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Yoshida lifts and simultaneous non-vanishing of dihedral twists
of modular L-functions
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Abstract

Given elliptic modular forms f and g satisfying certain conditions on their weights and levels,
we prove (a quantitative version of the statement) that there exist infinitely many imaginary
quadratic fields K and characters χ of the ideal class group ClK such that L( 1

2
, BCK(f) × χ) �= 0

and L( 1
2
, BCK(g) × χ) �= 0. The proof is based on a non-vanishing result for Fourier coefficients

of Siegel modular forms combined with the theory of Yoshida liftings.

1. Introduction

Let K be an imaginary quadratic field of discriminant −d. We denote its ideal class group by
ClK and the group of ideal class characters by ĈlK . For any χ in ĈlK and f a holomorphic
newform with trivial nebentypus as in [2], one can form the L-function L(s, πf × θχ); this is
the Rankin–Selberg convolution of the automorphic representation πf attached to f and the
θ-series

θχ(z) =
∑

0�=a⊂OK

χ(a)e(N(a)z).

Here, θχ is a holomorphic modular form of weight 1 and nebentypus (−d/∗) on Γ0(d); it is
a cusp form if and only if χ2 �= 1. We remark here that L(s, πf × θχ) = L(s,BCK(πf ) × χ)
where BCK denotes base-change to K.

The problem of studying the non-vanishing of the central values L( 1
2 , πf × θχ) arises

naturally in several contexts, and a considerable amount of work has been done in this direction.
We note, in particular, the paper of Michel and Venkatesh [19] which proves that, given a cusp
form f (satisfying certain conditions on weight and level) and an imaginary quadratic field K
of discriminant −d, there exist asymptotically at least d1/2700−ε characters χ ∈ ĈlK such that
L( 1

2 , πf × θχ) �= 0. The introduction to [19] has a review of several other papers on related
questions and a summary of the methods available.

In this paper, we prove a simultaneous non-vanishing result for L(1
2 , πf × θχ), L( 1

2 , πg × θχ)
for two fixed forms f , g (but varying K and χ) under certain hypotheses.

Theorem 1.1. Let k > 1 be an odd integer. Let N1, N2 be two positive, squarefree integers
such that M = gcd(N1, N2) > 1. Let f be a holomorphic newform of weight 2k on Γ0(N1) and
g be a holomorphic newform of weight 2 on Γ0(N2). Assume that, for all primes p dividing M,
the Atkin–Lehner eigenvalues of f and g coincide. Then there exists an imaginary quadratic
field K and a character χ ∈ ĈlK such that L( 1

2 , πf × θχ) �= 0 and L( 1
2 , πg × θχ) �= 0. In fact,
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if D(f, g) is the set of d satisfying the following conditions:

(i) d > 0 is an odd, squarefree integer and −d is a fundamental discriminant;
(ii) there exists an ideal class group character χ of K = Q(

√−d) such that L( 1
2 , πf × θχ) �= 0

and L(1
2 , πg × θχ) �= 0;

then, for any 0 < δ < 5
8 , one has the lower bound†

|{0 < d < X, d ∈ D(f, g)}| �f,g,δ X
δ. (1)

Note that if we could show that, for some K, the trivial character is a suitable choice for
χ, we would solve the long-standing problem of showing the existence of a quadratic Dirichlet
character whose twists with the central L-values of f , g are simultaneously non-zero. However,
because of the nature of our method, we cannot get any handle on the χ that are good for our
purposes, nor can we give any quantitative bounds on how many such χ exist for each K.

Our method involves Siegel modular forms, Jacobi forms and classical holomorphic forms
of half-integral weight. First, we lift the pair (f, g) via the theta correspondence to a Siegel
cusp form of degree 2 and level N . Such lifts are traditionally known as Yoshida lifts (after
Hiroyuki Yoshida, who first investigated such forms in [35]) and have been studied extensively
by Böcherer and Schulze-Pillot [5–8]. In fact, the Yoshida lift is a certain case of Langlands
functoriality; see Subsection 3.2 for more details.

Via the ‘pullback’ of Bessel periods from [25, Theorem 3] and the formula of Waldspurger,
Theorem 1.1 reduces to showing that the Yoshida lift attached to (f, g) has many non-vanishing
Fourier coefficients of fundamental discriminant. This turns out to be a special case of the other
main result of this paper, Theorem 2.2, which asserts that any Siegel cusp form of degree 2
and squarefree level that is an eigenfunction of certain Hecke operators has many non-zero
fundamental Fourier coefficients. The proof of Theorem 2.2, which exploits the Fourier–Jacobi
expansion of Siegel forms and the relation between Jacobi forms and holomorphic modular
forms of half-integral weight, involves only minor modifications to the proof of the main result
of [30], where a version of this theorem in the case of full level was proved.

After some basic facts and definitions, Theorem 2.2 is stated in Subsection 2.4. We explain
how its proof follows from a statement about half-integral weight modular forms, and continue
to prove this half-integral weight result in Subsection 2.5. Then, in Section 3, we turn to
Yoshida liftings, starting with some general facts on the relationship between Siegel modular
forms of degree 2 and automorphic representations of the group GSp4. This is followed by a brief
survey of the representation-theoretic construction of the Yoshida lifting due to Roberts [27].
Combined with some local results about representations of the non-archimedean GSp4, we
explain how this leads to an alternative proof of the existence of the classical Yoshida liftings
constructed in [6, 8]. The alternative proof comes with a few additional benefits, which will be
used in Section 4. We start this final section by giving some background on Bessel models and
their relationship with Fourier coefficients. Finally, combining Theorem 2.2, Yoshida liftings
and [25, Theorem 3], we prove Theorem 1.1. Note that, while our method gives a lower bound
on the number of non-vanishing twists, it does not give a lower bound on the size of the
non-vanishing L-value itself.

We say a few words about the restrictions on f and g in Theorem 1.1. The conditions
that N1, N2 are squarefree and that the Atkin–Lehner eigenvalues of f and g coincide are
needed to ensure that there exists a holomorphic Yoshida lift attached to (f, g) with respect
to a Siegel-type congruence subgroup Γ(2)

0 (N) ⊂ Sp4(Z) of squarefree level N . Indeed, our key

†Recall that A(X) �a,b,... B(X) means that there exist constants C > 0, D > 0, which depend only on a, b, . . .,
such that A(X) > C|B(X)| for all X > D.
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result (Theorem 2.2) on non-vanishing fundamental Fourier coefficients is only proved for Siegel
cusp forms with respect to such congruence subgroups. However, even if these two conditions
are removed, then (f, g) will still have a Yoshida lift (possibly with respect to some other
congruence subgroup), provided that there is a prime p dividing gcd(N1, N2) such that πf , πg
are both discrete series at p.‡ So, an analog of Theorem 2.2 for Siegel cusp forms with respect
to more general congruence subgroups will allow us to remove some of the restrictions on f and
g. This is currently work in progress by J. Marzec at the University of Bristol. To remove the
restriction on the weight of g would require us to extend Theorem 2.2 to vector-valued Siegel
cusp forms, which seems possible in principle.

