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ARCHIMEDEAN ASPECTS OF
SIEGEL MODULAR FORMS OF DEGREE 2

RALF SCHMIDT

ABSTRACT. We survey the archimedean representations
and Langlands parameters corresponding to holomorphic
Siegel modular forms of degree 2. This leads to a determina-
tion of archimedean local factors for various L-functions and
all vector-valued weights. We determine the Hodge struc-
tures that correspond to holomorphic Siegel modular forms
and clarify the relationship with four-dimensional symplectic
artin representations.

1. Introduction. As is well known, Siegel modular forms of de-
gree 2 are related to automorphic representations of the adelic group
GSp(4,AQ). In this note, we concentrate on the archimedean aspects of
this relationship. We survey the relevant representations of GSp(4,R)
and their Langlands parameters and use the latter to calculate the
Γ- and ε-factors for the “first three” L-functions of (scalar- or vector-
valued) Siegel eigenforms. We give some examples of Siegel modular
form parameters arising from geometric or motivic situations. We also
clarify which parameters can arise from four-dimensional symplectic
artin representations which are not related to holomorphic Siegel mod-
ular forms.

In the first part of this note we survey the part of the representation
theory of Sp(4,R) that is related to holomorphic Siegel modular forms
of degree 2. We recall the parametrization of the (limits of) discrete
series representations and of certain non-tempered lowest weight mod-
ules and describe their K-type structure. Since this material is well
known and far from new, our emphasis is on being explicit.

In Section 2, we describe, again in a very explicit way, the Langlands
parameters

2010 AMS Mathematics subject classification. Primary 11F46, 11F70.
Keywords and phrases. Siegel modular forms, discrete series representations,

Langlands parameters, Hodge numbers, artin representations.
Received by the editors on February 9, 2016, and in revised form on April 15,

2016.
DOI:10.1216/RMJ-2017-47-7-2381 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

2381



2382 RALF SCHMIDT

WR −→ GSp(4,C)

corresponding to the representations exhibited earlier. Knowledge of
these parameters makes it simple to calculate the archimedean L- and
ε-factors for the spin, standard and adjoint L-functions of holomorphic
Siegel modular forms. To the extent that these L-functions have
already appeared in the literature, unsurprisingly, the representation-
theoretic factors coincide with those obtained by classical methods.
The only somewhat unexpected result is that the formula for the
standard (degree 5) Γ-factor for weight detk symj requires a slight
modification for k = 1, while the formulae for the spin (degree 4) and
adjoint (degree 10) factors admit a uniform description for all weights.

At least conjecturally, Siegel modular forms of degree 2 are related
to other arithmetic objects, such as algebraic varieties, Galois repre-
sentations or motives, via their L-functions. The most prominent of
such situations is the “paramodular conjecture” expounded in [12],
a rather precise conjectural relationship between abelian surfaces and
Siegel modular forms with respect to the paramodular group. Consid-
ering Hodge numbers and Langlands parameters, it is easy to see why
such a relationship is expected. In subsection 4.4, we describe more
generally which Hodge vectors would give rise to Siegel modular forms
and give references to the literature where motives with such Hodge
vectors have been constructed.

There is a well-known correspondence between odd two-dimensional
artin representations and elliptic modular forms of weight 1, see [14,
20, 40]. It could be suspected that four-dimensional symplectic
artin representations are similarly related to Siegel modular forms of
some low weight. This turns out not to be the case, at least not
if only holomorphic Siegel modular forms are admitted into such a
correspondence. In subsection 4.5, we describe the representations
of GSp(4,R) that can arise from a four-dimensional symplectic artin
representation. There are four, none of which is a lowest weight
module. Consequently, such artin representations may still be related
to Siegel modular forms, but the latter will not be holomorphic. Such
an approach was taken in [19].

Most of the material in these notes is well known to experts. The
goal was merely to clarify a few details and create a possible reference
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for some topics related to the archimedean Langlands parameters of
(holomorphic) Siegel modular forms of degree 2.

2. Discrete series and lowest weight representations. De-
pending on their weight, holomorphic Siegel modular forms generate
one of three types of representations of Sp(4,R): holomorphic discrete
series, limits of such, or certain non-tempered lowest weight modules.
In this section, we recall the parametrization and basic properties of
these representations.

2.1. Notation. Let GSp(4) be the algebraic Q-group whose R-points
are given by

(2.1) GSp(4,R) = {g ∈ GL(4,R) | tgJg = µ(g)J, µ(g) ∈ R×},

J =


1

1
−1

−1

 .
Let Sp(4,R) be the subgroup where µ(g) = 1. Its Lie algebra is

sp(4,R) = {X ∈ gl(4,R) | tXJ + JX = 0}.

Let K be the subgroup of Sp(4,R) consisting of all matrices of the
form

[
AB−BA

]
. Then, K is a maximal compact subgroup of Sp(4,R).

Mapping [
A B
−B A

]
to A + iB provides an isomorphism of K with U(2). Let k ⊂ sp(4,R)
be the Lie algebra of K. A basis of k is given by

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .
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Let h be the Cartan subalgebra spanned by the first two elements. The
corresponding analytic subgroup H consists of all elements of the form
(2.2)

H =




cos(θ) sin(θ)
cos(θ′) sin(θ′)

− sin(θ) cos(θ)
− sin(θ′) cos(θ′)

 ∣∣∣∣ θ, θ′ ∈ R/2πiZ

 .

We introduce the following basis for the complexification kC:

Z = −i


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , Z ′ = −i


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,

N+ =
1

2


0 1 0 −i
−1 0 −i 0
0 i 0 1
i 0 −1 0

 , N− =
1

2


0 1 0 i
−1 0 i 0
0 −i 0 1
−i 0 −1 0

 .

Then [Z,N±] = ±N± and [Z ′, N±] = ∓N±. The Cartan subgroup hC

of gC is spanned by Z and Z ′. The roots are elements of the space

(hC)′ := HomC(h
C,C).

We identify an element λ ∈ (hC)′ with the pair of complex numbers
(λ(Z), λ(Z ′)). If this pair lies in R2, we may visualize it as a point in a
plane. For example, the compact roots are ±(1,−1). The non-compact
roots are ±(0, 2), ±(2, 0) and ±(1, 1). Let ∆ be the set of all roots. The
analytically integral elements of (hC)′ are those of the form (n, n′) with
n, n′ ∈ Z, see [21, Proposition 4.13]. The linear map (n, n′), restricted
to h, is the derivative of the character


cos(θ) sin(θ)

cos(θ′) sin(θ′)
− sin(θ) cos(θ)

− sin(θ′) cos(θ′)

 7−→ einθ+in′θ′
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of the group H defined in (2.2). The following picture shows the roots
and the analytically integral elements.

(2.3) -�

6

?

�
��

�
�	

@
@R

@
@I

N+

N−

q q q q q q qq q q q q q qq q q q q q qq q q q q q qq q q q q q qq q q q q q qq q q q q q q
Let E ∼= R2 be this plane, i.e., E is the R-subspace of (hC)′ spanned
by the root vectors. We endow E with the inner product

⟨(x, y), (x′, y′)⟩ = xx′ + yy′.

The roots form a root system of type B2 in E. The walls are the
hyperplanes orthogonal to the roots; in this special case, the walls are
the lines spanned by the roots. Let W be the Weyl group of this root
system, meaning the group generated by reflections in the walls. Let
WK be the two-element subgroup generated by the reflection in the
hyperplane perpendicular to the root (1,−1); this is the compact Weyl
group. We may extend the elements of W to C-linear automorphisms
of (hC)′.

K-types, representations, infinitesimal character. To each an-
alytically integral λ = (λ1, λ2) ∈ E with λ1 ≥ λ2 corresponds a K-
type V(λ1,λ2), i.e., an equivalence class of irreducible representations of
K ∼= U(2). The weights occurring in V(λ1,λ2) are

(λ1 − j, λ2 + j) for j ∈ {0, 1, . . . , λ1 − λ2},

and each weight occurs with multiplicity 1. In particular, the dimension
of V(λ1,λ2) is λ1 − λ2 + 1. We refer to (λ1, λ2) as the highest weight of
V(λ1,λ2), and to any non-zero v0 ∈ V(λ1,λ2) with this weight as a highest

weight vector. Evidently, N+v0 = 0. The vector N j
−v0 has weight

(λ1 − j, λ2 + j) for j ∈ {0, 1, . . . , λ1 − λ2}.
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Let Sp(4,R)± be the subgroup of GSp(4,R) where µ(g) ∈ {±1}.
It contains Sp(4,R) with index 2. Its standard maximal compact
subgroup is

K± := {diag(1, 1,−1,−1)}nK.

Any K-type V(λ1,λ2) with λ2 ̸= −λ1 irreducibly induces to K±. The

K-types of the form V(λ,−λ) extend in two different ways to K±-types

V +
(λ,−λ) and V

−
(λ,−λ).

