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We study degree 2 paramodular eigenforms of level 8 and weights 10 and 12, and deter-
mine all their local representations. We prove dimensions by the technique of Jacobi
restriction. A level divisible by a cube permits a wide variety of local representations,
but also complicates the Hecke theory by involving Fourier expansions at more than
one zero-dimensional cusp. We overcome this difficulty by the technique of restriction to
modular curves. An application of our determination of the local representations is that
we obtain the Euler 2-factor of each newform.
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1. Introduction

Let H={Z € M5(C)|'Z =Z,Im(Z) > 0} be the Siegel upper half space of degree 2.
Siegel modular forms of weight k are holomorphic functions H — C satisfying a
transformation property with respect to a congruence subgroup I' of Sp(4, Q). In
recent years Siegel modular forms with respect to I' = K (N), the paramodular group
of level N, have received much attention, partly due to the paramodular conjecture
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formulated in [6], and partly due to the theory of newforms on paramodular groups,
see [12, 23].

The space Sk (K (N)) of paramodular cusp forms of weight & and level N contains
the subspace S} (K (N)) spanned by Gritsenko lifts Grit(¢), where ¢ runs through
Jacobi cusp forms of weight k£ and index N, see [9]. The same subspace can also be
obtained as generalized Saito—Kurokawa liftings from the space of elliptic newforms
in Sog—2(To(N)), as in [23, Theorem 6.1]. We will refer to the non-zero elements
of SH(K(N)) simply as lifts. Any non-zero element of Si (K (N)) in the orthogonal
complement S; (K (N)) of S} (K(N)) is a non-lift.

The spaces S (K (N)) also admit a theory of oldforms and newforms, analogous
to the familiar Atkin—Lehner theory for elliptic modular forms. In particular, there
is an orthogonal decomposition

Sk(K(N)) = Sk(K(N))™" @ Si(K(N))*,

where Si.(K(N))°' consists of forms arising from lower paramodular level via a
fixed set of three level raising operators 6, ' and n (for each prime). The level
raising operators take lifts to lifts and non-lifts to non-lifts, so that if we define

S/:(K(N))Old/new =Si(K(N))N Sk(K(N))old/new’
and similarly define S} (K(N ))Old/ newthen we have orthogonal decompositions
Si(E(N)) = Sp(K(N)*M & S (K(N))™,
Sk(

Oldforms are old in the sense of arising from a discrete group of smaller level,

K(N)) =5

K(N)) = S (K (N)*M @ Sp (K (N)"™.

and lifts are old in the sense of arising from a Lie group of smaller rank. Each
of the spaces mentioned so far has a basis consisting of eigenforms with respect
to the local Hecke algebras for all p not dividing N. At least conjecturally, the
eigenforms in Sy (K (N))™™ are in one-to-one correspondence with a set of cuspidal,
automorphic representations of conductor N of the adelic group GSp(4, Ag). More
precisely, each eigen-newform should adelize to a distinguished vector in such an
automorphic representation. The oldforms adelize to give non-distinguished vectors
in automorphic representations of strictly smaller conductor.

Consider the set of all cuspidal, automorphic representations of GSp(4, Ag) con-
tributing to Si(K(NN)). Some of these automorphic representations will be “lifts”
Ay, ..., A, of automorphic representations of GL(2,Ag), in the sense of [29, The-
orem 3.1J; these correspond to the eigenforms in S} (K (N)). The rest, II;,...,IL,,
will be cuspidal, automorphic representations of GSp(4, Ag) that are not lifts; they
correspond to the eigenforms in S} (K (N)).

Our goal in this paper is to analyze the spaces S19(K (8)) and S12(K(8)) with
respect to these structures, and to discover, by examples, which local representations
can actually be hit by global automorphic forms. We will determine the dimension of

the spaces of old /new lifts and old/new non-lifts. The starting point is to determine
the dimension of the full spaces S10(K (8)) and S12(K (8)). By Theorems[E3land £.4]
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these dimensions are 6 and 12, respectively. Our method for proving dimensions is
to find an upper bound on the dimension using “Jacobi restriction” [B, 13], and
then to find a lower bound by constructing lifts of theta blocks, and products of
such lifts. This method gives not only the dimensions, but also the initial Fourier
expansions of a Q-basis.

We then consider the automorphic representations generated by these eigen-
forms. For both weights £ = 10 and k£ = 12 we determine the automorphic lifts
Ay, ..., A, precisely in terms of their GL(2) data; we have m = 3 for kK = 10 and
m = 4 for k = 12. Some of the automorphic representations Iy, .. ., II,, contain cusp
forms with respect to other congruence subgroups that have previously appeared
in the literature, in particular in [I1]. The rest of Iy, ..., I, are newly discovered
automorphic representations, generated by certain eigen-newforms in Sy (K (8)). We
have two non-lift newforms for £ = 10 and 4 for k£ = 12.

Let IT be one of the cuspidal, automorphic representations generated by a non-lift
eigen-newform F in Sy (K (N)). We can decompose II as a restricted tensor product
IT = ®II,,, where I, is an irreducible, admissible representation of the local group
GSp(4, Q,). Since we are working with level N = 8, the II, are unramified repre-
sentations for each finite p > 2. It is an interesting problem to determine the local
representation at p = 2 of this global automorphic form in terms of the classifica-
tion of [24] Table A.1]. Even for elliptic modular forms the analogous problem is
generally not easy; see [I7]. In degree 2 it does not seem to have been addressed
beyond the Iwahori-spherical cases in [28]. In our case, we are getting some help
from the fact that there are no characters of Q5 of conductor exponent 1. This
limits the possibilities for 115 to a small number of families; see Table .

To determine II5 precisely requires additional information. We extract this infor-
mation from F with the help of two paramodular Hecke operators Ty and 71 g,
which are the topic of Sec.[H. These operators have their origin in the local theory
of the paramodular group; their local counterparts appear in [24] Sec. 6.1]. The
local newform theory implies that eigenforms (at all good places) in Sy (K (NV))"°V,
provided they generate an irreducible automorphic representation, are also eigen-
forms (at all bad places) for the operators Ty ; and Tj . The calculation of these
operators can be challenging however, since some of their double coset represen-
tatives consist of lower triangular matrices. In other words, these Hecke operators
can mix the Fourier expansions at different zero-dimensional cusps. The difficulty
of simultaneously accessing Fourier expansions at multiple cusps is one reason that
the computations here have not been previously attempted. We explain in Sec.
how we overcome this difficulty by using the method of restriction to a modular
curve. Here again we receive some help from the fact that our only ramified place
is p = 2, since in this case the number of problematic double coset representatives
is small. The results of our eigenvalue calculations are contained in Table [@ (for
k = 10) and [[7 (for k¥ = 12). With this information we can determine the local
components I, precisely; see Proposition (.2, which contains the arguments in full
detail for the k = 10 case.
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Our main results are Table [[T] (for k¥ = 10) and [[6] (for k¥ = 12). These tables
show precisely how the eigenforms in Sk (K (8)) are distributed among the various
automorphic representations. We also include the spaces Si(B(2)) and S;(I'0(2)),
since there is significant overlap of their automorphic representations with those of
Sik(K(8)). As an application, we obtain the “correct” Euler factors at p = 2 for all
eigenforms considered; see Tables T2 and IS

2. Notation

For any commutative ring R, let
1
GSp(4,R) = {g € GL(4,R) |'gJg = A(g)J, for some A\ € R*}, J= [ ) 2] .
—1z

The kernel of the multiplier homomorphism A : GSp(4, R) — R* is the group
Sp(4, R).

Let G = GL(2) or G = GSp(4). Let G(R)° be the identity component of G(R).
Let H be the usual upper half plane if G = GL(2), or the Siegel upper half space
of degree 2 if G = GSp(4). Hence, in the latter case, H consists of all symmetric
complex (2 x 2)-matrices Z whose imaginary part is positive definite. In either case
G(R)° acts on H by

A B

g(Z)=(AZ+B)(CZ+D)™', g= .

€ G(R)°.

For a function f on H, an integer k, and an element g € G(R)°, let
(flk9)(2) = det(CZ + D)~ * det(9)*'* f (9(2)). (2.1)

This defines a right action of G(R)° on functions f : H — C. The center of G(R)®°
acts trivially, both in the GL(2) and the GSp(4) cases. (This would not have been
the case with the “classical” normalization of |, which uses A(g)™*~™("+1)/2 instead
of det(g)*/2.)

Let N be a positive integer. The only congruence subgroup we need in the GL(2)
case is

Z Z
NZ Z

To(N) = SL(2,Z) N l

In the GSp(4) case we consider both the Borel and the Siegel congruence subgroups,
defined respectively by
7Z NZ 7 Z
Z Z 7Z Z
B(N) =Sp(4,Z)N Nz Nz 2zl

NZ NZ NZ Z
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7 7 7 Z
To(N) = Sp(4,7Z) Lonozz (2.2)
p— 5 ﬂ .
0 P NZ NZ 7 7

NZ NZ Z Z

It will be clear from the context whether I'g(/V) stands for a subgroup of SL(2,Z)
or of Sp(4,Z). In addition, we consider the paramodular group

Z N7Z Z 7L

KN =span |~ X F Nz 2.3
(N) =Sp(4,Q) N (2.3)

NZ NZ NZ Z

Let I" be one of these congruence subgroups, and let k£ be a non-negative integer. A
modular form of weight k& with respect to I' is a holomorphic function f : H — C
satisfying f|xy = f for all v € T', and being holomorphic at the cusps of I'. If f
vanishes at the cusps, then it is called a cusp form. The space of cusp forms of
weight k with respect to I' is denoted by Si(I'), both in the GL(2) and the GSp(4)
cases. For g € G(Q), a double coset I'gI" acts as a Hecke operator on My (I") via
flelgl = Zj flkgj, for any finite disjoint union Uj I'g; =Tgl.

3. Modular Forms and Representations

3.1. Obtaining modular forms from automorphic
representations

In this section, we explain the mechanism of constructing modular forms from
special vectors inside the space of an automorphic representation of a reductive
algebraic group. We only consider the groups relevant for this work, namely GL(2)
and GSp(4). These lead to elliptic modular forms and Siegel modular forms of
degree 2, respectively. We also limit ourselves to cusp forms and trivial central
character, thus avoiding a number of technical issues irrelevant for this paper.

Let A be the ring of adeles of Q. Let G be either GL(2) or GSp(4). Recall that
automorphic forms are complex-valued functions on G(A), left-invariant under the
diagonally embedded G(Q), and satisfying certain regularity conditions; we refer
to M] for details. The group G(A) acts on the space of automorphic forms, and on
the subspace of cuspidal automorphic forms, by right translation. Strictly speak-
ing, at the Archimedean place we have to consider the action of a (g, K)-module,
but we will allow ourselves the usual simplification and speak of “representations
of G(A)”.

Let 7 be a cuspidal, automorphic representation of G(A). Hence, 7 is an irre-
ducible representation which can be realized on a space V consisting of cuspidal,
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automorphic forms on G(A). By the tensor product theorem, 7 is isomorphic

to a restricted tensor product Tp, where m, is an irreducible, admissible

p<oo
representation of the local group G(Q,). (Again, when p = oo, we really mean a
(g, K)-module.)

We assume that 7 has trivial central character. The same is then also true for
all the local representations m,. The restriction to trivial central character means
that the modular forms we can construct from 7 will have trivial character (i.e. no
nebentypus).

Since our goal is to construct holomorphic modular forms, we will require that
the Archimedean component 7., is an infinite-dimensional lowest weight module.
Hence, if G = GL(2), we will assume that 7o is the unique representation of
GL(2,R) with trivial central character and a lowest weight vector of weight k > 1;
see [I5] §5]. It is a discrete series representation if k > 2, and a limit of discrete series
if k=1.1If G =GSp(4), then we will assume that 7, is the unique representation
of GSp(4,R) with trivial central character and a lowest weight vector of weight
(k,k), where k > 1 (see [I8] for more details). It is a holomorphic discrete series
representation if k& > 3, a limit of such if £ = 2, and a certain non-tempered
representation if £ = 1. In each case, let v, be the lowest weight vector; it is unique
up to scalars.

We will construct a vector in m = ) 7, by choosing local distinguished vectors v,
in each 7, and piecing them together to a “pure tensor” ) v,. At the Archimedean
place we have the lowest weight vector v.. For almost all primes p the representation
mp is unramified, meaning it has a non-zero vector fixed under the maximal compact
subgroup G(Z,) of G(Q,); we let v, be such a fixed vector. (In fact, the restricted
tensor product ) 7, is constructed with respect to a choice of such fixed vectors
at almost all places, and pure tensors in ) 7, are forced to have v, be this fixed
vector almost everywhere.)

