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Abstract. In this paper we give explicit characterizations, based on
the cutting and spacer parameters, of (a) which rank-one transforma-
tions factor onto a given finite cyclic permutation, (b) which rank-one
transformations factor onto a given odometer, and (c) which rank-one
transformations are isomorphic to a given odometer. These naturally
yield characterizations of (d) which rank-one transformations factor onto
some (unspecified) finite cyclic permutation, (d′) which rank-one trans-
formations are totally ergodic, (e) which rank-one transformations factor
onto some (unspecified) odometer, and (f) which rank-one transforma-
tions are isomorphic to some (unspecified) odometer.

1. Introduction

The ultimate motivation of the work done in this paper is the isomorphism
problem in ergodic theory as formulated by von Neumann in his seminal pa-
per [11] of 1932. There he asked for an explicit process to determine when
two measure-preserving transformations are measure-theoretically isomor-
phic. Two important theorems in this direction are von Neumann’s theo-
rem classifying discrete spectrum transformations by their eigenvalues, and
Ornstein’s theorem classifying Bernoulli transformations by their entropy.
To our knowledge, no other complete isomorphism invariants that classify
a class of transformations have been found, though of course notions such
as mixing, weak mixing, etc., are invariant under isomorphism. In [6], Fore-
man, Rudolph, and Weiss showed that the isomorphism relation on the class
of all ergodic transformations is complete analytic, in particular not Borel.
In some sense, this brings a negative conclusion to the von Neumann pro-
gram. However, in [6] the authors also showed that the isomorphism problem
is Borel on the generic class of (finite measure-preserving) rank-one trans-
formations. Thus this provides hope that there should exist some explicit
method for determining whether two rank-one transformations are isomor-
phic. In particular, if one is given a specific rank-one transformation, there
should be an explicit description of all rank-one transformations that are
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isomorphic to it. In this paper we give such explicit descriptions, provided
that the given rank-one transformation is an odometer. All the transfor-
mations we consider in this paper are invertible finite measure-preserving
transformations.

Another reason for considering odometers is the role they played in a
question of Ferenczi. In his survey article [5], Ferenczi asked whether every
odometer is isomorphic to a symbolic rank-one transformation. This ques-
tion is connected to whether two common definitions of rank-one—the con-
structive geometric definition and the constructive symbolic definition—are
equivalent. As noted by the referee, in the Introduction to Adams–Ferenczi–
Petersen [1], the authors mention how one can use Remark 2.10 in Danilenko
[2] to answer this question in the affirmative, and also show how to construct
a symbolic rank-one transformation that is isomorphic to any given odome-
ter. The results in this paper can be thought of as a continuation of work
in [1], [2]. Namely, we explicitly describe all rank-one transformations that
are isomorphic to any given odometer (Theorem 5.1). In addition, we also
explicitly describe all rank-one transformations that are isomorphic to some
(unspecified) odometer (Theorem 5.2).

Rank-one transformations are determined by two sequences of parame-
ters, known as the cutting parameter and spacer parameter (see Section 2
for the precise definitions). In this paper we give explicit descriptions, in
terms of the cutting parameter and spacer parameter, of when a rank-one
transformation factors onto a given finite cyclic transformation, or factors
onto an (infinite) odometer, or is isomorphic to a given odometer.

Note that a measure-preserving transformation factors onto a non-trivial
finite cyclic transformation if and only if it is not totally ergodic. Thus re-
sults in this paper give an explicit description of when an arbitrary rank-one
transformation is totally ergodic. This generalizes some result of [7], where
Gao and Hill gave an explicit description of which rank-one transformations
with bounded cutting parameter are totally ergodic.

The rest of paper is organized as follows. In Section 2 we recall the con-
structive geometric definition and the constructive symbolic definition of
rank-one transformations. We also explicitly define odometers and finite
cyclic transformations. In Section 3 we give an explicit description of all
rank-one transformations that factor onto a given finite cyclic transforma-
tion, as well as a description of rank-one transformations that allow a finite
factor. In Section 4 we describe all rank-one transformations that factor
onto a given odometer. As a corollary, we get a description of all rank-one
transformations that factor onto some odometers. Finally, in Section 5 we
describe all rank-one transformations that are isomorphic to a given odome-
ter. Again, this gives rise to a description of all rank-one transformations
that are isomorphic to some odometer.
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2. Preliminaries

