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We study vector-valued Siegel modular forms of genus 2 on the three level 2 groups
Γ[2]�Γ1[2] �Γ0[2] ⊂ Sp(4, Z). We give generating functions for the dimension of spaces
of vector-valued modular forms, construct various vector-valued modular forms by using
theta functions and describe the structure of certain modules of vector-valued modular
forms over rings of scalar-valued Siegel modular forms.
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1. Introduction

Vector-valued Siegel modular forms are the natural generalization of elliptic modu-
lar forms and in recent years there has been an increasing interest in these modular
forms. One of the attractive aspects of the theory of elliptic modular forms is the
presence of easily accessible examples. By contrast easily accessible examples in the-
ory of vector-valued Siegel modular forms have been very few. Vector-valued Siegel
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modular forms of genus 2 and level 1 have been considered by Satoh, Ibukiyama
and others, cf. [2, 29, 17, 18, 32].

The study of local systems and point counting of curves over finite fields has
made it possible to calculate Hecke eigenvalues for eigenforms of the Hecke algebra,
first for vector-valued forms of genus 2 and level 1, later under some assumptions
also for genus 2 and level 2 and even for genus 3 and level 1, see [8, 3–5, 7]. These
methods do not require nor provide an explicit description of these modular forms.
Describing explicitly these modular forms and the generators for the modules of
such modular forms is thus a natural question.

The focus of this paper is genus 2 and level 2: more precisely, we will study
vector-valued modular forms on the full congruence subgroup Γ[2] of Sp(2,Z) of
level 2 together with the action of S6

∼= Sp(2,Z/2Z) on these. This will lead
to a wealth of results on modular forms on the congruence subgroups Γ0[2] and
Γ1[2] too. We will construct many such modular forms by taking Rankin–Cohen
brackets of polynomials in theta constants with even characteristics, and by using
gradients of theta functions with odd characteristics. We will furthermore describe
some modules of vector-valued modular forms. One major tool is studying the
representations of S6, the Galois group of the level 2 cover of the moduli space of
principally polarized abelian surfaces, on the spaces of modular forms. The methods
of [3] allow one to compute these actions assuming the conjectures made in [3] —
and these give a heuristic tool to detect where one has to search for modular forms
or relations among them. We apply these to get bounds on the weights of generators
and relations of the modules of vector-valued forms — but note that our final results
on the module structure are not conditional on the conjectures of [3].

More precisely, our results are as follows. In Theorems 9.1 and 9.2 we compute
the rings of scalar-valued modular forms on Γ1[2] and Γ0[2]. This computation uses
Igusa’s determination of the ring of scalar-valued modular forms on Γ[2], and the
result for Γ0[2] was already known by Ibukiyama [1]. By analyzing the action of
S6 on the spaces of vector-valued modular forms on Γ[2], in Theorem 14.1 we give
the generating functions for the dimensions of the spaces Mj,k(Γ1[2]) of modular
forms on Γ1[2]. These results are based on Wakatsuki’s [33] computation of the
generating functions for Mj,k(Γ[2]), and their derivation uses the conjectures made
in [3] — but the result fits all available data, e.g. Tsushima’s calculations (cf.
references in [3]). In Secs. 15–18 we construct vector-valued modular forms in two
ways: using a variant of the Rankin–Cohen bracket applied to even theta constants
and by using gradients of odd theta functions multiplied by suitable even theta
constants in order to get modular forms of the desired level. Using these results and
suitable Castelnuovo–Mumford regularity established in Sec. 19, in Theorem 20.1
we determine the generators for the module Σ2 =

⊕
k, odd S2,k(Γ[2]) of cusp forms

of “weight” Sym2 ⊗ detk. In Theorems 21.1 and 23.1 we determine the generators
for the modules Mε

j =
⊕

k,k≡ε mod 2Mj,k(Γ[2]) for ε = 0, 1 and j = 2, 4. In some
cases we also determine the submodule of relations.
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We conclude the paper by constructing an explicit generator for many cases
where the space of cusp forms Sj,k(Sp(4,Z)) is 1-dimensional and by giving the
Fourier coefficients of the module generators for Σ1

2 =
⊕

k, odd S2,k(Γ[2]) and of
certain generators of a module of modular forms of weight (4, ∗).

The fact that we have two different ways of constructing vector-valued modular
forms naturally leads to many identities between modular forms, some of them
quite pretty. We have restricted ourselves to just giving a few samples, inviting the
reader to find many more.

Remark 1.1. One intriguing feature of the situation is as follows. Mukai [25]
recently showed that the Satake compactification of the moduli space of princi-
pally polarized abelian surfaces with a Γ1[2]-level structure is given by the Igusa
quartic — which by the results of Igusa is the Satake compactification of the mod-
uli space of principally polarized abelian surfaces with a full level 2 structure. We
will see how this remarkable fact is reflected in the structure of rings and mod-
ules of scalar-valued and vector-valued modular forms on Γ[2] and Γ1[2]. In an
Appendix to this paper Mukai makes a very minor correction to a statement about
the Fricke involution in [25] to guarantee the peaceful coexistence of his paper with
the present one.

Remark 1.2. Another interesting feature is that the modules of vector-valued
modular forms that we consider are not of finite presentation over the ring of scalar-
valued modular forms. Indeed, recall that the ring of even weight scalar-valued
modular forms on Γ[2] is a quotient of a polynomial ring in five variables by a prin-
cipal ideal — and the modules of vector-valued modular forms like

⊕
k Mj,k(Γ[2])

are of finite presentation only over this polynomial ring.

2. Preliminaries

Let Γ = Sp(4,Z) be the Siegel modular group. The following level 2 congruence
subgroups Γ[2] � Γ1[2] � Γ0[2] ⊂ Γ defined by

Γ[2] = {M ∈ Γ : M ≡ 14 mod 2},

Γ1[2] =

{
M ∈ Γ : M ≡

(
12 ∗
0 12

)
mod 2

}

and

Γ0[2] =
{
M ∈ Γ : M ≡

(∗ ∗
0 ∗
)

mod 2
}

will play a central role here.
The successive quotients can be identified as follows

Γ1[2]/Γ[2] � (Z/2Z)3, Γ0[2]/Γ[2] � Z/2Z × S4,

Γ0[2]/Γ1[2] � S3, Γ/Γ[2] � S6,

with Sn the symmetric group on n letters; see Sec. 3 for an explicit identification.
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These groups act on the Siegel upper half space

H2 =
{
τ =
(
τ11 τ12
τ12 τ22

)
∈ Mat(2 × 2,C) : τ t = τ, Im(τ) > 0

}

in the usual way (τ �→ M〈τ〉 = (aτ + b)(cτ + d)−1) and the quotient orbifolds of
the action of Γ,Γ0[2],Γ1[2] and Γ[2] will be denoted by A2, A2[Γ0[2]], A2[Γ1[2]] and
A2[Γ[2]]. We have a diagram of coverings

A2[Γ[2]] ��

S6

Z/2Z×S4

(Z/2Z)3

A2[Γ1[2]] ��

S3

A2[Γ0[2]] �� A2

Recall that we have a so-called Fricke involution induced by the element(
0 12/

√
2

−√
212 0

)
(2.1)

of Sp(4,R) that normalizes Γ1[2] and Γ0[2] and thus induces an involution W2 on
A2[Γ1[2]] and A2[Γ0[2]].

These quotients admit a Satake (or Baily–Borel) compactification obtained by
adding 1-dimensional and 0-dimensional boundary components.

The Satake compactification A2[Γ[2]]∗ of A2[Γ[2]] is obtained by adding fif-
teen 1-dimensional boundary components each isomorphic to A1[2] = Γ(2)\H1,
where Γ(2) denotes the principal congruence subgroupa of level 2 of SL(2,Z) and
15 points forming a (153, 153)-configuration. The group S6 = Γ/Γ[2] acts on it. One
can assign to each 1-dimensional boundary component a pair {i, j} ⊂ {1, 2, . . . , 6}
with i 
= j such that any σ ∈ S6 sends the component Bij corresponding to
{i, j} to Bσ(i)σ(j); similarly one can assign to each 0-dimensional cusp a partition
(ij)(kl)(mn) of {i, j, k, l,m, n} = {1, 2, . . . , 6} into three pairs on which S6 acts in
the natural way such that the cusp given by (ij)(kl)(mn) is a cusp of the boundary
components Bij , Bkl and Bmn, cf. Lemma 3.1 and Remark 16.2. Note that Γ0[2]
is the inverse image of a Siegel parabolic group (fixing a 0-dimensional boundary
component) under the reduction mod2 map Sp(4,Z) → Sp(4,Z/2Z) and Γ1[2] is
the subgroup fixing each of the three 1-dimensional boundary components passing
through this 0-dimensional cusp.

The Satake compactification of A2[Γ1[2]] is obtained by adding six 1-
dimensional boundary components (each isomorphic to Γ0(2)\H1 and denoted
A, . . . , F ) and five 0-dimensional boundary components (denoted α, . . . , ε) as in the

aWe denote the congruence subgroups of SL(2, Z) by round brackets, those of Sp(4, Z) by square
brackets.
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following configuration:

��

�

�

�
A

B

C

D

E

F

α

β

γ

δ

ε

The normal subgroup Γ1[2]/Γ[2] of Γ0[2]/Γ[2] acts trivially on this configuration and
the induced action of the quotient S3 permutes the 1-dimensional boundary cusps
A,B,C and D,E, F and permutes the three 0-dimensional cusps β, γ, δ and fixes
α and ε. The Fricke involution W2 interchanges α and ε, fixes γ and interchanges
β and δ as we shall see later (Corollary 10.1).

