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Abstract

This work bridges the abstract representation theory of GSp(4) with recent computa-
tional techniques. We construct four examples of paramodular newforms whose associated
automorphic representations have local representations at p = 2 that are supercuspidal. We
classify all relevant irreducible, admissible, supercuspidal representations of GSp(4,Q2), and
show that our examples occur at the lowest possible paramodular level, 16. The required
theoretical and computational techniques include paramodular newform theory, Jacobi re-
striction, bootstrapping and Borcherds products.
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Introduction

This paper consists of a local part and a global part. In the local part we classify irreducible,
admissible, supercuspidal representations of GSp(4,Q2) with trivial central character and small
conductor. In particular, we prove that there exists a unique such supercuspidal sc(16) with (the
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exponent of the) conductor a(sc(16)) = 4. In the global part we construct Siegel paramodular
cusp forms of weights 6, 11, 13, and 14 and paramodular level 16 generating an automorphic
representation with sc(16) as its 2-component. To the best of our knowledge, these are the first
examples of Siegel paramodular forms generating automorphic representations with a supercus-
pidal component. Other types of local representations can be seen in [26].

We give two approaches to the construction of sc(16). The first approach relies on the
local Langlands correspondence for the groups GL(2), GL(4) and GSp(4). We first construct,
via automorphic induction, a set of six supercuspidals of GL(2, E), where E = Q2(

√
5) is the

unramified quadratic extension of Q2. Up to unramified twists, these are precisely the depth zero
supercuspidals of GL(2, E). We automorphically induce again to obtain three supercuspidals
of GL(4,Q2). These are precisely the three depth zero supercuspidals of GL(4,Q2) with trivial
central character. Of these three, exactly one is a transfer from a representation of GSp(4,Q2).
This representation of GSp(4,Q2) is the unique generic supercuspidal sc(16) with trivial central
character and conductor 4. As a corollary to our construction, we obtain a complete list of all
supercuspidals of GSp(4, F ) with trivial central character and conductor ≤ 4; see Table 2. We
also determine, via direct calculation, that the value of the ε-factor at 1/2 of sc(16) is −1. This
sign is important to know for global applications, as it will help us to identify sc(16) within the
automorphic representations generated by paramodular forms.

Our second approach to sc(16) is via compact induction. The Langlands parameter sc(16),
known from the first construction, is of the kind considered in [5]. The results of this paper then
exhibit sc(16) as being compactly induced from a cuspidal representation κ0 of GSp(4,Z2/2Z2)
(inflated to GSp(4,Z2) and extended trivially to include the center). Since GSp(4,Z/2Z) ∼= S6,
the irreducible characters of this group are in bijection with the partitions of 6. The repre-
sentation κ0 corresponds to (2, 2, 1, 1) and has dimension 9. It is the unique cuspidal, generic
character of GSp(4,Z/2Z).

We describe the passage from global paramodular forms to local supercuspidal represen-
tations. The automorphic representations studied here are generated by the adelic function
canonically associated to a paramodular eigenform f ∈ Sk(K(N))new. The interesting local
representations are classified by computing the Hecke eigenvalues of f at primes dividing the
level N . In order to rigorously compute these eigenvalues, we spanned the Fricke eigenspace con-
taining f , Sk(K(N))ε. Accurate upper bounds for the dimension of Sk(K(N))ε were provided
by Jacobi restriction , which classifies all possible Fourier-Jacobi coefficients from Sk(K(N))ε

to some sufficient order. Lower bounds were created by the technique of bootstrapping . Boot-
strapping seeds the target space with a Borcherds product, and then generates a subspace that
contains the seed and is stable under a good Hecke operator. Bootstrapping is run modulo an
auxiliary prime, and the subtle point is that it does not directly compute the action of a good
Hecke operator T (q) on Sk(K(N))ε, but rather of a formal Hecke operator T (q) on the Jacobi
restriction space of initial Fourier-Jacobi expansions.

Even with the relevant spaces spanned, the eigenvalues at the bad primes resist direct com-
putation because they involve Fourier coefficients from more than one 1-dimensional cusp. As
in [26], this is overcome using the technique of restriction to a modular curve . We found
symmetric f with a supercuspidal local component early on, but only found the antisymmetric
example in S14 (K(16))− as the computations were becoming prohibitive.

The authors thank ICERM for the June 12-16, 2017, Collaborate@ICERM grant where a
substantial part of this work was completed. We thank the Academic Computing Environment
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at Fordham University for the use of its servers.

1 Notation

For any commutative ring R, let

GSp(4, R) = {g ∈ GL(4, R) : tgJg = µ(g)J, for some µ(g) ∈ R×}, J =
[

12
−12

]
.

The kernel of the multiplier homomorphism µ : GSp(4, R) → R× is the group Sp(4, R). The
C-vector space of Siegel modular forms of weight k ∈ Z for a subgroup Γ ⊆ GSp(4,R) commen-
surable with Sp(4,Z) is denoted by Mk (Γ), the subspace of cusp forms by Sk (Γ).

2 Supercuspidal representations of GSp(4,Q2) of small conductor

Let F be a non-archimedean local field of characteristic zero. Let o be its ring of integers, p the
maximal ideal of o, and q the cardinality of the residue class field o/p. When there is more than
one field involved, we sometimes write oF , pF , and qF for clarity.

Let WF be the Weil group of F , and W ′F the Weil-Deligne group. We refer to [33] or [14]
for basic facts about the Weil and Weil-Deligne groups and their representations. If φ : W ′F →
GL(n,C) is a representation of W ′F , then we define the (exponent of the) conductor a(φ) of φ
as in §10 of [33]. If π is an irreducible, admissible representation of GL(n, F ), then the conductor
of π is defined as a(π) = a(φ), where φ : W ′F → GL(n,C) is the Weil-Deligne representation
corresponding to π via the local Langlands correspondence.

2.1 Discrete series parameters for GSp(4)

The local Langlands correspondence (LLC) for GL(n) states that there is a bijection between
isomorphism classes of irreducible, admissible representations π of GL(n, F ) and Langlands
parameters, i.e., conjugacy classes of admissible homomorphisms φ : W ′F → GL(n,C). This
bijection satisfies a number of desirable properties. For example, if π corresponds to φ, then the
central character of π corresponds to det(φ) under the LLC for GL(1) (which is essentially the
reciprocity law of local class field theory). Another property is that π is an essentially discrete
series representation if and only if the image of φ is not contained in a proper Levi subgroup;
such φ are therefore called discrete series parameters. Moreover, supercuspidal π correspond to
irreducible φ.

The local Langlands correspondence is also a theorem for GSp(4); see [10]. The Langlands
parameters are now admissible homomorphisms φ : W ′F → GSp(4,C), taken up to conjugacy
by elements of GSp(4,C). A new phenomenon is that to one φ there now corresponds either a
single representation π, as in the GL(n) case, or a set of two representations {π1, π2}. In either
case we speak of the L-packet corresponding to φ. The size of the L-packet corresponding to φ
equals the cardinality of Sφ/S

0
φZ, where Sφ is the centralizer of the image of φ, S0

φ is its identity
component, and Z is the center of GSp(4,C).

The LLC for GSp(4) is such that the central character of the representations in the L-packet
of φ corresponds to the multiplier µ ◦ φ. As in the GL(n) case, the L-packet corresponding to φ
consists of essentially discrete series representations if and only if the image of φ is not contained
in a proper Levi subgroup of GSp(4,C). It is also true that irreducible φ : W ′F → GSp(4,C)
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correspond to singleton supercuspidal L-packets. However, there are plenty of supercuspidals
whose Langlands parameter is not irreducible.

To better understand L-parameters for supercuspidals, we recall some of the discussion of
Sect. 7 of [10]. Let φ : W ′F → GSp(4,C) be a discrete series parameter for GSp(4), meaning the
image of φ is not contained in a proper Levi subgroup of GSp(4,C). Such parameters are of one
of two types (A) or (B).

Type (A): Viewed as a four-dimensional representation of W ′F , the map φ decomposes as
φ1 ⊕ φ2, where φ1 and φ2 are inequivalent indecomposable two-dimensional representations of

W ′F with det(φ1) = det(φ2). Explicitly, if φi(w) =
[
ai(w) bi(w)
ci(w) di(w)

]
, then

φ(w) =

 a1(w) b1(w)
a2(w) b2(w)

c1(w) d1(w)
c2(w) d2(w)

 .
In this case the packet associated to φ consists of two elements, a generic representation πgen

and a non-generic πng. The common central character of these two representations corresponds
to det(φ1) = det(φ2). There are three subcases:

• (A1): Both φ1 and φ2 are irreducible. In this case πgen and πng are both supercuspidal.

• (A2): One of φ1, φ2 is irreducible, and the other is reducible (but indecomposable). In
this case πgen is a representation of type XIa in the classification of [31]; it sits inside a
representation induced from a supercuspidal representation of the Levi component of the
Siegel parabolic subgroup. The non-generic πng is supercuspidal; it is a representation of
type XIa∗ in the notation of [32].

• (A3): Both φ1 and φ2 are reducible (but indecomposable). In this case πgen is a represen-
tation of type Va in the classification of [31]; it sits inside a representation induced from
the Borel subgroup. The non-generic πng is supercuspidal; it is a representation of type
Va∗ in the notation of [32].

Hence πng is always supercuspidal, but πgen is only supercuspidal for class (A1). Note that, by
Theorem 3.4.3 of [31], non-generic supercuspidals do not contain paramodular vectors of any
level. Hence, supercuspidals of the form πng cannot occur as local components in automorphic
representations attached to paramodular cusp forms.

Type (B): Viewed as a four-dimensional representation of W ′F , the map φ is indecomposable.
In this case there is a single representation π attached to φ, and this π is generic. Via the
inclusion GSp(4,C) ↪→ GL(4,C) we may view φ as the Langlands parameter of a discrete
series representation Π of GL(4, F ). By the definitions involved, Π is the image of π under the
functorial lifting from GSp(4) to GL(4) coming from the embedding GSp(4,C) ↪→ GL(4,C) of
dual groups. Again there are three subcases:

• (B1): φ is irreducible as a four-dimensional representation. In this case π is supercuspidal.

• (B2): φ = ϕ ⊗ sp(2) with an irreducible two-dimensional representation ϕ of WF , and
sp(2) being the special indecomposable two-dimensional representation of W ′F . In this
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case π is a representation of type IXa; see Sect. 2.4 of [31]. This π sits inside a represen-
tation induced from a supercuspidal representation of the Levi component of the Klingen
parabolic subgroup.

• (B3): φ = ξ ⊗ sp(4) with a one-dimensional representation ξ of WF . Then π is a twist of
the Steinberg representation StGSp(4) (type IVa in the classification of [31]).

Hence π is supercuspidal only for class (B1), i.e., if φ is irreducible. In this case π transfers to
a supercuspidal representation Π of GL(4, F ).

2.2 Counting supercuspidals for GL(2) and GL(4)

We see from the parameters exhibited in the previous section that, in order to understand
supercuspidal representations of GSp(4, F ), we need to understand supercuspidal representations
of GL(2, F ) and GL(4, F ), or equivalently, two-dimensional and four-dimensional irreducible
representations of WF . In this section we count the number of supercuspidals of GL(2, F ) and
GL(4, F ) with small conductor.

The conductor a(π) of an irreducible, admissible representation of GL(n, F ) is by definition
the Artin conductor a(φ) of its Langlands parameter φ; see §10 of [33]. Here, we always mean
the exponent of the conductor, so that a(π) = a(φ) is a non-negative integer. Another measure
of complexity is the depth d(π), as defined in [24], [25]. For supercuspidals, there is an easy
relationship between depth and conductor, given by

d(π) =
a(π)− n

n
; (1)

see Proposition 2.2 of [22]. The set of supercuspidals of a fixed conductor is invariant under
unramified twisting.

The smallest conductor that can occur for a supercuspidal representation of GL(n, F ) is
a(π) = n. By (1), these are the depth zero supercuspidals. If π is one such supercuspidal, and χ
is an unramified character, then the twist χπ is also a depth zero supercuspidal. Let Zn be the
(finite) set of isomorphism classes of depth zero supercuspidals of GL(n, F ) up to unramified
twists. It is known that Zn is in bijection with the set of Gal(Fqn/Fq) orbits of length n in the
group of characters of F×qn ; see Sect. 8 of [6] and Sect. 6 of [25]. It is an exercise to show that

#Z2 =
1

2
q(q − 1), #Z4 =

1

4
q2(q2 − 1). (2)

Note that if q = 2, then every element of Zn is represented by a unique depth zero supercuspidal
with trivial central character. The reason is that depth zero supercuspidals are compactly
induced from representations of ZK, where the representation on K = GL(2, o) is inflated from
a cuspidal representation of GL(2, o/p). If o/p has only two elements, then every representation
of K thus obtained has trivial central character. In particular, we see from (2) that GL(2,Q2) has
exactly one depth zero supercuspidal with trivial central character, and GL(4,Q2) has exactly
three depth zero supercuspidals with trivial central character.

