) on S¢ is also transitive. Apply (iii)
to get a finite T-free extension D’ of C' on which G acts by isomorphisms, and an
F-embedding 7 from C' into D’. Note that H; is an element of C' and n(H;) is an
element of D', and we may assume that D' = G(w(Hp)) U ---UG(w(H,)). Let

N; ={g € G: g(a) = a for every a € G(n(H;))}.

Since D' is finite, N; is a normal subgroup of finite index. Now let X 3 be obtained
from ¥ by replacing Hy, ..., H, respectively by N1Hy,..., N, H,. We claim that
¥y does not have a solution, which shows that G has the HL-property.

Towards a contradiction, assume the left system ¥ g on Ni1Hy,..., N,H, has
a solution. Similarly to the above, we can obtain an equivalent left system 27\7
such that each equation in E}“\? is of the form zN;H; = ygN;H;. Let My = Ng N
NiN---NN,. Then Mj is still a normal subgroup of finite index, and obviously
My < N; for all t = 0,...,n. Now each equation of the form xN;H; = ygN;H; in
Z’;v can be equivalently replaced by £ N; H; = TpewN; H; and Thew MoHy = ygMoHp.
Also, the last equation can be reformulated as yMoHy = Tpewg ' MoHy because
of the normality of My. Thus we obtain an equivalent left system 2/1\7 in a similar
way as before, whose solution describes a homomorphic image of 7" in a structure
I'=G/MyHyUG/N1H,U---UG/N,H,. The exact definition of the structure I is
similar to the definition of D above. For notational convenience we define M; = N;
fori=1,...,n.

Since D’ is a T-free structure, it is enough to show that there is a homomorphism
from I" into D’. Consider the map ¢ : I' — D’ defined by ¥(gM;H;) = g(w(H;)).
Then 1 is the desired homomorphism. Note that 1 is well-defined since if g1 M; H; =
goM; H; then go = g1nh for somen € M; < N; and h € H;; using the definition of V;
and H; and the fact that 7 is an F-embedding, we have go(7(H;)) = ginh(n(H;)) =
g1(m(H;)). More precisely, we can write h = fy--- f, with f1,...,f. € F as F
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ON EXTENSIONS OF PARTIAL ISOMORPHISMS 15

contains a finite set of generators for H;; since 7w is an F-embedding, we have
h(Tf(Hi)) = f1 cee fr(ﬂ'(Hi)) = ’/T(fl s fr(Hi)) = ’/T(Hl) AISO, by definition of NZ‘,
for n € N; we have n(w(H;)) = n(H;).

It remains to verify that ¢ preserves structure. For this let t = (iy,...,4,,) with
m < 2l +n+ 1 and assume R} (g1 M;, H;,,...,gmM;, H; ), that is,

g M, Hiy 0N g M, Hi, # 0.

Then there are n;; € M;;, < N;, and h;; € H;; for j =1,...,m such that
g1 hey = - = gmN4, e, = G-

The action of g on D’ sends the tuple (w(H;,),...,m(H;, )) to

(1(w(Hy,)), - - o gm(7(Hi,, ) = (g1 Miy Hiy), o 0 (gm M, Hi,)).
Note that RS (H,, ..., H;,, ) and therefore RP (7 (Hj,),...,n(H;,)). Now since g

acts by an isomorphism on D', we have RP (gy(7(H1)), . .., gm (7 (Hp))).

Finally, consider (hMyHy, hgMoHy) € B_}; for some g € A and h € G. We
need to show that (h(w(Hy)), hg(m(Hyp))) € BgD/. By the definition of C, we have
Hy,gHy € C and BgC(HO,gHO). Since g € A C F and 7 is an F-embedding, we have
m(gHo) = g(w(Hyp)) and BQD/(W(H()),Q(W(H()))). Now h acts by an isomorphism on
D’ and so Bg)/ (hm(Hp), hg(m(Hy))) as desired.

This finishes the proof of Theorem 3.3.

