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Abstract

Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree 2.
It is proved that if F is not in the Maaß space, then there exist infinitely many primes p for which the
sequence µ(pr), r > 0, has infinitely many sign changes.

1 Introduction and preliminaries

Let F ∈ Sk(Sp(4, Z)) be a cuspidal Hecke eigenform of degree 2. Let µ(n), n > 0, be the Hecke
eigenvalues. It is known that F is in the Maaß space (i.e., F is a Saito-Kurokawa lifting), if and only if
µ(n) > 0 for all n; see [2]. On the other hand, Kohnen has recently proved (see [6]) that if F is not in
the Maaß space, then the sequence µ(n), n > 0, has infinitely many sign changes. The proof made use
of the (as yet unpublished) Ramanujan estimate for non-Saito-Kurokawa cusp forms.

In this note we will strengthen the result on sign changes as follows: If F is not in the Maaß space,
then there exist infinitely many primes p for which the sequence µ(pr), r > 0, has infinitely many sign
changes. Our proof is also based on a Ramanujan-type result for the underlying group GSp4, however
not the full Ramanujan conjecture. We use the weaker statement, proved in [4], that a suitable product
of Satake p-parameters has absolute value one. We showed in [9] that this result, combined with the
classification of unitary, spherical representations of GSp4(Qp), implies certain restrictions on the local
components of the cuspidal, automorphic representations of GSp4(A) attached to classical eigen-cusp
forms. It is these restrictions on the local representations that are exploited in the present paper.

In fact, our proof works for cusp forms with level as well (as long as the weight is greater than 2). In
this case the statement “F is not in the Maaß space” is to be replaced by “πF is not a theta lifing from
the metaplectic group fSL2(A)”; here, πF is one of the cuspidal, automorphic representations of GSp4(A)
attached to F . For the full modular group these two statements are equivalent, and are equivalent to
the fact that πF is a CAP representation with respect to the Siegel parabolic subgroup. For higher level
it is at least conceivable that πF might be CAP without being a theta lifting (namely, πF might be a
non-trivial twist of a theta lifting). Hence, for modular forms with level, we prefer not to translate the
“not a theta lifting” condition into purely classical language.

We will now recall the required results from our paper [9]. Let F ∈ Sk(Γ0(N)) be a Siegel cusp form
of degree k > 2 and level N ≥ 1. Assume that F is a Hecke eigenform with eigenvalues µ(n) for all n
coprime to N . As explained in [9], section 2, F generates a space VF of cuspidal automorphic forms on
GSp4(A) invariant under right translation. This space may not be irreducible, but decomposes into a
finite number of irreducible, cuspidal, automorphic representations. Let πF be one of these irreducible
pieces. We can write πF as a restricted tensor product ⊗πF,p, where πF,p is an irreducible, admissible
representation of GSp4(Qp). For a prime p - N , the equivalence class of πF,p is independent of the choice
of irreducible component πF of VF . For such primes, πF,p is the unramified (spherical) constituent of a
representation χ1 × χ2 o σ induced from the character0BB@

a1 ∗ ∗ ∗
0 a2 ∗ ∗
0 0 λa−1

1 0
0 0 ∗ λa−1

2

1CCA 7→ χ1(a1)χ2(a2)σ(λ)

of the Borel subgroup; here, χ1, χ2, σ are unramified characters of Q×p . Since πF,p has trivial central
character, we have χ1χ2σ

2 = 1. We set a := σ(p) and b := σ(p)χ1(p).
From [1], Proposition 3.35, we get the relation between Hecke eigenvalues µ(pr) for r > 0 and a and

b from the following formal power series identity :

∞X
r=0

µ(pr)

(pr)k− 3
2

Xr =
1− p−1X2

(1− aX)(1− a−1X)(1− bX)(1− b−1X)
(1)
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Using partial fractions and geometric series, we have shown in [9], Proposition 4.1, that

