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Abstract

The nonarchimedean local analogues of modular forms of half-integral weight with
level and character are certain vectors in irreducible, admissible, genuine represen-
tations of the metaplectic group over a nonarchimedean local field of characteristic
zero. Two natural level raising operators act on such vectors, leading to the con-
cepts of oldforms and newforms. We prove that the number of newforms for a given
representation and character is finite and equal to the number of square classes with
respect to which the representation admits a Whittaker model.
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Let F be a nonarchimedean local field of characteristic zero with Hilbert symbol
( · , · ) and ring of integers o, let p ⊂ o be the maximal ideal of o, let $ be a
generator for p, and fix a character ψ of F with conductor o. Let S̃L(2, F ) be the
two-fold cover of SL(2, F ), as defined below. For m and a in F× let γm(a) be the
Weil index of ax2 with respect to ψm, and define δm(a) = (−1, a)γm(a)γm(1)−1.
Let (τ, V ) be an irreducible, admissible, genuine representation of S̃L(2, F ). The
center of S̃L(2, F ) consists of the four elements

(
[
ε
ε

]
, ε′)

where ε, ε′ = ±1. Consider the operator

τ(
[
−1

−1

]
, 1).
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By Schur’s Lemma, this operator acts by a scalar, and the square of this scalar
is the Hilbert symbol (−1,−1). Also, δ1(−1)2 = (−1,−1). It follows that there
exists ε(τ, ψ) = ±1 such that

τ(
[
−1

−1

]
, 1) = ε(τ, ψ)δ1(−1).

We let Fψ(τ) be the set of a in F× such that τ admits a Whittaker model with
respect to ψa. The group F×2 acts on Fψ(τ). Let χ be a character of o×. For n
an integer, we let Vψ(τ, n, χ) be the subspace of vectors v in V such that

τ(
[

1 b
1

]
, 1)v = v for all b in o, (1)

τ(
[
a
a−1

]
, 1)v = δ1(a)χ(a)v for all a in o×, (2)

τ(
[

1
c 1

]
, 1)v = v for all c in pn. (3)

We refer to the vectors in the spaces Vψ(τ, n, χ) as metaplectic vectors, and say
that the vectors in Vψ(τ, n, χ) have level pn. Any metaplectic vector of level
pn is a metaplectic vector of level pn+1. That is, the inclusion of Vψ(τ, n, χ) in
Vψ(τ, n + 1, χ) is a level raising operator. There is another natural level raising
operator that takes metaplectic vectors of level pn to metaplectic vectors of level
pn+2. Define

α2 : Vψ(τ, n, χ) −→ Vψ(τ, n+ 2, χ)

by

α2v = τ(
[
$−1

$

]
, 1)v. (4)

We note that the definition of α2 does not depend on n. We define the subspace
Vψ(τ, n, χ)old of oldforms in Vψ(τ, n, χ) as the subspace spanned by the images
of vectors of lower level, i.e., as the subspace generated by Vψ(τ, n − 1, χ) and
α2Vψ(τ, n− 2, χ). We define

Vψ(τ, n, χ)new = Vψ(τ, n, χ)/Vψ(τ, n, χ)old.

In this paper we study the dimensions of the spaces Vψ(τ, n, χ)new and prove the
following theorem.

Main Theorem. Let (τ, V ) be an irreducible, admissible, genuine representation
of S̃L(2, F ), and let χ be a character of o×. If χ(−1) 6= ε(τ, ψ), then Vψ(τ, n, χ)
is zero for all n. Assume that χ(−1) = ε(τ, ψ). The sum

∑
n

dimVψ(τ, n, χ)new is

finite and ∑
n

dimVψ(τ, n, χ)new = #Fψ(τ)/F×2. (5)
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This result has a GL(2) analogue. Let (π, V ) be a generic, irreducible, admis-
sible representation of GL(2, F ). For n a non-negative integer, let V (π, n) be the
subspace of vectors v in V that are stabilized by the subgroup of elements[

a b
c d

]
of GL(2, o) such that c ≡ 0 mod pn and d ≡ 1 mod pn. In this setting, the inclusion
of V (π, n) in V (π, n+1) is again a level raising operator, and there is another level
raising operator from V (π, n, χ) to V (π, n+ 1, χ) that sends v to

π(
[

1
$

]
)v.

In this GL(2) case, the sum analogous to the sum in the main theorem has value
1, so that there is an essentially unique newform. This GL(2) result is directly
analogous to the result of the main theorem because π admits a Whittaker model
with respect to ψa for all a in F×.

The result presented here builds on the works of Waldspurger, but also intro-
duces some new ideas. As far as we know, the spaces Vψ(τ, n, χ) for F = Qp were
first considered in [W2]; some subsequent works that also used these spaces are
[BM] and [M]. For the case F = Qp it should be possible to deduce the main
theorem from results in Waldspurger. However, our approach is more abstract
than the approach in [W2]. To prove the main theorem we introduce the concept
of primitive vectors. Primitive vectors comprise the kernel of a certain projection
µ on the union Vψ(τ,∞, χ) of the spaces Vψ(τ, n, χ), and the dimension of the
subspace of primitive vectors is equal to the sum in the main theorem. Proving
the main theorem is thus reduced to computing the dimension of the space of
primitive vectors. This is achieved by using various models for τ . This method
can be deployed in other settings. For example, an analogous argument proves the
above mentioned analogue for GL(2), as we explain at the end of this paper.

Our interest in the spaces Vψ(τ, n, χ) stems from our project to understand
the subspaces W0(n) of vectors in irreducible, admissible representations (π,W )
of GSp(4, F ) with trivial central character that are stabilized by the groups Γ0(pn)
of elements [

A B
C D

]
of GSp(4, o) with B ≡ 0 mod pn (we use the notation from [RS] for GSp(4)). We
refer to the elements of W0(n) as Siegel vectors. If (π,W ) is a Saito-Kurokawa
representation of GSp(4, F ), then the quotient WZJ ,ψ−1 of W by the subspace
spanned by the vectors π(g)w − ψ(−x)w for w in W and g of the form

g =


1 x

1
1

1


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for x in F is isomorphic to π−1
SW ⊗ τ , as a representation of the Jacobi group GJ

of GSp(4, F ), for some irreducible, admissible, genuine representation (τ, V ) of
S̃L(2, F ). Here, GJ consists of the elements of GSp(4, F ) of the form

1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

 ,
and π−1

SW is the Siegel-Weil representation of GJ (see [BS] for the definition of π−1
SW ).

Note that the subgroup of g as above is the center of GJ . It turns out that there
is a natural connection between Siegel vectors and metaplectic vectors in τ . If the
residual characteristic of F is even, then one must additionally consider certain
other subspaces Vψ,j(τ, n, 1) of V , where j varies between 0 and val(2); the space
Vψ(τ, n, 1) from above is Vψ,val(2)(τ, n, 1). In particular, in the case of even resid-
ual characteristic the consideration of unramified Saito-Kurokawa representations
leads to the definition of the Kohnen plus space in Vψ(τ, 2val(2), 1). We plan to
return to these topics in subsequent publications.

1 Background

In this section we gather some necessary basic definitions and results about the
underlying field, the metaplectic group S̃L(2, F ), and representations of S̃L(2, F ).
Throughout this paper, F is a nonarchimedean local field of characteristic zero
with ring of integers o, maximal ideal p in o, and Hilbert symbol ( · , · ). Let $ be
a generator of p, and let q be the order of o/p. We will use the absolute value | · |
on F such that |$| = 1/q. Fix a character ψ of F with conductor o, i.e., ψ(o) = 1
but ψ(p−1) 6= 1. We will always use the Haar measure on F that assigns o volume
1. If ξ is in F×, then we define an associated character χξ of F× by

χξ(x) = (ξ, x)

for x in F×. If n = 0 we take 1 + pn to be o×.