The Satake compactification of A2[Γ0[2]] is obtained by adding to A2[Γ0[2]] two
1-dimensional boundary components (the images of D and A) each isomorphic to
Γ0(2)\H1 and three 0-dimensional cusps (the images of α, β and ε).

We let V be the standard 2-dimensional representation space of GL(2,C) and
let ρj,k : GL(2,C) → GL(Symj(V ) ⊗ det(V )⊗k) be the irreducible representation
of highest weight (j+ k, k). By a Siegel modular form of weight (j, k) on Γ (respec-
tively, Γ0[2],Γ1[2],Γ[2]) we mean a holomorphic map f : H2 → Symj(V )⊗det(V )⊗k

such that

f(M〈τ〉) = ρj,k(cτ + d)f(τ) for all

M =
(
a b

c d

)
∈ Γ (respectively, Γ0[2],Γ1[2],Γ[2]).

We refer to [6] and the references given there for background on Siegel modu-
lar forms. Let E be the Hodge bundle on A2 (or its pull back to A2[Γ′] for Γ′

a finite index subgroup of Γ). It corresponds to the standard representation of
GL(2,C). The bundle E extends to “good” toroidal compactifications of A2[Γ′].
Then scalar-valued modular forms of weight k on Γ′ can be interpreted as sec-
tions of L⊗k with L = det(E) on A2[Γ′]. By the well-known Koecher principle
such sections extend automatically to these toroidal compactifications. Similarly,
if Eρ = Symj(E) ⊗ det(E)⊗k is the vector bundle on A2[Γ′] corresponding to the
irreducible representation ρ = ρj,k then modular forms of weight (j, k) on Γ′ are the
sections of this vector bundle and by the Koecher principle these extend to sections
over “good” toroidal compactifications. Again, we refer to [6] and the references
given there for more details.

We close this section by explaining our notation for the irreducible represen-
tations of S6. The irreducible representations of S6 correspond bijectively to
the partitions of 6. The representation corresponding to the partition P will be
denoted by s[P ], with s[6] the trivial one and s[1, 1, 1, 1, 1, 1] = s[16] the alternating
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representation. Their dimensions are recalled for convenience:

P [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

dim 1 5 9 10 5 16 10 5 9 5 1

3. Theta Characteristics

In this paper a theta characteristic is an element of {0, 1}4 written as a row vector
(µ1, µ2, ν1, ν2) or as a 2×2 matrix [µ1 µ2

ν1 ν2
]. It is called even or odd depending on the

parity of µ1ν1 + µ2ν2.
We order the six odd theta characteristics m1, . . . ,m6 lexicographically:

m1 =
[
0 1
0 1

]
, m2 =

[
0 1
1 1

]
, m3 =

[
1 0
1 0

]
,

m4 =
[
1 0
1 1

]
, m5 =

[
1 1
0 1

]
, m6 =

[
1 1
1 0

]
.

Note that the sum
∑6

i=1mi is zero mod2 and each of the 10 even theta character-
istics is a sum of three different odd theta characteristics in two ways; e.g.,

n1 =
[
0 0
0 0

]
= m1 +m4 +m6 = m2 +m3 +m5.

In this way each even theta characteristic is associated to a partition of
{1, 2, 3, 4, 5, 6} in two triples. We use the following (lexicographic) ordering for the
10 even theta characteristics

n1 =
[
0 0
0 0

]
, n2 =

[
0 0
0 1

]
, n3 =

[
0 0
1 0

]
, n4 =

[
0 0
1 1

]
, n5 =

[
0 1
0 0

]
,

n6 =
[
0 1
1 0

]
, n7 =

[
1 0
0 0

]
, n8 =

[
1 0
0 1

]
, n9 =

[
1 1
0 0

]
, n10 =

[
1 1
1 1

]
.

For the ease of the reader we give the correspondence between the even ni and
triples of odd ones:

n1(146)(235) n6(156)(234)
n2(136)(245) n7(123)(456)
n3(135)(246) n8(124)(356)
n4(145)(236) n9(126)(345)
n5(134)(256) n10(125)(346)

Lemma 3.1. (i) An unordered pair {mi,mj} of different odd theta characteristics
determines uniquely an unordered quadruple of even theta characteristics, namely
the nk corresponding to the four ways of writing nk = mi +mj + a = b+ c+ d with
{m1, . . . ,m6} = {mi,mj , a, b, c, d}. (ii) A partition of the set of odd theta charac-
teristics {mi1 ,mi2} � {mi3 ,mi4} � {mi5 ,mi6} in three pairs determines uniquely a
quadruple of even theta characteristics such that n = a+ b+ c with a ∈ {mi1 ,mi2},
b ∈ {mi3 ,mi3} and c ∈ {mi5 ,mi6}.
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For example {m1,m2} corresponds to {n7, n8, n9, n10} and {m1,m2} �
{m3,m4} � {m5,m6} corresponds to {n1, n2, n3, n4}.

An element M = (A B
C D ) of Γ acts on Z4 by

M ·



µ1

µ2

ν1
ν2


 =
(
D −C
−B A

)
µ1

µ2

ν1
ν2


+
(

(CDt)0
(ABt)0

)
, (3.1)

where for a matrix X the symbol X0 denotes the diagonal vector (in its natural
order). The quotient group Γ/Γ[2] ∼= Sp(4,Z/2Z) is identified with the symmetric
group S6 via its action on the six odd theta characteristics. Recall that the group
S6 is generated by the two elements (12) and (123456) represented by elements
of Γ

X =




1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


 and Y =




0 1 0 1
1 0 1 0
1 0 1 1
−1 1 0 1


. (3.2)

The partition of the six odd theta characteristics into three pairs defines a
conjugacy class of Γ0[2]: let C ∼= S3�(Z/2Z)3 be the subgroup of S6 that stabilizes
the partition {m1,m2}� {m3,m4} � {m5,m6}. Then the inverse image of C under
the quotient map Γ → Γ/Γ[2] equals Γ0[2].

Since by Lemma 3.1 this partition of the six odd theta characteristics in three
disjoint pairs defines a quadruple of even ones, the group Γ0[2]/Γ[2] ∼= C acts on this
set {n1, n2, n3, n4} and this defines a surjective map C → S4 with kernel generated
by (12)(34)(56) that gives an isomorphism C ∼= S4 × Z/2Z.

Representatives of the generators of Γ1[2]/Γ[2] = (Z/2Z)3 are given by the
transformations τ11 �→ τ11 + 1, τ22 �→ τ22 + 1 and τ �→ τ + 12 corresponding to
(12), (34) and (56). Generators of S3 = Γ0[2]/Γ1[2] are given by

X ′ =
(
A 0
0 A−t

)
, Y ′ =

(
B 0
0 B−t

)
(3.3)

with A =
(1 1
0 1

)
and B =

(0 1
1 1

)
.

4. Theta Series

For (τ, z) ∈ H2 × C2 and [µν] = [µ1 µ2
ν1 ν2

] with µ = (µ1, µ2) and ν = (ν1, ν2) in Z2 we
consider the standard theta series with characteristics

ϑ[µ
ν

](τ, z) =
∑

n=(n1,n2)∈Z2

eπi((n+µ/2)(τ(n+µ/2)t+2(z+ν/2)t)).

Usually the µi, νi will be equal to 0 or 1; in fact we will be mainly interested in the
theta constants and the formula

ϑ[µ+2m
ν+2n

](τ, 0) = (−1)µ·nt

ϑ[µ
ν

](τ, 0)
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allows us to reduce the characteristic modulo 2. The transformation behavior of the
theta series under Γ is known, cf. [21].

Lemma 4.1. For M = (A B
C D) ∈ Γ, we have the transformation behavior

ϑ
M·
[
µ
ν

](M〈τ〉, (Cτ +D)−tz)

= κ(M)e2πiφ
“[

µ
ν

]
,M

”
· det(Cτ +D)

1
2 eπiz(Cτ+D)−1Czt

ϑ[µ
ν

](τ, z),
where φ([µν],M) is given by

(2µBtCνt + 2(ABt)0(Dµt − Cνt) − µBtDµt − νAtCνt)/8,

and with the action on the characteristics given by (3.1). Moreover, κ(M) is an
eighth root of unity (depending only on M and not on µ, ν).

For the theta constants ϑ(τ) = ϑ(τ, 0) the transformation under M =
(A B
C D

) ∈ Γ
reduces to

ϑ
M·
[
µ
ν

](M〈τ〉) = κ(M)e2πiφ
“[

µ
ν

]
,M

”
det(Cτ +D)

1
2ϑ[µ

ν

](τ).
It is convenient to introduce the slash operator. For M ∈ Γ, k half-integral and

a function F on H2 we put

(F |0,kM)(τ) = det(Cτ +D)−kF (M〈τ〉).
(Here

√
det(Cτ +D) is chosen to have positive imaginary part.) Invariance of F

under the slash operator expresses the fact that a function transforms like a scalar-
valued modular form of weight k.