Let p be a prime for which 7, is ramified. Let V,, be the space of m,; which
model we take for 7, is irrelevant. Consider the case G = GL(2) first. By the local
newform theory of [§], the space V,, contains a non-zero vector fixed by the local
congruence subgroup

Ly Ly

To(p") = GL(2,0) N l : (3.1)

P Ly L,

for some n. Let n, be the minimal n such that the space of fixed vectors V,(n) :=
VpFO(p ") is non-zero; then it is known that Vp(ny) is one-dimensional. We let v, be
any non-zero vector in this one-dimensional space. It is known that p™» coincides
with the conductor of the representation m,. This implies that the integer N = [ p™»
appears in the global functional equation of the L-function L(s,7); see [15].

Now assume that G = GSp(4) and that 7 is not of “Yoshida type” or “CAP

type”, notions that are explained in [3I]. In this case, by the results of [24], the
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space V), contains a non-zero vector fixed under the local paramodular group
Ly pPLy Ly Ly
" x Ly Ly Ly p "Ly
K(p") = {g € GSp(4,Q,) |det(g) € Z2} N ; . (32)
Ly pPLy Ly Ly
P'Ly PpLy P"Zp L
for some n. Let n, be the minimal n such that the space of fixed vectors V,(n) :=
V},K(p ) i non-zero; then we know from [24] that V,,(n,) is one-dimensional. We let
vp be any non-zero vector in this one-dimensional space. As in the GL(2) case, the
number p™» coincides with the conductor of the representation .
For either group G = GL(2) or G = GSp(4), we have now chosen local vectors
v, at each place, canonical up to normalization. To have a unified notation for
p < 00, let us write C, for the compact group under which v, is invariant, i.e.
Cp =To(p™) in the GL(2) case, and C), = K(p™») in the GSp(4) case. Via m = @,
the pure tensor ) v, corresponds to an automorphic form ® on G(A). Among other
properties, ¢ satisfies, for all g € G(A),

P(pg) = 2(g9), peGQ), (3.3)
o(gh) = ®(g), he [] G (3.4)
D(gr) = pr(rk)P(g9), K€ K. (3.5)

Property (33]) holds simply because ® is an automorphic form. Property (B.4)
follows from our choice of local vectors v, at all non-Archimedean places. Prop-
erty (38) follows from our choice of vo,. The group K, is the identity component
of the standard maximal compact subgroup of G(R), and py, is its weight k represen-
tation. Explicitly, in the GL(2) case, Koo = SO(2) and pi ([55)) SniG)]) = e?*?.
In the GSp(4) case, Koo = Sp(4,R) N O(4,R) consists of all matrices in Sp(4, R) of
the form x = [} 5], and py (k) = det(A + iB)*.

The strong approximation theorem implies that G(A) = G(Q)G(R)° [, Cp,
where G(R)® is the identity component of G(R). In view of the above transformation
properties, ® is determined by its values on G(R)°. Let H be the usual upper half
plane if G = GL(2), and the Siegel upper half space of degree 2 if G = GSp(4).
Using the property (B.3), it is easy to verify that there exists a unique function f
on H for which

(fleg)(iln) = @(g) for all g € G(R)®, (3.6)

where n = 1 in the GL(2) case and n = 2 in the GSp(4) case. Since vy is a

lowest weight vector, the function f is holomorphic; see [T, Sec. 4.2]. One verifies
immediately that

fley=1F foryel:=GQnGR" [] Cp (3.7)

p<oo
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Evidently, I' = T'o(N) in the GL(2) case, and I' = K (N) in the GSp(4) case, where
N =[] p™. The function f is holomorphic at the cusps of T', since ® is of moderate
growth. In fact, f vanishes at the cusps, since ® is a cuspidal automorphic form,
hence f € Si(T).

We have thus extracted a cusp form f from 7 of the same level N as the rep-
resentation. Since the numbers n, above were chosen to be minimal, this f will be
a newform. Here, for G = GL(2), we mean a newform in the traditional sense of
Atkin-Lehner, and for G = GSp(4) we mean a paramodular newform as defined in
[23]. In each case, a consequence of being new is that the level lowering operators
annihilate f at each finite place, just as a consequence of being holomorphic is that
the weight lowering operators annihilate f.

Especially in the GSp(4) case, there are other important choices for the local
congruence subgroups instead of the K (p™) defined in ([B2). For example, we could
have taken vectors v, fixed under

Ly Ly

Zy T
Z Z, Z, Z

To(p") = GSp(4,Z,) | % T F (3.8)
P "Ly P Ly Ly Ly

P "Ly DLy Ly Ly

for some minimal n = n,. Any resulting f would then be a cusp form with respect to
some I'g(N) C Sp(4,Z), but only rarely will N = [[p™» coincide with the conductor
of 7. Another choice of local congruence subgroup, important for this paper, is the
Borel congruence subgroup

Ly P*ZLp Zp Ly
Ly Ly Ly Ly
P'ly PLy Ly Ly
P Ly P Ly P Ly ZLp

B(p") = GSp(4,Z,) N (3.9)

If n = 1, this is also called an Twahori subgroup. The resulting global congruence
subgroups are the B(N) defined in (Z3).

We note that the cusp forms f constructed from automorphic representations
by the above procedure are automatically eigenforms for the local Hecke algebras
H, at all places p where p{N. Conversely, the adelization ® of any eigenform f
(meaning eigenform for H, for almost all good places p) can be used to generate
a representation 7. Automorphic representations generated by paramodular eigen-
forms with respect to K(N) will always have local representations with a fixed
vector for some K (p™), for p"™ | N. Here, a technical issue arises in the GSp(4) case
in that 7 need not be irreducible; this is due to the failure of strong multiplicity
one* for GSp(4). It is still true though that the eigenforms constructed from all

aExamples for the failure of strong multiplicity one for GSp(4) are provided by the Yoshida liftings;
see [2 3], and the exposition in [26, Sec. B].
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cuspidal, automorphic representations m (with the correct Archimedean type and
the correct choice of local congruence subgroups) span the entire space Si(T).

3.2. Local representations

In this section, we will take a closer look at the local non-Archimedean representa-
tions m, occurring in an automorphic representation ™ = @, of either G = GL(2)
or G = GL(4). Recall that 7, is an irreducible, admissible representation of G(Q,).
The only ramification that will occur in our examples is at the place p = 2. For all
other primes m, will always be an unramified principal series representation. Only
representations with trivial central character will be relevant for us.

First, we consider characters x of QJ, meaning continuous homomorphisms
X @ QF — C*. If x is trivial on ZJ, then we say that x is unramified and write
a(x) = 0. Otherwise let a() be the smallest positive integer a such that x is trivial
on 1+ p®Zs, but not on (1+ p*~1Zy) NZ . Note that a(x) = 1 is impossible, since
1+2Z, =175.

The GL(2) case

We first recall some general facts for irreducible, admissible representations of
GL(2,Qp) that hold for any p. Since we will be considering local representations
only, we change notation and write 7 instead of m,. We will assume throughout that
m is infinite-dimensional and has trivial central character.

Recall that the (exponent of the) conductor a(m) of m is characterized as the
smallest integer n such that the space V of m contains a non-zero vector fixed under
the congruence subgroup I'o(p") defined in BI). If V(n) = VTo(®") is the space
of fixed vectors, then dim V' (a(7) +14) = i+ 1 for ¢ > 0. In other words, starting

at level a(m), the dimensions grow like 1,2,3,.... The essentially unique vector at
level a(m) is called a local newform; the spaces V(a(m) + ) for ¢ > 0 consist of local
oldforms.

The Atkin—Lehner element
1
Uy = l N ] € GL(2,Qp) (3.10)
p

normalizes the group I'o(p™), and hence acts on the space V(n). In particular, the
Atkin-Lehner action on the one-dimensional space V (a(r)) defines a sign +1 canon-
ically attached to the representation. It follows from the local functional equation
for zeta integrals that this sign coincides with the value at 1/2 of the e-factor, so we
will denote these signs by £(1/2, 7). In case that a newform f € Sg(T'o(N)) corre-
sponds to an automorphic representation ®m,, as in the previous section, the sign
e(1/2,mp) coincides with the classical Atkin-Lehner eigenvalue at p of the modular
form f, for each prime p.

In a standard notation, as in [27], the principal series representations (with

trivial central character) of GL(2,Q,) are written in the form 7 = y x x~!, where
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X is a character of Q, not of the form | - |+1/2, The conductor of 7 can be cal-
culated as a(m) = 2a(x), and the Atkin—Lehner eigenvalue of the newform as
e(1/2,m) = x(—1). The simplest case occurs if x is unramified, i.e. a(x) = 0. Then
m is called unramified, or spherical. In a global representation ®m,, almost every 7,
is unramified.

There are exactly two representations with conductor a(w) = 1, the Steinberg
representation Stgr,(2), and its twist £Stqp,2) by the unique non-trivial, unramified,
quadratic character & of Q5. The two representations can be distinguished by their
Atkin-Lehner eigenvalue, as £(1/2, Stqr,(2)) = —1 and £(1/2,&Stare)) = 1.

From now on we consider only p = 2. Since there are no characters x of Q5 with
a(x) = 1, any representation 7 (always assumed to have trivial central character)
with a(7) = 2 must be supercuspidal, i.e. not accessible via parabolic induction.
Using [34), Proposition 3.5] one can show that there is a unique such supercuspidal.
We denote it by sc(4), since it contributes a factor 4 = 22 to the conductor in a
global situation. It is not difficult to show that £(1/2,sc(4)) = —1.

By the remark after [34, Theorem 3.9], or alternatively [7 Theorem 5], applied
to the field Qq, there are exactly two supercuspidal representations 7 of GL(2,Q5)
with trivial central character and a(7) = 3. We denote these two supercuspidals by
sc(8)T and sc(8)~. They are unramified twists of each other and can be distinguished
by their Atkin-Lehner eigenvalue; we fix the notation such that £(1/2,sc(8)*) = +1.

It follows from the conductor formulas for principal series representations and
for twists of the Steinberg representation that there are no other m with a(w) = 3.
Table [ summarizes all the representations of GL(2,Q2) with trivial central char-
acter and conductor up to 3.

The GSp(4) case

We next consider several irreducible, admissible representations of GSp(4, Q,) rel-
evant for our analysis of spaces of Siegel modular forms. Even though we will only

Table 1. The irreducible, admissible, infinite-dimensional represen-
tations 7 of GL(2,Q2) with trivial central character and a(7) < 3.

a(m) @ e(1/2,m) V(0) V(1) V(2) V(3
0 Unramified 1 1 2 3 4
1 StaL(2) -1 0 1 2 3

£Star(2) 1 0 1 2 3
2 sc(4) -1 0 0 1 2
3 sc(8)* 1 0 0 0 1

sc(8)~ -1 0 0 0 1
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Table 2. Some irreducible, admissible, infinite-dimensional representations II of GSp(4, Q) with
trivial central character and a(II) < 3. For each types X and XIb, the supercuspidal representation
m of GL(2,Qp) is assumed to have a(w) = 3, and the character o is unramified. For type XIa, the
supercuspidal representation 7 of GL(2,Qp) is assumed to have a(mw) = 2, and the character o is
unramified. The number « for types X abbreviates o(p). The quantity o(p) for type XIa and XIb
is £1.

a(T) I Type e(1/2,T1) V(0) V(1) V(2) V(3) V! To Tio
0 X1 X X2 Xo 1 1 1 2 4 6 8 Irrelevant
XlgL(e) Xo IIb 1 1 1 2 2 4 Irrelevant
2 (T, v=120) VIb 1 0 0 0 0 1 — —
3 oStasp(4) IVa —ao(p) 0 0 0 1 1 a(p) —p?
Txo X e(/2om) O 0O 0 1 0 pilatal) 0
sV 2m, v~ 120)  Xla a(p) 0 0 0 10 a(p)p —p?

L' 2r,v=125) XIb e(1/2,0m) 0 0 0 1 0 oplpP+1) O

Supercuspidal 0 0 0 1 0 0 —p?

need the case p = 2, it is not more difficult to work with general p. Just as in the
GL(2) case, all representations are assumed to be infinite-dimensional and to have
trivial central character.

Table 2] lists all the representations IT that are important for our purposes. The
precise meaning of the notation in the “IT” column need not concern us; it is taken
from [27]. We shall mostly refer to these representations by their “type”, which
is simply a label. The symbols x, x;,0 stand for characters of Q,, which are all
assumed to be unramified. The symbol 7 stands for a supercuspidal representation
of GL(2,Q,). For types X and XIb, we assume a(7) = 3, and for type Xla we assume
a(m) = 2. We make these assumptions so that the conductor a(II) is as listed in the
first column. See [24] Table A.9], where the conductors for all non-supercuspidal
representations of GSp(4,Q,) are listed.