2.1. Measure-preserving transformations. We will be concerned with
Lebesgue spaces, which we shall denote by (X,µ) or (Y, ν), and typically
not mention the σ-algebra. We shall assume that the measure of the space
is 1 and in most cases, and unless we explicitly specify to the contrary,
we will assume our measures to be nonatomic and call the spaces standard
Lebesgue spaces. A map φ : (X,µ) → (Y, ν) is measure-preserving if for
all measurable sets A, φ−1(A) is measurable and µ(φ−1(A)) = ν(A). A
transformation T : (X,µ) → (X,µ) is a measure-preserving map that is
invertible on a set of full measure and whose inverse is measure-preserving.
We will call (X,µ, T ) a measure-preserving system and, by abuse of notation,
also a measure-preserving transformation.

If (X,µ, T ) and (Y, ν, S) are measure-preserving transformations, then a
factor map from T to S is a measure-preserving map φ : (X,µ) → (Y, ν)
such that for µ-almost every x ∈ X, φ ◦ T (x) = S ◦ φ(x). We say that T
factors onto S if there exists a factor map φ from (X,µ, T ) onto (Y, ν, S). If
(X,µ, T ) and (Y, ν, S) are measure-preserving transformations, then an iso-
morphism between T and S is a factor map φ from (X,µ, T ) to (Y, ν, S) that
is invertible a.e.. We note here that neither factor maps nor isomorphisms
need to be defined on the entire underlying space (X,µ), only a subset of
X of full measure, and that two measure isomorphisms are considered the
same if they agree on a set of full measure.

2.2. Rank-one transformations. The constructive geometric definition
of a rank-one transformation is given below (see e.g., [5]). It describes a
recursive cutting and stacking process that produces infinitely many Rokhlin
towers (or columns) to approximate the transformation.

Definition 2.1. A measure-preserving transformation T on a standard
Lebesgue space (X,µ) is rank-one if there exist sequences of positive in-
tegers rn > 1, for n ∈ N = {0, 1, 2, . . . }, and nonnegative integers sn,i, for
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n ∈ N and 0 < i ≤ rn, such that, if hn is defined by

h0 = 1;hn+1 = rnhn +
∑

0<i≤rn

sn,i,

then

(1)
+∞∑
n=0

hn+1 − rnhn
hn+1

< +∞;

and there are subsets of X, denoted by Bn for n ∈ N, by Bn,i for n ∈ N and
0 < i ≤ rn, and by Cn,i,j for n ∈ N, 0 < i ≤ rn and 0 < j ≤ sn,i (if sn,i = 0
then there are no Cn,i,j), such that for all n ∈ N:

• {Bn,i : 0 < i ≤ rn} is a partition of Bn,

• the T k(Bn), 0 ≤ k < hn, are disjoint,
• T hn(Bn,i) = Cn,i,1 if sn,i 6= 0 and i ≤ rn,

• T hn(Bn,i) = Bn,i+1 if sn,i = 0 and i < rn,
• T (Cn,i,j) = Cn,i,j+1 if j < sn,i,
• T (Cn,i,sn,i) = Bn,i+1 if i < rn,
• Bn+1 = Bn,1,

and the collection
⋃∞
n=0{Bn, T (Bn), . . . , T hn−1(Bn)} is dense in the σ-algebra

of all µ-measurable subsets of X.

Assumption (1) of this definition is equivalent to the finiteness of the
measure µ. In this definition the sequence (rn) is called the cutting pa-
rameter, the sets Cn,i,j are called the spacers, and the doubly-indexed se-
quence (sn,i) is called the spacer parameter. For each n ∈ N, the collection

{Bn, T (Bn), . . . , T hn−1(Bn)} gives the stage-n tower, with Bn as the base of
the tower, and each T k(Bn), where 0 ≤ k < hn, a level of the tower. The
stage-n tower has height hn. At stage n + 1, the stage-n tower is cut into
rn many n-blocks of equal measure. Each block has a base Bn,i for some
0 < i ≤ rn and has height hn. These n-blocks are then stacked up, with
spacers inserted in between. At future stages, these n-blocks are further cut
into thinner blocks, but they always have height hn.