The action of the matrices M = X and M = Y (defined in 3.2) on the (column)
vector of the 10 even theta constants by the slash operator ϑni �→ ϑni |0, 12

M is given
by the unitary matrices

ρ(X) =




0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 ζ 0 0 0

0 0 0 0 0 0 0 ζ 0 0

0 0 0 0 0 0 0 0 ζ 0

0 0 0 0 0 0 0 0 0 ζ




and
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Siegel modular forms of genus 2 and level 2

ρ(Y ) =




0 0 0 0 0 0 0 ζ7 0 0

0 0 0 0 1 0 0 0 0 0

0 0 ζ6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ζ7

0 0 0 ζ6 0 0 0 0 0 0

0 0 0 0 0 0 ζ7 0 0 0

0 0 0 0 0 0 0 0 1 0

0 ζ7 0 0 0 0 0 0 0 0

0 0 0 0 0 ζ7 0 0 0 0

ζ5 0 0 0 0 0 0 0 0 0




(4.1)

with ζ = eπi/4.
By formula (3.1) for the action of M on the set of characteristics it follows that

M acts trivially on the set {0, 1}4 of characteristics if and only if M ∈ Γ[2]. Recall
the (Igusa) theta groups

Γ[n, 2n] := {M ∈ Γ : M ≡ 14 mod n, (ABt)0 ≡ (CDt)0 ≡ 0 mod 2n}.
It turns out [21] that theta constants are scalar-valued modular forms (with a
multiplier) only on the subgroup Γ[4, 8]. The transformation formula for theta con-
stants implies that the squares of theta constants are scalar-valued modular forms
of weight 1 on Γ[2, 4], while the fourth powers of theta constants are modular forms
of weight 2 on Γ[2]. In fact, it is known, see [21], that the ring of scalar-valued mod-
ular forms of integral weight on Γ[2, 4] is generated by squares of theta constants,
while the ring of scalar-valued modular forms of even weight on Γ[2] is generated
by the fourth powers of theta constants. The squares of the theta constants and
fourth powers of theta constants satisfy many polynomial relations, which we will
describe explicitly below for genus 2. All these polynomials identities follow from
Riemann’s bilinear relation, which we now recall.

We define the theta functions of the second-order to be

Θ[µ](τ, z) = ϑ[µ
0

](2τ, 2z),
and call their evaluations at z = 0 theta constants of the second-order. These
are modular forms of weight 1/2 on Γ[2, 4], and generate the ring of scalar-valued
modular forms of half-integral weight on Γ[2, 4]. In particular, the squares of theta
constants (with characteristics) are expressible in terms of theta constants of the
second-order by using Riemann’s bilinear relation

ϑ2[
µ
ν

](τ, z) =
∑

σ∈(Z/2Z)2

(−1)σ·νΘ[σ](τ)Θ[σ + µ](τ, z), (4.2)

evaluated at z = 0. Moreover, it is known that (in genus 2) theta constants of the
second-order are algebraically independent, and determine a birational morphism
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of the Satake compactification of Γ[2, 4]\H2 onto P3. Thus the squares of theta
constants of the second-order are simply the coordinates on P9 restricted to the
Veronese image of P3 → P9 given by the Riemann bilinear relations, and as such
satisfy polynomial relations given by Igusa [20, pp. 393, 396], which will be described
explicitly in the next section, where we also explicitly write down the action of
Γ[2]/Γ[2, 4] = (Z/2Z)4 on the squares of theta constants.

5. The Squares of the Theta Constants

To construct modular forms we shall use the squares and the fourth powers of the
10 even theta constants. Therefore we summarize the behavior of the squares of
the theta constants under Γ[2], cf. [21, 27]. From the transformation formula of
Lemma 4.1 we obtain

(ϑ2
nj
|0,1M)(τ) = det(Cτ +D)−1ϑ2

nj
(M〈τ〉)

= (−1)Tr(D−I2)/2e4πiφ(nj ,M)ϑ2
nj

(τ).

Here we have to compute the expression 4φ(nj ,M) modulo 2 in order to get the
transformation formula. Letting M = (A B

C D) ∈ Γ[2] and thus B = 2(b1 b2
b3 b4

) and

C = 2(c1 c2
c3 c4

), we get for 4φ([µν],M) the expression

µ1b1 + µ2b4 + ν1c1 + ν2c4 + µ1µ2(b2 + b3) + ν1ν2(c2 + c3) mod 2

and the fact that M ∈ Γ[2] ⊂ Γ implies c2 +c3 ≡ 0 mod 2 and b2 +b3 ≡ 0 mod 2, so

4φ
([

µ
ν

]
,M
) ≡ µ1b1 + µ2b4 + ν1c1 + ν2c4 mod 2,

and writing

e4πiφ(nj ,M) = (−1)α(nj ,M),

we see that the α(nj ,M) are given for j = 1, . . . , 10 by the following table:

j 1 2 3 4 5 6 7 8 9 10

α 0 c4 c1 c1 + c4 b4 b4 + c1 b1 b1 + c4 b1 + b4 b1 + b4 + c1 + c4

The squares of the theta constants satisfy many quadratic relations. A pair of
odd theta characteristics {mj1 ,mj2} determines six even theta characteristics ni,
namely the six complementary to the four given by Lemma 3.1. These come in
pairs such that the sum of α is the same for each pair, see the table above. For
example, m1 and m2 determine the three pairs (n1, n3), (n2, n4) and (n5, n6) (that
give c1 mod 2). This gives the relation

ϑ2
1ϑ

2
3 − ϑ2

2ϑ
2
4 − ϑ2

5ϑ
2
6 = 0, (5.1)

where we write ϑi for ϑni . These relations form an orbit under the action of S6.
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6. The Ring of Scalar-Valued Modular Forms on Γ[2]

We review the structure of the ring
⊕

k M0,k(Γ[2]) of scalar-valued modular forms
on Γ[2]. We have graded rings

R =
⊕

k

M0,k(Γ[2]) and Rev =
⊕

k

M0,2k(Γ[2]).

The group S6 = Sp(4,Z/2Z) acts on R and Rev. The structure of these rings was
determined by Igusa, cf. [20, 22]. The ring Rev is generated by the fourth powers
of the 10 even theta characteristics. We shall use the following notation.

Notation 6.1. We denote ϑni by ϑi and ϑ4
ni

by xi for i = 1, . . . , 10.

Each xi is a modular form of weight 2 on Γ[2]. Formally the 10 elements xi span
a 10-dimensional representation of S6. The matrices ρ(X) and ρ(Y ) given in (4.1)
imply that the S6-representation is s[23] + s[2, 14]. However, the forms xi are not
linearly independent, but generate the vector space M0,2(Γ[2]) of dimension 5; in
fact these satisfy relations like

ϑ4
1 − ϑ4

4 − ϑ4
6 − ϑ4

7 = 0

and these relations form a representation s[2, 14] of S6. The four nj occurring in
such a relation correspond to a pair of odd theta characteristics; this gives 15 such
relations, see Lemma 3.1. So M0,2(Γ[2]) equals s[23] as a representation space and
xi for i = 1, . . . , 5 form a basis. The xi define a morphism

ϕ : A2[Γ[2]] → P4 ⊂ P9

that extends to an embedding of the Satake compactification A2[Γ[2]]∗ into projec-
tive space P4 ⊂ P9. The P4 ⊂ P9 is given by the linear relations satisfied by the xi,
a basis of which can be given by

x6 = x1 − x2 + x3 − x4 − x5, x7 = x2 − x3 + x5,

x8 = x1 − x4 − x5, x9 = −x3 + x4 + x5, x10 = x1 − x2 − x5.
(6.1)

The closure of the image of ϕ is then the quartic threefold (the Igusa quartic) within
this linear subspace given by the equation(

10∑
i=1

x2
i

)2

− 4
10∑

i=1

x4
i = 0. (6.2)

It follows that Rev is generated by five fourth powers of the theta constants u0 =
x1, u1 = x2, . . . , u4 = x5 and that

Rev ∼= C[u0, . . . , u4]/(f)

with f a homogeneous polynomial of degree 4 in the ui. The full ring R is a degree
2 extension Rev[χ5]/(χ2

5 + 214χ10) generated by the modular form χ5 of weight 5

χ5 =
10∏

i=1

ϑi.
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This form is anti-invariant under S6 (i.e. it generates the sign representation s[16]
of S6) and so its square is a form of level 1 and satisfies the equation χ2

5 = −214χ10,
where χ10 is Igusa’s cusp form of weight 10 and level 1, cf. [22].

