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1 | INTRODUCTION

In this work, we consider dimension formulas for spaces of scalar-valued Siegel modular forms
of degree 2, weight k, and level dividing 4. The notion of level is ambiguous; for example, level 4
could refer to modular forms with respect to the paramodular group K(4), the Siegel congruence
subgroup I'y(4), the Klingen congruence subgroup 1"6(4), or others. We consider the following 11
congruence subgroups of Sp(4, @), all of which are in some sense level 1, 2, or 4:

Sp(4, Z) K(2) K@)
[ @) M)
N0 A N A .
e B) e
;) )
rR)

The connecting lines indicate inclusions (with the bigger group on top), and their labels show
indices. The group I'(2) is the principal congruence subgroup of level 2, B(2) is the Borel con-
gruence subgroup of level 2, I';(4) is a certain subgroup of index 2 in I'y(4), and M(4) is the
“middle” group, which lies between 1“6(4) and K(4). For precise definitions, see Table 1 in the
notations section.

For many of the subgroups I" in (1), the dimension of the space of Siegel modular forms M, (')
and the subspace of cusp forms S; (') is known; Table B.1 gives some references. In case a con-
jugate of T lies between I'(2) and Sp(4, Z), there is a well-known method based on Igusa’s classic
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paper [20]. Theorem 2 of [20] gives the character of the representation of Sp(4,Z/27) =~ S, on
M, (T'(2)). Using standard character theory, one can thus easily calculate dim M, (T"). This method
works for all groups in (1) except K(2) and 1"6(4). The results are summarized in Table B.2. All the
dimension formulas in this paper are packaged into generating series like 2120:0 dim M, (D)t

The result for K(2) in Table B.2 is taken from the literature. The result for F6(4), which fol-
lows from our considerations using automorphic representation theory, is new. In fact, calculating
dim M, (F6(4)) and dim S k(F6(4)) provided the original motivation for the present work.

At least for k > 6, the codimension dim M (T') — dim S, (T') can be determined from the cusp
structure of the Satake compactification and Satake’s characterization of the image of the global
®-map. In degree 2, the method distills down to a simple formula, which we record in Theo-
rem 4.3. We thus obtain codimension formulas for all the groups in (1); see Table 8. Together with
the information about dim M, (I') in Table B.2, we get the dimension formulas for dim S, (I') in
Table B.3 for all T except I'(4).

To obtain further results, we consider the automorphic representations 7 generated by the
eigenforms in S, (") for T" in (1). If we factor an irreducible such 7 into local representations
7 = @, with irreducible, admissible representations 7, of GSp(4,Q,), then 7, is a “holomor-
phic” representation of lowest weight k, and 7, is unramified for all primes p > 3. If I is not
equal to F(’)(4), then I contains a conjugate of I'(2), and consequently, 7z, will have nonzero fixed
vectors under the local principal congruence subgroup I'(p), where p = 2Z,. A complete determi-
nation of such 7,, which are also known as representations with nonzero hyperspecial parahoric
restriction, has been achieved in [28]. We reproduce the list of irreducible, admissible representa-
tions of GSp(4, Q,) with nonzero hyperspecial parahoric restriction in Table 4. They are organized
into types I, ITa, IIb, .... We let S, (Q) be the set of cuspidal, automorphic representations that are
holomorphic of weight k at the archimedean place, unramified outside 2, and are of type Q with
nonzero hyperspecial parahoric restriction at p = 2; see Definition 5.1 for more details. We note
that S, (Q) is a finite set; see [5].

A key result which allows us to get information about F6(4) is [47, Lemma 4]. It implies that
if an irreducible, admissible representation of GSp(4, @,) has nonzero Fg(pz)—invariant vectors,
then it also has nonzero I'(p)-invariant vectors, and hence, appears in Table 4. Therefore, eigen-
formsin Sk(F6(4)) also generate elements of S; (Q2) for some Q. Conversely, given an automorphic
representation 7 = @, in S; (Q2) and a nonzero vector in 7, invariant under the local congruence
subgroup C analogous to I for some I'in (1), we can construct an element of S, (T") by “descending”
to the Siegel upper half space H,. We thus get the relation

dim S (D) = )’ 5(Qdc o, @)
Q

where 5;,(Q) = [S,(Q)| and d , is the common dimension of the space of C-invariant vectors in
representations of type Q occurring in Table 4. The numbers d ; can all be calculated and are
listed in Table 5.

Observe that (2) is a system of linear equations relating the dim S; (I') for all I" and the s, (Q)
for all Q. Recall that the dim S, (T') are already known for all I" except 1“6(4). Essentially now what
happens is that as I runs through the subgroups in (1) except 1“6(4) the system (2) provides enough
equations in order to determine the 5, (€2). Once these are known we use (2) again, this time for
[ = T}(4), to determine dim S (I} (4)).

In full detail, the situation is slightly more complicated because the system (2) has more
unknowns than equations. This hurdle is overcome by exploiting that automorphic representa-
tions of GSp(4, A) are categorized into six different kinds of Arthur packets. In Proposition 5.3,
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we will prove that only packets of “general type,” denoted by (G), and packets of Saito—-Kurokawa
type, denoted by (P), are relevant. Considering the (G) version and the (P) version of (2) sepa-
rately reduces the number of equations and makes the method work. As a by-product, we obtain
refined dimension formulas for the spaces of nonlifts S]({G)(F) and the spaces of lifts SIEP)(P) (see
Section 5.1 for a more precise definition of these spaces). We remark that we included the groups
[';(4) and M(4) in our list (1) in order to obtain two more linear equations; without these, the
system (2) would still be underdetermined.

There are only two spaces which are not accessible with the above methods, namely, M 2(I‘(’)(4))
and M, 4(1“6(4)). Their dimensions have been determined by Cris Poor and David S. Yuen in
Appendix A.

As mentioned above, many dimension formulas for Siegel modular forms are already contained
in the literature. The new contributions of the present work are as follows.

* Siegel modular forms for the groups I';(4) and M(4) have not previously received much
attention in the literature. (See, however, the “paramodular groups with level” defined in [6].)

* The dimension formulas for F6(4) are new. Until now, the literature only contains dimension
formulas for Fg( p) where p is prime; see [12, 15, 18, 46].

* We obtain the refined dimension formulas for the spaces of lifts S ]EP)(F) and nonlifts SI(CG)(F).

* We obtain formulas for s5,(Q), the number of cuspidal automorphic representations of
PGSp(4, A) of weight k, unramified outside 2, and with a representation of type Q at p =2
admitting nonzero I'(p)-invariant vectors.

The paper is organized as follows. In Section 3, we collect the necessary facts from local repre-
sentation theory. The main outcomes are Table 4, the complete list of all relevant representations,
and Table 5, which contains the dimensions of the spaces of fixed vectors in these representations
under all relevant local congruence subgroups. In Section 4, which is largely independent from
Section 3, we first utilize Satake’s method to obtain codimension formulas for all T" in (1). Com-
bined with Igusa’s result, we thus obtain dimension formulas for M, (T") and S; (') for all T in (1)
except K(2) and 1“6(4). The formulas for K(2) are already known, and the ones for 1“6(4) will fol-
low as a consequence of our other results. Section 5 begins with a review of Arthur packets for
GSp(4). We make the connection between Siegel modular forms and representations, resulting in
the system of linear equations (2). We then derive the numbers s (Q), first for Saito-Kurokawa
lifts, then for representations of general type. Finally, as an application, we obtain the desired
dimension formulas for F6(4).

Most of our results are summarized in table form in Appendix B. More precisely, Tables B.2
and B.3 contain dimension formulas for M, (T") and S; (T"), respectively. Tables B.4 and B.5 are
for dimension formulas of S,((P) (') and SlgG)(F), respectively. Tables B.10 and B.11 contain formulas
for s](cp) (Q)and sl(cG)(Q), respectively. Here, s,({*)(Q) = |S](€*)(Q)| (see Section 5.1). Tables B.6-B.9 and
B.12 provide numerical examples for weight k < 20. Appendix A, provided by Cris Poor and David
S. Yuen, fills the final gap by calculating dim M, (T((4)) for k = 2 and k = 4.

2 | NOTATION AND PRELIMINARIES

The symbols Z, Q, R have the usual meaning. The symbol Q, stands for the field of p-adic
numbers. We will write [, for the field with p elements; only [, is needed in this work.
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Let J be a 4 X 4 antisymmetric matrix over a field F. We consider the symplectic similitude
group

G = GSp(4) :={g € GL(4): 'gJg = A(g9)J, A(g) € GL(1)}, 3)

which is an algebraic F-group. The function 4 is called the multiplier homomorphism. The kernel
of this function is the symplectic group Sp(4). Let Z be the center of GSp(4) and PGSp(4) : =
GSp(4)/Z.

While all choices of J lead to isomorphic groups, one or the other choice might be more con-
venient depending on the context. When working with classical Siegel modular forms, the usual

choice for J is’
1
1
Jl = l_l l ) (4)
-1

leading to the “classical” version of the symplectic group. When working with local representa-
tions, it is often more convenient to use

1
J2=[ o0 ] (5)

resulting in the “symmetric” version of the symplectic group. For example, the standard Borel
subgroup in the second version consists of upper triangular matrices. We will allow ourselves to
use both versions of GSp(4). An isomorphism between them is obtained by switching the first two
rows and columns.

We will utilize the following representatives for elements of the Weyl group,

1 1
P el ]
1 1

given in the J; version of Sp(4).
Local and global congruence subgroups. For a positive integer N, we define Fgl)(N ) =

SL2,2)N |y 5
2” and “level 4.” The global subgroups are contained in Sp(4, @), and except for the paramodular
group K(2), all of them can be conjugated into the full modular group Sp(4, Z). Locally, we work
over the field @, and denote by o its ring of integers Z, and by p the maximal ideal 2Z, of o.
All our subgroups will be contained in G! := {g € GSp(4,Q,) : A(g) € 0*}, and except for the
paramodular group K(p), all of them can be conjugated into the hyperspecial maximal compact
subgroup K := GSp(4, Z,). Table 1shows the notations we use for various congruence subgroups.
Note that for the global groups, we use the symplectic form J,, and for the local groups, we use

the symplectic form J,.

]. In degree 2, we will work with a number of congruence subgroups of “level

Siegel modular forms

Let H, be the Siegel upper half space of degree n, that is, H, consists of all symmetric com-
plex n X n matrices whose imaginary part is positive definite. The principal congruence subgroup
['(N) of Sp(2n, Z) is the kernel of the reduction map Sp(2n, Z) — Sp(2n, Z/NZ). By a congruence

T Empty entries in matrices mean zeros.
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subgroup of Sp(2n, @), we mean a subgroup of Sp(2n, @) which, for some N, contains I'(N) with
finite index.

Definition 2.1. A Siegel modular form of degree n and weight k with respect to a congruence
subgroup I' of Sp(2n, Q) is a holomorphic function f : H,, — C with the transformation property

(D@ = j(9. D) F(AZ + BYCZ + D)) = f@ for g = [ }| T,
where j(g,Z) = det(CZ + D), and which satisfies the usual moderate growth condition if n = 1.
We call a Siegel modular form f a cusp form if
/llingo(f|kg)([f m]) =0 forallg € Sp(2n,Q)andt € H,_;.

In this work, we will primarily consider Siegel modular forms of degree 2, and occasionally mod-
ular forms of degree 1. We denote by M, (T') the space of Siegel modular forms of degree 2 and
weight k with respect to the congruence subgroup I of Sp(4, @), and by S, (T') its subspace of cusp
forms. We denote by Ml(cl)(l“) the space of modular forms of degree 1 and weight k with respect to
the congruence subgroup I of SL(2, Q), and by Sl(cl)(l“) its subspace of cusp forms.

A lemma on rational points and integral points. For lack of a good reference, we include
a proof of the following result. It will be used in Section 4.1.

Lemma 2.2. Let n be a positive integer. Let R be any standard parabolic subgroup of Sp(2n). Then
Sp(2n, @) = R(Q)Sp(2n, Z).

Proof. Let g € Sp(2n, Q). For any place p, let K, be the standard maximal compact subgroup of
Sp(2n,Q,). Let K = TIK - Use the Iwasawa decomposition to write g = r,x,, with r, € R(Q,)
and x, €K, Then g = rx, wherer = (rp) and x = (‘Kp). Let R = MN be the Levi decomposition
of R. Write r = mn with m € M(A) and n € N(A). By strong approximation, we may write

m = mgmpmy  with mg € M(Q), mp € M(R), mg € M(A)NK.

The element my may be absorbed into K (possibly modifying n), and may therefore assumed to
bel. Using A = Q +R + [] ., Z,, we can write
n =ngnpig, hg € N(Q), ny € N(R), ng € N(A)NK.

The element ng may be absorbed into K, and therefore, assumed to be 1. Summarizing, we see
that we can write

g =rolpk, Tq € R(Q), rx € R(R), x €K.