Note that the base of the stage-m tower, Bm, is partitioned into {Bm,i :
0 < i ≤ rm}, where each Bm,i is now a level of the stage-(m + 1) tower,
with Bm,1 = Bm+1 being the base of the stage-(m+ 1) tower. It is clear by
induction that for any n ≥ m, Bm is partitioned into various levels of the
stage-n tower.

We let Im,n, for n ≥ m, denote the set of indices for all levels of the
stage-n tower that form a partition of Bm, i.e.,

Im,n = {i : T i(Bn) ⊆ Bm, 0 ≤ i < hn}.

Note that Bm =
⋃
i∈Im,n T

i(Bn). Im,n is a finite set of natural numbers that

can be inductively computed from the cutting and spacer parameters. For
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example,

Im,m+1 = {0, hm + sm,1, 2hm + sm,1 + sm,2, . . . , (rm − 1)hm +
∑

0<i<rm

sm,i}.

We next turn to the constructive symbolic definition of rank-one trans-
formations. This often gives a succinct way to describe a concrete rank-one
transformation. We will be talking about finite words over the alphabet
{0, 1}. Let F be the set of all finite words over the alphabet {0, 1} that
start with 0. A generating rank-one sequence is an infinite sequence (vn) of
finite words in F defined by induction on n ∈ N:

v0 = 0; vn+1 = vn1sn,1vn1sn,2 · · · vn1sn,rn

for some integers rn > 1 and non-negative integers sn,i for 0 < i ≤ rn.
We continue to refer to the sequence (rn) as the cutting parameter and
the doubly-indexed sequence (sn,i) as the spacer parameter. Note that the
cutting and spacer parameters uniquely determine a generating rank-one
sequence. A generating rank-one sequence converges to an infinite rank-one
word V ∈ {0, 1}N. We write V = limn vn.

Definition 2.2. Given an infinite rank-one word V , the symbolic rank-one
system induced by V is a pair (X,σ), where

X = XV = {x ∈ {0, 1}Z : every finite subword of x is a subword of V }
and σ : X → X is the shift map defined by

σ(x)(k) = x(k + 1) for all k ∈ Z.

Under the same assumption (1) as in the constructive geometric defini-
tion, the symbolic rank-one system will carry a unique non-atomic, invariant
probability measure. In this case the symbolic rank-one system will be iso-
morphic to the rank-one transformation that is constructed with the same
cutting and spacer parameters.

The symbolic definition does not explicitly describe odometers (see Sub-
section 2.3 below for definitions), which are considered rank-one transfor-
mations. This was the motivation of Ferenczi’s question in [5] as discussed
in the introduction. In contrast, we note that in the topological setting,
Gao and Ziegler have recently proved in [8] that (infinite) odometers are
not topologically isomorphic to symbolic rank-one systems (which are called
rank-one subshifts in [8]).

When we work with a rank-one transformation we will use both the ter-
minology and the notation in this subsection.

2.3. Finite cyclic permutations and odometers. Here we precisely de-
scribe what we mean by “finite cyclic permutation” in the context of measure-
preserving transformations. If k ∈ N with k > 1 and n ∈ N, we denote by
[n]k the unique m ∈ N with m < k and n ≡ m mod k. For each k ∈ N with
k > 1, let Xk = {0, 1, . . . , k − 1}, let µk be the measure on Xk where each
point has measure 1/k, and let fk : Xk → Xk given by fk(i) = [i+ 1]k. We
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let Z/kZ denote the transformation (Xk, µk, fk) and refer to such a transfor-
mation as a finite cyclic permutation. These are the sole cases we consider
where the measure is atomic, so the measures are defined on atomic Lebesgue
probability spaces, and we will still refer to (Xk, µk, fk) as a transformation,
though it should be clear from the context, such as when we denote a trans-
formation by T , when a transformation is defined on a non-atomic space.
It is natural to speak of a factor map from a measure-preserving transfor-
mation T to (Xk, µk, fk), but since T is implicitly defined on a non-atomic
space, it is not possible for such a factor map to be an isomorphism.

Now we describe what we mean by an odometer (see [4]). Loosely it
can be described as an inverse limit of a coherent sequence of finite cyclic
permutations. To be more precise, suppose we have a sequence (kn : n ∈ N)
of positive integers greater than 1 such that for all n ∈ N, kn|kn+1. We now
define X as the collection of sequences α = (αn : n ∈ N) ∈ Πn∈NZ/knZ such
that for all m,n ∈ N with m ≤ n, [αn]km = αm. There is a natural measure
µ on X satisfying the following: for all n ∈ Z and all i ∈ {0, 1, . . . , kn − 1}
the set {α ∈ X : αn = i} has measure 1/kn. There is also a natural bijection
f : X → X defined by

f(α) = (f1(α1), f2(α2), . . .) = ([α1 + 1]k1 , [α2 + 1]k2 , . . . ).