For a unitary character ω of F×, let Sω be the set of isomorphism classes of depth zero
supercuspidals of GL(2, F ) with central character ω. By Proposition 3.4 of [37], #Sω = 0 if
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a(ω) ≥ 2. If a(ω) ≤ 1, then, by (4-1) of [20],

#Sω =



1

2
(q − 1) if q is odd and ω(q−1)/2 is trivial,

1

2
(q + 1) if q is odd and ω(q−1)/2 is non-trivial,

1

2
q if q is even.

(3)

2.3 Depth zero supercuspidals of GL(2,Q2(
√

5))

In this section let E = Q2(
√

5) be the unramified quadratic extension of Q2, and let L be the
unramified quadratic extension of E. Note that 2 is a uniformizer both in E and in L. Let Fpn
be the field with pn elements. The residue class field of E is F4, and the residue class field of L
is F16. The polynomial X4 +X + 1 ∈ F2[X] is irreducible, so that

F16
∼= F2[X]/(X4 +X + 1).

Let ȳ be the image of X via this isomorphism. Then F16 = F2(ȳ), and ȳ satisfies ȳ4 = ȳ + 1.
Clearly, the order of ȳ in F×16 is not 3 or 5, so that ȳ is a generator of the cyclic group F×16. The
element ȳ5 is then a generator of the cyclic group F×4 . Let y be an element of o×L mapping to ȳ
under the projection o×L → F×16.

Let η̄ be the character of F×16 determined by η̄(ȳ) = e2πi/15. For r ∈ Z/15Z we define a
character ηr of L× by lifting η̄r to o×L and setting ηr(2) = −1.

Let θ be the generator of Gal(L/Q2) that induces the map x 7→ x2 on F16. Then θ2 generates
Gal(L/E). We have ηθr = η2r. (If σ ∈ Gal(L/F ) and π is a representation of GL(n, F ), then πσ

is the representation of GL(n, F ) defined by πσ(g) = π(σ(g)).)
Consider automorphic induction AI = AIL/E ; see [16]. Recall that AI takes characters

ξ of L× to irreducible, admissible representations ρ of GL(2, E). By Proposition 4.5 of [16],
the central character of ρ is given by χL/E(ξ|E×), where χL/E is the quadratic character of
E× corresponding to the extension L/E. On the Galois side, AI corresponds to induction of
parameters, i.e., the parameter of ρ is

φρ = indWE
WL

(ξ).

This parameter is irreducible, i.e., ρ is supercuspidal, if and only if ξ is not Gal(L/E)-invariant.
We have a(ρ) = 2a(ξ) by the conductor formula (a2) in §10 of [33].

We now consider AIL/E(ηr) for r ∈ {1, . . . , 15}. This representation is supercuspidal if and
only if η4r 6= ηr, which translates into 5 - r. Since a(η) = 1, we have a(AIL/E(ηr)) = 2 for r 6= 0.

The central character ω of AIL/E(ηr) is determined by ω(2) = 1 and ω(y5) = η5r(y) = e2πir/3.
Hence, if we let ωj be the character of E× which is trivial on 1 + pE and satisfies ωj(2) = 1
and ωj(y

5) = e2πi(j−1)/3, then ω1, ω2, ω3 are the possible central characters of the AIL/E(ηr).

We have ωθ1 = ω1 and ωθ2 = ω3. Considering Langlands parameters, it is easy to see that
the Gal(E/Q2)-conjugate of AI(ξ) is given by AI(ξ)θ = AI(ξθ), and the contragredient is
AI(ξ)∨ = AI(ξ−1).

Table 1 lists the supercuspidal representations of the form AI(ηr). For each possible central
character ωj , there are two supercuspidals, which we denote by ρja and ρjb. Note from (2)



2 SUPERCUSPIDAL REPRESENTATIONS OF GSp(4,Q2) OF SMALL CONDUCTOR 7

Table 1: Representatives for the depth zero supercuspidals of GL(2, E) up to unramified twists.
The first column shows Gal(L/E)-orbits of length 2 of the characters ξ = ηr. The ω column
shows the central character of the representation AIL/E(ξ). The columns AI(ξ)θ and AI(ξ)∨

show the Gal(E/Q2)-conjugate and contragredient of AIL/E(ξ), respectively.

ξ AI(ξ) ω AI(ξ)θ AI(ξ)∨

η3 or η12 ρ1a ω1 ρ1b ρ1a

η6 or η9 ρ1b ω1 ρ1a ρ1b

η or η4 ρ2a ω2 ρ3a ρ3b

η7 or η13 ρ2b ω2 ρ3b ρ3a

η2 or η8 ρ3a ω3 ρ2a ρ2b

η11 or η14 ρ3b ω3 ρ2b ρ2a

that there are exactly six depth zero supercuspidals of GL(2, E) up to unramified twists. The
following lemma implies that the six representations {ρ1a, ρ1b, ρ2a, ρ2b, ρ3a, ρ3b} represent these
six classes of depth zero supercuspidals up to unramified twists. Note that having exactly two
depth zero supercuspidals for a given central character ωj is consistent with (3).

2.3.1 Lemma. Let j ∈ {1, 2, 3}.

i) The representation ρja is not a twist of ρjb.

ii) Let ρ = ρja or ρ = ρjb. Then ρθ is not isomorphic to a twist of ρ∨.

iii) Let ρ, ρ′ ∈ {ρ1a, ρ1b, ρ2a, ρ2b, ρ3a, ρ3b}. Then ρ is not an unramified twist of ρ′, unless
ρ = ρ′.

Proof. i) Assume that ρja = χ⊗ρjb for some character χ of E×; we will obtain a contradiction.
Taking central characters on both sides, we see that χ2 = 1. We have a(χ) ≤ 1 by Proposition
3.4 of [37].

Assume that a(χ) = 0. Then χ is either the trivial character, or χ = χL/E , the unique
non-trivial, unramified, quadratic character of E×. In either case χ⊗ ρjb = ρjb, a contradiction.

Assume that a(χ) = 1. Then χ induces a non-trivial character of o×E/(1 +pE). In particular,
the image of χ|o×E consists of the third roots of unity, contradicting χ2 = 1.

ii) follows from i) and Table 1.
iii) Assume that ρ is an unramified twist of ρ′. Then the restrictions of the central characters

of ρ and ρ′ to o×E coincide. Hence ρ = ρj∗ and ρ′ = ρj∗ with the same j. By i), we conclude
ρ = ρ′.

2.3.2 Lemma. Let L be the unramified extension of degree 4 over Q2. Let the characters ηr
of L× be defined as above. Then, for ξ ∈ {η3, η6, η9, η12},

ε(1/2, ξ, ψL) = −1. (4)
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Here, ψL = ψ ◦ trL/Q2
, where ψ is a character of Q2 that is trivial on Z2 but not on 2−1Z2.

Proof. Let F16
∼= F2[X]/(X4 + X + 1), and ȳ be the element corresponding to X, as at the

beginning of this section. The Frobenius of the extension F16/F2 is given by squaring, so that

trF16/F2
(x) = x+ x2 + x4 + x8

for any x ∈ F16. Using this formula and ȳ4 = ȳ + 1, it is easy to calculate the trace of any
element of F16. The results are as follows,

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

trF16/F2
(ȳi) 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

(5)

Let ξ ∈ {η3, η6, η9, η12}. By the formula (ε3) in §11 of [33],

ε(1/2, ξ, ψL) = q
−a(ξ)/2
L

∫
$
−a(ξ)
L o×L

ξ−1(x)ψL(x) dx. (6)

For this formula to hold, it is important that ψL has conductor oL, which is the case for our
additive character. The element $L is a uniformizer; in our case we may take $L = 2. We
further have a(ξ) = 1 and qL = 16, so that

ε(1/2, ξ, ψL) =
1

4

∫
2−1o×L

ξ−1(x)ψL(x) dx =
1

4
|2−1|L

∫
o×L

ξ−1(2−1x)ψL(2−1x) dx

= −4

∫
o×L

ξ−1(x)ψL(2−1x) dx = −4 vol(1 + pL)
∑

x∈o×L/(1+pL)

ξ−1(x)ψL(2−1x)

= −1

4

∑
x∈o×L/(1+pL)

ξ−1(x)ψ(2−1trL/Q2
(x)).

We have

ψ(2−1trL/Q2
(x)) =

{
1 if trL/Q2

(x) ∈ 2Z2,

−1 if trL/Q2
(x) ∈ Z×2 .

=

{
1 if trF16/F2

(x̄) = 0,

−1 if trF16/F2
(x̄) = 1.

Hence, using (5),

ε(1/2, ξ, ψL) = −1

4

( ∑
i∈{1,2,4,5,8,10,15}

ξ−1(yi)−
∑

i∈{3,6,7,9,11,12,13,14}

ξ−1(yi)

)
= −1

4

(
ζ + ζ2 + ζ4 + ζ5 + ζ8 + ζ10 + ζ15 − ζ3 − ζ6 − ζ7 − ζ9 − ζ11 − ζ12 − ζ13 − ζ14

)
,

where ζ = ξ−1(y), a primitive fifth root of unity. Using ζ5 = 1 and 1 + ζ + ζ2 + ζ3 + ζ4 = 0, this
simplifies to

ε(1/2, ξ, ψL) = −1

4

(
ζ + ζ2 + ζ4 + 1 + ζ3 + 1 + 1− ζ3 − ζ − ζ2 − ζ4 − ζ − ζ2 − ζ3 − ζ4

)



2 SUPERCUSPIDAL REPRESENTATIONS OF GSp(4,Q2) OF SMALL CONDUCTOR 9

= −1

4

(
3− ζ − ζ2 − ζ3 − ζ4

)
= −1.

This concludes the proof.

2.4 Supercuspidals of GSp(4,Q2) with small conductor

As in the previous section, let E be the unramified quadratic extension of Q2. Let θ be the non-
trivial element of Gal(E/Q2). We now consider automorphic induction AI = AIE/Q2

. Recall
that AI takes irreducible, admissible representations ρ of GL(2, E) to irreducible, admissible
representations π of GL(4,Q2). By Proposition 4.5 of [16], the central characters ωρ and ωπ are
related by ωπ = ωρ|Q×2 . If φρ is the parameter of ρ, then the parameter of π is

φπ = ind
WQ2
WE

(φρ).

Assume that ρ is supercuspidal, or equivalently, that φρ is irreducible. Then π is supercuspidal
if and only if ρ 6= ρθ, where the Galois conjugate ρθ is defined by ρθ(g) = ρ(gθ) for g ∈ GL(2, E).
In other words, φπ is irreducible if and only if φρ 6= φθρ, where φθρ(w) = φρ(θwθ

−1) for w ∈ WE

(here we think of θ as an element of WQ2 that is not in WE). Also, we have AI(ρ) = AI(ρθ).
We apply AI = AIE/Q2

to the supercuspidal representations of GL(2, E) listed in Table 1.
It follows from this table that

AI(ρ1a) = AI(ρ1b), AI(ρ2a) = AI(ρ3a), AI(ρ2b) = AI(ρ3b), (7)

and these are supercuspidal representations of GL(4,Q2). They all have trivial central character.
By the conductor formula for induced representations of the Weil group, see (a2) in §10 of [33],
they have conductor 4. It follows that the representations in (7) are precisely the three depth
zero supercuspidals of GL(4,Q2) with trivial central character; see Sect. 2.2.

We will next determine which of the three supercuspidals in (7) are transfers from GSp(4).
An irreducible, admissible representation π of GL(4, F ) is a transfer from GSp(4, F ) if and only
if its parameter φπ : W ′F → GL(4,C), after suitable conjugation, has image in GSp(4,C).
Assume this is the case, and consider the exterior square map

∧2 : GL(4,C)→ GL(6,C). Since
the composition of

∧2 with the inclusion GSp(4,C) ↪→ GL(4,C) decomposes as the direct sum
of a five-dimensional and a one-dimensional representation of GSp(4,C), it follows that

∧2 ◦φπ
contains a one-dimensional representation of W ′F .

The following lemma was spelled out in a preprint version of [10] but not in the published
version. We include a proof here.

2.4.1 Lemma. Let E/F be a quadratic extension. Let θ be an element of WF that is not in WE .
Let (φ, V ) be an irreducible two-dimensional representation of WE , and let φθ(w) = φ(θwθ−1)
for w ∈WE . Then ∧

2
(
indWF

WE
(φ)
)

= U ⊕ indWF
WE

(det(φ)),

where U is a 4-dimensional representation of WF whose restriction to WE is isomorphic to φ⊗φθ.
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Proof. As a model for φ := indWF
WE

(φ), we may take V ⊕ V , with action

φ(w)(v1 ⊕ v2) = φ(w)v1 ⊕ φθ(w)v2 (w ∈WE), φ(θ)(v1 ⊕ v2) = v2 ⊕ φ(θ2)v1. (8)

If spaces V1 and V2 carry an action of a group G, then∧
2 (V1 ⊕ V2) ∼=

∧
2 V1 ⊕ (V1 ⊗ V2) ⊕

∧
2 V2

as G-spaces. It follows that, as a WE-representation,∧
2
(
indWF

WE
(φ)
)

= det(φ)⊕ (φ⊗ φθ)⊕ det(φ)θ,

It is easy to see that det(φ) ⊕ det(φ)θ is invariant under the action of θ, and that in fact this
two-dimensional space is isomorphic to indWF

WE
(det(φ)) as a WF -representation. The space U

realizing φ⊗ φθ is also invariant under θ.

