
ON EXTENSIONS OF PARTIAL ISOMETRIES

MAHMOOD ETEDADIALIABADI AND SU GAO

Abstract. In this paper we define a notion of S-extension for a metric space

and study minimality and coherence of S-extensions. We show that every S-

extension can be identified with an algebraic object. We use this algebraic

representation to give a complete characterization of all finite minimal S-

extensions of a given finite metric space and a complete characterization of

all minimal coherent S-extensions. We also define a notion of ultraextensive

metric spaces and show that every countable metric space can be extended to

a countable ultraextensive metric space. We also show that the isometry group

of an infinite ultraextensive metric space has a dense locally finite subgroup,

generalizing results in [8][10][12][14].We also study compact ultrametric spaces

and show that every compact ultrametric space can be extended to a compact

ultraextensive ultrametric space.

1. Introduction

The study in this paper was motivated by the following theorem of Solecki [12]:

Theorem 1.1 (Solecki [12]). Every finite metric space X can be extended to a

finite metric space Y such that every partial isometry of X extends to an isometry

of Y .

The main objective of this paper is to identify such extensions and related con-

cepts with algebraic objects. Inspired by Solecki’s theorem, we define the following

notions. Given a metric space X, a distinguished point a0 ∈ X and a collection

P of partial isometries of X such that P = P−1 and X \ {a0} ⊆ P (a0), a P -type

S-extension is a pair (Y, φ), where Y is a metric space extending the metric space

X and φ is a map from P into the set of all isometries of Y such that φ(p) extends

p for all p ∈ P . When P is the set of all partial isometries of X, we call (Y, φ) an

S-extension of X. Solecki’s theorem can be restated as: Every finite metric space

has a finite S-extension. We should also mention that similar notions in a more

general context of finite relational structures have been studied by the authors in

[2].

If X is a metric space and (Y, φ) is a P -type S-extension of X, then we say (Y, φ)

is minimal (sometimes called irreducible in the literature) if for all y ∈ Y there are

2010 Mathematics Subject Classification. Primary 05B25, 05C12; Secondary 03C13, 51F99.
Key words and phrases. Hrushovski property, extension property for partial automorphisms

(EPPA), partial isometry, S-extension, S-map, coherent, ultraextensive, ultrahomogeneous, locally

finite,ultrametric.

The second author’s research was partially supported by the NSF grant DMS-1800323.

1



2 MAHMOOD ETEDADIALIABADI AND SU GAO

partial isometries p1, . . . , pn ∈ P and x ∈ X such that

y = φ(p1) · · ·φ(pn)(x).

This allows us to associate the point y ∈ Y with φ(p1) · · ·φ(pn) ∈ φ(F(P )), where

F(P ) is the free group generated by elements of P , and therefore to view Y as an

algebraic object.

Our first main result of the paper is to give an algebraic characterization of all

finite minimal P -type S-extensions of a given finite metric space. Before even stat-

ing the result, we will give a direct constructive proof of Theorem 1.1. Recall that

Solecki’s proof in [12] uses a result of Herwig–Lascar [5], which is in turn a general-

ization of a celebrated result of Hrushovski [6] on extending partial isomorphisms of

finite graphs. Our proof of Theorem 1.1 follows the ideas of Herwig–Lascar’s proof

and is essentially the same as the approaches in Rosendal’s in [10] and Pestov’s in

[8]; but since we have a focus of characterizing all minimal S-extensions, our proof is

somewhat different from them. Specifically, our proof is not as general as [10], and

unlike [8], it does not need the full generality of Herwig–Lascar’s result. Here we

should mention that Hubička–Konečný–Nešetřil [7] provided a combinatorial proof

of Theorem 1.1.

In a sense, our proof of Theorem 1.1 gives a “canonical” algebraic construction

of a P -type S-extension from a parameter we call a feasible prekernel, which is a

suitable normal subgroup of F(P ). Given a feasible prekernel N E F(P ), we con-

struct a canonical algebraic S-extension (ΓN ,ΦN ), and introduce a weight function

wN . The minimal S-extensions can then be characterized as follows.

Theorem 1.2. Let (Y, φ) be a finite minimal P -type S-extension of X. Let N =

ker(φ) and G = ΦN (F(P )). Then there is a G-invariant pseudometric ρ on ΓN
which is consistent with wN such that (Y, φ) is isomorphic to (ΓN

ρ
,ΦN

ρ
).

The next notion we study is that of coherence between P -type S-extensions. Here

we introduce a notion of coherence between feasible prekernels, and our second main

result demonstrates a correspondence between the two coherence notions.

Theorem 1.3. Let X1 ⊆ X2 be finite metric spaces, (Y1, φ1) be a minimal P1-type

S-extension of X1, and P1 ⊆ P2 where P2 = P−12 and X2 \ {a0} ⊆ P2(a0). Then

the following hold.

(i) Let (Y2, φ2) be a P2-type S-extension of X2 that is coherent with (Y1, φ1).

Then N2 = ker(φ2) is a coherent extension of N1 = ker(φ1).

(ii) Let N2E F(P2) be a coherent extension of N1 = ker(φ1). Then letting G2 =

ΦN2(F(P2)), there exists a G2-invariant pseudometric ρ2 on ΓN2 which is

consistent with wN2
, such that (Y2, φ2) = (ΓN2

ρ2
,ΦN2

ρ2
) is coherent with

(Y1, φ1).

Iterative coherent S-extensions lead to infinite metric spaces with striking prop-

erties. We introduce the notion of ultraextensive metric spaces and obtain some

general results about them. Specifically, we call a metric space U ultraextensive if

U is ultrahomogeneous, every finite X ⊆ U has a finite S-extension (Y, φ) where
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Y ⊆ U , and if X1 ⊆ X2 ⊆ U are finite and (Y1, φ1) is a finite minimal S-extension

of X1 with Y1 ⊆ U , then there is a finite minimal S-extension (Y2, φ2) of X2 such

that Y2 ⊆ U and (Y1, φ1) and (Y2, φ2) are coherent.

Recall ultrahomogeneity means that any partial isometry can be extended to

a full isometry of the entire space. Thus ultraextensiveness is a strengthening of

ultrahomogeneity. It follows from our results that the universal Urysohn metric

space U and the rational universal Urysohn space QU are ultraextensive. Another

example of ultraextensive metric space is the countable random graph equipped

with the path metric. Moreover, we will also establish the following results.

Theorem 1.4. Every countable metric space can be extended to a countable ultra-

extensive metric space.

Theorem 1.5. If U is an ultraextensive metric space, then every countable subset

X ⊆ U can be extended to a countable ultraextensive Y ⊆ U .

Theorem 1.6. For any separable ultraextensive metric space U , Iso(U) contains

a dense locally finite subgroup.

For compact ultrametric spaces we prove the following.

Theorem 1.7. Every compact ultrametric space can be extended to a compact

ultraextensive ultrametric space. In particular, every compact ultrametric space has

a compact ultrametric S-extension.

The rest of the paper is organized as follows. In Section 2 we give some pre-

liminaries of S-extensions, metrics on weighted graphs, and the profinite topology.

In Section 3 we give the canonical algebraic construction of finite S-extensions in

the style of Herwig–Lascar. In Section 4 we study finite minimal S-extensions and

give a complete characterization of them. In Section 5 we study the notion of co-

herent S-extensions and give a complete characterization of coherent S-extensions

along with several constructions and applications. In Section 6 we study ultraex-

tensive spaces and establish the main results mentioned above. In Section 7 we

study compact ultrametric spaces and show that they admit compact ultrametric

S-extensions. In Section 8 we mention some open problems.

2. Preliminaries

2.1. S-extensions. We fix some notations to be used in the rest of the paper. Let

(X, dX) and (Y, dY ) be metric spaces. When there is no danger of confusion, we

simply write X for (X, dX) and Y for (Y, dY ).

We say that Y is an extension of X if X ⊆ Y and for all x1, x2 ∈ X, dY (x1, x2) =

dX(x1, x2). Interchangeably, we use the same terminology when Y contains an

isometric copy of X.

An isometry from X to Y is a bijection π : X → Y such that

dY (π(x1), π(x2)) = dX(x1, x2)
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for all x1, x2 ∈ X. An isometry from X to X is also called an isometry of X. The

set of all isometries of X is denoted as Iso(X). Under composition of maps, Iso(X)

becomes a group.

A partial isometry of X is an isometry between two finite subspaces of X. The

set of all partial isometries of X is denoted as P(X). P(X) is not necessarily a

group, but it is a groupoid. In particular, for each p ∈ P(X) we can speak of the

inverse map p−1, which is still a partial isometry.

If Y is an extension of X, then every partial isometry of X is also a partial

isometry of Y . In symbols, we have P(X) ⊆ P(Y ) if X ⊆ Y .

If p, q ∈ P(X), we say that q extends p, and write p ⊆ q, if

{(x, p(x)) : x ∈ dom(p)} ⊆ {(x, q(x)) : x ∈ dom(q)}.

We let 1X denote the identity isometry on X, i.e., 1X(x) = x for all x ∈ X. Let

PX denote the set of all p ∈ P(X) such that p 6⊆ 1X . We refer to elements of PX
as nonidentity partial isometries of X.

The main concept we study in this paper is that of a P -type S-extension.

Definition 2.1. LetX be a finite metric space and fix a distinguished point a0 ∈ X.

Let P ⊆ PX be such that P = P−1 and X \ {a0} ⊆ P (a0). A P -type S-extension

of X is a pair (Y, φ), where Y ⊇ X is an extension of X, and φ : P → Iso(Y ) such

that φ(p) extends p for all p ∈ P . The map φ is called a P -type S-map for X.

When P = PX , we call (Y, φ) an S-extension of X and φ an S-map for X.

Note that an equivalent restatement of Solecki’s theorem (Theorem 1.1) is that

every finite metric space has a finite S-extension. It is well-known that the universal

Urysohn space U is both universal (for all separable metric spaces) and ultrahomo-

geneous. These imply that every separable metric space has an S-extension (Y, φ)

where Y is isometric with U.

We will need the following notion of isomorphism between P -type S-extensions.

Definition 2.2. Let X be a metric space and (Y, φ) and (Z,ψ) be both P -type

S-extensions of X. An isomorphism between (Y, φ) and (Z,ψ) is an isometry π :

Y → Z such that ψ(p) ◦ π = π ◦ φ(p) for all p ∈ P . If there is an isomorphism

between (Y, φ) and (Z,ψ), we say that (Y, φ) and (Z,ψ) are isomorphic, and write

(Y, φ) ∼= (Z,ψ).

2.2. Metrics on weighted graphs. We will study metric spaces derived from

weighted graphs. A weighted graph is a pair (Γ, w), where Γ = (V (Γ), E(Γ)) is a

(simple undirected) graph and w : E(Γ) → R+ (R+ denotes the set of all positive

real numbers). We call w the weight function. If w1, w2 are two weight functions

on Γ, then we write w1 ≤ w2 if w1(x, y) ≤ w2(x, y) for all (x, y) ∈ E(Γ).

Given a weighted graph (Γ, w), let Lw = inf{w(x, y) : (x, y) ∈ E(Γ)} and

Bw = sup{w(x, y) : (x, y) ∈ E(Γ)}. Assuming 0 < Lw ≤ Bw < ∞, one can define

a path metric dw on V (Γ) as follows: for any x, y ∈ V (Γ), let

dw(x, y) = min{Bw, δw(x, y)}
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where

δw(x, y) = inf

{
n∑
i=1

w(xi, xi+1) : x1 = x, xn+1 = y,∀i ≤ n (xi, xi+1) ∈ E(Γ)

}
.