As a virtual representation of S6 we thus have for even k ≥ 0

M0,k(Γ[2]) = Symk/2s[23] −
{

0 0 ≤ k ≤ 6,

Symk/2−4s[23] k ≥ 8

and M0,k+5(Γ[2]) = s[16]⊗M0,k(Γ[2]) for even k ≥ 0. Igusa calculated the character
of S6 on the spacesM0,k(Γ[2]), see [20, pp. 399–402]. From his results we can deduce
generating functions

∑
k≥0ms[P ],kt

k for the multiplicities ms[P ],k of the irreducible
representations s[P ] (with P a partition of 6) of S6 in M0,k(Γ[2]). We give the
result in the following table:

s[6] 1+t35

(1−t4)(1−t6)(1−t10)(1−t12)
s[16]

t5(1+t25)

(1−t4)(1−t6)(1−t10)(1−t12)

s[5, 1] t11(1+t)
((1−t4)(1−t6))2

s[2, 14] t6(1+t11)
((1−t4)(1−t6))2

s[4, 2]
t4(1+t15)

(1−t2)(1−t4)2(1−t10)
s[2, 12] t9

(1−t2)(1−t4)2(1−t5)

s[4, 12] t11(1+t4)
(1−t)(1−t4)(1−t6)(1−t12)

s[3, 13] t6(1+t4+t11+t15)
(1−t2)(1−t4)(1−t6)(1−t12)

s[3, 3]
t7(1+t13)

(1−t2)(1−t4)(1−t6)(1−t12)
s[23]

t2(1+t23)

(1−t2)(1−t4)(1−t6)(1−t12)

s[3, 2, 1] t8(1−t8)
(1−t2)2(1−t5)(1−t6)2

For the convenience of the reader we give the representation type of M0,k(Γ[2])
for even k with 2 ≤ k ≤ 12:

k\P [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

2 0 0 0 0 0 0 0 1 0 0 0

4 1 0 1 0 0 0 0 1 0 0 0

6 1 0 1 0 0 0 1 2 0 1 0

8 1 0 3 0 0 1 1 3 0 0 0

10 2 0 3 0 0 2 3 4 0 2 0

12 3 1 6 1 0 3 4 5 0 2 0

7. The Igusa Quartic

In this section we give three models of the Igusa quartic. The first is the one given
above as the image of the Satake compactification Proj(

⊕
k M0,2k(Γ[2])) under the

morphism ϕ above which is the variety in P4 ⊂ P9 given by the linear equations
(representing an irreducible representation s[2, 14] of S6)

x6 = x1 − x2 + x3 − x4 − x5, x7 = x2 − x3 + x5,

x8 = x1 − x4 − x5, x9 = −x3 + x4 + x5, x10 = x1 − x2 − x5

(7.1)
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and the quartic equation (
10∑

i=1

x2
i

)2

− 4
10∑

i=1

x4
i = 0. (7.2)

This variety admits an action of S6 induced by the action on the xi given by the
irreducible 5-dimensional representation s[23]. It has exactly 15 singular lines given
as the S6-orbit of {(a : a − b : a : a − b : b : b : 0 : 0 : 0 : 0) : (a : b) ∈ P1}. The
intersection points of such lines form the S6-orbit of (1 : 1 : 1 : 1 : 0 : 0 : 0 : 0 : 0 : 0)
of length 15. Together these form a (153, 153) configuration and are the images of
the boundary components. Using Lemma 3.1 we get the following.

Lemma 7.1. The fifteen 1-dimensional boundary components of A2[Γ[2]]∗ corre-
spond one-to-one to the fifteen pairs of distinct odd theta characteristics. The 15
0-dimensional boundary components correspond one-to-one to the 15 partitions of
{m1, . . . ,m6} into three pairs.

There is another model of the Igusa quartic given in P4 ⊂ P5 by the equations
(cf. [30])

σ1 = 0, σ2
2 − 4σ4 = 0 (7.3)

with σi the ith elementary symmetric function in the six coordinates y1, . . . , y6. We
let the group S6 act by yi �→ yπ(i) for π ∈ S6. The representation on the space of
the yi is s[6] + s[5, 1] with σ1 representing the s[6]-part. We can connect the two
models by using the outer automorphism

ψ : S6 → S6 with ψ(12) = (16)(34)(25) and ψ(123456) = (134)(26)(5)

and the coordinate change xi = ya(i) + yb(i) + yc(i) with (a(i), b(i), c(i)) given by

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

(125) (245) (256) (235) (156) (126) (145) (124) (135) (123)

or conversely y1 = (2x1 − x2 − x3 − x4)/3, etc. (use the S6-actions). In the model
given by (7.3) the 1-dimensional boundary components of A2[Γ[2]]∗ form the orbit
of {(x : x : y : y : −(x + y) : −(x + y)) : (x : y) ∈ P1}. Under our conventions
the boundary component Bij is given by ya = yb, yc = yd, ye = yf if ψ(ij) =
(ab)(cd)(ef).

Yet another way to describe the Igusa quartic as a hypersurface in P4 that we
shall also use later is by taking x1, . . . , x4, x5 − x6 as the generators of M0,2(Γ[2]).
Then Eq. (6.2) reads

(s21 − 4s2 − (x5 − x6)2)2 − 64s4 = 0 (7.4)

where si is the ith elementary symmetric function of x1, x2, x3, x4. The involution
ι = (12)(34)(56) ∈ S6 acts by sending x5 − x6 to its negative and the fixed point
locus is the Steiner surface (s1−4s2)2 = 64s4 in P3 and it displays the quotient by ι
as a double cover of P3 branched along the four planes given by xi = 0, i = 1, . . . , 4,
cf. Mukai [25].
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8. Humbert Surfaces

A Humbert surface in A2 (or A2[G] for G = Γ[2],Γ1[2] or Γ0[2]) is a divisor
parametrizing principally polarized abelian surfaces with multiplication by an order
in a real quadratic field, or abelian surfaces that are isogenous to a product of ellip-
tic curves. Some of these Humbert surfaces play a role in the story of our modular
forms.

The Humbert surface of invariant ∆ in A2[G] is defined in H2 by all equations
of the form

aτ11 + bτ12 + cτ22 + d(τ2
12 − τ11τ22) + e = 0,

with primitive vector (a, b, c, d, e) ∈ Z5 satisfying ∆ = b2 − 4ac− 4de, cf. [30]. We
can take their closures in the Satake compactifications A2[G]∗. A Humbert surface
of invariant ∆ with ∆ not a square intersects the boundary only in the 0-dimensional
boundary components, while those with ∆ a square contain 1-dimensional
components.

In this paper the Humbert surfaces of invariant 1, 4 and 8 will play a role. The
Humbert surface of invariant 1 is the locus of principally polarized abelian surfaces
in A2 (respectively, in A2[Γ[2]] etc.) that are products of elliptic curves. In A2[Γ[2]]
this locus consists of 10 irreducible components, each isomorphic to Γ(2)\H1 ×
Γ(2)\H1 and corresponding to the vanishing of one even theta characteristic. In
A2[Γ1[2]] this locus consists of four irreducible components, three of which are
isomorphic to Γ0(2)\H1 × Γ0(2)\H1 and one is isomorphic to Sym2(Γ(2)\H1).

In A2[Γ0[2]] the Humbert surface of invariant 1 has two irreducible components.
One is isomorphic to (Γ0(2)\H1)2 and the other one to Sym2(Γ0(2)\H1).

The Humbert surface of invariant 4 in A2[Γ[2]]∗ consists of 15 components. In
the model of the Igusa quartic given by (7.3) these components are given by yi = yj

with 1 ≤ i, j ≤ 6. The product
∏

(yi − yj) defines the S6-anti-invariant modular
form

χ30 = (x2 − x3)(x2 − x4)(x3 − x4)(x3 − x5)(x3 − x6)(x5 − x6)
10∏

i=2

(x1 − xi)

of weight 30. The zero locus of χ35 = χ30χ5 is supported on H1 +H4.
A 0-dimensional boundary component of A2[Γ[2]]∗ has as its stabilizer a (non-

normal) subgroup Γ0[2] in Γ[2], hence determines a subgroup S4 × Z/2Z in S6.
The central involution of this group fixes a component of the Humbert surface H4.
For our choice of Γ0[2] this is the surface given in the Igusa quartic by

x5 − x6 = 0, equivalently given by x7 − x8 = 0 or x9 − x10 = 0

or in the model with the y-coordinates by y2 = y5.
The fixed point set of the Fricke involution on the Igusa quartic consists of two

curves and two isolated points as we shall see in Sec. 11.
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Siegel modular forms of genus 2 and level 2

9. The Ring of Scalar-Valued Modular Forms on Γ1[2] and Γ0[2]

We now consider modular forms on Γ1[2] and Γ0[2]. Note that M0,k(Γ1[2]) is the
invariant subspace of M0,k(Γ[2]) under the action of (Z/2Z)3 = Γ1[2]/Γ[2]. The
space M0,k(Γ1[2]) is a representation space for S3 = Γ0[2]/Γ1[2]. Representa-
tion theory tells us that a virtual S6-representation as[6]s[6] + as[5,1]s[5, 1] + · · · +
as[16]s[16] in Mj,k(Γ[2]) contributes a virtual S3-representation

(as[6] + as[4,2] + as[23])s[3]

+ (as[5,1] + as[4,2] + as[3,2,1])s[2, 1] + (as[4,12] + as[32])s[13] (9.1)

to Mj,k(Γ1[2]), and hence a contribution as[6] + as[4,2] + as[23] to the dimension of
Mj,k(Γ0[2]).

Proposition 9.1. The generating function
∑

k≥0ms[P ],kt
k of the irreducible S3

representations in M0,k(Γ1[2]) is given by∑
k≥0

ms[P ],kt
k =

Ns[P ]

(1 − t2)(1 − t4)2(1 − t6)

with Ns[3] = 1 + t19, Ns[2,1] = t4 + t8 + t11 + t15 and Ns[13] = t7 + t12.

We thus find the following table of representations for M0,k(Γ1[2]) for even
k ≤ 12:

k\P [3] [2, 1] [13]

2 1 0 0

4 3 1 0

6 4 1 0

8 7 4 0

10 9 5 0

12 14 10 1

The structure of these rings of modular forms is as follows.

Theorem 9.1. The ring of scalar-valued modular forms on Γ0[2] is generated by
forms s1, s2, α, s3 of weight 2, 4, 4, 6 and a form χ19 of weight 19 with the ideal of
relations generated by the relation (9.6).

Theorem 9.2. The ring of scalar-valued modular forms on Γ1[2] is generated by
forms s1, s2, α,D1, D2, s3 of weight 2, 4, 4, 4, 4 and 6 and by a form χ7 in weight 7.
The ideal of relations is generated by the relation (9.3) in weight 8, the relation (9.4)
in weight 12 and the relation (9.5) in weight 14.