Let V' be the space of one of these representations II. For n > 0, let V(n) be the
subspace of vectors fixed under the local paramodular group K (p™) defined in (32)).
We note that for all representations in Table 2] except for VIb, the conductor a(IT)
coincides with the minimal n such that V(n) # 0. This is a general feature of
the paramodular theory. The VIb representation does not admit any paramodular
vectors at all, but it shares an L-packet with a representation of type Vla, for which
a(IT) coincides with the minimal paramodular level.

Another feature of the paramodular theory, proven in [24], is that if n is minimal
such that V(n) # 0, then V(n) is one-dimensional. Any non-zero vector in this
one-dimensional space is called a local newform. As in the GL(2) case, there is an
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Atkin—Lehner element

- ' e asp,0,) (3.11)

_pn
normalizing K (p™). The action of u,, on the one-dimensional V' (n) thus defines a sign
canonically attached to each paramodular representation. Since this sign coincides
with the value of the e-factor at 1/2, we denote it by e(1/2,1I). Table [ lists these
e-factors, except for supercuspidal representations, for which we make no general
statement.

Also listed in Table @ are the dimensions of the space of fixed vectors V! under
the Twahori subgroup

Zy pLy Zp, Z

Ly Ly Ly Ly
pZy pLy Ly Ly
Z

P

I=GSp(4,Q,) N (3.12)

Ly PLy Ly p

Representations for which V! is non-zero are called Iwahori-spherical. In a
global setting the group I corresponds to the Borel congruence subgroup B(p);
see (22).

It remains to explain the last two columns in Table 1 The Ty ; and T4y are
certain paramodular Hecke operators, which we consider in more detail in Sec. B.1]
below. They act on the one-dimensional space V' (n), where n is minimal such that
V(n) # 0, and thus produce two eigenvalues. It is these eigenvalues that are listed
in Table @] The source of this information is Tables A.9 and A.14]. The repre-
sentations of types I and IIb also define Tp 1 and 77 o eigenvalues, given by slightly
more complicated expressions; since they are irrelevant for our purposes, we refrain
from listing them.

4. S10(K(8))

The main goal of this section is to prove Theorem M3, which says that
dim Slo(K(S)) = 6.

4.1. Cusp structure of K(8)

In this section, we reduce the task of computing the Fourier expansion of a paramod-
ular form slashed by an arbitrary element of Sp(4,Q) to a finite number of cases,
one for each zero-dimensional cusp. The cusp structure of K (8) is as follows: Define
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Co(2)
SL2(Z)\H1 C1(0)
SLo(Z)\H1 Co(0) C1(1)
C1(2)

To(2)\H1 To(2)\H1 C1(4)

Fig. 1. The cusp structure of K(8) and double coset representatives.

Co(m) and Cy(m) by

[1 0 0 0O 1 m 0
Co(m) = 0 1 0 0 Ci(m) = 0 1 0 ,
0 m 1 0 0 0 1 0
im0 0 1 0 0 —m 1
EEEEEE * 0 % %
* ok ok * ok ok
P0(Q) = NSpy(Q), Pa(Q) = N Sp,(Q);
0 0 x =% * 0 % %
10 * ok 0 0 0 =

the C;(m) are the standard double coset representatives corresponding to the zero-
dimensional and one-dimensional paramodular cusps given by P»,(Q). Applying
[21], Theorems 1.2 and 1.3], we have the following double coset decompositions:

Sp(4,Q) = K(8)Co(0)P2,0(Q) U K(8)Co(2)P2,0(Q),
Sp(4,Q) = K(8)C1(0)P1(Q) U K(8)C1(1)P2,1(Q)
UK (8)C1(2),1(Q) U K(8)C1(4),1(Q).

So there are two zero-dimensional cusps and four one-dimensional cusps. When we
slash a form f € Si(K(8)) and take the Fourier expansion, we may need the Fourier
expansion of f at either of these two zero-dimensional cusps. This will come up when
we apply certain Hecke operators later. Figure [[lshows how the cusps intersect each
other.

4.2. Upper bound on the dimension

a b/2
XQ(N)Z{L;Q CN]

Denote

a,b,c € Z,a,c>0,4acN — b? >O}.
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These are the indices that occur in the Fourier expansion of a form in Sy (K (N)).
Let (A, B) = tr(AB). For t € X3(N), define

< (1) . 1 o 0 0
m = min{ — R
N N gty 0 1

where I'l (V) is generated by I'g (V) and all the Atkin-Lehner involutions. Let P, (R)
be positive definite symmetric real matrices. Let ¢ : P, (R) — R™ be type one, which
means

gGFS(N)},

(1) ¢(at) = ad(t), for all « > 0 and ¢t € P, (R),
(i) ¢(s+1t) > ¢(s) + o(t) for all s,t € Pp(R).

For A > 0, define
JN (P, A) = max{mpy(t) : t € Xo(N),d(t) < A}
The following is [5l Theorem 7.3].

Theorem 4.1. Let ¢ be a type one function that is a GL(2,7Z)-class function. Let
f € Sk(K(N)) be an eigenform under all paramodular Atkin—-Lehner involutions.
Let

f([T Z]) = ZQSNj(T,z)(exp(%riw))Nj

z w =

be its Fourier—Jacobi expansion, where ¢n; € J'n; are Jacobi cusp forms. Let

1 3 1 qr +qr72
A=0| == kN —_—.
¢<30 [1 3]) qT||N qT—|—1

If onj =0 for all j < J% (¢, N), then f=0.

Applying this to Sio(K(8)) and using the reduced trace function ¢ = tr,
where tr(t) = min{tr(gt'y)|g € GL(2,Z)}, we calculate that A = 130 and
Jg (tr, %) = 9. We conclude that nine Fourier—Jacobi coefficients determine a
paramodular Atkin-Lehner eigenform in Sio(K(8)). Note that because 8 = 23,
there is only one Atkin—Lehner involution. We run the “Jacobi restriction” method
with a chosen determinant bound of B = 800. This value of B was just a choice.
Here is a short summary of the Jacobi restriction method; see [5] [M3].

Fix an Atkin-Lehner sign e =1 or ¢ = —1.

(i) Find bases of Jacobi cusp forms Jip, for m = 1,...,9. Call such a basis

{gmj}?;’bl, where d,, = dim Jyy%,,. The dimensions of these spaces are 4, 9,
13, 19, 24, 28, 34, 40, 43, respectively. These bases were found by searching
for theta blocks of the shape 26 thetas over 6 etas, and possibly using a down

operator from Jacobi forms of higher index on a theta block of this same shape.
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(ii) Find the subspace (¢1,...,¢0) € [I_, Jio.gm such that:

(Involution condition) For all (n,7,m) € Z® with 1 <m < 9,1 <n <9, and
with the determinant bound 0 < 4nm -8 — r? < B, we have

C(TL, r ¢m) = ec(m, - ¢n)
(Siegel modular form consistency condition) Let T°(8) = {[* %] € GL(2,2)|

b € 8Z}. For all (n;,ri,m;), i = 1,2, where [,"], ;7{12] =g, g;{j]g for

some g € ['°(8), we have, whenever 1 < my, my <9,

C(nla 13 ¢m1) = det(g)kc(ng, 23 ¢m2)

(iii) Here, we are really solving for linear conditions on Ay, 1 <m < 9,1 <

J

< d, such that the Jacobi forms ¢,, = Z?’:”l Qmjgmj satisfy these two

conditions. The dimension of the null space of these relations is an upper
bound on the dimension of Sio(K(8))¢, which is the subspace of Sio(K(8))
where the paramodular Atkin—Lehner sign is e.

With our choice of B = 800, the above instructions, when run with e = 1, —1, return
the results

So the

4.3. L

dim S1o(K(8))T <6, dim Sio(K(8))” = 0. (4.1)

total dimension of S1o(K(8)) is at most 6.

ower bound on the dimension

The theory of theta blocks is due to Gritsenko, Skoruppa, and Zagier [I{], see also

5} 22]

for applications. We review a simpler version of theta blocks that fits our

needs. Let ¥ be Jacobi’s odd theta function and 7 be the Dedekind eta function,

letting

e(z) = e¥™* g = e(7), and ¢ = e(2),

(2n+1)%2  2n+1 12 n2
2 = S 0n I = 3 () e

nez neZ+

For positive integers k, dq, ..., dy, define a theta block to be

¢
TB(dy,...,dg) = n(z)* " H (7, d;2).

i=1

Theorem 4.2 (Gritsenko, Skoruppa, Zagier). Define Ba(z) = (z — |x])? —
(x — |z]) + %. Let k,dy,...,dg be positive integers. If

(i) %5
(i) 12
(iii) >

+ %Zle Bs(d;x) > 0 for all x € [0,1],
|(k+0),

‘
i1 d? =2m for some m € ™,

then TBg(dy,...,ds) € J,(;:J;p.
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We will use the down operator, see [I6], W : J;, — J.'*F defined for prime

{ by

@I = Y o TR

B,y mod £

4 (k=2 Z o(bt, 2 + at)e(m(2az + o*7)).
« mod /¢
We now explain how to use the above theorem and the down operators to span
spaces of Jacobi forms. By using the formula for dimensions of Jacobi forms from
[33], we know dim Jiyy = 4. We find a basis by searching for theta blocks in Ji5,
and if there are not enough then we search for theta blocks in Ji5g), forp = 2,3,5,.

and apply the down operator W), to get back to Jij . Using this method, here is

one basis of Jiy g :

=, = TByo(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,4,5) | W,

( )
2o = TByo(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,4) | W5,
S5 = TBio(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,5) | Ws,
=, = TBio(1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3) | Ws.
We construct paramodular forms via Grit(Z;) € S10(K(8)) for i = 1,2, 3,4, where
Grit : J'¥ — Sk(K(N))

is the Gritsenko lift; see [9]. Let Z5 = TB5(1,1,1,1,2,2,2) € Jyg, and consider
the lift Grit(Es) € Ss(K(8)). Let

h; = Grit(Z;) fori=1,2,3,4; hs = CGrit(Z5)%; he = Grit(Z5)*|T(3).

Computing several Fourier coefficients, these six forms are seen to be linearly inde-
pendent, and therefore, combined with the upper bound dim S19(K(8)) < 6, we
have the following theorem.

Theorem 4.3. dim S10(K(8)) = 6.

Now that we know the relations generated by the Jacobi restriction method up
to nine Jacobi coefficients with determinant bound 800 actually specify the space
S10(K(8)), we can use these relations to determine all Fourier coefficients within
the first nine Jacobi coefficients whose indices have determinant bounded by 800.
It turns out that, up to I'9(8) equivalence, there are 7320 Fourier coefficient indices
[:}2 g{ﬂ € X>(8) satisfying 32nm — 2 < 3200 and m < 9. If we needed to, we
could try to prolong these expansions further (either by going farther with the
Jacobi expansion method or by expanding hq, ..., hg further). But it turns out that

the set of coefficients that we already have is sufficient for the calculations in this
paper.
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Computing the action of the Hecke operator T'(3) on this basis, we get eigenforms
N(8)2, N(8)" and Ly, Lo, L(8)®, L(8)P. To aid the presentation, we write “L” for
“lift” and “N” for “non-lift”. The number 8 in parentheses indicates that the forms
live in an automorphic representation of conductor 8, as we will see later. The
forms L; and Ly turn out to be oldforms, living in an automorphic representation
of conductor 1.

Table Bl expresses each eigenform as a linear combination Z?:l c;h; of the basis
hi,...he. Note that Ly, Lo, L(8)% L(8)" are Gritsenko lifts because they are each
a linear combination of hq, ..., hs, which are Gritsenko lifts. The eigenforms N (8)*
and N(8)P are non-lifts. The test for being a lift is simple: f € Sp(K(N)) is a
Gritsenko lift if and only if f = Grit(¢1), where ¢1 € J;'y” is the first Fourier—Jacobi
coefficient of f. Table Hl shows some Fourier coefficients of these six eigenforms; note
that Lo is a conjugate of Ly and L(8)® is a conjugate of L(8)?.

Table B shows the eigenvalues of the Hecke operators T'(3), T'(5), T(7) and
T'(9) on the eigenforms in S19(K(8)). It is possible to compute the action of these
Hecke operators because we have expansions up to nine Jacobi coeflicients. Letting

Table 4. Fourier coefficients of the eigenforms in S10(K(8)). The index t = [Z g] is
denoted by [a, b, ].