A transformation (X,µ, f) obtained in this way is called an odometer. For
example, if kn = 2n, one obtains the standard dyadic odometer.

The following characterization of when two such odometers are isomorphic
is well known. Suppose (kn : n ∈ N) and (k′n : n ∈ N) are sequences of
positive integers greater than 1 such that for all n ∈ N, kn|kn+1 and k′n|k′n+1.
Then the odometers corresponding to these two sequences are isomorphic if
and only if

{m ∈ N : ∃n ∈ N (m|kn)} = {m ∈ N : ∃n ∈ N (m|k′n)}.
Because of this characterization we often describe an odometer by an

infinite collection K of natural numbers that is closed under taking factors.
If one has such a set K, then it is easy to produce a sequence (kn : n ∈ N)
of integers > 1 such that kn|kn+1, for all n ∈ N, and for which

K =
⋃
n∈N
{m ∈ N : m|kn}.

Moreover, any choice of such a sequence (kn : n ∈ N) will give rise to the
same odometer, up to isomorphism. We can now let OK denote (any) one
of the odometers produced by choosing such a sequence (kn : n ∈ N). There
are canonical ways to choose OK based on the maximum power of each
prime that occurs in K, but we will not go into the details of this canonical
choice in this paper. It is worth noting that the characterization in the
preceding paragraph guarantees that if K 6= K ′ are infinite collections of
natural numbers that are closed under factors, then OK 6∼= OK′ .

Here we collect the important facts about OK that we will use in this
paper.
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(1) For each k ∈ K, then there is a canonical factor map πk from OK to
Z/kZ.

(2) For all k, k′ ∈ K, with k|k′, then for all x in the underlying set of
OK , πk(x) = [πk′(x)]k.

(3) The collection of sets {π−1k (i) : k ∈ K, 0 ≤ i < k} generates the
σ-algebra on OK .

(4) If a measure-preserving transformation factors onto Z/kZ for all k ∈
K, then it also factors onto OK . If, moreover, the fibers of these
maps generate the σ-algebra on (X,µ), then that factor map is an
isomorphism. The argument for this is similar to the construction
of the Kronecker factor of a transformation, see e.g. [9].

2.4. The notion of ε-containment. In this subsection we define a precise
notion of almost containment and briefly describe some of its properties;
this is a standard notion in measure theory also called (1− ε)-full.

Definition 2.3. Let A and B be measurable subsets of positive measure of
a measure space (X,µ) and let ε > 0. We say that A is ε-contained in B,
and write A ⊆ε B, provided that

µ(A \B)

µ(A)
< ε.

Equivalently, we say that A is (1− ε)-full of B if µ(A ∩B) > (1− ε)µ(A).

Here are the basic facts we will need; the reader may refer to e.g. [10].

(1) If A ⊆ε B and A is partitioned into sets A1, A2, . . . , Ar, there is some
i ≤ r such that Ai ⊆ε B.

(2) If A is partitioned into sets A1, A2, . . . , Ar and for all i ≤ r, Ai ⊆ε B,
then A ⊆ε B.

(3) Let (X,µ, T ) be a measure-preserving transformation. If A ⊆ε B
and z ∈ Z, the T z(A) ⊆ε T z(B).

(4) Let (X,µ, T ) be a rank-one transformation. If B ⊆ X has positive
measure, there there is some n ∈ N and some 0 ≤ i < hn such that
T i(Bn) ⊆ε B.

3. Factoring onto a finite cyclic permutation

It is quite easy to build a rank-one transformation that factors onto a
cyclic permutation of k elements. Simply ensure that for some N ∈ N, the
height of the stage-N tower is a multiple of k and furthermore insist that
every time spacers are inserted after stage-N the number of spacers inserted
is a multiple of k. If a rank-one transformation is constructed in this way,
then one can define, for all m ≥ N , a function πm which goes from the stage-
m tower to Z/kZ defined by πm(x) = [i]k, where x belongs to level i of the
stage-m tower. The method of construction guarantees that if x belongs to
the stage-m tower and n ≥ m, then πm(x) = πn(x). The domains of the



8 M. FOREMAN, S. GAO, A. HILL, C.E. SILVA, B. WEISS

functions πm are increasing and their measure goes to one. Thus, we can
define π from a full-measure subset of X to Z/kZ by

π(x) = lim
m→∞

πm(x).