The relations are given explicitly below. Theorem 9.1 is due to Ibukiyama,
see [2, 1], but we give here an independent proof.

Proof. The group Γ0[2]/Γ[2] � S4 × Z/2Z acts on the ring Rev, generated by
x1, . . . , x5, but it will now be convenient to choose x5−x6 = 2x5−x1 +x2−x3 +x4
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as the last generator. Then S4 acts on x1, . . . , x4 by xi �→ xσ(i) and Z/2Z acts
trivially on x1, . . . , x4 and by −1 on x5 − x6. The ring of invariants is the ring
M ev

∗ (Γ0[2]), while the ring of invariants under the subgroup (Z/2Z)3 = Γ1[2]/Γ[2]
is the ring M ev

∗ (Γ1[2]).
The ring of invariants of the subring generated by x1, . . . , x4 is generated

by the S4 elementary symmetric functions s1, s2, s3 and s4 in these xi. A fur-
ther invariant is α = (x5 − x6)2. We now find eight forms of weight 8, namely
s4, s3s1, s

2
2, s2s

2
1, s

4
1, αs2, αs

2
1, α

2 and as we know that dimM0,8(Γ0[2]) = 7 we find
one linear relation. Since all these forms live in M0,8(Γ[2]) this must be (a multi-
ple of) the Igusa quartic relation expressing s4 in the other forms. To make this
explicit, note that ϑ2

1ϑ
2
2ϑ

2
3ϑ

2
4 is in M0,4(Γ1[2]), and it equals (−s21 + 4s2 + α)/8 as

one checks. We thus see that

64s4 = (−s21 + 4s2 + α)2. (9.2)

There can be no further relations because the ideal of relations among the
x1, . . . , x4, x5 − x6 is generated by the Igusa quartic. So M ev∗ (Γ0[2]) contains a
subring generated by s1, s2, α and s3 with Hilbert function (1 − t8)/(1 − t2)(1 −
t4)2(1 − t6), and this is the Hilbert function of M ev∗ (Γ0[2]), see Proposition 9.1.
Therefore there can be no further relations and we found the ring M ev∗ (Γ0[2]).

For M ev∗ (Γ1[2]) we look at the invariants under (Z/2Z)3. The s[2, 1]-subspace of
M0,4(Γ1[2]) has a basis D1, D2 with

D1 = (x1 − x2)(x3 − x4) and D2 = (x1 − x3)(x2 − x4).

Since the form D2
1 −D1D2 +D2

2 is S3-invariant (and equal to s22 − 3s1s3 + 12s4)
we have using (9.2) a relation in weight 8

16(D2
1 −D1D2 +D2

2) = 3α2 − 6(s21 − 4s2)α+ 3s41 − 24s21s2 − 48s1s3 + 64s22.

(9.3)

The expression

C = −ϑ2
5ϑ

2
6 · · ·ϑ2

10 =
1
2
((x1x3 − x2x4)(x5 + x6) + s1x5x6)

defines an element of M0,6(Γ1[2]) (but with a nontrivial character on Γ0[2]) and
thus can be expressed polynomially in s31, s1s2, s3, αs1, D1s1 and D2s1. It satisfies
the relation

C2 = x5 · · ·x10, (9.4)

where x5 · · ·x10 is S3-invariant. We thus find a subring of M ev
∗ (Γ1([2]) generated

over M ev
∗ (Γ0[2]) by D1 and D2 and we have two algebraic relations, one of degree

8 and one of degree 12 given by (9.3) and (9.4). We can have no third independent
algebraic relation because there are no algebraic relations among s1, s2, α and s3.
The Hilbert function of this subring is (1− t8)(1− t12)/(1− t2)(1− t4)4(1− t6) and
coincides with the Hilbert function of M ev

∗ (Γ1[2]). This shows that we found the
ring M ev

∗ (Γ1[2]).
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Siegel modular forms of genus 2 and level 2

We can construct a cusp form of weight 7 in the s[13]-subspace of M0,7(Γ1[2]),
namely

χ7 = χ5(x6 − x5).

Since we have χ2
5 = −214χ10 we find a relation in weight 14:

χ2
7 = −214χ10α. (9.5)

Furthermore, we have the square root of the discriminant

δ = (x1 − x2) · · · (x3 − x4)

which is a modular form in the s[13]-subspace of M0,12(Γ1[2]). We thus find a cusp
form χ19 = χ7δ in S0,19(Γ0[2]). It satisfies the relation

χ2
19 = −214(x1 − x2)2 · · · (x3 − x4)2χ10(x5 − x6)2. (9.6)

We now show that each modular form of odd weight on Γ1[2] is divisible by χ7.
In fact, such a form f is also a modular form on Γ[2], hence is divisible by χ5 as
a modular form on Γ[2]. Next, we show that f also vanishes on the component of
the Humbert surface defined by x5 − x6 = 0. For this we look at the action of a
representative of the element ι = (12)(34)(56) and observe that f/χ5 changes sign
under this action, hence vanishes on the locus where x5 = x6. So M0,k(Γ1[2]) =
χ7M0,k−7(Γ1[2]) for odd k. But by a similar argument any odd weight modular
form on Γ0[2] also vanishes on the other components of the Humbert surface H4,
and hence is divisible by δ.

Remark 9.1. Note that we have M0,2k(Γ1[2])s[13] = δM0,2k−12(Γ0[2]).

Remark 9.2. Ibukiyama constructed χ19 as a Wronskian, see [1].

10. The Action of the Fricke Involution

We start by computing the action of the Fricke involution on the modular forms on
Γ1[2]. Recall that the Fricke involution W2 given by formula (2.1) acts on A2[Γ1[2]]
and A2[Γ0[2]] and thus induces an action on modular forms via f �→ W2(f) =
f |j,kW2 (where we sometimes omit the indices j, k).

Lemma 10.1. The transformation formula for the xi = ϑ4
i (1 ≤ i ≤ 4) under

W2 is:

x1|0,2W2 = (ϑ2
1 + ϑ2

2 + ϑ2
3 + ϑ2

4)
2/4,

x2|0,2W2 = (ϑ2
1 − ϑ2

2 + ϑ2
3 − ϑ2

4)
2/4,

x3|0,2W2 = (ϑ2
1 + ϑ2

2 − ϑ2
3 − ϑ2

4)
2/4,

x4|0,2W2 = (ϑ2
1 − ϑ2

2 − ϑ2
3 + ϑ2

4)
2/4.
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Proof. Setting T = 2τ , we get by definition

(ϑ4
i |0,2W2)(T/2) = det(−T/

√
2)−2ϑ4

i (−T−1) = 4 det(−T )−2ϑ4
i (−T−1).

This expression is closely related to the transformation formula of the ϑ4
i under the

element J = t( 0 12
−12 0 ) which reads

ϑ4

J·
[
µ
ν

](−τ−1) = κ(J)4 det(−τ)2ϑ4[
µ
ν

](τ)
since 8φ([µν], J) = 2µνt ∈ 2Z. We know that κ(J)4 = ±1 and we can determine its
value by using ϑ4

1 = ϑ4[
0 0
0 0

] whose characteristic is fixed by J and evaluating the

latter equation at τ = i12 = −τ−1, getting κ(J)4 = 1. Taking into account the
action of J on the characteristics we thus find

(ϑ4
i |0,2W2)(τ) = 4ϑ4

w(i)(2τ),

where [w(1), . . . , w(10)] = [1, 5, 7, 9, 2, 8, 3, 6, 4, 10]. We now use Riemann’s bilinear
relations (4.2) to see

ϑ2
1(τ) = ϑ2

1(2τ) + ϑ2
5(2τ) + ϑ2

7(2τ) + ϑ2
9(2τ),

ϑ2
2(τ) = ϑ2

1(2τ) − ϑ2
5(2τ) + ϑ2

7(2τ) − ϑ2
9(2τ),

ϑ2
3(τ) = ϑ2

1(2τ) + ϑ2
5(2τ) − ϑ2

7(2τ) − ϑ2
9(2τ),

ϑ2
4(τ) = ϑ2

1(2τ) − ϑ2
5(2τ) − ϑ2

7(2τ) + ϑ2
9(2τ)

from which the result follows.

By looking at the values of the xi at the 15 cusps for Γ[2] we derive easily the
action on the 0-dimensional and 1-dimensional cusps of Γ1[2]. We use the notation
of Sec. 2.

Corollary 10.1. The action of W2 on the cusps of A2[Γ1[2]]∗ is as followsb

W2(γ) = γ, W2(α) = ε, W2(β) = δ,

W2(A) = F, W2(B) = E, W2(C) = D.

The action of W2 on the cusps of Γ0[2] can be deduced immediately from this.
Using Lemma 10.1 we find that s1|0,2W2 = s1 and similarly

s2|0,4W2 = 3s21/8 − s2/2 − 3ϑ2
1ϑ

2
2ϑ

2
3ϑ

2
4.

Since ϑ2
1ϑ

2
2ϑ

2
3ϑ

2
4 ∈M0,4(Γ1[2]), we can express it in our basis and get

ϑ2
1ϑ

2
2ϑ

2
3ϑ

2
4 = −s21/8 + s2/2 + α/8,

where α denotes the modular form (x5 − x6)2 introduced in Sec. 9 and thus

s2|0,4W2 = 3s21/4 − 2s2 − 3α/8.

bHere the letters α, . . . , εA, . . . , F refer to the figure in Sec. 2.
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As W2 is an involution, we get its action on α using the last equation:

α|0,4W2 = −2s21 + 8s2 + 2α. (10.1)

We can refine it as follows.