Whenever we say “representation of Sp(4,R),” we mean a Harish-
Chandra module, i.e., a (g,K)-module, where g = sp(4,R). A rep-
resentation of Sp(4,R)± is a (g,K±)-module, and a representation of
GSp(4,R) is a (g′,K±)-module, where g′ ∼= R ⊕ g is the Lie algebra
of GSp(4,R). A representation of Sp(4,R)± can be extended in a triv-
ial way to a representation of GSp(4,R). Most of the representations
of GSp(4,R) we will consider are such trivial extensions. A repre-
sentation π of one of the groups Sp(4,R), Sp(4,R)± or GSp(4,R) is
admissible, if each of its K-types occurs with finite multiplicity. In this
case, we may write

π =
⊕

mλVλ,

where λ = (λ1, λ2) runs over analytically integral elements of E with
λ1 ≥ λ2, and mλ is the multiplicity with which Vλ occurs in π. If
mλ ̸= 0 and λ is closer to the origin than any other λ′ with mλ′ ̸= 0,
then we say that Vλ (or λ) is a minimal K-type of π.

Let Z be the center of the universal enveloping algebra of gC; it is
a polynomial ring in two variables. For every λ ∈ (hC)′, an algebra
homomorphism

χλ : Z −→ C

may be constructed as in [21, subsection VIII.6]. Every algebra
homomorphism Z → C is of the form χλ, and we have χλ = χλ′ if
and only if λ = wλ′ for some w ∈ W , see [21, Propositions 8.20,
8.21]. If π is an admissible representation of Sp(4,R) or GSp(4,R) for
which Z acts via χλ, then we say that π has infinitesimal character
χλ (or sometimes just λ). The trivial representation has infinitesimal
character (2, 1).

Parabolic induction. Let B, P , Q be the Borel subgroup, the Siegel
parabolic subgroup and the Klingen parabolic subgroup, respectively
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defined as the matrices in GSp(4,R) of the following shapes:
(2.4)

B=


∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

 , P =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 , Q=


∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

 .
Let χ1, χ2 and σ be characters of R×. Then, we denote by χ1 × χ2 o
σ the representation of GSp(4,R) obtained by normalized parabolic
induction from the character

(2.5)


b ∗ ∗
∗ a ∗ ∗

cb−1 ∗
ca−1

 7−→ χ1(a)χ2(b)σ(c)

of B. If π is an admissible representation of GL(2,R) and σ is a
character of R×, we denote by π o σ the representation of GSp(4,R)
obtained by normalized parabolic induction from the representation

(2.6)

[
A ∗

c tA−1

]
7−→ σ(c)π(A)

of P . If χ is a character of R× and π is an admissible representation
of GSp(2,R) = GL(2,R), we denote by χ o π the representation
of GSp(4,R) obtained by normalized parabolic induction from the
representation

(2.7)


a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 7−→ χ(t)π

([
a b
c d

])

of Q. Note that, in (2.6) and (2.7), we take any globalization of π
to construct the induced representation and then take K-finite vectors
of the result. (Recall that we are working in the category of Harish-
Chandra modules. Definitions (2.6) and (2.7), however, require π to
be evaluated at any element of GL(2,R). By globalization, we mean
any such representation of GL(2,R) whose underlying Harish-Chandra
module is π.)

We make similar definitions for Sp(4,R). The relevant parabolic sub-
groups are again those of the shape (2.4), and we use the same symbols
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for these subgroups. The notation for the induced representations is:

χ1 × χ2 o 1 (Borel induction),(2.8)

π o 1 (Siegel induction),(2.9)

χo π (Klingen induction).(2.10)

Here, the π in (2.9) is a representation of GL(2,R), and the π in (2.10)
is a representation of SL(2,R). There should be no danger of confusing
the notation between induction on GSp(4,R) and on Sp(4,R). The
K-types of the representations (2.8), (2.9) and (2.10) are given in [25,
Lemma 6.1].

Let sgn be the sign character of R×. If χi = |·|sisgnϵi with si ∈ C and
ϵi ∈ {0, 1} for i = 1, 2, then the representation χ1 × χ2 o 1 of Sp(4,R)
has infinitesimal character (s1, s2). Similarly, for any character σ of R×,
the representation χ1×χ2 o σ of GSp(4,R) has infinitesimal character
(s1, s2).

2.2. Discrete series representations of Sp(4,R). We explain the
parametrization of discrete series representations of Sp(4,R) according
to Harish-Chandra. Our main reference is Theorem 9.20 in connection
with [21, Theorem 12.21].

The space (ib)′ appearing in [21, Theorem 9.20] is our Euclidean
space E. An element λ ∈ E is non-singular if ⟨λ, α⟩ ̸= 0 for all roots α,
i.e., if λ does not lie on a wall. Every non-singular λ determines a
system of positive roots ∆+

λ = {α ∈ ∆ | ⟨λ, α⟩ > 0}. Let

δncλ =
1

2
the sum of non-compact roots in ∆+

λ

and

δcλ =
1

2
the sum of compact roots in ∆+

λ .

Consider, in particular, λ from one of the following regions:

(2.11)
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TABLE 1.

region δncλ δcλ δncλ − δcλ
1 (3/2, 3/2) (1/2, −1/2) (1, 2)

2 (3/2, −1/2) (1/2, −1/2) (1, 0)

3 (1/2, −3/2) (1/2, −1/2) (0, −1)

4 (−3/2, −3/2) (1/2, −1/2) (−2, −1)

Table 1 shows the corresponding quantities δncλ and δcλ and also
the difference δncλ − δcλ. Theorem 9.20 of [21] states that, for each
analytically integral and non-singular λ ∈ E, there exists a discrete
series representation Xλ of Sp(4,R) with infinitesimal character λ. The
representations Xλ and Xλ′ are equivalent if and only if λ = wλ′ for
some w ∈ WK ; consequently, we need only consider λ in one of the
regions 1, 2, 3 or 4. By [21, Theorem 12.21], every discrete series
representation of Sp(4,R) is of the form Xλ.

The element λ is called the Harish-Chandra parameter of Xλ. There
is a minimal K-type, occurring in Xλ with multiplicity 1, given by
Λ = λ+δncλ −δcλ. It is called the Blattner parameter of Xλ. One way to
determine the multiplicities of each K-type is via the Blattner formula,
see [18]. Some additional details are provided here:

(1) Assume that λ is in region 1 (and non-singular, and analytically
integral). Then, Xλ has minimal K-type Λ = λ + (1, 2). All of the
other K-types lie in a region as indicated in the next diagram:

(2.12)

�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
��

-�
6
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���
��	@@R
@@I

�
�
�
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Xλ

λ

Λ

1

2
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We say that such Xλ are in the holomorphic discrete series. If
λ = (k − 1, k − 2) with k ≥ 3, then Λ = (k, k), a one-dimensional
K-type. These are the discrete series representations generated by
holomorphic Siegel modular forms of weight k.

(2) Assume that λ is in region 2 (and non-singular, and analytically
integral). Then Xλ has minimal K-type Λ = λ+(1, 0). All of the other
K-types lie in a region as indicated in this diagram:

(2.13)

@
@
@
@

@
@
@
@

@
@
@
@

-�
6

?

���
��	@@R
@@I

�
�
�
��

Xλ

λ Λ1

We say that such Xλ are in the large discrete series. These are generic
representations, meaning they admit a Whittaker model.

If λ is in region 3, then we obtain a picture symmetric to that
for region 2 (with respect to the diagonal running from northwest to
southeast). If λ is in region 4, then we obtain a picture symmetric
to that for region 1; these Xλ are said to be in the antiholomorphic
discrete series.

We note that Xλ is a representation for which the center of Sp(4,R),
consisting of ±1, acts trivially, if and only if λ = (λ1, λ2) with λ1 and
λ2 having different parity.

2.3. Limits of discrete series. The limits of discrete series represen-
tations have a singular infinitesimal character λ. The λ considered are
of one of the forms (p, 0), (0,−p) or (p,−p) with integral p > 0. There
are two limits of discrete series for each such λ. We use [21, subsec-
tion XII.7] as our main reference. By [21, Corollary 12.27], the limits
of discrete series representations are irreducible, unitary and tempered.

First, consider λ = (p, 0) with integral p > 0. We may consider λ
as a limit case of the Harish-Chandra parameters in region 1 or in
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region 2. Thus, there will be a holomorphic limit of discrete series
representation X1

λ, and a large (or generic) limit of discrete series rep-
resentationX2

λ. The description of theirK-types is the same as that for
the corresponding discrete series if we formally allow λ to be singular.
Hence, X1

λ has a minimal K-type Λ = (p+1, 2), and X2
λ has a minimal

K-type Λ = (p + 1, 0). The next diagram illustrates the “first” such
limits of discrete series for λ = (1, 0).

(2.14)

�
�
�

�
�
�
�

��

-�
6

?

���
��	@@R
@@I

�
�
�

��

X1
λ

Λ

�
�

�
�
�
�

�
�
�
�

-�
6

?