In particular, δw(x, y) is undefined when x and y are not connected by a path in Γ,

in which case dw(x, y) = Bw. It is easy to verify that dw is indeed a metric. Also,

if (x, y) ∈ E(Γ), then dw(x, y) = δw(x, y). We note the following simple fact about

dw without proof.

Lemma 2.3. The following are equivalent:

(i) For any (x, y) ∈ E(Γ), dw(x, y) = w(x, y).

(ii) For any (x, y) ∈ E(Γ) and any x1, . . . , xn+1 where x1 = x, xn+1 = y, and

(xi, xi+1) ∈ E(Γ) for all i = 1, . . . , n, we have

w(x, y) ≤
n∑
i=1

w(xi, xi+1).

We introduce some new concepts about the consistency of metrics on weighted

graphs.

Definition 2.4. Let (Γ, w) be a weighted graph and d be a metric on V (Γ). We

say that d is consistent with w if for all (x, y) ∈ E(Γ), d(x, y) = w(x, y). We say

that w is reduced if dw is consistent with w.

Lemma 2.5. Let (Γ, w) be a connected weighted graph. Then there is a maximal

reduced weight function w∗ on Γ with w∗ ≤ w.

Proof. For all (x, y) ∈ E(Γ), define w∗(x, y) = dw(x, y) = δw(x, y). Then w∗ ≤ w.

To see that w∗ is reduced we use Lemma 2.3 and consider (x, y) ∈ E(Γ). Suppose

x1, . . . , xn+1 ∈ V (Γ) with x1 = x, xn+1 = y, and (xi, xi+1) ∈ E(Γ) for all i =

1, . . . , n. Let ε > 0. For each i = 1, . . . , n, let x1i = xi, x
2
i , . . . , x

ki+1
i = xi+1 ∈ V (Γ)

with (xji , x
j+1
i ) ∈ E(Γ) for all j = 1, . . . , ki be such that

w∗(xi, xi+1) = dw(xi, xi+1) ≤
ki∑
j=1

w(xji , x
j+1
i ) ≤ w∗(xi, xi+1) + ε/n.

Then

w∗(x, y) = dw(x, y) ≤
n∑
i=1

ki∑
j=1

w(xji , x
j+1
i ) ≤

n∑
i=1

w∗(xi, xi+1) + ε.

Since ε is arbitrary, we have that

w∗(x, y) ≤
n∑
i=1

w∗(xi, xi+1).

Thus w∗ is reduced. For the maximality of w∗, assume u ≤ w is a reduced weighted

function. Then for all (x, y) ∈ E(Γ), u(x, y) = du(x, y) ≤ dw(x, y) = w∗(x, y). �
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We can always turn a metric space into a weighted graph. If (X, d) is a metric

space, for any x, y ∈ X with x 6= y, we add an edge between x and y with weight

wd(x, y) = d(x, y). Then (X,wd) is a connected weighted graph and wd is a reduced

weight function.

We will also consider pseudometrics on weighted graphs.

Definition 2.6. Let (Γ, w) be a weighted graph and ρ be a pseudometric on V (Γ).

We say that ρ is consistent with w if for all (x, y) ∈ E(Γ), ρ(x, y) = w(x, y).

When a weight function w satisfies Bw <∞ and Lw = 0, one can similarly define

a path pseudometric dw and the distance function δw the same way as above. The

resulting path pseudometric is consistent with w.

Definition 2.7. Let (M,ρ) be a pseudometric space. An isometry of (M,ρ) is a

map ϕ : M → M such that for all x, y ∈ M , ρ(ϕ(x), ϕ(y)) = ρ(x, y). If G is a set

of isometries of (M,ρ), we say that ρ is G-invariant.

Any pseudometric space (M,ρ) has a metric identification defined as follows. Let

∼ be an equivalence relation defined on M by x ∼ y iff ρ(x, y) = 0. For each x ∈M ,

let [x]∼ denote the ∼-equivalence class of x. Then we can define M = M
ρ

= M/ ∼
and a metric ρ on M by ρ([x]∼, [y]∼) = ρ(x, y) for all x, y ∈ M . (M,ρ) is called

the metric identification of (M,ρ). If ϕ is an isometry of (M,ρ), then we can define

ϕ : M →M by ϕ([x]∼) = [ϕ(x)]∼ for all x ∈M . Then ϕ is an isometry of (M,ρ).

Suppose G is a set of isometries of (M,ρ), then G = G
ρ

= {ϕ : ϕ ∈ G} is a set of

isometries of (M,ρ). We note that if G is a group, then G is also a group.

Let (Γ, w) be a weighted graph and ρ be a pseudometric on V (Γ) consistent with

w. Let (Γ, ρ) denote the metric identification of the pseudometric space (Γ, ρ). For

(x, y) ∈ E(Γ), define w([x]∼, [y]∼) = w(x, y). Then (Γ, w) is a weighted graph and

ρ is consistent with w. We will need this construction in the subsequent sections.

2.3. The profinite topology. One of the main tools we will be using is Ribes–

Zalesskii theorem [9] on the profinite topology on an abstract group. Recall that if

G is an abstract group, the profinite topology on G is the topology generated by all

cosets of normal subgroups of finite index, that is, it has as a basis of open subsets

all cosets of normal subgroups of finite index.

Theorem 2.8 (Ribes–Zalesskii [9]). Let F be an abstract free group and H1, . . . ,Hn

be finitely generated subgroups of F. Then H1 · · ·Hn is closed in the profinite topol-

ogy.

A group G is said to have property RZ if for any finitely generated subgroups

H1, . . . ,Hn of G, H1 · · ·Hn is closed in the profinite topology of G. All groups

with property RZ are residually finite. We will also use the following theorem of

Coulbois [1].

Theorem 2.9 (Coulbois [1]). If G1 and G2 have property RZ, then so does the

free product G1 ∗G2.
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Herwig–Lascar [5] used the Ribes–Zalesskii theorem in their study of the exten-

sion problems. This approach was explored further by Rosendal [10] [11] to study

extension problems for isometries, who showed that the Ribes–Zalesskii property

for a group G is equivalent to an extension property for actions of G by isometries.

Definition 2.10. Let G be a group acting by isometries on a metric space (X, dX).

We say that the action is finitely approximable if for any finite A ⊆ X and finite

F ⊆ G there is a finite metric space (Y, dY ), on which G acts by isometries, and an

isometry π : A→ Y such that whenever g ∈ F and x, gx ∈ A, then π(gx) = gπ(x).

Theorem 2.11 (Rosendal [10]). The following are equivalent for a countable dis-

crete group G:

(1) G has property RZ;

(2) Any action of G by isometries on a metric space is finitely approximable.

3. Finite S-Extensions

In this section we give a direct constructive proof of Solecki’s theorem (The-

orem 1.1) following the ideas of Herwig–Lascar [5]. We will see in the following

sections that the construction we present here is in some sense canonical.

For the rest of this section we fix a finite metric space X, a distinguished point

a0 ∈ X and P ⊆ PX where P = P−1 and X \ {a0} ⊆ P (a0). Recall that PX is the

set of all nonidentity partial isometries of X. Let F(P ) be the free group generated

by elements of P . For each p ∈ P , we identify the partial isometry p−1 ∈ P with

the formal inverse of p in F(P ). Thus any nonidentity element of F(P ) is a finite

word of the form p1 . . . pn with p1, . . . , pn ∈ P . We use 1 to denote the identity

element of F(P ). Of course, 1 can be identified with the identity isometry 1X .

Let H be the set of all finite words p1 · · · pn with p1, . . . , pn ∈ P such that

p1 . . . pn(a0) = p1(p2(· · · pn(a0) · · · )) is defined and p1 . . . pn(a0) = a0. Since X is

finite, H is a finitely generated subgroup of F(P ).

Define Γ = F(P )/H. We construct a weighted graph (Γ, w) as follows:

(1) for every p, q ∈ P ∪ {1} such that p(a0) and q(a0) are defined, there is an

edge between pH and qH with w(pH, qH) = dX(p(a0), q(a0)), and

(2) for every g, g1, g2 ∈ F(P ), if there is an edge between g1H and g2H,

then there is an edge between gg1H and gg2H with w(gg1H, gg2H) =

w(g1H, g2H).

To see that w is well-defined, first note that if w(g1H, g2H) is defined then there are

p, q ∈ P with p(a0) and q(a0) defined, and g ∈ F(P ) such that g1 = gp and g2 = gq.

In this case, w(g1H, g2H) = w(pH, qH) = dX(p(a0), q(a0)). Thus, to verify that w

is well-defined, it suffices to make sure that if p, q, r, s ∈ P and dX(p(a0), q(a0)) 6=
dX(r(a0), s(a0)), then there does not exist g ∈ F(P ) such that gpH = rH and

gqH = sH. Assume there is such a g = p1 . . . pn. Then r−1gp, s−1gq ∈ H, and

thus r−1p1 . . . pnp(a0) = a0 and s−1p1 . . . pnq(a0) = a0. It follows that

p1 . . . pn(p(a0)) = r(a0) and p1 . . . pn(q(a0)) = s(a0).

Since all p1, . . . , pn are partial isometries, we have dX(p(a0), q(a0)) = dX(r(a0), s(a0)).
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From the finiteness of P and the definition of w, it is clear that Lw = inf{w(x, y) :

(x, y) ∈ E(Γ)} > 0 and Bw = sup{w(x, y) : (x, y) ∈ E(Γ)} < ∞. It follows that,

equipped with the path metric dw, Γ becomes a metric space. When there is no

danger of confusion, we use Γ to denote the metric space (Γ, dw).

We claim that Γ is essentially an extension of X. To see this, let e : X → Γ be

defined by

e(a) =

{
H, if a = a0,

pH, where p ∈ P and p(a0) = a, if a 6= a0.

To see that e is well-defined, first note that for any a 6= a0 there is p ∈ P with

p(a0) = a. If p, q ∈ P with p(a0) = q(a0), then p−1q ∈ H and therefore pH = qH.

Thus e is well-defined. Furthermore, if e(a) = pH = qH = e(b) and p(a0) = a

and q(a0) = b, then p−1q ∈ H and therefore a = p(a0) = q(a0) = b. This means

that e is one-to-one. To see that e is an isometric embedding, we use the following

lemmas.

Lemma 3.1. Let (Y, φ) be a P -type S-extension of X. Then there is π : Γ → Y

such that dY (π(g1H), π(g2H)) = w(g1H, g2H) whenever (g1H, g2H) ∈ E(Γ).

Proof. We first expand φ : P → Iso(Y ) to a map ψ : F(P )→ Iso(Y ) by

ψ(p1 . . . pn) = φ(p1) ◦ · · · ◦ φ(pn).

Define π : Γ → Y by π(gH) = ψ(g)(a0). It is easy to see that π is well-defined.

Now, if (g1H, g2H) ∈ E(Γ), then there exist p, q ∈ P ∪ {1} and g ∈ F(P ) such that

g1 = gp, g2 = gq, and p(a0), q(a0) are defined. We have

dY (π(g1H), π(g2H)) = dY (π(gpH), π(gqH)) = dY (ψ(g) ◦ φ(p)(a0), ψ(g) ◦ φ(q)(a0))

= dY (φ(p)(a0), φ(q)(a0)) = dX(p(a0), q(a0))

= w(pH, qH) = w(gpH, gqH).

�

Lemma 3.2. w is reduced.