A word about the exponent 5
8 in Theorem 1.1. Let θ be a real number such that, given

any ε > 0 and a cusp form f of weight k + 1
2 with k � 1, we have ã(f, n) �f,ε n

θ+ε; here n
varies over squarefree integers coprime to the level and ã(f, n) denotes the normalized Fourier
coefficient. Then what we really prove is that (1) is valid for any 0 < δ < 1 − 2θ. The first non-
trivial bound for θ (= 3

14 ) was obtained by Iwaniec [15]. In Theorem 1.1, we have used θ = 3
16 ,

which is due to Bykovskĭı [9]; see also the papers of Blomer–Harcos [3] and Conrey–Iwaniec [10].
As for related work, we have already mentioned the paper of Michel and Venkatesh [19]. The

more general problem of non-vanishing of twists of automorphic L-functions has a long history.
The book of Ram Murty–Kumar Murty [26], which brings together some of the main techniques
and results in the area, is a good reference; see also the introduction to Ono–Skinner [22]. There
are only a few simultaneous non-vanishing results available in the literature. An interesting
example is the result of Michel and VanderKam [18] where families of three different GL1 × GL2

L-functions are considered. Closely related to the present work is a paper of Prasad and Takloo-
Bighash on Bessel models where a similar non-vanishing result is proved [25, Corollary 13.3];
however, in their result, the twisting character χ can be any Hecke character of K (of possibly
high conductor) and it does not seem possible to give an effective bound on this conductor in
terms of f , g by their method. For many arithmetic applications, it is necessary to know the
existence of non-vanishing twists by characters whose conductor can be effectively bounded,
and the ideal scenario is when an unramified twist exists, as in Theorem 1.1.

2. Siegel cusp forms of degree 2

2.1. Preliminaries

For any commutative ring R and positive integer n, let Mn(R) denote the ring of n by n
matrices with entries in R, and GLn(R) denote the group of invertible matrices. If A ∈Mn(R),
then we let tA denote its transpose. We let M sym

n (R) denote the additive group of symmetric
matrices in Mn(R). We say that a matrix in M sym

n (Z) is semi-integral if it has integral diagonal
entries and half-integral off-diagonal ones. We let Λn ⊂M sym

n (Z) denote the set of symmetric,
semi-integral, positive-definite matrices of size n.

Denote by J the 4 by 4 matrix given by

J =
(

0 I2
−I2 0

)
,

where I2 is the identity matrix of size 2. Define the algebraic groups GSp4 and Sp4 over Z by

GSp4(R) = {g ∈ GL4(R) | tgJg = μ2(g)J, μ2(g) ∈ R×},

‡The restriction that there is a prime dividing gcd(N1, N2) where πf , πg are both discrete series will probably
be very difficult to remove by our method, because without this condition there are no Jacquet–Langlands
transfers and hence no (holomorphic) Yoshida lifts. It is conceivable that one could still consider the ‘Fourier
coefficients’ of the non-holomorphic Yoshida lift in this setup and prove a non-vanishing result for those.
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Sp4(R) = {g ∈ GSp4(R) |μ2(g) = 1},
for any commutative ring R. The group GSp4 will be denoted by the letter G.

The Siegel upper half-space of degree 2 is defined by

H2 = {Z ∈M2(C) |Z = tZ, Im(Z) is positive definite}.
We define

g〈Z〉 = (AZ +B)(CZ +D)−1 for g =
(
A B
C D

)
∈ Sp4(R), Z ∈ H2.

We let J(g, Z) = CZ +D and use i2 to denote the point ( i i ) ∈ H2.
For any positive integer N , define

Γ(2)
0 (N) :=

{(
A B
C D

)
∈ Sp4(Z) |C ≡ 0 (mod N)

}
. (2)

Let S(2)
k (N) denote the space of holomorphic functions F on H2 which satisfy the relation

F (γ〈Z〉) = det(J(γ, Z))kF (Z), (3)

for γ ∈ Γ(2)
0 (N), Z ∈ H2, and vanish at all the cusps. Elements of S(2)

k (N) are often referred to
as Siegel cusp forms of degree (genus) 2, weight k and level N .

2.2. The Fourier and Fourier–Jacobi expansions

It is well known that any F in S(2)
k (N) has a Fourier expansion

F (Z) =
∑
T∈Λ2

a(F, T )e(Tr(TZ)). (4)

Applying (3) for γ =
(
A

tA−1

)
, where A ∈ GL2(Z), yields the relation

a(F, T ) = det(A)k a(F, tATA), (5)

for A ∈ GL2(Z). In particular, if k is even, then the Fourier coefficient a(F, T ) depends only
on the GL2(Z) equivalence class of T .

The Fourier expansion (4) also immediately shows that any F ∈ S
(2)
k (N) has a ‘Fourier–

Jacobi expansion’

F (Z) =
∑
m>0

φm(τ, z)e(mτ ′), (6)

where we write Z = ( τ z
z τ ′ ) and, for each m > 0,

φm(τ, z) =
∑
n,r∈Z

4nm>r2

a

(
F,

(
n r/2
r/2 m

))
e(nτ)e(rz) ∈ Jcusp

k,m (N). (7)

Here Jcusp
k,m (N) denotes the space of Jacobi cusp forms of weight k, level N and index m; for

details see [17]. If we put c(n, r) = a
(
F,

(
n r/2
r/2 m

))
, then (7) becomes

φm(τ, z) =
∑
n,r∈Z

4nm>r2

c(n, r)e(nτ)e(rz),

and this is called the Fourier expansion of the Jacobi form φm.
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2.3. The U(p) operator

For each prime p dividing N , there exists a Hecke operator U(p) acting on the space S(2)
k (N).

It can be most simply described by its action on Fourier coefficients,

F (Z) =
∑
T∈Λ2

a(F, T )e(Tr(TZ)) �−→ (U(p)F )(Z) =
∑
T∈Λ2

a(F, pT )e(Tr(TZ)). (8)

When N is squarefree, the operator U(p) has been interpreted representation-theoretically
in [32] (where this operator is called T2(p)). Furthermore, it has been proved by Böcherer [4]
that U(p) is an invertible operator on the space S(2)

k (N) (we shall, however, not need this fact).

Lemma 2.1. Let F ∈ S
(2)
k (N) be an eigenfunction for the Hecke operators U(p) for all p

dividing N . Suppose, for some N1 dividing N and some T ∈ Λ2, we have that a(F,N1T ) �= 0.
Then a(F, T ) �= 0.

Proof. For each fixed T , we prove the statement by using induction on the number of
primes (counted with multiplicity) dividing N1. The statement is trivially true if N1 = 1.
Now let N1 > 1 and let a(F,N1T ) �= 0. We need to show that a(F, T ) �= 0. Let p be a prime
dividing N1 and suppose that U(p)F = λpF ; such a λp exists by our assumption on F . By (8),
this means that a(F, pS) = λpa(F, S) for all S ∈ Λ2. Applying this fact for S = (N1/p)T and
using the assumption a(F,N1T ) �= 0, we deduce that a(F, (N1/p)T ) �= 0. Now the induction
hypothesis shows that a(F, T ) �= 0.