3,8, 24] 2688 1088 18(—49 + /4449 —4096

t a(t; N(8)*)  a(t; N(8)P) a(t; L1) a(t; L(8)?)
[1,5/2,8] 1 1 1 -9 ++114
[1,7/2,16] 15 15 15 281 — 17+/114
[2,7/2,8] 15 15 15 281 — 17114
[1,2,8] 64 0 —49 + /4449 0
[1,3/2,8] 469 715 —171 —157 4+ 117/114
[3,13/2,16] —171 341 —171 —157 + 117/114
[2,13/2, 24] —171 341 —171 —157 + 117/114
[1,1,8] 896 —800 8(—81 + 1/4449) 256(—9 + /114)
[1,3,16] 128 800 8(—17 + +/4449) —256(—9 + V/114)
2,3, 8] 128 800 8(—17 +/4449)  —256(—9 + /114)
[2,5,16] —640 —800 8(47 + \/4449) 256(—9 + V/114)
[1,1/2,8] —214 970 426 4518 — 374+/114
[4,15/2,16] 426 —86 426 4518 — 374+/114
[2,15/2,32] 426 —86 426 4518 — 374+/114
[1,0,8] —2432 1088 —18(—49 + V/4449) —4096
[1,4,24] 128 —1088 —18(—49 + V/4449) 4096

3,4, 8] 128 —1088 —18(—49 + V/4449) 4096

[ —18(— )
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Table 5. Hecke eigenvalues and eigenforms, f|T(q) = A\¢f, for f € S10(K(8)).

f 373 575 T \7 97 \g
N(8)2 —18360 741900 —2990960 —2973591
N(8)P —3672 —253300 13196624 —167855895
Ly 21960 1317900 49344400 293343849
Lo 21960 1317900 49344400 293343849
v maseea TR e
1947788 36652112 81(8943385

b _ / —
L) 72(445 — 16V114) + 78336v114 +1822464+/114 —5381124/114)

Table 6. The 3-Euler factors of the eigenforms in S19(K(8)). Arithmetic (respectively, analytic)
normalization indicates that the factors fit into an L-function with a functional equation relating
s and 2k —2—s (respectively, 1 —s). If the arithmetic normalization is Qp(z, f), then the analytic

normalization is Qp(p%_kx, f). The actual Euler factor is Q3(37%, f)~!.

f Q3(x’f)
Arithmetic normalization Analytic normalization
680 5030 680
2 2 3 4
N(8)* 14 18360z + 2970164702 L+ oae+ 57 @ +gnE® e
+2371013392680x3 + 33424
136 2342 136 .
N(8)® 14 3672z + 138292758z L+ oo+ 3—7932 + 31173 3 4zt
+ 4742026785362 + 33424
L (1 —382)(1 — 3%)(1 4 4284z + 31722) 11— 1 (1—+/3z) 1+ ﬁwrﬁ
! /3 313/2
L (1 — 382)(1 — 3%)(1 + 4284z + 31722) - (1—+/3z) 14 378 o2
2 xX xX X xX 31‘ X 313/223 x
1
L(8)> (1 —3%z)(1 —3%)(1 — (5796 (1 - —39;) (1 —+/3x)
644  128V/38
+1152v/114)x + 31722) X (1 - <313/2 + 30 ) z+ x2>
1
L8> (1 —3%2)(1 —3%)(1 — (5796 (1 — —x) (1 —+/3z)
V3
644  128V/38
—1152y/114)x + 31722) x (1 - (313/2 i ) x + x2>
I' = K (8), the definitions of T'(¢?) and T(q), for a good prime ¢, are
1 1 q
1 q q
T(¢*) =T ) r+r ) r+7T I;
q q q
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T(q) =T .

q

Table [ shows the 3-Euler factors of the eigenforms in S19(K(8)). We note that
(1— \/§71x)(1 —+/32) is the 3-Euler factor of (s —1/2)¢(s+1/2), which must be a
factor of the L-function of a Gritsenko lift. All other polynomials in this table have
roots of absolute value 1. The spin g-Euler factor Qq4(z, f), for a good prime g, is
given, in the arithmetic normalization, by

Qq(xyf) —1— qk_3Aq$ 4 q2k—6()\2 _ Aq2 _ q2)$2 _ q3k_6Aq$3 4 q4k_6$4-

We note from Table [0 that L; and L, have the same Euler factor at p = 3. We
will see later that this is explained by the fact that L; and L, are vectors in the
same automorphic representation. In fact, they are oldforms originating from Igusa’s
X10, which also has this same 3-Euler factor. Similarly, the factor for N(8)* given
in Table [ is the same as the factor for the cusp form Fig € S10(B(2)) given by
Ibukiyama in [I1], Theorem 3.3]. This is also explained by the fact that both modular
forms lie in the same automorphic representation; see Table [[T]

5. Paramodular Hecke Operators

We introduce two Hecke operators Ty 1 (p) and 11 o(p) acting on S, (K (N)) for p| N.
We calculate the eigenvalues of these operators on the eigenforms in S10 (K (8)) con-
structed in the previous section. Knowledge of these eigenvalues is key to determin-
ing the local components at p = 2 of the underlying automorphic representations.

5.1. Classical and adelic Hecke operators

Let (7w, V) be an irreducible, admissible representation of GSp(4,Q,) with triv-
ial central character. As before, let V(n) be the subspace of vectors fixed by the
paramodular group K (p") defined in (B:2)). Any double coset T = K (p")gK (p"),
where g € GSp(4,Q,,), defines an endomorphism of V(n) by

”

Tv= Zﬂ(gi)v, if 7 = |_| gi K (p").
i=1

i=1

Of particular interest are the double cosets
p p

Toa = K(p") ) K(p"), Tio=K(p") ) K@p"). (5.1)
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If n = 0, then T ; and 71 o, together with a central element, generate the local Hecke
algebra. This is no longer the case if n > 0, but the action of these two elements
on the minimal paramodular level still reveals interesting information about the
representation 7. Recall that if n is minimal such that V' (n) # 0, then dim V(n) = 1.
The action of T ; and T ¢ thus gives two eigenvalues. These can be calculated for
any 7 that admits non-zero paramodular vectors; see [24, Table A.14]. For some of
the representations of interest to us, we have listed these eigenvalues in Table
The main goal of this section is to rewrite the local operators Ty ; and 77 o in terms
of operators on Siegel paramodular forms.

Lemma 5.1. We have the following coset decompositions in GSp(4, Q).

(i) For anyn > 1,

p
s p s
K(p") ) K(p")
1
1 T Y P
1y zp™" D "
= U ] . K(p")
x,y,2€Z/pL
1 1
1 1
z 1 zp " p "
| . K(p")
z,2€7Z/pZ -z p
i 1 1
1 —yp" = P
1 1
o ) L K@Y
x,y€L/pZL
L yp" 1 p
1 1
1 1
U _— K(p"). (5.2)
x€L/pL zp p
xp” 1 P

In particular, the number of cosets for To1 is p(p + 1)2.
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(ii) For any n > 1,

p
2
7 p n
K(p") K(p")
p
1
1
B |_| |_| z 1
v, yEL/PZ z€L])p?ZL
. -
2
p n
X K(p")
p
1_
I —yp"
1
o
z,y,2€ZL/pZ
p
1 7
K(p")
p
P2
Alternatively,
p
2
7 p 7
K(p") K(p")
p
1
1
z 1

- U U

z,YyEL/pZ z€L]p?Z

—ZT

1y

Zp

zp

—n

—n
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p
2
p n
X K(p")
p
1
1 —yp” 1
1 1
SN .
z,yEL/pZ 1 rp 1
yp" 1] [xp" 1
p
1 s
X K(p")
p
»?
L —yp"
1
] |_| D 1
©,y€L/pL
2€(Z/pZ)* yp" 1
1
—1 n—1
—xp 1 zZp "
X | K@) (5.4)
1 ap
1

In particular, the number of cosets for T1 o is p>(p + 1).

Proof. Single coset representatives for Ty 1 and 11 o are given in [24, Lemma 6.1.2].
We modify these representatives slightly by moving the element ¢, appearing in
these representatives to the right and absorbing ¢,, into K (p™); this gives us (52)
and (B3). To obtain the alternative formula (B4)) for T} o, we use the matrix identity

an+1 1 p2
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1 1
1 211 —p
- P 1 1
I 1 p"
1 1
1 zp~ z
X I
1 1
i 1 271

which holds for z € (Z/pZ)*. Since the three right-most matrices are in K (p™), we
can rewrite the terms in the second line of ([@3)) for which z € (Z/pZ)* as follows:

1 —yp" 1 1
—1,—n—1
o o SR P
x,yE€L/pL
z€(Z/pZ)* yp" 1| [xp" 1 1
Since
1 1
1 1 2 lp—n—l
zp” 1 1
rp" 1 1
1 1
—zz " p7l 1 2~ lp=n—1 1
- 1 zzlpt —x2z 7 pnml gpn 1 '
1 zp" 1

the same terms also equal the last line in (54)); note that we have replaced = by zz

and then z by 2z~ O

Now let F' € Si(K(N)) for some positive integer N. We recall the definition of
the associated adelic function ® on G(A), where G = GSp(4). Let N = [[p™ be
the prime factorization of N. The corresponding global compact subgroup is

Ky = Ky % H K(p™»);

p<oo

if n, = 0, then K(p"») = G(Z,). It follows from strong approximation for Sp(4)
that G(A) = G(Q)G(R)°Ky. There is then a unique function ® : G(A) — C that
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is left invariant under G(Q), right invariant under Ky, and satisfies
P(g) = (Flg)(ilz), for g€ G(R)®. (5:5)

We say that ® is the automorphic form corresponding to F'.

The double cosets Ty 1 and 77, defined with respect to p”, act not only on
local representations, but also on automorphic forms that are right invariant under
K(p™). In particular, we may apply them to the function ®. The action is given
by right translation, so that (Tp1®)(9) = >, ®(ghi), where h; runs through the
representatives given in (2] for n = nyp; similarly for T4 o. Here, g is any element
in G(A), but the h;, which are rational matrices, are embedded at the place p
only.

Proposition 5.2. Let N be a positive integer, and let F' € Si(K(N)). Let p be a
prime such that p™||N with n > 1. Let M be any integer such that M (N/p") =1
mod p.

(i) Define
1 1 x Y
1 1 y zp™
Toq(p)F = Z F| 1
z,y,2€Z/pZ p
P 1
_p 111
1 x 1 zp~ ™
+ > F| b
1 1 —=z
x,2€ZL/pZ
I p] L 1
1 11 —yMN T
p 1
+ > F|
P 1
z,YyEL/pL
L 1] yMN 1
P [ 1
p 1
+ > F . (5.6)
veZvl 1 cMN 1
1] |xMN 1

Then To1(p)F € Sp(K(N)). If ® corresponds to F in the sense of (5.5, then
To1(p)F corresponds to T 1P.
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(ii) Define
p 1
1 1 vy
TonF= Y Y F 1
©,y€L/pT €L p?T. p
»?
1
z 1
X
1 —=z
1
P 1
2
p 1
+ > F|
x,y,2€ZL/pL p e MN
1| |[xMN zpMN
1 —yMN
1
X )
1
yMN 1
or alternatively,
p 1 (0
1 1 y zp™
TowF= Y Y # /
T, YyEL|PL 2€L) P37 p
P’ 1
1
z 1
X
1 —z
1
P 1
2
P 1
+ Y F
€L/l P cMN 1

1| |aMN 1

Zp

1

(5.7)
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1 —yMN
1
X
1
yMN 1
1 1 —yMN
—1 —n—1
—xp 1 zp 1
+ Z F| 1 —1 1
z,YEL/pL xp
z€(Z/pL)" 1 yMN 1

(5.8)

Then Ty ,0(p)F € Sp(K(N)). If ® corresponds to F' in the sense of (BH), then
T o(p)F corresponds to Th o®.

Proof. We will only prove (i), since the proof for (ii) is analogous. For h € G(Q),
write hg for h diagonally embedded into G(A), and h, for h embedded at the place
v only (meaning h, € G(A) is such that the v-component equals h and all other
components equal 1).

We first note that in (52) we may

n

I —yp" =z P

1 1

replace 1 1 by
yp" 1 P
1 —yMN x P
1 1
1 1
yMN 1 P
and
1 1
replace ! ! by
zp™ 1 P
rp" 1 p
1 1
1 1
xMN 1 P ’

aMN 1 p
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since MNp~™ is a p-adic unit and z,y run over Z/pZ. By these replacements, all
representatives h in (5.6) have the property that h, € Ky for all ¢ # p. As a
consequence, for any g € G(R)°,

G(QghyKn = G(Q)hg' ghpKn = G(Q)h gK .