The matrix r&l g lies in Sp(2n,Z,,) for all finite p, and hence in Sp(2n, Z). This concludes the
proof. Ll
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3 | LOCAL DIMENSIONS

We will start this section by collecting some facts about the symmetric group Ss. In Subsections
3.2 and 3.3, we work over the p-adic field Q, and write o for its ring of integers and p for the
maximal ideal of o. In this local context, it is convenient to work with the “symmetric” version of
the symplectic group, defined by the symplectic form J, given in (5).

3.1 | Preliminaries on S

Let (p,U) be a representation of a finite group G, and let H be a subgroup of G. Then p =
ﬁ Y hen P(h) is a projector onto the subspace U of H-fixed vectors. Hence,

dim UY = Tr(p) = L Z Xo(), @)
|H| heH

where y,, is the character of p. More generally, if 7 is a representation of H, then the multiplicity
of 7in p| is

multp () =

3 ). (8)
|H| heH

We will apply this principle to the finite group Sp(4, Z) /T'(2) = Sp(4, F,). In order to do so, we will
exhibit an explicit isomorphism with the symmetric group S,.

Consider the natural permutation action of Sy on the space of column vectors (F,)°®. Let W be
the five-dimensional subspace of vectors whose coordinates add up to zero. Let U be the subspace
of W spanned by u = (1,1,1,1,1,1). Then W and U are both invariant under the action of Sg, so
that we get an action on the four-dimensional space W /U. There is a symplectic (and symmetric)
form on W given by

6
)= Y xn X = (X Xg) ¥ = G Ye):
i=1

This form is degenerate with radical U, thus inducing a nondegenerate symplectic form on the
quotient W /U. Evidently, this form is invariant under the action of S;. We thus obtain a nontrivial
homomorphism Sy — Sp(4, F,). Since the image of this map has more than two elements, and
since Ay is the only nontrivial, proper, normal subgroup of S, the map is injective. Since both
groups have the same number of elements, it is an isomorphism. To make the isomorphism more
explicit, let

e1= 92=

== O O O
O R B O O O

~
-
Il
O o O R HO

O O O O =
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Then, W = (e;, e,, f5, f1,u). The images of e, e,, f,, f; form a basis of W /U, with respect to
which the form (, ) has matrix J, defined in (5). Easy calculations then show that on certain ele-
ments, the isomorphism S, — Sp(4,F,) = {g € GL(4,F,) : 'gJ,g = J,} has the following explicit
description.

1 1
(16)(25)(34) — | ! a “o—| L ©)
1 1
- ] . -
anEs) —| Vol w2eeus) —| ! ol (10)
1 1
[1 1] [1 1]
12)64)56) — | ! ) o a2)—| ! o )
1 1
- - - .
1 1
(135)(246) —> L4l asvess — | 12)
1 1 1

Using such a description, it is easy to determine the number of elements of a given cycle type in
certain subgroups of Sp(4, F,) = S,. Table 2 shows such data for a number of subgroups of Sp(4, ;)
(the first one of which is the trivial and the second one of which is the full subgroup). All these
subgroups are obtained as the image of a conjugate of a congruence subgroup I of Sp(4, @), this
conjugate lying between I'(2) and Sp(4, Z), under the projection map Sp(4, Z) — Sp(4,F,); the
first column of Table 2 shows the congruence subgroup I

Both the conjugacy classes and the irreducible characters of Sy (also referred to as S,-types)
are parametrized by partitions of 6. We write [n, ..., n,] for the irreducible character of S, corre-
sponding to the partition 6 = n; + --- + n,.. For example, [6] is the trivial character and [1,1,1,1,1,1]
is the sign character of Sq. The character table of S is given in [20, p. 400]. Using formula (7), the
data in Table 2, and the character table, we obtain the dimension of the space of fixed vectors in
each S,-type under the subgroups listed in Table 2. The results are summarized in Table 3. The
last two rows of Table 3 indicate the generic representations (i.e., those which admit a nonzero
Whittaker functional) and the cuspidal representations (i.e., those with no nonzero fixed vectors
under the unipotent radicals of the parabolic subgroups).

3.2 | Parahoric restriction

In this section, we consider irreducible, admissible representations of GSp(4, Q,) with trivial cen-
tral character that have nonzero fixed vectors under the principal congruence subgroup I'(2).
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TABLE

[(2)

Sp(4, Z)

K@

Iy(2)

Ty(4)

IV C))

2

M(4)

B(2)

2 The number of elements of a given cycle type in some subgroups of Sp(4, F,) = S,. Here, we use
the “symmetric” form of Sp(4), that is, the one defined with the symplectic form J, as in (5). The third column
shows the cardinality of the subgroup.

c Sp(47 [FZ)
k
E3
*
*
k ok ok %k
EE T R
k0 ok k%
k ok ok %k
k *
k%
*
k *
k ok ok ok
ko ok k ok
k%
k%
L
ko k

index 2 in

¥ X % %

720

36

48

48

12

16

(12)

15

(12)(34)

45

(12)(34)(56)

15

(123)

40

(123)(45)

120

12

(123)(456)

40

(1234)

90

(1234)(56)

90

(123456)
(12345)

0 0
144 120
0 0
0 8
0 0
0 0
0 0
0 0
0 0
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TABLE 3 The dimensions of the spaces of fixed vectors in each S,-type under some subgroups of
Sp(4,F,) = S,. Here, we use the “symmetric” form of Sp(4), that is, the one defined with the symplectic form J, as
in (5). The “T'(2)” row shows the dimensions of each S,-type.

[6] [4.2] [33] [3.1.11] [22.11] [1,1,11,1,1]
T C Sp(4,F,) [5.1] [411] [3.2.1] [2.22] [21,1.1,1]
o -
%
r() i 15 9 10 5 16 10 5 9 5 1
*
P
* ok ok %
Sp(4, ) 1 0 0 0 0 0 0 0 0 0 0
* * k *k
* % % %
o R
* %
K(4) 1 1 1 0 1 0 0 0 0 0 0
% k
* %
_ 4]
* %
I,(2) - 10 1 0o 0 O O 1 0 0 0
% %
T .
%
I,(4) . 1 0 3 1 0o 2 3 30 1 0
*
FS(4) index 2 in . 1 1 3 4 3 4 4 3 3 1 1
* %
_* k *_
*
r)(2) 11 1 0 0 0 0 ) 0 0
% % %
*
o _
* k
M(4) . 1 2 2 1 1 1 0 0 0 0 0
* *
o ]
% *k
B(2) i 11 2 0 0 1 0 1 0 0 0
generic . . . .

cuspidal . .
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TABLE 4 Hyperspecial parahoric restriction for GSp(4, @,). All characters y, x;, ¥, 0, & are assumed to be
unramified, and the supercuspidal representation 7 of GL(2, Q,) has depth 0.

Representation a ¢ Temp Para Parahoricrestriction (G) (P)
1 X1 X X, Mo (irred.) 0 + - . [6]+[5.1]+2[4,2]+[32,1]+[2.2.2] ¢
I a  xStgyo Xo 1 £+ . [5.1]+[4,2]+[3,2,1] 0
b xlgu X0 0+ . [6]+[4.2]+[2.2.2] .
111 a X X 0Stgsym 2+ . . [4,2]+[3,2,1]+([2,2,2] .
b x X olggw 0+ . [6]+[5,1]+[4,2]
v a  OStggy 3 0+ . . [3,2,1] 0
b L, v '0Stgsy) 2+ . [4,2]+[2,2,2]
¢ LSty ), v*%0) 1 o+ . [4.2]+[5,1]
d  olggy 0 + . [6]
v a  &([¢,vE],v10) 2 - . . [5,1]+[3,2,1] .
b LO'2EStg ), v /20) 1 =+ . [4,2] .
¢ LSty Ev%0) 1 % . [4,2] .
d L& Exv%0) 0o + . [6]+[2,2,2]
VI a  7(S,v/%0) 2 4+ e . [4,2]+([3,2,1] 0
b o(T,v20) 2+ . [2,2,2] 0 .
¢ LOY?Stg ), v /%0) 1 =+ . [5,1] .
d L, 1 XvY20) 0 + . [6]+[4,2]
VII XN 4 4+ . . [3.LL1]+[2,1,1,1,1] .
VI  a (S,7) 4+ . . [3.1,L1] c
b o(T,n) 4 + . [2,1L,11] .
IX a S v 4 + . . [3,1L1] .
b LOE v 7 4+ [21,1,L1]
X TXO 2 - . . [4,1,1]+[3,3] 0
X1 a  S(WY2im, v 12g) 3 0+ . . [4,1,1] .
b LW'/2m,v120) 2 . [3,3] .
Va* 5*([€,vE],v/%0) 2 = . [1,1,1,1,1,1] . .
sc(16) 4 - . . [2,2,1,1] .

Table 4 contains a complete list of such representations. Their central characters are necessar-
ily unramified, so after a twist, we may assume that the central character is trivial. All characters
in the representations appearing in Table 4 are assumed to be unramified.

Let (7, V') be an irreducible, admissible representation of GSp(4, Q,). The hyperspecial maxi-
mal compact subgroup K = GSp(4, Z,) of GSp(4, Q,) normalizes I'(p). Hence, K acts on the space
VI® of I'(p)-fixed vectors. The resulting representation of K /T(p) = Sp(4, F,) is called the hyper-
special parahoric restriction of 7 and denoted by 7 (7). It has been calculated for all 7 in [28,
29].

Table 4 contains a list of all irreducible, admissible representations of PGSp(4, Q,) for which
rr(m) # 0, using notations as in [27, 32]. Since hyperspecial parahoric restriction commutes with
induction by [28, Theorem 2.19], all the parameters in Table 4 must have nonzero parahoric
restriction on GL(1) or GL(2). This means the characters y, x;, x,,0, & of Q>2< are assumed to be
unramified, and the supercuspidal representation 7 in types VII-XIb is an unramified twist of the
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unique supercuspidal representation 7 of PGL(2, Q,) of conductor exponent 2. The “a” column
shows the (exponent of the) conductor of the representation. The “c” column shows the possibili-
ties for the value of the e-factor at 1/2. The “temp” column indicates the tempered representations,
under the assumption that the inducing data is unitary. The “para” column indicates the rep-
resentations that have nonzero paramodular vectors (in which case the minimal paramodular
level coincides with the conductor). The hyperspecial parahoric restriction for nonsupercuspidal
representations is given in [29, Table 3] and [28, Table 3.1]; see [28, p. 103] for the translation of
Enomoto’s notation to standard Sg notation.

There are two supercuspidal representations in Table 4, the nongeneric §*([£, v€],v~1/%0) of
type Va* and the generic sc(16). The representation 6*([£, v€],v='/20) is invariant under twist-
ing by &, so there is only one representation of type Va*. It shares an L-packet with the unique
representation of type Va; both have L-parameter st, @ &st,, where st, is the L-parameter of
the Steinberg representation Stgy ;) of GL(2,@,). So, the parahoric restriction information for
Va* comes from [28, Tables 4.2 and 5.2]. By Frobenius reciprocity and the proposition in [22,
Section 1.4], it follows that

§*([€,v€],v™/%0) = c-IndS,([1,1,1,1,1,1]), (13)

where we inflate [1,1,1,1,1,1], the sign character of K /T(2) = Sp(4, F,) to K and then extend it to ZK
by having Z act trivially. By [28, Table 4.2], there are no nongeneric supercuspidals of PGSp(4, Q,)
with nonzero hyperspecial parahoric restriction besides Va*.

By [23] and [28, Proposition 2.16], there are no generic supercuspidals of PGSp(4, Q,) with
nonzero hyperspecial parahoric restriction besides sc(16). In this case, we have

sc(16) = c-IndY, ([2,2,1,1]). (14)

The parahoric restriction for sc(16) follows from [28, Lemma 2.18].

3.3 | Local fixed vectors

Table 5 lists the dimensions of the space of fixed vectors under various congruence subgroups for
the same class of representations as in Table 4. These are the irreducible, admissible representa-
tions 7 of GSp(4, Q,) for which the hyperspecial parahoric restriction rr(7) is nonzero, that is,
which have nonzero vectors fixed under the principal congruence subgroup I'(p).

Theorem 3.1. Let (7, V') be an irreducible, admissible representation of GSp(4, Q,). Let H be one of
the congruence subgroups listed in the first row of Table 5.

(i) Ifrg(m) # 0, so that 7w occurs among the representations in Tables 4, then dim VH is given as in
Table 5.
(ii) Ifdim VH # 0, then ri(7) # 0, so that  occurs among the representations in Tables 4.

Proof.