2.4. Non-vanishing of Fourier coefficients

Recall that elements S of Λ2 are matrices of the form

S =
(
a b/2
b/2 c

)
, a, b, c ∈ Z, a > 0, disc(S) := b2 − 4ac < 0.

If gcd(a, b, c) = 1, then S is called primitive. If disc(S) is a fundamental discriminant, then
S is called fundamental. Observe that if S is fundamental, then it is automatically primitive.
Observe also that if disc(S) is odd, then S is fundamental if and only if disc(S) is squarefree.

In an earlier work [30] of the first author, it was shown that elements of S(2)
k (1) are uniquely

determined by almost all of their fundamental Fourier coefficients. We now extend that result
to elements of S(2)

k (N) under some assumptions as well as making it quantitative.† In the
theorem below, S denotes the set of odd squarefree positive integers.

Theorem 2.2. Let k > 2 be even and N be a squarefree integer. Let 0 �= F ∈ S
(2)
k (N) be

an eigenfunction for the U(p) operator for all primes p dividing N . Then, for any 0 < δ < 5
8 ,

one has the lower bound

|{0 < d < X, d ∈ S, a(F, S) �= 0 for some S with d = −disc(S)}| �F,δ X
δ.

Remark 2.3. In particular, this implies that, for k,N as above, if F ∈ S
(2)
k (N) is non-

zero and an eigenfunction for the U(p) operator for all primes p dividing N , then there exist
infinitely many fundamental S such that a(F, S) �= 0.

†Note, however, that in the full-level case treated in [30], k was allowed to be any integer while here we will
restrict to k even.
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Proof. The proof is very similar to that of [30, Theorem 1]. Let F ∈ S
(2)
k (N) be non-zero

and an eigenfunction for the U(p) operator for all primes p dividing N . A result of Yamana [34,
Theorem 2] tells us that there exists a primitive matrix T and an integer N1 dividing N such
that a(F,N1T ) �= 0. Now, by Lemma 2.1, it follows that a(F, T ) = 0.

Since T is primitive, we can write T =
(

n r/2
r/2 m

)
with gcd(m, r, n) = 1 and 4nm > r2. By the

main theorem of [14], there exist infinitely many primes of the form mx2
0 + rx0y0 + ny2

0 . We
pick a prime p such that p � N and p = mx2

0 + rx0y0 + ny2
0 . Since this implies gcd(x0, y0) = 1,

we can find integers x1, y1 such that A = ( y1 y0x1 x0 ) ∈ SL2(Z). Let T ′ = tATA. Then a(F, T ) =
a(F, T ′) and T ′ is of the form

(
n′ r′/2
r′/2 p

)
.

This implies that there is a prime p not dividing N such that the Jacobi form φp in the
expansion (6) satisfies φp �= 0. Let us denote

c(n, r) = a

(
F,

(
n r/2
r/2 p

))
.

Then the Fourier expansion of φp is given by

φp(τ, z) =
∑
n,r∈Z

4np>r2

c(n, r)e(nτ)e(rz).

By our assumption c(n′, r′) �= 0, where

T ′ =
(
n′ r′/2
r′/2 p

)
.

Now, let

h(τ) =
∞∑
m=1

c(m)e(mτ),

where

c(m) =
∑

0�μ�2p−1
μ2≡−m (mod 4p)

c((m+ μ2)/4p, μ).

By Manickam and Ramakrishnan [17, Theorem 4.8], we know that h ∈ Sk−1/2(4pN). Here
Sk−1/2(4pN) denotes the space of cusp forms of weight k − 1

2 for Γ0(4pN); for the basic
definitions and properties of such spaces of half-integral forms, see, for instance, [30,
Section 3.1].

It is easy to see that h(τ) is not identically equal to 0. Indeed put d0 = 4n′p− r′2. Then
c(d0) equals

a

(
F,

(
n′ r′/2
r′/2 p

))
+ a

(
F,

(
n′ + p− r′ p− r′/2
p− r′/2 p

))
,

which is simply 2a
(
F,

(
n′ r′/2
r′/2 p

))
by (5) and hence non-zero.

Now, by Theorem 2.4, it follows that

|{0 < d < X, d ∈ S, c(d) �= 0}| �h,δ X
δ.

For any of these d, there exists a μ such that c((d+ μ2)/4p, μ) = a
(
F,

(
(d+μ2)/4p μ/2

μ/2 p

))
is

not equal to zero. This completes the proof.
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2.5. A result on half-integral weight cusp forms

The following theorem, which is a generalization of [30, Theorem 2], was used in the proof
above. We refer the reader to [30, Section 3.1] for the notation and definitions related to
half-integral weight cusp forms.

Theorem 2.4. Let N be a positive integer divisible by 4 and χ : (Z/NZ)× → C× be a
character. Write χ =

∏
p|N χp and assume that the following conditions are satisfied:

(i) N is not divisible by 16, and if N is divisible by 8, then χ2 = 1;
(ii) N is not divisible by p3 for any odd prime p;
(iii) if p is an odd prime such that p2 divides N, then χp �= 1.

For some k � 2, let f ∈ Sk+1/2(N,χ) be non-zero with the Fourier expansion f(z) =∑
n>0 a(f, n)e(nz). Then, for any 0 < δ < 5

8 , one has the lower bound

|{0 < d < X, d ∈ S, a(f, d) �= 0}| �f,δ X
δ.

The rest of this subsection is devoted to the proof of the above theorem. We start with the
following key proposition.

Proposition 2.5. Let k � 2, let N be a positive integer that is divisible by 4 and let χ
be a Dirichlet character modN . Let f ∈ Sk+1/2(N,χ), f �= 0, and suppose that a(f, n) equals
0 whenever n and N have a common prime factor. Then, for any 0 < δ < 5

8 , one has the lower
bound

|{0 < d < X, d ∈ S, a(f, d) �= 0}| �f,δ X
δ.

Proof. The qualitative version of this proposition, that is, the assertion that there are
infinitely many d ∈ S such that a(f, d) �= 0, is just [30, Proposition 3.7]. The proof of the
quantitative version as stated here requires no new ingredients. Indeed, the proof there
proceeded by showing that there exists an integer M such that

S(M,X; f) :=
∑
d∈S

(d,M)=1

|ã(f, d)|2e−d/X

satisfies S(M,X; f) �f X. Here ã(f, n) denotes the ‘normalized’ Fourier coefficients, defined
by

ã(f, n) = a(f, n)n1/4−k/2.

Proposition 2.5 now follows immediately from the well-known bound due to Bykovskĭı [9] that

|ã(f,m)|2 �f,ε m
3/8+ε.

