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1. Introduction

The structures of spaces of Siegel modular forms have been studied by many math-
ematicians, for example, Igusa [12], Satoh [15], Freitag and Salvati Manni [6, 7],
Gunji [8], Aoki and Ibukiyama [1], Kitayama [13], Ibukiyama [10] and van Dorp
[18]. Particularly noteworthy of the above works is that of Igusa, in which he obtains
explicit generators of the graded ring of scalar-valued Siegel modular forms with
respect to the full Siegel modular group I's of degree two. In this paper, we carry
out a similar study, investigating the structures of modules of certain vector-valued
Siegel modular forms with respect to I's.

We denote by Ay ;(I'2) the vector space over C of vector-valued Siegel modular
forms of weight det* ® Sym(j) with respect to I'y. Here, det* is the determinant
representation of GLa(C) to the kth power, and Sym(5) is the symmetric tensor rep-
resentation of GLy(C) of degree j. We define the sets AGTH ) (I'2) and ASym (T2)

Sym(j

as Agvy‘;r]‘ )(FQ) = Ppep Azk,;(T'2) and Ag;il(J)( 2) = @k:OAQk‘H»J(FQ)' It
is clear that the sets Ae"en(J)(Fz) and Asym(J)(Fg) are modules over the ring

ASver(Ty) := Agven ( 2). Satoh [15] determined the structure of AZYe? ( 2), and

Sym(0) Sym(2)
Ibukiyama [10] determined the structures of Assfn(z (T2), Agymay(T'2), ASym( (T'2)
and AT ) (T'2). Recently, van Dorp [18] determined the structure of ASym(G) (T2).

In this work we add to these results by determining the structures of Agl 8)( 2)
and ASym 8)( 2).
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The motivation for this work is provided by the following. First, we are inter-
ested in the direct sum @Z?j:o Ay ;(I'2) because, although it is the fundamental,
mathematical object in Siegel modular forms of degree two, very little is known
about it. Also, this set is related to the question raised by Ibukiyama [10] concern-
ing the feasibility of constructing a theory of “weak vector-valued Siegel modular
forms” similar to that of weak Jacobi forms presented in [4]. We are also interested
in a separate conjecture made by Ibukiyama [10] (see Sec. 4).

This paper is organized as follows. In Sec. 2, we review the theory of Siegel mod-
ular forms, summarize existing results, present the dimension formula for Ay g(I'2)
and outline methods for constructing Siegel modular forms (employing theta func-
tions and Rankin—Cohen-type differential operators). We also construct a Rankin—
Cohen-type differential operator that maps three scalar-valued Siegel modular forms
of even weights to a vector-valued Siegel modular form of weight det * ® Sym(8) for
odd k. The main result of the paper is given in Sec. 3. We give evidence supporting
the conjecture made by Ibukiyama [10] in Sec. 4.

2. Preliminaries
2.1. Vector-valued Stiegel modular forms

First, we present definitions. Let Sp(2,R) be the real symplectic group of degree
two and Hy the Siegel upper half space of degree two:

(02 L) _ (0 1
T\Z1, 0,) 77\t 0,/ [0

Hy:={Z =X +1iY € Maty(C)| Z ="Z,Y is positive definite}.

Sp(2,R) i= {7 _ (é g) € Mata(R)

The group Sp(2,R) acts on Hy as (v = (& 1), Z) = 7Z = (AZ+B)(CZ+ D).
Let T’y := Sp(2,Z) be the full Siegel modular group of degree two:

" 02 1o _ 02 1o
T\t 0077 i1y 00/ [

Fixing non-negative integers k and j, let py; : GL2(C) — GL;+1(C) be the irre-
ducible rational representation of the signature (j + k, k); i.e.