���
��	@@R
@@I �

�
�
��

X2
λ

Λ

For λ = (0,−p) with integral p > 0, we obtain an anti-holomorphic
limit of discrete series X4

λ and a large limit of discrete series X3
λ. The

K-type structure of X4
(0,−p), respectively X

3
(0,−p), is symmetric to that

of X1
(p,0), respectively X

2
(p,0), with respect to reflection in the diagonal.

By [25, Lemma 8.1], these limits of discrete series appear in rep-
resentations induced from the Klingen parabolic subgroup of Sp(4,R).
More precisely,

1oD+
p
∼= X1

λ ⊕X2
λ, λ = (p, 0),(2.15)

and

1oD−
p
∼= X3

λ ⊕X4
λ, λ = (0,−p),(2.16)

where D+
p , respectively, D−

p , is the discrete series representation of
SL(2,R) with lowest weight p+ 1, respectively, highest weight −p− 1.

It should be noted that, for λ = (1, 0), the representation X1
λ is the

Θ10 of [1], which is characterized there in many different ways. The
representation X2

λ is called γ in [1].

Now, consider λ = (p,−p) with integral p > 0. For such a λ, there
are two large discrete series representations X2

λ and X3
λ. Their K-
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type structures look similar to that of discrete series representations in
region 2, respectively 3, if we allow λ to be singular. In particular, X2

λ

has a minimal K-type Λ = (p+ 1,−p), and X3
λ has a minimal K-type

Λ = (p,−p− 1). The next diagram illustrates the case λ = (1,−1).

(2.17)

@
@
@

@
@
@

-�
6

?

���
��	@@R
@@I

�
�
�

��

X2
λ

Λ
@
@@

-�
6

?

���
��	@@R
@@I

�
�

�
��

X3
λ

Λ

From [25, Lemma 8.1], X2
λ and X3

λ appear in representations
induced from the Siegel parabolic subgroup of Sp(4,R). More precisely,

(2.18) D2p o 1 ∼= X2
λ ⊕X3

λ, λ = (p,−p),

where D2p is the discrete series representation of GL(2,R) with lowest
weight 2p+ 1 and central character trivial on R>0.

2.4. Non-tempered lowest weight representations. Assume that
λ = (p, 1) with an integer p ≥ 0. From [29, Proposition 2.8], there exist
a lowest weight module Yλ with infinitesimal character λ, a minimal
K-type Λ = (p + 1, 1), and all other K-types contained in a “wedge”
region as indicated in the next picture:

(2.19)

�
�
�

�
�
�
�

�
�
��

-�
6

?

���
��	@@R
@@I

�
�

�
�
��

Yλ

Λ
λ

1

For λ = (−1,−p), there exists a similar module whoseK-type structure
is symmetric. These modules are multiplicity-free, meaning each K-
type occurs at most once.
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Lemma 2.1. Let p be a non-negative integer. The representations
Y(p,1) and Y(−1,−p) are Langlands quotients,

Y(p,1) = L(| · | sgnoD+
p ), Y(−1,−p) = L(| · | sgnoD−

p ),

where D+
p , respectively D−

p , is the (limit of ) discrete series represen-
tation of SL(2,R) with lowest weight p+ 1, respectively, highest weight
−p− 1.

Proof. We prove the assertion for Y(p,1), the other case being anal-
ogous. First, assume that p ≥ 2. By [25, Theorem 10.1, equation
(10.2))], there is an exact sequence
(2.20)
0 −→ X(p,1) ⊕X(p,−1) −→ | · | sgnoD+

p −→ L(| · | sgnoD+
p ) −→ 0.

From [25, Lemma 6.1], we can determine theK-types of L(|·| sgnoD+
p )

and see that this representation coincides with Y(p,1).

The proof for p = 1 is similar, starting from the exact sequence

(2.21) 0 −→ X2
(1,−1) −→ | · | sgnoD+

1 −→ L(| · | sgnoD+
1 ) −→ 0

from [25, Theorem 10.4 ii)].

Finally, assume p = 0. In this case, we first determine the K-types
of L(δ(| · |1/2, p)o1) from [25, Lemma 6.1, equation (10.25)] (using the
notation of this paper). With this knowledge, we can determine the
K-types of L(| · | sgn o D+

0 ) from [25, Theorem 11.2 i)]. We see that
L(| · | sgnoD+

0 ) = Y(0,1). �

Using the classification of unitary highest weight modules, it can be
proven that the Y(p,1) and Y(−1,−p) are unitary. They are not tempered;
see [25, Section 8].

2.5. Representations of GSp(4,R). Let Sp(4,R)± be the subgroup
of GSp(4,R) consisting of elements g with multiplier µ(g) = ±1. Let
λ = (λ1, λ2) be a non-singular, analytically integral element of E in one
of the regions 1 or 2. Then λ′ = (−λ2,−λ1) is also non-singular and
analytically integral. If λ is in region 1, then λ′ is in region 4, and if λ is
in region 2, then λ′ is in region 3. Let Xλ and Xλ′ be the corresponding
discrete series representations of Sp(4,R). These two representations



2394 RALF SCHMIDT

are conjugate via diag(1, 1,−1,−1). Consequently,

(2.22) ind
Sp(4,R)±
Sp(4,R) (Xλ) = ind

Sp(4,R)±
Sp(4,R) (Xλ′).

Upon restriction to Sp(4,R), this induced representation decomposes
into a direct sum Xλ ⊕Xλ′ . In particular, its K-types combine those
of Xλ and Xλ′ .

We extend the representation (2.22) to

GSp(4,R) ∼= R>0 × Sp(4,R)±

by letting R>0 act trivially. Let the resulting representation again be
denoted by Xλ. If λ is in region 1, we refer to Xλ as a holomorphic
discrete series representation, and if λ is in region 2, as a large discrete
series representation.

Similarly, we can combine two limits of discrete series representations
to one representation of Sp(4,R)± and then extend it to GSp(4,R).
More precisely, let λ = (p, 0) and λ′ = (0,−p) with p > 0. Then, the
representations X1

λ and X4
λ′ combine and extend to a representation

of GSp(4,R), which we denote by X1
λ and refer to as a holomorphic

limit of discrete series representation. Similarly, X2
λ and X3

λ′ combine
and extend to a representation of GSp(4,R), which we denote by X2

λ

and call a large limit of discrete series representation. From (2.15) and
(2.16), we conclude that, as representations of GSp(4,R),

(2.23) 1oDp
∼= X1

λ ⊕X2
λ, λ = (p, 0),

where Dp is the discrete series representation of GL(2,R) obtained by
inducing D+

p or D−
p to SL(2,R)±, and extending the result in a trivial

way to GL(2,R) ∼= R>0 × SL(2,R)±.
If λ = (p,−p) with p > 0, then the representations X2

λ and X3
λ

combine and extend to a representation of GSp(4,R), which we denote
by X×

λ and also call a large limit of discrete series representation.
From (2.18) we conclude that, as representations of GSp(4,R),

(2.24) D2p o 1 ∼= X×
λ , λ = (p,−p).

Finally, let λ = (p, 1) and λ′ = (−1,−p) with p ≥ 0. Then, the
non-tempered highest weight modules Yλ and Yλ′ combine and extend
to a representation of GSp(4,R), which we denote by Yλ. It follows
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from Lemma 2.1 that

(2.25) Yλ = L(| · | sgno (| · |−1/2Dp)), λ = (p, 1).

Note here that the central character of a Klingen induced representation
χo π is χωπ, where ωπ is the central character of π. Since the central
character of Yλ is, by definition, trivial on R>0, we need to twist Dp by

| · |−1/2.

3. Langlands parameters. Let G be a linear reductive group
over R and LG its L-group, as defined in [10]. The local Langlands
correspondence is a bijection between admissible homomorphisms

WR −→ LG,

where R is the real Weil group, and L-packets of irreducible, admissible
representations of G(R). In this section, we explicate the portion of the
correspondence for GSp(4,R) which involves the previously considered
representations.

3.1. The real Weil group. The real Weil group is defined as

WR = C× ⊔ jC×,

where the multiplication on C× is standard, and where j is an element
satisfying j2 = −1 and jzj−1 = z̄ (complex conjugation) for z ∈ C×.
Hence, WR sits in an exact sequence

(3.1) 1 −→ C× −→WR −→ {±1} −→ 1,

where the third map is determined by

C× 7−→ 1 and j 7−→ −1.

There is a homomorphism to the Galois group of C/R,

(3.2) WR −→ G(C/R), C× 7→ 1, jC× 7→ −1.