2.4.2 Lemma. The representations AIE/Q2
(ρ2a) and AIE/Q2

(ρ2b) appearing in (7) are not
transfers from GSp(4, F ).

Proof. Let ρ = ρ2a or ρ2b. Let φ : WF → GL(2,C) be the parameter of ρ. Then the parameter

of AIE/Q2
(ρ) is ind

WQ2
WE

(φ). By Lemma 2.4.1,∧
2
(
ind

WQ2
WE

(φ)
)

= U ⊕ ind
WQ2
WE

(det(φ)),

where U is isomorphic to φ ⊗ φθ as a WE-representation. By Lemma 2.3.1 ii), the space U is
irreducible, even as a WE-representation. Since det(φ) = ω2 is not Gal(E/Q2)-invariant, the

two-dimensional ind
WQ2
WE

(det(φ)) is irreducible as a WQ2-representation. Hence
∧
2
(
ind

WQ2
WE

(φ)
)

does not contain any one-dimensional component. By our remarks above, AIE/Q2
(ρ) cannot be

a transfer from GSp(4, F ).

2.4.3 Theorem. The group GSp(4,Q2) admits a unique generic supercuspidal representation
sc(16) with conductor a(sc(16)) = 4 and trivial central character. As a four-dimensional repre-
sentation of WQ2 , the Langlands parameter of sc(16) is

φsc(16) = ind
WQ2
WL

(ξ), (9)

where L is the unramified extension of Q2 of degree 4, and ξ is any character of L× with the
following properties: ξ is trivial on 1 + pL; the values of the restriction of ξ to o×L are the fifth
roots of unity; ξ(2) = −1. We have ε(1/2, sc(16), ψ) = −1, where ψ is a character of Q2 which
is trivial on Z2 but not on 2−1Z2.

Proof. Let π be a generic supercuspidal representation of GSp(4,Q2) with a(π) = 4 and trivial
central character. The requirement that π be generic excludes supercuspidals of type Va∗ and
XIa∗; these are the ones with parameters of type (A2) and (A3), as defined in Sect. 2.1. Assume
that π has a parameter of type (A1); we will obtain a contradiction. Parameters of type (A1) are



2 SUPERCUSPIDAL REPRESENTATIONS OF GSp(4,Q2) OF SMALL CONDUCTOR 11

Table 2: The supercuspidals π of GSp(4,Q2) with conductor a(π) ≤ 4 and trivial central
character. The character ξ is the unique non-trivial, unramified, quadratic character of Q×2 .
The representation τ2 is the unique supercuspidal of GL(2,Q2) with trivial central character
and conductor 2. The representation τ3 (resp. ξτ3) is the unique supercuspidal of GL(2,Q2)
with trivial central character, conductor 3 and root number 1 (resp. −1). The representation
sc(16) is the one from Theorem 2.4.3.

a(π) π type generic ε(1/2, π) L(s, π)−1

2 δ∗([ξ, νξ], ν−1/2) Va∗ no −1 1− q−2s−1

3 δ∗(ν1/2τ2, ν
−1/2) XIa∗ no 1 1− q−s−1/2

δ∗(ν1/2τ2, ν
−1/2ξ) XIa∗ no −1 1 + q−s−1/2

4 δ∗(ν1/2τ3, ν
−1/2) XIa∗ no −1 1− q−s−1/2

δ∗(ν1/2τ3, ν
−1/2ξ) XIa∗ no −1 1 + q−s−1/2

δ∗(ν1/2ξτ3, ν
−1/2) XIa∗ no 1 1− q−s−1/2

δ∗(ν1/2ξτ3, ν
−1/2ξ) XIa∗ no 1 1 + q−s−1/2

sc(16) yes −1 1

of the form φ1 ⊕ φ2, where φ1, φ2 are inequivalent irreducible, two-dimensional representations
of WF with det(φ1) = det(φ2) = 1. Since a(π) = 4, we must have a(φ1) = a(φ2) = 2. Hence φ1
and φ2 correspond to supercuspidals of GL(2,Q2) with conductor 2 and trivial central character.
By (3), there exists only one such supercuspidal. Hence φ1 ∼= φ2, a contradiction.

By our considerations in Sect. 2.1, the parameter of π is of type (B1), i.e., irreducible as a four-
dimensional representation. Hence π transfers to a supercuspidal representation π′ on GL(4,Q2)
with trivial central character and a(π′) = 4. It follows that π′ is one of the representations in (7).
By Lemma 2.4.2 we must have π′ = AIE/Q2

(ρ1a) = AIE/Q2
(ρ1b), where E is the unramified

quadratic extension of Q2. This shows that, as a four-dimensional representation, the parameter
of π is

ind
WQ2
WE

(φa) = ind
WQ2
WE

(φb), (10)

where φ∗ is the parameter of ρ1∗. By the considerations on p. 284/285 of [29], there exists a

unique symplectic structure on the space of ind
WQ2
WE

(φ∗) for whichWQ2 acts with trivial similitude.
We proved that the parameter of π is uniquely determined. The uniqueness and existence of π
now follows from the local Langlands correspondence for GSp(4,Q2).

Let ηj be as in Table 1. Then η3, η6, η9, η12 are precisely the characters ξ of L× with ξ(2) =
−1, trivial on 1 + pL, and such that the values of the restriction of ξ to o×L are the fifth roots
of unity. Inducing η3 or η12 to WE gives the parameter φa of ρ1a, and inducing η6 or η9 to WE

gives the parameter φb of ρ1b. Hence (9) follows by transitivity of induction.
We have ε(1/2, π, ψ) = ε(1/2, ξ, ψL) by Corollary 4 to Theorem 5.6 of [16], or by (ε2) in §11

of [33]. Hence the assertion about ε(1/2, π, ψ) follows from Lemma 2.3.2.



2 SUPERCUSPIDAL REPRESENTATIONS OF GSp(4,Q2) OF SMALL CONDUCTOR 12

2.4.4 Corollary. Table 2 contains a complete list of all the irreducible, admissible, supercusp-
idal representations π of GSp(4,Q2) with trivial central character and conductor a(π) ≤ 4.

Proof. Let π be an irreducible, admissible, supercuspidal representations of GSp(4,Q2) with
trivial central character and conductor a(π) ≤ 4. Assume first that π is generic. Then π
cannot be of type Va∗ or XIa∗. Equivalently, the Langlands parameter φ of π cannot be of
type (A2) or (A3). Assume that φ is of type (A1), so that φ = φ1 ⊕ φ2 with irreducible, two-
dimensional, inequivalent representations φ1, φ2 of WQ2 for which det(φ1) = det(φ2) = 1. Since
a(φ1), a(φ2) ≥ 2 and a(φ) ≤ 4, we have a(φ1) = a(φ2) = 2 and a(φ) = 4. It follows that π
must be the representation sc(16) of Theorem 2.4.3. But then π transfers to a supercuspidal
on GL(4,Q2), contradicting the reducibility of φ. This contradiction shows that φ cannot be
of type (A1). Alternatively, one can argue that, by (3), there is only one supercuspidal τ2 of
GL(2,Q2) with conductor 2 and trivial central character, contradicting the inequivalence of φ1
and φ2.

We proved that a generic supercuspidal π of GSp(4,Q2) with trivial central character and
conductor a(π) ≤ 4 must have a parameter φ of type (B1). Hence π transfers to a supercuspidal
on GL(4,Q2) and must have a(π) = 4. Thus π is the representation sc(16) of Theorem 2.4.3.

Next assume that π is a non-generic supercuspidal of GSp(4,Q2) with trivial central character
and conductor a(π) ≤ 4. Then π must have a parameter φ of type (A). Since a(φ) ≤ 4, the
argument above shows that φ cannot be of type (A1), so that φ is of type (A2) or (A3).

Assume that φ is of type (A3). By definition, φ = φ1 ⊕ φ2, where φ1, φ2 are reducible but
indecomposable, inequivalent, and satisfy det(φ1) = det(φ2) = 1. Hence φi is the parameter
of σiStGL(2) for distinct quadratic characters σ1, σ2 of Q×2 . The restrictions on the conductors
imply that σ1 and σ2 must both be unramified; see the proposition in §10 of [33]. Hence one of
σ1, σ2 is trivial, and the other is the unique non-trivial, unramified, quadratic character ξ of Q×2 .
(This ξ is given by the local Hilbert symbol (·, 5).) The corresponding π is the representation
δ∗([ξ, νξ], ν−1/2) of type Va∗.

Assume that φ is of type (A2). By definition, φ = φ1 ⊕ φ2, where φ1 is irreducible and φ2 is
the parameter of σStGL(2) for some character σ of Q×2 . Moreover det(φ1) = det(φ2) = 1. Since
a(φ) ≤ 4, the character σ must be unramified, so that either σ = 1 or σ = ξ. In both cases
a(φ2) = 1, which implies a(φ1) ∈ {2, 3}. There is only one possible φ1 with a(φ1) = 2, namely
the parameter of τ2, the unique supercuspidal of GL(2,Q2) with trivial central character and
conductor 2; see (3). From this φ1 we therefore obtain two supercuspidals π with a(π) = 3.
Using the notation of [32], these are the representations δ∗(ν1/2τ2, ν

−1/2) and δ∗(ν1/2τ2, ξν
−1/2)

of type XIa∗.
Finally, consider the case a(φ1) = 3. By Theorem 3.9 of [37], there are exactly two possi-

bilities for φ1. One corresponds to a supercuspidal representation τ3 of GL(2,Q2) with trivial
central character, a(τ3) = 3 and ε(1/2, τ3) = 1. The other corresponds to the twist ξτ3, which
is distinguished from τ3 by the value of the ε-factor ε(1/2, ξτ3) = −1. The two possibilities of
φ1, together with the two possibilities for σ, lead to four supercuspidals π of type XIa∗.

For the non-generic representations, the values of the L- and ε-factors in Table 2 can be read
off Tables A.8 and A.9 of [31]. Note that Va∗ has the same factors as Va, since they constitute
a two-element L-packet; similarly for XIa and XIa∗. The ε-factor for sc(16) is given in Theorem
2.4.3. The L-factor for sc(16) is 1, since the parameter of sc(16) is irreducible.
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We refer to Sect. 4 of [32] for a construction of the representations of type Va∗ and XIa∗

in terms of the theta correspondence. Note that the representation of type Va∗ occurring in
Table 2 is invariant under twisting by the unramified character ξ.

2.5 The representation sc(16) via compact induction

We give an alternative construction of the supercuspidal representation sc(16) by employing
compact induction. Consider the Langlands parameter φsc(16) of sc(16) given in (9). After

choosing a suitable basis of ind
WQ2
WL

(ξ) we may think of φsc(16) as a map WQ2 → GSp(4,C). The
image lies in fact in Sp(4,C), the dual group of G = SO(5) ∼= PGSp(4), so that, if we wish, we
may work in a semisimple context.

In this section we consider the Vogan L-packet of φsc(16). Recall that a Vogan L-packet may
contain representations across all pure inner forms of a group; see [38] or the overview in Sect. 3
of [15]. As explained in Sect. 8 of [14], the split group SO(2n + 1) has a unique non-split pure
inner form SO∗(2n+ 1). We will see that the L-packet of φsc(16) has two elements, one being a
representation of SO(5,Q2) ∼= PGSp(4,Q2) (this is our sc(16)), the other one a representation
of SO∗(5,Q2).

The parameter φsc(16) : WQ2 → Sp(4,C) is discrete in the sense that its image has finite
centralizer. It is tame in the sense that the image of wild inertia is trivial; this is because the
character ξ : L× → C× is trivial on 1 + pL. Moreover, φsc(16) is in general position, meaning
the image of tame inertia is generated by a regular, semisimple element. Hence φsc(16) is among
the Langlands parameters considered in [5]. The construction in [5] attaches a Vogan L-packet
to each tame, discrete Langlands parameter in general position. In the context of GSp(4), the
paper [23] assures that the packets thus obtained coincide with the L-packets defined in [10]
and [11].

The centralizer Cφ of the image of φsc(16) : WQ2 → Sp(4,C) is precisely the center ±I4 of
Sp(4,C). The work [5] attaches to each irreducible character ρ of Cφ a depth-zero supercuspidal
representation on a pure inner form of the group under consideration. In our case, going through
the definitions shows that the trivial character of Cφ gives rise to a representation of SO(5,Q2),
and the non-trivial character to a representation of SO∗(5,Q2). We will concentrate on the
former, since (by [23]) this is our supercuspidal sc(16).

As explained in Sect. 4.4 of [5], each irreducible character ρ of Cφ gives rise to an orbit of
vertices in the Bruhat-Tits building of G = PGSp(4) over Q2. By Lemma 6.2.1 of [5], these
vertices are hyperspecial if and only if ρ is trivial. It is exactly the hyperspecial vertices that
lead to generic depth-zero supercuspidals, consistent with the fact that sc(16) is generic.