I, = Sp(2,Z) = {7 = (é g) € Maty(Z)

pr,; = det k Sym(j),

where det” is the determinant representation of GL2(C) to the kth power and
Sym(j) is the symmetric tensor representation of GLo(C) of degree j. For any
v = (é g) € Sp(2,R) and C/*1-valued function f on Ha, we define

(flesWD(2) = prs (CZ + D) f(Z) (Z € Ho).
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In the case that j = 0, we write | ; as |x. A vector-valued holomorphic function
f: Hy — C7*1 is a vector-valued Siegel modular form of weight py ; with respect
to Iy if f”w’ [v] = f for all v € T'5. Note that f is a scalar-valued Siegel modular
form of weight k with respect to I's when j = 0. Then, because —14 € T'y, we
see that f is identically zero if j is odd. To treat cusp forms, we define the Siegel
operator ® : Ay ;(I'2) — Sky;(SL2(Z)). For f € Ay ;(T'2), we define ®(f)(7) :=
limy— o0 f(§ ;3)- As shown by Arakawa [2], we have

i)
o =| 1| FeSsiSLm)
0

where Sj4;(SL2(Z)) is the C-vector space of elliptic cusp forms of weight £+ j with
respect to SLa(Z). We say that a Siegel modular from f € Ay ;(I'2) is a cusp form
if it satisfies ®(f) = 0. We denote by Ay ;(I'2) (respectively, S ;(I'2)) the vector
space over C of Siegel modular forms (respectively, cusp forms) of weight py ; with
respect to I's. When j = 0, we simply write these as A (I'2) and Si(I'2). Recall the
definitions of AT (I'2), Aggfn(j)(f‘g) and A°V"(T'y) given above.

Next, we summarize existing results concerning spaces of Siegel modular forms
with respect to I's. In [11, 12], Igusa proved the following theorem.

Theorem 2.1. (i) The graded ring of scalar-valued Siegel modular forms of even
weight with respect to 'y is given by

Aeven(r2) — C[¢4, ®6, X105 X12]’

where ¢y, is the Eisenstein series of weight k, and x10 and x12 are the cusp
forms of weights 10 and 12, respectively.

(ii) The graded ring of scalar-valued Siegel modular forms with respect to T's is
given by

@Ak(F2) — Aeven(l—\z) e X35Aeven(1'\2)7
k=0

where X35 s the cusp form of weight 35.

We normalize the Eisenstein series ¢y of weight k so that the constant term is

equal to 1 and the cusp form y1g or x12 so that the Fourier coefficient for (1}2 1{2)

is equal to 1. The cusp form ys5 is defined as

4ps 696  10x10 12x12
40104 D196 Oixio  O1xi2
O2¢s Oaps  O2Xx10 O2X12
O3¢0s O3  O3x10 O3x12

X35 1= 279, 3 S S35(F2),
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where for Z = (1 [) € Ha, we define

81:—18 8:—18 9s - 1 0

T omior 0T 2w U 2miow

Then, the Fourier coefficient of y35 for (1;’2 142) is —1.

The structures of the following A®V¢"(T'y)-modules of vector-valued Siegel mod-
ular forms are known:

o Aginiey(L2) -+ [15].
Agi 2y (T2) -+ [10].
Ay T2) -+ [10].
Agt 4y (T2) -+ [10].
Ay T2) -+ [10].
° Agsfn(ﬁ)(FQ)'“ (18].
Here, we study the A°**"(I';)-modules Agi{h ¢ (I'2) and Aggfn(g)(f‘g).

2.2. Dimension formula

The generating function of dimc Ay g(I'2) is known (cf. [10, 17, 19]), and is given
by the following.

Theorem 2.2. We have

B t4 +t8 +2t10 +2t12 _|_t14 _|_t16 _|_t18

kZ:Odim«: Ak,s(r2)tk = (1 —5)(1 — 16)(1 — t10)(1 — ¢12)

A A o e i
(T —th)(1— t9) (1 — £19)(1 — £12)

From Theorem 2.2, we can calculate dimc Ay g(I'z). We obtain the following:

k H4891011121314151617181923

dimAk,8H1213142649510713

With the relation

1
dime Ay (I2)t" =
2o, e A = )
(obtained from Theorem 2.1(i)), Theorem 2.2 implies that Ag;‘inn(g)(FQ) and