When referring to representations of WR, we always mean continuous
homomorphisms

WR −→ GL(n,C) for some n,

for which the image consists of semisimple elements.
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Basic facts regarding WR are explained in [22]. For example, every
representation of WR is completely reducible, and every irreducible
representation is either one- or two-dimensional. The complete list
of one-dimensional representations is as follows:

φ+,t : re
iθ 7−→ r2t, j 7→ 1,(3.3)

φ−,t : re
iθ 7−→ r2t, j 7→ −1,(3.4)

where t ∈ C, and we write a non-zero complex number as reiθ with
r ∈ R>0 and θ ∈ R/2πZ. The two-dimensional representations are
precisely

(3.5) φℓ,t : reiθ 7−→
[
r2teiℓθ

r2te−iℓθ

]
, j 7−→

[
(−1)ℓ

1

]
,

where ℓ ∈ Z>0 and t ∈ C. Often, we will only consider the case t = 0;
in this case, we write φ± instead of φ±,0 and φℓ instead of φℓ,0.

In the local Langlands correspondence for GL(n) over R we may
replace the L-group by the dual group GL(n,C). The correspondence
is then a bijection between n-dimensional representations of WR and
irreducible, admissible representations of GL(n,R). For GL(1), the
local Langlands correspondence is the assignment

φ+,t ←→
(
R× ∋ a 7−→ |a|t

)
,(3.6)

φ−,t ←→
(
R× ∋ a 7−→ sgn(a)|a|t

)
.(3.7)

The local Langlands correspondence for GL(2) over R is such that

(3.8) φℓ,t ←→ |det(·)|t ⊗Dℓ,

where | det(·)|t ⊗Dℓ is the irreducible representation of GL(2,R) with
lowest weight ℓ and central character determined by a 7→ a2t, a > 0.

There are L- and ε-factors attached to representations of WR. A
given representation can be decomposed into irreducibles and the
product taken of the factors of the irreducible pieces. For those which
are irreducible, the factors are defined as in Table 2.

Here,

(3.9) ΓR(s) := π−s/2 Γ

(
s

2

)
, ΓC(s) := 2(2π)−s Γ(s),
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where Γ is the usual gamma function. Note that the ε-factors depend on
the choice of a non-trivial character of R. Here, we choose ψ(x) = e2πix,
see [39, (3.4.4)] for the change of additive character.

TABLE 2.

representation φ L(s, φ) ε(s, φ, ψ) ε(s, φ, ψ−1)

φ+,t ΓR(s+ t) 1 1

φ−,t ΓR(s+ t+ 1) i −i

φℓ,t ΓC
(
s+ t+ ℓ

2

)
iℓ+1 (−i)ℓ+1

3.2. Discrete series parameters. Here, we present the Langlands
parameters for the discrete series representations Xλ of GSp(4,R)
defined in subsection 2.5. For the generalities, see [10, subsection 10.5].
Note that the dual group of GSp(4) is GSp(4,R); for details on how to
establish the duality, see [33, subsection 2.3]. Hence, the Langlands
parameters will be continuous homomorphisms

WR −→ GSp(4,C).

Let λ = (λ1, λ2) be a non-singular, analytically integral element of E
contained in region 1, i.e., λ1 and λ2 are integers with λ1 > λ2 > 0.
Let λ′ = (λ1,−λ2), which is in region 2. Then Xλ is a holomorphic
discrete series representation, and Xλ′ is large. The representations
{Xλ, Xλ′} form a 2-element L-packet. Their common L-parameter is
the homomorphism WR → GSp(4,C), given by

reiθ 7−→


ei(λ1+λ2)θ

ei(λ1−λ2)θ

e−i(λ1+λ2)θ

e−i(λ1−λ2)θ

 ,(3.10)

j 7−→


(−1)ϵ

(−1)ϵ
1

1

 ,
where ϵ = λ1+λ2. In order to see this, the duality must be established
similarly to [33, subsection 2.3]. Note that, as a representation, (3.10)
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equals
φλ1+λ2

⊕ φλ1−λ2
.

Composing the parameter (3.10) with the multiplier homomorphism,
we obtain the character of WR given by reiθ 7→ 1 and j 7→ (−1)ϵ+1.
Hence, the image of (3.10) lies in Sp(4,C) if and only if λ1 and
λ2 have different parity, which is exactly the case if Xλ and Xλ′

have trivial central character. It is a feature of the local Langlands
correspondence that the multiplier of the parameter corresponds to the
central character of the representations in the L-packet via the local
Langlands correspondence for GL(1).

The component group C(φ) of an L-parameter

φ :WR −→ GSp(4,C)

is defined as the quotient Cent(φ)/Cent(φ)0C×, where Cent(φ) is the
centralizer in GSp(4,C) of the image of φ, Cent(φ)0 is its identity
component and C× is the center of GSp(4,C). A calculation shows
that the component group of the parameter in (3.10) has two elements,
represented by the identity and diag(1,−1, 1,−1). The size of the
component group is always the size of the L-packet.

3.3. Parameters for limits of discrete series. Assume that λ =
(p, 0) with integral p > 0. Associated to this element of E are two limits
of discrete series representations of GSp(4,R), the holomorphicX1

λ, and
the large X2

λ. By (2.23), their direct sum equals the Klingen induced
representation 1 o Dp. From duality, it follows that the Langlands
parameters take values in the Siegel parabolic subgroup of GSp(4,C).
The situation is, in fact, analogous to those of type VIII representations
in the non-archimedean case. Similar to [33, subsection 2.4], in
particular, equation (2.41), we thus see that the common L-parameter
of X1

λ and X2
λ is the map

WR −→ GSp(4,C),

given by

reiθ 7−→


e−ipθ

eipθ

eipθ

e−ipθ

 ,(3.11)
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j 7−→


−1

(−1)p+1

(−1)p
1

 .
As a representation ofWR, this is φp⊕φp. The component group of the
parameter has two elements, corresponding to the fact that we have a
two-element L-packet {X1

λ, X
2
λ}. The matrix

(3.12) g =
1√
2


i 1

i 1
i −1

−i 1


lies in Sp(4,C) and has the property that

(3.13) g


a b

a b
c d

c d

 g−1 =


d c
b a

a −b
−c d

 .
With its aid, we can conjugate parameter (3.11) into

reiθ 7−→


eipθ

eipθ

e−ipθ

e−ipθ

 ,(3.14)

j 7−→


(−1)p

(−1)p
1

1

 .
This map looks precisely like the discrete series parameter (3.10), if we
allow (λ1, λ2) to be the singular (p, 0).

Now, let λ = (p,−p) with integral p > 0, and consider the corre-
sponding limit of discrete series representation X×

λ of GSp(4,R). Re-

call from (2.24) that X×
λ
∼= D2p o 1, a representation induced from the

Siegel parabolic subgroup. Consequently, the parameter of X×
λ lies in

the Klingen parabolic subgroup of GSp(4,C). Arguing as in [33, sub-
section 2.4], in particular, equation (2.46), we find that this parameter



2400 RALF SCHMIDT

is the map
WR −→ GSp(4,C),

given by

reiθ 7−→


e2ipθ

1
e−2ipθ

1

 ,(3.15)

j 7−→


1

−1
1

1

 .
As a representation of WR, (3.15) equals φ−⊕φ2p⊕φ+. Note that the
image of j has multiplier −1, corresponding to the fact that the central
character of X×

λ is the sign character of R×. This time, the component

group is trivial, meaning X×
λ is the only element in the L-packet. The

map (3.15) is conjugate to

(3.16) reiθ 7−→


1

e2ipθ

1
e−2ipθ

 , j 7−→


1

1
1

1


by an element of Sp(4,C). We see that (3.16) looks like a discrete series
parameter (3.10), if we allow (λ1, λ2) to be the singular (p,−p).

3.4. Parameters for non-tempered lowest weight modules. As-
sume that λ = (p, 1) with integral p ≥ 0. Let Yλ be the corresponding
non-tempered lowest weight module of GSp(4,R); recall that Yλ has in-
finitesimal character λ and minimalK-type (p+1, 1). Recall from (2.25)
that

Yλ = L(| · | sgno (| · |−1/2Dp)),

a Langlands quotient of a Klingen-induced representation. As a con-
sequence, its L-parameter will take values in the Siegel parabolic sub-
group of GSp(4,C). In fact, Yλ is the archimedean analogue of a rep-
resentation of type IXb in the non-archimedean theory. As in [33,
subsection 2.4], in particular, equation (2.42), we see that the param-
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eter of Yλ is the homomorphism WR → GSp(4,C), given by

reiθ 7−→


re−ipθ

reipθ

r−1eipθ

r−1e−ipθ

 ,(3.17)

j 7−→


1

(−1)p
(−1)p

1

 .
This parameter is unbounded, corresponding to the fact that Yλ is not
tempered. As a representation of WR, it is equal to

φp,1/2 ⊕ φp,−1/2

if p > 0, and to

φ+,1/2 ⊕ φ−,1/2 ⊕ φ+,−1/2 ⊕ φ−,−1/2

if p = 0. The component group of (3.17) is trivial, meaning that Yλ is
the only element in the L-packet.