(i) For H = K(p), see [27, Section A.8]. For H = F(’)(pz), see [47, Table 1]. For every other H, there
exists a conjugate subgroup H such that'(p) C H C K. Ifrg(7) = p; @ ... ® p,,, With S¢-types
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TABLE 5
irreducible, admissible representations of GSp(4, Q,) with nonzero hyperspecial parahoric restriction. (See
Table 4 for the precise notation for these representations.).

Q
I
II

III

v

VI

VII
VIII

IX

Va*
sc(16)

o ® A 0 o P A 6 o o P o e

Q o

c ® o &

The dimensions of the spaces of fixed vectors under various congruence subgroups of the

(p)
45
30
15
30
15
16
14
14
1
21
9
9
6
25

10
15
10
10
15

10

9

(p;, U;), then

K

—

O O O O O O 0O O 0o o 0O o o 2 o oo o =~ o o o = o+ o

K(p)

O ©O O O O 0o oo oo = O O O = = o=+ O o N o +H H N

K(p?)

o O B O BF O O o o o NN =P o = = = = H H N H O W - NN B~

dim vH

To(p) To(p?)
12

O O O O O O O O O O N O H NN H+H H O H N O N DD W o H N
o O O H H = W H W A B O W U p W W N WD DM 0 O W

= dim rK(7r)H =

T T, D) M)  Bp)
15 11
8

= 3
=]

W H WA N - R HE R R HE W N R W W UL R N O A W
O O O ©O ©O O O O O O NN FHF o FH = = = =2 N O W N DN &
— O = N W R = O NN R DNO WNNN W= UW N OB A

S O = H N O O O O O W N O W = N DN W = B DD HH U W w u
O O O O ©O O O ©O O O W H H W N DN DNDDNDH-H W W DB MM BB P

1 _
Y dimUf, (15)

i=1

where H is the image of H in K/T'(p) = Sp(4, F,). The dimensions U™ are listed in Table 3,
for each S,-type (o, U). We thus get the desired dimensions from the r(7) listed in Table 4.
(i) If H # I} (p?), then a conjugate of H contains I'(p), so that rg(7) = VI® > VH 2 0. If H =
I (p®), then [47, Lemma 4] shows that VvI® £ 0.

O

We remark that for most of the congruence subgroups, the dimensions in Table 5 appear else-
where in the literature. For all the subgroups containing B(p), see [35]. For the paramodular
groups, see [27]. For M(p?) and I (p?), see [47].
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4 | GLOBAL DIMENSIONS AND CODIMENSIONS

The goal of this section is to derive the dimension formulas in Tables B.2 and B.3 for all congru-
ence subgroups except F6(4). Most of these formulas are already contained in the literature, but
we give a unified approach. First, we derive a general formula in degree 2 for the codimension
dim M, (T') — dim S;(T) based on the Satake compactification and the global ® map; see Theo-
rem 4.3. We thus obtain the codimensions summarized in Table 8 for all congruence subgroups
of interest to us.

To obtain the actual dimensions, we note that most of our congruence subgroups T, after an
appropriate conjugation, lie between I'(2) and Sp(4, Z). One can thus use Igusa’s result [20, Theo-
rem 2] to calculate dim M, (T'); see Section 4.3. The only subgroup other than F6(4) for which this
does not work is K(2), for which the result is already contained in the literature.

4.1 | A general codimension formula

In this section, we will find a general formula for calculating the codimension of S; (T') in M (I")
for a congruence subgroup I" of Sp(4, Q). A summary of the method for any degree is given in
[25, Section 3]. It is based on [33] and the surjectivity of the global ® operator proven in [34]. We
specialize to the degree 2 case, resulting in the formula in Theorem 4.3 below.

We define the symplectic group Sp(4) with respect to the form J; given in (4), and use the
following parabolic subgroups;

* 0 % sk k ok ok ok * 0 % %
* ok ok % % % %k % * ok ok %

B=|, o . L|0SP@. P=| 0 Insp@)., Q=| . . [nSp@). (6)
0 0 0 = 0 0 % = 0 0 0 =

Consider the homomorphisms w : Q(R) — SL(2,R) and ¢: SL(2,R) — Q(R) given by

w: Q(R) — SL(2,R), t: SL(2,R) — Q(R), (17)
a 0 b = a 0 b O
* ok k% . a b a b . 01 0 O
c 0 d = c d|’ c d c 0 d of
0 0 0 = 0 0 0 1

Let I' be a congruence subgroup of Sp(4, Q). We will describe how the geometry of the Satake
compactification S(I'\H,) is reflected algebraically via double cosets.

Let X be a fixed set of representatives for the double cosets I'\Sp(4, Q)/P(Q), and let Y be
a fixed set of representatives for the double cosets I'\Sp(4, @)/Q(Q@). (Note that the quotient
Sp(4, R)P'/H(R)P' appearing in [25, p. 451] simplifies to Sp(4, @)/H(Q) for any of the subgroups
H in (16)). Since Sp(4, @) = Sp(4, Z)B(Q) (by taking inverses in Lemma 2.2), we may assume that
X,Y C Sp(4, Z). There is a bijection between X and the zero-dimensional cusps of I'. Similarly,
there is a bijection between Y and the one-dimensional cusps of I'. For y € Y, let C, be the 1-cusp
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corresponding to y, and let

I, =w(y 'TynQ@), (18)

which is a congruence subgroup of SL(2, @). Let R, be a fixed set of representatives for the double
cosets I', \SL(2, @)/ B, (Q), where B, is the upper triangular subgroup of SL(2). As is well known,
there is a bijection between R, and the set of cusps of I, which are points in the Satake com-
pactification S(I',\H,). There is an embedding I, \H; — I'\I{,, which extends to a continuous
map S(I')\H;) - S(I'\H,). Let C,, , be the image of the cusp corresponding to p € R, under this
map. It is a 0-cusp of S(I'\H,) lying on the 1-cusp C,,. The double coset corresponding to C,, , is
Cyu(p)P(Q). We see:

* IfTy,u(p)P(Q) = I'y,u(p,)P(Q) for two distinct y;, y, € Y and some p; €R,, , p, €R, , then it
means that Cy, and Cy, intersect at Cyor =Cypye
* If Tyi(py)P(Q) = Tyi(p,)P(Q) for y € Y and distinct p;, p, € R, then it means that C, has a

self-intersection at Cy,p1 = Cy,pz'

In this way, we find the cusp structure diagram for TI'. It consists of |Y| curves representing the 1-
cusps C),, and |X| points representing the 0-cusps C,, , for p € R,,, with C, , lyingon C,, indicating
the intersections and self-intersections.

For f € M, (), the Siegel ®-operator produces a function ®f on H; defined by

@f)(x) = 1imf<[T _ ]) TEH,. 19)
A—-0 il
It follows from the Fourier expansion of f that, in fact,
@)@ =lim f(|° Z|) foranyzec (20)
- 1> z il y )

We also define a ®-operator on modular forms on ;. If f is such a modular form, then ®f is
simply the number lim;_, ., f(i1).

Lemma 4.1. Let

€ Q@ 2y)

S % % %
o O % O
O ¥ % %
S % % %

and f be a modular form of weight k on H, with respect to some congruence subgroup. Then
O(f|u) = r (@ f)lww). (22)
Proof. See the calculation in [24, p. 2464] to obtain (22). O

Lemma 4.2. Let T be a congruence subgroup of Sp(4,Q) and f € M;(I'). Lety € Y.
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(i) Ifk > 1iseven, then ®(f|y) € MI({])(FY), where T, is the group defined in (18).

1
(ii) Ifk > 1is odd and l - 1 ] € y~IT'y, then ®(f|y) = 0.
-1

Proof. Let

€y 'Ty n Q(Q). (23)

S % % %
o O % ©
O ¥ ¥ %
N % % %

We claim that r € {+1}. Indeed, the map y~'I'yn Q(@p) - Q; that sends any matrix to its

(4,4)-coefficient is a continuous group homomorphism. Since y~'T'y n Q(Q p) lies in a compact
subset of Q(Q)), the image of this homomorphism lies in Z;. This is true for all p, and hence
r € {£1}.

Applying Lemma 4.1to g := f|y instead of f and u as in (23), we see that

®g = r(®g)|ww). (24)
Now both (i) and (ii) follow easily. O

Theorem 4.3. Let I be a congruence subgroup of Sp(4, Q). Let X, Y and T, be as defined above.
Then, for even k > 6, we have

dim M () — dim S,(T) = |X| + )" dim S{(T,). (25)
yEY

Proof. Observing Lemma 4.2 (i), we define

&: M (D) — @PMIT), fr— (f)yey: Wwhere f, = O(f]y). (26)
yey

One may think of f, as the restriction of f to C,. Evidently, ker(®) = S,(T), so that we have an
exact sequence

0 — Si(I') — M (I') — Im(d) — 0. (27)

Hence, our desired codimension equals dim Im(®). To understand Im(®), note that the f , satisfy
the following compatibility condition: For all y;,y, € Y, p; €R, and p, €R,, ,

Iy (p)P(Q) = Ty,(p)P(Q) = (f), 1p1) = ©(f),102)- (28)

(This amounts to saying that f), and f, agree on the intersection points of the 1-cusps C, and

C,,;see [25, (1)].) Satake [34] proved that Im(®) is characterized by this compatibility condition.
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In particular,

P s x,) c m(@). (29)

yEY

To further study Im(®), we choose for everyx € X ay, € Yandap, € R, such that the 0-cusp
represented by x equals C, , .In terms of double cosets, this means

TxP(Q) = Iy, (p,)P(Q). (30)

Then, we define the map

6: Im(@) — ¢ (f))yey — (U3 100) _ - (31)
The compatibility condition (28) assures that 8 is independent of the choices of y, and p,.

Itis clear that @yey S]({D(Fy) C ker 0 by definition of 6. To prove the reverse inclusion, suppose
(fy)yey € Im(®) lies in the kernel of 9, that is, db(fyx lo,) = O forall x € X. We want to show that
O(f,lp) =0forally €Y and p € R,. Let a € X be such that I'y(o)P(Q) = I'aP(Q). Since also
TaP(Q) =Ty, i(p,)P(Q), we have

q)(fylp) = q)(fyalpa) =0

by the compatibility condition (28). This proves ker 6 = @er Sl(cl)(l“y).
Next, we show that 0 is surjective. Let x € X. It follows from [7, Theorem 3.5.1] that we can find
an fy S MI(Cl)(Fy) such that, for all p € Ry,

_ )1 ifTxP(Q) = Tywu(p)P(Q),
<I>(fy )= {0 otherwise.

The family of f, thus defined satisfies the compatibility condition (28), so that (f)),cy lies in
the image of ®. Hence, we constructed an element of Im(®) that does not vanish at the 0-cusp
corresponding to x, but vanishes at all other 0-cusps. It follows that 8 is surjective.

We proved that there is an exact sequence

0 — @Psir,) — m@) — c¥l —o. (32)
yeY
Our assertion now follows from (27) and (32). O
4.2 | Codimension formulas for some congruence subgroups

In this section, we determine the codimension dim M, (I') — dim S, (I") for the congruence sub-
groups I listed below in Theorem 4.4. One of them is a group I';(4) defined as follows. We consider
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the character of the group I';(4) obtained as the composition
To(4) — GL(2,Z) —> SL(2,Z/2Z) —> S; —> {£1}, (33)

where the first map is given by [é g] ~ D, the second map is reduction modulo 2, the third map

is any isomorphism, and the last map is the sign character of the symmetric group S;. Let I';(4)
be the kernel of this character. Explicitly,

r;(4)={g=[‘é1 : EF0(4):DE[(1) (1’][(1’ i”i (1)] modz}. (34)

Evidently, I'y(4) = Fé(4) L F3(4)s1, where s, is defined in (6).
For odd weights, we have the following result.

Theorem 4.4. Suppose that k > 1is odd, and that T is conjugate to one of the congruence subgroups
in (1). Then M (T') = Si (D).

Proof. LetY C Sp(4, Z) be a fixed set of representatives for the double cosets I'\Sp(4, @)/Q(Q). If
we can verify the condition in Lemma 4.2 (ii) for all y € Y, then M, (T") = S;(T") will follow from
(26) and (27); note that (26) and (27) hold for both even and odd k.

If T’ is conjugate to T by an element of Sp(4, @), then M (I") = S, (I") if and only if M, () =
S (T). Hence, we need only consider the groups in (1).

The condition in Lemma 4.2 (ii) is satisfied for the normal subgroup I'(2) of Sp(4, Z), and
then also for any subgroup containing I'(2). Up to conjugation, this covers all groups in (1)
except I'(4). For T (4), one can verify the condition directly using the representatives y given in
Table 7. O

‘We turn to even weights, considering the case k > 6. Recall that for the codimension formula in
Theorem 4.3, we need | X |, which is the cardinality of the double coset space I'\Sp(4, @)/P(Q), and
we need to know the groups I', defined in (18), where y runs through a system of representatives
for the double coset space I'\Sp(4, @)/Q(Q).