AZ (s)(T2) are free modules over A®*(T'2) and that Ah o (I'2) is spanned by
nine elements of weights p4 s, ps,8, 10,8, 10,8, P12,8, P12,8; P14,8; P16,8 and pig g, while
Ag;il(s) (T'2) is spanned by nine elements of weights pg s, p11,8, P13,8, £15.8; P15,8,

P17,85 P17,8, 19,8 and £23,8-
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2.3. Construction of Siegel modular forms

There exist three methods to construct vector-valued Siegel modular forms with
respect to I's, which employ the following;:

(i) Theta functions with pluri-harmonic polynomials.
(ii) Rankin—Cohen-type differential operators.
(iii) Klingen-type Eisenstein series (cf. [2]).

We can construct all generators of A ) (I'2) and A%ﬁi(s) (T'2) by using methods

(i) and (ii). Below we explain this procedure.

2.3.1. Theta functions with pluri-harmonic polynomials

Let k£ and j be non-negative integers. For a natural number d and vectors z =
(z:),y = (yi) € C¢, we define the inner product (z,y) as (z,y) := Ele z;y;. Next,
let L be an even unimodular lattice in R?. We identify an element of L? with a
2 x d matrix according to X = (z,y) for x,y € L.

Proposition 2.3 ([5, 10]). We choose a,b € C? such that {a,a) = (a,b) = (b,b) =
0. For X = t(x,y) € Mats 4(C), we define

(x,a) (x,b) g

wa) oy =0T

R = (1) el

and P(X) :=*"(Py(X),...,Pj(X)). Then, we have

OLabk)(Z) = Y P(X)exp(miTe(XZX)) € Agy ;(Ta).
XeL?

For Z = (1 [) € Ha, we introduce q; := €™ ( := ¢*™* and ¢y := €™,

Then, from the definition of theta functions, we find

(z,2) (y,y)
OLanhy(Z) = > P(X)q ? ¢("¥q,*
z,yel
> (z,x) (y,y)
-y > P(X)q, & (o) g,
n,m=0 z,yel

z,yeL
m=0 \ (z,z)=2n,(y,y)=2m
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° (z,y)
> 2 F(x¢ gy

z,yeL
nm=0 \ (z,2)=2n,(y.y)=2m

In order to prove the main result, Theorem 3.1, we consider the case in which
L = Eg, where Eyg is the well-known eight-dimensional root lattice:

8
in € 22}.
i=1

8
1
FEg = {x:(xl,...,l‘g)ezsu <Z—|—§>

2.3.2. Rankin—Cohen-type differential operators

Ibukiyama constructed the general theory of Rankin—Cohen-type differential oper-
ators in [9]. Here, we summarize this theory. (For further details, see [9].)

For a natural number r, we write Hj := Hjy X -+ X Hy (r copies of Hs). Then,
we fix non-negative integers k and j and natural numbers k; (1 < i <r). Let D be
a C/*'-valued linear homogeneous holomorphic differential operator with constant
coefficients acting on functions on Hj5. We impose the following condition on D.

Condition 2.4.
ZI}ESZD((fl‘kl (W)(Z1) - (fele. W))(Z0))
= ZI}ESZD(JH(ZO o fr(Ze)) gt k5 0]

for all holomorphic functions f; (1 < i < r) on Hy and all v € Sp(2,R), where
Resz,—z represents the restriction of all Z; € Hy to the same Z € Hs.

Condition 2.4 implies that if f; € Ay, (I'2) (1 <4 <), then we have

ZIESZD (f1(Z1) - fr(Zr)) € Akytooibep 14,5 (T2).

Here, we call a differential operator D satisfying Condition 2.4 a “Rankin—Cohen-
type differential operator”.

To characterize Rankin—Cohen-type differential operators, we need a further
condition, namely, Condition 2.5. For a variable X = (x; ;) € Maty o(x, 4.4, (C),
we define the operators

2(k1+-+ky) 82
A, e — = (1<ij<2).
5J Z axi’yaxjw ( =) > )

v=1

A polynomial P(X) in X = (z;;) € Maty g, +...4,)(C) is called pluri-harmonic
with respect to X if A;;(P) = 0 for all 1 < 4,5 < 2. A polynomial vector
Q(X) = Y(Qy(X)) is pluri-harmonic with respect to X if each component @, (X)
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is pluri-harmonic with respect to X. Let Q(R1, ..., R;) be a polynomial vector in
symmetric matrices Ry, ..., R, € Maty(C). We impose the following condition on
Q(Ry,...,Ry).