3.5. Local factors. Equations (3.10), (3.11), (3.15) and (3.17) show
the Langlands parameters of the discrete series representations, the lim-
its of discrete series and certain non-tempered lowest weight modules
of GSp(4,R). From this information and Table 2, it is easy to calcu-
late the L- and ε-factors of these representations. Table 3 summarizes
the results. Note that these are the degree 4 factors L(s, π, ρ4) and
ε(s, π, ρ4, ψ), where ρ4 denotes the natural four-dimensional represen-
tation of the dual group GSp(4,C). For simplicity, ρ4 is often omitted
from the notation. The formulae for the ε-factors are valid for both
additive characters ψ(x) = e2πix and ψ(x) = e−2πix.

We say a representation is a lowest weight representation if it admits
a non-zero vector v annihilated by the roots (−2, 0), (−1,−1) and
(0,−2). (The highest weight vector v0 in any K-type contributing
to v is then annihilated by the same roots, as well as the compact
root (1,−1).) Among the ones considered, these are the holomorphic
(limits of) discrete series and the non-tempered lowest weight modules.
It turns out that we obtain a uniform description of the L- and ε-factors
of these representations if we parameterize them by weight rather than
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by their infinitesimal character. Here, we define the weight of one of
these representations to be the pair of non-negative integers (k, j) such
that (k+j, k) is the minimal K-type. Table 4 shows the representations
in question and their weights.

TABLE 3. L- and ε-factors for certain representations of GSp(4,R). The
holomorphic discrete series representation Xλ, where λ = (λ1, λ2), forms
an L-packet with the large discrete series representation Xλ′ , where λ′ =
(λ1,−λ2). The holomorphic and large limits of discrete series X1

λ, X
2
λ also

form a two-element L-packet. The X×
λ are a different type of large limit

of discrete series and form singleton L-packets. The non-tempered lowest
weight modules Yλ also form singleton L-packets.

π λ par. L(s, π) ε(s, π, ψ)

Xλ, Xλ′ non-sing. (3.10) ΓC
(
s+ λ1+λ2

2

)
ΓC
(
s+ λ1−λ2

2

)
(−1)λ1+1

X1
λ, X

2
λ (p, 0),

p > 0 (3.11) ΓC
(
s+ p

2

)
ΓC
(
s+ p

2

)
(−1)p+1

X×
λ (p,−p),

p > 0 (3.15) ΓC(s+ p)ΓC(s) (−1)p+1

Yλ (p, 1),

p ≥ 0 (3.17) ΓC
(
s+ p+1

2

)
ΓC
(
s+ p−1

2

)
(−1)p+1

For each (k, j) ∈ Z>0 × Z≥0, there exists exactly one representation
of type Xλ, X

1
λ or Yλ with weight (k, j). We denote this unique

representation by Bk,j . It is a discrete series representation if k ≥ 3,
a limit of discrete series if k = 2, and non-tempered if k = 1. The
dimension of the minimal K-type is j+1; in particular, Bk,j has scalar
minimal K-type if and only if j = 0.

Proposition 3.1 gives a unified formula for the L- and ε-factors of
the Bk,j . In addition to the degree 4 “spin” factors, we may calculate
the degree 5 “standard” factors. These are obtained by composing the
parameters (3.10), (3.11), (3.17) with the homomorphism

ρ5 : GSp(4,C) −→ SO(5,C)

given in [33, Appendix A.7]. Recall that ρ5 induces an isomorphism

PGSp(4,C) ∼= SO(5,C),
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and that its restriction to Sp(4,C) is the unique five-dimensional
irreducible representation of this group. We denote the resulting factors
by L(s, π, ρ5) and ε(s, π, ρ5, ψ).

TABLE 4.

π λ k j

Xλ (λ1, λ2), λ1 > λ2 > 0 λ2 + 2 λ1 − λ2 − 1

X1
λ (p, 0), p > 0 2 p− 1

Yλ (p, 1), p ≥ 0 1 p

The next proposition also includes the degree 10 “adjoint” factors.
In this case, we compose the parameters with the representation

ρ10 : GSp(4,C) −→ GL(10,C),

defined via the conjugation action of GSp(4,C) on the ten-dimensional
Lie algebra sp(4,C). The restriction of ρ10 to Sp(4,C) is the unique
ten-dimensional irreducible representation of this group. The resulting
factors are denoted by L(s, π, ρ10) and ε(s, π, ρ10, ψ).

Proposition 3.1. Let (k, j) ∈ Z>0 × Z≥0 and π = Bk,j be the
representation with lowest weight (k, j). Then the spin, standard and
adjoint L- and ε-factors of π are given in Table 5. The formulae for
the ε-factors are valid for both additive characters ψ(x) = e2πix and
ψ(x) = e−2πix.

Proof. The formulae for ρ4 are easily verified using Table 5. For
ρ5 and ρ10, if φ is one of the parameters (3.10), (3.11) or (3.17), we
first calculate ρ5 ◦ φ and ρ10 ◦ φ, decompose the result into irreducible
representations of WR, and use Table 2. We omit the details of the
simple calculations. �

It is easily seen that, while the degree 4 and degree 10 factors have a
uniform description for all k and j, this is not quite true for the degree 5
factors. The factor L(s, π, ρ5) for k = 1 is

π2

4
s(s− 1)



2404 RALF SCHMIDT

times the factor that we would obtain if we set k = 1 in the formula
for k ≥ 2.

TABLE 5.

ρ L(s, π, ρ) ε(s, π, ρ, ψ)

ρ4 ΓC
(
s+ 2k+j−3

2

)
ΓC
(
s+ j+1

2

)
(−1)k+j

ρ5 k ≥ 2 ΓC(s+ k + j − 1)ΓC(s+ k − 2)ΓR(s) (−1)j

k = 1 ΓC(s+ j)ΓR(s+ 2)ΓR(s+ 1)ΓR(s) (−1)j

ρ10 ΓC(s+ 2k + j − 3)ΓC(s+ k + j − 1) (−1)j
ΓC(s+ k − 2)ΓC(s+ j + 1)ΓR(s+ 1)2

4. Siegel modular forms. In this section, we define vector-valued
Siegel modular forms and explain their connection with automorphic
representations of the group GSp(4,AQ). The archimedean compo-
nents of these automorphic representations are the Bk,j defined earlier.
Considerations with Hodge numbers show that Siegel modular forms
should correspond to certain motives. In the last section, we explain
why four-dimensional symplectic artin representations do not corre-
spond to holomorphic Siegel modular forms.

4.1. Vector-valued Siegel modular forms. Let k be an integer
and j a non-negative integer. Let

Uj ≃ symj(C2)

be the space of all complex homogeneous polynomials of total degree j
in the two variables S and T . For any g ∈ GL(2,C) and P (S, T ) ∈ Uj ,
define

ηk,j(g)P (S, T ) = det(g)kP ((S, T )g).

Then (ηk,j , Uj) gives a concrete realization of the irreducible represen-

tation detk symj of GL(2,C). The ηk,j may be related to our previously
introduced K-types as follows:

(4.1) the restriction of ηk,j to K ∼= U(2) is V(k+j,k).
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Here, it is important that we fix the isomorphism K ∼= U(2) given by[
A B
−B A

]
7−→ A+ iB.

See [29, Section 3] for details.

Let H2 be the Siegel upper half space of degree 2. Hence, H2 con-
sists of all symmetric, complex 2× 2 matrices whose imaginary part is
positive definite. The group GSp(4,R)+, consisting of all elements of
GSp(4,R) with positive multiplier, acts on H2 by

gZ = (AZ +B)(CZ +D)−1, Z ∈ H2,

g =

[
A B
C D

]
∈ GSp(4,R)+.

We set

(4.2)

J(g, Z) = CZ +D, Z ∈ H2,

g =

[
A B
C D

]
∈ GSp(4,R)+.

Then, J(g1g2, Z) = J(g1, g2Z)J(g2, Z). Let C∞
k,j(H2) be the space

of smooth Uj-valued functions on H2. We define a right action of
GSp(4,R)+ on C∞

k,j(H2) by(
F
∣∣
k,j
g
)
(Z) = µ(g)k+j/2 ηk,j(J(g, Z))

−1F (gZ)(4.3)

for g ∈ GSp(4,R)+, Z ∈ H2.

The normalization factor µ(g)k+j/2 has the effect that the center of
GSp(4,R)+ acts trivially.

In the following, we fix a congruence subgroup Γ of Sp(4,Q). Let
C∞

k,j(Γ) be the space of smooth functions F : H2 → Uj satisfying

(4.4) F
∣∣
k,j
γ = F for all γ ∈ Γ.

Let Mk,j(Γ) be the subspace of holomorphic functions in C∞
k,j(Γ). The

elements of Mk,j(Γ) are called Siegel modular forms of degree 2 and
weight (k, j) with respect to Γ. An element F ∈ Mk,j(Γ) is called a
cusp form, if

(4.5) lim
λ→∞

(
F
∣∣
k,j
g
)([iλ

τ

])
= 0
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for all g ∈ Sp(4,Q) and all τ in the usual upper half plane H1. Let
Sk,j(Γ) be the space of cusp forms.