We prove Theorem 2.4. Let f ∈ Sk+1/2(N,χ) be non-zero where N,χ satisfy the assumptions
listed in the statement of the theorem. Let 2 = p1, p2, . . . , pt be the distinct primes dividing N .
For 1 � i � t, let Si = {p1, . . . , pi}. We will construct a sequence of forms gi, 0 � i � t, such
that

(i) g0 = f ;
(ii) gi �= 0 for any 0 � i � t;
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(iii) for 1 � i � t, gi ∈ Sk+1/2(NNi, χχi) where Ni is not divisible by any prime lying outside
Si and χi is a Dirichlet character whose conductor is not divisible by any prime outside
Si;

(iv) a(gi, n) = 0 whenever n is divisible by a prime in Si;
(v) for some 1 � i � t, suppose it is true that

|{0 < d < X, d ∈ S, a(gi, d) �= 0}| �gi,N,δ X
δ;

then it is also true that

|{0 < d < X, d ∈ S, a(gi−1, d) �= 0}| �gi−1,N,δ X
δ.

It is clear that the existence of such a sequence of forms, along with Proposition 2.5, directly
implies Theorem 2.4. The proof of the fact that such forms gi exist follows exactly the argument
in [30, Section 3.5]. Indeed, the only difference is that, in [30], N/4 was assumed to be odd,
while here we allow N/4 to be divisible by 2 (but not by 4) so long as χ2 = 1. However, a
careful look at the proof of [30, Theorem 2] shows that the only place where the assumption
N/4 odd was used was in Section 3.4 of [30] in order to show that g1 �= 0. However, if g1 = 0,
then a(g0, n) = 0 unless n is even. By Serre and Stark [33, Lemma 7], this implies that the
conductor of ε2 divides N/4; here ε2 is the quadratic character associated to the field Q(

√
2).

Since this conductor is equal to 8, this means that N is divisible by 32, which is a contradiction.
This completes the proof of Theorem 2.4.

3. Yoshida lifts

3.1. Siegel cusp forms and representations

Below we will use a representation-theoretic construction of certain elements of S(2)
k (N).

In preparation, we will briefly explain the relationship between Siegel modular forms of degree
2 and automorphic representations of G = GSp4. For the full modular group this was explained
in [1], and even though we will now require levels, we may still refer to this paper for some
details. In the level case, the precise correspondence between modular forms and representations
is complicated, due to a lack of multiplicity one both locally and globally. However, all we will
have to do is construct a cusp form from an irreducible, cuspidal, automorphic representation,
and this direction of the correspondence is unproblematic.

Throughout let A be the ring of adeles of Q. Let π =
⊗
πv (restricted tensor product) be a

cuspidal, automorphic representation of the adelized group G(A) with trivial central character.
The only requirement on π necessary for the construction of classical, holomorphic modular
forms is that the archimedean component π∞ be a lowest weight representation E(l, l′) with
integers l � l′ > 0 in the notation of [23, Section 2.3]. If l′ � 3, then E(l, l′) is a holomorphic
discrete series representation with Harish-Chandra parameter (l − 1, l′ − 2), but l′ = 1 and l′ =
2 are also admissible. Let K∞ ∼= U(2) be the standard maximal compact subgroup of Sp4(R),
and (τl,l′ ,Wl,l′) be a model for the minimal K∞-type of El,l′ . Then dimWl,l′ = l − l′ + 1.
Up to multiples, the representation E(l, l′) contains a unique vector of weight (l, l′) (see [23,
Section 2.2]); it corresponds to a highest weight vector w1 in Wl,l′ . In the given model π∞
(which is arbitrary), we fix a non-zero such vector and denote it by f∞.

As for finite places, if p is a prime such that πp is an unramified representation, then let fp
be a non-zero vector in πp such that fp is invariant under G(Zp). For other primes, fix any
non-zero vector fp in πp, and let Kp be any compact and open subgroup of G(Qp) such that
fp is invariant under Kp; for example, Kp could be a principal congruence subgroup of G(Zp)
of high enough level. Then

Γ = G(Q)+ ∩
∏
p<∞

Kp,
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where the superscript ‘+’ denotes elements with positive multiplier, is a discrete subgroup of
Sp4(R).

Now let Φ be the vector in the space of π corresponding to the pure tensor
⊗
fv in ⊗πv. Then

Φ is a C-valued function on G(A) which is left-invariant under G(Q) and right-invariant under∏
p<∞Kp. We would like to construct from Φ a function taking values in the contragredient

representation W∨
l,l′ . We claim that there exists a unique function L : G(A) →W∨

l,l′ such that

Φ(g) = L(g)(w1) for all g ∈ G(A). (9)

Indeed, let w1, . . . , wn be a basis of Wl,l′ such that w2, . . . , wn have weights different from w1,
and let L1, . . . , Ln be a basis of W∨

l,l′ . Then, by the Peter–Weyl theorem, there exist uniquely
determined complex numbers cij(g) such that

Φ(gh) =
n∑

i,j=1

cij(g)Li(τl,l′(h)wj) for all h ∈ K∞.

Since Φ has weight (l, l′), it follows that cij = 0 for j �= 1. Hence, (9) holds with L(g) =∑
i ci1(g)Li. The uniqueness of L follows from the construction.
Observe that, by construction, Φ(gh) = (τ∨l,l′(h

−1)L(g))w1 for all h ∈ K∞, and L is
characterized by this property. This implies that

L(gh) = τ∨l,l′(h
−1)L(g) for all g ∈ G(A) and h ∈ K∞. (10)

Furthermore, L is left-invariant under G(Q) and right-invariant under
∏
p<∞Kp.

We can now construct a modular form F on the Siegel upper half-space H2 taking values in
W∨
l,l′ . First we extend τ∨l,l′ , which is a representation of U(2), to a representation of GL2(C); by

the unitary trick, this can be done in exactly one way. It is easy to verify that this extension has
highest weight (l, l′) in the sense of [11, Appendix to I.6]. We will write ρl,l′ for this extension.
For Z in H2, let g be an element of Sp4(R) such that Z = g〈i2〉, and set

F (Z) = ρl,l′(Ci2 +D)L(g) where g =
(
A B
C D

)
.

Then F is a well-defined holomorphic function on H2 with values in the space of ρl,l′ . It satisfies

F (γ〈Z〉) = ρl,l′(CZ +D)F (Z) for γ =
(
A B
C D

)
∈ Γ. (11)

Hence, F is a vector-valued modular form of type ρl,l′ with respect to Γ, in the sense of [11].
It is a cusp form, and it is an eigenform of the local Hecke algebras Hp at each place p where
πp is unramified. It is scalar-valued if and only if l = l′.

In our application below, we will have a situation where each Kp can be chosen to be a Siegel
congruence subgroup, that is, a group of type

Γ0,p(M) :=
{(

A B
C D

)
∈ G(Zp) |C ≡ 0 (mod MZp)

}
. (12)

These are, of course, the local analogs of the groups defined in (2). If Kp = Γ0,p(pmp) for all p,
and if l = l′ = k, then the resulting F will be an element of the space S(2)

k (N) defined earlier,
where N =

∏
p p

mp .
Provided that the multiplier maps from the local groups Kp to Z×

p are all surjective, the
above procedure can be reversed (see [1, Section 4.5]), and one can reconstruct the automorphic
representation π from the modular form F . In general, starting from an arbitrary cusp form
F which is an eigenform for almost all local Hecke algebras, it is unclear whether F generates
an irreducible automorphic representation.
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3.2. Representation-theoretic Yoshida liftings

In the language of automorphic representations, the Yoshida lifting is a certain case of
Langlands functoriality. We will first make some comments on dual groups and L-packets,
and then explain how the Yoshida lifting can be constructed using the theta correspondence.
In the next section, we will use this group-theoretic lifting to construct holomorphic Siegel
modular forms.