Condition 2.5.
(i) For all A € GLy(C),
Q(AthA, e ,ARTtA) = pk,j (A)Q(Rh ey Rr)

(i) P(X) := Q(X1'Xy,...,X,tX,) is pluri-harmonic with respect to X, where
we write X = (z;;) = (X1,...,X;) € Matgop4.qn,) (C) for X; €
Matg’gki ((C) (]. S ) S ’I").

Let Hap, ,(2k1,...,2k.) denote the set of polynomial vectors satisfying Con-
dition 2.5. We now present a characterization of Rankin—-Cohen-type differential
operators. For Z = (T 7) € Ha, we define

z

o 2
, 2
2 . 1 0 1 0 1 0
= h = —— = — = —— .
92:= 1 5 <W1t e L R e P Bl me
5 Os
Then there exists a C/*!-valued polynomial vector Q(Ry, ..., R,) depending on

(r x 2(2+41))/2 = 3r variables such that

D=Q(z,...,0z,).

Theorem 2.6 ([9]). The differential operator D satisfies Condition 2.4 if and only
if the polynomial vector @ satisfies Condition 2.5.

Next, we give explicit examples of Rankin—-Cohen-type differential operators.
(By Theorem 2.6, this is equivalent to giving explicit polynomial vectors satisfying
Condition 2.5.) More specifically, we consider the following three cases:

(a) Ha,p,;(2k1,2ks) for an even number j.
(b) Ha,p, ;(2k1,2ks) for an even number j.
(C) Hg,pl‘g (2](517 2k2, 2k3)

We consider each of these cases below.

First, we consider the cases (a) and (b). We begin by presenting two results
obtained by Eholzer and Ibukiyama [3]. They constructed explicit polynomial vec-
tors Q € Ha p, ;(2k1,2k2) (with k = 0,2) such that @ # 0.

Considering the case (a), let j be an even number, and let r,s,u; and us be

independent variables. For symmetric matrices R = (['! %) and § = (]!} :1?),

1550004-7



Int. J. Math. 2015.26. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF OKLAHOMA on 10/02/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

T. Kiyuna

we define
A & %+k1—1 o
Qa9 = Yo 24 A P
i=0 i J_;
2

2 2
U .= riuy + 2riouius + To2U5,

2 2
V.= $11U7 + 2512U U2 + S22U5.

Next, we define polynomials Q,(R,.S) (0 < v < j) through the relation

Q2k, ,2k5,1,; (U, V) ZQU R, S)u

Further, we define Qo ok, sym(j) (R, S) = "(Qo(R,S),...,Q;(R,S)). Then
we have Qak, 2k, Sym(j) (R, S) € Hap,, (2k1,2k2) (see [3, Proposition 6.1]). For
fi € Ak, (T'2) (1 <4 <2), we define

{fl»f2}sym(] = RGS Dkl,kg sym(j) (f1(Z1) f2(Z2)),

where Dy, 1, sym(j) = Q2k,,2ks,Sym(j)(0z,,07,). Then we have {f17f2}Sym(j) €
Ak1+k2,j(r2)'

Next, we consider the case (b). First, we define
1~
Qs 262,25 (1 8) = 7 Qy 200 (B, S) Rk 41),2(k2-41),1,5 (1 5)

{(2kg — 1)det(R)s — (2ky — 1)det(S)r}

1

2

( k1+1) 2(kat1) 1y 3Qz(k1+1),2(k2+1),1,j> (r.5)
88 ) )

where
Qok,y 2k, (R, S) := (2k1 — 1)(2ky — 1)det(R + S)
— (2]{}2 — 1)(2/{31 + 2]{}2 — 1)det(R)
— (2]{11 — 1)(2/{31 + 2ko — 1)det(S).