We abbreviate Mk,0(Γ) as Mk(Γ) and Sk,0(Γ) as Sk(Γ). These are
the spaces of complex-valued Siegel modular forms, respectively, cusp
forms.

4.2. Modular forms and automorphic representations. In this
section, we abbreviate G = GSp(4). Let A be the ring of adeles of Q,
and let Af be the finite part of A. Recall from [11] that an automorphic
form on G(A) is a continuous function

Φ : G(A) −→ C,

which is left-invariant under G(Q); right-invariant under a compact,
open subgroup of G(Af ); smooth and K-finite as a function of the
archimedean component; Z-finite, where Z is the center of the universal
enveloping algebra of g; and of moderate growth. A cusp form is an
automorphic form Φ satisfying∫

NP (Q)\NP (A)

Φ(ng) dn = 0(4.6)

and ∫
NQ(Q)\NQ(A)

Φ(ng) dn = 0(4.7)

for all g ∈ G(A), where NP and NQ are the unipotent radicals of
the parabolics P and Q defined in (2.4). Let π be an automorphic
representation of G(A), assumed to be irreducible, but not necessarily
cuspidal. For simplicity, let us assume that π can be realized as a
subspace V of the space of automorphic forms. (This assumption is
satisfied in most cases, and, in particular, if π is cuspidal. In general,
however, automorphic representations are defined as subquotients of
the space of automorphic forms, see [11], and not every subquotient can
be realized as a subspace.) Recall that π is not actually a representation
of G(A); rather, V carries an action of G(Af ) and, simultaneously, a
(g′,K)-module structure. Here,

g′ ∼= R⊕ g
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is the Lie algebra of G(R). For our purposes, it will be adequate to
assume that the center R of g′ acts trivially.

Since π is assumed to be irreducible, we may decompose π into
a restricted tensor product ⊗πp, where p runs over the places of Q.
Each πp is an irreducible, admissible representation of G(Qp), and πp
is unramified for almost all finite p. Let Vp be any model for πp, so
that V ∼= ⊗Vp, a restricted tensor product.

We will make an assumption on π∞, namely, that there exists a

(k, j) ∈ Z>0 × Z≥0

such that π∞ is isomorphic to the lowest weight representation Bk,j
defined in subsection 3.5. In particular, π∞ contains the K-type
V(k+j,k) with multiplicity 1. Let v∞ ∈ V∞ be a non-zero vector of
weight (k + j, k) in this K-type. Then, v∞ is unique up to scalars,
and π∞(N+)v∞ = 0. In addition, v∞ is annihilated by n, the three-
dimensional subspace of sp(4,R), spanned by the root vectors for the
roots (−2, 0), (−1,−1) and (0,−2).

For each finite prime p, let vp be a non-zero vector in Vp. For almost
all p, we assume that vp is the distinguished unramified vector that
has been used to construct the restricted tensor product ⊗Vp. Let Cp

be an open-compact subgroup of G(Qp) stabilizing vp. We make the
following assumptions:

• Cp = G(Zp) for almost all p.

• The multiplier map µ : Cp → Z×
p is surjective for all p. This is

certainly satisfied if Cp is one of the standard congruence subgroups,
like Γ0(p

n). In general, it follows from [31, Corollary 7.2.4] that, as
long as π is not one-dimensional, one can always find a vp stabilized by
a Cp for which

µ : Cp −→ Z×
p

is surjective.

The surjectivity assumption, together with strong approximation for
Sp(4), implies that

(4.8) G(A) = G(Q)G(R)+
∏
p<∞

Cp.

Here, G(Q) is diagonally embedded into G(A). Note that the product
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is not direct. In fact,

(4.9) Γ := G(Q) ∩G(R)+
∏
p<∞

Cp

is a congruence subgroup of Sp(4,Q).

From our choices, the pure tensor ⊗vp is a legitimate element of
⊗Vp. Let Φ ∈ V be the automorphic form corresponding to ⊗vp under
the isomorphism V ∼= ⊗Vp. By construction, Φ is right invariant under
the open-compact subgroup∏

p<∞
Cp of G(Af ).

It follows from (4.8) that Φ is determined by its values on G(R)+. Since
we assumed that the center of g′ acts trivially, Φ is in fact determined
by its values on Sp(4,R).

We now define a function Φ⃗ on Sp(4,R) taking values in the poly-
nomial ring C[S, T ] by

(4.10) Φ⃗(g) =

j∑
m=0

(−1)m

m!
(Nm

− Φ)(g)Sj−mTm, g ∈ Sp(4,R).

Here, the action of N− on Φ is by right translation. Evidently, Φ⃗ takes
values in the space

Uj ⊂ C[S, T ]

of the representation ηk,j . Hence, an expression like ηk,j(h)(Φ⃗(g))

makes sense, for any h ∈ GL(2,C). If j = 0, then Φ⃗ = Φ is C-
valued, and ηk,j(h) = det(h)k. We note that, since N− normalizes n,

the vector-valued Φ⃗ is annihilated by n, similarly to Φ.

As in [29, Section 3], it may be verified that the Uj-valued function

g 7−→ ηk,j(J(g, I))Φ⃗(g)

is right K-invariant. Hence, this function descends to a function on
H2
∼= Sp(4,R)/K. We introduce an additional normalization factor,

and define F : H2 → Uj by

(4.11) F (Z) = µ(g)−k−(j/2) ηk,j(J(g, I))Φ⃗(g),
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where g is any element of GSp(4,R)+ satisfying gI = Z. Since
Φ(γg) = Φ(g) for all g ∈ Sp(4,R) and γ ∈ Γ, the transformation

property (4.4) is satisfied. Furthermore, n · Φ⃗ = 0 implies that F is
holomorphic, see [29, Corollary 3.4]. It follows that F ∈Mk,j(Γ).

The F thus constructed from π is automatically an eigenform for
the Hecke algebra at p for all good places p, i.e., for all places where vp
is G(Zp) invariant. It is a cusp form if and only if π is a cuspidal auto-
morphic representation. This process may be reversed; one can start
with an eigenform and use it to generate an automorphic representa-
tion. Although this automorphic representation may not, in general,
be irreducible, it is still true that Sk,j(Γ) is spanned by eigenforms
originating from automorphic representations via the above process.

4.3. L-functions. Assume for the moment that Γ = Sp(4,Z), the full
Siegel modular group. Here is a brief overview of results concerning
the analytic properties of L-functions attached to Siegel eigenforms
with respect to Γ.

• Let k ≥ 1 be an integer, and let F ∈ Mk(Γ) be an eigenform for
all Hecke operators. The spin L-function ZF (s) is a degree 4 Euler
product attached to F . It is proved in [3] that the completed function

(4.12) ΨF (s) = ΓC(s)ΓC(s− k + 2)ZF (s)

has meromorphic continuation to C and satisfies the functional equation

(4.13) ΨF (2k − 2− s) = (−1)kΨF (s).

(The definition of ΨF (s) in [3] differs from that given in (4.12) by an
irrelevant constant.) If F is a cusp form, then ΨF (s) has at most two
simple poles at s = k−2 and s = k. The poles occur if and only if F is
in the Maass space, i.e., F is a Saito-Kurokawa lifting, see [17, 24, 27].

• Assume that j > 0, and let F ∈ Sk,j(Γ) be an eigenform. Note
that Sk,j(Γ) = 0 if j is odd; thus, we assume j to be even. Attached
to F is the Euler product ZF (s), defined exactly as in the scalar-valued
case via Hecke eigenvalues. It is completed to a function ΨF (s) using
the same formula (4.12). It is proved in [4] (under a mild condition)
and also in [36], that ΨF (s) can be analytically continued to an entire
function of s satisfying the functional equation

(4.14) ΨF (2k + j − 2− s) = (−1)kΨF (s).
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Note that there are no Saito-Kurokawa type liftings for j > 0.

• Let F ∈ Mk(Γ) be a scalar-valued eigenform. The standard L-
function DF (s) is a degree 5 Euler product attached to F . It is proved
in [8] that the completed function

(4.15) ΛF (s) = ΓR(s)ΓC(s+ k − 1)ΓC(s+ k − 2)DF (s)

has meromorphic continuation to C and satisfies the functional equation

(4.16) ΛF (1− s) = ΛF (s).

The results of [8] hold in fact for Siegel modular forms of any degree.

• Let F ∈ Sk,j(Γ) be an eigenform, with both k and j even. The
standard L-function DF (s) is defined exactly as in the scalar-valued
case via Hecke operators. Generalizing (4.15), the completed function
is

(4.17) ΛF (s) = ΓR(s)ΓC(s+ k + j − 1)ΓC(s+ k − 2)DF (s).

It was proven in [38] that ΛF (s) has analytic continuation to an entire
function and satisfies the functional equation (4.16).