This map π is clearly a factor map.
The theorem below gives a full characterization of which transformations

factor onto a cyclic permutation of k elements.

Theorem 3.1. Let (X,µ, T ) be a rank-one measure-preserving transforma-
tion and let 1 < k ∈ N. The following are equivalent.

(i) (X,µ, T ) factors onto Z/kZ.
(ii) ∀η > 0,∃N ∈ N, ∀n ≥ m ≥ N, ∃j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< η.

Proof. First we will show that (i) implies (ii). Suppose that π : X → Z/kZ
is a factor map. The fibers π−1(0), π−1(1), π−1(2), . . . , π−1(k − 1) are a
partition of X into sets of measure 1/k such that T (π−1(j)) = π−1([j+1]k),
for all j ∈ Z/kZ. Let η > 0 and choose ε smaller than both η/2 and 1/2.

Since the levels of the towers generate the σ-algebra of X, there exists
N ∈ N such that for all n > m ≥ N , every level of the stage-n tower
is ε-contained in π−1(j) for some j ∈ Z/kZ. Fix j0 ∈ Z/kZ such that
Bm ⊆ε π−1(j0). We claim that among the levels of the stage-n tower that
comprise the base of the stage-m tower, the fraction of those that are ε-
contained in π−1(j0) must be at least 1 − 2ε. In other words, letting I ′ =
{i ∈ Im,n : T i(Bn) 6⊆ε π−1(j0)}, we claim that

(2)
|I ′|
|Im,n|

< 2ε.

Suppose this is not the case. Since

Bm \ π−1(j0) ⊇
⋃
i∈I′

(
T i(Bn) \ π−1(j0)

)
,we have that

µ
(
Bm \ π−1(j0)

)
≥ |I ′| · µ(Bn) · (1− ε) =

|I ′|
|Im,n|

· µ(Bm) · (1− ε).

Therefore,

µ
(
Bm \ π−1(j0)

)
µ(Bm)

≥ |I ′|
|Im,n|

· (1− ε) ≥ (2ε) · (1− ε) > ε,

since ε < 1/2. This contradicts the fact that Bm is ε-contained in π−1(j0)
and completes the proof of (2).

Since the levels of the stage-n tower that are ε-contained in π−1(j0) are
all in the same congruence class mod k, there is some j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< 2ε < η,
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completing the proof that (i) implies (ii).
Next we will show that (ii) implies (i). Assuming (ii) we construct a factor

map π : X → Z/kZ.
For all α ∈ N, let ηα = 1

2α+2 and use (ii) to produce Nα ∈ N. We may
assume that the sequence (Nα : α ∈ N) is increasing and that for each α, Nα

is large enough that the measure of the stage-Nα tower is at least 1− 1
2α+1 .

Now, for each α ∈ N we also choose jα ∈ Z/kZ such that

|{i ∈ INα,Nα+1 : [i]k 6= jα}|
|INα,Nα+1 |

< ηα.

For all α ∈ N, define a function φα from the stage-Nα tower to Z/kZ as
follows: If x belongs to level i of the stage-Nα tower, then φα(x) = [i]k.
Since for most x in the base of the Nα-tower, φα+1(x) = jα, the reader can
verify that for all α ∈ N,

µ ({x ∈ dom(φα) : φα+1(x) 6= jα}) < ηα.

Now, for each α ∈ N, we let Jα =
∑

β<α jβ. Also, for each α ∈ N we define

a function πα from the stage-Nα tower to Z/kZ by πα(x) = [φα(x) − Jα]k.
Since φα and πα have the same domain for all α ∈ N, and in addition, if
x ∈ dom(πα), then πα+1(x) = πα(x) if and only if φα+1(x) = [φα(x) + jα]k,
and we already know that µ ({x ∈ dom(φα) : φα+1(x) 6= [φα(x) + jα]k}) <
ηα, then one can verify that for all α ∈ N,

µ ({x ∈ dom(πα) : for all β ≥ α, πα(x) = πβ(x)}) ≥ 1− 1

2α
.