Then, we define polynomials Q,(R,S) (0 < v < j) through the relation

Q2k‘172k272j U V ZQU R S

Further, we define Qo 2k, det 28ym(j) (R, S) := "(Qo(R, S), ..., Q;(R,S)). Then we
have Q2k1,2k2,det28ym(j) (R, S) S HQ,pZ]» (2/{31,21412) (see [3, P. 461; 14, Remark 25])
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NGXt, we define ]D)kl,kz,det2Sym(j) = Q2k1,2k2,det2Sym(j)(aZlaaZg)a and for fz S
A, (T2) (1 < i <2), we define

{flv fQ}det 23ym(5) (Z) = ZI?/ESZ Dkl,kz,detzsym(j) (fl(Zl)fQ(ZQ)) :

Then we have {fl; f2}det28ym(j) S Ak1+k2+2,j (Fg)
Finally, we consider the case (c). Here, we give a new example of a Rankin—
Cohen-type differential operator. Let R = ([’ **),S = (! °2) and T =

12 722 S12 §22
tin ¢ . . . .
(tiz t;z) be 2 x 2 symmetric matrices, and let u be an independent variable. We
define

r11 s11 i
QQ(R, S, T) = (2k2 + 2)(2k2 + 4)(2k2 + 6)7"?1 712 S12 t12
2k1+6 2ky  2kj3

711 $11 t11

— 3(2ky + 6)(2k2 + 4)(2kg + 6)7Ty 511 | 712 S12 12
2k1 +4 2ko +2 2/{33

711 $11 t11

+ 3(2k1 +4)(2ky + 6)(2kz + 6)r1187, | 712 512 tio

2k1+2 2ko +4 2k3

r11 S11 t11
— (2]411 + 2)(2k’1 + 4)(2/{31 + 6)3:1))1 712 S12 t12]-
2k1 2ko +6  2ks3

Then, we define polynomials Q, (R, S,T) (0 < v < 8) through the relation
8
Qo(AR'A, AS'A, AT'A) = Y " Qu(R, S, T)u",
v=0

where A = ((1) 1). Further, we define

Q2k1,2k’2,2k’3,det Sym(8) (R7 S7 T) = t(QO(Rv S» T)a sy QS(R7 S7 T))

Lemma 2.7. We have Qap, 2k,,2ks,det Sym(8) (1, S, T') € Ha p, o (2k1, 2k, 2k3).

Proof. Note that the group GLy(C) is generated by the matrices

(g 2) (a,d € C\{0}), (é i’) (beC), (g (1))

Because pi1g is a representation of GLo(C), it is sufficient to prove that
Q2k, 2k,2ks,det Sym(8) (12, S, T') satisfies Condition 2.5(i) with the above matrices.
It can also be shown that Qag, 2k, 2ks,det sym(s) (12, S, T') satisfies Condition 2.5(ii)
by a direct calculation. m|
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We define Dy, i, ks,det Sym(8) = Q2k1,2ks,2k5,det Sym(8) (02, 0z, 0z,). Next, for
fi € A, (T2) (1 <i < 3), we define

{flaf27f3}detsym(8 Z) = Reb ]D)kl,kz,kg,detSym(S)(fl(Zl)f2(Z2)f3(ZS))'

Then we have {fh f27 f?’}det Sym(8) S Ak1+k2+k3+1,8(r2)'

3. Main Result

In this section, we present the theorem that represents the main result of this paper,

along with its proof. First, as preparation, let us define the vectors
=(1,4,0,0,0,0,0,0), b1 :=(0,0,1,4,0,0,0,0),
= (2,i,i,i,i,0 0,0), :=(0,4,4, —1,—1,2,0,0),
=(1,-1,4,4,1,—1,—1,1)
and the Siegel modular forms Xy 5, Yy 8 € Ak 3(1" ) as follows:

OB a1 b1,(0,8) O Eg,a1,b1,(4,8)