Number theory

1.1 Lemma. Assume that F has even residual characteristic.

i) The map o/p → o/p sending x to x2 + x is a group homomorphism and is
2-to-1.

ii) Let a be in o. The congruence a ≡ x2 + x mod p has a solution if and only
if the equation a = x2 + x has a solution in o.

iii) The group (1 + 4o)/(1 + 2o)2 has two elements. By i), there exist a in o
such that the congruence a ≡ x2 + x mod p has no solution, and for any
such a the element 1 + 4a is a representative for the non-trivial coset of
(1 + 4o)/(1 + 2o)2.
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iv) If a in o is such that a ≡ x2+x mod p has no solution, then ($, 1+4a) = −1.

v) The Hilbert symbol satisfies (o×, 1 + 4o) = 1.

Proof. i) It is easy to check that the map is a group homomorphism. Also, it is
easy to see that x and x+ 1 have the same image. Assume that x2 + x = y2 + y.
Then x2 − y2 + x − y = 0, i.e., (x − y)(x + y + 1) = 0. It follows that x = y or
x+ y + 1 = 0. The latter is equivalent to y = x+ 1.

ii) Assume that a ≡ c2 + c mod p for some c in o. Let f(X) = X2 + X − a.
Then |f(c)| < |f ′(c)|2. By Hensel’s Lemma, there exists y in o such that f(y) = 0.

iii) Let a be any element of o such that a ≡ x2 +x mod p has no solution; by i),
such an a exists. We need to prove that 1 and 1+4a represent all the distinct cosets
in (1 + 4o)/(1 + 2o)2. It is easy to see that they represent distinct cosets. Let b in
o be such that 1+4b is not in (1+2o)2. Then the identity (1+2x)2 = 1+4(x2 +x)
implies that the equation b = x2 + x has no solution in o. By ii), the congruence
b ≡ x2 +x mod p has no solution. By i), the congruence b− a ≡ x2 +x mod p has
a solution. By ii), there exists x in o such that b− a = x2 + x. Hence

1 + 4b = (1 + 4a)
(
1 + 4

x2 + x

1 + 4a
)
.

We have
x2 + x

1 + 4a
≡ x2 + x mod p.

Therefore, by ii), there exists y in o such that

x2 + x

1 + 4a
= y2 + y.

Hence
1 + 4b = (1 + 4a)

(
1 + 4(y2 + y)

)
= (1 + 4a)(1 + 2y)2.

This proves iii).
iv) Let a in o be such that a ≡ x2 + x has no solution mod p; clearly, a is in

o×. Assume that (1+4a,$) = 1; we will obtain a contradiction. By the definition
of the Hilbert symbol, there exist x and y in F such that

x2 − (1 + 4a)y2 = $.

Since the valuation on the right side is odd, x and y must have the same valuation.
Write x = $kx′ and y = $ky′ with k in Z and x′ and y′ in o×. Then

x′2 − (1 + 4a)y′2 = $1−2k.

Assume that 1− 2k < 2val(2). Then it follows from (x′− y′)(x′ + y′) = u$1−2k +
4ay′2 that val(x′−y′)+val(x′+y′) = 1−2k. Now x′+y′ = x′−y′+2y′. Therefore, if
val(x′−y′) ≥ val(2), then val(x′+y′) ≥ val(2), and consequently 1−2k ≥ 2val(2),
a contradiction. Hence, val(x′ − y′) < val(2). But then val(x′ + y′) = val(x′ − y′),
so that val(x′ − y′) + val(x′ + y′) is an even number; this is also a contradiction.
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Thus, 1−2k ≥ 2val(2), and then in fact 1−2k > 2val(2). Again, (x′−y′)(x′+y′) =
u$1−2k + 4ay′2; this now implies that val(x′ − y′) + val(x′ + y′) = 2val(2). Using
again x′ + y′ = x′ − y′ + 2y′, we see that necessarily val(x′ + y′) ≥ val(2) and
val(x′ − y′) ≥ val(2), and indeed val(x′ + y′) = val(x′ − y′) = val(2). Write
x′ − y′ = 2w with w ∈ o×. Then 2w(2w + 2y′) = $1−2k + 4ay′2, which implies
w(w+ y′) ≡ ay′2 mod p. Hence a ≡ (wy′ )

2 + w
y′ mod p, contradicting the choice of

a.
v) Let v be in o×. Let a in o be such that a ≡ x2 + x mod p has no solution.

Such an a exists by i). By iii), to prove that (v, 1+4o) = 1 it suffices to prove that
(v, 1 + 4a) = 1. Now by iv) we have ($, 1 + 4a) = (v$, 1 + 4a) = −1. Therefore,
(v, 1 + 4a) = (v$2, 1 + 4a) = (−1)(−1) = 1.

1.2 Lemma. The following statements hold about the Hilbert symbol of F .

i) Every element of 1 + 4$o is a square, so that (F×, 1 + 4$o) = 1.

ii) (o×, (1 + 4o) ∩ o×) = 1.

iii) ($, (1 + 4o) ∩ o×) 6= 1.

Proof. i) Let a be in o and define f(X) = X2− (1+4$a). Then |f(1)| = |4$a| <
|2|2 = |f ′(1)|2. By Hensel’s Lemma, the equation f(X) = 0 has a solution in o.

ii) If the residual characteristic of F is odd, then the assertion is (o×, o×) = 1,
which is well-known. If the residual characteristic of F is even, this is v) of Lemma
1.1.

iii) If the residual characteristic of F is odd, then the assertion is ($, o×) 6= 1,
which is well-known. If the residual characteristic of F is even, then this follows
from iv) of Lemma 1.1.

The cocycle

In this paper we define S̃L(2, F ) using the same cocycle c as is commonly used in
[G], [W1], [W2] and [W3] (though c is denoted by β in these works). The cocycle
c is a Borel measurable function

c : SL(2, F )× SL(2, F ) → {±1}

such that
c(g1g2, g3)c(g1, g2) = c(g1, g2g3)c(g2, g3) (6)

for g1, g2 and g3 in SL(2, F ), and c(g, 1) = c(1, g) = 1 for g in SL(2, F ). As a set
S̃L(2, F ) = SL(2, F )× {±1}, and the group law for S̃L(2, F ) is

(g, ε)(g′, ε′) = (gg′, εε′c(g, g′))

for g and g′ in SL(2, F ) and ε and ε′ equal to ±1. Explicitly, c is given by the
formula

c(g, g′) = (x(g), x(g′))(−x(g)x(g′), x(gg′))s(g)s(g′)s(gg′),
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where

x(
[
a b
c d

]
) =

{
c if c 6= 0,
d if c = 0

and

s(
[
a b
c d

]
) =

{
(c, d) if cd 6= 0 and val(c) is odd,

1 otherwise.

It is known that c(K4,K4) = 1, where

K4 = {
[
a b
c d

]
∈ SL(2, o) : a ≡ 1 (4o), c ≡ 0 (4o)}.

Thus, if the residual characteristic of F is odd, then K4 = SL(2, o). The subset
K4×{1} is a subgroup of S̃L(2, F ). Calculations show that the center of S̃L(2, F )
consists of the elements

(
[
ε
ε

]
, ε′)

for ε and ε′ equal to ±1.