We fix a totally real number field F . The Yoshida lifting comes from the embedding of dual
groups

{(g1, g2) ∈ GL2(C) × GL2(C) | det(g1) = det(g2)} −→ GSp4(C),

((
a b
c d

)
,

(
a′ b′

c′ d′

))
−→

⎛⎜⎜⎝
a b

a′ b′

c d
c′ d′

⎞⎟⎟⎠ . (13)

The principle of functoriality predicts that, for a pair τ1, τ2 of automorphic representations
of GL2(A) with the same central character, there exists an L-packet Π(τ1, τ2) of automorphic
representations of G(A) such that

L(s,Π(τ1, τ2)) = L(s, τ1)L(s, τ2). (14)

The trivial central character version of the Yoshida lifting comes from the embedding of
dual groups SL2(C) × SL2(C) → Sp4(C) given by the same formula, and predicts that, for
a pair τ1, τ2 of automorphic representations of PGL2(A), there exists an L-packet Π(τ1, τ2) of
automorphic representations of PGSp4(A) such that (14) holds.

Let us assume that τ1 =
⊗
τ1,v and τ2 =

⊗
τ2,v with irreducible, admissible, tempered

representations τ1,v, τ2,v of GL2(Fv); this is all we need for our application. By the results
of [12] or the construction in [27], the local L-packets resulting from the morphism (13) have
one or two elements. A packet has two elements precisely if τ1,v and τ2,v are both discrete series
representations. In this case,

Π(τ1,v, τ2,v) = {Πgen
v ,Πng

v },
where Πgen

v is a generic representation and Πng
v is a non-generic representation. By definition,

the global L-packet Π(τ1, τ2) consists of all representations Π =
⊗

Πv where Πv lies in the local
packet Π(τ1,v, τ2,v). Hence, if T denotes the set of places where both τ1,v and τ2,v are square-
integrable, then the number of irreducible admissible representations of G(A) in Π(τ1, τ2) is
2#T .

Arthur’s multiplicity formula makes a precise prediction of which elements of the global
packet occur in the discrete automorphic spectrum. Given Π =

⊗
Πv in Π(τ1, τ2), let T ng be

the set of places where Πv is non-generic (this can only happen at places where the local packet
has two elements). Then the prediction is that Π occurs in the discrete spectrum if and only if
#T ng is even. Hence, the number of discrete elements in the L-packet is

#Π(τ1, τ2)disc =

{
1 if T = ∅,
2#T−1 if T �= ∅.

Thus, the global packet is finite and unstable. The prediction of Arthur’s multiplicity formula in
this situation has been proved in [27, Theorem 8.6(2)]. It turns out that, in fact, the discretely
occurring Π are cuspidal, automorphic representations.

The construction of the local and global packets in [12, 27] uses the theta correspondence
(with similitudes) between G = GSp4 and various orthogonal groups of four-dimensional
quadratic spaces. If Dv is a (possibly split) quaternion algebra over Fv, considered as a



YOSHIDA LIFTS AND SIMULTANEOUS NON-VANISHING 261

quadratic space with the reduced norm, then it is well known that there is an exact sequence

1 −→ F×
v −→ D×

v ×D×
v −→ GSO(Dv) −→ 1. (15)

Thus, representations of GSO(Dv) can be identified with pairs of representations of D×
v with

the same central character. Each such pair gives then rise to a representation of G(Fv) via
the theta correspondence. More precisely, one first induces from GSO(Dv) to GO(Dv); if this
induction is irreducible, then it participates in the theta correspondence with G(Fv), and if
it is not irreducible, then there is a unique irreducible component that participates in the
theta correspondence with G(Fv). See [12, Section 3] for more information on the relationship
between GSO(Dv) and GO(Dv).

The construction of the local packets Π(τ1,v, τ2,v) above is now as follows. First, let
Dv = M2(Fv) be the split quaternion algebra, so that D×

v = GL2(Fv). Then, via the theta
correspondence, the pair τ1,v, τ2,v gives rise to an irreducible, admissible representation of
G(Fv), which is the generic member Πgen

v in the local packet. Next let Dv be the unique
division quaternion algebra over Fv. If τ1,v and τ2,v are both square-integrable, then we transfer
these representations to D×

v via the Jacquet–Langlands correspondence. Using again the theta
correspondence, the pair of representations thus obtained gives rise to another representation
of G(Fv), which is the non-generic member Πng

v of the local packet.
In the global case, let T be as above and let T ng be a subset of T of even cardinality. Let D

be the global quaternion algebra over F which is non-split exactly at the places in T ng. We use
the Jacquet–Langlands lifting to transfer τ1 and τ2 to automorphic representations τ ′1 and τ ′2
of D×

A , respectively. By the global analog of the exact sequence (15), we obtain an automorphic
representation of the group GSO(DA). It was proved in [27] that the global theta lifting of this
representation to G(A) is non-vanishing (again, one should first transition to the global group
GO(DA); see [27, Section 7 and Proof of Theorem 8.5]). It follows from the compatibility of
the local and global theta correspondence that this global lifting is the element Π =

⊗
Πv in

the global packet Π(τ1, τ2) for which Πv is non-generic exactly at the places in T ng.
We close this section by giving a more explicit description of the non-archimedean local

packets with two elements. To simplify the notation, let us omit the subscript v from the
local field F . The notation we use for irreducible, admissible representations of G(F ) goes back
to [31]. The classification into types I, II, etc. is taken from [29]. The L-parameters listed in [29,
Table A.7] coincide with those defined in [12]. In the following table σ stands for an arbitrary
character of F× and ξ denotes a non-trivial quadratic character. The Steinberg representation of
GL2(F ) is denoted by StGL(2). The symbols π, π1 and π2 stand for supercuspidal representations
of GL2(F ), and ωπ denotes the central character of π. Finally, ν denotes the normalized absolute
value on F .

τ1 τ2 Π(τ1, τ2) type
σStGL(2) ξσStGL(2) Πgen δ([ξ, νξ], ν−1/2σ) Va

Πng Non-generic supercuspidal
σStGL(2) σStGL(2) Πgen τ(S, ν−1/2σ) VIa

Πng τ(T, ν−1/2σ) VIb
π π Πgen τ(S, π) VIIIa

Πng τ(T, π) VIIIb
σStGL(2) σπ (ωπ = 1) Πgen δ(ν1/2π, ν−1/2σ) XIa

Πng Non-generic supercuspidal
π1 π2 (�∼= π1) Πgen Generic supercuspidal

Πng Non-generic supercuspidal

(16)

We remark that these packets, and many more, appear also in [28].