The representatives h for Ty 1 acting on ® correspond to the representatives A(h)h ™!

for Tp,1 acting on F'. For example,

1 x Y D
1 Zzp~ "
h— P P :
1 1
i 1 1
1 1 - —y
1 1 - —zp™ "
ARt = v
p 1
! p 1

Since we may sum over —zx, —y, —z as well as x, y, z, and since F' is scalar invariant,

we have
(Toa®)( ZCI’ )p) = Z‘I’((hi);lg) = Z(Flhflg)(ilz)
= Z (F|X(hi)hi ' 9)(il2) = (To.1 F) | 9)(il2).
Thus Tp,1 F' corresponds to T 1® in the sense of (G5.0). O

5.2. A method to compute Ty 1

In order to get more information about Sio(K(8)), we will apply the Hecke oper-
ators from Proposition to the eigenforms in this space. Since only one prime
is involved, we will denote them simply by Tp1 and T4 . From (5.6) we get the
formula

1 0 = y 2 0 0 O
01 y x 1 0 2z/8
T‘”F:ZF'ooz ZF|001
z,y,2€{0,1} z,2€{0,1} -
0O 0 0 2 0O 0 0 2
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1 8y =« O 2 0 0 0
0 2 0 0 02 0 O
+ > F| + F|
rwe(01} 0 0 2 0 00 1 0
0 0 8y 1 0 0 0 1
1 0 0 0 4 8 3 -1
010 Of|-1 -4 1 -3/8
+F (5.9)
02100 0 1 —1/4
2 0 0 1 0 0 2 -1

for F' € Si(K(8)). Note that we have replaced the last representative in (5.6) by an
equivalent one, which is more convenient for our computations. Let us write (5.9)) as

17
ToaF =Y F|Ui+ F|Co(2)U1s, (5.10)

i=1
where Uy, ...,U;; are defined as the first 17 upper triangular matrices in some

order, and Ujg is the last block upper triangular matrix. It will be straightforward
to apply |U; for 1 <4 < 17. The difficulty will be in applying |Co(2)Uis, because
it seems we would need the expansion F|Cy(2), namely the expansion of F' at the
other cusp. In this section, we will present a method to calculate Tp ; F' that appears
to avoid the Fourier expansion of F|Cy(2), but really does access information about
it, albeit in a targeted manner. This method can potentially be applied to more
general situations as well.

The technique we use is called restriction to a modular curve, compare [20]. Let
s be a symmetric positive definite 2 X 2 matrix with rational entries and let s’ be
a symmetric matrix. We will evaluate F at Q = sT + s’ to get a one-variable power
series in ¢ = €2™7. If we can compute (7,1 F)(s7 + s'), then the eigenvalue is the
ratio of these two series, assuming of course that F(st + s’) is non-zero. We now
derive formulas for this purpose. Recall (¢,§) = tr(¢2). Let F' have Fourier series
expansion

FQ) = > a(t; Fle((t,Q));

teXs(N)
we understand N = 8 in what follows. Then we have
F(st+s) =) > a(t; Fle((s',t)) | 4"
neQt \t€X2(N):(s,t)=n
where ¢ = 2™, Let U = [4 B] € GSp(4,Q). Then

(F|xU)(Q) = det(AD)*/?(det D)™ F(AQD™ + BD™1),
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and so
(F|xU)(sT 4 §') = det(AD)*/?(det D) *F(AsD~'7 + As'D~' + BD™Y),  (5.11)

which can be calculated as another restriction. This restriction formula applies well
toU = Uy, ..., U7, which takes care of 17 of the 18 coset representatives of Ty ;. But
the 18th coset representative will require a roundabout technique, to be described
presently. We have the following useful proposition, whose proof is a modification
of [19] Proposition 2.3].

Proposition 5.3. Let s € P2(Q) have the form [% Z/ZN], Let F' € Sp(K(N)) and

set g(t) = F(s1). Let 0 = [z g] € SL(2,Z2). If M := [72‘{1 ?ﬂ € Sp(4,Q), then

(9laro) (1) = (F[xM)(s7), (5.12)

where on the left-hand side we have the slash operator for functions on the upper half
plane. In particular, if € € Zt is such that (s~ € [ %, NZ], then g € Sor(To(¥)). If
there are m € Z, K € K(N), and [{ B] € GSp4(Q) such that M = KCo(m)[# B],
then

(glar0o)(T) = det(AD)*/?(det D)~ *(F|.Co(m))(AsD ™ r + BD™Y).  (5.13)

Here is our method to deal with the 18th coset representative of Tj ;1. We pick
an sg so that Proposition[B.3lapplies, with the following additional three conditions.

(1) There exists o = [: ?] € SL(2,Z) such that

al (s

l . 0] — KCo(2)Wo

Y8 ol
for some K € K(8) and some Wy = [4° 1] € P2,0(Q).

(2) There is an ¢ € ZT such that £s; "' € [%, V%], and we can effectively compute
glo when we are given a g-expansion for g € So0(To(¥)).

Suppose for the moment that both (1) and (2) are feasible. Note that

A1 By

F|Co(2)Wy = F|Co(2)Uss|Wy, where Wy = U Wy = 0 D
1

The key is now to choose
s=AysoD;" and s = BiD;?,

and compute the restriction (Tp1F)(sT + s’) with this choice. As stated before,
(F|U)(sT+¢), fori=1,...,17, will be straightforward using (E1T]). To compute
(F'|Co(2)Urs)(sT + &), note that with g(1) = F(so7) we have

(det A1D1)10/2(det Dl)_lo(F | Co(Q)Ulg)(ST + Sl)
= (det A1D1)10/2(det Dl)_lo(F | Co(2)U18)(A1$0DflT + BlDfl)
= (F[Co(2)U1sW1)(so7) = (F|Co(2)Wo)(soT) = (gl200)(7).
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In the last step we applied (5.12)), with sq instead of s. By assumption (2), we can
compute (glaoo)(7) by using the presumably known action on g(7) € So0(To(¢)).
Hence we can compute

(F | Co(?)Ulg)(ST + 8/) = (det AlDl)ilo/z(th Dl)lo(g|200')(’7'). (514)

This is where we access some targeted information about F'|Co(2). Thus we would be
able to calculate the series (7,1 F)(s7 + s"). The last item required for this method
to succeed is that

(3) The restriction F(sT + s’) must be non-zero.

5.3. Carrying out the computation for Tp 1

We will show that the conditions (1)—(3) from the previous section are satisfied with
the following choice of sg, ¢, and o = 04 = [f; ?]:

o], fto
T e T T a ]

Following the above instructions, we compute that sy = [1_/12 '] and

10 00 3 8 -3 —17[t 000
of fs) |01 00l |2 5 -2 58|01 0 0f
ysgl | 4 10 |5 0o 0o 2 |lo210 "

—4 16 0 1] |24 40 -16 8|20 0 1
(-2 4 3 2
3/2 —2 1 5/8
wo - |V /8
0 0 1 3/4
0 0 2 1

So condition (1) holds. Since £sy" = [ 35], the first part of condition (2) also
holds. Next,

/2 0 00
-1/2 1/2 0 0
Wy =UtW, =
P e 0 0 1 1
0 0 0 1

From this, we compute that s = [7??/2 _53/42], s'=99].

The last thing we need before using this choice to compute Ty 1 F' is a knowledge
of how forms in So0(T'9(8)) transform by o4, which is the second part of condition (2).
We discuss the ring generators of M(I'o(8)) = @y Mi(Lo(8)). Let

Ey(1) =1-24) o(n)q" =1—24q — 72¢° — 96¢° — 168¢* — 144¢° — - -
n=1
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be the nearly modular weight two Eisenstein series transforming, for all [¢}] €

SL(2,Z), by
a b Tic
<E2|2 . dD (1) = Ea(1) — % (Cier). (5.15)

For d > 1, we define E, ; € M2(I'o(d)) by Ey ,(7) = L (Ey(1) — dE>(dr)). We
define three elements in Ms(T'o(8)) by

a(t) = By ,(27) = 1+ 24¢° + 24¢" + 96¢° + 24¢° + 144" + - -,

1
b(r) = =5 (Eaa(r) — 4E55(47) = 1 =8¢ — 8¢ — 32¢° + 24q¢* — 48¢° — -+ -,

o(r) = %(E;2 (7) — 2B;,(27) + 4E;,(47))

=1+8q—8¢* +32¢° + 24¢"* +48¢° — - --.

Lemma 5.4. The graded ring M(Ty(8)) consists of homogeneous polynomials in
the three elements a, b, ¢ € Ma(To(8)), subject to the relation ¢® = 2a* — b?. Every
element in M(To(8)) can be uniquely written as Py(a,b) + ¢Qr—2(a,b), where Py
and Qr—2 are homogeneous polynomials of degrees k/2 and (k — 2)/2. The ideal
of cusp forms is principal, and a generator is d = (n(27)n(47))* € S4(To(8)).
Furthermore, we have

(al204)(7) = +a (7’ - %) (blaoa)(7) = —b<T _ %) (claoa)(7) = —c<7’ _ %)

Proof. The transformation under SL(2, Z) of a, b, c may be worked out using (&15).
The normalizer in GL(2,Q) of I'¢(8) modulo (QI,I'x(8)) is a dihedral group of
order 8; we have T* = I and STS = T7!, for T = [ %] and S = [3}]. The
index of T'p(8) in SL(2,Z) is 12, so, by the Valence Inequality, to prove equality in
dim M}, (T'o(8)) it suffices to check the equality of the first &+ 1 Fourier coefficients.
In this way we verify (a,b,c)|2T = (—a,c,—b), (a,b,c)|2S = (a, —c,—b), and ¢? =
2a? — b?. By the Riemann-Roch theorem, dim My (T'o(8)) = k + 1 for even k > 0,
and dim S (T'o(8)) = k — 3 for even k > 2. Tt follows that the ideal of cusp forms is
principal, and a non-trivial cusp form of weight 4 is d = 1= (a? —b%) = (n(27)n(47))*.

Every modular form in My (T(8)) that can be written as a polynomial in a, b, ¢,
may be written in the form Py(a,b) 4+ c¢Qr—2(a,b), where P, and Qj_o are homoge-
neous polynomials of degrees k/2 and (k — 2)/2, respectively. The modular forms a
and b have the same weight, and so are algebraically independent because b/a is non-
constant. No non-trivial relation of the form Py (a,b) + cQr—2(a,b) = 0 exists bec-
ause slashing Py (1,b/a) + £Qr—2(1,b/a) = 0 by T*S implies Py(1,b/a) — £Qk—2(1,
b/a) = 0, so that P, and Qj_o are trivial. The dimension of Cla, b, c] N My(T¢(8))
is then (&£ + 1) + (52 + 1) = k + 1, and thus M(To(8)) = Cla,b,c| as graded

rings. Noting that 72 = [’82 ’21], the result of slashing a,b,c by o4 follows from

or=[18] ==z B [F 16 3T -
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We have dim S50(I'9(8)) = 17, and a basis is
{a"®'d|0 <i < 8} U{ca'd"'d|0<i< T}

Using sufficiently many terms of the expansion of ¢g(7) := F(so7), we determine g
as a linear combination of this basis, and can then compute g|agos. For F = N(8)P,
we compute the first 17 terms of ¢°(7) := N(8)P(so7) to be

g°(1) == ¢ — 684¢° + 17802¢" — 911444° + 208107¢"*
—152172¢" — 34261944¢" + 97014964'" + O(¢*®)
—a8d n 5a5b2d B 17a*b*d n 3a2b8d B 3b%d

128 128 256 64 256

Using the representation in a, b, ¢, d, we compute ¢°(7)|os = —¢*>+O(q*). By (5.14),
we have

(N(8)P|Co(2)Urs)(s7 + 5') = —1024¢> + O(q*).

Here, we decided to truncate power series at ¢>. Note that exponents of ¢ may
increase by 1/2 by looking at the entries of s. By contrast, it is fairly straightforward
to apply (I to compute
17 9
3 5
S (NE)P|Uj)(sT+5) = — 47 +1539¢% + 1024¢° + O(q™?).
j=1

Combining these two equations, we have that
(ToaN(8)")(s7+ ') = —%q% +1539¢% + O(q"/?).
We also compute that
N(8)"(s7+5') = q? — 684¢% + O(q"/?).

We conclude that the eigenvalue is

. —9/4 1539 9

Xo,1(N(8)%) 1 “esd- 1

3/2 as well as from

The fact that we get the same answer from the coefficient of ¢
¢°/? provides a check on this calculation.