The factor δm(a)

For m in F× define the character ψm : F → C× by ψm(x) = ψ(mx), where ψ is
our fixed character of F . If m and a are in F× then we let γm(a) denote the Weil
index of the quadratic form ax2 on F with respect to ψm, as defined in paragraph
24, page 172 of [Weil]. By paragraph 27, page 175 of [Weil], one has

γm(a) =

lim
n→∞

∫
p−n

ψm(ax2) dx

| lim
n→∞

∫
p−n

ψm(ax2) dx|
. (7)

From this formula it follows that γm(a) = γma(1) = γ1(ma), γmb2(a) = γm(a) and
γm(ab2) = γm(a) for a, b and m in F×. We define

δm(a) = (a,−1)γm(a)γm(1)−1.

The number δm(a) is written as χψm(a) in [W3], page 223 and in [W1], page 4,
and is denoted by (a,−1)γF (a, ψm) in [Rao], page 367. It is proven in paragraph
28, page 176 of [Weil] (this is the formula on the bottom of this page if one uses
Proposition 3 of [Weil], page 172) that

δm(ab) = (a, b)δm(a)δm(b) (8)
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for a, b and m in F×. From this, and other properties of the Weil index, one can
prove that the following hold for a, c and m in F×:

δm(c2a) = δm(a),
δmc(a) = (a, c)δm(a),

δm(−1) = (−1,−1)γm(1)−2,

δm(a)−1 = (a,−1)δm(a) = δ−m(a),

δm(a)4 = 1,

γm(1)8 = 1.

1.3 Lemma. We have δ1((1 + 4o) ∩ o×) = 1.

Proof. We will first prove that

γ1(a) =

∑
z∈o/pval(2a)

ψ(az2$−2val(2a))

|
∑

z∈o/pval(2a)

ψ(az2$−2val(2a))|
(9)

for all non-zero a in o. Fix a non-zero element a of o. Let n be a positive integer.
Using that ψ has conductor o we have∫

p−n

ψ(ax2) dx =
∑

z∈p−n/o

∫
o

ψ(a(x+ z)2) dx

=
∑

z∈o/pn

∫
o

ψ(a(x+ z$−n)2) dx

=
∑

z∈o/pn

∫
o

ψ(a(2xz$−n + z2$−2n)) dx

=
∑

z∈o/pn

ψ(az2$−2n)
∫
o

ψ(2axz$−n) dx

=
∑

z∈o/pn,

val(2az$−n)≥0

ψ(az2$−2n)

=
∑

z∈pn−val(2a)/pn

ψ(az2$−2n)

=
∑

z∈o/pval(2a)

ψ(az2$−2val(2a)).

The statement (9) now follows from (7). Now let a be in (1 + 4o) ∩ o×. The
formula (9) shows that γ1(a) = γ1(1). We now have δ1(a) = (a,−1)γ1(a)γ1(1)−1 =
(a,−1) = 1 by ii) of Lemma 1.2.
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Representation theory

If (τ, V ) is a representation of S̃L(2, F ), then we say that τ is genuine if τ(1, ε)v =
εv for ε = ±1. We say that τ is smooth if for every v in V there exists a compact,
open subgroup Γ of SL(2, F ) such that τ(k, 1)v = v for k in Γ. We say that τ is
admissible if τ is smooth and for any compact, open subgroup Γ of SL(2, F ) the
subspace of v in V such that τ(k, 1)v = v is finite-dimensional.

Weil representations

We will use the Weil representation πmW of S̃L(2, F ) on the space of locally constant,
compactly supported functions S(F ) on F associated to the quadratic form q(x) =
x2 and ψm. This is as defined as on pages 3–4 of [W1] and page 223 of [W3], though
our notation is different. If f is in S(F ), b and x are in F and a is in F×, then

(πmW (
[

1 b
1

]
, ε)f)(x) = εψ(mbx2)f(x), (10)

(πmW (
[
a
a−1

]
, ε)f)(x) = εδ1(a)(m,a)|a|1/2f(ax), (11)

πmW (
[

1
−1

]
, ε)f = εγm(1)f̂ . (12)

Here, the Fourier transform is given by formula

f̂(x) = q−val(2m)/2

∫
F

ψ(2mxy)f(y) dy,

Note, as is the case throughout this paper, we use the Haar measure on F that
assigns o volume 1. Let S(F )+ and S(F )− be the space of even and odd Schwartz
functions, respectively. These are invariant, irreducible subspaces for πmW . We
denote the representation of S̃L(2, F ) on S(F )± by πm±W . If m and b are in F×

then πmb
2±

W
∼= πm±W .

Principal series representations

The principal series representations of S̃L(2, F ) are defined as follows. Let α be
a character of F×. We let B̃(α) denote the complex vector space of all functions
f : S̃L(2, F ) → C satisfying the following two conditions. First,

f(
[
a b
a−1

]
, ε)x) = εδ1(a)α(a)|a|f(x)

for a in F×, b in F and x in S̃L(2, F ); second, there exists a compact, open
subgroup Γ of SL(2, F ) such that f(x(k, 1)) = f(x) for x in S̃L(2, F ) and k in Γ.
The group S̃L(2, F ) acts on B̃(α) by right translation, and defines an admissible,
genuine representation of S̃L(2, F ). This representation is irreducible if and only if
α2 6= | · |±1. If this representation is irreducible, then we denote the representation
by π̃(α).
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Twisting

There is a right action of F× on S̃L(2, F ) that is defined as follows. For each
element ξ in F× define an automorphism of SL(2, F ) by sending g to gξ, where

gξ =
[
1

ξ−1

]
g

[
1

ξ

]
.

One can prove that if ξ is in F×, then there is a unique automorphism of S̃L(2, F ),
also denoted by x 7→ xξ, such that the following diagram commutes:

1 −−−−→ {±1} −−−−→ S̃L(2, F ) −−−−→ SL(2, F ) −−−−→ 1

id

y yx7→xξ

yg 7→gξ

1 −−−−→ {±1} −−−−→ S̃L(2, F ) −−−−→ SL(2, F ) −−−−→ 1.

This implies that there exists a function v : F× × SL(2, F ) → {±1} such that
(g, ε)ξ = (gξ, v(ξ, g)ε) for g in SL(2, F ) and ε in {±1}. One can prove that

v(ξ, g) =


(ξ, a) if g =

[
a b
a−1

]
,

s(gξ)s(g) if g is not of the form
[
∗ ∗
∗

] (13)

for ξ in F× and g in SL(2, F ). For further reference, we note that if ξ is in F×

and (g, ε) is in S̃L(2, F ), then a computation proves that

(g, ε)ξ
2

= (
[
ξ
ξ−1

]
, 1)(g, ε)(

[
ξ
ξ−1

]
, 1)−1. (14)

Using this right action of F× on S̃L(2, F ) we can define a left action of F× on
the set of representations of S̃L(2, F ). Let ξ be in F× and let (τ, V ) be a smooth,
genuine representation of S̃L(2, F ). We define the representation ξ · τ to have the
same space as τ , with action given by (ξ · τ)(x) = τ(xξ) for ξ in F× and x in
S̃L(2, F ). Computations using (13) show that the following formulas hold for a in
F× and b and c in F :

(ξ · τ)(
[
a
a−1

]
, 1) = χξ(a)τ(

[
a
a−1

]
, 1), (15)

(ξ · τ)(
[

1 b
1

]
, 1) = τ(

[
1 bξ

1

]
, 1), (16)