Lemma 10.2. We have (x5 − x6)|0,2W2 = 4ϑ1ϑ2ϑ3ϑ4.

Proof. We know that (ϑ1ϑ2ϑ3ϑ4|0,2W2)(τ) = 4(ϑ1ϑ5ϑ7ϑ9)(2τ) but we also know
that

ϑ2
5(τ) = 2(ϑ1ϑ5 + ϑ7ϑ9)(2τ) and ϑ2

6(τ) = 2(ϑ1ϑ5 − ϑ7ϑ9)(2τ)

and this implies ϑ1ϑ2ϑ3ϑ4|0,2W2 = (x5 − x6)/4 and thus the lemma since W2 is an
involution.

We summarize the results.

Proposition 10.1. The action of the involution W2 on the generators is given by
s1|W2 = s1, s2|W2 = 3s21/4−2s2−3α/8, α|W2 = −2s21+8s2+2α and D1|W2 = D2.
Furthermore s3|W2 = s3+s31/8−s1s2/2−s1α/16, χ7|W2 = χ7 and χ19|W2 = −χ19.

Remark 10.1. The trace of the action of W2 on the space M0,4(Γ1[2]) is equal
to 1.

11. A2[Γ1[2]]∗ and the Igusa Quartic

In his study of moduli of Enriques surfaces Mukai found that the Satake compact-
ification of A2[Γ1[2]]∗ is isomorphic to the Igusa quartic, see [25]. He showed this
using the geometry. We give an independent proof of this using modular forms. We
will show that the scalar-valued modular forms of weight divisible by 4 define an
embedding of A2[Γ1[2]] into projective space and that the closure of the image is
the Igusa quartic.

We know that the ring of modular forms on Γ[2] is generated by the modular
forms x1, x2, x3, x4 and ξ = x5 − x6 of weight 2. These satisfy the relation

(s21 − 4s2 − ξ2)2 = 64s4 (11.1)

as we know from (9.2), but as follows also from comparing Eq. (10.1) and
Lemma 10.2.

We define the following modular forms in M0,4(Γ1[2]):

X1 = (x1 + x2 + x3 + x4)2, X2 = (x1 − x2 + x3 − x4)2,

X3 = (x1 + x2 − x3 − x4)2, X4 = (x1 − x2 − x3 + x4)2

and

η = −16ϑ2
1ϑ

2
2ϑ

2
3ϑ

2
4 = 2(s21 − 4s2 − ξ2).

Proposition 11.1. The modular forms X1, X2, X3, X4 and η generate M0,4(Γ1[2]).
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Proof. These forms lie in M0,4(Γ[2]), are invariant under (Z/2Z)3 and linearly
independent as one readily sees, cf. Theorem 9.2.

Let γi be the ith elementary symmetric function in the X1, . . . , X4. Then one
checks that

η4 − 2(γ1 − 4γ2)η2 + (γ2
1 − 4γ2)2 − 64γ4 = 0

since by Eq. (11.1) we have η2 = 28s4. This means that X1, . . . , X4, η satisfy the
equation

(γ2
1 − 4γ2 − η2)2 = 64γ4 (11.2)

which is the same as (11.1) and thus defines the Igusa quartic.
It is easy to see that the ideal of relations among the xi intersected with⊕

k M0,4k(Γ1[2]) is generated by relation (11.2), hence the X1, . . . , X4, η generate a
subring with Hilbert function (1 − t16)/(1 − t4)5 and since this equals the Hilbert
function of

⊕
k M0,4k(Γ1[2]) we have the structure of

⊕
k M0,4k(Γ1[2]).

Corollary 11.1 (Mukai [25]). The Satake compactification A2[Γ1[2]]∗ is isomor-
phic to the Igusa quartic.

It follows that there is an action of S6 on ⊕kM0,4k(Γ1[2]). This action does not
preserve the set of boundary components, as A1[Γ1[2]]∗ has only six 1-dimensional
boundary components and S6 acts transitively on the set of 15 singular lines.
Therefore a large part of the automorphism group of A1[Γ1[2]]∗ is not modular (i.e.
not induced by elements of Sp(4,Q)). To see this action we now define the modular
forms

X5 = (η +X1 −X2 +X3 −X4)/2, X6 = (−η +X1 −X2 +X3 −X4)/2,

X7 = (η +X1 +X2 −X3 −X4)/2, X8 = (−η +X1 +X2 −X3 −X4)/2,

X9 = (η +X1 −X2 −X3 +X4)/2, X10 = (−η +X1 −X2 −X3 +X4)/2.

We have

X5 = 4x7x8, X7 = 4x5x6, X9 = 4x9x10,

and

X6 = 4(ϑ2
1ϑ

2
2 + ϑ2

3ϑ
2
4)

2, X8 = 4(ϑ2
1ϑ

2
3 + ϑ2

2ϑ
2
4)

2, X10 = 4(ϑ2
1ϑ

2
4 + ϑ2

2ϑ
2
3)

2.

These 10 Xi generate formally a representation s[23] + s[2, 14] and satisfy linear
relations of type s[2, 14] as the xi do. They satisfy the quartic relation (

∑
Xi)2 −

4
∑
X4

i = 0.
The action of W2 on the 10 Xi is given by Xi �→ Xw(i) with (w(1), . . . , w(10))

given by (1, 6, 8, 10, 7, 2, 5, 3, 9, 4). The action of W2 on η is

η|W2 = (X1 −X2 −X3 −X4 + η)/2.

Construction 11.1. We view the Xi as the analogues for Γ1[2] of the xi = ϑ4
i for

Γ[2]. We can also define modular forms with a character on Γ1[2] that play a role
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analogous to the role that the theta squares ϑ2
i play for Γ[2] as follows:

U1 = (x1 + x2 + x3 + x4), U2 = (x1 − x2 + x3 − x4)

U3 = (x1 + x2 − x3 − x4), U4 = (x1 − x2 − x3 + x4)

U5 = 2ϑ2
5ϑ

2
6, U7 = 2ϑ2

7ϑ
2
8, U9 = 2ϑ2

9ϑ
2
10,

U6 = 2(ϑ2
1ϑ

2
2 + ϑ2

3ϑ
2
4), U8 = 2(ϑ2

1ϑ
2
3 + ϑ2

2ϑ
2
4),

U10 = 2(ϑ2
1ϑ

2
4 + ϑ2

2ϑ
2
3).

(11.3)

The 45 modular forms UiUj of weight 4 with character on Γ1[2] satisfy equations
like

U1U2 − U3U4 = U7U8, U1U3 − U2U4 = U5U6, U1U4 − U2U3 = U9U10.

We shall use them later to construct vector-valued modular forms on Γ1[2].

Remark 11.1. The automorphism group of the Igusa quartic is S6. This implies
that S6 acts on the ring R(4) =

⊕
k M0,4k(Γ1[2]). But not all automorphisms

preserve the boundary A2[Γ1[2]]∗ − A2[Γ1[2]], hence not all automorphisms are
induced by an action on H2 as we saw above.

On the other hand we have a natural action of the subgroup G generated by
S3 and W2 on A2[Γ1[2]], where S3 = Γ0[2]/Γ1[2] is a subquotient of S6 = Γ/Γ[2].
The group S3 is generated by the two elements X ′ and Y ′ given in (3.3). To
express this action on R(4) we choose as generators the modular forms Yi defined
by Xi = Ya(i) + Yb(i) + Yc(i) with (a(i), b(i), c(i)) given as in Sec. 7. One then
calculates the induced action.

Lemma 11.1. The action of X ′ (respectively, Y ′, respectively, W2) on the genera-
tors Yi (i = 1, . . . , 6) of M0,4(Γ1[2]) is given by (Y1, . . . , Y6) �→ (Y1, Y2, Y6, Y4, Y5, Y3)
(respectively, (Y1, Y2, Y6, Y3, Y5, Y4), (Y5, Y2, Y3, Y6, Y1, Y4)).

Since G is a group of automorphisms of the ringR(4) it acts by automorphisms on
the Igusa quartic and it can be viewed as the subgroup of modular automorphisms
of A2[Γ1[2]]∗ (i.e. induced by an action of elements of Sp(4,Q) on H2) of S6. It is
the subgroup of permutations that preserve the partition {2} � {1, 5} � {3, 4, 6} of
{1, . . . , 6}.

Finally, we give the fixed point locus of the Fricke involution.

Lemma 11.2. In the model of the Igusa quartic given by (7.3) the fixed point locus
of W2 is given by the equations y1 = y5 and y4 = y6. It consists of a singular line
and a conic section and two isolated fixed points.

Proof. The action is given by the permutation (y1y5) (y4y6). A fixed point is
either of the form (1 : 0 : 0 : 0 : ±1 : −1 : ∓1) or (a : b : c : d : a : d) with
2a + b + c + 2d = 0 and in the latter case the Igusa quartic equation (7.3) factors
as a double line and a quadric.
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12. Dimension Formulas for Vector-Valued Modular Forms on Γ[2]

We now give formulas for the dimension of the spaces of vector-valued mod-
ular forms Mj,k(Γ[2]) and Sj,k(Γ[2]). These formulas can be proved using the
Hirzebruch–Riemann–Roch formula or the Selberg trace formula. In fact, a recent
paper by Wakatsuki [33] proves the formula for Sj,k(Γ[2]) for k ≥ 5 using the Selberg
trace formula.