For T equal to the principal congruence subgroup I'(2), it is well known that both double coset
spaces have 15 elements, and that each group I', equals rM(2). A quick derivation uses the fact
that Sp(4, F,) = S¢ has 720 elements (see Section 4.3). Note Sp(4, Q)/P(Q) = Sp(4, Z)/P(Z) and
Sp(4,@)/Q(Q) = Sp(4, 2)/Q(Z). Hence,

['(2)\Sp(4,Q)/P(Q) = Sp(4,F,)/P(F,) and T(2)\Sp(4,Q)/Q(Q) = Sp(4,F,)/Q(F,).  (35)

Since P(F,) and Q(F,) both have 48 elements, it follows that both double coset spaces have car-
dinality 15. Moreover, since I'(2) is normal in Sp(4, Z), each I',, equals o(I' N Q(@)) = SL(2,Z) N

[ZZZ ZZZ] , which is conjugate (by an element of SL(2, Q)) to I‘gl)(4). From Theorem 4.3, we thus get

dim M, (T(2)) — dim S, (T(2)) = 15 + 15dim 5, (I (4)) for even k > 6.
For the congruence subgroups in (1) other than I'(2), the last column of Table 6 shows the
cardinality of '\ Sp(4, Q) /P(Q). The table also indicates representatives for this double coset space,
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TABLE 6 Double coset representatives for I'\Sp(4, @)/P(Q).

T
Sp(4,7)
K(2)
K&
Ty(2)
T4
I54)
r;(2)
ro(4)
M(4)
B(2)

using the following notations:

X1

X, Xs

X6

X7

X3

AW A DN NN WD = =R

(36)

For the group Sp(4, Z), the information in Table 6 is trivial, for K(2) and K(4) see [25, Theorem 1.3].

Representatives for I'j(2) follow from

Fo(2)\Sp(4, @)/P(Q) = P(F )\Sp(4,F,)/P(F,)

(37

and the Bruhat decomposition; similarly, for rg(z) and B(2). For F6(4) and M(4), see [47, Lemmal,
Lemma 2]. For I' = T'y(4), see [42, Proposition 2.6]. It is an exercise to derive the result for I';(4)
from that for I'y(4), using that I'j(4) = Tj(4) U Tj(4)s;.

Table 7 gives double coset representatives for I'\Sp(4, @)/Q(Q). The notation used is
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intersecting the given sets of 2 X 2 matrices with SL(2, Q).

TABLE 7
r At Y2
(z 7
Sp(4,2) E z]
K@) Z Z] [Z
1z z 27
K@) z Z] [Z
1z z| |4z
[z Z
O Z]
(z z
nw | Z]
’ [z 7
54 147 Z]
, (z 7] [z
Q) |z z] 127
, [z 7] [z
o | Z Z] |47
M) z z] z
1z z| |4z
BQ2) z Z] z
2z 7| |2z
Va =518 =
1
_ 1
y7 - 2
2

Y3
2717
z
4717
z
zZ Z
27 Z
z
z
z
z
2717
z
VA z Z
VA 2Z Z
1
1
1
-1
Vg =
1

Ya

IIQ)N NNNNNNNN NN

Double coset representatives for I'\Sp(4, @)/Q(Q). The groups I', defined in (18) are obtained by

Ys Ye ¥ Ys Yo #
1
2
[Z Z] 3
27 7
2
47l [z =z 7z z 4
z| laz =z 47 Z
47l [z z z 7| [z Z 5
z| |laz z 47 7| laz z
’
3
z
7zl [z z 7z Z z z 6
z| |z z| |2z =z 47 7
VA 7z Z z 277 5
z 27 7 7z z
’
4
z
1 | 1 -2
_ 1 _ 1
2 1 2 1
1 [ 1
1
) 1 Yo =1, 1l (38)
1 2 1

A nonempty entry in the row for I" and the column for y; indicates that y; is to be included in the
set Y of representatives for I'\Sp(4, @)/Q(Q). The entry itself indicates the group I, , obtained by
intersecting the given set with SL(2, Q). For most of the groups, the references are the same as
given above for Table 6. For I" = I'j(4), see [42, Proposition 2.5]. Again, the result for Fé (4) can be
derived from that for I'j(4).

The following generating series can easily be derived from well-known dimension formulas;
see, for example, [7, Theorem 3.5.1].

Y dim S (SL2, 7))k = ) dim S (SL2, 2)i* =

k=0

k=6

k even

== <
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TABLE 8 Codimension formulas valid for even weight k > 6, given in the form
dim M, (T") — dim S,(T) = a dim S, (SL(2, 2)) + # dim S, (T\"(2)) + y dim S, (T\"(4)) + 6.

r @ B Y ) i(dim M, (T) — dim S, (T"))t
k=6

r'(2) 0 0 15 15 15 f("fi—;;)

Sp(4,7) 1 0 0 1 (rfil[:—)z(zl—_z;))

. .

K(4) 2 1 0 2 zﬁ(zazi :r)t("ltz;;zm

Tp(2) 0 2 0 3 tzl(izz;__s,i?

To(4) 0 0 4 7 [6((11:27;22)

5@ 0 0 5 7 zf’((llf;v)z;)

r(2) 2 1 0 2 ls(z?fiztjr)[(41tt166;2[g)

4 3 1 2 4 t5(6+(91t2_-:-45)t<41 tztiﬁ) —4r)

M(4) 2 3 0 3 z6(3+(61r2:43):(41+_2[t:) _3%)

B(Q) 0 4 0 4 4L20+2—)

A-)(A-t*)

[Se] 6]
- Wk — ; Wk — 8
kzodlmSk(Fo (2))t = 1{26 dlmSk(FO (2))t = m, (40)
k even
S 1 - ) I
. k _ . k _
kzodlmSk(FO (A)tk = é dim S, (I (4)t* = T (41)
k even

Using these formulas, Theorem 4.3, and the information in Tables 6 and 7, we now get the
following result.

Theorem 4.5. For even k > 6 and a congruence subgroup T as in (1), the quantity dim M, (T') —
dim S, (T') is given as in Table 8.

Remark 4.6. After we calculate dim M,(T") and dim S,(T") in the next section, it will turn out that
the codimension formulas in Table 8 also hold for k = 4. See [4] for other cases in which Satake’s
method still works for k = 4.

4.3 | Dimension formulas for some congruence subgroups

In this section, we determine dim M; (I') and dim S, (T') for all nonnegative integers k and all con-
gruence subgroups I in (1) except I';(4). Many of the dimension formulas for these groups have
appeared before in the literature, but to the best of our knowledge, the groups I';(4) and M(4)
have not been previously considered. References are contained in Tables B.2 and B.3. Except for
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K(2) and 1“6(4), the dimension of M, (') for I' in (1) can be determined from [20, Theorem 2]. The
method is well known, but we summarize it for completeness.

Let I' be a congruence subgroup of Sp(4, Q) for which there exists an element g € Sp(4, Q) such
that the group ' := gI'g~! satisfies ['(2) C T' C Sp(4, Z). Evidently dim M (') = dim M, ([). The
group Sp(4, Z)/T(2) = Sp(4,F,) = S, acts naturally on the space M; (I'(2)). The character of this
action has been determined in [20, Theorem 2]. The space M, (T’) is the fixed space of this action
under the subgroup I'/T(2). Hence, we can use formula (7) and [20, Theorem 2] to calculate
dim M, (T). All we need to know is how many elements of each conjugacy class of Sy are con-
tained in I'/T'(2). For our subgroups of interest, we have already summarized this information in
Table 2.

Proposition 4.6. With the possible exception of T’ = F6(4), the generating series for dim M, (I") given
in Table B.2 and for dim S, (T") given in Table B.3 hold.

Proof. The dimensions of M; (K(2)) and S, (K(2)) are given in [13, Proposition 2]. (Note that the
generating series for dim S; (K(2)) given in [13, Proposition 2] is missing the odd weights. The
correct formula, given in Table B.3, can be derived from the original source [16, Theorem 4].)
We may therefore assume that a conjugate of T lies between I'(2) and Sp(4, Z). For such T, the
dimension of M, (T") can be derived from (7) and [20, Theorem 2], as explained above. Hence, we
obtain the information in Table B.2.

The quantity 7 . dim S (T') follows from Tables 8 and B.2. It remains to explain dim S (T') for
k € {1,2,3,4,5}. For odd k, we have dim M; (I') = dim S; (I') by Theorem 4.4. We have S,(I'(2)) =
0 by [40, p. 882]. Hence also S,(I'(2)) = 0, and S,(I') = S,(I") = 0 for all T that contain a conjugate
of I'(2). This concludes the proof. O

For illustration, we have listed dimM;(I') and dimS, (') for weights k<20 in
Tables B.6 and B.7.

5 | COUNTING AUTOMORPHIC REPRESENTATIONS

This section contains our main results. In essence, we will use the dimension formulas proven
or quoted so far in order to count the number of certain automorphic representations. Then, we
will use these counts to derive more dimension formulas. It is essential to consider the packet
structure of the discrete automorphic spectrum of GSp(4, A), which we recall first.

5.1 | Arthur packets

We recall from [2] that there are six types of automorphic representations of GSp(4, A) in the dis-
crete spectrum. We are only interested in representations with trivial central character, for which
the description simplifies as follows.

* The general type (G): These representations are characterized by the fact that they lift to cusp
forms on GL(4, A) with trivial central character. They consist of finite, tempered, and stable
packets. The latter means that if 7 =~ @, is such a representation, and if one of the local
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components 7, is part of a local L-packet {r,, 7}, then 7’ := 7] ® (®,4,7,) is also an
automorphic representation in the discrete spectrum. All these representations are cuspidal.

* The Yoshida type (Y): These packets are parametrized by pairs of distinct, cuspidal automorphic
representations u;, 4, of GL(2, A) with trivial central character. The packets are tempered and
finite, but they are not stable. If 7 & ®,, is parametrized by u; = Qu, , and u, = Qu, ,,, then
the local L-parameter of 7, is the direct sum of the L-parameters of y, ,, and y, ,,. Given g, and
My, if the 7z, are chosen from the local L-packets parametrized by u, , and y, ,,, then 7 = @,
belongs to the discrete spectrum if and only if the number of nongeneric 7, is even.

* The Saito-Kurokawa type (P): These packets are parametrized by pairs («, o), where u is a cus-
pidal, automorphic representation of GL(2, A) with trivial central character, and o is a quadratic
Hecke character. We will see in Lemma 5.4 below that only the case o = 1 is relevant to us, in
which case we say that 7 is a Saito-Kurokawa lift of u. The packets are finite, nontempered,
and not stable. Given g, if the 7, are chosen from local Arthur packets (listed in [37, Table 2])
parametrized by u,,, then 7 = @, belongs to the discrete spectrum if and only if the parity
condition

e(1/2,p) = (-1)" (42)

is satisfied, where n is the number of places where 7, is not the base point in the local Arthur
packet.

* The Soudry type (Q): These are parametrized by self-dual, cuspidal, automorphic representa-
tions of GL(2, A) with nontrivial central character. The packets are nontempered, infinite, and
stable. The local Arthur packets are given in [37, Table 3].

* The Howe-Piatetski-Shapiro type (B): The packets are parametrized by pairs of distinct,
quadratic Hecke characters. They are nontempered, infinite and unstable. The local Arthur
packets are given in [37, Table 1].

* The finite type (F): These are one-dimensional representations. They are not relevant for this
work, because they are not cuspidal.

We next determine how these types intersect with the representations of interest to us. For the
following definition, let Q be one of the representation types I, ITa, IIb, ..., XIb, Va*, sc appearing
in Table 4.

Definition 5.1. Let k be a positive integer. Let S, (Q2) be the set of cuspidal automorphic
representations 7 = ®,7, of GSp(4, A) with the following properties:

(i) 7 has trivial central character.
(i) 7., is the lowest weight module with minimal K-type (k, k); it is a holomorphic discrete
series representation if k > 3, a holomorphic limit of discrete series representation if k = 2,
and a nontempered representation if k = 1. (It was denoted by By in [36, Section 3.5].)
(iii) 7, is unramified for each finite p # 2.
(iv) m, is an irreducible, admissible representation of GSp(4, Q,) of type Q with nontrivial I'(p)-
invariant vectors.

‘We note a peculiarity about representation types Vb and Vc. While these occupy two different
rows in Table 4, the resulting sets of representations are identical, if the parameters in Table 4 are
allowed to vary over all possibilities. Therefore, S, (Vb) = S, (Vc). In the following, we will work
with Vb and ignore Vc.
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Proposition 5.2. Let T be one of the congruence subgroups of Sp(4, Q) in (1). Suppose that 7 is one of
the cuspidal, automorphic representations of GSp(4, A) generated by the adelization of some nonzero
f € Si (). Then € S;(Q) for some Q.