3.4. Free products of groups with the HL-property. As a corollary to The-
orem 3.3, we show below that the HL-property is closed under taking finite free
products. This is analogous to the theorem of Coulbois [1] which states that the
RZ-property is closed under taking finite free products. In the proof of the corollary
we use the coherence result of Sinora—Solecki [9], which is also established in [5]
with a different proof. We summarize in the following proposition the exact fact
we will need in our proof.

Proposition 3.6. Let C be a finite T-free L-structure. Then, C has a finite T -
free HL-extension (D, ¢) such that for every substructure E C C, ¢g : Aut(E) —
Aut(D) defined as

[ #), ifpeAut(E)NPe,
¢E(p)‘{1D, ifp=1g,

is a group isomorphic embedding.

Proof. Tt was proved in [9] and [5] that, for any finite T-free L-structure C, there
is a finite T-free extension D of C and a map ¢ : P(C) — Aut(D) such that
p C ¢(p) for all p € P(C), and for any p,q,r € P(C) with po g = r we have
w(p) o (q) = p(r). We claim (D, ¢ [ Pc) is the desired HL-extension. Let £ C C
be a substructure. Since 1g o lp = 1g, we have ¢(1g) o p(1g) = ¢(1g). Thus
©(1g) =1p,and ¢ = ¢ | Aut(E). The coherence property clearly implies that ¢ g
is a group homomorphism from Aut(E) into Aut(D). Assume g € Aut(E) C P(C)
and ¢r(9) = p(9) = 1p, then g = 1g since ¢ C ¢(g). Therefore, ¢ is an
isomorphic embedding from Aut(FE) into Aut(D). O
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16 MAHMOOD ETEDADIALIABADI AND SU GAO

In the proof of the corollary we will also need a property of Gaifman cliques
proved by Siniora—Solecki in [9]. To explain the property, first recall some defini-
tions.

Definition 3.7. Let £ be a relational language and C7,Cy and C be L-structures.
Assume C' C C,C5. Then the free amalgamation of C7 and Cy over C' is the
structure on D = (C1\ C)UCU(Cy\ C) where for every relation R in the language
RP = R U R®. A class C of L-structures has the free amalgamation property if
the free amalgamation of any two structures in C over a structure in C is still in C.

Siniora—Solecki proved in Lemma 4.5 of [9] that a class C of L-structures has the
free amalgamation property iff there is a set T of L-structures each of which is a
Gaifman clique such that C is exactly the collection of all L-structures C for which
there does not exist any isomorphic embedding from any 7" € T into C. Note that
in our context (where 7 is a finite set of finite L£-structures) the statement implies
that the class of finite T-free L-structures has the free amalgamation property iff
all T € T are Gaifman cliques. This is because, if T is a set of Gaifman cliques
and if we let 77 to be the set of all homomorphic images of structures in 7, then
T’ is still a finite set of Gaifman cliques, and the collection of T-free structures is
exactly the collection of structures into which no 7' € 7" isomorphically embed.

Corollary 3.8. Let G1,G2 be two groups with the HL-property. Then, the free
product of Gy and G2, G1 * G2, has the HL-property.

Proof. Suppose G1, G2 have the HL-property. To show that G * G2 has the HL-

property, we use the equivalence between clauses (i) and (iii) of Theorem 3.3. Specif-

ically, we show the following:
Let £ be a finite relational language with unary relation symbols Sy, ..., S,.
Let 7 be a finite set of finite L-structures such that every T' € T is a
Gaifman clique. Let D be a T-free L-structure such that {SP,... SDP}
is a partition of the domain of D. Let C be a finite substructure of D.
Let F be a finite subset of G; * G3. Suppose that Gy x G2 acts faithfully
by isomorphisms on D and that G; * G5 acts transitively on each S’iD for
1 = 1,...,n. Then there exists a finite 7-free L-structure D’ on which
G4 * G acts by isomorphisms, and an F-embedding from C' into D’.

In the following we construct the desired structure D’.