µ(pr)

(pr)(k−3/2)
= Aa,b(r) + (1− 1/p)

[r/2]X
t=1

Aa,b(r − 2t), (2)

where

Aa,b(j) =
“ jX

u=0

aj−ubu
”“ jX

u=0

(ab)−u
”
. (3)

In [9], Theorem 3.2, we have shown that only three types of local representations πF,p can occur:

1.1 Proposition. Let N and k be positive integers with k > 2. Let F ∈ Sk(Γ0(N)) be a Hecke
eigenform. For p - N let πF,p be the corresponding local representation of GSp4(Qp). Then πF,p can only
be one of the following.

(T) χ1 × χ2 o σ irreducible with |χ1| = |χ2| = |σ| = 1 (the tempered case);
or

(C) χ1×χ2 oσ irreducible with χ1 = νβχ, χ2 = νβχ−1, |χ| = 1, e(σ) = −β
with 0 < β < 1/2 (the complementary series case); or

(SK) χ1GL(2)oσ, the spherical constituent of ν1/2χ×ν−1/2χoσ, with |χ| = 1
(the Saito–Kurokawa case).

The characters χ1, χ2, χ and σ above are unramified and ν is the p-adic valuation of Qp normalized such
that ν(p) = p−1.

2 Local results

We now want to give a result on the signs of the Hecke eigenvalues µ(pr) for some sub-family of local
representations.

2.1 Lemma. Let F ∈ Sk(Γ0(N)), k > 2, be a Hecke eigenform of degree 2 with eigenvalues µ(n) for
(n, N) = 1. For p - N let πF,p be the corresponding local representation; it is the spherical constituent
of an induced representation χ1 × χ2 o σ as above. Let a = σ(p) and b = σ(p)χ1(p) If at least one of a
and b is real, then we have exactly one of the two following situations:

1. µ(pr) ≥ 0 for all r > 0,

2. µ(pr) > 0 for r ≡ 0 (mod 2) and µ(pr) < 0 for r ≡ 1 (mod 2).

Proof. The condition on the values a and b implies that πF,p is either of Type (T) with at least one of
a and b equal to ±1 or of Type (C) or Type (SK). The proof is based on the observation that µ(pr) is a
positive linear combination of the numbers Aa,b(j) defined in (3), where j has the same parity as r.

Case 1: πF,p is of Type (C) or (SK).

In this case a = pβσ0 and b = χ(p)σ0 where 0 < β ≤ 1/2, σ0 = ±1 and |χ(p)| = 1. Here β = 1/2
corresponds to Type (SK) and 0 < β < 1/2 corresponds to Type (C). Using (3) we get

Aa,b(j) = (pβσ0)
j
˛̨̨ jX

u=0

(pβχ(p))−u
˛̨̨2

.

Since |pβχ(p)| 6= 1, the sum is never zero. Hence we are in the first case of the Lemma if σ0 = 1, and in
the second case if σ0 = −1.

Case 2 : πF,p is of Type (T).
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In this case our hypothesis implies that at least one of a or b equals ±1. Observe that Aa,b(j) remains
unchanged when we exchange a and b. Hence, without loss of generality, we may assume that a is ±1.
First assume that a = 1. Then, from (3) we have

Aa,b(j) =
˛̨̨ jX

u=0

bu
˛̨̨2
≥ 0 for all j > 0.

Hence we are in the first case of the Lemma. Now assume that a = −1. Then, from (3),

Aa,b(j) = (−1)j
˛̨̨ jX

u=0

(−b)u
˛̨̨2

.