It follows that for µ-almost every x ∈ X, the sequence (πα(x) : α ∈ N)
eventually stabilizes and we can define

π(x) = lim
α→∞

πα(x).

Choose α sufficiently large so that πα(x) = π(x), πα(T (x)) = π(T (x))
and x belongs to a non-top level of the stage-Nα tower. If x belongs to level
i of the stage Nα tower, then T (x) belongs to level i + 1 of the stage-Nα

tower which implies that φα(T (x)) = [φα(x) + 1]k. Now,

π(T (x)) = πα(T (x)) = [φα(T (x))− Jα]k = [φα(x) + 1− Jα]k = [π(x) + 1]k.

Therefore, π : X → Z/kZ is a factor map. �

As a corollary, we obtain a characterization of the rank-one transforma-
tions that factor onto some (unspecified) non-trivial finite cyclic permuta-
tion, a condition that is well-know to be equivalent to the transformation
not being totally ergodic.

Corollary 3.2. Let (X,µ, T ) be a rank-one measure-preserving transforma-
tion. The following are equivalent.

(1) T factors onto some finite cyclic permutation.
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(2) ∃k ∈ N with k > 1, ∀η > 0, ∃N ∈ N,∀n ≥ m ≥ N, ∃j ∈ Z/kZ such
that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< η.

We end with an equivalent characterization as suggested by the referee.
The proof is similar to that of Theorem 3.1.

Theorem 3.3. Let (X,µ, T ) be a rank-one measure-preserving transforma-
tion and let 1 < k ∈ N. The following are equivalent.

(i) (X,µ, T ) factors onto Z/kZ.
(ii) There is an increasing sequence (qn) such that

∞∑
n=1

|{i ∈ Iqn,qn+1 : i ≡ 0 mod k}|
|Iqn,qn |

<∞.

4. Factoring onto an odometer

We now give characterizations of which rank-one transformations factor
onto a given odometer, and which rank-one transformations factor onto some
(unspecified) odometer. These characterizations are essentially corollaries of
Theorem 3.1.

Theorem 4.1. Let (X,µ, T ) be a rank-one measure-preserving transforma-
tion and let OK be an odometer. The following are equivalent.

(i) (X,µ, T ) factors onto OK .
(ii) ∀k ∈ K,∀η > 0, ∃N ∈ N,∀n ≥ m ≥ N, ∃j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< η.

Proof. Suppose (X,µ, T ) factors onto OK . Then for each k ∈ K, one can
compose this factor map with a factor map from OK to Z/kZ to get a
factor map from (X,µ, T ) to Z/kZ. Together with Theorem 3.1, this implies
condition (ii).

Now suppose that condition (ii) holds. By Theorem 3.1 we know that
(X,µ, T ) factors onto Z/kZ for every k ∈ K. Therefore, (X,µ, T ) factors
onto OK . �

By a proof is similar to that of Theorem 4.1 we obtain the following
corollary.

Corollary 4.2. Let (X,µ, T ) be a rank-one measure-preserving transforma-
tion. The following are equivalent.

(i) (X,µ, T ) factors onto some odometer O.
(ii) ∀M ∈ N, ∃k ≥ M,∀η > 0,∃N ∈ N, ∀n ≥ m ≥ N, ∃j ∈ Z/kZ such

that
|{i ∈ Im,n : [i]k 6= j}|

|Im,n|
< η.
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5. Being isomorphic to a given odometer

It turns out that it is not too hard to construct a rank-one transformation
that is isomorphic to a given odometer. Let K be an infinite set of natural
numbers that is closed under factors. First choose a sequence (kn : n ∈ N)
of natural numbers such that the factors of the partial products

∏
m<n km

are precisely the set K and for which∑
n∈N

1

kn
<∞.

Then build a rank-one transformation by a symbolic construction as follows.
For n ∈ N, let v0 = 0 and let vn+1 = (vn)kn−11vn . Then the resulting trans-
formation T is what is called essentially 0-expansive by Adams, Ferenczi,
and Petersen in [1], and their method shows that T is isomorphic to the
odometer OK . A definition of an isomorphism is also implicit in our results
below.