262 ABHISHEK SAHA AND RALF SCHMIDT

3.3. Classical Yoshida liftings

In view of the procedure explained in Subsection 3.1, the representation-theoretic construction
outlined in the previous section may be used to construct holomorphic Siegel modular forms.
We will now work over the number field Q. For simplicity, we will consider the trivial central
character version of the Yoshida lifting. For i = 1, 2 let τi =

⊗
τi,v be a cuspidal, automorphic

representation of GL2(A) corresponding to a primitive cuspform fi of (even) weight ki and
level Ni. Further, we will make the assumption that N1 and N2 are squarefree, since complete
local information is currently only available in this case (however, it is possible to construct
holomorphic Yoshida liftings in somewhat greater generality). We will also assume that k1 � k2.
Since the temperedness hypothesis is satisfied, we obtain a global L-packet Π(τ1, τ2) as in the
previous section.

To understand the local packet at the archimedean place, let WR = C× � jC× be the real
Weil group, as in [16]. For an odd, positive integer l let ϕl be the two-dimensional, irreducible
representation of WR given by

C× � reiθ �−→
(
eilθ

e−ilθ

)
, j �−→

( −1
1

)
. (17)

By the local Langlands correspondence, ϕl is the parameter of a discrete series representation
of PGL2(R) with minimal weight l + 1. Hence, the archimedean parameter of τi,∞ is ϕki−1,
with i = 1, 2. Composing with the dual group morphism (13), we obtain the parameter ϕk1−1 ⊕
ϕk2−1 (as a representation of WR). If k1 � k2 + 2, then it corresponds to a two-element packet
of discrete series representations of PGSp4(R) with Harish-Chandra parameter

(λ1, λ2) =
(

(k1 − 1) + (k2 − 1)
2

,
(k1 − 1) − (k2 − 1)

2

)
=

(
k1 + k2 − 2

2
,
k1 − k2

2

)
.

In order to obtain holomorphic modular forms, we need to choose the holomorphic element in
the L-packet. In the notation of Subsection 3.1, this is the lowest weight representation E(l, l′)
with

(l, l′) =
(
k1 + k2

2
,
k1 − k2 + 4

2

)
(18)

(the (1, 2)-shift between the Harish-Chandra parameter and the minimalK-type is half the sum
of the positive non-compact roots minus half the sum of the positive compact roots). Hence,
the element Π =

⊗
Πv in the global packet Π(τ1, τ2) that we are going to construct will have

this lowest weight representation as its archimedean component Π∞. If k1 = k2, then these
considerations remain true except that E(l, l′) will be a limit of discrete series representation.

Now Π∞ is known to be the non-generic member Πng
∞ of the archimedean packet. Therefore,

in order to satisfy the parity condition coming from Arthur’s multiplicity formula, we require
an odd number of (finite) primes p such that Πp is non-generic. Under our assumption that Ni
is squarefree, the local component τi,p is square-integrable if and only if p|Ni. Hence, the parity
condition can be satisfied if and only if M := gcd(N1, N2) > 1. We will make this assumption.

It is well known (and easy to verify) that, for p|Ni, the local component τi,p is an unramified
twist of the Steinberg representation. More precisely, if the Atkin–Lehner eigenvalue of fi at p
is −1, then τi,p = StGL(2), and otherwise τi,p = ξStGL(2), where ξ is the non-trivial, quadratic,
unramified character of Q×

p . The local packets for places p|M can now be read off table (16).
For places p � M but p|N , where N = lcm(N1, N2), the local packets have one element and can
be read off [29, Table A.7]. The following table summarizes all possibilities of local packets for
p|N . The character σ in the table is quadratic and unramified, but allowed to be trivial. Since
we would like to construct modular forms with respect to Γ0,p(N), we have indicated in the
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last column the dimension of fixed vectors under the local Siegel congruence subgroup Γ0,p(p)
defined in (12). This information about fixed vectors is taken from [29, Table A.15]; note that
Va∗, being a supercuspidal representation, has no Iwahori fixed vectors.

τ1 τ2 Π(τ1, τ2) Type dim
σStGL(2) ξσStGL(2) Πgen δ([ξ, νξ], ν−1/2σ) Va 0

Πng δ∗([ξ, νξ], ν−1/2σ) Va∗ 0
σStGL(2) σStGL(2) Πgen τ(S, ν−1/2σ) VIa 1

Πng τ(T, ν−1/2σ) VIb 1
σStGL(2) χ× χ−1 (unram.) σχ−1StGL(2) � χ IIa 1

(19)

We see from the last column that, in order to construct modular forms with respect to Γ0(N),
we need to completely avoid the packet {Va,Va∗}. In other words, the Atkin–Lehner eigenvalues
of f1 and f2 need to coincide for all p|M , an assumption we will make from now on.

Under this assumption, we have either a VIa or VIb-type representation at places p|M ,
and since either one of these representations contains a Γ0,p(p) fixed vector, we can make an
arbitrary choice. As pointed out above, the only constraint is that the non-generic VIb has
to appear an odd number of times. By the general procedure outlined in Subsection 3.1 of
constructing vector-valued modular forms from automorphic representations, we now obtain
the following result. Even though it is not necessary for our applications further below, we
have included a statement about Atkin–Lehner eigenvalues for completeness; see [32, Section
3.2] for the definition of Atkin–Lehner involutions in the case of Siegel modular forms.

Proposition 3.1. Let k1 and k2 be even, positive integers with k1 � k2. Let N1, N2 be
two positive, squarefree integers such that M = gcd(N1, N2) > 1. Let f be a classical newform
of weight k1 and level N1 and let g be a classical newform of weight k2 and level N2, such
that f and g are not multiples of each other. Assume that, for all primes p dividing M, the
Atkin–Lehner eigenvalues of f and g coincide. Put N = lcm(N1, N2). Then, for any divisor M1

of M with an odd number of prime factors, there exists a non-zero holomorphic Siegel cusp
form Ff,g = Ff,g;M1 with the following properties:

(i) Ff,g is a modular form with respect to Γ0(N) of type ρl,l′ (see (11)), where (l, l′) is as
in (18);

(ii) Ff,g is an eigenfunction of the local Hecke algebra at all places p � N, and generates an
irreducible cuspidal representation Πf,g of GSp4(A);

(iii) Ff,g is an eigenfunction of the operator U(p) for all p|N ;
(iv) For p|N, let εp be the Atkin–Lehner eigenvalue of Ff,g at p, and let δp be the Atkin–

Lehner eigenvalue of f (if p|N1) or g (if p|N2). Then, for all p|N,

εp =

{
δp if p � M1,

−δp if p|M1;

(v) There is an equality of (complete) Langlands L-functions

L(s,Πf,g) = L(s, πf )L(s, πg),

where πf and πg are the cuspidal representations of GL2(A) attached to f and g;
(vi) Let D be the definite quaternion algebra over Q ramified exactly at (infinity and) the

primes dividing M1. Let π′
f (respectively, π′

g) be the Jacquet–Langlands transfer of

πf (respectively, πg) to D×
A . Then Πf,g is the global theta lift from (D×

A ×D×
A )/A× ∼=

GSO(DA) to GSp4(A) of the representation π′
f � π′

g.
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Proof. All statements except (iii) and (iv) follow from the construction explained in
Subsection 3.2. To prove (iii), note that the operator U(p) defined in (8) corresponds to a
certain element in the local Hecke algebra at p consisting of left and right Γ0,p(p) invariant
functions; see, for example, the appendix to [4]. Since, by (19), the local space of Γ0,p(p)
fixed vectors is one-dimensional in each case, this Hecke algebra acts via scalars on the one-
dimensional spaces. In particular, Ff,g is a U(p) eigenvector. Finally, (iv) can be deduced from
(19) and the Atkin–Lehner eigenvalues given in [29, Table A.15].