If b = 1, then we are in the first case of the proposition. If b = −1, then we are in the second case of
the proposition. Assume that b 6= ±1. If r is even, then Aa,b(0) = 1 occurs in (2). If r is odd, then
Aa,b(1) = −|1 − b|2 occurs in (2). In either case, µ(pr) 6= 0, so that we are in the second case of the
Lemma. �

We wish to remark here that we are able to prove the above proposition only by using Proposition
1.1. We cannot carry out the above proof by merely using the unitary classification from [10], [11]. Also,
note that the hypothesis of the theorem (at least one of a or b is real) forces the local representation to
be either the complementary series (Type (C)) or the limits of complementary series – β = 1/2 gives the
Type (SK) and β = 0 gives the tempered with at least one of a or b equal to ±1.

Lemma 2.1 gives us the following information about the sign of the eigenvalues µ(pr) for a fixed prime
p - N if we do not make any assumption on the local representation πF,p as in Proposition 2.1.

2.2 Proposition. Let F ∈ Sk(Γ0(N)) be a Hecke eigenform of degree 2 and weight k > 2. For a fixed
prime p - N let µ(pr) be the eigenvalue of F for any r > 0. Then exactly one of the following is true.

1. µ(pr) ≥ 0 for all r > 0.

2. There are infinitely many r such that µ(pr) > 0 and infinitely many r such that µ(pr) < 0.

Proof. We will distinguish two cases.

Case 1: µ(pr) ≥ 0 for almost all r.

In this case we shall prove that µ(pr) ≥ 0 for all r > 0. To prove this we will use the following theorem
due to Landau on Dirichlet series with non-negative coefficients.

2.3 Theorem. (Landau) Suppose G(s) is represented in the half plane Re(s) > c by the series

G(s) =

∞X
n=1

a(n)

ns
, (4)

where c ∈ R is finite and a(n) ≥ 0 for all n ≥ n0. Then either the series in (4) converges for all values of
s or the function G(s) has a pole on the real line at the abscissa of convergence of the series.

Let us return to the proof of Proposition 2.2. Consider the function

G(s) =
1− p−1p−2s

(1− ap−s)(1− a−1p−s)(1− bp−s)(1− b−1p−s)
,

where a = σ(p) and b = σ(p)χ1(p) as before. Let us set a(pr) := µ(pr)

(pr)k−3/2 and a(n) := 0 if n is not of

the form pr for any r. From [9], Theorem 4.2, we know that |µ(pr)| ≤ 36(pr)k−1, which implies that the
series

∞X
n=1

a(n)

ns
=

∞X
r=0

µ(pr)

(pr)k− 3
2

(pr)−s
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converges absolutely for Re(s) > 1/2. Hence, from (1), we get

1− p−1p−2s

(1− ap−s)(1− a−1p−s)(1− bp−s)(1− b−1p−s)
=

∞X
r=0

µ(pr)

(pr)k− 3
2

(pr)−s for Re(s) >
1

2
. (5)

According to the assumption that only finitely many eigenvalues are negative we see that the above
function satisfies the hypothesis of Landau’s theorem. Hence either the series converges for all s (in
which case G(s) is an entire function) or has a pole on the real line at the abscissa of convergence. Since
the function on the left hand side clearly has poles, the first alternative cannot occur, so that there is
a pole on the real line. Hence at least one of a or b is real. From Lemma 2.1 we now conclude that
µ(pr) ≥ 0 for all r > 0.

Case 2: µ(pr) < 0 for infinitely many r.

In this case we shall prove that there are infinitely many r for which µ(pr) > 0. Assume that there are
only finitely many r for which µ(pr) > 0. Similarly as above, we have

− 1− p−1p−2s

(1− ap−s)(1− a−1p−s)(1− bp−s)(1− b−1p−s)
=

∞X
r=0

−µ(pr)

(pr)k− 3
2

(pr)−s for Re(s) >
1

2
. (6)

By our assumption, the Landau argument applies to the series on the right hand side, proving that at
least one of a or b is real. But then Lemma 2.1 implies that µ(pr) is positive for infinitely many r, a
contradiction. �

Notice that in Proposition 2.2 we do not get the stronger result as in Lemma 2.1 since a priori it is
possible that the local representation πF,p is a tempered representation with both a and b not real.