• Let F ∈ Sk(Γ) with k ≥ 3. It is shown in [29, Theorem 5.2.1]
that the spin, standard and adjoint (degree 10) L-functions attached
to F have analytic continuation to entire functions, satisfy the expected
functional equation, and are bounded in vertical strips. These L-
functions come from the n-dimensional irreducible representation ρn
of the dual group Sp(4,C) for n = 4, 5 and 10, respectively. The next
largest representations are ρ14 and ρ16. As proven in [29], the resulting
L-functions of degrees 14 and 16 attached to F have meromorphic
continuation and satisfy a functional equation. For more details on
the finite-dimensional representations of Sp(4,C), see [13].

If we replace s by s+ k − (3/2) in (4.12), we obtain the completion
factor

ΓC

(
s+ k − 3

2

)
ΓC

(
s+

1

2

)
,

which is the degree 4 L-factor for the representation Bk,0, see Propo-
sition 3.1. The shift by k − (3/2) is consistent with the fact that the
factors in Proposition 3.1 are all normalized to fit into a functional
equation relating s and 1− s. The sign (−1)k in (4.13) is the ε-factor
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for Bk,0. There are no contributions to the global sign coming from the
finite places since we are in an everywhere unramified situation.

In the vector-valued case, if we replace s by s+k+(j − 3)/2, then the
completion factor in (4.12) turns into the L-factor for the lowest weight
representation Bk,j , and the resulting functional equation relates s and
1− s. The sign (−1)k in (4.14) coincides with the ε-factor of Bk,j since
we assume j to be even.

In the degree 5 case, the completion factors in (4.15) and (4.17)
are the archimedean Euler factors L(s, π, ρ5) for π = Bk,0 and π =
Bk,j , respectively, see Proposition 3.1. The sign +1 in the functional
equation (4.16) is the ε-factor of π since j is assumed to be even.

In either the scalar- or the vector-valued case, let π be the cuspidal
automorphic representation of G(A) generated by the adelization of the
eigenform F ∈ Sk,j(Γ). Then π is irreducible, see [26, Corollary 3.4].
If we factor π = ⊗πp, then π∞ is the lowest weight representation
Bk,j ; this eventually follows from (4.1). Comparing classical and adelic
Hecke operators, as in [6], it is not difficult to see that

(4.18) ΨF

(
s+ k +

j − 3

2

)
= L(s, π, ρ4)

and

ΛF (s) = L(s, π, ρ5),(4.19)

where

L(s, π, ρn) =
∏
p≤∞

L(s, πp, ρn)(4.20)

are the Langlands L-functions attached to the representation π (and
normalized such that the functional equations relate s and 1− s). The
functional equations (4.14) and (4.16) are those expected since the finite
places do not contribute to the signs. Note that π is self-contragredient,
since it has trivial central character.

General congruence subgroups. Now assume that Γ is an arbitrary
congruence subgroup. The most prominent are the Siegel congruence
subgroup and the paramodular group of level N , respectively, given by
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Γ0(N) = Sp(4,Z) ∩


Z Z Z Z
Z Z Z Z
NZ NZ Z Z
NZ NZ Z Z

 ,(4.21)

K(N) = Sp(4,Q) ∩


Z NZ Z Z
Z Z Z N−1Z
Z NZ Z Z
NZ NZ NZ Z

 .
Let F ∈ Sk,j(Γ) be an eigenform with respect to all good Hecke
operators. We may then define, for all good primes p, local Euler
factors Lp(s, F, ρn), for n = 4, 5, 10, . . . , via the eigenvalues of these
Hecke operators; for n = 4, see [3], and, for n = 5, see [8]. The
problem of defining Euler factors at the bad places in terms of data
derived from F , and of proving the desired analytic properties of the
resulting L-function, is unsolved. It is closely related to the problem
of defining old- and new-forms, which is also unsolved except for the
paramodular case, see [32]. Whatever the correct Euler factors are,
the archimedean factor used to complete the L-function depends only
upon the weight (k, j) and is given in Proposition 3.1.

We may use the adelization of F to generate a cuspidal automorphic
representation π. In general, π will not be irreducible. However, we
can always write F as a sum of eigenforms for which the associated π’s
are irreducible. Thus, we assume this is the case for F itself. Then,
the “correct” manner of assigning local factors to F at all places p is

Lp(s, F, ρn) := L(s, πp, ρn),

where, on the right hand side, we have the factors attached to the
local representations πp via the local Langlands correspondence. For
all non-supercuspidal πp, these factors are listed in [33, Table A.8] for
the n = 4 case, [33, Table A.10] for the n = 5 case and in [7] for the
n = 10 case. For supercuspidal πp and n = 4, the factors are 1.

The problem with this approach is that it is not clear how to deter-
mine the πp from F at a bad place p. Even for elliptic modular forms,
the analogous problem is not simple, see [23]. For the paramodular
case, L(s, πp, ρ4) may be determined by using two paramodular Hecke
operators acting on a newform, although the action of these operators
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may be difficult to compute. This has been carried out in [30] for a
particular situation.

Even if all Euler factors can be defined, the problem remains of
proving the analytic properties of the resulting L-function. Recall that
the archimedean component π∞ of the automorphic representation
π = ⊗πp corresponding to an eigenform F in Sk,j(Γ) is the lowest
weight representation Bk,j . The Bk,j are all non-generic, meaning
they do not admit a Whittaker model. This precludes the use of the
Langlands-Shahidi method for π.

It can be shown that a cuspidal automorphic representation of
GSp(4,A) which is not globally generic admits a global Bessel model.
The approach of [28] was to use local and global Bessel models to
define local factors and prove (some of) the expected analytic properties
of L(s, π, ρ4). More work must be done, however, both locally and
globally, before the theory sketched in [28] can be considered on a
solid enough basis in order to be applied to Siegel modular forms.

4.4. Hodge numbers. Let X be a compact, complex manifold and
Hi(X,C) its ith cohomology group. Then, Hi(X,C) admits a Hodge
decomposition

Hi(X,C) =
⊕

p+q=i

Hp,q,

where elements of Hp,q are represented by closed forms of type (p, q).
Complex conjugation induces an involution F∞ on Hi(X,C) mapping
Hp,q onto Hq,p. The Hodge numbers hp,q = dimCH

p,q thus satisfy
hp,q = hq,p. The sequence of numbers (hi,0, . . . , h0,i) is called the
Hodge vector for i. If i is even, then there is a space Hp,p (p = i/2),
on which F∞ acts as an involution; let hp,± be the dimension of the
±1-eigenspace. We attach Γ-factors to X by
(4.22)

L(X, s) = ΓR

(
s− i

2

)hi/2,+

ΓR

(
s− i

2
+ 1

)hi/2,− ∏
p+q=i
p<q

ΓC(s− p)h
p,q

(with the first two factors appearing only if i is even), see [35, equa-
tion (25)]. For example, for an abelian variety of dimension n, the
Hodge vector for i = 1 is (n, n), and the resulting Γ-factor is ΓC(s)

n.
See [15] for an interpretation of the factor (4.22) as the inverse of a suit-
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ably defined characteristic polynomial of an endomorphism of a certain
infinite-dimensional vector space.

Assuming that X originates as a localization of an algebraic variety
defined over a number field, the factor in (4.22) is designed to fit into
an L-function whose functional equation (conjecturally) relates s and
i+ 1− s. Replacing s by s+ i/2 in (4.22), this factor turns into
(4.23)

L(X, s+ i/2) = ΓR(s)
hi/2,+

ΓR(s+ 1)h
i/2,− ∏

p+q=i
p<q

ΓC

(
s+

q − p
2

)hp,q

.

We note that this is precisely the factor attached to the representation

(4.24) hi/2,+ · φ+ ⊕ hi/2,− · φ− ⊕
∑

p+q=i
p<q

hp,q · φq−p

of WR, see Table 1. The factor in (4.22) is designed to fit into an
L-function whose functional equation relates s and 1− s.

Sometimes the Weil group representation in (4.24) coincides with
the archimedean parameter associated to a lowest weight representation
Bk,j . For this to occur, we need k ≥ 2 since, for k = 1, we have the non-
tempered lowest weight modules, whose parameters (3.17) are never of
the form (4.23). The parameter for Bk,j with k ≥ 2, as a representation
of WR, is

(4.25) φ2k+j−3 ⊕ φj+1;

see (3.10), (3.11) and Table 4. Hodge vectors for i = 2k+j−3 producing
the WR representation in (4.25) are

(4.26)
(
1, 0, . . . , 0︸ ︷︷ ︸

k−3

, 1, 0, . . . , 0︸ ︷︷ ︸
j

, 1, 0, . . . , 0︸ ︷︷ ︸
k−3

, 1
)

for k ≥ 3, and

(4.27)
(
2, 0, . . . , 0︸ ︷︷ ︸

j

, 2
)

for k = 2. Note that the width i = 2k+j−3 leads to an L-function with
functional equation relating s and 2k+j−2−s; comparison with (4.14)
shows that the classical normalization of the L-function coincides
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with the motivic normalization. Sometimes this is referred to as the
arithmetic normalization, as opposed to the analytic normalization,
which relates s to 1− s in the functional equation.