(ξ · τ)(
[

1
c 1

]
, 1) = τ(

[
1

cξ−1 1

]
, 1). (17)

Finally, by (14), we have ξ2 · τ ∼= τ : the subgroup F×2 acts trivially on the
equivalence classes of representations of S̃L(2, F ).
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The Kirillov-type model of Waldspurger

Let π be an infinite-dimensional, unitary, irreducible, admissible representation of
GL(2, F ) with trivial central character. Let τ = θ(π, ψ) be the representation of
S̃L(2, F ) defined in [W3], pages 228–231. This is an irreducible, admissible, genuine
representation of S̃L(2, F ). The work [W1] proves the existence of a certain model
for τ , which is discussed in Assertion 7, page 396, of [W2] and on pages 228–
229 of [W3]. The assertion about this model is as follows. Let χ be a character
of F× such that χ(−1) = ε(τ, ψ). Then there exists a space M(τ) of functions
f : F× → C and an action of S̃L(2, F ) on M(τ) such that, with this action, M(τ)
is isomorphic to τ . Moreover, M(τ) and the action have the following properties:

i) The functions in M(τ) are locally constant, have relatively compact support
in F , and are supported in Fψ(τ). The space S(Fψ(τ)) of locally constant,
compactly supported functions on Fψ(τ) is contained in M(τ).

ii) For f in M(τ), n in F and x in F× we have

τ(
[
1 n

1

]
, 1)f(x) = ψ(nx)f(x).

iii) For f in M(τ), a in F× and x in F× we have

τ(
[
a
a−1

]
, 1)f(x) = δ1(a)|a|1/2χ(a)f(a2x).

We note that the discussion on pages 228–229 of [W3] mentions the set F (π)
instead of Fψ(τ) as the domain of the elements of M(τ); however, these sets are
the same by 1) of Lemme 6 of [W3], page 234.

2 Basic observations

Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let χ be a character
of o×. In this section we answer two basic questions about the spaces Vψ(τ, n, χ).
The first three lemmas determine the general conditions on χ and n that must be
satisfied for Vψ(τ, n, χ) to be non-zero. We will prove that if Vψ(τ, n, χ) is non-zero
then n ≥ 2val(2) and χ is trivial on 1 + pn.

2.1 Lemma. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let
χ be a character of o×. Assume that the space Vψ(τ, 2val(2), χ) is non-zero. Then
χ is trivial on (1 + 4o) ∩ o×.

Proof. Let v be a non-zero vector in Vψ(τ, 2val(2), χ). Let x be in F , let y be in
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F× and assume that 1 + xy is in F×. A computation shows that

(
[

1
y 1

]
, 1)(

[
1 x

1

]
, 1)

= (
[

(1 + xy)−1

1 + xy

]
, 1)(

[
1 x(1 + xy)

1

]
, 1)(

[
1

(1 + xy)−1y 1

]
, (−y, 1 + xy)).

(18)

Now set y = 4 and assume that x is in o and 1 + 4x is in o×. Applying both
sides of (18) to v, we find that 1 = (−4, 1 + 4x)χ(1 + 4x)−1δ1((1 + 4x)−1) =
(−1, 1 + 4x)χ(1 + 4x)−1δ1(1 + 4x). By Lemma 1.3 we have δ1(1 + 4x) = 1 and by
ii) of Lemma 1.2 we have (−1, 1+4x) = 1, so that χ(1+4x) = 1 for all x ∈ o such
that 1 + 4x is in o×.

2.2 Lemma. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let
χ be a character of o×. The space Vψ(τ, 2val(2)− 1, χ) is zero.

Proof. Assume that Vψ(τ, 2val(2) − 1, χ) contains a non-zero vector v; we will
obtain a contradiction. Let x in p and y in 4$−1o with y non-zero be such that
1 + xy is in o×, so that 1 + xy is in (1 + 4o) ∩ o×. Applying both sides of (18)
to v, we get 1 = (−y, 1 + xy)χ(1 + xy)−1δ1(1 + xy). By Lemma 2.1 we have
χ(1 +xy) = 1; by Lemma 1.3 we have δ1(1 +xy) = 1. Therefore, (−y, 1 +xy) = 1
for all x in p and non-zero y in 4$−1o such that 1 + xy is in o×. Letting y be
−4$−1 and x be −$b where b is in o, we find that ($, 1 + 4b) = 1 for all b in o
such that 1 + 4b is in o×. In other words, ($, (1 + 4o)∩ o×) = 1. This contradicts
iii) of Lemma 1.2.

2.3 Lemma. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ), let χ be
a character of o× and let n be an integer. Assume that Vψ(τ, n, χ) is non-zero.
Then n ≥ 2val(2) and χ is trivial on 1 + pn.

Proof. Let v be a non-zero vector in Vψ(τ, n, χ). By Lemma 2.2 we have n ≥
2val(2). We may assume n > 2val(2), since the case n = 2val(2) is Lemma 2.1.
Let x be in o and y in pn with y non-zero. Applying both sides of (18) to v we
obtain 1 = (−y, 1 + xy)χ(1 + xy)−1δ1((1 + xy)−1). By i) of Lemma 1.2 we have
(−y, 1+xy) = 1, and by Lemma 1.3 we have δ1(1+xy) = 1. Hence, 1 = χ(1+xy).
The lemma follows.

The second question that we deal with in this section concerns an alternative
characterization of the spaces Vψ(τ, n, χ). To formulate the question, assume that
Vψ(τ, n, χ) is non-zero. By Lemma 2.3 we know that n ≥ 2val(2) and χ is trivial
on 1 + pn. Define

Γ̃0(pn) = Γ0(pn)× {±1} (19)

where Γ0(pn) is the subgroup of SL(2, o) of elements with lower left entries in pn.
The set Γ̃0(pn) is a subgroup of S̃L(2, F ). Moreover, the group Γ̃0(pn) is generated
by (1,±1) and the elements of S̃L(2, F ) that appear in (1), (2) and (3). It follows
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that for every element (k, ε) of Γ̃0(pn) there exists an element χ̃(k, ε) of C× such
that

τ(k, ε)v = χ̃(k, ε)v (20)

for all v in Vψ(τ, n, χ). Evidently, the function that sends (k, ε) to χ̃(k, ε) is a char-
acter of Γ̃0(pn). The next two results determine the formula for the character χ̃ on
an arbitrary element of Γ̃0(pn). Though we will not need this formula to prove the
main theorem, we include it because it may be of some use in other investigations.
For example, this formula is essential for determining explicit information about
metaplectic vectors in principal series representations if the residual characteristic
of F is even.

2.4 Lemma. Let χ be a character of o× and let n be an integer such that n ≥
2val(2) and χ is trivial on 1 + pn. Define a function f : Γ̃0(pn) → C× in the
following way. If n = 0, then define f(k, ε) = ε. If n is positive, then define

f(
[
a b
c d

]
, ε) = εy(

[
a b
c d

]
)χ(d)−1δ1(d)

where y : Γ0(p) → {±1} is given by

y(
[
a b
c d

]
) =

 1 if c = 0,
(d,−1) if c 6= 0 and val(c) is odd,
(d,−c) if c 6= 0 and val(c) is even.

(21)

The function f is a character of Γ̃0(pn).