We may work with the hyperspecial vertex x0 whose associated parahoric subgroup is p(K),
where K = GSp(4,Z2) and p : GSp(4,Q2) → G(Q2) is the projection. Let G0 be the reductive
group over the residue class field f = F2 attached to x0, so that G0(f) ∼= p(K)/p(K)+, where
p(K)+ is the pro-unipotent radical of p(K). In our case p(K)+ is a principal congruence sub-
group, and G0 = Sp(4). The construction of sc(16) is then as follows. The parameter φsc(16)
determines an f-minisotropic maximal torus T0 in G0. The restriction of φsc(16) to tame inertia
defines a character θ of T0(f) via the tame local Langlands correspondence for tori. Since φsc(16)
is in general position, the character θ will be in general position in the sense of Definition 5.15
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of [6]. Deligne-Lusztig induction therefore yields an irreducible, cuspidal character

κ0 = ±RT,θ (11)

of G0(f) ∼= Sp(4, f). Let κ be the inflation of κ0 to p(K) via G0(f) ∼= p(K)/p(K)+. Then

sc(16) = c-Ind
G(Q2)
p(K) (κ), (12)

where we identify representations of G(Q2) with representations of GSp(4,Q2) with trivial cen-
tral character. Alternatively, we can first pull back κ to a character of K, extend it trivially to
ZK, where Z is the center of GSp(4,Q2), and compactly induce to GSp(4,Q2). By Proposition
6.6 of [25], the induced representation in (12) is irreducible and supercuspidal.

Making things explicit, one finds that T0 is the maximal torus corresponding to the conjugacy
class consisting of length 2 elements in the 8-element Weyl group of G0; see Sect. 3.3 of [4] for the
correspondence between conjugacy classes in the Weyl group and maximal tori. The group T0(f)
is cyclic of order 5. The characters θ of T0(f) in general position are precisely the isomorphisms
of this group with the fifth roots of unity. By Corollary 7.2 of [6], the character κ0 in (11) has
degree 9.

It is an exercise in elementary character theory to show that Sp(4, f) has exactly one irre-
ducible, cuspidal representation κ0 of dimension 9, and that this representation is generic; see [8]
for information on the characters of Sp(4,F2n). This κ0 corresponds to the irreducible character
with Young diagram

(13)

under the isomorphism of Sp(4, f) with the symmetric group S6 described in Sect. 3.5.2 of [39].
There is in fact only one other irreducible, cuspidal character of Sp(4, f), namely the one-
dimensional sign character under the isomorphism Sp(4, f) ∼= S6.

To summarize, sc(16) is a depth-zero supercuspidal representation of GSp(4,Q2) which may
be constructed as follows. Take the unique irreducible, cuspidal character κ0 of Sp(4, f) that
is not one-dimensional; it has dimension 9 and is generic. Inflate κ0 to a representation κ of
K = GSp(4,Z2) and extend it to ZK by making it trivial on the center Z of GSp(4,Q2).

Then we have sc(16) = c-Ind
GSp(4,Q2)
ZK (κ). The Vogan L-packet of sc(16) contains an additional

representation which lives on the non-split inner form of GSp(4).

3 Paramodular cusp forms of weight k ≤ 14 and level N = 16

A good reference for the notation in this section and hereafter is [26]. For each N ∈ N, the
paramodular group, K(N), and its normalizing Fricke involution, µN , are defined by

K(N) =


∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗

 ∩ Sp(4,Q), ∗ ∈ Z ; µN =
1√
N


0 −N 0 0
1 0 0 0
0 0 0 −1
0 0 N 0

 .
Let Sk(K(N))ε for ε = ± denote the Fricke eigenspace of Sk(K(N)) with eigenvalue ±1, so

that we have the decomposition Sk(K(N)) = Sk(K(N))+⊕Sk(K(N))−. In the case where N is
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a power of a prime, the Fricke sign is also the Atkin-Lehner sign at that prime. The Gritsenko
lift is an injective linear map from Jcusp

k,N to Sk(K(N))ε for ε = (−1)k. Paramodular forms that
are not Gritsenko lifts will be called nonlifts.

We are searching for a supercuspidal paramodular form, i.e., a newform f ∈ Sk(K(N)) whose
associated adelic representation has a supercuspidal local component. Since non-generic super-
cuspidals do not admit non-zero paramodular vectors by Theorem 3.4.3 of [31], a supercuspidal
coming from a paramodular newform f is necessarily generic. In particular, f must be a nonlift.
By Table 2, among 2-powers, the smallest N for which f can be supercuspidal is N = 16. By
Corollary 7.5.5 of [31], the value of the ε-factor at 1/2 of an irreducible, admissible, generic
representation coincides with the eigenvalue of the Atkin-Lehner involution on the newform. It
therefore follows from Table 2 that if Sk(K(16)) contains a supercuspidal form, it must occur
in Sk(K(16))−. Hence, we pay special attention to these spaces.

Our first goal is to find all the nonlift newforms in Sk(K(16))± for k ≤ 14. In order to
separate the nonlift newforms from the nonlift oldforms, we also find all the nonlift eigenforms
in Sk(K(N)) for k ≤ 14 and N ∈ {1, 2, 4, 8}; we separate these eigenforms into their Fricke
eigenspaces as well. The dimensions of Sk(K(N)) are known for N ∈ {1, 2, 4}, see [19, 17, 28].
Comparing with the known [36] dimensions of Jacobi cusp forms Jcusp

k,N , we see that Sk(K(N))
for N ∈ {1, 2} and k ≤ 14 does not have any nonlifts. Thus we need only consider N ∈ {4, 8, 16}
in this section. Our first task is to compute the dimension of each of these spaces, and this will
entail finding upper and lower bounds that are equal.

3.1 Paramodular forms and Fourier expansions

A paramodular form f ∈ Sk(K(N)) has a Fourier expansion f(Ω) =
∑

t a(t; f)e (〈Ω, t〉) where

the sum is over t ∈ X2(N) = {
[
n r/2
r/2 Nm

]
> 0 : n, r,m ∈ Z}, and where 〈Ω, t〉 = tr(Ωt). The

similarity group {u ∈ GL(2,R) :
[
u 0
0 u∗

]
∈ K(N)} equals Γ̂0(N) = 〈Γ0(N),

[
1 0
0 −1

]
〉, where, as

usual, Γ0(N) = {
[
a b
c d

]
∈ SL(2,Z) : b ≡ 0 mod N}, and hence the Fourier coefficients satisfy the

following relations amongst themselves, for t[u] = tutu,

a (t[u]; f) = det(u)ka (t; f) , for all u ∈ Γ̂0(N). (14)

Another set of important relations among the Fourier coefficients comes from the Fricke involu-
tion µN ; we have a (t; f |µN ) = a (Twin(t); f) for

t =
[
n r/2
r/2 Nm

]
, Twin(t) =

[
m −r/2
−r/2 Nn

]
, (15)

so that t 7→ Twin(t) gives the action of µN on the Fourier coefficients. Therefore Fricke eigen-
forms obey the additional conditions

a (Twin(t); f) = ε a(t; f), for f ∈ Sk(K(N))ε. (16)

Note that twinning stabilizes X2(N) and respects Γ̂0(N)-classes. These observations follow
from the equation Twin(t) = FN t

tFN , for FN = 1√
N

[
0 −1
N 0

]
, the elliptic Fricke involution

on Γ0(N). We may view the Fourier expansion as a map FE : Sk(K(N)) →
∏
t∈X2(N)C that

sends f 7→ (a(t; f))t∈X2(N). Relations (14) and (16) above show that the image of Sk(K(N))ε

under FE lies in a very special subspace.
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For a ring R ⊆ C, we define Sk(K(N))(R) ⊆ Sk(K(N)) to be the R-module of paramod-
ular cusp forms f ∈ Sk(K(N)) with a(t; f) ∈ R for all t ∈ X2(N). Fundamental results of
Shimura [35] show that general spaces of modular forms have integral bases, i.e., a basis with
integral Fourier coefficients.

The natural reduction map Rp : Z → Fp allows us to define modular forms over Fp, a con-
cept useful for both theory and computations: Sk(K(N))(Fp) = Rp ◦FE (Sk(K(N))(Z)). Thus
paramodular forms over Fp are formal series with coefficients in Fp and the Fourier expansion
map FE : Sk(K(N))(Fp) →

∏
t∈X2(N) Fp is really the identity map. From the existence of an

integral basis, it follows from the structure theorem for finitely generated Z-modules that

dimC Sk(K(N))ε = rankZ Sk(K(N))ε(Z) = dimFp Sk(K(N))ε(Fp).

For odd primes p, we have the direct sum Sk(K(N))(Fp) = Sk(K(N))+(Fp)⊕ Sk(K(N))−(Fp).

3.2 Good Hecke operators and their action on Fourier coefficients

A Hecke operator is called good when its similitude is prime to the level. For each prime q
not dividing N , we use the good Hecke operator T (q) : Sk(K(N)) → Sk(K(N)) defined as
follows. Decompose K(N) diag(1, 1, q, q)K(N) = ∪jK(N)γj into a union of distinct cosets. For
f ∈ Sk(K(N)), set f |T (q) =

∑
j f |γj , which is again in Sk(K(N)). Since T (q) commutes with

the Fricke involution µN , T (q) also stabilizes Sk(K(N))ε. The action of T (q) on the Fourier
expansion of f is given by

a (t; f |T (q)) = a (qt; f) + qk−2a

(
1

q
t

[
q 0
0 1

]
; f

)
+qk−2

∑
j mod q

a

(
1

q
t

[
1 0
j q

]
; f

)
+ q2k−3a

(
1

q
t; f

)
.

(17)

For k ≥ 2, this equation shows that T (q) stabilizes Sk(K(N))ε(R) and is R-linear for subrings R
of C. On Sk(K(N))ε(Fp), the reduction of T (q), T (q)p, is defined by (Rp ◦FE(f)) |T (q)p =
Rp ◦FE (f |T (q)) and also obeys equation (17).

A possible source of confusion is that equation (17) is valid for the classical normalization
of the slash, setting σ =

[
A B
C D

]
∈ GSp(4,R)+ with similitude µ = µ(σ) = det(σ)1/2,

(f |kσ) (Ω) = µ2k−3 det(CΩ +D)−kf
(
(AΩ +B)(CΩ +D)−1

)
.

In contrast, representation theory employs the scalar invariant slash where the power of the
similitude is µk instead of µ2k−3. The tension between these normalizations is real because local
Euler factors depend only upon the local representation for the scalar invariant action of the
Hecke algebra, whereas T (q) is uniformly defined over Z for weights k ≥ 2 only for the classical
action. Our concession to this tension is to write the scalar invariant action of the left and the
classical action on the right, so that f |T (q) = qk−3T (q)f .
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3.3 Fourier-Jacobi expansions, Jacobi forms, and Jacobi Hecke operators

The Fourier expansion of a paramodular cusp form f ∈ Sk(K(N)) may be rearranged to give
the Fourier-Jacobi expansion, setting Ω = [ τ z

z ω ] ∈ H2, and q = e(τ), ζ = e(z),

f(Ω) =
∞∑
j=1

φj(τ, z)e(Njω), (18)

φj(τ, z) =
∑

n,r∈Z: 4nNj>r2
a
([

n r/2
r/2 Nj

]
; f
)
qnζr. (19)

When we want to indicate the dependence of the φj on f we will write φj(τ, z; f) instead of
φj(τ, z), or φj(f) instead of φj . We recall the definition of a Jacobi form and the following
subgroups, for rings R ⊆ C,

P2,1(R) =


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 ∩ Sp(4, R); GP 2,1(R) =


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 ∩GSp(4, R).

A Jacobi form φ ∈ Jk,m of weight k ∈ Z and index m ∈ Z≥0 is a holomorphic function φ :
H×C→ C such that the associated function Emφ : H2 → C given by (Emφ)(Ω) = φ(τ, z)e(mω)
is invariant under P2,1(Z), and is bounded on domains of the type {Ω ∈ H2 : Im Ω > Yo}. The
boundedness condition is essential and, given the other assumptions, is equivalent to a Fourier
expansion for φ of the form φ(τ, z) =

∑
n,r∈Z: n≥0, 4nm≥r2 c(n, r;φ)qnζr. For Jacobi cusp forms

φ ∈ Jcusp
k,m , we require 4mn > r2. For a weakly holomorphic ψ ∈ Jwh

k,m we drop the boundedness

condition and require n � −∞. Indices with 4mn ≤ r2 are called singular . Spaces of Jacobi
forms have integral bases by [7] and so we may define Jcusp

k,m (R) for R a subring of C or for Fp as
in the case of paramodular forms.

The subgroup K∞(N) = P2,1(Q) ∩K(N) stabilizes the Fourier-Jacobi expansion (18) term
by term, so that each φj ∈ Jcusp

k,Nj is a Jacobi form and the Fourier coefficients of the φj are

c (n, r;φj) = a
([

n r/2
r/2 Nj

]
; f
)
. (20)

The Fourier-Jacobi expansion defines a map, letting ξ = e(ω),

FJ : Sk(K(N))→
∞⊕
j=1

Jcusp
k,Nj , via f 7→

∞∑
j=1

φj ξ
Nj , (21)

where we have identified the sum on the right with the vector (φj).
The infinite direct sum ⊕∞j=1J

cusp
k,Nj is an inverse limit with respect to the projection maps

projud :
u⊕
j=1

Jcusp
k,Nj →

d⊕
j=1

Jcusp
k,Nj , for d ≤ u.