Xy8:= 120 € Ayg(l2), Xgg:= 99400 € Agg(l2),

s = PR € At Yios = (e < e
Xi2g = 79158’2(’;8’(8’8) € Apg(I'2), Yigg:= {¢47ﬁg}1§2;8}’m(8) € Aps(I'2),
Xiag = —{¢47X1;}Sym(8) € A1a8(l2), Xies: —{¢67xi;}(;sym(8 € Aies(I'2),
Xigg = —{%’Xi;];ym(s) € Aigs(I2),

Xgg 1= O as.ba,(58) € Agg(l2), Xiig:= O asba,(r8) € A s(I2),

8 7350563200
{04, G4, P4} det Sym(s

12096000000

Xigs = gosontn0 € Ass(T2);
i = e € sl
P = G € oall),
i = TSR € sl
R
Xros i {Xlqusgng)%}:gtSym(S) € Aros(Ta),
Xozg 1= {¢47¢6;1>;13281d5tsym(8) € Ass s(I's).

1550004-10
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Theorem 3.1. Both Ag‘;‘gl‘(s)(FQ) and Agiﬁl(s) (T'2) are free AV™(T's)-modules of

rank 9, and their generators over A*V**(I'z) are given by the above modular forms:
AGyms) (T2) = A7 (T2) Xy 5 & A" (T2) X5, & A" (I'2) X0,
® AV (T2) Y108 ® AV (T2) X128 ® A" (T'2)Yias
® AV (T2)X1as B AT (D2) X8 © A7 (I'2) X1g s, (3.1)
A 5y (T2) = AV (T9) Xg g & AV (Fg) X118 & A7V (F2) X138
® AV (T2) X158 @ ATV (T2) Y158 ® AV (T2) X178

EB Aeven(l—\2)Y17,8 EB Aeven(FQ)X1978 EB Aeven(FQ)X2378. (32)
Proof. (i) The first part of this theorem follows from Theorem 2.2, as pointed out

in Sec. 2.2. We first prove the linear independence of the generators over A°Ve2(T's).
Assume that

fiXag + foXg 8+ f3 X108 + faYios + f5 X128
+ feY12,8 + fr X148 + fs X168 + foX188 = 0, (3.3)
with f; € Av°®([y) (1 < ¢ <9). Next, we introduce the 9 x 9 matrix
D7) = (X48(Z), Xs,8(Z), X10,8(Z), Y10,8(2), X12,5(2),
Yi2,8(Z), X14,8(Z), X16,8(Z), X18,8(2)).
Then, from (3.3), we have

1 0
Deven : — E
Jo 0
Through computer-aided symbolic manipulation, we obtain

det Deven(Z)

_ — (4 g2 A2 4 1248
30090150150003732480000 < CTAO—ACH Char"a

F (46 -4+ s
+A(—CTH 4¢P - 6+4C - (gt d
+A(=CH 4¢P - 6+4C7 - (gl
F6(C -4+ 6 -4+ (Nat’e”

+e (3.4)

where for Z = (7 [) € Ha, we write q1 = ¢*™7, ( = €*™* and ¢o = ™. Hence,

we find that det D®V**(Z) is not identically zero as a holomorphic function, and
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therefore there exists a domain 2 C Hy such that det D*V°"(Z) # 0 for all Z € Q.
Next, by the holomorphy of f;, we see that each function f; is identically zero on
Q, and hence on Hs. Then, from the linear independence of the generators over
AV (T'y) and Theorem 2.2, we obtain (3.1).

(ii) Through computer-aided symbolic manipulation, we obtain

2352?1—% =(¢7=5¢7 +10¢7" = 10¢ +5¢ — ¢*)ai° 3"
+5(=C7" 4507 = 10071 +10¢ = 5¢% + ¢*)ar " a3
. (3.5)
where
D*Y(Z) = (Xos(Z), X11,8(Z), X13,8(Z), X15,8(Z), Y15,5(Z),
X178(2),Y178(Z), X10,8(Z), X238(2)).

