The following table gives a complete list of the Galois orbits of cuspidal automorphic representations $\pi\cong\otimes\pi_v$ of $\GSp(4,\A_\Q)$ with the following properties:
label | lift from | size | $p=2$ | $p=3$ |
paramodular |
Siegel | Klingen |
Borel | principal |
type | $\varepsilon$ | $L$ | $T(3)$ |
$K(1)$ | $K(2)$ | $K(4)$ | $K(8)$ | $K(16)$ |
$\Gamma_0(2)$ | $\Gamma_0(4)$ | $\Gamma_0'(2)$ | $\Gamma_0'(4)$ |
$B(2)$ | $\Gamma(2)$ | $S_6$ types |
G.8.10.0.a | | 1 | IVa | + | $1+2^7T$ | $-18360$ |
0 | 0 | 0 | 1 | 2 |
0 | 2 | 0 | 2 |
1 | 16 | [3,2,1] |
G.8.10.0.b | | 1 | X | + | $1+288T+2^{17}T^2$ | $-3672$ |
0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 |
0 | 0 | |
G.16.10.0.a | | 1 | XIa | + | $1-2^8T$ | $-12888$ |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 |
0 | 0 | |
G.16.10.0.b | | 1 | XIa | + | $1+2^8T$ | $5928$ |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 |
0 | 0 | |
G.16.10.0.c | | 1 | IXa | + | $1$ | $-3768$ |
0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 1 |
0 | 10 | [3,1,1,1] |
G.16.10.0.d | | 1 | VII | + | $1$ | $-1080$ |
0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 2 |
0 | 15 | [3,1,1,1]+[2,1,1,1,1] |
G.16.10.0.e | | 2 | X | + | $1-16(-19\pm\sqrt{505})T+2^{17}T^2$ | $7248\pm240\sqrt{505}$ |
0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 |
0 | 0 | |
G.16.10.0.f | | 5 | X | + | $1-2^7$$t_{10}$$T+2^{17}T^2$ | $\alpha_{10,16}$ (degree 5) |
0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 0 |
0 | 0 | |
P.1.10.0.a | 1.18.a.a | 1 | IIb | + | $(1+528T+2^{17}T^2)(1-2^8T)(1-2^9T)$ | $21960$ |
1 | 1 | 2 | 2 | 3 |
3 | 7 | 2 | 4 |
4 | 15 | [6]+[4,2]+[2,2,2] |
P.4.10.0.a | 2.18.a.a | 1 | VIb | + | $(1-2^8T)^2$ | $32328$ |
0 | 0 | 0 | 0 | 0 |
1 | 3 | 0 | 0 |
1 | 5 | [2,2,2] |
P.8.10.0.a | 8.18.a.b | 2 | XIb | + | $(1-2^8T)(1-2^9T)$ | $32040\pm1152\sqrt{114}$ |
0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 |
0 | 0 | |
P.8.10.0.b | 4.18.a.a | 2 | XIa* | + | $1-2^8T$ | $23304\pm192\sqrt{9361}$ |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
0 | 0 | |
P.16.10.0.a | 8.18.a.a | 2 | XIa* | + | $1-2^8T$ | $25768\pm256\sqrt{2146}$ |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
0 | 0 | |
P.16.10.0.b | 16.18.a.c | 2 | XIb | + | $(1-2^8T)(1-2^9T)$ | $20448\pm1152\sqrt{114}$ |
0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 |
0 | 0 | |
P.16.10.0.c | 16.18.a.d | 2 | XIb | + | $(1-2^8T)(1-2^9T)$ | $26720\pm256\sqrt{2146}$ |
0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 |
0 | 0 | |
$\mathrm{dim}\:S_{10}(\Gamma)$ |
1 | 1 | 2 | 6 | 24 |
4 | 19 | 2 | 9 |
6 | 61 | |