3 Global results

To state the main result of this paper we need to introduce CAP representations and theta lifts. Given an
irreducible cuspidal automorphic representation π of GSp4(A) and a proper parabolic subgroup P = MN
with levi factor M , we say that π is CAP (Cuspidal Associated to Parabolic) associated to the parabolic
P if there is an irreducible cuspidal automorphic representation τ of M such that πp ' π′p for almost

all p, where π′ is an irreducible component of Ind
GSp4(A)

P (A) (τ). Recall that GSp4 has only three parabolic

subgroups (up to conjugation), the Siegel parabolic subgroup P , the Klingen parabolic Q and the Borel
subgroup B. We have shown in [9], Corollary 4.5, that if we start with a holomorphic, cuspidal eigenform
F of degree 2, weight k > 2 and level N , then any of the corresponding irreducible, cuspidal, automorphic
representations πF of GSp4(A) can only be CAP to the Siegel parabolic.

It is known that an irreducible, cuspidal, automorphic representation π of GSp4(A) is CAP to the
Siegel parabolic if and only if it is either a theta lift from an irreducible, cuspidal, automorphic repre-
sentation eτ of fSL2(A), the metaplectic cover of SL2, or a twist by an idele class character of such a theta
lift. It is shown in [8], Theorem 2.2, that π is a theta lift if and only if the degree four (spin) L-function
LSpin(s, π) of π has a pole. In [8], Lemma 3.1, it is also shown that the only possible poles of LSpin(s, π)
are at s = 3/2 and s = −1/2. If π is a twist of a theta lift by a non-trivial character, then LSpin(s, π)
has no poles.

If πF is one of the representations corresponding to a holomorphic Siegel cusp form F of weight k > 2
and level N , then πF is CAP if and only if either it is a theta lift or it is a theta lift twisted by a quadratic
character. We get the restriction that the twisting character is quadratic because πF has trivial central
character. We have the following information about the local representation πF,p for p - N if πF is a
CAP representation:

1. If πF is a theta lift, then for every p - N the local representation πF,p is of Type (SK) with πF,p

being the spherical constituent of the induced representation of the form ν1/2χ× ν1/2χ−1 o ν−1/2

with |χ| = 1.

2. If πF is a twist of a theta lift with a quadratic character σ0 = ⊗σ0,p, then for every p - N for
which σ0,p is unramified the local representation πF,p is of Type (SK) with πF,p being the spherical
constituent of the induced representation of the form ν1/2χ× ν1/2χ−1 o ν−1/2σ0,p with |χ| = 1.
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Now we state our main theorem.

3.1 Theorem. Let N and k be positive integers with k > 2. Let F ∈ Sk(Γ0(N)) be a Hecke eigenform
with Hecke eigenvalues µ(n) for all n coprime to N . Let πF be one of the corresponding irreducible,
cuspidal, automorphic representations of GSp4(A). Then the following two statements are equivalent:

1. πF is not a theta lift from an irreducible cuspidal automorphic representation of fSL2(A), the
metaplectic cover of SL2.

2. There exists an infinite set SF of prime numbers p - N such that if p ∈ SF then there are infinitely
many r such that µ(pr) > 0 and infinitely many r such that µ(pr) < 0.

Moreover, if πF is a theta lift then we have the stronger statement that µ(pr) > 0 for all p - N and r > 0.

Proof. First assume that πF is a theta lift. Then from the discussion before the statement of the
theorem we know that for all p - N the local representation πF,p is the spherical constituent of an
induced representation of the form ν1/2χ× ν1/2χ−1 o ν−1/2 with |χ| = 1. Using (3) we get

Aa,b(j) = (p1/2)j
˛̨̨ jX

u=0

(p1/2χ(p))−u
˛̨̨2

> 0,

so that µ(pr) > 0 for all r > 0, as claimed.
Now we will prove the equivalence of the two statements in the theorem. If there exists a prime p

such that there are infinitely many r such that µ(pr) > 0 and infinitely many r such that µ(pr) < 0,
then from the previous paragraph it is clear that πF is not a theta lift. Hence 2) implies 1).