Proof. We verify using Lemma 2.3 that for any (g1H, g2H) ∈ E(Γ), dw(g1H, g2H) =

w(g1H, g2H). Let γ1 = g1, γ2, . . . , γn+1 = g2 be elements of F(P ) such that for all

i = 1, . . . , n, (γiH, γi+1H) ∈ E(Γ). Let Y = U and (Y, φ) be a P -type S-extension

of X. Let π : Γ→ Y be given by Lemma 3.1. Then

w(g1H, g2H) = dY (π(g1H), π(g2H))

≤
n∑
i=1

dY (π(γiH), π(γi+1H)) =

n∑
i=1

w(γiH, γi+1H).

�

Lemma 3.3. e is an isometric embedding.



ON EXTENSIONS OF PARTIAL ISOMETRIES 9

Proof. Let a, b ∈ X and p, q ∈ P ∪ {1} with p(a0) = a and q(a0) = b. Then

(pH, qH) ∈ E(Γ). Since w is reduced, we have

dw(e(a), e(b)) = dw(pH, qH) = w(pH, qH) = dX(p(a0), q(a0)) = dX(a, b).

�

We identify X with

e(X) = {pH : p ∈ P ∪ {1} and p(a0) is defined} ⊆ Γ

and consider Γ an extension of X. For each q ∈ P , consider the partial map

q̂ : e(X) → e(X) defined by q̂(pH) = qpH for all pH, qpH ∈ e(X), i.e., whenever

p(a0) and q(p(a0)) are defined; note that in this case there exists r ∈ P such that

r(a0) = q(p(a0)) and rH = qpH. Then it is straightforward to verify that for all

a, b ∈ X, q(a) = b iff q̂(e(a)) = e(b). Thus we may identify q with q̂ on the domain

e(dom(q)).

Define Φ : P → Iso(Γ) by letting, for any q ∈ P ,

Φ(q)(gH) = qgH

for all g ∈ F(P ). To see that Φ(q) is indeed an isometry of Γ, let g1, g2 ∈ F(P ).

From the definitions of w and δw, we get δw(g1H, g2H) = δw(qg1H, qg2H) (includ-

ing the case when one of these quantities is ∞). It follows that dw(g1H, g2H) =

dw(qg1H, qg2H).

Lemma 3.4. (Γ,Φ) is a P -type S-extension of X.

Proof. For any q ∈ P , Φ(q) is obviously an extension of q̂. �

To construct a finite P -type S-extension of X our plan is to find a suitable normal

subgroup N of finite index in F(P ), and to use ΓN = F(P )/NH as the underlying

space of the P -type S-extension. Assuming such a normal subgroup N E F(P ) is

found, we first turn ΓN into a weighted graph (ΓN , wN ) as follows:

(1) for every p, q ∈ P ∪ {1} with p(a0) and q(a0) defined, there is an edge

between pNH and qNH with wN (pNH, qNH) = dX(p(a0), q(a0)), and

(2) for every g, g1, g2 ∈ F(P ), if there is an edge between g1NH and g2NH,

then there is an edge between gg1NH and gg2NH with

wN (gg1NH, gg2NH) = wN (g1NH, g2NH).

To guarantee that wN is well-defined, we use a similar argument as before provided

that the following condition holds:

(C1) For every p, q, r, s ∈ P ∪ {1} such that dX(p(a0), q(a0)) 6= dX(r(a0), s(a0)),

there does not exist g ∈ F(P ) such that gpNH = rNH and gqNH = sNH,

equivalently, N ∩ pHr−1sHq−1 = ∅.
To see the equivalence in the statement of (C1), suppose gpNH = rNH and

gqNH = sNH. Then by the normality of N we have g ∈ rNHp−1 ∩ sNHq−1,

and thus rNHp−1 ∩ sNHq−1 6= ∅. It follows that N ∩ pHr−1sHq−1N 6= ∅, or

N ∩ pHr−1sHq−1 6= ∅. All steps can be reversed to establish the backward impli-

cation.



10 MAHMOOD ETEDADIALIABADI AND SU GAO

Another similar argument as before shows that dwN
is a metric on ΓN . We again

define

eN (a) =

{
NH, if a = a0,

pNH, where p ∈ P and p(a0) = a, if a 6= a0.

In order to guarantee that eN is one-to-one, we argue similarly as before provided

that the following condition holds for N :

(C2) For every p, q ∈ P ∪ {1}, if p(a0) and q(a0) are defined and p(a0) 6= q(a0),

then p−1q /∈ NH, equivalently, N ∩ pHq−1 = ∅.
Finally, to guarantee that eN is an isometric embedding, we argue similarly as

in the proof of Lemma 3.3 provided that wN is reduced, which corresponds to the

following condition:

(C3) For every p, q, r1, s1, . . . , rn, sn ∈ P ∪ {1} such that

dX(p(a0), q(a0)) >

n∑
i=1

dX(ri(a0), si(a0)),

there does not exist a path in ΓN from pNH to qNH using translates of

edges (r1NH, s1NH), . . . , (rnNH, snNH) in the same order. That is, there

do not exist g1, . . . , gn ∈ F(P ) such that

pNH = g1r1NH, g1s1NH = g2r2NH,

. . . . . .

gn−1sn−1NH = gnrnNH, gnsnNH = qH.

Equivalently, N ∩ pHr−11 s1H · · ·Hr−1n snHq
−1 = ∅.

To summarize, we need to find N E F(P ) of finite index so that (C1), (C2)

and (C3) hold. Note that these correspond to finitely many conditions, and each

condition is of the form γN∩H1 · · ·Hn = ∅ where γ ∈ F(P ), H1, . . . ,Hn are finitely

generated subgroups of F(P ), and γ 6∈ H1 · · ·Hn. For example, the condition in

(C1) can be rewritten as

(p−1qs−1r)N ∩H(r−1sHs−1r) = ∅.

Thus, by the Ribes–Zalesskii theorem, for each condition of the form γN∩H1 · · ·Hn =

∅, where γ /∈ H1 · · ·Hn, there is a normal subgroup of finite index satisfying the

condition. Taking the intersection of all these subgroups, we obtain still a normal

subgroup of finite index to satisfy all conditions (C1), (C2) and (C3).

Now

eN (X) = {pNH : p ∈ P and p(a0) is defined}.
Similar to the above, for each q ∈ P we can define the partial map q̃ : eN (X) →
eN (X) by q̃(pNH) = qpNH. Then X is identified with eN (X) and q is identified

with q̃ with domain e(dom(q)). Define ΦN : P → Iso(ΓN ) by

ΦN (q)(gNH) = qgNH.

Then it is obvious that ΦN (q) extends q̃ for all q ∈ P .

We have thus established that (ΓN ,ΦN ) is a finite P -type S-extension of X.
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Definition 3.5. Let X be a metric space and P ⊆ PX be such that X \ {a0} ⊆
P (a0). We say N E F(P ) is a feasible P -type prekernel for X if it satisfies (C1),

(C2) and (C3). When there is no danger of confusion, we call N a feasible prekernel.

What we have shown in this section can be summarized as follows.

Lemma 3.6. Let X be a metric space. If N E F(P ) is a feasible P -type prekernel

for X, then (ΓN ,ΦN ) is a P -type S-extension of X.

Thus Theorem 1.1 follows from the fact that for any finite metric space X there

is a feasible P -type prekernel N E F(P ) that is of finite index in F(P ). This in turn

follows from property RZ of the free group F(P ).

4. Minimal S-Extensions

In this section we give a complete characterization of all finite minimal P -type

S-extensions of a given finite metric space. This is done by showing that the P -type

S-extension we constructed in the previous section is canonical in several senses.

We use the same notations from the previous section.

Throughout this section we still fix a finite metric space X, a distinguished point

a0 ∈ X and P ⊆ PX where P = P−1 and X \ {a0} ⊆ P (a0). We have constructed

P -type S-extensions (Γ,Φ) and (ΓN ,ΦN ) for suitable N E F(P ). Here we first note

that, as long as P is sufficiently rich, these P -type S-extensions do not depend on

the choice of the point a0 ∈ X. More explicitly, if a′0 ∈ X and p0(a0) = a′0 for

p0 ∈ P , and if X \ {a′0} ⊆ P (a′0), then we could similarly define Γ′ = F(P )/H ′ and

Φ′. It is easy to see that H ′ = p0Hp
−1
0 . Thus we may define a bijection π : Γ→ Γ′

by π(gH) = gp−10 H ′ for all g ∈ F(P ). It is straightforward to check that π is an

isometry between Γ and Γ′ such that π(Φ(q)(gH)) = Φ′(q)(π(gH)) for all q ∈ P and

g ∈ F(P ). Thus π is indeed an isomorphism between the two P -type S-extensions.

Similarly, when P is sufficiently rich, the finite P -type S-extension (ΓN ,ΦN ) does

not depend on the choice of a0 either.

Next we note that for any P -type S-extension (Y, φ) of X, the P -type S-map φ

can be trivially extended to a map from all of F(P ) to Iso(Y ) by letting

φ̂(p1 . . . pn) = φ(p1) ◦ · · · ◦ φ(pn)

for all p1, . . . , pn ∈ F(P ). φ̂ is a semigroup homomorphism but not necessarily a

group homomorphism. To turn it into a group homomorphism, we just need to

make sure that φ(p−1) = φ(p)−1 for all p ∈ P , which is easy to arrange. In the

rest of this paper, we will use φ to denote the extension φ̂, and thus regard φ as

a map from F(P ) to Iso(Y ). We will also tacitly assume that all the extended

P -type S-maps φ : F(P )→ Iso(Y ) are indeed group homomorphisms and therefore

their ranges are subgroups of Iso(Y ). We note that the extended P -type S-map

Φ : F(P )→ Iso(ΓN ) is already a group homomorphism.

The following lemma is one evidence of the canonicity of the construction (ΓN ,ΦN ).

Lemma 4.1. Let NE F(P ) be a feasible P -type prekernel for X, that is, (ΓN ,ΦN )

is a P -type S-extension of X. Let G = ΦN (F(P )) ≤ Iso(ΓN ) and NG = ker(ΦN ).
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ThenNGEF(P ) is a normal subgroup andNH = NGH. In particular, (ΓNG
,ΦNG

) =

(ΓN ,ΦN ).

Note that the notion of “feasible prekernel” is justified by Lemma 4.1 which

states that such a group N can be massaged into another normal subgroup NG
that produces the same S-extension of X and NG = ker(ΦN ) = ker(ΦNG

).

Proof. NG is obviously a normal subgroup of F(P ). We only need to verify NH =

NGH. Let γ ∈ NG. Then ΦN (γ) = 1 and for all g ∈ F(P ), γgNH = ΦN (γ)(gNH) =

gNH. In particular γNH = NH, and so γ ∈ NH. This shows that NG ⊆ NH

and so NGH ≤ NH. Conversely, suppose γ ∈ N . Then for all g ∈ F(P ), we have

ΦN (γ)(gNH) = γgNH = g(g−1γg)NH = gNH. Thus γ ∈ ker(ΦN ) = NG. This

shows that N ≤ NG and so NH ≤ NGH. �

Next we define minimality for P -type S-extensions.

Definition 4.2. A P -type S-extension (Y, φ) of X is said to be minimal if for any

y ∈ Y there is g ∈ F(P ) such that y = φ(g)(a0).

We state the following fact without proof.

Lemma 4.3. Let (Y, φ) be a P -type S-extension of X. Then the following are

equivalent:

(i) (Y, φ) is minimal;

(ii) For any y ∈ Y there exist g ∈ F(P ) and x ∈ X such that y = φ(g)(x).