In this section we characterize in general when a rank-one transformation
is isomorphic to a given odometer. The idea is to build on our characteriza-
tion for rank-one transformations which factor onto a given odometer, and
then to examine when a factor map turns out to be an isomorphism. The
following result gives the explicit details.

Theorem 5.1. Let (X,µ, T ) be a rank-one measure-preserving transforma-
tion and let OK be an odometer. The following are equivalent.

(I) T is isomorphic to OK .
(II) Both of the following hold.

(IIa) ∀k ∈ K,∀η > 0, ∃N ∈ N,∀n ≥ m ≥ N, ∃j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< η.

(IIb) ∀l ∈ N, ∀ε > 0, ∃k ∈ K,∃N ∈ N,∀m ≥ N, ∃D ⊆ Z/kZ such that

|{i ≤ |hm| : [i]k ∈ D}∆Il,m|
|Il,m|

< ε

Proof. First assume (II). Using condition (IIa) and the proof of Theorem
3.1 we construct, for each k ∈ K, a factor map πk : X → Z/kZ. Recall that
πk is built using a series of approximating maps (πk,α : α ∈ N).

It suffices to show that for every l ∈ N and every δ > 0, there is some
k ∈ K and some E ⊆ Z/kZ such that

µ(Bl∆π
−1
k [E]) < δ.

Let l ∈ N and δ > 0. Let ε = δ/2. First, we use condition (IIb) above
to produce k ∈ K and N > l such that for all m ≥ N , there exists some
D ⊆ Z/kZ such that

|{i ≤ |hm| : [i]k ∈ D}∆Il,m|
|Il,m|

< ε.
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Since k ∈ K, we have a factor map πk : X → Z/kZ that is built using the
approximating maps πk,α. Choose a specific α ∈ N so that 1

2α < δ/2 and
such that Nα is greater than the N produced in the preceding paragraph.
Using the fact that Nα > N and using features of the approximating maps
πk,α we get the following.

(i) There exists some D ⊆ Z/kZ such that

|{i ≤ hNα : [i]k ∈ D}∆Il,Nα |
|Il,Nα |

< ε.

(ii) There exists E ⊆ Z/kZ such that⋃
d∈D

(
⋃

0≤i<hNα
[i]k=d

T i(BNα)) =
⋃
e∈E

π−1k,α(e).

(iii) µ({x ∈ dom(πk,α) : πk,α(x) = πk(x)}) ≥ 1− 1
2α .

Using these properties one can show that

µ(Bl∆π
−1
k [E]) < δ,

completing the proof that (X,µ, T ) is isomorphic to OK .
Now we assume that (X,µ, T ) is isomorphic to OK and let φ be an iso-

morphism between T and OK . For each k ∈ K we can compose φ with
the canonical factor map of OK onto Z/kZ to get a factor map πk from X
to Z/kZ. For such a k ∈ K, Theorem 3.1 guarantees that ∀η > 0,∃N ∈
N, ∀n ≥ m ≥ N, ∃j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< η.

Thus we have condition (IIa).
Next, exchanging the variable ε for δ in condition (IIb), we will prove that

∀l ∈ N,∀δ > 0, ∃k ∈ K,∃N ∈ N, ∀m ≥ N, ∃D ⊆ Z/kZ such that

|{i ≤ |hm| : [i]k ∈ D}∆Il,m|
|Il,m|

< δ.

Let l ∈ N and δ > 0. Let ε = δ ·µ(Bl)/4. The reader can verify that there
exists some k ∈ K and E ⊆ Z/kZ such that

(*) µ(Bl∆π
−1
k (E)) < ε.

We next claim that there exists N ∈ N such that for all m ≥ N there
exists some j ∈ Z/kZ such that for all 0 ≤ i < hm, T i(Bm) ⊆ε π−1k ([i+ j]k).
We can prove this with similar methods.

Fix such an N ∈ N that also satisfies µ
(⋃

0≤i<hN T
i(BN )

)
> 1 − ε and

let m ≥ N . We now claim that there exists D ⊆ Z/kZ such that

(**) µ(
⋃

0≤i<hm
[i]k∈D

T i(Bm)∆ π−1k (E)) < 3ε.
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Combining equations (*) and (**) we now have that

µ(
⋃

0≤i<hm
[i]k∈D

T i(Bn)∆ Bl) < 4ε.