We apply the same choices of sg, ¢, 04, s, s’ and compute that
N(8)*(sT + 8') = q2 + 64¢% + 500¢% + 512¢° + O(¢"/?),
(Toa(N(®)")(s7 +5) = —¢* — 64¢” — 500¢% — 512¢” + O(¢"/?).

We conclude that the eigenvalue is Ag 1 (N(8)*) = —1. It turns out that this choice
of 59, £, 04, s does calculate the action of Tp ; on the subspace spanned by L1, Lo,
because the restriction applied to this two-dimensional space has an image of full
dimension 2. In fact, L1, L each span the one-dimensional eigenspaces of Ty 1; they
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were chosen with hindsight to have this property. (There are other choices for which
the restriction yields an image of dimension less than 2, and in those cases, such
restrictions do not tell us what the map T} ; is on the subspace spanned by L1, Lo,
and those choices would not give us the eigenspaces under Tp ;.) The results for the
Gritsenko lift eigenforms are

L

16
1

Xo1(La) = E(111 —V/4449); N1 (L(8)") = 6.

Ao,1(L1) = —= (111 + V4449); - Xo,1(L(8)") =6,

5.4. Calculating Ti o

The computation of 77 o will be trickier because, as is evident from (8), there are
two coset representatives that are in the K(8)Co(2)P2,0(Q) double coset. We want to
modify the technique to take care of these two coset representatives simultaneously.
First, similar to the process for Tp i, we write the coset representatives of 77 as
follows. For F' € S,(K(8)), we have

10 0 0 4 16 6 -1
22
01 0 0||-1 -8 2 -—-3/8
Tl,OF:ZF|Ui+F| /
| 0 210 0 0 2 —-1/4
2 0 01 0 0 4 -1
1 0 0 0 4 16 10 -1
01 0 0[|]-1 -8 1 -3/8
+ F|
0 210 0o 0 2 -1/4
2 0 0 1 0o 0 4 -1
22
= ZF|U1 + F|Co(2)U23 + F|CO(2)U247
i=1
where Uy, ..., Uss are defined as the 22 obviously upper triangular matrices in some

order, and Uss, Usy are the upper triangular matrices to the right of Cp(2) in the
last two coset representatives. It is straightforward to apply |U; for 1 <14 < 22. For
Co(2)Uzs and Co(2)Us4, we want to apply the trick from the previous section, but
simultaneously to both representatives.

It will turn out that with the following choices of sg, ¢, and o, we will be
able to calculate the restriction to some (s7 + s’) of F'|Co(2)Uas and F |Co(2)Uaq

simultaneously. Let
2 1 t—s 10
S = s = s g4 = .
"l e
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Following the instructions for T, 1, we compute that s;' = [} '] and

-1 2
1 0 00 (3 8 -3 —1 10 00
0 1 00 3 10 —4 —7/8/ 10 1 0
= Wo € K(8)Co(2)Wo,
4 —4 1 0 -5 0 0 2 0210
-4 8 01 |16 40 —16 5112 0 0 1
[—4 4 3 4
5/2 -2 1 7/8
L /
0 0 1 5/4
L0 0o 2 2
Let
[1/2 0 0 0
B -3/8 1/4 0 1/32
Was = Uy' Wy = ;
0 0 1/2 3/4
| 0 0 0 1
[1/2 0 —1/2 -3/4
B -3/8 1/4 0 1/32
Way = Uy' Wy =
0 0 1/2 3/4
0 0 0 1

Setting g(7) := F(so7), we get that
(F'[Co(2)Ua3)(s237 + s53) = 1024(g| 04)(7),
(F'[Co(2)Uaa)(s24T + s54) = 1024(g| 04)(7),
where

2 -1 , fo o0 2 -1 , [-1 o
So3 = ,  So3 = , Soq= . Soq =
201 o580 BT oo 132l T |1 s8] M o 1/32

We choose s = s23 = 24, 8’ = sh3. With this choice, we can compute (F | Co(2)Uss)
(sT+ ) as 1024(g| 04)(7). But the issue is to handle (F' | Co(2)Usaq)(sT+ s') as well.
Towards this end, define

0 —1/2
To=1/2, B=s5s10+55 —5 = )
0=1/ oo l—1/2 5/16
We have that
9 -8 4 —4
I B —6 9 —4 3
Co(2)U. Usd'Co(2)7 1 = € K(8),
0( ) 24 [0 I:| 24 0( ) 12 16 —7 6 ( )

6 —-16 8 =7
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and thus

1
F‘Co(2)Ug4 0 = F‘Co(2)Ug4.

We conclude
(F|Co(2)Uss)(sT+ ") = (F|Co(2)U2a)(sT + " + B)
= (F|Co(2)Usa)(s(T + 7o) + shy) = 1024(g|oa)(T + 70).

We now show how this works out in the case of F' = N(8)*. As an element of
S20(I'0(8)) in terms of the ring generators a, b, ¢, we compute

9¢3d  11ab%*d  35a*b*d  11a2b5d

1) := N(8)* = - -
9*(r) (8)*(s07) = J006 ~ “To24 T 2018 1024
9b8d _ a’ed n 5a°b2%cd _ Ta3b*ed n 3abSed
1006 1024 1024 1024 1024

We truncate our computations to ¢*. Using the action of o4 on a, b, ¢ as before, we
get

(N(8)*|Co(2)Uas)(s7 + 5') = 1024(g | 04)(T) = 1024¢> + O(q*),
(N(8)*|Co(2)Uss)(sT + ") = 1024(g% | 04) (T + 1/2) = —1024¢> + O(g*).

Along with
22
D (N@)*Ui) (7 + 8') = —128ig” + (2048 — 2048)¢” + O(g*),
=1
we get
(T1oN(8)*)(sT + 8') = —128i¢* + (2048 — 2048i)¢> + O(¢*).

We also compute

N(8)*(sT + ') = 32ig” + (=512 + 512i)¢* + O(¢*).

Table 7. The eigenvalues of T 1(2) and T1,0(2)
on the eigenforms in S10(K(8)).

f Xo,1(f) A1,0(f)

N(8)2 1 —4

N(8)b -9 0

B 111 + /4449 15 + /4449
! 16 8

. 111 — /4449 15 — /4449
? 16 8

L(8) 6 0

L(8)P 6 0
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We conclude that

~ —128 2048 —2048i
32 —512+512i
Again, the fact that we see the same ratio from two different coeflicients provides a
check on the calculation. We perform this calculation on the rest of the eigenforms
in S10(K(8)) and summarize the results, as well as those for A\ 1 from the previous
section, in Table [7

A1,o(N(8)%)

6. Distributing Cusp Forms Among Automorphic Representations

Recall from Sec. [L3]the eigenforms N (8)2, N(8)" and Ly, Lo, L(8), L(8)" spanning
the space S19(K(8)). We now identify the automorphic representations generated
by these eigenforms.

6.1. Some elliptic cusp forms and their lifts

In this section, we consider the cuspidal automorphic representations 7 of GL(2, A)
generated by the eigenforms in S15(I'g(8)). It turns out that there are eight such
w. The reason we consider this weight and level is that these 7 lift to cuspidal
automorphic representations of GSp(4,A), some of which correspond to elements
of S10(K(8)), our space of interest. Here, by “lift” we mean the representation-
theoretic Saito-Kurokawa lifting constructed in [29] [30]. Only three of the eight
7’s lift to paramodular representations. Inside the lifts of these three, called A(1),
A(8)*~ and A(8)P~ we can find the Gritsenko lifts L1, L2, L(8)%, L(8)® considered
earlier.

Our notation will be as follows. Automorphic representations of GL(2, A) will be
called 7(m), where m is the global conductor. Only m € {1, 2,4, 8} will appear. If
there is more than one 7 with the same conductor, we will write 7(m)?®, 7(m)®, etc.
We may decompose a m(m) as ®@m(m),, a restricted tensor product of irreducible,

Table 8. Dimensions of spaces of elliptic modular forms of weight 18
and Jacobi forms of weight 10. The “new, —" row gives the dimension
of the space spanned by eigen-newforms that have a minus sign in the
functional equation of their L-function.

m=1 m=2 m=4 m=2_8

S18(T'o(m)) (elliptic)  Total 1 3 7 15
New 1 1 2 4 (6 1)
New,— 1 0 0

Jiow 1 1 2

10,m
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admissible representations m(m), of GL(2,Q,). For GSp(4) we use similar notations,
but with A or II instead of m. We choose A if the GSp(4) representation is a lift
from GL(2), otherwise II.

We start with some dimension data for the spaces of elliptic cusp forms
S18(To(m)) for m € {1,2,4,8}. Table Bl lists these dimensions, together with the
dimensions of the spaces of newforms, and the space spanned by newforms whose
L-function has sign —1 in its functional equation. The reason we are looking at
weight 18 is that these forms lift to weight 10 Siegel modular forms; in general,
weight 2k — 2 lifts to weight k. Also given in Table Bl are the dimensions of spaces
of Jacobi cusp forms of weight 10 and index m for m € {1, 2,4, 8}; see [33].

The newforms in Table generate eight automorphic representations of
GL(2,A):

e 7(1): The representation generated by the eigenform in Syg(To(1)). Its
2-component m(1)s has conductor a(m(1)2) = 0, i.e. it is an unramified principal
series representation of GL(2, Q2). The sign in the functional equation is the prod-
uct of all local e-factors at 1/2. Since all p-adic components are unramified, the
only contribution comes from the Archimedean place. In general the Archimedean
contribution for weight k is (—1)*/2. Hence, in this case, the Archimedean con-
tribution is —1. This is the sign in the functional equation for L(s,7(1)).

e 7(2): The representation generated by the eigen-newform in Sig(T¢(2)). Its
2-component 7(2)2 has conductor a(m(2)2) = 1. Using the notation of Table [I]
we see that either m(2)2 = Stgr2) or m(2)2 = {Stgr(2). According to the table
above, the global sign is +1. Consequently, €(1/2,7(2)2) = —1, and it follows
that 7T(2)2 = StGL(Q)-

e 7(4)* and 7(4)": The representations generated by the two eigen-newforms in
S18(T(4)). Their 2-components 7(4)3" have conductor a(m(4)3) = 2. By Table[]
7(4)8> = sc(4), the unique representation with conductor 2. Since £(1/2,sc(4)) =
—1, it follows that L(s,m(4)*) and L(s,7(4)P) both satisfy a functional equation
with sign +1. This is consistent with the data in Table Bl

e 7(8)* and 7(8)"~: The representations generated by the two eigen-newforms
in S15((8)) for which the L-function satisfies a functional equation with sign
—1. Their 2-components 7(8)3"~ have conductor a(m(8)3"") = 3 and sign
£(1/2,7(8)3>7) = 1. By Table [, this identifies them uniquely as m(8)3°~ =
sc(8)T.

e 7(8)** and 7(8)P*: The representations generated by the two eigen-newforms in
S15(To(8)) for which the L-function satisfies a functional equation with sign +1.
The same argument shows that 7(8)3"" = sc(8)~.

Table [@ summarizes the eight automorphic representations. Next we are going
to lift all these representations to GSp(4) using [29] Theorem 3.1]. The liftings
will be denoted by A(M), where M is the conductor of the lift. To lift any = =
®mp, [29] Theorem 3.1] requires the choice of a set of places S where m, is square
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Table 9. The automorphic representations 7 = ®m, of GL(2,A) generated by the newforms in
S18(Fo(m)) for m € {1,2,4,8}. The notation for the 2-components s is the same as in Table[Il.
The last four columns show the dimensions of the spaces of fixed vectors in 72 under the local
groups ['0(2") for n = 0,1,2,3; this data is taken from Table [ The “certain space” is the
subspace of fixed vectors that have the same Atkin-Lehner sign as the newform; it is the local
version of the “certain space” of Skoruppa and Zagier; see [32].

T e(1/2,m) T e(1/2,m2) V(o) V(@) V(©2) V(@3)
(1) -1 Unramified 1 Total dim 1 2 3 4
“Certain space” 1 1 2 2
w(2) 1 StaL(2) -1 Total dim 0 1 2 3
w(4)2P 1 sc(4) -1 Total dim 0 0 1 2
m(8)ab— -1 sc(8)* 1 Total dim 0 0 0 1
“Certain space” 0 0 0 1
w(8)ab+ 1 sc(8)~ -1 Total dim 0 0 0 1

integrable. This set needs to satisfy the parity condition (—1)# = (1/2, 7). If this
condition is satisfied, the lift exists. Moreover, the lift is cuspidal as long as S is
non-empty.

In our situation, we always want S to contain oo, since we want to produce
holomorphic Siegel modular forms. By [29, Sec. H]|, these Siegel modular forms will
all have weight 10.