Since the group Γ[2] contains −14 it follows that Mj,k(Γ[2]) = (0) for all odd j.
Furthermore, we have Mj,k(Γ[2]) = Sj,k(Γ[2]) for odd k.

Theorem 12.1. For k ≥ 3 odd and j ≥ 2 even (or for k ≥ 5 odd and j = 0) we
have

dimMj,k(Γ[2]) = dimSj,k(Γ[2]) =
1
24

[2(j + 1)k3 + 3(j2 − 2j − 8)k2

+ (j3 − 9j2 − 42j + 118)k + (−2j3 − 9j2 + 152j − 216)].

For k ≥ 4 even and j ≥ 2 even we have

dimMj,k(Γ[2]) =
1
24

[2(j + 1)k3 + 3(j2 − 2j + 2)k2 + (j3 − 9j2 − 12j + 28)k

+ (−2j3 − 9j2 + 182j − 336)].

Furthermore, for k ≥ 0 even we have

dimM0,k(Γ[2]) =
(k + 1)(k2 + 2k + 12)

12
and dimM0,k+5(Γ[2]) = dimM0,k(Γ[2]) for k ≥ 0 even.

Remark 12.1. As we shall see in the next section for k ≥ 4 even and j + k ≥ 6
we have

dimMj,k(Γ[2]) = dimSj,k(Γ[2]) + 15(j + k − 4)/2.

We can rewrite these formulas in the form of a generating series.

Theorem 12.2. The generating function for the dimension of Mj,k(Γ[2]) for fixed
even j ≥ 2 and k ≥ 3 is given as∑

k≥3

dimMj,k(Γ[2])tk =
∑12

i=3 ait
i

(1 − t2)5

with an = an(j) given by

n an n an

3 (j − 2)(j − 3)(j − 4)/24 4 j (2 j2 + 3 j + 166)/24
5 (−j3 + 33 j2 − 44 j + 72)/12 6 −(j − 1)(j2 − 4 j + 80)/4
7 (−10 j2 + 25 j − 20)/2 8 j3/4 − 7j2/2 + 63j/2 − 46
9 (j3 + 39 j2 − 172 j + 120)/12 10 −j3/12 + 11j2/4 − 71j/3 + 36
11 (−j3 − 15 j2 + 106 j − 120)/24 12 −5j2/8 + 25j/4 − 10
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Remark 12.2. Note that we have for Theorem 12.2 the identities a3 + a5 + a7 +
a9 + a11 = 0 and a4 + a6 + a8 + a10 + a12 = 0; see Sec. 19 for an explanation.

13. Representations of S6 on Eisenstein Spaces

As a result of [3] we can calculate the representation of the group S6 on the
spaces Sj,k(Γ[2]) algorithmically for j + k ≥ 5 assuming the conjectures there.
This yields very helpful information for determining the structure of the modules
Mj =

⊕
k Mj,k(Γ[2]) and Σj =

⊕
k Sj,k(Γ[2]) and agrees in all cases we consid-

ered with the dimension formulas for Mj,k(Γ[2]) and Sj,k(Γ[2]). Moreover, for small
weights the S6-representation can be determined by combining the dimension for-
mula with the cohomological calculations from [3] using point counting over finite
fields or by using the module structure over Rev. In view of this it will be useful
to know the representation of S6 on the subspaces of the spaces of modular forms
for the groups Γ[2],Γ1[2] and Γ0[2] generated by Eisenstein series. We will denote
the orthogonal complement of the space Sj,k(G) in Mj,k(G) with respect to the
Petersson product for G = Γ[2],Γ1[2] or Γ0[2] by Ej,k(G).

Remark 13.1. We have Ej,k(Γ[2]) = (0) if k is odd.

The Eisenstein subspace Ej,k(Γ[2]) of Mj,k(Γ[2]) is also a representation space of
S6. By using Siegel’s operator for one of the 15 boundary components of A2[Γ[2]]
it maps to the space of cusp forms Sj+k(Γ(2)) ∼= Sj+k(Γ0(4)) where Γ(2) and
Γ0(4) are the usual congruence subgroups of SL(2,Z). The dimension of S2r(Γ(2))
equals r− 2 for r ≥ 3 and is zero otherwise. The space Sr(Γ(2)) is a representation
space for the symmetric group S3 = SL(2,Z)/Γ(2). The stabilizer in S6 of one
1-dimensional boundary component is a group H of order 48 and this group acts
on the 1-dimensional boundary component via its quotient S3.

As a representation space of S3 the vector space S2r(Γ(2)) is of the form

Symr(s[2, 1]) −
{
s[2, 1], r = 1,

s[3] + s[2, 1], r > 1

because the ring of modular forms on Γ(2) is generated by two modular forms of
weight 2 that form an irreducible representation s[2, 1] and the space of Eisenstein
series is a representation space s[3] + s[2, 1] except in weight 2, where it is a s[2, 1].
We have

Symr(s[2, 1]) = (1 + [r/6] + ε)s[3] + [(r + 2)/3] s[2, 1] + ([(r + 3)/6] + ε′)s[13]

with ε = −1 if k ≡ 1 mod 6 and ε′ = −1 if k ≡ 4 mod 6 and ε = 0 and ε′ = 0 else.
The representation of S6 on the Eisenstein subspace of Mj,k(Γ[2]) is thus

IndS6
H (Sym(j+k)/2(s[2, 1]) − s[3] − s[2, 1])
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for j + k ≥ 4. We have

IndS6
H (s[3]) = s[6] + s[5, 1] + s[4, 2],

IndS6
H (s[2, 1]) = s[4, 2] + s[3, 2, 1] + s[23],

IndS6
H (s[13]) = s[3, 13] + s[2, 14].

Proposition 13.1. For k ≥ 2 the space Ej,k(Γ[2]) as a representation space of S6

equals

Ej,k(Γ[2]) = IndS6
H (Symk(s[2, 1]) − s[3] − s[2, 1])

+

{
s[6] + s[4, 2] + s[23], j = 0,
0, j ≥ 2.

Corollary 13.1. For k ≥ 2 the space Ej,2k(Γ1[2]) as a representation of S3 equals{
ak(s[3] + s[2, 1]) − 2s[2, 1], j = 0,

bj,k(s[3] + s[2, 1]), j ≥ 2,

where ak = k if k is odd and ak = k+1 if k is even and bj,k = j/2+k−3 if j/2+k

is odd and j/2 + k − 2 if j/2 + k is even.

Corollary 13.2. For k ≥ 2 we have dimE0,2k(Γ[2]) = 15(k − 1). Moreover,

dimE0,2k(Γ1[2]) = 6[k/2]− 1 and dimE0,2k(Γ0[2]) = 2[k/2] + 1.

For j ≥ 2 and k ≥ 2 we have dimEj,2k(Γ[2]) = 15(j/2 + k). Moreover,

dimEj,2k(Γ1[2]) = 3bj,k and dimEj,2k(Γ0[2]) = bj,k.

14. Dimension Formulas for Vector-Valued Modular Forms
on Γ1[2]

We now give dimension formulas for the space of modular forms and cusp forms of
weight (j, k) on the group Γ1[2]; that is, we give the generating functions∑

k≥3,odd

dimSj,k(Γ1[2])tk and
∑

k≥4,even

dimMj,k(Γ1[2])tk.

These results can be deduced from the action of S6 on the spaces Sj,k(Γ[2]) assum-
ing the conjectures of [3]. Alternatively, they can be obtained by applying the
holomorphic Lefschetz formula and are then not conditional on the conjectures
of [3].

We start with the scalar-valued ones (j = 0). The generating function of
Rev(Γ1[2]) is computed using the ring structure given in Theorem 9.2 to be

(1 − t8)(1 − t12)
(1 − t2)(1 − t4)4(1 − t6)

.
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Theorem 14.1. For j > 0 we have

∑
k≥3,odd

dimSj,k(Γ1[2])tk =
∑12

i=1 a2i+1t
2i+1

(1 − t2)(1 − t4)4(1 − t6)

with the vector [a3, a5, . . . , a25] of coefficients ai = ai(j) for j ≡ 0 (mod4) equal to
1/192 times

[j3 − 18j2 + 104j − 192, 2j3 + 30j2 − 104j + 192,−2j3 + 126j2 − 184j + 960,

− 7j3 − 24j2 + 688j − 576,−2j3 − 252j2 + 704j − 1344, 8j3 − 132j2 − 704j

+ 384, 8j3 + 180j2 − 1472j + 1344,−2j3 + 240j2 − 400j + 384,−7j3 − 18j2

+ 1048j − 1536,−2j3 − 138j2 + 680j − 576, 2j3 − 18j2 − 200j + 768, j3

+ 24j2 − 160j + 192].

For j ≡ 2 (mod4) the coefficient vector [a3, a5, . . . , a25] of the numerator is
equal to 1/192 times

[j3 − 18j2 + 92j − 120, 2j3 + 30j2 − 104j + 72,−2j3 + 126j2 − 136j + 552,

− 7j3 − 24j2 + 700j − 288,−2j3 − 252j2 + 632j − 432, 8j3 − 132j2

− 752j + 432, 8j3 + 180j2 − 1424j + 336,−2j3 + 240j2 − 328j − 288,−7j3

− 18j2 + 1036j − 984,−2j3 − 138j2 + 632j + 72, 2j3 − 18j2 − 200j + 648, j3

+ 24j2 − 148j].