Hence, det D°44(Z) is not identically zero as a holomorphic function. From this
fact, and using the same argument as in the proof of (i), we arrive at (3.2). This
completes the proof of Theorem 3.1. |

4. Ibukiyama’s Conjecture

Let ki,...,kjy1 be non-negative integers such that k; = --- = k;jy1 (mod 2). Let
us define the integer k as
j(j+1
/{3:=k’1+"'+/€j+1+](]2 )

If fi € Ag, j(T'2) (1 <@ < j+1), then the determinant det(fi,..., fj+1) is a scalar-
valued Siegel modular form of weight k with respect to I's. We write k = 35g+7 (¢ €
Z>0,0 <1 < 35). Next, we assume that f; € Ay, ;j(T'2) (1 <i < j+ 1) are linearly
independent over AV (T'z). Ibukiyama made the following conjecture in [10].

Conjecture 4.1. The determinant det(f1, ..., fj+1) is divisible by x4, where X35
is the cusp form of weight 35 with respect to I's.?

Assuming that this conjecture holds, we can conclude that the determinants
det D®V*?(Z) and det D°94(Z) are equal to x35 and x35 (up to a constant), respec-
tively, because we have the following:

8x9
4—|—8+10+10+12+12+14+16—|—18+%:140:35><47

9+11+13+15+15+17+17+19+23+¥:175:35><5.

aTa;kemori [16] proved Conjecture 4.1 for AV (I'y)-bases of Ag‘)’,‘i;‘(j)(l"g) and Ag;’/?n(j)(l"g) (j =
4,6).
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Although we have not been able to demonstrate rigorously these relations
between det DV*"(Z) and x3s and det D°44(Z) and X35, we have obtained results
that suggest their validity, as we now discuss. First, note that the first several
Fourier coefficients of det D®V*(Z) and det D°19(Z) are given in (3.4) and (3.5).
Then, note that x5 has the following Fourier expansion:

X35(2) = (' = Q@B + (¢ +Oaid + 0 x ¢} g3
+0 % gz +0x qugs + (= —69¢" +69¢ + ¢*)qlas
+ (¢ +69¢71 = 69¢ — (P)afas + -+

where for Z = (7 [) € Ha, we write ¢ = ¢*™7, ( = €*™* and ¢z = ™. Hence,
we have

Xas(Z) = (C* = 4¢2 4+ 6 — 4¢% + (Nat’e5
F (AT 6 -4 + (Mgl
+A(—CT 4¢P - 6+4C - (gt
FA(-CTT 4 -6 +4C - (Nala!
F6(C =402 +6 -4+ (g + -,
X35(2) = (C7° = 5¢2 +10¢™ = 10¢ + 5¢° = ¢°)gi°g5°

+5(=¢ P4+ 5¢3 —10¢C 4+ 10¢ — 53 + CO)gitgdt + - -

It is thus seen that the first several Fourier coefficients of x35 and x35 are identical
to those of det D°V**(Z) and det D°%4(Z), respectively.
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Appendix A

Here, we present Tables A.1 and A.2 of Fourier coefficients of the generators appear-
ing in Theorem 3.1. In the tables, (a, ¢, b;¢) (used as short-hand for (f;a, ¢, b;4)) rep-
resents the Fourier coefficient of the (i+1)th component of f € Ay g(I'2) (0 <7 < 8)

for the half-integral matrix (b% béz).
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Fourier coefficients of the generators of Ag‘}’fi&s) (T2).

Table A.1.

X148  Xies  Xigs

Yi2,8

X8 Xsg Xios Yios Xi2s

(a,c,b;i)