Remark 3.2. In our application below, we will set k1 = 2k for a positive integer k and
k2 = 2. In this case, Ff,g ∈ S

(2)
k+1(N).

Remark 3.3. The cusp forms Ff,g = Ff,g;M1 constructed in the proposition are known
as Yoshida lifts. The theory was initiated in [35] using a ‘semi-classical’ language. The non-
vanishing problem for Yoshida’s construction was solved in [6] for the scalar-valued case, and
in [8] for the vector-valued case. While the Siegel cusp forms constructed in Proposition 3.1
and in [8] are the same, the representation-theoretic approach is slightly better suited for
our purposes. One reason is that the Ff,g from Proposition 3.1 automatically generate an
irreducible, cuspidal representation† of GSp4(A).

Remark 3.4. In [35], Yoshida also considers a construction of Siegel modular forms
from Hilbert modular forms. For a thorough representation-theoretic treatment of this lifting,
see [27, 28]. The local data given in [28] show that the resulting modular forms cannot be
with respect to a congruence subgroup Γ(2)

0 (N) with square-free N . The same is true for
the imaginary-quadratic version of this lifting considered in [13], since the non-archimedean
situation is identical. Since our Theorem 2.2 is for square-free levels only, it does not apply to
these kinds of Yoshida liftings.

Remark 3.5. For a positive integer N, let Γpara(N) be the paramodular group of level
N , as defined in [28]. It is not possible to construct holomorphic Yoshida lifts with respect to
Γpara(N) for any N . The reason is that, as pointed out above, holomorphy forces at least one
of the finite components in Π =

⊗
Πv to be one of the non-generic representations occurring

in table (16). By Roberts and Schmidt [29, Theorem 3.4.3], these non-generic representations
have no paramodular vectors.

4. Bessel periods and L-values

4.1. Bessel periods

Let S =
(

a b/2
b/2 c

)
∈M2(Q) be a symmetric matrix. Put d = 4ac− b2 and define the element

ξ = ξS =
(
b/2 c
−a −b/2

)
.

†Schulze-Pillot has pointed out to the authors that it can be shown using results of Moeglin [20] that the
Yoshida liftings of [8] indeed generate an irreducible cuspidal representation.
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Note that

ξ2 =

⎛⎜⎝−d
4

−d
4

⎞⎟⎠ .

Let K denote the subfield Q(
√−d) of C. We always identify Q(ξ) with K via

Q(ξ) � x+ yξ �−→ x+ y

√−d
2

∈ K, x, y ∈ Q. (20)

We define a subgroup T = TS of GL(2) by

T (Q) = {g ∈ GL(2,Q) | tgSg = det(g)S}. (21)

It is not hard to verify that T (Q) = Q(ξ)×. We identify T (Q) with K× via (20). We can
consider T as a subgroup of G via

T � g �−→
(
g 0
0 det(g)tg−1

)
∈ G. (22)

Let us denote by U the subgroup of G defined by

U =
{
u(X) =

(
12 X
0 12

)∣∣∣∣ tX = X

}
.

Let R be the subgroup of G defined by R = TU .
Recall that A denotes the ring of adeles of Q. Let ψ =

∏
v ψv be a character of A such that:

(1) the conductor of ψp is Zp for all (finite) primes p;
(2) ψ∞(x) = e(x), for x ∈ R;
(3) ψ|Q = 1.

We define the character θ = θS on U(A) by θ(u(X)) = ψ(Tr(SX)). Let χ be a character of
T (A)/T (Q) such that χ|A× = 1. Via (20) we can think of χ as a character of K×(A)/K× such
that χ|A× = 1. Denote by χ⊗ θ the character of R(A) defined by (χ⊗ θ)(tu) = χ(t)θ(u) for
t ∈ T (A) and u ∈ U(A).

Let A0(G(Q)\G(A), 1) denote the space of cusp forms on G(A) with trivial central character;
thus any Φ ∈ A0(G(Q)\G(A), 1) can be written as a finite sum of vectors in irreducible cuspidal
representations of G(A).

For Φ ∈ A0(G(Q)\G(A), 1), we define the Bessel period B(Φ) = BS,χ,ψ(Φ) by

B(Φ) =
∫

A×R(Q)\R(A)

(χ⊗ θ)(r)−1Φ(r) dr. (23)

4.2. Relation with Fourier coefficients

Now, let d be a positive integer such that −d is the discriminant of the imaginary quadratic
field Q(

√−d) and define

S = S(−d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝d

4
0

0 1

⎞⎠ if d ≡ 0 (mod 4),

⎛⎜⎝
1 + d

4
1
2

1
2

1

⎞⎟⎠ if d ≡ 3 (mod 4).

(24)



266 ABHISHEK SAHA AND RALF SCHMIDT

Let K = Q(
√−d) and define the group R as in the previous subsection. Let N be a positive

integer and let F be an element of S(2)
k (N) with the Fourier expansion

F (Z) =
∑
T∈Λ2

a(F, T )e(Tr(TZ)). (25)

We define the adelization ΦF of F to be the function on G(A) given by

ΦF (γh∞k0) = μ2(h∞)k det(J(h∞, i2))−kF (h∞〈i2〉), (26)

where γ ∈ G(Q), h∞ ∈ G(R)+ and

k0 ∈
∏
p<∞

Γ0,p(N),

where the group Γ0,p(N) defined in (12) is the local analog of Γ0(N).
It is not hard to see that ΦF ∈ A0(G(Q)\G(A), 1). For a symmetric matrix T ∈M sym

2 (Q),
define

(ΦF )T (g) =
∫

Msym
2 (Q)\Msym

2 (A)

ψ−1(tr(TX))ΦF

((
1 X

1

)
g

)
dX, g ∈ G(A). (27)

Lemma 4.1. Let F ∈ S
(2)
k (N) and ΦF as in (26). Then, for all g ∈ G(R),

(ΦF )T (g) =

{
μ2(g)k det J(g, i2)−ka(F, T )e(tr(TZ)) if g ∈ G(R)+,
0 if g ∈ G(R)−,

(28)

where Z = g〈i2〉.

Proof. This is a standard calculation.

Remark 4.2. A version of this lemma holds more generally for Siegel modular forms with
respect to any congruence subgroup.