Let F; C G4 and F» C G5 be finite subsets such that F' C Fy = 5. Let C' C D
be a finite structure extending C' such that for every f = fifs--- fi € F where
fi € F1 UF, for every i = 1,2,...,1, and every a € C where f(a) € C, we have
fi-- fila) € C' for every 1 < j <. Since G; and G have the HL-property, we
can find finite T-free L-structures D} and DY such that for k = 1,2:

(1) Gy acts by isomorphisms on Dj,, and
(2) there exists an Fy-embedding m, from C” to Dj.

Let Dy be the free amalgamation of D] and D) over m1(C’) & mo(C"), that is,
the underlying set of Dy is (D] \ m1(C")) L C’ U (D4 \ m2(C")) and for every relation
R in the language RP° = RP1 U RP2. Since T consists of only Gaifman cliques,
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the collection of all T-free L-structures has the free amalgamation property. Thus
Dg is T-free.

By Proposition 3.6, there exists a finite T-free HL-extension (D', ¢) of Dy such
that for every finite substructure E C Dy, ¢ induces a group isomorphic embedding
from Aut(E) to Aut(D). In particular, this holds for E = Dj, D). Therefore, ¢
induces an action of Gy, on D’ by g(a) = ¢(g)(a) for k = 1,2. By considering the free
product of these two actions, we get an action of G * G5 on D’ by isomorphisms. It
remains to show that there exists an F-embedding 7 from C to D’. Let 7 : C' — D’
denote the inclusion map. We claim 7 | C is as desired. Let f = fifo---fi € F
where f; € Fy UF, for every i = 1,2,...,1, and a € C be such that f(a) € C. Note
that for k = 1,2, since 7 is an Fj-embedding from C’ to Dj},, we have that 7 is also
an Fj-embedding from C’ to D’. Therefore,

m(f(a)) =w(fi-- fula)) = fi(7(fo--- fila))) = - = fr-- filz(a)) = f(r(a)).
]

4. COHERENT HL-EXTENSIONS AND ULTRAEXTENSIVE STRUCTURES

In this section we introduce a notion of ultraextensive L-structures using a new
notion of coherent HL-extensions. Coherence in our sense is slightly weaker than the
coherence notion of Siniora—Solecki [9] but is sufficient for deriving the interesting
properties of ultraextensive structures. These notions are generalizations of similar
notions in [2] in the context of metric spaces.

Definition 4.1. Let C; C C5 be L-structures and (D;, ¢;) be an HL-extension of
C; for i = 1,2. We say that (D1, ¢1) and (Da, ¢2) are coherent if

(i) D2 extends Dy,
(ii) ¢2(p) extends ¢1(p) for all p € Po, € Pe,, and
(iii) letting K; = (¢:i(Pc,)) < Aut(D;) for i = 1,2, and letting « : ¢1(Pe,) —
@2(Pc,) be such that k(¢1(p)) = ¢o(p) for all p € P¢,, then x has a unique
extension to a group isomorphic embedding from K; into Ks.

Definition 4.2. An L-structure U is ultraextensive if

(i) U is ultrahomogeneous, i.e., there is a ¢ such that (U, ¢) is an HL-extension
of U;
(ii) Every finite C' C U has a finite HL-extension (D, ¢) where D C U;
(iii) If C; € Cy C U are finite and (D1, ¢1) is a finite minimal HL-extension of
Cy with Dy C U, then there is a finite minimal HL-extension (Da, ¢2) of
C5 such that Dy C U and (D1, ¢1) and (Da, ¢2) are coherent.

Theorem 4.3. Let T be a finite set of finite L-structures each of which is a Gaif-
man clique. Suppose C; C Cy are finite T -free L-structures and (D1, ¢1) is a finite
T -free HL-extension of Cq1. Then there is a finite T -free HL-extension (Da, ¢2) of
Cy so that (Da, ¢2) is coherent with (D1, ¢1).