Proof. If F has odd residual characteristic, then it is straightforward to verify
that f is a character: note that in this case the cocycle c is trivial on Γ0(pn), the
function y is constantly 1, and δ1 is 1 on o× by Lemma 1.3. Assume that F has
even residual characteristic, and let

k =
[
a b
c d

]
, k′ =

[
a′ b′

c′ d′

]
be in Γ0(pn). Since we are assuming that F has even residual characteristic, the
integer n is positive and a, d, a′ and d′ are in o×. We have to prove that

f(
[
a b
c d

]
, 1)f(

[
a′ b′

c′ d′

]
, 1) = f((

[
a b
c d

]
, 1)(

[
a′ b′

c′ d′

]
, 1)).

Using the definition of f and (8) this is equivalent to

y(k)y(k′) = y(kk′)c(k, k′)(d, d′). (22)

Using the definitions and the formula for the cocycle, some computations show
that (22) is true if c = 0 or c′ = 0. Assume that c 6= 0 and c′ 6= 0. The formulas
for y and the cocycle imply that, in general,

y(
[

1 ∗
1

]
g) = y(g) and c(

[
1 ∗

1

]
g, g′) = c(g, g′).
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We may therefore assume that b = 0. In other words, we are reduced to proving
that

y(
[
a
a−1

][
1
c 1

]
)y(k′) = y(

[
a
a−1

][
1
c 1

]
k′)c(

[
a
a−1

][
1
c 1

]
, k′)(a, d′). (23)

Now (22) has already been verified in general for upper triangular k. Applying
this observation to the first term on the left hand side and the first term on the
right hand side, using the cocycle property (6), and using the (o×, 1+4o) = 1 rule
of ii) of Lemma 1.2, we find that (23) reduces to

y(k′) = y(
[

1
c 1

]
k′)c(

[
1
c 1

]
, k′). (24)

Writing k′ =
[
a′d′ b′d′−1

c′d′ 1

][
d′−1

d′

]
and using a similar argument, (24) reduces

to

1 = y(
[

1
c 1

][
a′ b′

c′ 1

]
)c(

[
1
c 1

]
,

[
a′ b′

c′ 1

]
) = y(

[
a′ b′

c′ + ca′ 1 + cb′

]
)c(

[
1
c 1

]
,

[
a′ b′

c′ 1

]
).

(25)
Assume that c′ + ca′ = 0. Then (25) is equivalent to

1 = (c, c′)(−cc′, 1 + cb′). (26)

Consider the second Hilbert symbol. Since c′ = −ca′, val(−cc′) is even. Hence,
the second Hilbert symbol is 1 because of the (o×, 1 + 4o) = 1 rule. Using the
determinant condition a′ − b′c′ = 1 and c′ + ca′ = 0, we get c′ = −(1 + b′c)−1c.
Therefore, (c, c′) = (c,−(1 + b′c)−1c) = (c, 1 + b′c). If val(c) = 2val(2), this is
of the form (o×, 1 + 4o) = 1. If val(c) > 2val(2), then (c, 1 + b′c) = 1 by the
(F×, 1 + 4$o) = 1 rule of i) of Lemma 1.2, so that (c, c′) = 1. Hence (c, c′) = 1 in
both cases, and (26) is verified.

Assume that val(c′+ca′) is non-zero. Applying the definitions of y and c shows
that (25) is equivalent to

1 = (1 + cb′,−1)(c, c′)(−cc′, c′ + ca′)(c′ + ca′, 1 + cb′). (27)

The first Hilbert symbol is 1 by the (o×, 1 + 4o) = 1 rule. Using the determinant
condition a′ − b′c′ = 1 to eliminate a′, we get

1 = (c, c′)(−cc′, c+ c′ + cc′b′)(1 + cb′, c+ c′ + cc′b′). (28)

Assume that val(c′) > val(c). Then c+ c′+ cc′b′ = c(1+ c−1c′)(1+ c′b′

1+c−1c′ ). Since
val(c′) > val(c) ≥ 2val(2), we have (1+cb′, 1+ c′b′

1+c−1c′ ) = 1 by the (F×, 1+4$o) =
1 rule; also, 1 + c−1c′ is in o×. Hence, we have to show

1 = (c, c′)(−cc′, c(1 + c−1c′))(1 + cb′, c(1 + c−1c′)), (29)

which is
1 = (−cc′, 1 + c−1c′)(1 + cb′, c(1 + c−1c′)). (30)
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The first Hilbert symbol is 1 since (x, 1 − x) = 1 for all x in F such that x and
1− x are in F×. Hence we are reduced to

1 = (1 + cb′, 1 + c−1c′)(1 + cb′, c). (31)

The first Hilbert symbol is 1 by the (o×, 1 + 4o) = 1 rule. If val(c) > 2val(2), then
the second Hilbert symbol is also 1 by the (F×, 1 + 4$o) = 1 rule. If val(c) =
2val(2), which is even, then the second Hilbert symbol is 1 by the (o×, 1+4o) = 1
rule. Hence (31) is verified.

Now assume that val(c) > val(c′). Then c+c′+cc′b′ = c′(1+c′−1c)(1+ cb′

1+c′−1c ).
Again, 1 + c′−1c is in o× and 1 + cb′

1+c′−1c is in 1 + 4$o. Hence we have to show

1 = (c, c′)(−cc′, c′(1 + c′−1c))(1 + cb′, c′(1 + c′−1c)), (32)

which is
1 = (−cc′, 1 + c′−1c)(1 + cb′, c′(1 + c′−1c)). (33)

The first Hilbert symbol is 1 by the (x, 1− x) = 1 rule. Hence we are reduced to

1 = (1 + cb′, 1 + c′−1c)(1 + cb′, c′). (34)

The first Hilbert symbol is 1 by the (o×, 1 + 4o) = 1 rule. Since val(c) > 2val(2),
the element 1 + cb′ is in 1 + 4$o, and again the second Hilbert symbol is also 1
by the (F×, 1 + 4$o) = 1 rule. Hence (34) is verified.

Finally, assume that val(c) = val(c′). Write c = u$k and c′ = v$k with u and
v in o× and k ≥ n ≥ 2val(2). Then (28) is equivalent to

1 = (u, v)(−uv, u+ v+ uvb′$k)(1 +u$kb′, $k)(1 +u$kb′, u+ v+ uvb′$k). (35)

If k > 2val(2), this simplifies to

1 = (−uv, 1 + u−1v + vb′$k). (36)

But

(−uv, 1 + u−1v + vb′$k) = (−u−1v, 1 + u−1v + vb′$k)

· (1 + ub′$k, 1 + u−1v + vb′$k)

= (−u−1v − vb′$k, 1 + u−1v + vb′$k)
= 1

by the (1− x, x) = 1 rule. Hence (35) is verified if k > 2val(2). Assume now that
k = 2val(2), so that in particular k is even. Then (35) is equivalent to

1 = (−uv, 1 + u−1v + vb′$k)(1 + u$kb′, 1 + u−1v + vb′$k). (37)

If u+ v is in o×, then this is equivalent to

1 = (−uv, 1 + u−1v). (38)
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This is true by the (1 − x, x) = 1 rule. Assume that u + v is in p. Write v =
u(−1 + w$t) with w in o× and t ≥ 1. Substituting u−1v = −1 + w$t and
−uv = u2(1− w$t) into (37), we get

1 = (1− w$t, w$t + vb′$k)(1 + u$kb′, w$t + vb′$k). (39)

Since u is in −v + p, the second Hilbert symbol equals (1− v$kb′, w$t + vb′$k)
by the (F×, 1 + 4$o) = 1 rule. Hence (39) is equivalent to

1 = ((1− w$t)(1− v$kb′), w$t + vb′$k). (40)

Multiplying out, we get

1 = (1− w$t − vb′$k + vw$t+kb′, w$t + vb′$k). (41)

The term vw$t+kb′ can be omitted by the (F×, 1+4$o) = 1 rule because t+k >
2val(2). Then (41) holds by the (x, 1− x) = 1 rule. This completes the proof.