Recall that ClK denotes the ideal class group of K. Let (tc), c ∈ ClK , be coset representatives
such that

T (A) =
⊔
c

tcT (Q)T (R)
∏
p<∞

(T (Qp) ∩ GL2(Zp)), (29)

with tc ∈
∏
p<∞ T (Qp). We can write

tc = γcmcκc,

with γc ∈ GL2(Q), mc ∈ GL+
2 (R) and κc ∈

∏
p<∞ GL2(Zp). By (γc)f we denote the finite part

of γc when considered as an element of GL2(A), thus we have the equality (γc)f = γcmc, as
elements of GL2(A).

The matrices

Sc = det(γc)−1 (tγc)Sγc

have discriminant −d and form a set of representatives of the SL2(Z)-equivalence classes of
primitive semi-integral positive-definite matrices of discriminant −d.

Choose χ to be a character of T (A)/T (Q)T (R)
∏
p<∞(T (Qp) ∩ GL2(Zp)); we identify χ with

an ideal class group character of K.
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Proposition 4.3. Let F ∈ S
(2)
k (N) and S, χ, ψ be as above. Then the Bessel period B(ΦF )

defined by (23) satisfies

B(ΦF ) = r · e−2πtr(S)
∑
c∈ClK

χ(tc)−1a(F, Sc), (30)

where the non-zero constant r depends only on the normalization used for the Haar measure
on R(A).

Proof. Note that

B(ΦF ) =
∫

A×T (Q)\T (A)

(ΦF )S(t)χ−1(t) dt.

By the coset decomposition (29), we get (up to a non-zero constant coming from the Haar
measure)

B(ΦF ) =
∑
c∈ClK

χ(tc)−1

∫
R×\T (R)

(ΦF )S(tct∞) dt∞.

Let us compute the inner integral. Note that T (R) = C×. For g ∈ GL2, let g̃ =
(
g 0

0 det(g)tg−1

)
.

We have ∫
R×\T (R)

(ΦF )S(tct∞) dt∞ =
∫

R×\T (R)

(ΦF )S(γcmct∞) dt∞

=
∫

R×\T (R)

(ΦF )S(t∞(̃γc)f ) dt∞.

Put

G(Z) = F (γ−1
c Z tγc

−1 det(γc)) = F (γ̃−1
c 〈Z〉).

It is not hard to check that G is a Siegel cusp form on some congruence subgroup of Sp4(Z).
We claim that ΦF (h(̃γc)f ) = ΦG(h) for h ∈ G(A). By strong approximation, it suffices to prove
this for h ∈ G(R)+. This follows from the following calculation:

ΦF (h(̃γc)f ) = ΦF (m̃ch)

= μ2(h)k detJ((h, i2))−kF (m̃ch〈i〉)
= μ2(h)k detJ((h, i2))−kF (γ̃−1

c h〈i〉)
= μ2(h)k detJ((h, i2))−kG(h〈i〉)
= ΦG(h).

Thus, we conclude ∫
R×\T (R)

(ΦF )S(tct∞) dt∞ =
∫

R×\T (R)

(ΦG)S(t∞) dt∞.

The desired result now follows from Lemma 4.1 and the simple observation that a(G,S) =
a(F, Sc).

4.3. Simultaneous non-vanishing of L-values

We will now prove Theorem 1.1. Let f , g be as in the statement of the theorem. In the case
where f and g are multiples of each other, the theorem is known; indeed a stronger version
easily follows from recent work of Munshi [21, Corollary 1]. So we may assume that f and g
are not multiples of each other.
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Let M1 be any divisor of M with an odd number of prime factors. Let D be the definite
quaternion algebra over Q ramified exactly at (infinity and) the primes dividing M1. Let π′

f

(respectively, π′
g) be the Jacquet–Langlands transfer of πf (respectively, πg) to D×

A . Using
Proposition 3.1, we construct a non-zero Siegel cusp form Ff,g ∈ S

(2)
k+1(N) whose adelization

generates an irreducible cuspidal representation Πf,g of G(A) such that Πf,g is the global theta
lift from (D×

A ×D×
A )/A× ∼= GSO(DA) to GSp4(A) of the representation π′

f � π′
g.

By assertion (iii) of Proposition 3.1, Ff,g is an eigenfunction of the operator U(p) for all
p|N . So all the required conditions for Theorem 2.2 are satisfied. Let d be an odd squarefree
integer such that there exists T ∈ Λ2 with d = −disc(T ) and a(Ff,g, T ) �= 0. Put K = Q(

√−d).
In light of Theorem 2.2, it is clear that Theorem 1.1 will be proved if we can show that, for any
such d, there exists a character χ ∈ ĈlK such that L( 1

2 , πf × θχ) �= 0 and L(1
2 , πg × θχ) �= 0.

The key result which enables us to do this is the following theorem of Prasad and Takloo-
Bighash as applied to our setup. We refer the reader to [25, Theorem 3] for the full statement.
Note that by the adjointness property (proved in a much more general setting in [24,
Proposition 3.1]), for any automorphic representation π of D×(A) we have the equality

L(1
2 , π × θχ) = L( 1

2 ,BCK(π) × χ),

where BC denotes base-change.

Theorem (Prasad–Takloo-Bighash). Let D be a quaternion algebra and π1, π2 be two
automorphic representations of D×(A) with trivial central characters. Consider π1 � π2 as an
automorphic representation on the group GSO(DA) = (D×

A ×D×
A )/A× and let Π be its theta

lift to G(A). Let d be an integer such that −d is the discriminant of the imaginary quadratic
field K = Q(

√−d) and define S by (24). Let the additive character ψ and the groups T, R be
defined as in Subsection 4.1 and let χ be a character on T (A)/T (Q) such that χ|A× = 1. Then,
if the linear functional on Π given by the period integral

Φ �−→ BS,χ,ψ(Φ),

as defined in (23), is not identically zero, then L( 1
2 , π1 × θχ−1) �= 0 and L(1

2 , π2 × θχ−1) �= 0.

Remark 4.4. The proof of the above theorem involves pulling back the Bessel period via
theta correspondence to GSO(DA). This equals a product of two toric periods on π1 and π2,
which by Waldspurger’s formula equals the product of central L-values. Takloo-Bighash has
communicated to one of the authors that this procedure is originally due to Furusawa.

Now, since there exists T ∈ Λ2 with d = −disc(T ) and a(Ff,g, T ) �= 0, it follows that we can
pick a character χ ∈ ĈlK such that∑

c∈ClK

χ(tc)−1a(Ff,g, Sc) �= 0.

For this choice of χ, the Bessel period B(ΦFf,g
) is non-zero by Proposition 4.3. Since ΦFf,g

is
a vector in Πf,g, it follows that the linear functional on Πf,g given by the period integral

Φ �−→ BS,χ,ψ(Φ)

is not identically zero. So, by the theorem of Prasad and Takloo-Bighash stated above,
L(1

2 , πf × θχ−1) = L( 1
2 , π

′
f × θχ−1) �= 0 and L( 1

2 , πg × θχ−1) = L( 1
2 , π

′
g × θχ−1) �= 0. The proof

of Theorem 1.1 is complete.
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