Of course, the notion of minimality is motivated by the observation that if (Y, φ)

is a P -type S-extension of X and let

Z = {φ(g)(x) : g ∈ F(P ), x ∈ X},

then Z ⊆ Y and for any p ∈ P and z ∈ Z, φ(p)(z) ∈ Z. Thus, by defining

ψ(p) = φ(p) � Z

for all p ∈ P , we get another P -type S-extension (Z,ψ) of X which is a subextension

of (Y, φ).

We also note that, if (Y, φ) is a P -type S-extension of X, then there are many

ways to define proper superextensions of (Y, φ) by adding points to Y and defining

metrics appropriately. Thus there is no hope to give a reasonable characterization

of all finite P -type S-extensions of X. Below we concentrate on characterizing finite

minimal P -type S-extensions of X. We will show that all finite minimal P -type

S-extensions of X are derived from P -type S-extensions of the form (ΓN ,ΦN ).

Lemma 4.4. Let (Y, φ) be a P -type S-extension of X. Let N = ker(φ). Then N

is a feasible P -type prekernel for X.

Proof. Define Ψ : ΓN → Y by Ψ(gNH) = φ(g)(a0) for all g ∈ F(P ). To see Ψ

is well-defined, note that if g−12 g1 ∈ NH, then for some n ∈ N and h ∈ H, we

have φ(g2)−1φ(g1)(a0) = φ(n)φ(h)(a0) = φ(n)(a0) = a0. Here we note that for any

n ∈ N , φ(n)(a0) = a0 since n ∈ ker(φ), and for any h ∈ H, φ(h)(a0) = a0 since

h(a0) = a0 and φ(h) extends h. Thus φ(g1)(a0) = φ(g2)(a0).
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To verify (C1), let p, q, r, s ∈ P ∪ {1} and g ∈ F(P ) be such that p(a0), q(a0),

r(a0) and s(a0) are defined, pNH = grNH and qNH = gsNH. Applying the map

Ψ to these equations, we get φ(p)(a0) = φ(g)φ(r)(a0) and φ(q)(a0) = φ(g)φ(s)(a0).

We need to show that dX(p(a0), q(a0)) = dX(r(a0), s(a0)). Since φ(g) is an isometry

of Y , we have

dX(p(a0), q(a0)) = dY (φ(p)(a0), φ(q)(a0))

= dY (φ(g)φ(r)(a0), φ(g)φ(s)(a0))

= dY (φ(r)(a0), φ(s)(a0)) = dX(r(a0), s(a0)).

To verify (C2), let p, q ∈ P ∪ {1} be such that p(a0), q(a0) are defined and

pNH = qNH. We get

p(a0) = φ(p)(a0) = Ψ(pNH) = Ψ(qNH) = φ(q)(a0) = q(a0).

Finally, to verify (C3), let p, q, r1, s1, . . . , rn, sn ∈ P ∪ {1} and g1, . . . , gn ∈ F(P )

be such that p(a0), q(a0), r1(a0), s1(a0), . . . , rn(a0), sn(a0) are all defined, and

pNH = g1r1NH, g1s1NH = g2r2NH,

. . . . . .

gn−1sn−1NH = gnrnNH, gnsnNH = qH.

Applying Ψ to all these equations, we get

p(a0) = φ(g1)(r1(a0)), φ(g1)(s1(a0)) = φ(g2)(r2(a0)),

. . . . . .

φ(gn−1)(sn−1(a0)) = φ(gn)(rn(a0)), φ(gn)(sn(a0)) = q(a0).

It follows that

dX(p(a0), q(a0)) = dY (p(a0), q(a0)) ≤
n∑
i=1

dY (ri(a0), si(a0)) =

n∑
i=1

dX(ri(a0), si(a0)).

�

Thus, for any finite P -type S-extension (Y, φ), we have that N = ker(φ) is a

normal subgroup of F(P ) of finite index and that N is a feasible prekernel. Fur-

thermore, we will be able to carry out the construction of (ΓN ,ΦN ) as in Section 3

as a P -type S-extension of X based on the weighted graph (ΓN , wN ). In particular,

the weight function wN , the path metric dwN
, the isometric embedding eN , etc.

are all well-defined.

Theorem 4.5. Let (Y, φ) be a finite minimal P -type S-extension of X. Let N =

ker(φ) and G = ΦN (F(P )). Then there is a G-invariant pseudometric ρ on ΓN
which is consistent with wN such that (Y, φ) is isomorphic to (ΓN ,ΦN ).

Proof. We again define Ψ : ΓN → Y by Ψ(gNH) = φ(g)(a0) for all g ∈ F(P ). As

in the proof of Lemma 4.4, Ψ is well-defined. Since φ is minimal, Ψ is onto.

We define a pseudometric ρ on ΓN by

ρ(g1NH, g2NH) = dY (Ψ(g1NH),Ψ(g2NH)) = dY (φ(g1)(a0), φ(g2)(a0)).
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It is easy to verify that ρ is indeed a pseudometric on ΓN .

Recall that ΦN : P → Iso(ΓN ) is defined by

ΦN (p)(gNH) = pgNH

for all p ∈ P and g ∈ F(P ). From previous section, the Iso(ΓN ) refers to the

group of isometries for the metric space (ΓN , dwN
). Here we claim that the maps

gNH 7→ pgNH are also isometries of the pseudometric space (ΓN , ρ). To see this,

we only need to check

ρ(pg1NH, pg2NH) = dY (φ(pg1)(a0), φ(pg2)(a0))

= dY (φ(p)φ(g1)(a0), φ(p)φ(g2)(a0)) = ρ(g1NH, g2NH).

Extending ΦN to a group homomorphism from F(P ) to Iso(ΓN ), the group of all

isometries of the pseudometric space (ΓN , ρ), it follows that ρ is G-invariant.

To verify that ρ is consistent with wN , we consider an edge in the weighted

graph (ΓN , wN ), which is of the form (gpNH, gqNH) where g ∈ F(P ) and p, q ∈
P ∪{1} are such that p(a0) and q(a0) are defined. Note that wN (gpNH, gqNH) =

dX(p(a0), q(a0)). We have

ρ(gpNH, gqNH) = dY (φ(g)φ(p)(a0), φ(g)φ(q)(a0))

= dY (φ(p)(a0), φ(q)(a0))

= dX(p(a0), q(a0)) = wN (gpNH, gqNH).

We can now consider the metric identification of the pseudometric space (ΓN , ρ),

which is denoted by (ΓN , ρ). Since ρ is consistent with wN , so is ρ. Since ρ is G-

invariant, for each ϕ ∈ G we can define an isometry ϕ ∈ G for (ΓN , ρ). Thus it

makes sense to define ΦN : P → Iso(ΓN ) by ΦN (p) = ΦN (p).

Finally, let π : ΓN → Y be defined as π([gNH]∼) = φ(g)(a0). Then π is an

isometry between the metric spaces (ΓN , ρ) and (Y, dY ). To complete the proof of

the theorem, we only need to verify that for any p ∈ P , π ◦ ΦN (p) = φ(p) ◦ π. We

have

[π ◦ ΦN (p)]([gNH]∼) = π[ΦN (p)([gNH]∼)] = π([pgNH]∼)

= φ(pg)(a0) = φ(p)φ(g)(a0)

= φ(p)[π([gNH]∼)] = [φ(p) ◦ π]([gNH]∼).

�

Theorem 4.6. Let N E F(P ) be a feasible P -type prekernel that is of finite index.

Let G = ΦN (F(P )). Let ρ be a G-invariant pseudometric on ΓN which is consistent

with the weight function wN . Then (ΓN ,ΦN ) is a finite minimal P -type S-extension

of X.

Proof. Consider the metric identification (ΓN , ρ). Since ρ is G-invariant, G is a set

of isometries for ΓN . Since ρ is consistent with wN , so is ρ. Define eN : X → ΓN by

eN (a) = [eN (a)]∼. Then eN is an isometric embedding from X into ΓN . Note that

eN (a0) = [NH]∼. Thus we can identify a0 with [NH]∼. It follows from similar
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arguments as before that (ΓN ,ΦN ) is a P -type S-extension of X. To see that it is

minimal, we just note that for any g ∈ F(P ), ΦN (g)([NH]∼) = [gNH]∼. �

We summarize the characterization of all finite minimal P -type S-extensions of

X in the following theorem.

Theorem 4.7. The following are equivalent:

(i) (Y, φ) is a finite minimal P -type S-extension of X;

(ii) There exists a feasible P -type prekernel N E F(P ) of finite index, and,

letting G = ΦN (F(P )), there exists a G-invariant pseudometric ρ on ΓN
which is consistent with wN , such that (Y, φ) is isomorphic to (ΓN ,ΦN );

(iii) For N = ker(φ) and G = ΦN (F(P )), there exists a G-invariant pseudomet-

ric ρ on ΓN which is consistent with wN , such that (Y, φ) is isomorphic to

(ΓN ,ΦN ).

5. Coherent S-Extensions

5.1. Coherent S-extensions and strongly coherent S-extensions. In this

section we study a notion of coherence for (P -type) S-extensions. The terminology

has been used for a different notion in Siniora–Solecki [14] which refers to a slightly

stronger condition. We call their notion of coherence strongly coherent.

Definition 5.1 (Solecki). Let X be a metric space. An S-extension (Y, φ) of X

is strongly coherent if for every triple (p, q, r) of partial isometries of X such that

p ◦ q = r, we have φ(p) ◦ φ(q) = φ(r).

The following is a strengthening of Solecki’s theorem on existence of finite S-

extensions.

Theorem 5.2 (Solecki [13] [10] [14]). Let X be a finite metric space. Then X has

a finite strongly coherent S-extension (Y, φ).

The following notion of coherence is slightly weaker than the notion of strongly

coherent but is sufficient for our study of ultraextensive metric spaces in subsequent

sections.

Definition 5.3. LetX1 ⊆ X2 be metric spaces and (Yi, φi) be a Pi-type S-extension

of Xi for i = 1, 2 where P1 ⊆ P2. We say that (Y1, φ1) and (Y2, φ2) are coherent if

(i) Y2 extends Y1,

(ii) φ2(p) extends φ1(p) for all p ∈ P1 ⊆ P2, and

(iii) letting Ki = φi(F(Pi)) ≤ Iso(Yi) for i = 1, 2, and letting κ : K1 → K2 be

such that κ(φ1(p)) = φ2(p) for all p ∈ P1, then κ has a unique extension to

a group isomorphic embedding from K1 into K2.

The following lemma makes it precise that the notion of strong coherence is a

stronger notion than coherence.

Lemma 5.4. Let X1 ⊆ X2 be finite metric spaces and (Y1, φ1) be a P1-type S-

extension of X1. Let P2 ⊇ P1 be such that P2 = P−12 and X2 \ {a0} ⊆ P2(a0).
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Suppose (Y2, φ) is a strongly coherent S-extension of X2∪Y1. Then there is φ2 such

that (Y2, φ2) is a P2-type S-extension of X2 which is coherent with (Y1, φ1).

Proof. Let (Y2, φ) be a strongly coherent S-extension of X2 ∪ Y1. Define φ2 : P2 →
Iso(Y2) by

φ2(p) =

{
φ(φ1(p)), if p ∈ P1,

φ(p), if p ∈ P2 \ P1.

Then (Y2, φ2) is obviously a P2-type S-extension of X2. The construction also

guarantees that Y1 ⊆ Y2 and that φ1(p) ⊆ φ2(p) for p ∈ P1. Since (Y2, φ) is a

strongly coherent S-extension of Y1, φ restricted to Iso(Y1) is a group isomorphism

embedding from Iso(Y1) into Iso(Y2). When further restricted to K1 = φ1(F(P1)),

it gives a group isomorphic embedding into K2 = φ2(F(P2)). �

5.2. A characterization of coherent S-extensions. Although the existence of

coherent S-extensions follows from results of Solecki [13] [10] [14] by Lemma 5.4,

we introduce a notion of coherent extensions for groups and utilize this notion to

give a characterization of all possible minimal coherent S-extensions.