Proof. Recall from [36, Section 4.2] (among other places) that the adelization @ of f € S;(T') is
the unique function G(A) — C, which is left invariant under G(@), invariant under the center of
G(A), right invariant under

¢, x [ 6@, (43)
ez
and satisfies
o(g) = (flkgX [i i]) forall g € Sp(4,R). (44)

Here, C, is the congruence subgroup of G(Q,) analogous to I, or more precisely, the closure of I
in Sp(4, @,) times the group of “multiplier matrices” diag(1, 1, x, x) with x € Z7.

If 7 = ®m, is one of the irreducible components of the representation generated by ® under
right translation, then it is clear that each 7, for primes p # 2 is spherical, and that 7, con-
tains nonzero C,-invariant vectors. By Theorem 3.1 (ii), the representation 7, contains nonzero
I'(p)-invariant vectors. Finally, it follows from the holomorphy of f that 7 is a lowest weight
representation minimal K-type (k, k); see [3]. Hence, 7 € S;(Q) for some Q. O

The point of Proposition 5.2 is that if T is one of the congruence subgroups in (1), then no
cuspidal, automorphic representation of GSp(4, A) besides those in S; (Q), where Q runs through
the types occurring in Table 4, will contribute to S, (I'). Of course, the S, (Q) contribute to S; (I'")
for many other congruence subgroups I (e.g., subgroups or conjugates of any of the I"’s in (1)).

Let SI({G)(Q) be the subset of = € S, (Q) that are of type (G), and similarly for the other Arthur

types. Let 5;.(Q) be the cardinality of S (Q), and sl({*)(Q) be the cardinality of SI({*)(Q). Evidently,

5@ =52 u sP@ u sP@ u s Q0 usP), (45)
so that
5@ = 2@ +57@) + 5@ +52@) + 5P (). (46)

It follows from Proposition 5.2 that

S0 =M e sV @ sP T @ s @ sP ) 47)

for any of the congruence subgroups I' in (1), the obvious notation being that elements of S]({*)(Q)

(for any possible Q) give rise to elements of S]({*)(I“). Hence,
dim $,(I) = dim S () + dim S™(1) + dim S(T) + dim SO () + dim SV (r).  (48)

Proposition 5.3. Let k be a positive integer. Then

s@) =59@) = 5P () = ¢ (49)
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for any Q, and hence,

SO =5sPm) =sP M) =0 (50)
for any of the congruence subgroups T in (1).

Proof. For types (Q) or (B), the proofis analogous to that of [30, Proposition 2.1]. If 7 =~ @, liesin
an Arthur packet of type (Q) or (B), then the characters parametrizing the packet are ramified at
least at one prime p. Alook at [37, Table 1, Table 3] shows that 77, is not among the representations
listed in Table 4. (Recall that all the characters appearing in Table 4 are unramified.) Therefore,
7 & S, (Q) for any Q.

Now consider a cuspidal, automorphic representation 7 = @, of type (Y). Recall that the
packet containing 7 is parametrized by two distinct, cuspidal automorphic representations u; =
®uy, and uy, = ®u,,, of GL(2, A) with trivial central character. Chasing through archimedean
Langlands parameters, we see that in order for 7, to be a lowest weight representation of weight
k, the only possibility, up to order, is that u, ., is a discrete series representation of PGL(2, R) of
lowest weight 2k — 2, and y, , is a discrete series representation of PGL(2, R) of lowest weight

2. Hence, u, corresponds to a newform f, € Szk_Z(F(Ol)(Nl)) and u, corresponds to a newform
fre SZ(Fél)(Nz)) for some levels N;,N,. If we want 7 to be in S;(Q) for some Q, then N,

and N, both have to be powers of 2. Now SZ(FE)I)(4)) = 0, so that we would need N, = 2" for
some n > 3. But then the local component u, ,, whose L-parameter is a direct summand of the
L-parameter of 7,, is such that 7, is not among the representations listed in Table 4; see [31,
Equation (16)] for the possible local Yoshida packets. It follows that 7 cannot be in S; (Q) for any
Q.

Note that (50) follows from (49) in view of Proposition 5.2. O

As a consequence of Proposition 5.3,

S =59 u s (), (51)
so that 5,(Q) = S](CG) Q)+ s,((P)(Q), and

i) = s @ s, (52)

so that dim S;(T") = dim SI((G)(F) + dim S,({P) (). In Section 5.3, we will determine the numbers
s ().

The sets SEG)(Q) are empty for certain Q, because the local Arthur packets (which are L-packets
in this case) must contain a tempered element. The (G) column in Table 4 indicates which Q
can occur in packets of type (G). Similarly, the sets SIEP)(Q) are empty for certain Q, because
the local Arthur packets can only contain the representations listed in [37, Table 2]. The (P)
column in Table 4 indicates which Q can occur in packets of type (P). We see that the only
representations that can occur in packets of both Arthur types (G) and (P) or those of type VIb
and Va*.

Since Arthur packets of type (G) are stable, one can switch within local L-packets and still
retain the automorphic property. Most representations in Table 4 constitute singleton L-packets,
except {Va,Va*}, {VIa, VIb}, and {VIIIa, VIIIb}, which constitute two-element L-packets (XIa is
also part of an L-packet {XIa, XIa*}, but XIa* does not appear in Table 4).
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Hence, sl({G)(Va) = sl({G)(Va*), sl({G)(VIa) = SIEG)(VIb), sl({G)(VHIa) = s,({G)(VIHb) and we denote
these common numbers as follows:

sD(va/a*) = 5O (va) = 59 (va"), (53)
sOVIa/b) := 5P (VIa) = 5D (vIb), (54)
s9(vila/b) := 5D (ViIIa) = 5P (v1IIDb). (55)

We observe from Table 5 that for each of the congruence subgroups H in this table, the dimen-
sion of the space of H-invariant vectors in a type IIla (resp. VII) representation equals the sum
of the dimensions of the spaces of H-invariant vectors for the L-packet VIa/b (resp. VIIIa/b).
(The reason is that I1Ia is a parabolically induced representation y X oStggy () for an unramified,
nontrivial character y, and VIa/b are the two constituents of the same induced representation
when y is trivial. Similarly, VII is y X 7 for an unramified, nontrivial y and VIIIa/b are the two
constituents of the same induced representation with trivial y.) Since our methods cannot deter-
mine the numbers sl({G)(HIa) and sl((G)(VIa/b) (resp. SI(CG)(VH) and SIEG)(VIIIa/b)) separately, we
consider

s (a + Via/b) := s (111a) + 5P (VIa/b), (56)
sSOVIL+ VIHIa/b) 1= sOVID) + 5@ (vIIIa/b). (57)

5.2 | Siegel modular forms and representations in S, (Q)

Consider 7 ~ ) p<co Tp € Si(Q). Recall that 7, is an irreducible, admissible representation of
PGSp(4, Q,) of type Q with nonzero hyperspecial parahoric restriction rg(r,). Let C be one of
the compact open subgroups in Table 4, and let I" be the corresponding congruence subgroup of
Sp(4, @). More precisely,

I =Sp,@)n|Ccx [] 6Sp.z,)| (58)
p<oo
p#2

Then every eigenform (for the Hecke operators at all odd primes) f € S, (I") arises from a vector
in 71'2C, for some 7 € S;(Q), by a procedure similar to the one explained in [30, Section 2.1]. Thus,
we obtain the formula

dimS (M) =Y Y dimzS =) 5(Qdcq, (59)
Q

Q ﬂesk(Q)

where d , is the common dimension of the space of C-fixed vectors of the representations 7, of
type Q with ri(7,) # 0. The d- , are the numbers listed in Table 5. Hence, Equations (59) for all
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I' and all Q are equivalent to the matrix equation

si(D
Sk(IIa)
i | s.(11b)
] - [45301530162192555151051015105 19 || 5.(1l1a)
dim S, (I'(2)) 1 01 000000000000 0000 | s(IVa)
dim S,,(Sp(4, 2)) 1 1000100100000 0000 | Va)
dim 5, (K(2)) 2 2101110100001 0100 [ ¥
dim S, (Ty(2)) 1320011100000 00000 (I ¢cyip)
dim S, (Ty(4) |=[125 7 8 2 235304 313 1 1000 | s(VIc)
d%mSk(F:g(4)) 158 7104 537315 414 7 4313 [ sVID
dim 5, (T'y(2)) 422101110100000 0000 |%VIa)
dim Sy (T';(4)) 5, (VIIIb)
dim 5, (M(2)) 117 452525022201 32101 | ¢qxp
dim S, (B(2)) 8 53 313230200002 1100 5.(X)
i |8 4441 2231100000 0000 | X
- - Sk(XIb)
5. (Va*)
| sk (sc(16)) |
(60)

Here, we have omitted those Q that do not occur in packets of type (G) or (P), because for
these 5, (€2) = 0 by Proposition 5.3. Note also that the class of representations of type Vb is the
same as the class of representations of type Vc, since the parameter o in Table 4 runs through all
possibilities. We therefore include only Vb in (60).

The identity (60) still holds if we put a (G) or a (P) on all the S, (I') and all the s, (Q); this is the

definition of the spaces S](CG)(F) and SI(CP)(F). More of the sl({*)(Q) will then be zero; see Table 4. We
will utilize the (P) version of (60) in the proof of Corollary 5.6, and the (G) version in the proof of
Theorem 5.8. More precisely, we will proceed as follows.

Exploiting the fact that packets of type (P) are parametrized by cuspidal, automorphic represen-
tations of GL(2, A), the numbers sl({P)(Q) can be determined for all Q from dimension formulas
for elliptic modular forms. (Theorem 5.5)

We then use the (P) version of (60) to calculate dim SI({P)(F) for all ' (Corollary 5.6).

Since we already determined dim S, (') for all " except F6(4), we can calculate dim SI({G)(F) for
all T except F6(4). (Proposition 5.7)

Then we use the (G) version of (60), with the row for 1“6(4) omitted, to determine the sl((G) (Q).
Here, it is necessary to combine some types (2, which cannot be distinguished by their fixed
vector dimensions; see (56) and (57). This step reduces the number of unknowns to 10, the same
as the number of equations. (Theorem 5.8)

Next, we use the F6(4)-row of the (G) version of (60) to determine dim SIEG)(FS(‘D)' Since we

already have dim S;P)(F6(4)), this gives us dim Sk(F6(4)). (Corollary 5.9)

Finally, we will be able to fill in the row for dim M, k(F6(4)) in Table B.2, using the codimension
formula for k > 6 given in Table 8, and the low weight results from Appendix A.
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TABLE 9 Some spaces of elliptic cusp forms and their Saito-Kurokawa lifts.

Space k € & 75 S T,
Sok—2(SL(2, 7)) Even -1 1 Spherical {oo} IIb
Odd 1 1 Spherical No lifting
strevriV(2)) Even =il =i Star) {o0,2} VIb
odd 1 1 £Star {o0,2} Va*
S rP(2) Even -1 1 £Star ) {oo} Vb
0dd 1 -1 Store) {oo} Vic
strevriV)) Even =il -1 T, {o0, 2} XIa*
Odd 1 1 No possible u,
Sz"k"iezw(l“gl)(4)) Even -1 1 No possible u,
odd 1 -1 T, {oo} XIb

5.3 | Saito-Kurokawa type

Recall from Section 5.1 that Arthur packets of type (P) are parametrized by pairs (u, o), where
u is a cuspidal, automorphic representation of GL(2, A) with trivial central character, and o is a
quadratic Hecke character.

Lemma 5.4. Suppose that the cuspidal, automorphic representation 7 lies in a packet of type (P),
parametrized by the pair (i, o), where p is a cuspidal, automorphic representation of GL(2, A) with
trivial central character, and o is a quadratic Hecke character. Suppose that also m € S, (Q) for some
Q. Then o is trivial.

Proof. Wewrite 7 = ®7,and 0 = ®c,. The local representation 7z, occurs in [37, Table 2], for any
place v. Since T, is spherical for p > 3, we see from [37, Table 2] that o, is unramified. Since 7,
occurs in Table 4, inspecting [37, Table 2] shows that o, is also unramified. Hence, the character
o, being unramified everywhere, must be trivial. O

If 7 lies in a packet of type (P), parametrized by the pair (u, o) with trivial o as in the lemma,
then we say that “zr is a Saito-Kurokawa lift of u.” Note that a given u may have multiple Saito-
Kurokawa lifts, depending on the size of the Arthur packet. As the proof of the next result shows,
those u corresponding to eigenforms in S;C‘e“’ (FE)D(N ))with N € {2, 4} admit a unique holomorphic
Saito-Kurokawa lift.

Theorem 5.5. The generating series for the numbers SI((P)(Q) given in Table B.10 hold. If a
representation type Q is not listed in Table B.10, then sl((P)(Q) =0 forall k.