Proof. Since every T € T is a Gaifman clique, the collection of all T-free structures
has the free amalgamation property. Let C be the free amalgamation of D; and Cy
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18 MAHMOOD ETEDADIALIABADI AND SU GAO

over (. Then C is T-free. We will again use the main theorem of [9] and [5], which
states that, for any finite T-free L-structure C, there is a finite T-free extension
Dy of C and a map ¢ : P(C') — Aut(D3) such that p C ¢(p) for all p € P(C), and
for any p, ¢, € P(C) with po ¢ =r we have ¢(p) o p(q) = p(r).

Define ¢ : Po, — Aut(D3) as

$2(p) = { o(P1(p)), ifp€ Pe C Pey,
2 o(p)s if p € Po, \ Pe, CP(C).

Then (Ds,¢2) is an HL-extension of Co. It is also clear that Dy extends Dj.
For p € Pc,, our definition of ¢o gives that ¢a2(p) = p(é1(p)) 2 é1(p). Now
define k : K1 — Ky by letting x(¢1(p)) = ¢2(p) and extending the definition of
£ to all finite products in K1 = (¢1(Pc,)) < Aut(D;). We first verify that «
is well-defined. For this let py,...,p, € P, such that ¢1(p1)---¢1(pn) = 1k,.
We need to show that ¢o(p1) - ¢p2(pn) = lk,. Both products take place in an
automorphism group, so they are compositions. By the coherent property of ¢, we
have ¢(¢1(p1)) -~ 0(d1(pn)) = ¢(1k,), and so d2(p1) -~ P2(pn) = 1k,. Thus we
have shown that k is a group homomorphism. To see that it is a group isomorphic
embedding, we show that the kernel of « is trivial. For this let p1,...,pn € P, so
that ¢2(p1) -+ - p2(pn) = 1k,. Restricting all maps on Dy, we get ¢1(p1) -+ d1(pn) =
1k, . O

We remark that the condition in the above theorem for 7 to consist only of
Gaifman cliques is necessary. If T fails this property, not only the proof fails to
work because of the failure of the free amalgamation property for the collection of
T-free L-structures, but also the statement of the theorem can fail.

We give a counterexample below.

Consider £ = {R,S} where R is a binary relation symbol and S is a quar-
ternary relation symbol. Let T' = {0,1,2,3,4, 5,6} where RT = {(0,1), (1,2),(2,0)}
and ST = {(a,b,c,d) : a,b,c,d € {3,4,5,6}}. Let Cy = {z,y,2} with R®? =
{(z,9), (y,2),(z,2)} and S°2 = . Let C; = {x,y} be the induced substruc-
ture of Cy. Let Dy = {z,y,u,v} where RP' = {(x,y), (y,u), (u,v), (v,z)} and
SPr = {(a,b,c,d) : a,b,c,d € {x,y,u,v}}. Then P, = {z — y,y — z} and
(D1, ¢1) is an HL-extension of C, with ¢1 : Po, — Aut(D;) extending = — y to
the automorphism {x — y,y — u,u — v,v — x} and extending y — = to the
automorphism {y — z,z — v,v — u,u — y}. Note that Cy,Cq, Dy are T-free
L-structures. Now there is no T-free HL-extension (D, ¢2) of Cy that is coherent
with (D1, ¢1).

Theorem 4.4. Let T be a finite set of finite L-structures each of which is a Gaif-
man clique. Then every countable T -free L-structure can be extended to a countable
T -free ultraextensive L-structure.

Proof. Let C' be a countable T-free L-structure. Write C' as an increasing union
of finite 7-free L-structures F,, for n = 1,2,.... For n > 1, inductively define
increasing sequences of finite 7-free L-structure C,,, D,, and Z,, as follows. Let
Cy = Fy and (D1, ¢1) be a finite T-free, minimal HL-extension of C;. We define
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Z1 2O Dy such that for every pair (D, D’) with D C D’ C D; and any minimal HL-
extension (E, @) of D where E C Dy, there exists a 7-free minimal HL-extension
(E',¢") of D’ where E' C Z;, such that (F, ¢) and (E’, ¢') are coherent. Note that
this is possible since there are only finitely many triples (D, D', E') and for any such
triple by Theorem 4.3 we can fix a coherent extension E’. Finally, to construct Z7,
we add E’\ E to D, for all E' corresponding to the triple (D, D’, E') such that the
union of the new points (E’ \ E) and E C D; is an isomorphic copy of E'. Z; is
a free amalgamation of 7T-free structures, and hence is T-free. Let Cy be the free
amalgamation of Z; and F5 over Fj.