Let X1 ⊆ X2 be finite metric spaces, (Y1, φ1) be a minimal P1-type S-extension

of X1, and P1 ⊆ P2 ⊆ PX2 where P2 = P−12 and X2 \ {a0} ⊆ P2(a0). Let (Y2, φ2)

be a minimal P2-type S-extension of X2 that is coherent with (Y1, φ1). Next, we

characterize all such coherent S-extensions.

Definition 5.5. Let X1 ⊆ X2 be finite metric spaces, (Y1, φ1) be a P1-type S-

extension of X1 and P1 ⊆ P2 ⊆ PX2
where P2 = P−12 and X2 \ {a0} ⊆ P2(a0). Let

N1 = ker(φ1). We say N2 E F(P2) is a coherent extension of N1 if it is a feasible

P2-type prekernel for X2 and satisfies the following conditions:

(D1) N1 = N2 ∩ F(P1);

(D2) For every g, h, k, l ∈ F(P1) such that

dY1
(φ1(g)(a0), φ1(h)(a0)) 6= dY1

(φ1(k)(a0), φ1(l)(a0)),

we have N2 ∩ gH2k
−1lH2h

−1 = ∅;
(D3) For every g, h ∈ F(P1) and p, q ∈ P2 with both p(a0) and q(a0) defined, if

dY1
(φ1(g)(a0), φ1(h)(a0)) 6= dX2

(p(a0), q(a0)),

we have N2 ∩ gH2p
−1qH2h

−1 = ∅.

Note that since N2 is a feasible prekernel, letting G2 = ΦN2
(F(P2)), for any

G2-invariant pseudometric ρ2 on ΓN2 which is consistent with wN2 , (ΓN2 ,ΦN2) is a

minimal S-extension of X2.

Theorem 5.6. Let X1 ⊆ X2 be finite metric spaces, (Y1, φ1) be a minimal P1-type

S-extension of X1, and P1 ⊆ P2 ⊆ PX2 where P2 = P−12 and X2 \ {a0} ⊆ P2(a0).

(i) Let (Y2, φ2) be a P2-type S-extension of X2 that is coherent with (Y1, φ1).

Then N2 = ker(φ2) is a coherent extension of N1 = ker(φ1).

(ii) Let N2 E F(P2) be a coherent extension of N1 = ker(φ1). Then letting

G2 = ΦN2
(F(P2)), there exists a G2-invariant pseudometric ρ2 on ΓN2
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which is consistent with wN2 , such that (Y2, φ2) = (ΓN2 ,ΦN2) is coherent

with (Y1, φ1).

Proof. We first prove (i). Let (Y2, φ2) be a P2-type S-extension of X2 that is coher-

ent with (Y1, φ1). Let N2 = ker(φ2). Then by Theorem 4.5, there is a pseudometric

ρ2 on ΓN2
such that (Y2, φ2) is isomorphic to (ΓN2

,ΦN2
). By Lemma 4.4, N2 is a

feasible prekernel. Next we show that N2 is a coherent extension of N1.

For (D1), note that since (Y2, φ2) is coherent with (Y1, φ1), we have φ1(F(P1)) ∼=
φ2(F(P1)) via the map φ1(g) 7→ φ2(g). Thus,

N2 ∩ F(P1) = ker(φ2) ∩ F(P1) = ker(φ1) = N1.

For (D2), we need to verify that if for g, h, k, l ∈ F(P1)

dY1(φ1(g)(a0), φ1(h)(a0)) 6= dY1(φ1(k)(a0), φ1(l)(a0)),

then N2 ∩ gH2k
−1lH2h

−1 = ∅. Toward a contradiction, assume there is n ∈ N2 ∩
gH2k

−1lH2h
−1. Then there are η, η′ ∈ H2 with kη−1g−1n = lη′h−1, which implies

φ2(kη−1g−1n) = φ2(lη′h−1).

From the definitions of H2 and of N2, if we apply the left-hand-side element to

φ2(g)(a0) = φ1(g)(a0), the resulting value is φ2(k)(a0) = φ1(k)(a0). Similarly,

if we apply the right-hand-side element to φ2(h)(a0) = φ1(h)(a0), the resulting

value is φ2(l)(a0) = φ1(l)(a0). Thus, both sides of the equation represent the

same partial isometry of Y1 with φ1(g)(a0) and φ1(h)(a0) in its domain and with

φ1(k)(a0) and φ1(l)(a0) in its range. We conclude that dY1
(φ1(g)(a0), φ1(h)(a0)) =

dY1
(φ1(k)(a0), φ1(l)(a0)), a contradiction.

The argument for (D3) is similar. This finishes the proof of (i).

For (ii), let G1 = ΦN1(F(P1)) and, by Theorem 4.5, let ρ1 be a G1-invariant

pseudometric that is consistent with wN1 such that (ΓN1
,ΦN1

) ∼= (Y1, φ1). For no-

tational simplicity we assume (Y1, φ1) = (ΓN1
,ΦN1

). Let N2E F(P2) be a coherent

extension of N1 = ker(φ1). Since N2 is a feasible prekernel, one can define ΓN2 ,

wN2 , and ΦN2 as before.

Define a map π : ΓN1
→ ΓN2

by letting π(gN1H1) = gN2H2 for all g ∈ F(P1). To

see π is well-defined, note that if gN1H1 = g′N1H1, then g−1g′ ∈ N1H1 ≤ N2H2,

and therefore gN2H2 = g′N2H2.

Recall that wN1 is defined for pairs (gpN1H1, gqN1H1) where g ∈ F(P1) and

p, q ∈ P1 with p(a0) and q(a0) defined, and its value is dX1
(p(a0), q(a0)). Let

π(wN1
) on π(ΓN1

) be the push-forward weight function, that is,

π(wN1
)(gpN2H2, gqN2H2) = wN1

(gpN1H1, gqN1H1).

Note that (D2) implies that π(wN1) is well-defined. Also note that wN2 coincides

with π(wN1) on π(ΓN1). In fact, wN2 is defined in the same way on the image of such

pairs under π, that is, on pairs of the form (gpN2H2, gqN2H2) for g ∈ F(P1) ⊆ F(P2)

and p, q ∈ P1 ⊆ P2.

Recall that ΦN2 is defined by ΦN2(p)(gN2H2) = pgN2H2 for all g ∈ F(P2) and

p ∈ P2, and is extended to a group homomorphism from F(P2) to the symmetric

group of ΓN2
. Let G2 = ΦN2

(F(P2)).
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We are now ready to define a G2-invariant pseudometric ρ2 on ΓN2 that is con-

sistent with wN2
and satisfies ρ2 � π(ΓN1

) = π(ρ1). Here π(ρ1) is the pseudometric

on π(ΓN1
) defined by π(ρ1)(gN2H2, hN2H2) = ρ1(gN1H1, hN1H1) for g, h ∈ F(P1).

Note that (D2) implies that π(ρ1) is well-defined.

We define ρ2 as follows. First, for g, h ∈ F(P1), define

ρ2(gN2H2, hN2H2) = π(ρ1)(gN2H2, hN2H2)

= ρ1(gN1H1, hN1H1) = dY1(φ1(g)(a0), φ1(h)(a0)).

Next, for p, q ∈ P2 with p(a0) and q(a0) defined, and for γ ∈ F(P2), define

ρ2(γpN2H2, γqN2H2) = wN2
(γpN2H2, γqH2N2) = dX2

(p(a0), q(a0)).

To see that these do not conflict with each other, note that (D3) implies that for

g, h ∈ F(P1) and p, q ∈ P2 with both p(a0) and q(a0) defined, if

dY1
(φ1(g)(a0), φ(h)(a0)) 6= dX2

(p(a0), q(a0)),

then there is no γ ∈ F(P2) with γpN2H2 = gN2H2 and γqN2H2 = hN2H2. We

continue to define ρ2 so that if g, h ∈ F(P2) and ρ2(gN2H2, hN2H2) is already

defined, then we define

ρ2(γgN2H2, γhN2H2) = ρ2(gN2H2, hN2H2)

for any γ ∈ F(P2). To see that this does not create a conflict among the existing

definitions of ρ2 values, note that condition (D2) implies that for any g, h, k, l ∈
F(P1), if there is γ ∈ F(P2) such that γgN2H2 = kN2H2 and γhN2H2 = lN2H2,

then

dY1
(φ1(g)(a0), φ1(h)(a0)) = dY1

(φ1(k)(a0), φ1(l)(a0)).

To complete the definition of ρ2, we consider the existing values of ρ2 as a weight

function and define ρ2 to be the path pseudometric. Since the weight function

is G2-invariant, it follows from the definition of the path pseudometric that the

resulting ρ2 is also G2-invariant.

Since for every g, h ∈ F(P1) we have

ρ2(gN2H2, hN2H2) = π(ρ1)(gN2H2, hN2H2) = ρ1(gN1H1, hN1H1),

we also have that ρ2 � π(ΓN1) = π(ρ1). Note that (D2) with l, k = 1 implies that

the induced map π : ΓN1
= ΓN1

ρ1 → ΓN2
= ΓN2

ρ2
is an isometric embedding. Thus

ΓN1
∼= π(ΓN1

) is a subspace of ΓN2
.

Letting Y2 = ΓN2
and φ2 = ΦN2

. We have that (Y2, φ2) is a P2-type S-extension

of X2 and Y1 ⊆ Y2 via the isomorphism of (Y1, φ1) with (ΓN1 ,ΦN1). To see the

coherence of (Y2, φ2) with (Y1, φ1), let p ∈ P1. Then ΦN1
(p)(gN1H1) = pgN1H1

for all g ∈ F(P1) and ΦN2
(p)(gN2H2) = pgN2H2 for all g ∈ F(P2). Via the induced

embedding π : ΓN1
→ ΓN2

and the isomorphism of (Y1, φ1) with (ΓN1
,ΦN1

), and

because ρ2 � π(ΓN1) = π(ρ1), we have φ1(p) ⊆ φ2(p). Finally, it is clear that the

map φ1(p) 7→ φ2(p) for all p ∈ P1 generates a group isomorphic embedding from

G1 to G2. �
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5.3. A construction of coherent prekernel extensions. The existence of fi-

nite coherent S-extensions via Lemma 5.4 and Theorem 5.6 imply the existence of

coherent prekernel extensions. In this subsection we provide a direct construction

of coherent prekernel extensions of finite index.

Lemma 5.7. LetX1 ⊆ X2 be finite metric spaces, (Y1, φ1) be a P1-type S-extension

of X1 and P1 ⊆ P2 ⊆ PX2
where P2 = P−12 and X2 \ {a0} ⊆ P2(a0). Then there

exists a P2-type S-map φU : F(P2) → Iso(U) such that (U, φU) is a P2-type S-

extension of X2 which is coherent with (Y1, φ1).

Proof. Following Uspenskij’s proof in [15], which uses the Katetov construction of U
to show that the isometry group of every Polish space can be embedded into Iso(U)

(see also Sections 1.2 and 2.5 of [4] for details), we obtain an isometric embedding

i : Y1 → U and a group isomorphic embedding j : Iso(Y1) → Iso(U) such that

for every ϕ ∈ Iso(Y1), j(ϕ) ⊇ ϕ. In addition, from the ultrahomogeneity of U we

obtain an isometric copy of X2 in U as a superset of X1. Now for each p ∈ P2, let

φU(p) ∈ Iso(U) be an extension of p guaranteed to exist by the ultrahomogeneity

of U such that if p ∈ P1, then φU(p) = j(φ1(p)). Then φU is as required. �

Proposition 5.8. Suppose X1 ⊆ X2 are finite metric spaces and P1 ⊆ P2 ⊆ PX2

where P2 = P−12 andX2\{a0} ⊆ P2(a0). Let (Y1, φ1) be a finite P1-type S-extension

of X1 and N1 = ker(φ1). Then, there exists a coherent extension, N2 E F(P2), of

N1 of finite index.