Proof. Table 9 shows several spaces of elliptic modular newforms, and how an eigenform in one

of these spaces Saito-Kurokawa lifts to GSp(4, A). The notation S;—’;lzw(l"gl)(N )) indicates the sub-

space of S;;‘j’z(l“gl)(N )) spanned by eigenforms with sign +1 in the functional equation of their
L-function. If u =~ ®u, is the cuspidal, automorphic representation of GL(2, A) corresponding to
an eigenform in one of these spaces, then the sign in the functional equation coincides with the
global e-factor £(1/2, u) = €&, where e, :=¢(1/2,u.) = (=1)* T and ¢, :=e(1/2, u,). In the

U, column of Table 9, the symbol £ stands for the unique nontrivial, unramified, quadratic char-
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acter of Q;, and 7, denotes the unique irreducible, admissible representation of GL(2, Q,) with
trivial central character and conductor exponent 2; it is a depth zero supercuspidal.

Now u,, or rather the pair (u,,1,), where 1, is the trivial character of ij, determines a
local Arthur packet consisting of one or two representations, for each place v. These local pack-
ets are explicitly given in [37, Table 2], and each one of them contains a “base point.” The
packet is a singleton if and only if u, is not a discrete series representation, in which case the
unique representation in the packet is also the base point. Recall from (42) that in order for the
global Saito—Kurokawa packet u to contain the cuspidal, automorphic representation 7 =~ @,
of GSp(4, A), the parity condition €(1/2, u) = (—1)" has to be satisfied, where n is the number of
places for which 7, is not the base point in the local Arthur packet. Since we want 7 to corre-
spond to holomorphic Siegel modular forms, the set S of places where 7, is not the base point
must include the archimedean place, the reason being that the nonbase point in the archimedean
local packet is the holomorphic discrete series representation of PGSp(4, R) of lowest weight (k, k).
Hence, the set S must be {oo} if €(1/2, u) = —1 and must be {o0, 2} if €(1/2, ) = 1. The final col-
umn of Table 9, which can be read off [37, Table 2], shows the type of 7,, the local component at
p = 2 of the unique cuspidal, automorphic representation 7 in the global packet parametrized by
1 which has the required discrete series representation at the archimedean place.

The upshot is that each newform in one of the spaces given in Table 9 gives rise to a unique
“holomorphic” cuspidal representation of PGSp(4, A), the only exception being that eigenforms
in S, _,(SL(2, Z)) for odd k cannot be lifted, because it is impossible to satisfy the parity condition.
We can thus produce elements of Sl(cp ) (Q) for those types Q listed in the last column of Table 9.
Note that representations of type XIa* do not appear in Table 4, and hence, those Saito-Kurokawa
lifts are not relevant for our purposes.

Conversely, suppose that 7 =~ @, is an element of SIEP)(Q) for some Q. Then, by Lemma 5.4, the
Arthur packet containing 7 is parametrized by a cuspidal, automorphic representation u = ®u,
and the trivial character o. Looking at the archimedean parameters in [37, Table 2], we see that
u corresponds to a newform of weight 2k — 2. There can be no ramification outside 2, so that the
level of this newform is a power of 2. In fact, the level must be 1, 2, or 4, since otherwise a look at
the nonarchimedean packets in [37, Table 2] would show that the local component u, would be
such that the elements of the local Arthur packet at p = 2 would not appear in Table 4. Hence,
is a lift of a newform of one of the spaces appearing in Table 9.

This discussion shows that

dim Sy,_,(SL(2,2)) ifkis even,
S]({P) (IIb) = imS,,_,(SL(2,2)) ifkiseven
if k is odd,

dim S;knezw r(”(z)) ifkis even,
ifk is odd,

S]({P) (Va*) = { ifkis even,

s (vIb) =

+,new (1) . .
dim S s (T,°(2)) ifkisodd,

dim sV F(l) 2)) ifkiseven,
S}({P)(Vb) s Ly (2)

if k is odd,
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®) 0 if k is even,
Se (VIc) = JI— S
imS,' (T,7(2)) ifkisodd,
®) _Jo if k is even,
Sk (XIb) - d —,new (1) . .
msS,’ (1“0 (4)) ifkisodd.

Now the asserted formulas follow from (39), (40), (41), the dimension formula for Slf’new(l‘gl) 2)
in [21, Theorem 2.2], and straightforward calculations.
If Q ¢ {IIb, Vb, VIb, VIc, XIb, Va*, XIa*}, then SI((P)(Q) = 0, because type Q does not appear

in local Arthur packets of type (P); see [37, Table 2]. Furthermore, sl((P)(XIa*) = 0 because the
hyperspecial parahoric restriction for representations of type XIa* is zero. O

We note that the cases of 5;(Q) for Q € {IIb, Vb, VIb, VIc} can be found in [30, (3.6) and
Section 3.2].

Corollary 5.6. The dimension formulas for Saito-Kurokawa cusp forms given in Table B.4 hold.

Proof. This is immediate from Theorem 5.5 and the following (P) version of (60).

[ Gim s® 1 _
dlm(f,’)‘ e 159 55 51
dim 5, (IE)SP(“’Z)) 1 00000
dim. 5, ~(K(2)) 1 101 0 of[sPam]
dimsl(cP)(K(4)) 210110 S,((P)(Vb)
dimsP@) | |3 11 0 0 of| @
i 5P 58P (VIb)
dimsP(ry@) [=|7 3 3 0 0 of [ 7} D
dim S® (17 (4)) 7 331 3 1||% VO
(P)
dim s (r(2)) 2 101 0 of[s (XIb)
®)
dim S (17 (4)) 4 20 2 1 0f[s 7 (Va"))
dim s® (M (4)) 320210
4 21100
(P i |
| dimsPB@) | _

For illustration, we have listed dim SI(CP)(I‘) and s](cp)(Q) for weights k < 20 in Tables B.8 and B.12.

5.4 | General type

In this section, we will determine the numbers s]({G)(Q). As an application, we obtain dimension
formulas for the congruence subgroup I';(4).

Proposition 5.7. With the possible exception of T = F6(4), the generating series for dim SI(CG)(F)
given in Table B.5 hold.

Proof. Recall from Proposition 4.7 that the formulas given in Table B.3 have been proven except
forT = F6(4). The formulas in Table B.4 have been proven for all T; see Corollary 5.6. In view of
(52), all we have to do is subtract the formulas in Table B.4 from those in Table B.3. O
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Theorem 5.8. The generating series for the numbers sl({G)(Q) given in Table B.11 hold. If a
representation type Q is not listed in Table B.11, then s]({G)(Q) = 0forall k.

Proof. The (G) version of (60), with appropriate columns combined and the row for F6(4) omitted,

is

[ dims©@r@) |

dim 5{®(Sp(4, 2))
dimS?(K(2))
dim S'?(K(4))
dim 59 (r,(2))
dim S (Ty(4))
dim s (T3 (4)
dim 5{°(1}(2)
dim 5P (M)

[45

dim S ?(B(2))

w
o

12
15

A U1 D 0 U1 FH N = O

W
(=)
—
o)}
N
[\

[
o ® b = O O

A W o

= = O A N O O O O

N W HEH O DD O +mH O O

[
w

S O O un A O O O O

=
(=)

S ©O O ~ W O O © O

[u—
9]

SO N O N = O = O O

[u—
(=)

S = O A H O O O O
S O O W O O O © o ©
L

s (D
59 (11a)
s (1Ta+VIa/b)
s (va)

S]({G) (Va/a*)
s{(VII+VIIIa/b)
59 (1Xa)
SO
s{9(X1a)
5$9(sc(16))

The 10 X 10 matrix is invertible, so that we can solve for the SI({G)(Q).

Corollary 5.9. ForT = F6(4), the results given in Tables B.2, B.3, and B.5 hold.

Proof. The row for 1“6(4) in the (G) version of (60) is

dims@@@) =11 7 5 2 5 2 1 3 2 1

s (D)
s$9(11a)
s{9(1la+VIa/b)
s]({G)(IVa)
sl((G)(Va/ a*)

s (VIL4+VITIa/b) |

SI(CG) (IXa)
s (X)
s{9(X1a)
sl({G)(sc(16))

(62)

(63)

The numbers on the right-hand side are all known and given in Table B.11, allowing us to calculate
dim S}EG)(PS(4))' Since dim SI(CP)(I‘{)(4)) is already known by Corollary 5.6, we obtain dim S (T, (4))
by (52). We then obtain Z,‘f’:6 dim M k(F6(4))tk using the codimensions from Table 8. Evidently,
dim M(T((4)) = 1, and M, (T (4)) = 0 for k € {1,3, 5} by Theorem 4.4. Finally, dim M (I} (4))
for k € {2,4} are determined in Appendix A.

g

For illustration, we have listed dim SIEG)(F) and sl((G) (Q) for weights k < 201in Tables B.9 and B.12.
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APPENDIX A: MODULAR FORMS OF KLINGEN LEVEL 4 AND SMALL WEIGHT
by Cris Poor and David S. Yuen

A.1 | Introduction and notation

This appendix proves dim M,(I';(4)) = 4 and dim M,(I'{(4)) = 0. The proof proceeds by getting
upper and lower bounds that agree. The proofs of the upper bounds rely on the known dimen-
sions dim MS(F’0(4)) =12 and dim Mg(M(4)) = 8. Proving the nontrivial lower bound relies on
constructing Gritsenko lifts of linearly independent Jacobi-Eisenstein series.

LetJ ,, denote the space of Jacobi forms of weight k and index m on SL(2, Z), see [9] for defini-
tions. Jacobi forms of index zero are identified with elliptic modular forms, J, ; = M (SL(2, 2)),
and we will need the Eisenstein series G, € M, (SL(2, 2)) for even k > 4

Gi(r) = —m — 1)+ Y o (W

nx=1
fort € M, and q = e(t) = e*™*. For z € C and y = e(z), let

H(kk —1,4n —r?)
H(k —1,0)

Ek,l(fﬁz) = Z

nreZ: nAn—r2x0

q"y" €,

be the Jacobi-Eisenstein series of even weight k > 4 and index one from Eichler-Zagier [9, p. 22].
Here, the Cohen numbers H(r,n) for n > 0,r > 2 are directly computed as H(r,0) = {(1 — 2r);
H(r,n) = 0for n € N such that (—1)"n = 2,3 mod 4; and, for n € N such that (—1)"n = 0,1 mod
4, as

H(r,n) = LA =1, xp) Y i dxp(@)d" "oy _,(f/d),
dif

where D is the fundamental discriminant of Q(\/(=1)"n), (=1)’n = Df? for f €N, u is the
Mobius function, and yj, : Z — {—1,0,1} is the Kronecker symbol. The L-function L(s, yp) =

Dnen W s defined by analytic continuation, and its special values are given by twisted

nS

Bernoulli numbers By,

ID|

k
Z;@(a) T ZBk)(D f{, (1, p. 53]),

B
L —k, xp) = — "I’;‘D, fork €N (1, p. 152]).

ForZ e N,letV, : Ij ,, = g meand Uy Ji = Ty 102 be the commuting family of index raising
operators from [9, p. 41]. In particular, for ¢ € Jy ,,,

@IVo)r.2) = 271920 + 2 (¢(FE2) +¢(S.2) ),

(9|U,)(z,2) = 2K ¢(1,22).

The lower bound dim M, 4(1“6(4)) > 4 will by proven by constructing four linearly independent
Gritsenko lifts of Jacobi forms. Enough information has already been presented to define the
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Jacobi forms that we will need and to compute their initial Fourier expansions. We have
normalized their constant terms to be 1.
— _ 2 -1 -2
@9 =E;; =1+ (y* +56y +126 + 56y~" +y~°)q

+ (126y° + 576y + 756 + 576y " + 126y~ 2)g* + -

¢, = 16E41|U2—1+(y +56y* +126 + 56y > + y*)q

+ (126y* + 576y* + 756 + 576y~ + 126y~*)q* + ---

@, = %EM [V, =1+ (14y” + 64y + 84 + 64y~ + 14y ?)q

+ (y* +64y° +280y% + 448y + 574 + 448y + - + y ) g* + -

1 1 4 64 5 280 , 448 574 448 _, 1 4
=—E VV=1+< + + V't —y+—+—y 4+ = >
P =51 41 1V2lV, Yt 35 5 Y A 5 Y 5y )

+ (69_4y5+%y4+%y3+320y +%6y+i372+%y—1 +...+69_4y—5>q2+...

A2 | Proofs

Let Jmero be the C-vector space of meromorphic functions on H; x C spanned by a/b such that
a€ Jk1 my» D € Ji,m, \ {0}, and ky — k; = k, m; — m, = m; define M**"°(T') similarly.

Lemma A.1. A basis forl,  is G4. A basis for I, | is . A basis for 1, , is ¢,. A basis for J, 4 is ¢1, ¢;.
We have 3 /G, € IS \ 1, .