In general, assume a finite C,, has been defined for n > 1. Apply Theorem 4.3
to obtain a finite 7T-free, minimal HL-extension (D, ¢,) of C,, that is coherent
with (Dy,—1,¢n—1). We use a similar construction to the construction of Z; from
D, to define Z,, O D,,. Note that Z, has the property that for every minimal
HL-extension in D,,, that is, for every D, E C D,, where (E, ¢) is a minimal HL-
extension of D, every D C D’ C D,, has a minimal HL-extension in Z, that is
coherent with (E, ¢). Let C,,11 be the free amalgamation of Z,, and F,, 11 over Fj,.
All structures obtained are T -free.

Let D be the union of the increasing sequence (D)2 ;.

We verify that D is
ultraextensive. To verify Definition 4.2 (i), let p € Pp. Then there is n > 1
such that p € Pc,. Let n, be the least such n. Then for all m > n,, p C
dm(p) C Pm1(p) by the coherence of (D, b)) with (D11, ¢mr1). Define ¢(p) =
Um>n,, ¢m(p). Then ¢(p) is an isomorphism of D that extends p.

For Definition 4.2 (ii), let F* C D be finite. Then there is n such that F C C,,,
and it follows that (D,,, ¢, | Pr) is an HL-extension of F.

Finally, for Definition 4.2 (iii), let F C F’ C D be finite and assume that (F, ¢)
is a finite minimal HL-extension of F' with £ C D. Then, there is a natural number
n such that F', E C D,,. By the construction of Z,, there exists a minimal HL-
extension (E’, ¢') of F’ (corresponding to the triple (F, F’, F)) such that E' C Z,, C
D and that (E’,¢’) is coherent with (E, ¢). O

We derive some properties of ultraextensive structures below.

Theorem 4.5. If U is an ultraextensive L-structure, then every countable sub-
structure C C U can be extended to a countable ultraextensive substructure D C U.

Proof. We use a similar argument to the argument in the proof of Theorem 4.4
to construct D. The differences are that in the construction instead of applying
Theorem 4.3 we use the properties of ultrextensive structures to find (D, ¢,,); and
we consider union of structures instead of free amalgamation to find C),, Z,,. Clearly,
all the structures C,,, D,,, Z,, are substructures of U and therefore, D C U. [l

Theorem 4.6. If U is a countable ultraextensive L-structure then Aut(U) has a
dense locally finite subgroup.

Proof. Let {C;}$2, be an increasing sequence of finite substructures of U such that
U = ;2 Ci. Since U is an ultraextensive L-structure, we can find an increasing
sequence {(D;, ¢;)}$2,, where each D; C U, such that (D;, ¢;) is an HL-extension of
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C; and (D;11, ¢i+1) is coherent with (D;, ¢;) for i = 1,2,.... Then, U;.il Aut(D;)
is a dense locally finite subgroup of Aut(U). O

Definition 4.7. Let C be a class of L-structures. We say C has the coherent
extension property if it has the EPPA and for finite structures D C D" in C and a
finite minimal HL-extension (E, ¢) of D where E is also in C, there exists a finite
minimal HL-extension (E’, ¢') of D' where E’ is in C and (E, ¢) and (E’,¢’) are
coherent.

Theorem 4.8. Let C be a Fraissé class and U be the Fraissé limit of C. Then,
U is ultraextensive iff C has the coherent extension property. In particular, if T is
a finite set of Gaifman cliques and C is the class of T -free structures, then U is
ultraextensive.

Proof. The equivalence is clear by Definition 4.7. The second part is the direct
consequence of Theorem 1.3 and Theorem 4.3. (]

Corollary 4.9. The Henson graph G, the Fraissé limit of the class of K,-free
graphs, is ultraextensive for every natural number n.
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