The projection onto the first u Fourier-Jacobi coefficients

proj∞u ◦FJ : Sk(K(N))ε →
u⊕
j=1

Jcusp
k,Nj (22)
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Table 3: A sufficient number u0 to make projection from Sk(K(N))ε onto the first u0 Jacobi
coefficients injective. An improved number uε1 is given in the second set.

u0 u+1 , u
−
1

k K(4) K(8) K(16)

1 0 0 0

2 0 0 2

3 0 1 4

4 0 2 7

5 1 3 9

6 1 4 11

7 2 5 14

8 3 6 16

9 4 8 18

10 4 9 21

11 5 10 23

12 5 11 25

13 6 12 28

14 6 13 30

k K(4) K(8) K(16)

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 1, 0

5 0 0, 1 0, 1

6 0 1, 0 2, 0

7 0, 1 0, 1 0, 2

8 1, 0 1, 0 2, 0

9 0, 1 0, 2 1, 3

10 1, 0 2, 0 3, 1

11 0, 2 1, 2 2, 4

12 2, 0 3, 1 4, 2

13 0, 2 2, 3 3, 4

14 2, 0 3, 2 5, 3

injects for sufficiently large u and algorithms to find u0 such that the map (22) injects for u ≥ u0
may be found in [3]. When N is a prime power for example, u0 is roughly Nk/5 and Table 3
displays u0 for 1 ≤ k ≤ 14 and N ∈ {4, 8, 16}. We write Sk(K(N))ε[u] for the projection of
Sk(K(N))ε onto its first u Fourier-Jacobi coefficients, i.e.,

Sk(K(N))ε[u] = proj∞u ◦FJ (Sk(K(N))ε) .

One cannot take an arbitrary sequence of Jacobi forms φj and obtain the Fourier-Jacobi
expansion

∑∞
j=1 φjξ

Nj of some paramodular form. Indeed, the Fourier-Jacobi coefficients of a
paramodular Fricke eigenform satisfy the following symmetries. Let f ∈ Sk(K(N))ε have the
Fourier-Jacobi expansion

∑∞
j=1 φjξ

Nj . Then

for all t1 =
[
n1 r1/2
r1/2 Nm1

]
, t2 =

[
n2 r2/2
r2/2 Nm2

]
∈ X2(N), and u ∈ Γ̂0(N),

if t1[u] = t2, then c(n1, r1;φm1) = det(u)kc(n2, r2;φm2), (23)

and
for all t =

[
n r/2
r/2 Nm

]
∈ X2(N), c(n, r;φm) = (−1)kε c(m, r;φn). (24)
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Equations (23) and (24) are consequences of equations (14) and (16). We refer to equation (24) as
the involution conditions. Formal series of Jacobi forms which satisfy equations (23) and (24),
and converge in an appropriate sense, are in fact Fourier-Jacobi expansions of paramodular
forms, see [18].

Following Gritsenko [12], we present the action of T (q) on the Fourier-Jacobi coefficients of
a paramodular cusp form in terms of the Jacobi raising and lowering operators, Vq and Wq. The
raising operator Vq : Jk,m → Jk,mq is defined, for primes q, by

(φ|Vq) (τ, z) = qk−1φ(qτ, qz) +
1

q

∑
λ mod q

φ

(
τ + λ

q
, z

)
,

or equivalently by

c(n, r;φ|Vq) = qk−1c(
n

q
,
r

q
;φ) + c(qn, r;φ), (25)

as in [7]. The lowering operators Wq : Jk,m → Jk,m
q

were introduced in a special case in [21].

Their image is zero when the prime q does not divide m. When q divides m, we have

(φ|Wq) (τ, z) = qk−2
∑

λ mod q

φ(qτ, z + λτ)e

(
m

q
(2λz + λ2τ)

)
+ q−2

∑
λ,µ mod q

φ

(
τ + λ

q
,
z + µ

q

)
,

or equivalently

c(n, r;φ|Wq) = c(qn, qr;φ) + qk−2
∑

λ mod q

c

(
n+ λr + m

q λ
2

q
,
r + 2mq λ

q
;φ

)
. (26)

The invariance properties of the raising and lowering operators, i.e., that they send Jacobi
forms to Jacobi forms, can be obtained by considering them as the Hecke operators Vq =
K∞(N) diag(q, q, 1, 1)K∞(N) and Wq = K∞(N) diag(1, 1, q, q)K∞(N) for the noncommutative
Jacobi Hecke algebra for K∞(N) inside GP 2,1(Q), see [12]. The action of T (q) on the Fourier-
Jacobi expansion of an f ∈ Sk(K(N)) is given by

FJ(f) =

∞∑
j=1

φjξ
Nj ; FJ(f |T (q)) =

∞∑
j=1

(
φqj |Wq + qk−2φj/q|Vq

)
ξNj , (27)

as can be directly verified by comparing equations (25) and (26) with (17) using (20).

3.4 Jacobi restriction and upper bounds

In this section we define the Jacobi restriction spaces J εu(R) for R being Fp or a subring of C.
Jacobi restriction is described in [18, 3] but we cover it here in further detail because the extension
of T (q) to J εu(Fp) in subsection 3.7 is subtle.

By collectively ordering the index sets of the Fourier expansions of Jcusp
k,Nj for all j ∈ N in

some way, we view
⊕∞

j=1 J
cusp
k,Nj(R) ⊆ R∞.
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3.4.1 Definition. Let N, u,D0 ∈ N, k ∈ Z, and ε ∈ {−1, 1}. Let R be Fp or a subring of C.
The R-module

J εu(R) ⊆
u⊕
j=1

Jcusp
k,Nj(R) ⊆ R∞

consists of the f =
∑u

j=1 fj ξ
Nj ∈

⊕u
j=1 J

cusp
k,Nj(R) that satisfy the following conditions,

for all t1 =
[
n1 r1/2
r1/2 Nm1

]
, t2 =

[
n2 r2/2
r2/2 Nm2

]
∈ X2(N), and U ∈ Γ̂0(N),

if t1[U ] = t2, and det(2t1), det(2t2) ≤ D0 and m1,m2 ≤ u,

then c(n1, r1; fm1) = det(U)kc(n2, r2; fm2), (28)

and

for all t =
[
n r/2
r/2 Nm

]
∈ X2(N), if det(2t) ≤ D0 and n,m ≤ u,

then c(n, r; fm) = (−1)kε c(m, r; fn). (29)

This important construction calls for a number of comments. The defining equations in
Definition 3.4.1 are truly elementary, one coordinate in R∞ equals ±1 times another, so that
J εu(R) is defined over the various commutative rings R. The R-module J εu(R) also depends
on N, k, and D0 so that J εu(R,N, k,D0) would be more proper, but we supress N, k, and D0

to lighten the notation somewhat. When no ring is indicated the field of complex numbers is
meant, so J εu = J εu(C). We have written a program, which we call Jacobi restriction, for the
cases R = Z and R = Fp. This program accepts input (N, k, ε,D0, u,R) and returns initial
expansions, out to (n, r) satisfying 4nNj − r2 ≤ D0, of an R-basis of J εu(R). We always
choose D0 large enough so that elements of Jcusp

k,Nj(R) for j ≤ u are determined by their initial

expansions out to 4nNj−r2 ≤ D0; thus, the output characterizes a basis of J εu(R), and J εu(R) is
an R-module of finite rank very amenable to computation. In particular, rankR J εu(R) is always
known. Finally, because the spaces Jcusp

k,m have integral bases, the output for R = Z also works
for any subring R ⊆ C.

The next lemma shows that J εu is an upper approximation of the space Sk(K(N))ε[u].

3.4.2 Lemma. Let N, u ∈ N, k ∈ Z, and ε ∈ {−1, 1}. We have

proj∞u ◦FJ : Sk(K(N))ε → Sk(K(N))ε[u] ⊆ J εu .

Proof. By equations (23) and (24), the Fourier-Jacobi expansion of an f ∈ Sk(K(N))ε satisfies
the conditions in Definition 3.4.1 for all choices of indices. The conditions defining J εu are thus
a subset of the conditions satisfied by (proj∞u ◦FJ)(f).

3.4.3 Corollary. Let u ∈ N be such that proj∞u ◦FJ : Sk(K(N))ε → Sk(K(N))ε[u] injects.
Then dimSk(K(N))ε ≤ dimJ εu .
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3.5 Jacobi restriction modulo p

Jacobi restriction can also be run modulo a prime p. As in the appendix of [1], for a subset
H ⊆ C∞, let Hp = Rp (H ∩ Z∞) ⊆ F∞p denote the reduction of H ∩Z∞ mod p. If H1, H2 ⊆ C∞
are subspaces with integral bases and L : H1 → H2 is a linear map whose matrix in these
bases is integral, then L also has a reduction, Lp : H1p → H2p, with the defining property
that (L(h))p = Lp(hp) for h ∈ H1. To give some examples, for paramodular forms we have
(FE(Sk(K(N))))p = Sk(K(N))(Fp) and for Jacobi forms (FE(Jcusp

k,m ))p = Jcusp
k,m (Fp). The good

Hecke operator T (q) : Sk(K(N))ε(Z)→ Sk(K(N))ε(Z) has, for k ≥ 2, an integral matrix by (17),
and so induces a map T (q)p : Sk(K(N))ε(Fp) → Sk(K(N))ε(Fp) given by: f|T (q)p = g means
there exists an f ∈ Sk(K(N))ε(Z) such that Rp (FE(f)) = f and Rp (FE(f |T (q))) = g.

Because spaces of modular forms have integral bases, important information survives the
reduction mod p. For example, dimC Sk(K(N))ε[u] = dimFp Sk(K(N))ε[u]p ≤ dimJ εu,p. Hence
if u ≥ u0, for some basic u0 making proj∞u0 ◦FJ injective, we have dimC Sk(K(N))ε ≤ dimJ εu,p
as well. We easily have J εu,p ⊆ J εu(Fp) and examples show that the containment can be proper.
Noting Lemma 3.4.2, the hope when we run Jacobi restriction is that all the following spaces
have the same dimension,

Sk(K(N))ε
proj∞u ◦FJ−→ Sk(K(N))ε[u]

mod p−→ Sk(K(N))ε[u]p ⊆ J εu,p ⊆ J εu(Fp). (30)

When these spaces do have the same dimension we can, in retrospect, regard the computations as
having been perfomed in any one of them; however it is the space J εu(Fp) that is most amenable
to computation, being a finite dimensional Fp-vector space with a known basis. Especially, we
can row reduce and compute the smallest uε1 for which the projection

projuuε1 : J εu(Fp)→
uε1⊕
j=1

Jcusp
k,Nj(Fp)

is injective. For u = u0, Table 3 also gives particular values of uε1 with this property for
1 ≤ k ≤ 14, N ∈ {4, 8, 16}, p = 12347, and various D0. The choice of D0 was 400 for K(4),
800 for K(8) when k ≤ 10 and 1000 for larger k, and 1600 for K(16) when k ≤ 10 and 2000 for
larger k. The caption of Table 3, however, instead reports that the projection from Sk(K(N))ε

to Sk(K(N))ε[uε1] is injective. The injectivity in these cases follows from the proof in section 3.10
that dimSk(K(N))ε = dimJ εuε1(Fp), and so p and D0 are not reported in Table 3.

3.6 Extending T (q) to J εu(C)

Our goal in this section is to lift the map T (q) : Sk(K(N))ε → Sk(K(N))ε to another map
T̂ (q) : J εu → J εu such that the following diagram commutes

J εu
T̂ (q)

// J εu

Sk(K(N))ε
T (q)

//

proj∞u ◦FJ
OO

Sk(K(N))ε

proj∞u ◦FJ
OO

. (31)

Admittedly, this diagram will only be useful for u large enough to make the vertical map injective.
We proceed in two steps and need to make certain assumptions about the space J εu . Because
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we can compute with J εu it is reasonable to impose needed conditions on J εu as long as they can
be checked in practice. First, define a map

T̃ (q) :
u⊕
j=1

Jcusp
k,Nj →

bu/qc⊕
j=1

Jcusp
k,Nj (32)

u∑
j=1

φj ξ
Nj 7→

bu/qc∑
j=1

(
qk−2φj/q|Vq + φqj |Wq

)
ξNj .

This definition reflects the computational fact that the operator T (q) returns shorter Fourier-
Jacobi expansions than it receives. Since the above action agrees with equation (27) we have

projubu/qc proj∞u FJ(f |T (q)) = (proj∞u FJ(f)) |T̃ (q).

We introduce the notion of one map being relatively stable with respect to another. Let
π : A → πA and T : A → πA be maps and B ⊆ A. We say T is relatively stable on B with
respect to π when T (B) ⊆ π(B). This is equivalent to saying that T : A → πA extends to a
relative map T : (A,B) → π(A,B). We will require that T̃ (q) be relatively stable on J εu with
respect to projubu/qc. When J εu has successfully been computed, we will need to check whether

or not T̃ (q) : J εu → projubu/qc J
ε
u ⊆

⊕bu/qc
j=1 Jcusp

k,Nj . We will also equire that bu/qc ≥ uε1, so that
projubu/qc injects on J εu .