Proof. From [9, pp. 103-105], we have dimJ, ,, = 1,1,2 for m = 1, 2,4. The Fourier expansions
show the linear independence. Assume ¢, 2/G, e J4.4, then its Fourier expansion would be given

by the quotient of the series for q02 by G, = o 40 + g +9q* + 28q> + ---. The formal series for
@2 /(240G,) begins:

+(28y* + 128y — 72 + 128y~ + 28y~2)q + (198y” + 1920y° + 288y”

— 17280y + 31908 — 17280y" + -+ + 198y ")g* + -
However, by the Fourier expansions, this is not in the span of ¢; and ¢;. O

Remark. Let §(z,z) = ¥, (~1)" q27+1D?/8y(2n+1/2 define the odd Jacobi theta function; then
9% €], 4, and we may check §® = %(go1 — @3).

Each Siegel modular form f € M, k(Fg(N )) has a unique Fourier-Jacobi expansion

(5 2)- qum(r De(ma) (a1

for which ¢,, € Ji ,,; to see this, use T{(N) N Q = Sp(4,Z) N Q and [9, Theorem 6.1]. Setting § =
e(w), we write this more briefly as f = Z::o ¢,,§™. The following theorem [10] will allow us to
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obtain paramodular forms as Gritsenko lifts of the Jacobi forms ¢;. In this theorem, ¢(0, 0; ¢) is
the constant term of the Fourier expansion of the Jacobi form ¢.

Theorem A.2. Letk,N €N. For¢p €] kN> We have c(0,0;¢) = 0 unless k > 4 is even. An injective
linear map Grit : J y — M (K(N)) is defined by

Grit(¢) = c(0,0; )Gy + Y, $IV,,, §V™.

meN

Definition A.3. Let g; = Grit(qoj) S M4(K(Nj)) for Ny =1,N; =4,N, =2,and N; = 4.

Lemma A.4. The elements gy, 9, 95, 93 € M,(T((4)) are linearly independent. Each element of
Span(gy, 9> 92, g3) is determined by its Fourier-Jacobi coefficients through index 4. The elements
91> 92> 93 € M4(M(4)) are linearly independent.

Proof. Since T (4) € K(N)for N = 1,2,4,we have gy, 1, 92, g5 € M,(T'((4)). By Theorem A.2, their
Fourier-Jacobi expansions through index four are

90 = G4+ @o& + 99,6 + 9o [V3E + @ |V, E* + -
g1 = Gy + 0F +08% + 083 + @, €4 + - (A2)
9y = Gy + 08 + 0,62 + 0% + 9p3&* + -

g3 = Gy + 08 + 0E% + 083 + 3 &% + -

We first show that the subspace of Span(gy, g1, 92, 9;) whose Fourier-Jacobi coefficients of index 0,
1, and 2 vanish is the one-dimensional space spanned by g, — g¢;; this subspace defined by
vanishing conditions is well defined because Fourier-Jacobi expansions are unique. Let f =
Y €j9; € Span(go, g1, 92, g3) for ¢; € C. The vanishing of the Jacobi coefficient of index zero gives
¢y +c¢; + ¢, +c3 =0;0findex 1, ¢, = 0; and of index 2, 9¢c; + ¢, = 0. Hence, we have ¢, = ¢, = 0,
c3=—cp,and f =¥, ¢;9; = ¢1(g1 — g3) = c1py — ®3)€* + ---. Since ¢, and ¢; are linearly inde-
pendent by Lemma A.1, if we additionally demand that the fourth Jacobi coefficient ¢, (¢; — @53)
vanishes, then ¢; = 0 and f = 0. Hence, Span(gy, ¢;, ¢, 93) is determined by the Fourier-Jacobi
coefficients through index 4.

On the other hand, f = 0 implies that the Fourier-Jacobi expansion of f vanishes though
index 4, so that ¢y +¢; + ¢, +¢3=0,¢, =0, 9¢y + ¢, =0, and ¢; =0, implying ¢y =c; =c¢c, =
¢; = 0. Thus, the g; are linearly independent. Since M(4) C K(N)for N = 2,4, we have g;, g5, g5 €
M,(M(4)). We have already seen their linear independence. O

Remark. In terms of the global paramodular newform theory of [26], the level one Eisenstein
series g, is a newform for K(1) = Sp(4, Z), and g, is the oldform above g, in K(2), and g, g; are
the oldforms above g, in K(4).

Lemma A.5. Products from M,(M(4)) span a six-dimensional space in Mg(M(4)).

Proof. Since dim M,(M(4)) = 3, Lemma A.4 shows that g;, ¢, g5 is a basis. Thus, we need to
show that the six products g7, ¢, 95, 9193, 93» 9295, and g5 are linearly independent in Mg(M(4)).
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Multiplying the expansions (A.2), their Fourier-Jacobi expansions through index 4 are
G2 = G2+ 26,0, + -,
0192 = G + G49y8% + (96493 + Gyp)§* + -+,
0195 = Gi + (G493 + Gyp )E* + -,
95 = G +2G,9,8 + (18G,95 + 9)E* + -,
0,95 = Gi + G407 +10G, 36 + -+,
72 = G2 426,08 + .

To prove linear independence, let 3, ;i3 ¢;;9;9; = 0 for some ¢;; € C. Using the linear indepen-
dence of ¢, ¢5, and cp% /G, from Lemma A.1, the vanishing of the Fourier-Jacobi coefficients of
indices 0, 2, and 4 implies ¢;; = ¢y3 + €33, €15 = —Cy3, C13 = —Cy3 — 2C33, and ¢, = 0, and

Z ¢;;9:9; = (91 = 93)(3(0n1 — 92) + c33(01 — 93)).

1<ij<3

By Lemma A.4, g; — g, and g; — g5 are linearly independent, so we obtain c,; = ¢33 = 0. [

The following proof is the most interesting. It leverages dimensions of spaces of higher weight
to deduce the dimension of a space of lower weight.

Proposition A.6. We have dim M,(T},(4)) = 4.

Proof. We know g, g1, 42,93 € M. 4(1“6(4)) are linearly independent by Lemma A.4. Suppose by
way of contradiction thatan f* € M,(I'(4)) exists with f, g;, g1, 95, g5 linearly independent. Using
the known dimension dim Mg(M(4)) = 8, let hy, ..., hg be a basis of Mg(M(4)). The 14 elements
91> £ 92 F 935 90915 90925 90935 P - » hg, are in Mg(T'((4)), which is known to be 12-dimensional, so
that there must be at least two linearly independent relations

for some g4, gs, g, 9. € Span(gy, 92, g3) = My (M(4)) and some hy, by € Mg(M(4)).
We will show that g, is not identically zero. If g, and ¢gs; were both trivial, then h, would also
be trivial, contradicting that the relations (A.3) have rank two. If g, = 0 and g5 # 0, then

h
9o = _g_o € MflerO(M(“)) N M4(F6(4)) = M,(M(4)) = Span(g;, 92, 93,
]

contradicting the linear independence of gy, ¢;, ¢, 5. We will refer to this argument, that a mero-
morphic form for M(4) that is also a holomorphic form for F{)(4) must be a holomorphic form
for M(4), as the integral closure argument. The principle is general: For congruence subgroups
I'; C T, of Sp(2n, @), we have M}{nero(rz) N M, (T;) = M;(T',). To prove this, take f € M;{nem(l“z) N
M, (T';)andy € T',. We have f|y = f on some dense open subset of H,,. Since f € M, (T;) is holo-
morphic, we have f|y = f on H,, and f € M,(T,). Similarly to g,, we have g!l not identically zero.
Since f, g;, 95, g3 are linearly independent, the integral closure argument also shows that gs, gé
are not identically zero.
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We will show that g, 9! — g, gs is identically zero. If not then

f>=;<9§ _95><—h0> (MO ¢ M M4
<g° ot — g \=g, 0 )\ ) S M (4)) X My(M(4))

by the integral closure argument. However, the linear dependence of f and ¢, on ¢, ¢,, 93
contradicts the assumption that f, gy, g;, ¢, g5 are linearly independent.

We use Lemma A 5. Since g, 9. = g, g5 for nontrivial g,, g5, g}, 9. € M4(M(4)) and the six prod-
ucts g; g, for1 < i < j < 3, are linearly independent, it follows that there exists a unit &« € C* such
that g, = ag, and g5 = agl,org, = agsand g, = ag.. In thefirst case, the two linear relations (A.3)
become

afg,+agogs+hy =0, fgi+gogi+h)=0,
so that h, = och(J and the relations are not linearly independent. In the second case, we obtain
afgs+ gogs +hg =0, afgi+ gogs +hy=0,

and af = —gy — hy/gs € M,(M(4)) by the integral closure argument, contradicting the linear
independence of f, ¢;, g5, 95. Thus, no f € M4(I‘6(4)) with f, gy, 91, 92, 95 linearly independent
can exist. O

Proposition A.7. We have dim M,(T'((4)) = 0.
Proof. Take f € M,(I'j(4)) with Fourier-Jacobi expansion f = ¥ > ¢,,§" for ¢, €1, ,,. We
have dimJ, ,, < 0for m < 2by the corollary on [9, p.103]. Therefore, f = Y. >_. ¢,,£" has order at

least index 3 and f* € M,(T},(4)) = Span(go, g1, 92» 95) has order at least index 6. By Lemma A.4,
this span is determined by the Fourier-Jacobi coefficients of index through 4; thus f2 = 0 and

f=o. [l
APPENDIX B: TABLES
B.1 | History of dimension formulas

TABLE B.1 History of dimension formulas for M, (T) and S, (I') for some I".
Earlier references appear left of later (relevant) references in the reference column.

r Weight Reference
Sp(4,72) k>0 [20, Theorem 2], [11, Theorem 6-2]
r') k>0 [20, Theorem 2], [40, p. 882]
K(2) k=1 [18, Theorem 6.1]
k= [15, Section 1]
k= [18, Theorem 2.1]
k=4 [18, Section 2.4]
k>5 [16, Theorem 4]

(Continues)
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TABLE B.1 (Continued)
T
Iy(2)

2

B(2)

K(4)
Ty(4)

I5(4), TH(4), M(4)

Weight Reference

A\ 2 | | T | B A [

L | |
S U1 © O U A W N FEF U N W DN~ U N

eI IFFFFTETEE ST

VvV WV WV WV WV

[18, Theorem 6.1]
[15, Section 1]
18, Theorem 2.2]

18, Theorem 6.1]
15, Section 1]

18, Theorem 2.4]
[18, Section 2.4]

[
[
[
[
[
[

41, Corollary 4.12], [18, Section 2.4]
14, 41, Corollary 4.12], [45, Theorem 7.4]

[14, 46, Theorem A.1]

[18, Theorem 6.1]
15, Section 1]

18, Theorem 2.3]
18, Section 2.4]

25, Theorem 1.1]

[
[
[
[
[
[

[38, Theorem 3.5]

Tables B.2 and B.3

B.2 | Dimension formulas for all weights

42, Proposition 5.4]

14, 46, Theorem A.2]

TABLE B.2 Dimension formulas for M, (T"). The second column indicates those cases that follow directly

from [20, Theorem 2]. The last column gives references for some other places where these formulas appear in the

literature.

r Igusa
r(2) .
Sp(4,2) .
K(2)

K@) c
L,(2) .
Ty(4) e
I5@) .

o
Y dim M, (D)t
k=0
A+)A+HA+)
(1-12)*
1463

(1=t)(A-0)A-£10)(A-112)

A+)A+) A+
A=tHA-10)A-5)(A-112)
A A7+ +110 41 4£17)

(1=£4)2(1=16)(1=112)

1+t
A=)A-t*(1—1%)
DA e
A-2yQ-t)
A+ 404110 (141%)
(1=£2)*(1—t5)

Reference

[40, p. 883]

[20, p. 402]

[13, Proposition 2]
[19, p.121]

[17, Theorem A,C]

[42, Proposition 5.4]

(Continues)
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TABLE B.2 (Continued)

r Igusa
ry(2) .
IN(C))

M4) .

B(2) .

[se]
Z dim M, (T)t* Reference
k=0
A+ 4104241 (A 1)
(A=t4)2(1=10)(1=£12)

[13, Proposition 2]

142044410407 4+565 4200 +4010 4561 4 5012 440134201 4 5¢15 4116 4401742119 4423
(1—14)2(1—15)2

(T A2 417433410+ 104 201 4124413 4 2144 15 441043117 4 18 4 0419 4425)
A=t4)2(1=1%)(1-112)

(1+£0)(1+2'1)

(A-£2)(1—t4)? [17, Theorem B,C]

We remark that all the numerator polynomials in Table B.2 are palindromic. By [39, Theo-
rem 4.4], this is related to the graded algebra P, , M, (T) being a Gorenstein ring. (For the
question of being Cohen-Macaulay, see [8, 43, 44].)