Here are some examples of Siegel modular forms of degree 2 attached
to geometric (more generally, motivic) objects:

• Hodge vectors (2, 2) arise from abelian surfaces, and the corre-
sponding B2,0 is the underlying archimedean representation of a Siegel
modular form of weight 2. This explains the appearance of weight 2
Siegel modular forms in the paramodular conjecture formulated in [12].

• The theory of hypergeometric motives is explained in [34]. Such
motives can lead to many different Hodge vectors, but only a few are of
the form (4.26) or (4.27). In fact, most hypergeometric Hodge vectors
of the form (4.26) or (4.27) are either (1, 1, 1, 1) or (2, 2). Special
hypergeometric motives can also have Hodge vectors (1, 1, 0, 0, 1, 1)
or (2, 0, 0, 2). There are a few sporadic cases where hypergeometric
motives reduce to give additional Hodge vectors of the form (4.26).

• The Hodge vector (1, 1, 1, 1) arises from various families of motives.
There are 14 hypergeometric families with these Hodge numbers, see
[16, Table 1]. The work [2] lists these 14 and many others which are
not hypergeometric. Yet other examples are those in [9, Table 2]. The
Hodge numbers (1, 1, 1, 1) give rise to the same WR representation as
B3,0, the underlying archimedean representation of a Siegel modular
form of weight 3. The motives listed in the cited works are thus
expected to correspond to Siegel modular forms of weight 3 via their
L-functions.

• Hodge vectors of the form (4.26) appear in [41, (3.1)]. Section 4
of [41] considers the hypothetical motive attached to a scalar-valued
Siegel modular form of weight k. The Hodge vector in [41, (4.2)] is
precisely that in (4.26) for j = 0.

4.5. artin representations. Let L/F be a finite Galois extension of
number fields with Galois group G(L/F ). An artin representation is a
homomorphism

σ : G(L/F ) −→ GL(n,C),

for some n ≥ 1. artin [5] associated an Euler product L(s, σ) to σ and
proved several fundamental properties. Let v be a place of F and w a
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place of L lying above v. The localization

σv : G(Lw/Fv) −→ GL(n,C)

determines an irreducible, admissible representation πv of GL(n, Fv)
via the local Langlands correspondence. It is conjectured that, if σ is
irreducible and non-trivial, then π = ⊗πv is a cuspidal automorphic
representation of GL(n,AF ).

Assume, for simplicity, that F = Q. The possibilities for the Archi-
medean representation π∞ arising from σ are very limited since its
parameter

WR −→ GL(n,C)

must factor through the homomorphism (3.2). Hence, WR → GL(n,C)
is determined by the image of j, which must either be the identity or an
element of order 2. Up to conjugation, there are exactly n+1 elements
of order at most 2 in GL(n,C), given by

diag
(
1, . . . , 1︸ ︷︷ ︸

r

,−1, . . . ,−1︸ ︷︷ ︸
n−r

)
, r = 0, . . . , n.

The corresponding irreducible, admissible representation of GL(n,R)
is

(4.28) 1R× × . . .× 1R×︸ ︷︷ ︸
r

× sgn× . . .× sgn︸ ︷︷ ︸
n−r

;

here, 1R× , respectively, sgn, denotes the trivial, respectively, sign,
character of R×, and we use a standard notation for parabolic induction
from the Borel subgroup. Note that the induced representation (4.28)
is irreducible and unitary, see [37] for much more general results.

Assume that n = 2 and σ is an odd artin representation, i.e., det(σ∞)
is non-trivial. Then, the only possibility for π∞ is 1R×× sgn, which is a
limit of discrete series representation of GL(2,R) with lowest weight 1.
The expected cuspidal automorphic representation of GL(2,A) hence
corresponds to an elliptic cusp form of weight 1. The work [14] shows
that every cusp form of weight 1 with odd Dirichlet character arises
from an irreducible two-dimensional artin representation.
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We now consider the case of four-dimensional symplectic artin rep-
resentations, i.e., homomorphisms

σ : G(L/Q) −→ GSp(4,C).

Since GSp(4,C) is the dual group of GSp(4), it is reasonable to ask
whether such artin representations, at least conjecturally, give rise to
holomorphic Siegel modular forms of some weight. In order to answer
this question, we consider the archimedean parameters

WR −→ GSp(4,C),

which, as above, must factor through the homomorphism (3.2). There
are exactly four conjugacy classes of order at most 2 in GSp(4,C),
represented by the elements

1
1

1
1

 ,

−1

1
−1

1

 ,(4.29)


−1

−1
1

1

 ,

−1

−1
−1

−1

 .
Using the notation introduced in subsection 3.1, the resulting represen-
tations of WR are one of the following:

φ+ ⊕ φ+ ⊕ φ+ ⊕ φ+ ,

φ+ ⊕ φ+ ⊕ φ− ⊕ φ− ,

φ− ⊕ φ− ⊕ φ− ⊕ φ− .

None is a parameter for a discrete series, limit of discrete series or non-
tempered lowest weight representation of GSp(4,R). It follows that
four-dimensional symplectic artin representations do not correspond to
holomorphic Siegel modular forms.

In order to see which irreducible, admissible representations of
GSp(4,R) correspond to the parameters determined by the elements
in (4.29), we must consider the duality for GSp(4), as in [33, subsec-
tion 2.4]. Since the parameters have an image on the diagonal sub-
group, the corresponding representations are induced from the Borel
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subgroup. More precisely, employing the notation (2.5), the represen-
tations corresponding to the four elements in (4.29) are

1R× × 1R× o 1R× ,(4.30)

sgn× sgno 1R× ,

sgn× 1R× o 1R× ,

1R× × 1R× o sgn;

see [33, equation (2.28)]. In order to understand the K-types of
these representations, we consider their restrictions to Sp(4,R). The
first and last representation in (4.30) restrict to 1R× × 1R× o 1 (using
notation (2.8), the second restricts to sgn × sgn o 1 and the third to
sgn × 1R× o 1). From [25, Lemmas 5.1 and 6.1], 1R× × 1R× o 1 is
irreducible with the multiplicities of its K-types as follows:

(4.31)

�
�

�
�
�
�

�
�
�
�

�
��

-�

6

?

�
��

�
�	

@
@R

@
@I s s s s

sss s s s s s

s s s
s1

1

1

1

1

1

1

2

2

2

2

2

3

3

3

4

This representation of Sp(4,R) is invariant under conjugation by
diag(1, 1,−1,−1) and can thus be extended in two different ways to
a representation of Sp(4,R)±. Extending further to

GSp(4,R) ∼= R>0 × Sp(4,R)±

by letting R>0 act trivially, we obtain

1R× × 1R× o 1R× and 1R× × 1R× o sgn.

Evidently, these two representations of GSp(4,R) are twists of each
other by the sign character.

Next, consider sgn × sgn o 1. From [25, Corollary 5.2], this repre-
sentation of Sp(4,R) is not irreducible, but decomposes as

sgnoD+
0 ⊕ sgnoD−

0 ,

where D+
0 , respectively, D

−
0 , is the limit of discrete series representation

of SL(2,R) with lowest weight 1, respectively, highest weight −1.



SIEGEL MODULAR FORMS 2419

According to [25, Lemma 6.1], theK-types of these two representations
are as follows:

(4.32)
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Induction to Sp(4,R)± of either one of sgnoD±
0 results in an irreducible

representation combining the K-types of both. Extending trivially to
GSp(4,R) gives the representation sgn × sgn o 1R× , corresponding to
the second matrix in (4.29). Note that this representation is invariant
under twisting by sgn, i.e.,

sgn× sgno 1R× ∼= sgn× sgno sgn,

corresponding to the fact that diag(−1, 1,−1, 1) is conjugate to diag(1,
−1, 1,−1) by an element of Sp(4,R).

Finally, consider sgn × 1R× o 1. From [25, Corollary 5.2], this
representation of Sp(4,R) decomposes as

1R× oD+
0 ⊕ 1R× oD−

0 .

The K-types of the two are as follows:

(4.33)
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Upon induction to Sp(4,R)± and extension to GSp(4,R), we obtain the
irreducible representation sgn× 1R× o 1R× , corresponding to the third
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matrix in (4.29). It is isomorphic to sgn× 1R× o sgn and combines the
K-types of the two representations in (4.33).

We note that the five representations of Sp(4,R) in (4.31), (4.32)
and (4.33) are precisely those which have infinitesimal character (0, 0).

The representation sgn × 1R× o 1R× is the only one among those
in (4.30) which has non-trivial central character. It is thus the unique
archimedean component attached to any “symplectically odd” four-
dimensional artin representation. Such Galois representations appear
in [19]. One can still relate them to certain types of non-holomorphic
Siegel modular forms by singling out a K-type in sgn × 1R× o 1R×

and considering the corresponding vector-valued functions on the Siegel
upper half spaceH2. This is carried out in [19], where theK-type (2, 1)
is chosen and an appropriate theory of non-holomorphic Siegel modular
forms is developed.
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