3.6.1 Proposition. Let N, u ∈ N, k ∈ Z, and ε ∈ {−1, 1}. Let q be a prime with q - N .
Assume that

i) T̃ (q) is relatively stable on J εu with respect to projubu/qc.

ii) The restriction of projubu/qc to J εu is injective.

Then T̂ (q) : J εu → J εu is well-defined by: f|T̂ (q) = g means f|T̃ (q) = projubu/qc g. Under these

hypotheses, diagram (31) commutes.

Proof. Assume that f ∈ J εu . Because T̃ (q) is relatively stable there exists a g ∈ J εu such that
f|T̃ (q) = projubu/qc g. Because projubu/qc is injective, this g is unique, and thus T̂ (q) is well-defined.

The linearity of T̂ (q) follows from the equation f|T̃ (q) = projubu/qc g and the uniqueness of g.
In order to show the commutativity of the diagram we must check

(proj∞u (FJ(f))) |T̂ (q) = (proj∞u ◦FJ) (f |T (q)),

or, by definition of T̂ (q), we must show that

(proj∞u (FJ(f))) |T̃ (q) = projubu/qc ((proj∞u ◦FJ) (f |T (q))) .

Thus we must check
(∑u

j=1 φj ξ
Nj
)
|T̃ (q) = proj∞bu/qc(f |T (q)). By equation (27) the right hand

side is
∑bu/qc

j=1

(
qk−2φj/q|Vq + φqj |Wq

)
ξNj , which is the definition of the left hand side.
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3.7 Extending T (q)p to J εu(Fp)

Our goal in this section is to lift the map T (q)p : Sk(K(N))ε(Fp) → Sk(K(N))ε(Fp) to a map
T (q) : J εu(Fp)→ J εu(Fp) such that the following diagram commutes

J εu(Fp)
T (q)

// J εu(Fp)

Sk(K(N))ε(Fp)
T (q)p

//

proj∞u,p ◦FJp

OO

Sk(K(N))ε(Fp) .

proj∞u,p ◦FJp

OO
(33)

Recall the definition (32) of the map T̃ (q). By equations (25) and (26), the action of Vq and Wq

is integral for k ≥ 2; so we may consider the reduction of the map T̃ (q) mod p:

T̃ (q)p :
u⊕
j=1

Jcusp
k,Nj(Fp)→

bu/qc⊕
j=1

Jcusp
k,Nj(Fp),

and restrict T̃ (q)p to J εu(Fp) ⊆ ⊕uj=1J
cusp
k,Nj(Fp) to obtain T̃ (q)p : J εu(Fp) → ⊕bu/qcj=1 Jcusp

k,Nj(Fp). As
in the previous section, it is reasonable to impose needed conditions on J εu(Fp) that are easy to
check. We will require that T̃ (q)p be relatively stable on J εu(Fp) with respect to projubu/qc,p. This

condition is achieved whenever Sk(K(N))ε[u]p actually equals J εu(Fp), which is what the whole
set-up aims to prove, so there is no harm in requiring relative stability. If relative stability fails,
we should increase u and try again. We will also require that projubu/qc,p be injective on J εu(Fp).
This second condition is achieved when bu/qc ≥ uε1, which may be costly.

3.7.1 Proposition. Let N, u ∈ N, k ∈ Z, and ε ∈ {−1, 1}. Let p and q be primes with q - N .
Assume

i) T̃ (q)p is relatively stable on J εu(Fp) with respect to projubu/qc,p.

ii) The restriction of projubu/qc,p to J εu(Fp) is injective.

Then T (q) : J εu(Fp) → J εu(Fp) is well-defined by: f|T (q) = g means f|T̃ (q)p = projubu/qc,p g.

Under these hypotheses, diagram (33) commutes.

Proof. We show that T (q) is well-defined and Fp-linear. Take f ∈ J εu(Fp). Since T̃ (q)p is
relatively stable on J εu(Fp) with respect to projubu/qc,p, there exists a g ∈ J εu(Fp) such that

f|T̃ (q)p = projubu/qc,p g. If there were another such g′, then g′ = g because projubu/qc,p is injective

on J εu(Fp). This shows that T (q) is well-defined. Linearity follows from f|T̃ (q)p = projubu/qc,p g
and the uniqueness of g.

In order to show the commutativity of the diagram, take f ∈ Sk(K(N))ε(Fp). We must show(
proj∞u,p(FJp(f))

)
|T (q) =

(
proj∞u,p ◦FJp

)
(f|T (q)p),

which, by definition of T (q), means(
proj∞u,p(FJp(f))

)
|T̃ (q)p = projubu/qc,p

((
proj∞u,p ◦FJp

)
(f|T (q)p)

)
,
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or equivalently, (
proj∞u,p(FJp(f))

)
|T̃ (q)p = projubu/qc,p FJp(f|T (q)p). (34)

There is an f ∈ Sk(K(N))ε(Z) such that f = FJ(f)p, so that (34) would follow by reduction
from

(proj∞u (FJ(f))) |T̃ (q) = projubu/qc FJ(f |T (q)). (35)

Writing FJ(f) =
∑∞

j=1 φj ξ
Nj , we verify (35) from the definition of T̃ (q) and equation (27), u∑

j=1

φj ξ
Nj

 |T̃ (q) =

bu/qc∑
j=1

(
qk−2φj/q|Vq + φqj |Wq

)
ξNj =

bu/qc∑
j=1

φj(f |T (q)) ξNj .

3.8 Bootstrapping and lower bounds

We now explain the technique of bootstrapping , a combination of Jacobi restriction and Hecke
spreading, which computes lower bounds for dimSk(K(N))ε = dimSk(K(N))ε(Fp). As moti-
vation, we first discuss Borcherds products. The theory of Borcherds products and the theory
of Hecke operators bear little relation. A Borcherds product, for example, seems to only be a
Hecke eigenform when forced to be by dimensional reasons. In general, if a Borcherds product
is written as a linear combination of Hecke eigenforms it seems that the Borcherds product is
often supported on every eigenspace with the same Atkin-Lehner signs as the Borcherds prod-
uct. Thus repeated applications of T (q) on a Borcherds product are likely to span the entire
Atkin-Lehner space of paramodular forms that the Borcherds product belongs to. Over Q, many
iterations of T (q) on a Borcherds product are much too expensive, but over Fp many iterations
of T (q) on J εu(Fp) are feasible. Let S ⊆ Sk(K(N))ε(Fp). Define

Bp(S; T (q)) = SpanFp{f|T (q)i ∈ J εu(Fp) : i ∈ Z≥0, f ∈ S}.

3.8.1 Lemma. Let u be large enough so that proj∞u,p ◦FJp injects on Sk(K(N))ε(Fp). Assume
the hypotheses of Proposition 3.7.1. Then

dimBp(S; T (q)) ≤ dimSk(K(N))ε(Fp).

Proof. By the commutative diagram (33), the subspace Bp(S; T (q)) ⊆ J εu(Fp) is the injective
image under proj∞u,p ◦FJp of the span of f|T (q)ip ∈ Sk(K(N))ε(Fp) for i ∈ Z≥0, and f ∈ S.

3.9 Specific upper bounds: Jacobi restriction

We use the technique of Jacobi restriction to compute upper bounds for dimSk(K(N))ε. Ja-
cobi restriction over Q requires a lot of memory. It is better, when sufficient, to run Jacobi
restriction modulo p. Table 3 gives u0 large enough to make projection onto the first u0 Ja-
cobi coefficients injective. Using the containments in (30), Table 4 reports the resulting upper



3 PARAMODULAR CUSP FORMS OF WEIGHT k ≤ 14 AND LEVEL N = 16 25

Table 4: Dimensions of cusp forms of weight k. The signs + and − refer to the paramodular
Atkin-Lehner sign, which is the same as the Fricke sign in these cases.

K(1) K(2) K(4) K(8) K(16)
k lifts nonlifts lifts nonlifts lifts nonlifts lifts nonlifts lifts nonlifts

+ - + - + - + - + -

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0

6 0 0 0 0 0 0 0 0 0 1 0 0 3 1 0

7 0 0 0 0 0 0 1 0 0 2 0 0 5 0 2

8 0 0 0 1 0 0 1 0 0 3 0 0 6 5 0

9 0 0 0 0 0 0 1 0 0 3 0 1 7 1 8

10 1 0 0 1 0 0 2 0 0 4 2 0 9 13 2

11 0 0 0 1 0 0 2 0 1 5 1 3 10 4 19

12 1 0 0 2 0 0 3 1 0 6 5 1 12 27 6

13 0 0 0 0 0 0 2 0 1 5 2 6 12 10 34

14 1 0 0 2 0 0 3 2 0 7 9 3 14 46 14

bound dimSk(K(N))ε = dimSk(K(N))ε[u0] ≤ dimJ εu0(Fp) given as output by the Jacobi re-
striction program, using the same determinant bounds D0 and prime p as in section 3.5. In
Table 4 we have further refined these upper bounds to apply to the spaces of nonlifts, which
is a direct adjustment because the dimensions of the lift spaces are known by [7]. Because
dimSk(K(4)) is known and the upper bounds for the three subspaces of Sk(K(4)) add up to
the known total dimension, the dimensions of the subspaces of Sk(K(4)) listed in Table 4 are
the actual dimensions without further argument. We will prove that the upper bounds of the
dimensions of the nonlift subspaces of Sk(K(8)) and Sk(K(16)) as listed in Table 4 are in fact
the true dimensions in all cases. This illustrates the power of Jacobi restriction. The proof
involves constructing enough paramodular forms to show these numbers are also lower bounds.

3.10 Specific lower bounds: Borcherds products and bootstrapping

In the previous section we computed the upper bounds for dimSk(K(N)) given in Table 4.
This section will compute matching lower bounds, mainly by constructing Gritsenko lifts and
Borcherds products, but also via Hecke operators, and oldform theory. The theory of Borcherds
products [2, 13] creates meromorphic paramodular forms, transforming by a character χ of
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K(N), in Mmero
k (K(N))ε (χ) from weakly holomorphic Jacobi forms ψ ∈ Jwh

0,N of weight zero and
index N whose Fourier coefficients are integral on singular indices. We will only use Borcherds
products that turn out to be holomorphic and cuspidal with trivial character. There is an
algorithm [27] to find all Borcherds products in a given space Sk(K(N)), so we simply post
the constructions of the Borcherds products that we use here on the website [40]. Given an
appropriate ψ ∈ Jwh

0,N , we write Borch(ψ) ∈ Mmero
k (K(N))ε (χ) for the associated Borcherds

product. If we write the Fourier expansion of ψ as ψ(τ, z) =
∑

n,r∈Z c(n, r)q
nζr, then Borch(ψ)

is defined by analytic continuation of the following infinite product for Ω = [ τ z
z ω ] ∈ H2,

Borch(ψ)(Ω) = qAζBξC
∏

(m,n,r)≥0

(1− qnζrξmN )c(nm,r).

The product is taken overm,n, r ∈ Z such thatm ≥ 0, and ifm = 0 then n ≥ 0, and ifm = n = 0
then r < 0. Set N = {1, 2, 3, . . .}. The exponents A, B, C are given by 24A =

∑
r∈Z c(0, r),

2B =
∑

r∈N rc(0, r), and 2C =
∑

r∈N r
2c(0, r). Borcherds products always come with a Fricke

sign. The sign ε is given by ε = (−1)do where do =
∑

n∈N σ0(n)c(−n, 0), and σ0(n) is the number
of positive divisors of n.

Here are our methods for obtaining lower bounds on dimSk(K(N))ε. Fix k,N , and ε = ±1.
We search for Borcherds products in Sk(K(N))ε. If we find enough to span a space whose
dimension equals that of the upper bound, then we are done. If not, we employ the method
of bootstrapping from subsection 3.8. We check the hypotheses of Proposition 3.7.1: that
T̃ (3)p is relatively stable on J εu0(Fp) with respect to proju0bu0/3c, and that u0 ≥ 3uε1 so that

proju0bu0/3c is injective on J εu0(Fp). There are three places in Table 3 where u0 < 3uε1, but

these occur for K(4) and weight k ∈ {7, 11, 12} where the dimension is already known. Still
using the u0 from Table 3, we compute a matrix representation for T (3) on a fixed basis for
J εu0(Fp). We find a set S ⊆ Sk(K(N))ε of Borcherds products and take f ∈ S, see [40] for
the Borcherds products found. It is feasible to expand a Borcherds product f out far enough
to determine (proj∞u0 FJ(f))p in this basis. Once we get the coordinates of (proj∞u0 FJ(f))p in
this basis, it is linear algebra to compute the bootstrapped subspace on Sp. Then u0 ≥ 3uε1
and Lemma 3.8.1 imply that dimBp(S; T (3)) ≤ dimSk(K(N))ε(Fp). It turns out that the
dimension of each bootstrapped subspace Bp(Sp; T (3)) gives the same lower bound as the upper
bound dimJ εu0(Fp) in every case in Table 4 except in the single case S14(K(8))−. Thus we know
dimC Sk(K(N))ε = dimC Sk(K(N))ε[u0] = dimFp Sk(K(N))ε[u0]p = dimFp J εu0(Fp) in all cases
in Table 4 except S14(K(8))−. There are no Borcherds products in S14(K(8))−. We now explain
the additional argument needed for this exceptional case.