The only freedom then is whether S contains the place 2 or not. For 7(1) there
is no choice, since (1) is not square-integrable. Hence, for 7(1) we are forced to
choose S = {oo}. But then the parity condition is satisfied, and we get a cuspidal
lifting A(1).

In all other cases the 2-component of 7 is square-integrable, so we have a choice
for S. There is exactly one choice that satisfies the parity condition. Hence all our n’s
can be lifted in a unique way to a cuspidal, automorphic representation of GSp(4, A).
Table [0 summarizes the lifts. Note here that 7(2) lifts to a representation which
we call A(4), since it has conductor 4 = 22. Similarly, 7(4)*" lifts to A(8)*P, and
7(8)2PF lifts to A(16)* . In general, we know from [29] that whenever 7 lifts to A,
the rule for the global conductor is

a(A) = a(x) [] »- (6.2)

p<oo

peS
The last three columns in Table [0]summarize the 2-component of the lift. The
information in the “As” column is taken from [29] Table 2]. The “Type” column
refers to the classification from [24, Table A.1]; we have already used this classi-
fication in Sec. As indicated in the last column, some of these 2-components
have no paramodular vectors of any level; see [24, Theorem 3.4.3]. In the first row,
X is an unramified character of Q5 , and x x x !
representation of GL(2,Q3) in standard notation.

is an unramified principal series
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Table 10. The lifts A(M) of the automorphic representations 7(m). We have M = m if 2 ¢ S
and M =2m if 2 € S. Here S is the set of places v with 7, square integrable. For the notations
in the A2 column, see [24, Table A.1], except for the supercuspidal representations ¢*(. ..), which
are explained in [25].

™ e(1/2,m) T2 S A A2 Type Para
(1) -1 x X x ! {oo} A(1) xlarz) X x 1 1Ib Yes
7(2) 1 Starz) {00, 2} A(4) (T, v=1/2) VIb  No
w(4)2P 1 sc(4) {o0,2} A(8)2P 8" (v'/?sc(4), v 1/2) Xla* No
7 (8)2b— -1 sc(8)t {oo} A(R)*P—  L(w'/2sc(8)T, v~ 1/2)  XIb  Yes
m(8)ab+ 1 sc(8)"  {o0,2}  A(16)2P+  §*(1/2sc(8), v~ 1/2)  Xla*  No

We focus on those 7 that can be lifted to paramodular representations, namely,
7(1) and 7(8)*~. Given that the sequence of dimensions for the IIb type repre-
sentation in Table @ is 1,1,2,2, we see that inside A(1) we can find the following
modular forms:

e A full-level cusp form of weight 10. Up to multiples, there is only one such cusp
form, namely Igusa’s Xj¢; see [14]. It is the Saito—Kurokawa lifting of the unique
eigenform in S15(SL(2,Z)).

e Two linearly independent oldforms in S1o(/(8)). Since every oldform originates
from the newform via level raising operators, we may assume that these two
oldforms are 62Xy and 09X 1o. Here, § and 7 are the paramodular level raising
operators introduced in [23].

Since X9, 83X 10 and 09X originate from the same automorphic representation,
they have the same Euler factors at all places. We also know that 63 X1¢ and 09X
must be in the span of the four Gritsenko-liftings L1, Lo, L(8)%, L(8)" identified in
Sec. It therefore follows from Table [G] that

span(6 X109, 0nX10) = span(Ly, Ly). (6.3)
In fact, the Fourier coefficients in Table Bl show that

37V3 —1
0°X10 = —8(L1 + La) — 8——=—=(L1 — L2), 0nXig= ———
10 (1 2) (1 2) nA1o0 3. 1433

Vo (L1 — Ly).

(6.4)

As a Saito—Kurokawa lift, the 3-Euler factor for X;( is known, and is the same as
the quadratic factor of the 3-Euler factor for L; and Ly given in Table

Next consider A(8)*~ and A(8)"~. Since the dimensions for the XIb representa-
tion in Table[@ are 0,0, 0, 1, it follows that we can find inside A(8)*~ a newform in
S10(K (8)), unique up to multiples. These two newforms must match up with L(8)*
and L(8)P. In fact, the quadratic factors of the Hecke polynomials for L(8)* and
L(8)® in Table B are the 3-Hecke polynomials for the two newforms in Sig(I'o(8))
for which the L-function satisfies a functional equation with sign —1; compare label
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8.18.1b in the LMFDB. These independent consistency checks are reassuring when
a good deal of coding has been required. Since we have not specified the order of
these two newforms, we might as well assume that L(8) lies in A(8)*~ and L(8)P
lies in A(8)P~.

6.2. The non-lifts in S10(K (8))

In the previous section we identified the automorphic representation A(1) that con-
tains the eigenforms L; and Lo, and the representations A(8)*~ and A(8)"~ that
contain the eigenforms L(8)* and L(8)P. This covers all the lifts in S1o(K(8)). We
now proceed to identify the representations generated by (the adelizations of) the
non-lifts N (8)* and N (8)P.

Lemma 6.1. Let T1(8)* and I1(8)® be the automorphic representations generated
by N(8)* and N (8)®, respectively.

(i) TI(8)* and IL(8)" are irreducible, cuspidal automorphic representations of G(A).

(ii) Let Iy be the 2-component of either T1(8)* or II(8). Then its conductor
(exzponent) is a(Ily) = 3. If Ty is not generic, then My = L(v'/?m,v71/20)
(type XIb) with unramified o and a supercuspidal representation m of GL(2,Q2)
with trivial central character and conductor a(mw) = 3.

Proof. (i) Certainly, I1(8)* and TI(8)® are cuspidal, since N(8)* and N(8)" are
cusp forms; we will prove irreducibility. Since we are within the space of cuspidal
automorphic forms, we can write

OB =1, @ - § Iy, oeY =1,e- - oI, (6.5)

with irreducible, cuspidal representations II; and II;. None of the II; or II; can be
equal to one of the lifts A(1), A(8)*~ and A(8)"~; one way to see this is to look at
the 3-Euler factors in Table [6l We write the adelization ® of N(8)* (respectively,
" of N(8)) as ®1 + --- + ®,, (respectively, ®] + --- + @) according to (GH).
The automorphic forms ®; and @/ have the same invariance properties as ® and ®'.
Each one of them can therefore be de-adelized to an element of S;o (K (8)). It follows
that each II; and II; contributes at least 1 to the dimension of S1o(K(8)). Since
dim S10(K(8)) = 6 by Theorem l.3, and four of these dimensions are contributed
by L1, L2, L(8)%, L(8)P, it follows that m = n = 1.

(ii) Let V4 be the space of Ils, and let Va(n) be the subspace of vectors invariant
under the local paramodular group K (2"); see (3:2). Then dim V5(3) > 1, since ®
and @' are invariant under K (23). For reasons of dimension, similar to the argument
in (i), we cannot have dim V5(3) > 1. Hence dim V5(3) = 1.

Assume that Il is generic. Then the dimensions of the spaces Va(n), starting
with n = a(Ilz), grow like 1,2,4,6, .. .; see [24] Theorem 7.5.6]. Since dim V5(3) = 1,
it follows that a(Ily) = 3.

Assume that IIy is non-generic. Then Il cannot be supercuspidal, since
non-generic supercuspidals do not admit paramodular vectors of any level by [24]
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Theorem 3.4.3]. Since we are within the space of cusp forms, all local representations
must be unitary. Going through Table A.12], we find that the only irreducible,
non-supercuspidal, unitary representation satisfying dim V5(3) = 1 is of type XIb
with 7 and o as indicated, and for this representation we have a(Ily) = 3. O

By (ii) of this lemma, the 2-components of II(8)* and TI(8)® contribute 2° to
the global conductor. Of course, the p-components for p > 3 contribute nothing,
since everything is unramified outside 2. It follows that the global conductor is 8,
justifying our notation. Using the Hecke eigenvalue information from Table [, we
can now completely determine the 2-components.

Proposition 6.2. For x = a or x = b, let II(8)" = ®II(8), be the factorization of
II(8)* into irreducible, admissible representations of GSp(4,Qp).

(i) The 2-component of I1(8)* is
II(8)5 = {Stasp(e)  (type IVa), (6.6)

where & is the non-trivial, unramified quadratic character of QJ .
(ii) The 2-component of TI(8)® is

IS =nxo (type X), (6.7)

where m = 0~ sc(8)" and o is the unramified character of Q5 with

(2) = ﬁ(g +iV/3). (6.8)
Proof. (i) According to Table[T, the Ty ; and T o eigenvalues of N(8)* are \g1 =
—1 and Ao = —4. The Hecke operators Ty ; and 77 are compatible with the
local operators at the place 2 of the same name; see Proposition We are thus
looking for a representation Il where the local operators act on the newform with
eigenvalues —1 and —4. Moreover, Il must be unitary, and must be one of the
representations admitted by Lemmal6.0](ii). Going through [24, Table A.14], we see
that the only possibility is Ilo = Stggpa), where € is the non-trivial, unramified
quadratic character of Q5.

(ii) The argument in this case is similar. According to Table [7] the Th,1 and T o
eigenvalues of N(8)P are Xo,1 = —9/4 and A1 0 = 0. The only unitary representation
with these eigenvalues and satisfying the conditions of Lemmal[6.[(ii) is the type X
representation m X o, where ¢ is unramified and a(7) = 3. By [24], Table A.14], we
must have

9

- 2= 25/2(0(2) + 0(2) 7). (6.9)

Solving the quadratic equation for o(2) gives (G.8) as one of its roots (which root
we take is irrelevant). The central character of 7 x o must be trivial, i.e. w 0% = 1,
where w, is the central character of 7. The twist om therefore has trivial central
character. By Table [, it follows that or = sc(8)*. To determine the sign, we
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note from (1) that each eigenform in Sjo(K(8)) has Atkin-Lehner eigenvalue +1.
By Table A.9], e(1/2,0m) = 1; note here that e-factor values at 1/2 coincide
with Atkin—Lehner eigenvalues by [24, Corollary 7.5.5]. From Table [T we thus see
om =sc(8)*. |

We note that the number (2) in (6.8) has absolute value 1. This implies that
I1(8)5 is a tempered representation, as it should be according to the Ramanujan
conjecture.

6.3. Eigenforms in S10(K (8)) and S10(B(2)) and their
representations

In the previous two sections we identified a total of five automorphic representations
that contribute to the six-dimensional space S19(K (8)). Recall that these were A(1),
A(8)2~ and A(8)P~, which contain the lifts Ly, Lo, L(8)%, L(8)®, and TI(8)2, TI(8)",
which contain the non-lifts N(8)* and N(8)P. Note that L; and Lo are oldforms,
since they lie in A(1), a representation of conductor smaller than 8. The forms L(8)?,
L(8)P, N(8)* and N(8)P are new, since they lie in automorphic representations of
conductor 8. The notion of oldforms and newforms used here is the one defined in
23].

We will now consider the automorphic representations that contribute to the
space S19(B(2)). First note that dim S19(B(2)) = 6 by [II, Theorem 3.3]. The
congruence subgroup B(2) corresponds to the Iwahori subgroup I in GSp(4,Q3).
By Table [0 the automorphic representation A(1) has an unramified representation
of type IIb as its 2-component. By Table 2| the space of I-invariant vectors in this
IIb representation is four-dimensional. It follows that A(1) contributes four of the
six dimensions of S10(B(2)).

Next consider A(4), which is the lift of 7(2). By Table [0} A(4) has a represen-
tation of type VIb as its 2-component. By Table 2] the space of I-invariant vectors
in VIb is one-dimensional. Hence, A(4) contributes one of the six dimensions of
S10(B(2)).

The last of the six dimensions comes from II(8)*, the automorphic representation
that also contains N(8)*. By Proposition B.2(i), its 2-component is an unramified
twist of the Steinberg representation, {Stgsp(4)- By Table2] the space of I-invariant
vectors in this local representation is one-dimensional. Hence, I1(8)* contributes one
dimension to S1o(B(2)).

Lemma 6.3. The cusp form in S10(B(2)) coming from IL(8)* is Ibukiyama’s Fig.

Proof. The Steinberg representation Stggp(4) and its unramified twist are the only
representations of GSp(4, Q) that contain an I-invariant vector that is not invariant
under any bigger parahoric subgroup; see [24], Table A.15]. This means that the cusp
form F constructed from II(8)* is not invariant under any congruence subgroup
bigger than B(2), like I'g(2). In other words, F' is a newform in S;o(B(2)) in the
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Table 11. The eigenforms in S19(K(8)), S10(B(2)) and S10(I'0(2)) and their automorphic
representations. The K (n) column in the top half of the table gives the dimensions of the
spaces S10(K (n)), and their subspaces of newform/oldforms and lifts /non-lifts; similarly
for B(2) and T'g(2), except that we give no concept of newform/oldform for I'p(2).
Specific eigenforms in these spaces are indicated in small print under the dimension. The
lower half of the table shows the automorphic representations contributing to S1o(K (8)),
S10(B(2)) and S10(I'0(2)). The entries in the K(n), B(2) and I'g(2) columns are now
the dimensions of the spaces of fixed vectors under the corresponding local groups in the
2-components of the automorphic representations. The local type of the 2-component is
indicated next to the name of the automorphic representation.