Proof. By Lemma 4.4, N1 = ker(φ1) is a feasible prekernel. We may define wN1
and

ΦN1
and let G1 = ΦN1

(F(P1)) and ΓN1
= F(P1)/N1H1. Since (Y1, φ1) is a minimal

P1-type S-extension of X1, by Theorem 4.5, there is a G1-invariant pseudometric ρ1
on ΓN1 such that it is consistent with wN1 , Y1 is isometric to (ΓN1 , ρ1) and (Y1, φ1)

is isomorphic to (ΓN1
,ΦN1

).

Since P1 ⊆ P2, we have that all of N1, H1 and F(P1) are subgroups of F(P2).

We will find a coherent extension, N2 P F(P2), of N1 of finite index.

Let G = G1 ∗ F(P2 \ P1) be the free product of G1 with F(P2 \ P1). We define a

group homomorphism ψ : F(P2)→ G by letting

ψ(p) =

{
ΦN1

(p), if p ∈ P1,

p, otherwise

for all p ∈ P2. Since H2 is a finitely generated subgroup of F(P2), ψ(H2) is a finitely

generated subgroup of G. We will find M EG of finite index and set N2 = ψ−1(M).

To guarantee that N2 is a coherent extension of N1, we need M to satisfy the

following corresponding conditions:

(R1) For every p, q, r, s ∈ P2∪{1} such that dX2
(p(a0), q(a0)) 6= dX2

(r(a0), s(a0)),

we have M ∩ ψ(p)ψ(H2)ψ(r)−1ψ(s)ψ(H2)ψ(q)−1 = ∅;
(R2) For every p, q ∈ P2 ∪ {1}, if p(a0) and q(a0) are defined and p(a0) 6= q(a0),

we have M ∩ ψ(p)ψ(H2)ψ(q)−1 = ∅;
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(R3) For every p, q, r1, s1, . . . , rn, sn ∈ P2 ∪ {1} such that

dX2
(p(a0), q(a0)) >

n∑
i=1

dX2
(ri(a0), si(a0)),

we have

M ∩ ψ(p)ψ(H2)ψ(r1)−1ψ(s1)ψ(H2) · · ·ψ(H2)ψ(rn)−1ψ(sn)ψ(H2)ψ(q)−1 = ∅;

(S1) M ∩G1 = {1};
(S2) For every g, h, k, l ∈ F(P1) such that

dY1(φ1(g)(a0), φ1(h)(a0)) 6= dY1(φ1(k)(a0), φ1(l)(a0)),

we have M ∩ ψ(g)ψ(H2)ψ(k)−1ψ(l)ψ(H2)ψ(h)−1 = ∅;
(S3) For every g, h ∈ F(P1) and p, q ∈ P2 with both p(a0) and q(a0) defined, if

dY1
(φ1(g)(a0), φ1(h)(a0)) 6= dX2

(p(a0), q(a0)),

we have M ∩ ψ(g)ψ(H2)ψ(p)−1ψ(q)ψ(H2)ψ(h)−1 = ∅.
To see that (S1) implies (D1), note that N2∩F(P1) = ψ−1(M)∩(ψ−1(G1)∩F(P1)) =

(ψ−1(M)∩ψ−1(G1))∩F(P1) = ψ−1(M ∩G1)∩F(P1) = ker(ψ)∩F(P1) = N1. The

other conditions for M obviously imply the corresponding conditions for N2. Note

also that each of conditions (R1), (R2) and (R3) is a finite collection of conditions of

the form γM ∩L1 · · ·Ln = ∅ for γ ∈ G and finitely generated subgroups L1, . . . , Ln
(in fact each Li is a conjugate of ψ(H2)) with γ 6∈ L1 · · ·Ln. Since G1 is finite,

condition (S1) is also a finite collection of conditions of the form γM ∩ {1} = ∅
for nonidentity γ ∈ G1. Conditions (S2) and (S3) appear to be about infinitely

many elements in F(P1). However, since G1 = ψ(F(P1)) is finite, they all end up

being about finitely many elements of G1, and so each of (S2) and (S3) is still a

finite collection of conditions of the form γM ∩ L1 · · ·Ln = ∅ for finitely generated

subgroups L1, . . . , Ln. We verify that in each case, γ 6∈ L1 · · ·Ln.

Using the P2-type S-map φU from Lemma 5.7, we note that for any g ∈ F(P2),

if ψ(g) = 1, then φU(g) = 1. This follows from the definition of ψ and of φU.

For (R1), we need to verify that 1 /∈ ψ(p)ψ(H2)ψ(r)−1ψ(s)ψ(H2)ψ(q)−1. Toward

a contradiction, if 1 ∈ ψ(p)ψ(H2)ψ(r)−1ψ(s)ψ(H2)ψ(q)−1, then there exist η1, η2 ∈
H2 such that ψ(pη1r

−1sη2q
−1) = 1. Let α = sη2q

−1 and β = rη−11 p−1. Then

ψ(α) = ψ(β) and therefore φU(α) = φU(β). Since η1, η2 ∈ H2, φU(α)(q(a0)) = s(a0)

and φU(β)(p(a0)) = r(a0). Now since φU(α) = φU(β) is an isometry, we should have

dX2
(p(a0), q(a0)) = dX2

(r(a0), s(a0)).

For (R2), similar argument shows that if α = pη1q
−1, then φU(α)(q(a0)) = p(a0).

Now since ψ(α) = 1, φU(α) = 1 and therefore q(a0) = p(a0).

For (R3), if

1 ∈ ψ(p)ψ(H2)ψ(r1)−1ψ(s1)ψ(H2) · · ·ψ(H2)ψ(rn)−1ψ(sn)ψ(H2)ψ(q)−1

then for some h1, . . . , hn+1 ∈ H2 we have

1 = ψ(p)ψ(h1)ψ(r1)−1ψ(s1)ψ(h2) · · ·ψ(hn)ψ(rn)−1ψ(sn)ψ(hn+1)ψ(q)−1.
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Consider the sequence

b0 = φU(p)(a0) = p(a0),

b1 = φU(ph1r
−1
1 s1)(a0),

b2 = φU(ph1r
−1
1 s1h2r

−1
2 s2)(a0),

· · · · · ·
bn = φU(ph1r

−1
1 s1h2 · · · r−1n sn)(a0) = φU(qh−1n+1)(a0) = q(a0).

We have

dU(b0, b1) = dU(φU(r1h
−1
1 p−1)(b0), φU(r1h

−1
1 p−1)(b1))

= dU(r1(a0), s1(a0)) = dX2
(r1(a0), s1(a0)),

and similarly dU(b1, b2) = dX2
(r2(a0), s2(a0)), . . . , dU(bn−1, bn) = dX2

(rn(a0), sn(a0)).

Thus

dX2(p(a0), q(a0)) ≤
n∑
i=1

dX2(bi−1, bi) =

n∑
i=1

dX2(ri(a0), si(a0)).

For (S2), we need to verify that if

dY1(φ1(g)(a0), φ1(h)(a0)) 6= dY1(φ1(k)(a0), φ1(l)(a0)),

then 1 /∈ ψ(g)ψ(H2)ψ(k)−1ψ(l)ψ(H2)ψ(h)−1. Toward a contradiction, assume 1 ∈
ψ(g)ψ(H2)ψ(k)−1ψ(l)ψ(H2)ψ(h)−1. Then there are η, η′ ∈ H2 with

ψ(g)ψ(η)ψ(k)−1 = ψ(h)ψ(η′)ψ(l)−1.

From the definitions of H2 and of ψ, if we apply the left-hand-side element to

ψ(k)(a0) = φ1(k)(a0), the resulting value is ψ(g)(a0) = φ1(g)(a0). Similarly,

if we apply the right-hand-side element to ψ(l)(a0) = φ1(l)(a0), the resulting

value is ψ(h)(a0) = φ1(h)(a0). Thus, both sides of the equation represent the

same partial isometry of Y1 with φ1(k)(a0) and φ1(l)(a0) in its domain and with

φ1(g)(a0) and φ1(h)(a0) in its range. We conclude that dY1(φ1(g)(a0), φ1(h)(a0)) =

dY1
(φ1(k)(a0), φ1(l)(a0)), a contradiction.

The argument for (S3) is similar.

Now by Coulbois’ theorem (Theorem 2.9), the group G = G1 ∗ F(P2 \ P1) has

property RZ. Thus, there exists ME G of finite index such that all conditions (R1)–

(S3) are satisfied. Consequently, N2 = ψ−1(M)E F(P2) is a coherent extension of

N1 of finite index. �

5.4. Extending isometry groups. In this subsection we apply the algebraic

method from the preceding subsection to obtain a construction of S-extensions

with prescribed isometry groups. Since we deal with only finite isometry groups, it

suffices to consider groups extended by one more generator.

Theorem 5.9. Let X1 be a finite metric space and (Y1, φ1) be a finite minimal

P1-type S-extension of X1. Let G1 = φ1(F(P1)) and G2 = 〈G1, k〉 be an overgroup

of G1 with one element k /∈ G1. Then there exist a finite metric space X2 ⊇ X1,

l ∈ PX2 and a P2-type S-extension (Y2, φ2) of X2, where P2 = P1 ∪ {l, l−1}, such

that (Y1, φ1) and (Y2, φ2) are coherent and G2
∼= φ2(F(P2)).
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Proof. By Theorem 4.5, Y1 is isometric to (ΓN1 ,ΦN1) where N1 = ker(φ1). Let

X2 = Y1∪{a} be the one point extension of Y1 where dX2
(a, b) = diam(Y1) for every

b ∈ Y1. Let P2 = P1 ∪{l, l−1} where l = {(a0, a)} is the partial isometry that sends

a0 to a. We define a homomorphism φ2 : F(P2)→ G2 such that φ2 �F(P1)= φ1 and

φ2(l) = k. Let N2 = ker(φ2). We claim there exists a G2-invariant pseudometric ρ2
on ΓN2 which is consistent with wN2 , such that (Y2, φ2) ∼= (ΓN2

,ΦN2
) is as desired.

Note that because of the definition of X2 and P2, H2 = H1. By Theorem 5.6, it

suffices to show that N2 is a coherent extension of N1.

(C1) For every p, q, r, s ∈ P2∪{1} such that dX2
(p(a0), q(a0)) 6= dX2

(r(a0), s(a0)),

we have N2 ∩ pH1r
−1sH1q

−1 = ∅. If p, q, r, s are different from l, then

since (ΓN1
,ΦN1

) is a P1-type S-extension of X1, by (C0) we have N2 ∩
pH1r

−1sH1q
−1 = N1 ∩ pH1r

−1sH1q
−1 = ∅. If one of p, q, r, s is equal to

l, then we have φ2(ph1r
−1sh2q

−1) = 1 for some h1, h2 ∈ H1. Since l ap-

pears exactly once in ph1r
−1sh2q

−1, this means φ2(l) = k ∈ G1, which is a

contradiction. Other cases are obvious.

(C2) For every p, q ∈ P2 ∪ {1}, if p(a0) and q(a0) are defined and p(a0) 6= q(a0),

we have N2 ∩ pH1q
−1 = ∅. This is similar to (C1).