We know that dimS14(K(8))− ≤ 3. We found all the eigenforms in each of S14(K(N))± for
N ∈ {1, 2, 4, 8, 16} except S14(K(8))−. We show there is an eigenform in S14(K(16))− of T (3)-
eigenvalue 311λ3 = −1580472 which is not a T1,0-eigenform. The eigenspace of S14(K(16))−

with this T (3)-eigenvalue is one dimensional. Lemma 3.10.1 implies that there exists a newform
fnew ∈ S14(K(2j)) for some j ∈ {0, 1, 2, 3} with the same T (3)-eigenvalue. Looking at T (3)-
eigenvalues for the lifts, we see that fnew must be a nonlift. There are no nonlifts in S14(K(N))
for N ∈ {1, 2} and there are two nonlift eigenforms in S14(K(4)). But the T (3)-eigenvalue
−1580472 does not show as an eigenvalue in S14(K(8))+ or in S14(K(4)). We conclude that
fnew must be in S14(K(8))−. Together with the two oldforms in S14(K(8))− coming from the
two newforms in S14(K(4)), we conclude that dimS14(K(8))− ≥ 2 + 1 = 3.
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3.10.1 Lemma. Let N be a positive integer and p be a prime dividing N . Let W ⊂ Sk(K(N))
be a non-zero eigenspace for a Hecke operator T at some good place q - N . Assume that the
operators T0,1(p), T1,0(p) and the Atkin-Lehner αp are not simultaneously diagonalizable on W .
Then there exists a new-eigenform fnew ∈ Sk(K(M)) for some M |N with vp(M) < vp(N) and
with the same T -eigenvalue as the elements of W .

Proof. Since Hecke operators at good places commute, we can find a basis f1, . . . , fn of W
consisting of eigenforms for almost all good Hecke operators, including the place q. By The-
orem 2.6 i) of [34], the adelization Φi of fi generates an irreducible, cuspidal, automorphic
representation πi ∼= ⊗sπi,s of PGSp(4,AQ), for each i. The automorphic form Φi corresponds
to a sum of pure tensors

∑
j(⊗swi,s,j), where wi,s,j is in the space of πi,s. After averaging,

we may assume that wi,s,j is a paramodular vector of level vs(N), for each prime number s. In
particular, each wi,q,j is a spherical vector in πi,q, and hence an eigenvector for the local operator
Tq corresponding to T , with the same eigenvalue as T on W .

We claim that there exists an i ∈ {1, . . . , n} such that the conductor exponent a(πi,p) is
less than vp(N). Clearly, we must have a(πi,p) ≤ vp(N) for each i, since a(πi,p) is the smallest
possible level of any paramodular vector in πi,p by Corollary 7.5.5 of [31]. Assume that we
would have a(πi,p) = vp(N) for all i. Then each wi,p,j would be a local newform in πi,p, which
is unique up to scalars by Theorem 7.5.4 of [31]. In particular, T0,1(p), T1,0(p) and αp would be
simultaneously diagonalizable on W , contradicting our hypothesis. This proves our claim that
there exists an i0 ∈ {1, . . . , n} such that a(πi0,p) < vp(N).

Let Φnew be the automorphic form corresponding to the global holomorphic, paramodular
newform in πi0 . De-adelizing Φnew, we obtain a Siegel modular form fnew with the desired
properties.

We have now proven that Table 4 gives true dimensions and not just upper bounds. Once
we know that the dimension of Sk(K(N))ε agrees with our upper bound, we have J εu0(Fp) =
Sk(K(N))ε[u0]p and can use the improved uε1 in Table 3 for which the projection proju0uε1

:

J εu0(Fp) → J εuε1(Fp) injects. It follows that proj∞uε1
: Sk(K(N))ε → Sk(K(N))ε[uε1] injects. With

these improved uε1, we run Jacobi restriction over Q to u = 3uε1 Jacobi coefficients and break
Sk(K(N))ε into T (3)-eigenspaces by verifying the hypotheses of Proposition 3.6.1 and using T̂ (3).
We stress that we postpone running Jacobi restriction over Q until we have the improved uε1
from Table 3 available for Sk(K(N))ε. We are eventually forced to run Jacobi restriction over Q
however, in order to compute Hecke eigenspaces. Once we have Sk(K(N))ε broken into one
dimensional eigenspaces, we can revert, if we wish, to using T (q) to compute further good ratio-
nal eigenvalues inside J εquε1(Fp). The point here is that, for T (q)f = λqf , good eigenvalues have

simple archimedean bounds |λq| ≤ (1 + q)(1 + q2), see [9], page 269, Hilfsatz 4.8, and qk−3λq is
integral for k ≥ 2. In the next section, however, we are more interested in computing eigenvalues
at the bad primes, as a step toward identifying the local representations.

3.11 Nonlift newforms

From Table 4, we can count how many of each dimension of nonlifts are oldforms from lower
levels using the global theory of newforms in [30]. Table 5 breaks Sk(K(16))± into the dimension
of newforms and oldforms.
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Table 5: Breakdown into new and old nonlift eigenforms for Sk(K(16))±.

k K(16)+ K(16)−

new old new old

6 1 0 0 0

7 0 0 2 0

8 5 0 0 0

9 0 1 7 1

10 11 2 0 2

11 1 3 14 5

12 20 7 1 5

13 3 7 25 9

14 32 14 4 10

By computing the eigenvalue λ3 for all the nonlift eigenforms, we are able to distinguish the
newforms from the oldforms. See Table 6 for the eigenvalues of nonlift newforms for Sk(K(4))
and Sk(K(8)) for k ≤ 14. Note that there are no nonlifts for Sk(K(N)) for N ∈ {1, 2} and
k ≤ 14. The eigenvalues of the nonlift newforms for Sk(K(16)) with k ≤ 14 are in Table 7 along
with other eigenvalues. We were able to easily distinguish the newforms because it turns out
that these newforms have different λ3 eigenvalues than the oldforms of the same level.

3.12 Computing T0,1 and T1,0

The global Hecke operators at the bad primes have their origin in the local theory [30]. The
global operators T0,1(p) and T1,0(p) at a bad prime p were defined and studied in [26], where
eigenvalues were computed that required information from Fourier expansions at multiple zero
dimensional cusps. From Proposition 5.2 of [26], the two bad Hecke operators T0,1(2) and T1,0(2)
may be written on Sk(K(16)) as

T0,1F =
∑

x,y,z∈{0,1}

F |

[
1 0 x y
0 1 y z/16
0 0 2 0
0 0 0 2

]
+

∑
x,z∈{0,1}

F |
[ 2 0 0 0
x 1 0 z/16
0 0 1 −x
0 0 0 2

]
+

∑
x,y∈{0,1}

F |
[ 1 −16y x 0
0 2 0 0
0 0 2 0
0 0 16y 1

]

+ F |
[
2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

]
+ F |

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

] [ 8 16 7 −3
−3 −8 1 −5/16
0 0 1 −3/8
0 0 2 −1

]
,

T1,0F =
∑

x,y∈{0,1}
z∈{0,1,2,3}

F |

[
2 0 0 2y
x 1 y −xy+z/16
0 0 2 −2x
0 0 0 4

]
+

∑
x,y∈{0,1}

F |

[
1 −16y 0 0
−x/2 1+8xy y/2 1/32
0 0 1+8xy x/2
0 0 16y 1

]
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Table 6: Eigenvalues 3k−3λ3 of nonlift newforms. Here α13,8 represents the four roots of
1510593265442253312000 − 28599118413428736x − 271045699200x2 + 463392x3 + x4 and α14,8

represents the three roots of 70155550286581248− 1194997748544x+ 186408x2 + x3.

K(4) K(8)
k + − + −
9 −2760

10 −18360
−3672

11 −13464 −24(781± 128
√

55)

12 −88488 −14760
−229032

−504(−65± 64
√

6)

13 −154440 −685224 −271944
α13,8 (degree 4)

14 −1422360 −1176984 −1580472
−319896 199368

216(1231± 8
√

1129)
α14,8 (degree 3)
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+
∑

y∈{0,1}

F |
[ 2 −32y 0 0
0 4 0 0
0 0 2 0
0 0 16y 1

]
+ F |

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][ 8 32 14 −3
−3 −16 2 −5/16
0 0 2 −3/8
0 0 4 −1

]
+ F |

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][ 8 32 22 −3
−3 −16 −1 −5/16
0 0 2 −3/8
0 0 4 −1

]
.

The zero dimensional cusps of K(16) are given by the disjoint union, see Theorem 1.3 of [28],
GSp(4,Q)+ = K(16)GP 2,0(Q) ∪K(16)C0(2)GP 2,0(Q) ∪K(16)C0(4)GP 2,0(Q), where

C0(m) =

[
1 0 0 0
0 1 0 0
0 m 1 0
m 0 0 1

]
; GP 2,0(R) =

[ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

]
∩GSp(4, R).

The difficulty in computing T0,1F and T1,0F is that although most of the coset representatives
defining T0,1 and T1,0 lie in the first cusp, a few lie in the second. As in [26], we overcome this
difficulty by using the technique of restriction to a modular curve to compute the restrictions
F (sτ + s′) and (T0,1F )(sτ + s′) for some serviceable choice of s, s′. The point is that it is
straightforward to compute (F |u)(sτ+s′) when u ∈ GP 2,0(Q), but a trick is required to compute
(F |C0(2)u)(sτ + s′) for the last coset representative in T0,1. The strategy of Section 4.2 in [26]

is to access the cusp K(N)C0(m)GP 2,0(Q) by finding σ =
[
α β
γ δ

]
∈ SL(2,Z) and a positive

definite s0 ∈
[
Z Z
Z 1
N
Z

]
such that

[
αI βs0
γs−1

0 δI

]
∈ K(N)C0(m)W0 for some W0 ∈ GP 2,0(Q). Setting

W1 =
[
A1 B1
0 D1

]
= u−1W0 and sτ + s′ = W1〈s0τ〉 = (A1s0τ +B1)D

−1
1 , it formally follows that

(F |kC0(m)u) (sτ + s′) = det(A1D1)
−k/2 det(D1)

k (g|2kσ)(τ),

for g(τ) = F (s0τ). For ` with `s−10 ∈
[ Z NZ
NZ NZ

]
, we have g ∈ S2k (Γ0(`)), and we have reduced

the problem of specializing F at the C0(m)-cusp to transforming an elliptic modular form.
By choosing ` = 16 and σ, s0, W0, s, s

′ as follows,

σ = [ 3 1
8 3 ], s0 =

[
4 1
1 1/2

]
, W0 =

[ −8 8 −1 6
1/2 0 −2 −33/16
0 0 0 1/8
0 0 2 2

]
, s =

[
58 −41/2
−41/2 29/4

]
, s′ =

[
41/2 −29/4
−29/4 81/32

]
,

we get that (
F |k

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

] [ 8 16 7 −3
−3 −8 1 −5/16
0 0 1 −3/8
0 0 2 −1

])
(sτ + s′) = (14)−k/2(1)k(g|2kσ)(τ),

where g(τ) = F (s0τ) ∈ S2k(Γ0(16)). We therefore need to be able to work with cusp forms in
S2k(Γ0(16)), namely we need to compute a basis of S2k(Γ0(16)) and the action of σ on this basis.
We show how to do this in Lemma 3.12.1.

To be able to compute the restrictions F (sτ + s′) and (T1,0F )(sτ + s′), for F ∈ Sk(K(16))
and some choice of s, s′, we follow the instructions of Section 4.4 in [26]. For T1,0, the delicate
issue is simultaneously computing (F |C0(2)u)(sτ + s′) for the last two coset representatives in
T1,0. By choosing ` = 16 and σ, s0, s, s

′, τ0, W0 as follows,

σ =

[
3 1
8 3

]
, s0 =

[
10 3
3 1

]
, τ0 = 1/2,

s =
[

9441370 −2347216
−2347216 4668325/8

]
, s′ =

[
3152523 −3134991/4
−3134991/4 12470225/64

]
, W0 =

[ −24 8 −65 0
−1055/2 176 −1739 −14897/16

0 0 −44 −1055/8
0 0 2 6

]
,
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we get the following, for g(τ) = F (s0τ) ∈ S2k (Γ0(16)),(
F |k

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

] [ 8 32 14 −3
−3 −16 2 −5/16
0 0 2 −3/8
0 0 4 −1

])
(sτ + s′) =(14)−k/2(1)k(g|2kσ)(τ),(

F |k
[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

] [ 8 32 22 −3
−3 −16 −1 −5/16
0 0 2 −3/8
0 0 4 −1

])
(sτ + s′) =(14)−k/2(1)k(g|2kσ)(τ + τ0).