TABLE B.3 Dimension formulas for S; (I'). The second column indicates those cases that follow directly
from [20, Theorem 2], together with the codimension formulas given in Table 8. The last column gives references
for some other places where these formulas appear in the literature.

r Igusa
r(2) .
Sp(4,2) .
K@)

K(4) .
L,(2) .
Ty(4) g
I54) .
r/(2) .
r(4)

M(4) .
B(2) .

5]
Z dim S, (D)t* Reference
k=0
(1454124413 4145 41)
40, p.
oy [40, p. 882]
1413 1
(1—tH(A-1)A-119)(A—112)  (1A—1*)(1—15) [20, Theorem 3]
B+ (A+2 453+ =112 +113) 1
A [16, Theorem 4]
QAL+ H205 404200+ 041104200 4112413 4114411621 4422)
R 5)(=) [25, Theorem 2]
1O(1+£2—18+113)
A e e 0 1
AP [17, Theorem A,C]
19(3+t4+15—2t5+1°)
(1-12)3(1—t°)
BA43t+3 144265 +10—17 =1 +110)
(1-12)3(1—t%)
Q2453414151417 42484411 144 41544161718 4.419)
4 o
YT [46, Theorem A.1]
17 (143042024963 456 +1305 +410 4617 451544110311 42112213 215 4.110)
(1—t42(1—15)?
(142042034364 4405 =10 +418 450043112 42013 =215 4 2010 4417 18 219 44 20)
(1-2)(A—t)(A—16)(1—-112)
A+t 45+ —17—15+17) [17, Theorem B,C]
s )

(-2 (1—+)?
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TABLE B.4

r
r(2)
Sp(4, 72)
K(2)
K(4)
L,(2)
Lo(4)
5@
o2
ro(4)
M(4)

B(2)

Dimension formulas for cusp forms of Saito-Kurokawa type.

Y, dim s& ()t

k=0

51+ ¢+ t2)(1 + 4t + 1083 — 5t* + 10t°)
Q-1 -19)

th
(1 —1t2)(1 —1t%)
BA+2+3+1%
1 —=t"1-1t%)
7+t + 12 + 28 + t* + 21°)
Q-1 —1t°)
(1 + 12 + 2t%)
Q—-t2)(1-1t%)
t9(3 + 3% + 4t%)
1 —2)1 —t°)
QA —t+ )1+ 4t + 5% + 41%)
1 -1 —1t°)
A+t +2)A —t +2t%)
1 —tH( —1t°)
(1 + 2t + 12 + 483 + 2t + 415)
1=t —15)
A+t +2)A +t— 2+ 383)
1 —=t*)A —1t°)
O + ¢+ 12)(1 — ¢ + 36> — 263 + 3t%)
1 —tH)(1—-1¢t%)
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TABLE B.5 Dimension formulas for cusp forms of general type.

[oe]
. G
r Y, dim s (r)e¢
k=0
rQ) B+t +t2)(10 — ¢t + 122 — 563 + 2t* + 132 — 16t° + £7)
(1 —12)2(1 —t4)(1 —t%)

s (4 Z) tZO(l + t2 + t4 _ t12 _ t14 + tlS)

L (1 =9 = 5)Q = £19)(1 - £12)
K(2) POA+ B+t + 17+ 18— 2% =210 + 1)

1-2)a-tHA —t5)(1 —t12)
K(4) YA+t 4 83 464+ 26 + 268 +26° + 112 + 113 — 2114 — 3¢15 4 £19)
1-2)AQ -t —t5)(1 —t12)

L. 2Q+ 202 —t* =215+ 17)

o (1 —2)(1 — t4)2(1 — t6)
o B33+ 13 + 3t — 4% +17)

() 1 —12)3(Q —19)
I (4) BE+3t+2+83+44 -1 -5t +17)

0 1 =231 —19)
I (2) 242+ 83+ 26+ 07+ 8 4 201 4 112 — 2013 — 3¢14 4 419)

® A -22)a -1 —t6)(1 —t12)
I (4) 31+t + 562 + 43 + 11t% + 617 + 1266 + 8t7 + 818 + 5¢° — 10 + 111 — 6112 — 2113 — 6114 + (1)

0 Q=421 —16)?
M) O 4 2t + 482 + 13 + 3t* + 46 + 5t + 467 + 4410 — 12 4 3413 4 14 — 3415 — 5¢16 4 £17)

Q-0 —-tHA -t —t12)

B2) O+t 4+ 2)A =t + 4% =208 + 14 + 365 = 5t + 17)

1 -1 —t4)2(1 — %)
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B.3 | Dimensions for low weights

TABLE B.6 Dimensions for low weights: All modular forms.
dim M, (T) for k = ---

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rQ2) 0O 5 0 15 1 3 5 69 15 121 35 195 69 295 121 425 195 589 295 791
Sp4,z) 0 0 0 1 O 1 O 1 0 0 3 0 2 0 4 0 4 0 5
K(2) 0 0 0 1 0 1 O 0 1 5 0 3 1 7 1 7 2 10
K@) 0O o0 0 2 0 2 1 4 1 5 3 10 3 9 6 17 7 19 12 27
r,(2) 0O 1 0 3 0 4 O 0 9 0 14 O 17 0 24 0 29 1 38
Iy(4) 0O 3 0 7 0 14 0 24 0 38 1 5 3 81 7 11 14 148 24 192
I C) 0o 3 0 7 1 15 3 27 7 45 15 71 27 105 45 149 71 205 105 273
F(’) ) o 0 o0 2 0 2 0 4 O 5. 1 10 O 9 2 17 2 19 4 26
4 o o0 o0 4 0 6 1 12 2 20 7 36 10 46 22 75 32 98 50 133
M(4) o o0 o0 30 31 8 1 100 5 21 5 23 13 41 16 49 28 71
B(2) o 10 4 0 50 11 0 14 1 24 1 30 4 45 5 55 n 7

TABLE B.7 Dimensions for low weights: All cusp forms.

dim S, (T') for k = ---

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r'(2) 0 0 0 01 5 5 24 15 61 35 120 69 205 121 320 195 469 295 656
Sp4,z) 0 0 0 0 O O O 0 O 1 0 1 0 1 0 2 0 2 0 3
K@) 0 0 000 O0O0O 1 0 1 1 0 2 1 4 4 2 7
K(4) 0O 0 0 0O 0 o0 1 1 1 2 3 4 3 5 6 10 7 12 12 19
r,(2) 0O 0 0 0 0 1 O 2 0 4 0 0 10 0 15 0 20 1 27
Ty(4) 0O 0 0 0 0 3 O 9 0 19 1 34 3 54 7 80 14 113 24 153
1"(*) @) o o0 o o 1 3 3 100 7 23 15 44 27 73 45 112 71 163 105 226
F:)(Z) 0O 0 0 00 0 O 1 0 2 1 4 0 5 2 10 2 12 4 18
I‘(’)(4) 0O 0 0 0 0 0 1 3 2 9 7 19 10 30 22 53 32 74 50 106
M(4) 0O 0 0 00 0 1 2 1 4 5 10 5 14 13 27 16 35 28 54
B(2) 0O 0 0 00 1 O 3 0 6 1 12 1 18 4 29 5 39 1 56
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TABLE

T
I'(2)
Sp(4,7)
K@)
K(4)
Iy(2)
Ty(4)
5@
IW@)
I C)
M(4)
B(2)

TABLE

r
')
Sp(4, Z)
K(2)
K(4)
Iy(2)
Ty(4)
WG
o)
ro4)
M(4)
B(2)

B.4 |

Q

IIb

B.8 Dimensions for low weights: Cusp forms of Saito-Kurokawa type.
dim $&(T) for k = ---
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0o 0 0 0 1 5 5 14 6 20 11 29 11 34 16 44 17 49 21 58
0O 0 0 0 0O 0O 0O O O 1 0 1 0 1 0 2 0 2 0
o 0 o 0 o o0 o 1 0 1 1 2 0 2 1 3 1 3 1 4
0O 0 0O 0O O 0 1 1 1 2 3 2 3 3 5 3 5 4
o o0 o o O 1 O 2 0 4 0 5 0 6 0 8 0 9 0 10
0O 0 0 o O 3 0 6 0 10 O 13 0 16 0 20 0 23 0 26
o o0 o o 1 3 3 6 4 10 5 13 7 16 8 20 9 23 11 26
0O 0 0O O O o0 o 1 0 2 1 3 0 3 1 5 1 5 1 6
o o0 o0 o0 o0 o0 1 2 1 4 3 6 2 6 4 10 4 10 5 12
0O 0 0 0 0 0 1 2 1 3 3 5 2 5 4 8 4 8 5 10
o o0 o o o0 1 o 3 0 5 1 7 O 8 1 11 1 12 1 14
B.9 Dimensions for low weights: Cusp forms of general type.
dim $©(T) for k = ---
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 00 0 10 9 4 24 91 58 171 105 276 178 420 274 598
0 0 00OOO O OO O0 O 0 0 0 0 0 1
0o o0 0 0 0 0 0O o0 o0 o 0 0 0 1 1 3
0 0 0 0 0 06 0 0 0 O 1 1 1 3 5 7 8 13
0o 0 0 0 0 0 0O o0 o0 o 0o 2 0 4 0 7 11 1 17
0 0 0 0 0 0 O 3 0 9 1 21 3 38 7 60 14 90 24 127
o 0 0 0 0 0 0O 4 3 13 10 31 20 57 37 92 62 140 94 200
0O 0 0 0 0 00 0 0 O 0 1 0 2 1 5 1 7 3 12
0O 0 0 0 0 0 O 1 1 5 4 13 8 24 18 43 28 64 45 94
0 0 0o 0O0OOO 0O 1 2 5 3 9 9 19 12 27 23 44
0 0 0 0 0 0 0O o0 o 1 0 5 1 10 3 18 4 27 10 42
Number of automorphic representations
TABLE B.10 Number of automorphic representations: Saito-Kurokawa type.
o o S
ésip)(ﬂ)tk Q I;)sf)(ﬂ)tk Q kzz‘asf’(n)tk
10 6 4 8 _ 412 7
e N e cery B e o
i VIc i Va* e

1 =tH(A =1

1 =tHA =19)

1 =tH(A =19)
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TABLE B.11

Q

ITa

IITa+VIa/b

IVa

Va/a*

VII+VIIIa/b

IXa

X

XIa

sc(16)

TABLE B.12

(P) 1Ib

VIb
Vic
XIb
Va*

G) 1
ITa
IITa+VIa/b
IVa
Va/a*
VII+VIiIa/b
IXa
X
Xla
sc(16)

Y sy
k=0

t20(1 + 12 + t4 _ t12 _ t14 + tlS)

(1 =H(A =)A= 1)1 - 112)

o1+ 2 + 3 — t* — %)

- 21— 5)1 - 15)

P42 4264 — 05 4260 — 217 + 18 — 267 + 110 — 241 4 (14 4 116 4 (17 — 118)

Number of automorphic representations: general type.

1 -1 = 5)A = 19)AQ - t12)
O+ 48+ =5+ + 2610 420" F 1124413 — 11 15 — 16 — 117 4 120)

A +2-1 -

A=A —5)Q — %) —£12)
t7 +t19)

=1 = 5)1 - o)1 — 112)

10 + 12 -5 +17)
(1 —t42(1 — 15)?
81+ 1Y)

(1= )1 =)A= 10)(A = 112)
MA+E+0 -1

A-) - tHA - )1 — 112)

A+ +tr =17 -8+t

(1 =2)A = H(A =11 = 1)

9

A-2)1- 21 -0)

sf) (Q) or sf) Q) fork = ---

Number of automorphic representations for low weights.

2 3 4 5 6

SO O © © O O © © O O O ©O O O O O -
SO ©O © © O © © © O o o ©o o o o o
O O © © O O © © O O o o o o o o
O O © © O O © O O O O o o o o o©
SO © © © O © © © o o # o o o o o
SO O © ©O O O © O O O o o o = o ©
O O © ©O O O © O O O o = o o o o VN
SO O © O O © O O O O o o = ~H o &

— O ©O © O ©O © © © O +H +H O O O O ¢

[y
(=]

o o o » - O H O O O o o o = o+~

==
=

_ o 2 O O ©O © O © o = = = O O O

[
N

o B o N B O H 2 O O O ©O O = = -

p—
w

w o B2 O O ©O B O O o B N O O O O

S

= 2 O W NN O NN O O O O O N ==

o
wn

w = N O O = 2 O O O = N ~F O O O

-
=)}

= W O A, W O N W H-H O O O O F =N

ot
N

N B W o = =2 N O O O N NN +H O O O

juy
>

w A, O UL 1 ©O W W = O O O O N = N

=
o

N = = O H RN O H O - W = O O O

1%
(=)

w u 2 o0 U O o o =2 =2 O O O N NN
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