OO OO0 O OO OO A F OOV F—1OOOOOOOOOo
— <t © < — — o =
N O NVONODVONAFOODDOOF—OOOOOOOOOo
| | — | | — = = =
|

FTO OO FOOWVOIF~-NVONNNONOODODODOOOOOO
— 0 0 0 — NI~~~ DA
| | | | | =
OO OO0 OO0 OO A FTOOVWDDNOLOF—1OOOOOOOOOo
— N L~ N N o= < A~ O Ao
— [a\] 0 [a\] A S B e B O B e I e B B |
| | | [ O N
QO NOD OO NODONAOFHATFTOAMOOOOOOOOO
7] — — — N M MO DO O™
[ae] — > — [ap) — N <F A —

| N | [
NO FOWVOIFONAFOODNDOOF OO0 OOOOoOo

<t o <t [ R e B B e B N

| | [ N
O OV OO DV OUMANVYWIDONANMNMOOOOOOOOO

= ol <f | = A~

< 2] < | — = |

|

QO F OO O IO OO IFITNON I Ff © 0000 © O © 0 0 —
N (=) N [ AN AN AN~ 00— N O [a R TR S T I
— 0 <t 0 — AN~ AN~ NN

| | [
NN AN AN N N N N AN N N SN AN SN AN SN N N N N N SN N N N N
O AN M F IO O©OM~00O =AM FI O©M~0O0 M F I O~ 0
SSTSSTSSSSST AT I AT A AN NN
17 1’ 17 1’ 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
e e e e e e T T T T T T T T S S S S
N N N N N N N e e e e e e e e e N N N N N S e e

'S9[o11e $5800Y UBdQ 404 1de0xe ‘peniwuied Jou AJJOLIS S| UOINGLISIP PUe 8sn-8Y "8T/20/0T U0 VINOHV THO 40 ALISHIAINN IHL Aq
WI09"31§US ISP IOM' MMM LLIOJ) PAPEO(UMOQ "9Z'STOZ URIN T U
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Table A.2. Fourier coefficients of the generators of Ag;fﬂ(& (T'2).

X198  Xoss

Yizs

Xo,8 X11,8  Xizs  Xiss Yis,8 X17,8

(a,c,b;1)

S R R R e e e e R R e e R e e e R e e e e e e e e e R
|
C OO0 O00000O000O00OTIOCOFOOOHNILIBRANCOOOOCSOOOOR
| | S
OFTONONOFOOOOOOO0OOOOONOFONOOVOONNVNVWNDNANOO DO = DO W HO
| | Yo} ~ Y} — NS F T Mo [ D S A
=} I~ It} < —min S 0 N M I N
[a\] i — o~
OFT O 1O 1O FTOOOODOOODODO0OOOOOANONDOVODVOVWOOVOOANDDONWMBDID MO F O
| ™ ™ N 60 © — MO A= QAN - O SO
| N 0 © < M D F A0 AN T
0 <t — | = AN M A~
| | | [ O O
COVO0ONONODVODODO0OOOOODODOOOOODNONVONODNOIFFTOOOOOONDIO-N OO
— <t <t — 0 — (=] o O 4N F O O MmO | ] = = 0 = —
| | & < I3 e} N Y MmO S o ®© — A~
— 0 — — — <f 00 O I~ ™M
—
O OO~ O FOOOOOOOODOO0OOOSFOOVONONOONDNFIOOO DI~ I~NFO
| | 0 e} S =} O K Do © Q0 0 A =M~ O~ A
— — (=] <t — <10 OO AN AN~ A =
| i | | (I O B B |
| (.
OO0 01O 1000000000000 FONOOOONNNDOODOODONI-RDIO ~O OO
| > ~ S N~ O F o
_ — — — = -
COO0OFOFOOOONMNINOINNI-INOONODNONOFONVNNODDDOOOOANIFDODO O
x — — I T — < N © SISO A == SN MmOFQ
| | ™ =N < N SODIF N A © Mo B F ~
Ne) Qw — | 13311_‘1_4__
OFTOFOFOFTOONNMINONIENOOVONOSFTONOOONPNNOONANOONN©O®WWHO
| — — 1 [52) N 0 r~ N < AN~ M 10 00 © = O N
| o < | | A — N N
| i — |
|
P N N o e N N e N N e P N N
oOoH N MmMYmo~Nno R mMYTn oo NN oMo RN mMT N OO =N Mmoo~
S ST ST A AT AT T A HTSSSTSSTSSSSA AT A ATAATAHAATANNTNNTNNN
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WI09"31§US ISP IOM' MMM LLIOJ) PAPEO(UMOQ "9Z'STOZ URIN T U
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