K1) K((2) K@) K(8) B(2) To(2)
S10 Lifts 1 1 2 4 5 4
X10 Li,Lo,L(8)%,L(8)P
Non-lifts 0 0 0 2 1 0
N(8)®,N(8)P F1o0
Total 1 1 2 6 6 4
Soid Lifts 0 1 2 2 5
L1,Lo
Non-lifts 0 0 0 0 0
Total 0 1 2 2 5
STeY Lifts 1 0 0 2 0
L(8)2,L(8)P
Non-lifts 0 0 0 2 1
N(8)*,N(8)P Fio
Total 1 0 0 4 1

Contributions from automorphic representations

A1) IIb 1 1 2 2 4 3 (lift)
X10 Li,Lo
A(8)2~ XIb 0 0 0 1 0 0 (lift)
L(8)*
A(8)P~ XIb 0 0 0 1 0 0 (lift)
L (B)b
(8)2 IVa 0 0 0 1 1 0
N(8)® Fio
(8)P X 0 0 0 1 0 0
N(s)P
A(4) VIb 0 0 0 0 1 1 (lift)

sense of [I1]. Since the space of newforms is one-dimensional and spanned by Fig
according to the theorem in [I1] §1], it follows that F' = Fio, up to multiples. O

To illustrate the newform concept for B(2) further, consider the essentially
unique I-invariant vector in VIb, the 2-component of A(4). According to [24]
Table A.15], this vector is invariant under the bigger parahoric subgroup I'o(2).
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Table 12. The Euler factors at p = 2 for the automor-
phic representations contributing to Sio(K(8)) and
S10(B(2)). In the A(1) Euler factor, f is the newform
in S18(SL(2,Z)). All factors are normalized to fit into
a functional equation relating s and 1 — s.

I L(s, )"

A1) La(s, f)~H(1 —p==71/2)(1 — p==+1/2)
A(8)*~ (L—p /31 —pot1/?)
A(8)>~ (1—p=== Y21 —p==F1/2)
I1(8) 1427573/2

I(8)> 149.2-7/2=s 4 p—2s

A(4) (1—p=71/2)

Thus the cusp form in S1o(B(2)) constructed from A(4) lies in fact in S10(I'0(2)),
i.e. it is an oldform in S1o(B(2)) in the sense of [IT].

Table [ summarizes our findings. The dimension data for S;o(K(2)) and
S10(B(2)) is taken from [II, Theorem 3.3], and the one for Sio(K(4)) is taken
from [21]. We have also included the space S10(I'¢(2)) since its eigenforms are cov-
ered by the automorphic representations in our list. Note however that we do not
define oldforms or newforms for this space.

Using [24, Table A.8], it is easy to determine the 2-Euler factors of the auto-
morphic representations in Table [[1] The results are summarized in Table [T2] The
factors for TI(8)* and TI(8)P follow from Proposition[6.2 Note that, by (639), the
factor for II(8)® equals L(s,o)L(s,0 "), with ¢ as in Proposition B.2[ii).

6.4. Weight 12

With the methods explained in the previous sections we can also analyze the space
S12(K(8)). We list the results without giving all details. The starting point is the
following theorem.

Theorem 6.4. dim S;2(K(8)) = 12.

Proof. The proof of this result is analogous to that of Theorem Using
Theorem [1] and 11 Fourier-Jacobi coefficients, running the Jacobi restriction
method yields that the dimension is at most 11 for Si2(K(8))" and at most 1
for S12(K(8))~. Because the non-lift newform in S15(K(4)) yields an old form in
S12(K(8))~, it follows that dim S12(K(8))” = 1. We can generate 11 linearly inde-
pendent forms in S12(K(8))" as follows: six weight 12 Gritsenko lifts, the square
of the weight 6 Gritsenko lift, the two products obtained by multiplying the one
weight 5 Gritsenko lift with the two weight 7 Gritsenko lifts, and T'(3) applied to
these two products. O
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Table 13. Dimensions of spaces of elliptic modular forms of weight 22

and Jacobi forms of weight 12. The “new, —

”»

row gives the dimension

of the space spanned by eigen-newforms that have a minus sign in the

functional equation of their L-function.

m=1 m=2 m=4 m=38
S22 (To(m)) (elliptic)  Total 1 4 9 19
New 1 2 2 5
New,— 1 1 0 2
i 1 6

Table 14. The automorphic representations m = @, of GL(2, A) generated by the newforms in
S22(Lo(m)) for m € {1,2,4,8}. The notation for the 2-components 3 is the same as in Table [
The last four columns show the dimensions of the spaces of fixed vectors in 72 under the local
groups I'g(2") for n = 0,1,2,3; this data is taken from Table [l The “certain space” is the
subspace of fixed vectors that have the same Atkin-Lehner sign as the newform; it is the local
version of the “certain space” of Skoruppa and Zagier; see [32].

™ e(1/2,7) ™2 (1/2,m2) V) V(@) V() VE3)
m(1) -1 Unramified 1 Total dim 1 2 4
“Certain space” 1 1 2 2
7(2)T 1 Star(2) -1 Total dim 0 1 2 3
w(2)~ -1 £Star(z) 1 Total dim 0 1 2 3
m(4)2P 1 sc(4) -1 Total dim 0 0 1 2
m(8)ab— -1 sc(8)* 1 Total dim 0 0 0 1
“Certain space” 0 0 0 1
m(8)abet 1 sc(8)~ -1 Total dim 0 0 0 1

Table 15. The lifts A(M) of the automorphic representations 7(m

and M =2m if 2 € S.

). We have M =m if 2 ¢ S

T e(1/2,m) T S IT I Type Para
(1) -1 x x x ! {o0} A(1) Xlarz) X x* 1Ib Yes
m(2)t 1 Stary {002} A(4) (T, v=1/2) VIb  No
(2)~ -1 £Stanzy  {oo} A(2) L(vY/2€Star2), v %) Vb Yes
w(4)2P 1 sc(4) {o0, 2} A(8)2P 5* (v1/2sc(4), v—1/2) Xla*  No
w(8)ab— -1 sc(8)T {o0}  A(8)2P— L'/ 2sc(8)t,v=1/2)  XIb  Yes
w(8)abet 1 sc(8)~ {00,2}  A(16)2Pct 5% (b1/2sc(8)7,»"1/2)  XIa* No
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Table 16. The eigenforms in S12(K(8)) and S12(B(2)) and their automorphic

representations.
K1) K(@2) K#) K@) B(2) To(2)
S12 Lifts 1 2 3 6 11 5
X12
Non-lifts 0 0 1 6 1 2
N(4) F12
Total 1 2 4 12 12 7
Sold Lifts 0 1 3 4 7
Non-lifts 0 0 0 2 4
Total 0 1 3 6 11
S{sv Lifts 1 1 0 2 0
X12 L(2) L(8)ab
Non-lifts 0 0 1 4 1
N(4) N(8)* F12
Total 1 1 1 6 1

Contributions from automorphic representations

A1) ITb 1 1 2 2 4 3 (lift)
X12
A(2) Vb 0 L(12) 1 2 2 1 (lift)
T1(4) ITa 0 0 1 2 4 2
N(4)
A(8)2~ XTb 0 0 0 1 0 0 (lift)
L(8)*
A(8)P~ XIb 0 0 0 1 0 0 (lift)
L(s)®
1(8)2 Va 0 0 0 1 1 0
N(8)* Fi2
(8)® Xla 0 0 0 1 0 0
N(8)P
T1(8)° X 0 0 0 1 0 0
N(8)¢
I1(8)d X 0 0 0 1 0 0
N(8)d
A(4) Vb 0 0 0 0 1 1 (lift)

The method also shows that the subspace of S12(K(8)) spanned by Gritsenko
lifts is six-dimensional. To understand the representation-theoretic lifts, we start
from Table [[3] which shows the dimensions of some spaces of elliptic modular forms
of weight 22. Note that weight 22 on GL(2) lifts to weight 12 on GSp(4); in general,
weight 2k — 2 lifts to weight k. Table [[4l shows the automorphic representations of
GL(2, A) generated by these eigenforms. Just as before, each of these representations
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Table 17. The newforms in the automorphic representations contributing to Si2(K(8)).
The second and third columns show the eigenvalues of Tp,1(2) and T7,0(2) on some of these
newforms. The last column shows the Hecke eigenvalue of T'(3), normalized to facilitate
comparison with the eigenvalues given in [I1] Theorem 3.4].

Form Ao,1 A1,0 Representation Type 393

X1 xlarney X x " IIb 107352

L(2) L(v/%€Star2),v~%) Vb 307800

N(4) — X X 0Stasp(2) Ila —88488

L(8)2 6 0 L'/ 2sc(8)1,v=1/2) XIb  24(7645 + 8+/358549)
L(8)P 6 0 L(vY/2sc(8)F,v=1/2) XIb  24(7645 — 8v/358549)
N(8)> —1 —4 £Stasp(a) IVa —14760
N(8)P 2 —4 S(v1/2sc(4), v=1/2) Xla —229032
N8  £(—-12—56) 0 (07 1sc(8)T) x o X 504(65 + 64/6)
NE®)d  L(-12+5V6) 0 (67 'sc(8)T) x o X 504(65 — 64/6)

Table 18. The Euler factors at p = 2 for the automorphic repre-
sentations contributing to S12(K(8)) and S12(B(2)). In the A(1)
Euler factor, f is the newform in S22(SL(2,7Z)). All factors are
normalized to fit into a functional equation relating s and 1 — s.

I L(s, TT2) !

A1) L(s, f)~ (1 — p~5~1/2)(1 — p—5+1/2)
A2) (1 +4p=5=1/2)(1 —p=5=1/2)(1 — p=5+1/2)
11(4) 14 Tp=s=1/2 4 p=2s-1
A(8)2~ (1 —p=s=1/2)(1 — p—s+1/2)
A(8)>~ (1—p=s=1/2)(1 — p=5+1/2)
I1(8)* 14p—5-3/2

I(8)" 1—ps-1/2

II(8)¢ 1+ L (6vV2+5v3)p~s +p~2°
(8)? 1+ L(6v3—5vB)p* +p2°
A(4) (1—ps-1/2)2
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admits a unique lift to a cuspidal, automorphic representation of GSp(4,A); see
Table

Table[I8is the main result for weight 12. There are nine automorphic representa-
tions that contribute to the 12-dimensional Si2 (K (8)). There is a tenth representa-
tion A(4) which does not contribute to S12(K(8)), but to Si2(B(2)) and S12(T'0(2)).
We have dim S12(B(2)) = 12 and dim S12(I'0(2)) = 7 by [11], Theorem 3.4], showing
that no other automorphic representations contribute to these spaces besides the
ones in Table[@ Our Fi5 € S12(B(2)) is the same Fig as in [I1} Theorem 3.4]. Our
form L(2) is the same as the Fl(g) from [TT].

To determine the local representations at two of the non-lifts, we again need
to calculate the T, and T} eigenvalues on the non-lift newforms. Because the
technique of choosing sg, o, etc. is independent of the weight, the same technique
used to calculate Tj; and 7% in weight 10 can be used for other weights. The
results are listed in Table [[7. The characters of some of the local components in
Table [I7 are determined as follows:

e For Xja: x is unramified such that (1 — x(2)27*)(1 — x(2) ~27*) is the reciprocal
of the Euler factor at p = 2 (in the analytic normalization) of the elliptic cusp
form spanning the space Sa2(SL(2,7Z)).

e For L(2) and N(8)*: ¢ is unramified with £(2) =

e For N(4): o is unramified with 2(c(2) +o(2)7!) = = —7/2. The character x
is unramified with yo? = 1.

e For N(8)°: ¢ is unramified with 23/2(c(2) + o(2)™!) = A1 =

e For N(8)d: ¢ is unramified with 2%/%(0(2) + 0(2)™1) = Ao1 =

(—12 — 5v/6).
(=12 + 5V6).
As an application we obtain the L-factors of all automorphic representations

involved; see Table [[8 Observe that the Atkin-Lehner eigenvalue of all newforms
is +1. Hence £(1/2,1I) = +1 for all representations IT in Table

1
8
1
8
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