The last thing we need before using this choice to compute T0,1F is a knowledge of how
forms in Mk(Γ0(16)) transform by σ = [ 3 1

8 3 ]. We discuss the ring generators of M(Γ0(16)) =
⊕∞k=0Mk(Γ0(16)). Let

E2(τ) = 1− 24
∞∑
n=1

σ(n)qn = 1− 24q − 72q2 − 96q3 − 168q4 − 144q5 − · · ·

be the nearly modular weight two Eisenstein series transforming, for all
[
a b
c d

]
∈ SL(2,Z), by

(
E2|2

[
a b
c d

])
(τ) = E2(τ)− 3

π2

(
2πic

cτ + d

)
. (36)

For d > 1, we define E−2,d ∈ M2(Γ0(d)) by E−2,d(τ) = 1
1−d (E2(τ)− dE2(dτ)). We define five

elements in M2(Γ0(16)) by

a(τ) =
1

2
E−2,2(τ)− 3E−2,4(τ) +

7

2
E−2,8(τ) = 1− 24q2 + 24q4 − 96q6 + 24q8 − 144q10 + · · ·

b(τ) = − 1

48
E−2,2(τ) +

7

48
E−2,8(τ)− 5

8
E−2,16(τ)+

1

2
ϑ

[
2 0 0 0
0 2 0 0
0 0 8 0
0 0 0 8

]
(τ) = q − 4q3 + 6q5 − 8q7 + 13q9 · · ·

c(τ) = −1

6
E−2,2(τ) +

7

6
E−2,8(τ) = 1 + 8q2 + 24q4 + 32q6 + 24q8 + 48q10 + · · ·

d(τ) =
1

16
E−2,2(τ)− 1

16
E−2,4(τ) = q + 4q3 + 6q5 + 8q7 + 13q9 + · · ·

e(τ) =
1

4
E−2,4(τ)− 7

4
E−2,8(τ) +

5

2
E−2,16(τ) = 1− 8q4 + 24q8 − 328q12 + · · · .

The theta series ϑ[Q] of an even m-by-m quadratic form, used above to define basis element b,
is defined by ϑ[Q](τ) =

∑
n∈Zm e

(
1
2Q[n]τ

)
. If `Q−1 is also even then ϑ[Q] ∈Mm/2(Γ0(`), χ) for

some character χ. The character is trivial when det(Q) is a square and 4 | m, see [9], page 203.
Using Satz 0.3 of [9], we also have, for even m,

ϑ[Q]|F` = `m/4 det(Q)−1/2(−i)m/2ϑ[`Q−1], for F` = 1√
`

[
0 −1
` 0

]
. (37)

AD4-subgroup of the normalizer of Γ0(16) in SL(2,Q), modulo 〈±I,Γ0(16)〉, acts onMk(Γ0(16)).
This representation of D4 on M2(Γ0(16)) is 5-dimensional and decomposes into a 2-dimensional
irreducible representation and three 1-dimensional representations. The basis of M2(Γ0(16))
defined above was selected to decompose this representation into its irreducible components.
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3.12.1 Lemma. The graded ring M(Γ0(16)) consists of homogeneous polynomials in the five
elements a, b, c, d, e ∈M2(Γ0(16)), subject to the six relations:

2e2 = c2 + ac; 32d2 = c2 − ac; c2 = a2 + 64b2; cd = 2be− ad; ce = ae+ 32bd; de = bc.

Every element in Mk(Γ0(16)) can be uniquely written as Pk(a, b) + Ck−2(a, b)c+Dk−2(a, b)d+
Ek−2(a, b)e, where Pk is a homogeneous polynomial of degree k/2 and the Ck−2, Dk−2, Ek−2

are homogeneous of degree (k − 2)/2. A =
[
1 1/2
0 1

]
normalize Γ0(16) and generate a subgroup

isomorphic to the dihedral group D4, with T = AF =
[
2 −1/4
4 0

]
of order four, and σ = T 3F =

[ 3 1
8 3 ] of order two. For the representation ρ : D4 → GL(5,C) defined by (a, b, c, d, e)|2g =

(a, b, c, d, e)ρ(g), we have

ρ(A) =

[
1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

]
; ρ(F ) =

 1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 −4
0 0 0 −1/4 0

 ; ρ(T ) =

[ 1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 0 4
0 0 0 −1/4 0

]
; ρ(σ) =

[
1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

]
.

Proof. The transformation under A is obvious and the transformation under F may be worked
out using (36) and (37). A helpful intermediate step is (E−2,d|F )(τ) = −16

d E
−
2,d(

16
d τ). The

normalizer in SL(2,Q) of Γ0(16), modulo 〈±I,Γ0(16)〉, contains a dihedral group of order 8:
〈A,F 〉 = 〈T, σ〉. The index of Γ0(16) in SL(2,Z) is 24, so, by the Valence Inequality, to prove
equality in dimMk(Γ0(16)) it suffices to check the equality of the first 2k+1 Fourier coefficients.
In this way we verify the six given relations and the images of ρ.

Every modular form in Mk(Γ0(16)) that can be written as a polynomial in a, b, c, d, e, may
be written in the form Pk(a, b) + Ck−2(a, b)c+Dk−2(a, b)d+ Ek−2(a, b)e, by appying the given
relations in the order given. We will show that no nontrivial relation of the given form can be
zero. First, by applying T 2, we would have both Pk(a, b) + Ck−2(a, b)c = 0 and Dk−2(a, b)d +
Ek−2(a, b)e = 0. Second, applying T to the first we obtain Pk(a, b) − Ck−2(a, b)c = 0 and
hence Pk(a, b) = Ck−2(a, b) = 0. The modular forms a and b have the same weight, and so are
algebraically independent because b/a is nonconstant. Hence the polynomials Pk and Ck−2 are
also trivial. Third, applying T to the second we obtain Dk−2(a, b)(4e) − Ek−2(a, b)(d/4) = 0
as well. Over the field of meromorphic functions, we thus have Ek−2(a, b) = ±4Dk−2(a, b) and
this is also an equality among holomorphic functions. From 0 = Dk−2(a, b)d + Ek−2(a, b)e =
Dk−2(a, b)(d± 4e), we conclude that Dk−2 and Ek−2 are zero as polynomials. The dimension of
C[a, b, c, d, e]∩Mk(Γ0(16)) is then (k2 +1)+3(k−22 +1) = 2k+1. By the Riemann-Roch Theorem,
dimMk(Γ0(16)) = 2k+ 1 for even k ≥ 0, and thus M(Γ0(16)) = C[a, b, c, d, e] as graded rings.

We have all the ingredients to apply the techniques of Section 4.2 and 4.4 of [26] to compute
the eigenvalues λ0,1 and λ1,0. We successfully computed the eigenvalues λ0,1 and λ1,0 of the
nonlift newforms in Sk(K(16))± for k ≤ 14. The results are in Tables 7 and 8. By applying
the knowledge of these eigenvalues to Table A.14 of [31], we also identify the possibilities for
the corresponding local representations at p = 2 of the underlying automorphic representations.
Further information on the entries of these tables may be found at [40].

3.13 Supercuspidal forms found

From Tables 7 and 8, we see that we found supercuspidal forms in weights 9, 11, 13, 14. The
website [40] gives formulas for these supercuspidal forms. For the odd weights k = 9, 11, 13, the
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Table 7: Eigenvalues λ3, λ0,1 and λ1,0 of nonlift newforms in Sk(K(16))±. The definition of the
algebraic numbers α∗ and any corresponding eigenvalue t∗ are given in Table 9 or at the website
[40].

k AL 3k−3 λ3 λ0,1 λ1,0 type

6 + −96 −5 0 X

7 − −600 −2 −4 XIa
− −144 −3 0 I, IIa, or X

8 + −1992 0 −4 VII, VIIIa or IXa
+ 912 −3 0 X
+ −168 −2 −4 XIa

+ −864± 112
√

33 1/8(−7∓
√

33) 0 X

9 − −8136 2 −4 XIa
− 5856 −5 0 I, IIa, or X
− −2280 0 −4 sc(16)
− −1920 1/4 0 I, IIa, or X
− 1464 −2 −4 XIa

− ±480
√

33 1/4(−3∓
√

33) 0 I, IIa, or X

10 + −12888 2 −4 XIa
+ 5928 −2 −4 XIa
+ −3768 0 −4 VII, VIIIa or IXa
+ −1080 0 −4 VII, VIIIa or IXa

+ 7248± 240
√

505 1/8(−19±
√

505) 0 X
+ α10,16 (degree 5) t10 0 X

11 + −66096 −29/8 0 X
− 8040 0 −4 sc(16)

− 24(−1245± 32
√

21) 2 −4 XIa

− 120(111± 8
√

69) −2 −4 XIa
− −73584 9/2 0 I, IIa, or X
− 18768 1 0 I, IIa, or X
− 35568 −3/4 0 I, IIa, or X

− 48(425± 2
√

3961) 1/32(−107±
√

3961) 0 I, IIa, or X
− α11,16 (degree 4) t11 0 I, IIa, or X

12 + −12456 0 −4 VII, VIIIa or IXa

+ 72(819± 64
√

85) 0 −4 VII, VIIIa or IXa

+ 72(−521± 128
√

5) 2 −4 XIa

+ 72(831± 8
√

85) −2 −4 XIa
+ α12,16,a (degree 5) t12,a 0 X
+ α12,16,b (degree 8) t12,b 0 X
− −185616 −21/8 0 I, IIa, or X
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Table 8: Continuation of Table 7.

13 + −183168 −33/8 0 X

+ −144(3879± 41
√

609) (−53±
√

609)/32 0 X
− −220968 2 −4 XIa

− 72(−333± 80
√

609) 2 −4 XIa
− α13,16,a (degree 3) −2 −4 XIa
− α13,16,b (degree 3) 0 −4 sc(16)
− 0 3/2 0 I, IIa, or X
− 725184 −1 0 I, IIa, or X
− α13,16,c (degree 6) t13,c 0 I, IIa, or X
− α13,16,d (degree 4) t13,d 0 I, IIa, or X
− α13,16,e (degree 4) t13,e 0 I, IIa, or X

14 + 517320 2 −4 XIa
+ 527688 −2 −4 XIa

+ 216(−597± 16
√

51) 2 −4 XIa

+ 24(40387± 320
√

25561) −2 −4 XIa
+ −499608 0 −4 VII, VIIIa or IXa

+ 216(2927± 56
√

3889) 0 −4 VII, VIIIa or IXa

+ 24(20759± 88
√

8689) 0 −4 VII, VIIIa or IXa
+ α14,16,a (degree 8) t11,a 0 X
+ α14,16,b (degree 13) t11,b 0 X
− −2434968 0 −4 sc(16)
− −927072 −17/8 0 I, IIa, or X

− −432(1935± 23
√

2377) (−97±
√

2377)/32 0 I, IIa, or X

Table 9: Definition of algebraic numbers in Tables 7 and 8 for weights 10 and 11. The definitions
for other weights are at the website [40]. Each α∗ is a root of the adjacent minimal polynomial.
The α in a definition of any t∗ refer to the immediately preceding α∗.

α minimal polynomial of α

α10,16 : −392100597530099712 + 36717761396736000x− 1936322592768x2 − 384208896x3 +
12000x4 + x5

t10 = (200684470423235227287552 + 94255611784369274880α + 2115778851231744α2 −
1410266234784α3 − 54792385α4)/410907531887271468859392

α11,16 : 332724999250575360− 1154234880x2 + x4

t11 = (858199620022272 + 28477875456α− 1490544α2 − 53α3)/21539386294272
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supercuspidal form is given as a linear combination of Gritsenko lifts and repeated T (3) images
of one or more Borcherds products. For the even weight k = 14, the supercuspidal form is given
as a linear combination of the repeated T (3) images of one Borcherds product. We also give the
formula for the weight 14 supercuspidal form here to provide a bridge to the database [40] and
to aid any future reproduction of our results. Let ∆ be the cusp form in S12(SL2(Z)) normalized
to have leading term q. Theta blocks are the invention of Gritsenko, Skoruppa, and Zagier, and
the special case we use here may be defined, for dj ∈ N, by

TBk(d1, d2, . . . , d`)(τ, z) = η(τ)2k−`
∏̀
j=1

ϑ(τ, djz),

where η is the Dedekind eta function and ϑ(τ, z) =
∑

n∈Z(−1)nq(n+1/2)2/2ζn+1/2 is the odd
Jacobi theta function. A basis B of Jcusp

12,16 is given in Table 10 in terms of W2 and W3 images of
theta blocks.

Define the following weight zero weakly holomorphic form ψ14 ∈ Jwh
0,16(Z) using the vector

b14 in Table 11,

φ14 =TB14(1, 1, 1, 1, 1, 1, 2, 2, 3, 3); ψ14 =
φ14|V2
φ14

+
b14 ·B

∆
.

We have Borch(ψ14) ∈ S14(K(16))−. It happens that

{T (3)j Borch(ψ14) : j = 0, . . . , 13}

is a basis of the space Sk(K(16))−. Table 12 gives the linear combination vector c14 that defines

f14 =
13∑
j=0

(c14)j T (3)j Borch(ψ14).

We stopped at k = 14 because we found a supercuspidal paramodular form in an even weight
space of the lowest possible level. Also, weight k = 14 for K(16) is on the edge of tractability
for the method of Jacobi restriction.
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