(C3) For every p, q, r1, s1, . . . , rn, sn ∈ P2 ∪ {1} such that

dX2
(p(a0), q(a0)) >

n∑
i=1

dX2
(ri(a0), si(a0)),

we have N2 ∩ pH1r
−1
1 s1H1 · · ·H1r

−1
n snH1q

−1 = ∅. This is also similar to

(C1).

(D1) N1 = N2 ∩ F(P1). If g ∈ N2 ∩ F(P1) then φ1(g) = φ2(g) = 1. Therefore,

g ∈ N1.

(D2) For every g, h, k, l ∈ F(P1) such that

dY1
(φ1(g)(a0), φ1(h)(a0)) 6= dY1

(φ1(k)(a0), φ1(l)(a0)),

we have N2 ∩ gH1k
−1lH1h

−1 = ∅. This is a direct consequence of (D1).

(D3) For every g, h ∈ F(P1) and p, q ∈ P2 with both p(a0) and q(a0) defined, if

dY1(φ1(g)(a0), φ1(h)(a0)) 6= dX2(p(a0), q(a0)),

we have N2 ∩ gH1p
−1qH1h

−1 = ∅. This is a direct consequence of (D1).

�

We remark that it is possible to give a combinatorial proof of Theorem 5.9. This

is done in [3] Lemma 5.1, which was in turn motivated by a result of Rosendal

(Lemma 16 of [11]). As in [3], Theorem 5.9 can be used to show that the Hall’s

universal locally finite group can be embedded as a dense subgroup of the isometry

group of the Urysohn space.

6. Ultraextensive Metric Spaces

In this section we study ultraextensive metric spaces.

Definition 6.1. A metric space U is ultraextensive if
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(i) U is ultrahomogeneous, i.e., there is a φ such that (U, φ) is an S-extension

of U ;

(ii) Every finite X ⊆ U has a finite S-extension (Y, φ) where Y ⊆ U ;

(iii) If X1 ⊆ X2 ⊆ U are finite and (Y1, φ1) is a finite minimal S-extension of

X1 with Y1 ⊆ U , then there is a finite minimal S-extension (Y2, φ2) of X2

such that Y2 ⊆ U and (Y1, φ1) and (Y2, φ2) are coherent.

Motivated by Hrushovski [6], Solecki [12] and Vershik [16], Pestov in [8] intro-

duced a notion of Hrushovski–Solecki–Vershik property, which is correspondent to

the first two clauses of the above definition. He used the notion to study the

nonexistence of uniform and coarse embeddings from the universal Urysohn met-

ric space into reflexive Banach spaces. He also gave a proof of Solecki’s theorem

(Theorem 1.1) using Herwig–Lascar’s theorem [5].

Recall that the random graph is the Fräıssé limit of the class of all finite graphs.

We equip it with the path metric and turn it into a metric space, which is denoted

by R.

Proposition 6.2. The Urysohn space U, the rational Urysohn space QU and the

random graph R are ultraextensive.

Proof. The ultraextensiveness for U follows directly from its universality and ultra-

homogeneity, and from Theorem 5.6.

The space QU is also ultrahomogeneous and universal for all finite metric spaces

with rational distances. From our proof of Theorem 1.1 it is clear that if X is a

finite metric space with rational distances, then there is a finite S-extension (Y, φ)

of X where the distances of Y are finite sums of the distances in X, and therefore

also rational. This implies clause (ii) of the definition of ultraextensiveness for

QU. The same observation applies to the proof of Theorem 5.6. Namely, in every

construction of the proof of Theorem 5.6 we used the path (pseudo)metric to define

new distances. Thus the distances in Y2 are finite sums of distances in Y1 ∪ X2.

Therefore, if distances in X1, X2, Y1 are rational, then we can find Y2 with rational

distances. Together with the ultrahomogeneity and universality of QU, this implies

clause (iii) of the definition of ultraextensiveness for QU.

Note that the random graph R as a metric space has only distances 0, 1 and 2.

In fact, two distinct vertices have distance 1 if and only if they are connected with

an edge. If we endow every finite graph with such a metric, namely, two distinct

vertices have distance 1 if they are connected with an edge, and have distance 2

otherwise, then R as a metric space is ultrahomogeneous and universal for this class

of finite metric spaces. Then clause (ii) of the definition of ultraextensiveness for

R follows from this universality of R and from Hrushovski’s theorem [6]. Finally,

in Theorem 5.6, if X1, X2, Y1 are finite metric spaces coming from graphs, then

they have distances 0, 1 and 2, and our constructions give that the distances in

Y2 are natural numbers. Now if we redefine every distance ≥ 3 to be 2 in Y2,

then any isometry of Y2 continues to be an isometry in this new metric, and from

ultrahomogeneity and universality we again obtain clause (iii) of the definition of

ultraextensiveness for R. �
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Theorem 6.3. Every countable metric space can be extended to a countable ultra-

extensive metric space.

Proof. Let X be a countable metric space. Write X as an increasing union of

finite metric spaces Fn for n = 1, 2, . . . . For n ≥ 1, inductively define increasing

sequences of finite metric spaces Xn, Yn and Zn as follows. Let X1 = F1 and

(Y1, φ1) be a finite minimal S-extension of X1 = F1. We define Y1 ⊆ Z1 such that

for every D ⊆ D′ ⊆ Y1 and a minimal S-extension of D, (E, φ), where E ⊆ Y1,

there exists a minimal S-extension of D′, (E′, φ′), where E′ ⊆ Z1 and (E, φ) and

(E′, φ′) are coherent. Note that this is possible since there are only finitely many

triples (D,D′, E) and for any such triple by Theorem 5.6 we can fix a coherent

extension E′. Finally, to construct Z1, we add E′ \E to Y1 for all E′ corresponding

to the triple (D,D′, E) such that the union of the new points (E′ \E) and E ⊆ Y1
is an isometric copy of E′. Then, this new set with the path metric is Z1. Let X2

be the metric space that is obtained by adding F2 \ F1 to Z1 such that the union

of (F2 \ F1) and F1 is isometric to F2 and the distance between points in F2 \ F1

and Z1 \ F1 comes from the path metric.

In general, assume finite Yn−1,⊆ Zn−1 ⊆ Xn has been defined. Apply Theo-

rem 5.6 to find (Yn, φn) a finite minimal S-extension of Xn ⊇ Xn−1 that is coherent

with (Yn−1, φn−1). We use a similar construction to the construction of Z1 from Y1
to define Zn ⊃ Yn. Note that Zn has the property that every minimal S-extension

in Yn (that is , D ⊆ E ⊆ Yn where (E, φ) is a minimal S-extension of D) has a

coherent minimal S-extension in Zn for every D ⊆ D′ ⊆ Yn. Let Xn+1 be the

metric space that is obtained by adding Fn+1 \ Fn to Zn such that the union of

(Fn+1 \Fn) and Fn is isometric to Fn+1 and the distance between points in F2 \F1

and Z1 \ F1 comes from the path metric.

Let Y be the union of the increasing sequence Yn. We verify that Y is ultra-

extensive. To verify Definition 6.1 (i), let p ∈ PY . Then there is n ≥ 1 such that

p ∈ PXn
. Let np be the least such n. Then for all m ≥ np, p ⊆ φm(p) ⊆ φm+1(p) by

the coherence of (Ym, φm) and (Ym+1, φm+1). Define φ(p) =
⋃
m≥np

φm(p). Then

φ(p) is an isometry of Y that extends p.

For Definition 6.1 (ii), let F ⊆ Y be finite. Then there is n such that F ⊆ Xn,

and it follows that (Yn, φn � PF ) is an S-extension of F .

Finally, for Definition 6.1 (iii), let F ⊆ F ′ ⊂ Y be finite and assume that (E,ψ)

is a finite minimal S-extension of F with E ⊆ Y . Then, there is a natural number

n such that E ⊆ Yn. By the construction of Zn, there exists a minimal S-extension

of F ′, (E′, φ′) (corresponding to the triple (F, F ′, E)), such that E′ ⊆ Zn ⊆ Y and

that (E′, φ′) is coherent with (E, φ). �

Theorem 6.4. Let U be an ultraextensive metric space and X ⊆ U be a countable

subset. Then there exists a countable ultraextensive subset Y ⊆ U with X ⊆ Y .

Proof. The proof is similar to that of Theorem 6.3. The differences are that in

the construction Yn and Zn are obtained by applying clauses (ii) and (iii) of the

definition of ultraextensive metric space for U ; and Xn+1 = Fn+1 ∪ Zn. �
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Pestov [8] showed that Iso(U) contains a countable dense locally finite subgroup.

Solecki strengthened this result by showing that Iso(QU) contains a countable dense

locally finite subgroup. Rosendal [10] presented a different proof of the result by

Solecki. Here we note that such dense locally finite subgroups are present in the

isometry group of every separable ultraextensive space.

Theorem 6.5. For every separable ultraextensive metric space U , Iso(U) contains

a dense locally finite subgroup.

Proof. Note that Iso(U) has a countable dense subset D. Let X ⊆ U be a countable

dense subset with the property that for all x ∈ X and ϕ ∈ D, ϕ(x) ∈ X. Apply

Theorem 6.4 to obtain a countable ultraextensive Y ⊆ U with X ⊆ Y . Then Iso(Y )

is dense in Iso(U).

It suffices to show that Iso(Y ) contains a dense locally finite subgroup. As in the

proof of Theorem 6.4 we can write Y as an increasing union
⋃
n Yn. We also have

group isomorphic embeddings from each Iso(Yn) to Iso(Yn+1). Let G =
⋃
n Iso(Yn).

Then it is clear that G is locally finite and G is dense in Iso(Y ). �

7. Compact Ultrametric Spaces

In this section we show that every compact ultrametric space can be extended to

a compact ultraextensive ultrametric space. We first study finite ultrametric spaces

and show that the notions of homogeneity, ultrahomogeneity, and ultraextensiveness

coincide on finite ultrametric spaces.

We will use the following fact about homogeneity for every minimal S-extension.

Lemma 7.1. Let X be a metric space and (Y, φ) be a minimal S-extension of X.

Then Y is homogeneous.

Proof. Let y1, y2 ∈ Y . Since (Y, φ) is minimal, there are g1, g2 ∈ F(PX) such that

φ(g1)(a0) = y1 and φ(g2)(a0) = y2. Hence, φ(g1g
−1
2 )(y2) = y1. Since φ(g1g

−1
2 ) is

an isometry of Y , Y is homogeneous. �

Theorem 7.2. Let Y be a finite ultrametric space. Then the following are equiva-

lent:

(i) Y is homogeneous;

(ii) Y is ultrahomogeneous;

(iii) Y is ultraextensive.

Proof. (i)⇒(ii): Let D(Y ) = {d(x, y) : x 6= y ∈ Y }. We prove this by induction on

|D(Y )|. If |D(Y )| = 1 then Y is clearly ultrahomogeneous. Suppose |D(Y )| > 1 and

let r be the least element of D(Y ). For each x ∈ Y let Br(x) = {y ∈ Y : d(x, y) ≤
r} = {x} ∪ {y ∈ Y : d(x, y) = r}. Then for any x, y ∈ Y , either Br(x) = Br(y) or

Br(x) ∩ Br(y) = ∅. In the latter case, we also have that for any z1 ∈ Br(x) and

z2 ∈ Br(y), d(z1, z2) = d(x, y). Let Y1 = {Br(x) : x ∈ Y }. Then Y1 is a partition

of Y . For disjoint Br(x) and Br(y), we define d1(Br(x), Br(y)) = d(x, y). It is easy

to check that (Y1, d1) is again an ultrametric space, and D(Y1) = D(Y )\{r}. If ϕ ∈
Iso(Y ), then ϕ induces an isometry ϕ1 of Y1, where ϕ1(Br(x)) = Br(ϕ(x)). Since Y
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is homogeneous, so is Y1, and by the inductive hypothesis, Y1 is ultrahomogeneous.