To finish the proof of the theorem, note that

|{i < hm : [i]k ∈ D}∆Il,m|
|Il,m|

=

µ(
⋃

0≤i<hm
[i]k∈D

T i(Bm)∆
⋃

i∈Il,m

T i(Bm))

µ(
⋃

i∈Il,m

T i(Bm))

=

µ(
⋃

0≤i<hm
[i]k∈D

T i(Bm)∆Bl)

µ (Bl)
<

4ε

µ(Bl)
= δ.

�

Next we characterize when a rank-one transformation is isomorphic to
some (unspecified) odometer.

Theorem 5.2. Let (X,µ, T ) be a rank-one measure-preserving transforma-
tion. The following are equivalent.

(I) T is isomorphic to an odometer.
(II) For all l ∈ N and all ε > 0, there is some k ∈ N such that for all

η > 0 there exists an N ∈ N such that for all n > m ≥ N ,
(IIa) There is some j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< η

(IIb) There is some D ⊆ Z/kZ such that

|{i ≤ |hm| : [i]k ∈ D}∆Il,m|
|Il,m|

< ε

Proof. Suppose T is isomorphic to an odometer. Let K be the finite factors
of that odometer. Let l ∈ N and ε > 0. Using condition (IIb) of Theorem 5.1
we can find some k ∈ K and some N1 ∈ N, such that ∀m ≥ N1, ∃D ⊆ Z/kZ
such that

|{i ≤ |hm| : [i]k ∈ D}∆Il,m|
|Il,m|

< ε

For any η > 0 we can use that specific k ∈ K and condition (IIa) of Theorem
5.1 to find N2 ∈ N such that ∀n ≥ m ≥ N2, ∃j ∈ Z/kZ such that

|{i ∈ Im,n : [i]k 6= j}|
|Im,n|

< η.

Letting N = max{N1, N2} we complete condition (II) of the theorem.
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Suppose now that condition (II) holds. For all l ∈ N and all ε > 0,
produce kl,ε, and Nl,ε according to condition (II). Let

K = {k ∈ N : k|kl,ε for some l ∈ N and ε > 0}.
It is clear that K is closed under factors. We leave it to the reader to

show that K is infinite by showing that if l ∈ N and ε < 1, then kl,ε ≥ hl.
Now, consider OK . We will prove that T is isomorphic to OK by showing

that conditions (IIa) and (IIb) of Theorem 5.1 hold. First, let k ∈ K.
Choose l ∈ N and ε > 0 such that k|kl,ε. We chose kl,ε using condition (II)
of this theorem. Theorem 3.1 guarantees that that T factors onto Z/kl,εZ.
Therefore, T must also factor onto Z/kZ. Now Theorem 3.1 guarantees that
condition (IIa) of Theorem 5.1 holds. Condition (IIb) of Theorem 5.1 follows
immediately from our assumption that condition (II) of this theorem holds
and our choice of K. �

Before closing we consider an example of a rank-one transformation that
factors onto an odometer but is not isomorphic to any odometer.

Example. Let T be the rank-one transformation corresponding to the
symbolic definition v0 = 0 and

vn+1 = vnvn12
n+1

vnvn.

Then the length of vn, or equivalently the height hn of the stage-n tower, is
2n(2n+1−1). Using Theorem 3.1 it is easy to verify that T has all powers of
2 as finite factors. Thus T factors onto the dyadic odometer. As n1oted by
the referee, ergodicity of the dyadic powers and non-ergodicity of the odd
powers follows from [3, Theorem H]. An argument using Theorem 3.1 also
shows that T does not have any other factors. Indeed, suppose T has an
odd finite factor a. If no multiples of a are of the form 2k − 1 for any k,
then the condition in Theorem 3.1 fails, since the elements of Im,n come in
pairs, with a difference hm = 2m(2m+1 − 1) between them. On the other
hand, suppose a has a multiple of the form 2m+1 − 1 for some m. Then
note that the elements of Im,n come in quadruples, with the sequence of
differences hm, 2

m+1, hm in between them. This implies also that at least
half of the indices of Im,n disagree on the congruence class mod a, and
thus the condition in Theorem 3.1 fails. Therefore the maximal odometer
factor of T is the dyadic odometer. Finally, a similar argument shows that
condition (IIb) of Theorem 5.1 fails. Consequently T is not isomorphic to
the dyadic odometer. In conclusion, T is not isomorphic to any odometer.
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