2.5 Proposition. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ), let
χ be a character of o×, and let n be an integer. If Vψ(τ, n, χ) is non-zero, then
n ≥ 2val(2), χ is trivial on 1 + pn, and the character χ̃ of Γ̃0(pn) defined in (20)
is the character f from Lemma 2.4.

Proof. Assume that Vψ(τ, n, χ) is non-zero. Then n ≥ 2val(2) and χ is trivial
on 1 + pn by Lemma 2.3. To prove that χ̃ is f it suffices to prove that these two
characters agree on the elements in (1), (2) and (3). This follows from the involved
formulas.

3 Proof of the main theorem

In this section we prove the main theorem. We begin with two algebraic reductions.
Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let χ be a character
of o×. We define Vψ(τ,∞, χ) to be the union of all the spaces Vψ(τ, n, χ) as n runs
over the integers. The set Vψ(τ,∞, χ) is a subspace of V because the Vψ(τ, n, χ)
are an ascending sequence of vector spaces. Because τ is a smooth representation,
a vector v in V is contained in Vψ(τ,∞, χ) if and only if (1) and (2) hold. We
define

α2 : Vψ(τ,∞, χ) → Vψ(τ,∞, χ)

by the formula (4). For all n, this operator extends the level raising operator α2

from Vψ(τ, n, χ) to Vψ(τ, n + 2, χ). The first reduction proves that the sum from
the main theorem can be written in terms of Vψ(τ,∞, χ).

3.1 Lemma. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let
χ be a character of o×. Then∑

n

dimVψ(τ, n, χ)new = dimVψ(τ,∞, χ)/α2Vψ(τ,∞, χ). (42)
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Proof. It is easy to see that the inclusion maps induce a sequence of inclusions

· · · ↪→ Vψ(τ, n− 1, χ)/α2Vψ(τ, n− 3, χ) ↪→ Vψ(τ, n, χ)/α2Vψ(τ, n− 2, χ) ↪→ · · · .

If n ≤ 2val(2)− 1, then the n-th term of the sequence is zero by Lemma 2.2. Also,
each of the terms of the sequence is included in Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ), and the
subspace generated by all the images is the entire space Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ).
Since the quotient of the n-th vector space of the sequence by the image of the
preceding vector space is Vψ(τ, n, χ)new we conclude that (42) holds.

To prove the main theorem we thus need to compute the dimension of the quo-
tient Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ); the following lemma describes the key property
of the elements of α2Vψ(τ,∞, χ) that leads to the second reduction.

3.2 Lemma. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let
χ be a character of o×. Let v be in Vψ(τ,∞, χ). The vector v is in α2Vψ(τ,∞, χ)
if and only if v is invariant under the subgroup

(
[

1 p−2

1

]
, 1) (43)

of S̃L(2, F ).

Proof. This follows by direct computations.

The preceding lemma suggests that the subspace α2Vψ(τ,∞, χ) can be char-
acterized as the image of a projection whose kernel would hence be isomorphic to
Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ). Define

µ : Vψ(τ,∞, χ) → Vψ(τ,∞, χ)

by

µv =
1
q2

∫
p−2

τ(
[

1 x
1

]
, 1)v dx

for v in Vψ(τ,∞, χ). It is straightforward to verify that the operator µ is well-
defined. Let Vψ,prim(τ,∞, χ) be the kernel of µ. We refer to the elements of
Vψ,prim(τ,∞, χ) as primitive vectors. The following lemma is the second algebraic
reduction.

3.3 Lemma. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let χ
be a character of o×. Then µ2 = µ, so that Vψ(τ,∞, χ) = kerµ⊕ im µ. Moreover,
the image of µ is α2Vψ(τ,∞, χ), so that there is a natural isomorphism

kerµ = Vψ,prim(τ,∞, χ) ∼−→ Vψ(τ,∞, χ)/α2Vψ(τ,∞, χ).

Proof. A direct computation shows that µ2 = µ; note that we always use the Haar
measure on F that assigns o volume 1, and that the volume of p−2 is q2. It is clear
from the definition of µ that the vectors in the image of µ are invariant under the
group (43), so that such vectors are contained in α2Vψ(τ,∞, χ) by Lemma 3.2.
Conversely, if v is in Vψ(τ,∞, χ), then a computation shows that µα2v = α2v, so
that α2v is contained in the image of µ.
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Thanks to Lemma 3.3, the proof of the main theorem has been reduced to
the computation of the dimension of the space of primitive vectors, and to make
further progress on the proof we will need to use that τ is irreducible. First,
however, we need to prove two general technical lemmas. In the following lemma
we twist representations of S̃L(2, F ) by elements of F×; see Section 1.

3.4 Lemma. Let (τ, V ) be a smooth, genuine representation of S̃L(2, F ) and let
χ be a character of o×. Let ξ be in F×. Then

dimVψ,prim(ξ · τ,∞, χξχ) = dimVψ,prim(τ,∞, χ).

Proof. In this proof we will use the projection µ for different representations; the
dependence on the representation will be indicated by a subscript. Because ξb2·τ ∼=
ξ ·τ and χξb2 = χξ for ξ and b in F×, we may assume that val(ξ) = 0 or val(ξ) = 1.
Assume first that val(ξ) = 0 so that ξ is in o×. The formulas (15) and (16) show
that there is an equality Vψ(ξ ·τ,∞, χξχ) = Vψ(τ,∞, χ) and that µξ·τ = µτ , so that
there is an equality Vψ,prim(ξ · τ,∞, χξχ) = Vψ,prim(τ,∞, χ); in particular, these
vector spaces have the same dimension. Assume now that val(ξ) = 1. To deal with
this case we introduce a new operator. Define ντ : Vψ(τ,∞, χ) → Vψ(τ,∞, χ) by

ντv =
1
q

∫
p−1

τ(
[

1 x
1

]
, 1)v dx.

Again, it is straightforward to verify that ντ is well-defined. It is evident that µτ
and ντ commute, so that the restriction of ντ preserves Vψ,prim(τ,∞, χ). The op-
erator ντ is also a projection, i.e., ντντ = ντ . Therefore, if v is in Vψ,prim(τ,∞, χ),
then v = (v − ντv) + ντv, with v − ντv in the space Vψ,prim(τ,∞, χ)ντ ,0 and ντv
in the space Vψ,prim(τ,∞, χ)ντ ,1, where Vψ,prim(τ,∞, χ)ντ ,c is the c-eigenspace of
ντ on Vψ,prim(τ,∞, χ). In other words,

Vψ,prim(τ,∞, χ) = Vψ,prim(τ,∞, χ)ντ ,0 ⊕ Vψ,prim(τ,∞, χ)ντ ,1. (44)

Similarly,

Vψ,prim(ξ·τ,∞, χξχ) = Vψ,prim(ξ·τ,∞, χξχ)νξ·τ ,0⊕Vψ,prim(ξ·τ,∞, χξχ)νξ·τ ,1. (45)

We claim that there is an equality of vector spaces

Vψ,prim(τ,∞, χ)ντ ,0 = Vψ,prim(ξ · τ,∞, χξχ)νξ·τ ,1. (46)

To see this, let v be in the first space. For a in o× we have by (15)

(ξ · τ)(
[
a
a−1

]
, 1)v = χξ(a)τ(

[
a
a−1

]
, 1)v = χξ(a)χ(a)δ1(a)v.

