Processing math: 100%

Automorphic Representations of GSp(4)

Weight 10, conductor dividing 16

The following table gives a complete list of the Galois orbits of cuspidal automorphic representations ππv of GSp(4,AQ) with the following properties:
labellift fromsizep=2p=3 paramodular SiegelKlingen Borelprincipal
typeεLT(3) K(1)K(2)K(4)K(8)K(16) Γ0(2)Γ0(4)Γ0(2)Γ0(4) B(2)Γ(2)S6 types
G.8.10.0.a1IVa+1+27T18360 00012 0202 116[3,2,1]
G.8.10.0.b1X+1+288T+217T23672 00012 0000 00
G.16.10.0.a1XIa+128T12888 00001 0000 00
G.16.10.0.b1XIa+1+28T5928 00001 0000 00
G.16.10.0.c1IXa+13768 00001 0301 010[3,1,1,1]
G.16.10.0.d1VII+11080 00001 0402 015[3,1,1,1]+[2,1,1,1,1]
G.16.10.0.e2X+116(19±505)T+217T27248±240505 00002 0000 00
G.16.10.0.f5X+127t10T+217T2α10,16 (degree 5) 00005 0000 00
P.1.10.0.a1.18.a.a1IIb+(1+528T+217T2)(128T)(129T)21960 11223 3724 415[6]+[4,2]+[2,2,2]
P.4.10.0.a2.18.a.a1VIb+(128T)232328 00000 1300 15[2,2,2]
P.8.10.0.a8.18.a.b2XIb+(128T)(129T)32040±1152114 00022 0000 00
P.8.10.0.b4.18.a.a2XIa*+128T23304±1929361 00000 0000 00
P.16.10.0.a8.18.a.a2XIa*+128T25768±2562146 00000 0000 00
P.16.10.0.b16.18.a.c2XIb+(128T)(129T)20448±1152114 00002 0000 00
P.16.10.0.c16.18.a.d2XIb+(128T)(129T)26720±2562146 00002 0000 00
dimS10(Γ) 112624 41929 661