Now assume that πF is not a theta lift. There are two possibilities :
Case 1: Suppose πF is a twist of a theta lift by a non-trivial quadratic character σ0. Let SF := {p -

N : σ0,p(p) = −1}. Since σ0 is a non-trivial character, SF is an infinite set. Now let p ∈ SF . Again using
(3) we get

Aa,b(j) = (−p1/2)j
˛̨̨ jX

u=0

(p1/2χ(p))−u
˛̨̨2

.

Thus, by (2), we conclude that µ(pr) > 0 if r is even and µ(pr) < 0 if r is odd. This gives us the desired
result.

Case 2: Suppose πF is not a CAP representation.
Let S be the set of primes p - N such that the sequence µ(pr), r > 0, has infinitely many sign changes.

Let us assume, contrary to the assertion, that S is finite. First observe that Proposition 2.2 implies that
if p 6∈ S then µ(pr) ≥ 0 for all r > 0. Set a(n) = µ(n)

nk−3/2 if (n, N) = 1 and (n, p) = 1 for all p ∈ S and
a(n) = 0 otherwise. Then a(n) ≥ 0 for all n. We fix an ε > 0. From [9], Theorem 4.2, there exists a
constant Cε such that |a(n)| ≤ Cεn

1/2+ε. Let S̃ := S ∪ {p prime : p|N}. From (1) we see that for Re(s)
large enough (Re(s) > 3/2 + ε will work)

LS̃
Spin(s, πF ) = ζS̃(2s + 1)

∞X
n=1

a(n)

ns
(7)

with

LS̃
Spin(s, πF ) =

Y
p 6∈S̃

1

(1− ap−s)(1− a−1p−s)(1− bp−s)(1− b−1p−s)
,

ζS̃(s) =
Y
p 6∈S̃

1

1− p−s
.

Landau’s Theorem applies to the series
∞P

n=1

a(n)
ns . Hence the abscissa of convergence, say c0, of this series

is either −∞ (in which case the series represents an entire function) or the series has a pole on the real
line at the abscissa of convergence. Now if c0 < 0 then the right hand side of (7) has a pole at s = 0

(since ζS̃(2s + 1) has a pole at s = 0 and
∞P

n=1

a(n)
ns is non-zero at s = 0). This implies that LS̃

Spin(s, πF ),
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and hence LSpin(s, πF ), has a pole at s = 0. But this is not possible since we have already seen earlier
that the spin L-function can have a pole only at s = 3/2 or s = −1/2. Hence c0 ≥ 0. Then Landau’s
theorem forces c0 = 3/2. This implies that LSpin(s, πF ) has a pole at s = 3/2 which forces πF to be
a theta lift. This contradicts our assumption that πF is not a CAP representation, hence proving the
theorem. �

3.2 Corollary. Let F ∈ Sk(Sp(4, Z)) be a Hecke eigenform with Hecke eigenvalues µ(n) for all positive
integers n. Let πF be one of the corresponding irreducible, cuspidal, automorphic representations of
GSp4(A). Then:

1. If F is in the Maaß space, then µ(n) > 0 for all primes p.

2. If F is not in the Maaß space, then there exists an infinite set SF of prime numbers p such that
if p ∈ SF then there are infinitely many r such that µ(pr) > 0 and infinitely many r such that
µ(pr) < 0.

Proof. By [5] or [7], the eigenform F being in the Maaß space is equivalent to LSpin(s, F ) having poles.

By [8], this in turn is equivalent to πF being a theta lifting from fSL2(A). Hence the result is a consequence
of Theorem 3.1. �
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