For b in o we have by (16) and val(ξ) = 1,

(ξ · τ)(
[

1 b
1

]
, 1)v = τ(

[
1 bξ

1

]
, 1)v = v.
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It follows that v is in the space Vψ(ξ · τ,∞, χξχ). Also, by (16),

µξ·τv =
1
q2

∫
p−2

(ξ · τ)(
[

1 x
1

]
, 1)v dx

=
1
q2

∫
p−2

τ(
[

1 xξ
1

]
, 1)v dx

=
1
q

∫
p−1

τ(
[

1 x
1

]
, 1)v dx

= ντv

= 0.

Therefore, v is in Vψ,prim(ξ · τ,∞, χξχ). Finally,

νξ·τv =
1
q

∫
p−1

(ξ · τ)(
[

1 x
1

]
, 1)v dx

=
1
q

∫
p−1

τ(
[

1 xξ
1

]
, 1)v dx

= v.

Hence, v is in Vψ,prim(ξ · τ,∞, χξχ)νξ·τ ,1. This shows that the first vector space
in (46) is contained in the second vector space. A similar argument proves the
opposite inclusion, proving that the two vector spaces are the same. Therefore,

dimVψ,prim(τ,∞, χ)ντ ,0 = dimVψ,prim(ξ · τ,∞, χξχ)νξ·τ ,1. (47)

This equality holds for all τ and χ. Replacing τ by ξ · τ and χ by χξχ and noting
that ξ2 · τ ∼= τ and χ2

ξ = 1, we also have

dimVψ,prim(ξ · τ,∞, χξχ)νξ·τ ,0 = dimVψ,prim(τ,∞, χ)ντ ,1. (48)

The proof of the lemma is completed by applying (44), (45), (47) and (48).

The next lemma will be used to transfer information from unitary to non-
unitary representations.

3.5 Lemma. Let (τ1, V1) and (τ2, V2) be smooth, genuine representations of the
group S̃L(2, F ) and let χ be a character of o×. Let T : V1 → V2 be an isomorphism
of vector spaces such that T (τ1(k)v) = τ2(k)T (v) for v in V1 and k in the subgroup
J of S̃L(2, F ) consisting of the elements

(
[
a b$−2

c$2 d

]
,±1)

with a, b, c and d in o. Then T maps Vψ,prim(τ1,∞, χ) onto Vψ,prim(τ2,∞, χ) so
that these vector spaces have the same dimension.
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Proof. The equivariance property of T implies that T maps Vψ(τ1,∞, χ) into
Vψ(τ2,∞, χ). Let µτ1 and µτ2 be the µ operators for τ1 and τ2, respectively.
By the equivariance property of T , we have Tµτ1v = µτ2Tv for v in Vψ(τ1,∞, χ).
Therefore, TVψ,prim(τ1,∞, χ) is contained in Vψ,prim(τ2,∞, χ). Similarly, the space
T−1Vψ,prim(τ2,∞, χ) is contained in Vψ,prim(τ1,∞, χ).

We can now begin the proof of the main theorem. The next two lemmas prove
the main theorem for two families of representations; by applying the preceding
two lemmas, this will lead to a complete proof of the main theorem. In the
following lemma we refer to the theta lift θ(π, ψ) of a unitary, generic, irreducible,
admissible representation π of GL(2, F ) with trivial central character with respect
to our fixed character ψ. This is the representation of S̃L(2, F ) defined in [W3],
pages 228–231.

3.6 Lemma. Let π be a unitary, generic, irreducible, admissible representation of
GL(2, F ) with trivial central character. The main theorem is true for τ = θ(π, ψ).

Proof. Assume χ(−1) 6= ε(τ, ψ). Let n be an integer and assume that v is in
Vψ(τ, n, χ). Then by the definition of Vψ(τ, n, χ) we have

τ(
[
−1

−1

]
, 1)v = χ(−1)δ1(−1)v.

On the other hand, by the definition of ε(τ, ψ),

τ(
[
−1

−1

]
, 1)v = ε(τ, ψ)δ1(−1)v.

Since χ(−1) 6= ε(τ, ψ) we must have v = 0.
Assume that χ(−1) = ε(τ, ψ). By Lemma 3.1 and Lemma 3.3, it suffices to

prove that
dimVψ,prim(τ,∞, χ) = #Fψ(τ)/F×2.

We will use the Kirillov-type model M(τ) of τ discovered by Waldspurger; see
Section 1. We recall that:

i) The vectors in M(τ) are certain functions f : F× → C that are locally
constant, have relatively compact support in F , and are supported in Fψ(τ);
moreover, the space S(Fψ(τ)) of locally constant, compactly supported func-
tions on Fψ(τ) is contained in M(τ).

ii) For f in M(τ), n in F and x in F× we have

τ(
[
1 n

1

]
, 1)f(x) = ψ(nx)f(x).

iii) For f in M(τ), a in F× and x in F× we have

τ(
[
a
a−1

]
, 1)f(x) = δ1(a)|a|1/2χ(a)f(a2x).
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From ii), (1), and the fact that ψ has conductor o, we see that if f is in Vψ(τ,∞, χ),
then the support of f is contained in o; from iii) and (2), we see that f(v2x) = f(x)
for all x in F× and v in o×. Now let f be in Vψ,prim(τ,∞, χ). Then

0 = µf =
1
q2

∫
p−2

τ(
[

1 x
1

]
)f dx.

Hence, for all y in o,

0 = (
∫

p−2

ψ(xy) dx)f(y).

Since the conductor of ψ is o, f is supported on o× t$o×. Using this and i), it
follows that f is determined by its values on the set(

Fψ(τ) ∩ o×
)
/o×2 t

(
Fψ(τ) ∩$o×

)
/o×2. (49)

The natural map from this set to Fψ(τ)/F×2 is a bijection. Therefore, the di-
mension of the vector space Vψ,prim(τ,∞, χ) is at most #Fψ(τ)/F×2. Conversely,
suppose that to×2 is in the set in (49) with t in Fψ(τ) ∩ o× or in Fψ(τ) ∩ $o×.
Let fto×2 be the characteristic function of to×2. This function lies in the model
M(τ) by i). Moreover, a calculation shows that fto×2 is in Vψ,prim(τ,∞, χ).
The functions fto×2 as to×2 varies over the set (49) are linearly independent ele-
ments of Vψ,prim(τ,∞, χ). Therefore, the dimension of Vψ,prim(τ,∞, χ) is at least
#Fψ(τ)/F×2. This completes the proof.

The next lemma proves the main theorem for the Weil representations πm+
W ;

see Section 1.

3.7 Lemma. If m is in F×, then the main theorem is true for τ = πm+
W .

Proof. The proof that Vψ(πm+
W , n, χ) is zero for all n if χ(−1) 6= ε(πm+

W , ψ) is
as in the proof of Lemma 3.6. Assume that χ(−1) = ε(τ, ψ). By (11), this
means that χ(−1) = (m,−1). We may assume that val(m) = 0 or val(m) = 1
since πmb

2+
W

∼= πm+
W for m and b in F×. By Proposition 3 of [W1], page 14,

#Fψ(πm+
W )/F×2 = 1, so that we need to prove that Vψ,prim(πm+

W ,∞, χ) is one-
dimensional. Let f be in Vψ(πm+

W ,∞, χ). Then

f(y) = (πm+
W (

[
1 b

1

]
, 1)f)(y) = ψ(mby2)f(y)

for all b in o and y in F . Since val(m) = 0 or val(m) = 1 and ψ has conductor o
we conclude that the support of f lies in o. Next, for any a in o× and x in F ,

δ1(a)χ(a)f(x) = (πm+
W (

[
a
a−1

]
, 1)f)(x) = δ1(a)(m,a)f(ax),

so that
f(ax) = (m,a)χ(a)f(x)
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for all a in o× and x in F . Hence f is determined by the values f($k) for non-
negative integers k. Assume further that f is in Vψ,prim(πm+

W ,∞, χ), i.e., µf = 0.
Then, for all y in F ,

0 =
( 1
q2

∫
p−2

(πm+
W (

[
1 x

1

]
, 1)f) dx

)
(y),

0 =
( ∫
p−2

ψ(mxy2) dx
)
f(y).