Now suppose p : A → B is a partial isometry of Y . It induces a partial isometry

p1 : {Br(a) : a ∈ A} → {Br(b) : b ∈ B} of Y1. Thus there is an isometry

ϕ1 ∈ Iso(Y1) extending p1. Note that for any x, y ∈ Y , Br(x) is isometric to

Br(y) by the homogeneity of Y , and each Br(x) is ultrahomogeneous. Now for

each Br(x) ∈ Y1, we define an isometry from Br(x) to ϕ1(Br(x)) as follows. If

Br(x) ∩ A = ∅, then we arbitrarily fix an isometry from Br(x) to ϕ1(Br(x)). If

Br(x) ∩ A 6= ∅, then |Br(x) ∩ A| = |ϕ1(Br(x)) ∩ B|, and we fix an isometry from

Br(x) to ϕ1(Br(x)) that sends each a ∈ Br(x)∩A to p(a) ∈ ϕ1(Br(x))∩B. Putting

all of these isometries together, we obtain an isometry of Y extending p. Thus Y

is ultrahomogeneous.

(ii)⇒(iii): We use a similar induction as in the above proof. If |D(Y )| = 1 then

Y is clearly ultraextensive. Assume |D(Y )| > 1 and let r be the least element of Y .

Define Y1 similarly as above. Then by the inductive hypothesis Y1 is ultraextensive.

For any x ∈ Y , Br(x) is also ultraextensive. Arbitrarily fix an x ∈ Y and let

Y2 = Br(x). Consider Y1 × Y2 and define a metric d′ by

d′((Br(y1), z1), (Br(y2), z2)) = max{d1(Br(y1), Br(y2)), d(z1, z2)}.

Then (Y, d) is isometric to (Y1 × Y2, d′). Thus we will view Y as Y1 × Y2. Enu-

merate the elements of Y1 by b1 = Br(y1), . . . , bm = Br(ym). We show that Y is

ultraextensive.

Since Y is finite and ultrahomogeneous, it is enough to show that for every

minimal S-extension (Y0, φ0) of X where X,Y0 ⊆ Y there is a group embedding

π : Iso(Y0)→ Iso(Y ) such that π(g)�Y0 = g.

Since (Y0, φ0) is a minimal S-extension, by Lemma 7.1, Y0 is homogeneous and

therefore ultrahomogeneous by the previous argument. It follows that the non-

empty intersections of Y0 with bi = Br(yi) are isometric. That is, if Y0∩Br(yi) 6= ∅
and Y0 ∩ Br(yj) 6= ∅, then Y0 ∩ Br(yi) and Y0 ∩ Br(yj) are isometric. Arbitrarily

fix such a non-empty intersection Y02. Let Y01 = {Br(x) : x ∈ Y0}. Then Y0 is

isometric to Y01×Y02 as a subset of Y1×Y2. Now, for every g ∈ Iso(Y0), g induces an

isometry of Y01, which we denote by φ01(g). Furthermore, for every g ∈ Iso(Y0) and

every 1 ≤ i, j ≤ m such that φ01(g)(bi) = bj , g induces an isometry of Y02, which

we denote by φ(i, j)(g). More precisely, if g(bi, z1) = (bj , z2) for some 1 ≤ i, j ≤ m
and z1, z2 ∈ Y02, then φ(i, j)(g)(z1) = z2. Since Y1 and Y2 are ultraextensive, there

are group embeddings π01 : Iso(Y01) → Iso(Y1) and π02 : Iso(Y02) → Iso(Y2) such

that π01(g) �Y01 = g and π02(g) �Y02 = g. Let π : Iso(Y0) → Iso(Y ) be such that

for bi ∈ Y1 and z ∈ Y2 where φ01(g)(bi) = bj we have

π(g)(bi, z) = (π01(φ01(g))(bi), π02(φ(i, j)(g))(z)).

Then, π is as desired. That is, π is a group embedding and if g(bi, z) = (bj , z
′),

then π(g)(bi, z) = (bj , z
′). Therefore, Y is ultraextensive.

(iii)⇒(i) is obvious. �

In view of Theorem 7.2 it is easy to construct finite ultrahomogeneous or ultra-

extensive ultrametric spaces.
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Definition 7.3. Let (Γ, w) be a connected (undirected) weighted graph. The

maximum path metric on Γ is the metric defined by

d(x, y) = inf{max{w(yi, yi+1) : i = 1, . . . , n} : y1 = x, yn+1 = y and

(yi, yi+1) is an edge in Γ for all i = 1, . . . , n}.

If (Γ, w) is a connected finite weighted graph, then it is easy to see that Γ with

the maximum path metric is an ultrametric space.

Proposition 7.4. Let X be a finite ultrametric space. Then X can be extended

to a finite ultraextensive ultrametric space Y . Furthermore, there is such Y so that

the set of distances in X and Y are the same.

Proof. By Theorem 7.2 it suffices to construct an extension of X that is homoge-

neous. We use the same notation as in the proof of Theorem 7.2. Our proof will be

by induction on |D(X)|. If |D(X)| = 1 then X is already homogeneous. Assume

|D(X)| > 1 and let r be the lease element of D(X). Define X1 = {Br(x) : x ∈ X}
and d1 on X1. Then |D(X1)| = |D(X)| − 1. By the inductive hypothesis, X1 can

be extended to a homogenous Y1 with the same distances as in X1. Now each

Br(x) is a homogeneous space with every pair of points having distance r. Let

N = max{|Br(x)| : x ∈ X} and let x0 ∈ X be such that |Br(x0)| = N . Then

X2 = Br(x0) is a homogeneous extension of each of Br(x). It follows that Y1 ×X2

is a homogeneous ultrametric space extending X. �

Lemma 7.5. Let ε > 0. Let X1 ⊆ X2 be finite ultrametric spaces such that X1

is an ε-net in X2. Let (Y1, φ1) be a finite minimal S-extension of X1 such that Y1
is an ultrametric space with the same distances as in X1. Then there is a minimal

S-extension (Y2, φ2) of X2 such that Y2 is an ultrametric space, (Y2, φ2) is coherent

with (Y1, φ1), and Y1 is an ε-net in Y2.

Proof. By Lemma 7.1 and Theorem 7.2, Y1 is homogeneous and therefore ultraex-

tensive. It is enough to construct an S-extension (Y2, φ2) of X2 that satisfies the

prescribed conditions, as a minimal S-extension can always be extracted from an

S-extension. Since X1 is an ε-net in X2, we have that the set of B<ε(x) = {y ∈
X2 : dX2

(x, y) < ε}, when x varies over X1, is a partition of X2. Let B<ε = X2/ ∼
where ∼ identifies all points of X1 and the metric on B<ε is the maximum path

metric. Then B<ε extends B<ε(x) for every x ∈ X1 and therefore X2 corresponds

to a subset of the product X1 × B<ε. Now Y1 is a homogeneous extension of X1

with the same distances as X1. In particular any distance between distinct points

in Y1 is ≥ ε. We can let Y2 = Y1 × B where B is a homogeneous extension of

B<ε with the same set of distances as B<ε. Then Y2 is obviously homogeneous,

and therefore ultrahomogeneous. It is clear that Y2 is an ultrametric space, and

that for every y2 ∈ Y2 there is y1 ∈ Y1 with dY2
(y2, y1) < ε. We define a group

homomorphism φ2 : F(PX2
)→ Iso(Y2) such that for every p ∈ PX1

φ2(p)(y1, y2) = (φ1(p)(y1), y2)
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and for every p ∈ PX2 \ PX1 let φ2(p) be an isometry of Y2 such that p ⊆ φ2(p).

Note that since Y2 is ultrahomogeneous, it is possible to find φ2(p) as required for

every p ∈ PX2
\ PX1

. It is clear that (Y2, φ2) is coherent with (Y1, φ1). �

Theorem 7.6. Every compact ultrametric space can be extended to a compact

ultraextensive ultrametric space. In particular, every compact ultrametric space has

a compact ultrametric S-extension.

Proof. Let {Xk}∞k=1 be an increasing sequence of finite subsets of X such that for

each k, Xk is a 1
2k

-net. Then by Proposition 7.4 and Lemma 7.5, there is a sequence

of S-extensions {(Yk, φk)}∞k=1 such that {Yk}∞k=1 is an increasing sequence of finite

ultraextensive ultrametric spaces, (Yk, φk) is an S-extension of Xk, (Yk+1, φk+1) is

coherent with (Yk, φk), and Yk is a 1
2k

-net in Yk+1. Let Y be the completion of⋃∞
k=1 Yk. Then, Y is clearly an ultrametric space; Y is compact since

⋃∞
k=1 Yk is

totally bounded. In fact, Yk is a 1
2k

-net in Y . Since each Yk is ultraextensive, so is⋃∞
k=1 Yk. We show that Y is ultraextensive.

We first show that Y is ultrahomogeneous. For this, let p : A→ B be a partial

isometry of Y . Let 1
2k

be less than the smallest non-zero distance between points

of A. Since Yk is a 1
2k

-net in Y , there are Ak, Bk ⊆ Yk and pk : Ak → Bk such

that points in A are approximated by points in Ak, points in B are approximated

by points in Bk, and consequently pk is also a partial isometry. Each pk can be

extended via φn(pk) for n > k to
⋃
n>k φn(pk), an isometry of

⋃∞
k=1 Yk, and then

uniquely to an isometry Pk of Y . Since Iso(Y ) is compact, the collection of Pk has

an accumulation point ϕ, which is an isometry of Y . Since each Pk approxiates

p with an error less than 1
2k

, it follows that ϕ ⊇ p. This shows that any partial

isometry of Y can be extended to an isometry of Y . In particular, it also shows

that any partial isometry of X can be extended to an isometry of Y , thus there is

a suitable φ such that (Y, φ) is an S-extension of X.

For the remaining properties of ultraextensiveness, it suffices to show that any

finite subset of Y can be extended to a finite homogeneous, and therefore ultra-

extensive, subset of Y . For this, let A ⊆ Y be finite and let 1
2k

be less than the

smallest non-zero distance between points in A. Since Yk is a 1
2k

-net in Y , there is

a set Ak ⊆ Yk such that for each a ∈ A there is a unique point ak ∈ Ak such that

d(a, ak) < 1
2k

. Consider the set Zk = (Yk \Ak) ∪A. It is easy to see that the map

π : Zk → Yk defined by π(a) = ak for a ∈ A and π(y) = y otherwise is an isometry.

Thus Zk is a finite homogenenous subset of Y extending A. �

8. Open Problems

One general problem is to determine if a certain class of finite metric spaces

admit finite S-extensions in the same class. For example, we do not know if the

class of finite Euclidean metric spaces has this property.

Question 1. Let X ⊆ Rn be a finite subset. Does X have a finite S-extension

(Y, φ) with Y ⊆ Rm for some m ≥ n?

As stated in Theorem 6.5, we know that the isometry group of every ultraex-

tensive metric space has a dense locally finite subgroup. It is of interest to know
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if the isomorphism group of other well-know mathematical objects has the same

property. In particular

Question 2. Does the homeomorphism group of the Hilbert cube have a dense

locally finite subgroup?

Question 3. Does the linear isometry group of the Gurarij space have a dense

locally finite subgroup?
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