It follows that f(y) = 0 for y in p. Hence f is determined by f(1), and the space
Vψ,prim(πm+

W ,∞, χ) is at most one-dimensional. We are thus reduced to proving
that Vψ,prim(τ,∞, χ) is non-zero. Define an element of S(F ) by

f(x) =
{

(m,x)χ(x) if x is in o×,
0 if x is not in o×.

Since χ(−1) = (m,−1), we see that f is an even function, so that f is in the space
of πm+

W . Finally, computations using (10) and (11) show that f is contained in
Vψ,prim(πm+

W ,∞, χ), completing the proof.

Finally, we can give the proof of the main theorem.

Proof of the Main Theorem. The proof that Vψ(τ, n, χ) is zero for all n if χ(−1) 6=
ε(τ, ψ) is as in the proof of Lemma 3.6. Assume that χ(−1) = ε(τ, ψ). By Lemma
3.1 and Lemma 3.3, it suffices to prove that dimVψ,prim(τ,∞, χ) = #Fψ(τ)/F×2.

Assume first that τ is an irreducible, admissible, genuine representation of
S̃L(2, F ) that is unitary and is not isomorphic to πm+

W for all m in F×, that is, τ is
in the set P̃ defined on page 225 of [W3]. By Lemme 2 on page 226 of [W3], the set
Fψ(τ) is not empty, i.e., there is ξ in F× such that τ has a ψξ Whittaker model. By
Théorème 1 on page 249 of [W3] the theta lift π = θ(τ, ψξ) to GL(2, F ) is defined; it
is a unitary, generic, irreducible, admissible representation of GL(2, F ) with trivial
central character, and θ(π, ψξ) = τ . Using the definitions and facts about the Weil
representation, one can show that for any a in F× and non-trivial character ψ′ of
F one has a · θ(π, ψ′) ∼= θ(π, ψ′a). Recalling also that, as mentioned in Section 1,
ξ2 ·τ ∼= τ so that ξ ·τ ∼= ξ−1 ·τ , we see that ξ ·τ ∼= ξ−1 ·τ ∼= ξ−1 ·θ(π, ψξ) ∼= θ(π, ψ).
A computation using (15) and χ(−1) = ε(τ, ψ) shows that (χξχ)(−1) = ε(ξ · τ, ψ).
By Lemma 3.6, we have

dimVψ,prim(ξ · τ,∞, χξχ) = #Fψ(ξ · τ)/F×2.

Using (16), it is easy to see that #Fψ(ξ ·τ)/F×2 = #Fψ(τ)/F×2. Applying Lemma
3.4, we now have

dimVψ,prim(τ,∞, χ) = #Fψ(τ)/F×2, (50)

as desired.
By Lemma 3.7, if τ is isomorphic to πm+

W for some m in F×, then (50) holds.
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Finally, assume that τ is not unitary. We will use a “deformation” argument,
via Lemma 3.5, to reduce the proof to the unitary case. Since τ is not unitary,
τ is isomorphic to an irreducible principal series representation π̃(α1) for some
character α1 of F× such that α2

1 6= | · |±1. We can find a real number r such that
if α2 = α1| · |r then α2

2 6= | · |±1 and π̃(α2) is a unitary irreducible principal series
representation. We note that α1 and α2 agree on o×. Let B̃ be the subgroup of
S̃L(2, F ) consisting of the elements of the form

b̃ = (
[
a ∗
a−1

]
, ε)

for a in F× and ε equal to ±1. If α is a character of F we define a character α̃ of
B̃ by

α̃(b̃) = εδ1(a)α(a)|a|.

This is the character that defines the associated principal series representation
π̃(α), i.e., the space of π̃(α) consists of the complex valued functions f on S̃L(2, F )
such that f(b̃g) = α̃(b̃)f(g) for all b̃ in B̃ and g in S̃L(2, F ), and there exists a
compact open subgroup Γ of SL(2, F ) such that f(g(k, 1)) = f(g) for all g in
S̃L(2, F ) and all k in Γ. Let J be the subgroup of S̃L(2, F ) defined in Lemma 3.5.
We have S̃L(2, F ) = B̃J . Now define T : π̃(α1) → π̃(α2) by

T (f)(g) = T (f)(b̃k̃) = α̃2(b̃)f(k̃)

for g in S̃L(2, F ) with g = b̃k̃ for b̃ in B̃ and k̃ in J . A computation, using that α1

and α2 agree on o×, shows that T is well-defined. The map T is an isomorphism
because the analogously defined map from π̃(α2) to π̃(α1) is the inverse of T . It
is also evident that T is a J map. Applying now Lemma 3.5, we have

dimVψ,prim(π̃(α1),∞, χ) = dimVψ,prim(π̃(α2),∞, χ).

Since π̃(α2) is unitary, by the first paragraph of this proof,

dimVψ,prim(π̃(α2),∞, χ) = #Fψ(π̃(α2)).

On the other hand, by Proposition 3 of [W1], page 14,

#Fψ(π̃(α2)) = #F×/F×2 = #Fψ(π̃(α1)).

It follows that dimVψ,prim(π̃(α1),∞, χ) = #Fψ(π̃(α1)), completing the proof.

To end this paper we briefly describe how similar reasoning proves the analo-
gous theorem in the GL(2) setting. Let (π, V ) be a generic, irreducible, admissible
representation of GL(2, F ). For n a non-negative integer, let V (π, n) be the sub-
space of vectors v in V that are stabilized by the subgroup of elements[

a b
c d

]
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of GL(2, o) such that c ≡ 0 mod pn and d ≡ 1 mod pn. Define α : V (π, n) −→
V (π, n+ 1) by

αv = π(
[

1
$

]
)v.

Define the subspace V (π, n)old of oldforms in V (π, n) as the subspace spanned by
V (π, n− 1) and αV (π, n− 1). Our goal is to prove that

∑
n

dimV (π, n)/V (π, n)old

is one. Define V (π,∞) to be the subspace that is the union of all the spaces
V (π, n). We have

∑
n

dimV (π, n)/V (π, n)old = dimV (π,∞)/αV (π,∞), as in the

S̃L(2) case. Define µGL(2) : V (π,∞) → V (π,∞) by

µGL(2)v =
1
q

∫
p−1

π(
[

1 x
1

]
)v dx.

The operator µGL(2) is a well-defined projection, and kerµGL(2) is isomorphic to
V (π,∞)/αV (π,∞), so that we are reduced to proving that the space kerµGL(2) of
primitive vectors is one-dimensional. A computation now shows that if the space
of π is taken to be the Kirillov model of π with respect to ψ, then the space of
primitive vectors is spanned by the characteristic function of o×, which completes
the proof. In closing, we note that if π is supercuspidal, then the characteristic
function of o× in the Kirillov model with respect to ψ is the newform of π; the above
development shows that this vector is also significant in the non-supercuspidal case.
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