For even j ≥ 2 the generating function for even k has the shape

∑
k≥4,even

dimMj,k(Γ1[2])tk =
∑12

i=1 a2i+2t
2i+2

(1 − t2)(1 − t4)4(1 − t6)

with [a4, a6, . . . , a26] for j ≡ 0 (mod4) being equal to 1/96 times

[j3 − 3j2 + 140j, j3 + 21j2 + 68j + 96,−3j3 + 45j2 − 372j + 864,

− 4j3 − 36j2 − 56j, 2j3 − 114j2 + 592j − 2016, 6j3 − 30j2 + 192j

− 960, 2j3 + 102j2 − 656j + 1440,−4j3 + 96j2 − 632j + 1920,−3j3 − 27j2

+ 324j − 288, j3 − 63j2 + 572j − 1440, j3 − 3j2 − 28j, 12j2 − 144j + 384].

For even j ≥ 2 the generating function
∑

k≥4,even dimMj,k(Γ1[2])tk is of the
same shape with the coefficients [a4, a6, . . . , a26] for j ≡ 2 (mod4) being equal to
1/96 times

[j3 − 3j2 + 116j − 228, j3 + 21j2 + 68j + 540,−3j3 + 45j2 − 276j + 1068,

− 4j3 − 36j2 − 32j − 816, 2j3 − 114j2 + 448j − 1992, 6j3 − 30j2 + 96j

− 408, 2j3 + 102j2 − 560j + 1848,−4j3 + 96j2 − 488j + 1296,−3j3

− 27j2 + 300j − 852, j3 − 63j2 + 476j − 804, j3 − 3j2 − 28j + 156, 12j2

− 120j + 192].
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Remark 14.1. We observe the following remarkable coincidences. For k even we
have:

dimM0,k(Γ[2]) = dimM0,2k(Γ1[2]),

dimM2,k(Γ[2]) = dimM2,2k(Γ1[2]),

dimS2,k+1(Γ[2]) = dimS2,2k+1(Γ1[2]).

To explain two of these dimensional coincidences recall that the modular forms
of weight 2 embed the moduli space A2[Γ[2]] into projective space P4 and that the
closure of the image is the quartic given by Eqs. (7.1) and (7.2) and is isomorphic
to the Satake compactification. The hyperplane bundle of the Igusa quartic is the
anti-canonical bundle; in fact, for a group Γ′ ⊂ Sp(4,Z) acting freely on H2 the
canonical bundle is given by λ3 with λ the line bundle corresponding to the factor
of automorphy det(cτ+d) for a matrix (a, b; c, d) ∈ Sp(2g,Z). But if the group does
not act freely we have to correct this; in the case at hand, the map H2 → A2[Γ[2]]
is ramified along the 10 components of Humbert surface H1 of invariant 1. The
corrected formula is then

KA2[Γ[2]] = 3λ− 5λ = −2λ

where the 5 comes from 10/2 with 10 being the weight of the modular form χ10

defining H1. In the preceding section we showed that Proj(
⊕

k M0,4k(Γ1[2])) is the
Igusa quartic. This fits because the map A2[Γ[2]] → A2[Γ1[2]] is ramified along the
component of the Humbert surface of invariant 4 given by the vanishing of x5 −x6.
Namely, the action of (Z/2Z)3 on the 15 components of H4 on A2[Γ[2]] has one
orbit of length 1, three orbits of length 2, and one orbit of length 8 and the orbit
of length 1 is the fixed point locus. We thus find

KA2[Γ1[2]] = 3λ− (5 + 2)λ = −4λ.

Note that by the Koecher principle a section of λn is a modular form. No holomor-
phicity conditions at infinity are required.

So the anti-canonical map of A2[Γ1[2]] is given by the modular forms of weight
4 for Γ1[2]. We conclude

M0,2k(Γ[2]) ∼= M0,4k(Γ1[2]).

A modular form of weight (2, 2k) on Γ[2] defines a section of T∨ ⊗ Hk with
T∨ the cotangent bundle and H the hyperplane bundle on the smooth locus of the
Igusa quartic minus the Humbert surface H1. By a local calculation one sees that
such a section extends over H1. We thus see that

M2,2k(Γ[2]) = H0(A2[Γ[2]], Sym2E ⊗ det E2k),

with E the Hodge bundle on A2[Γ[2]] (corresponding to the automorphy factor
cτ + d).

Similarly, a modular form of weight (2, 4k) on Γ1[2] defines a section of T∨⊗Hk

with T∨ the cotangent bundle and H the hyperplane bundle on the smooth locus
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of the Igusa quartic minus the Humbert surface H1 and one component of the
Humbert surface H4. By a local calculation one sees that such a section extends to
the smooth locus of A2[Γ1[2]]. By the Koecher principle it defines a modular form
holomorphic on all of A2[Γ1[2]]. We thus see that we get an isomorphism

M2,2k(Γ[2]) ∼= M2,4k(Γ1[2]).

15. Constructing Vector-Valued Modular Forms Using Brackets

We now move to constructing vector-valued modular forms. One way to construct
these is by using so-called Rankin–Cohen brackets. We recall the definition of the
Rankin–Cohen bracket of two Siegel modular forms and its basic properties.

Let F and G be two modular forms of weight (0, k) and (0, l) on some subgroup
Γ′ of Sp(4,Z). The Rankin–Cohen bracket of F and G is defined by the formula

[F,G](τ) =
1

2πi

(
kF

dG

dτ
− lG

dF

dτ

)
(τ),

where

dF

dτ
(τ) =

(
∂F/∂τ11

1
2∂F/∂τ12

1
2∂F/∂τ12 ∂F/∂τ22

)
(τ).

We refer also to [29, 17, 32]. (Note that Satoh’s definition of the bracket in [29]
differs from ours: [F,G](Satoh) = − 1

kl [F,G].) The main fact about this bracket is
the following.

Proposition 15.1. If Fi ∈ M0,ki(Γ′, χi), with χi a character or a multiplicative
system on Γ′, then [F1, F2] ∈M2,k1+k2(Γ′, χ1χ2).

Thus the bracket defines a bilinear operation:

M0,k1(Γ
′, χ1) ×M0,k2(Γ

′, χ2) →M2,k1+k2(Γ
′, χ1χ2)

satisfying the following properties

(i) [F,G] = −[G,F ],
(ii) F [G,H ] +G[H,F ] +H [F,G] = 0,
(iii) [FG,G] = G[F,G].

We give some examples.

Example 15.1. As we saw in Sec. 5 any pair (mi,mj) of odd theta characteristics
with 1 ≤ i < j ≤ 6 determines a quadratic relation between squares of theta
constants; for example, for the pair (1, 2) we have

ϑ2
1ϑ

2
3 − ϑ2

2ϑ
2
4 − ϑ2

5ϑ
2
6 = 0.

This implies the following relation between brackets:

[ϑ2
1ϑ

2
3, ϑ

2
2ϑ

2
4] = −[ϑ2

1ϑ
2
3, ϑ

2
5ϑ

2
6] = −[ϑ2

2ϑ
2
4, ϑ

2
5ϑ

2
6],

1550034-27

In
t. 

J.
 M

at
h.

 2
01

5.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
O

K
L

A
H

O
M

A
 o

n 
08

/2
6/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 2, 2015 10:41 WSPC/S0129-167X 133-IJM 1550034
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and by direct computation we also have

[ϑ2
iϑ

2
j , ϑ

2
kϑ

2
l ] = 8ϑ2

iϑjϑkϑ
2
l [ϑj , ϑk] + 8ϑiϑ

2
jϑ

2
kϑl[ϑi, ϑl].

We thus can associate to a pair (i, j) (of odd theta characteristics) a form Hij

defined by, e.g.

H12 = [ϑ2
1ϑ

2
3, ϑ

2
2ϑ

4
4] = −[ϑ2

1ϑ
2
3, ϑ

2
5ϑ

2
6] = −[ϑ2

2ϑ
2
4, ϑ

2
5ϑ

2
6]

(up to an ambiguity of signs) and in this way using the action of S6 we obtain 15
forms Hij with 1 ≤ i < j ≤ 6 in M2,4(Γ[2]).

Example 15.2. In analogy with Example 15.1 we can use the relation (11.3) and
the analogues UiUj from Construction 11.1 to construct 15 modular forms H ′

ij

H ′
12 = [U1U2, U3U4] = [U1U2, U7U8] = −[U3U4, U7U8] ∈M2,8(Γ1[2]). (15.1)

Remark 15.1. We might also consider the brackets [Θ[µ],Θ[ν]] of the theta con-
stants of second-order which lie in M2,1(Γ[2, 4]).

16. Gradients of Odd Theta Functions

Another way of constructing vector-valued Siegel modular forms is by using the
gradients of the six odd theta functions. The (transposed) gradients

Gt
i = (∂ϑmi/∂z1, ∂ϑmi/∂z2), 1 ≤ i ≤ 6

define sections of the vector bundle E ⊗ det(E)1/2 on the group Γ[4, 8] with E the
Hodge bundle, see Sec. 2. In other words they are vector-valued modular forms of
weight (1, 1/2) on the subgroup Γ[4, 8]. We identify Symj(E) with the Sj-invariant
subbundle of E⊗j . We consider expressions of the form

Symj(Gi1 , . . . , Gij )ϑr1 · · ·ϑrl
, (16.1)

where Symj(Gi1 , . . . , Gij ) is the projection of the section of E⊗j⊗det(E)j/2 onto its
Sj-invariant subbundle. We abbreviate Syma(Gi, . . . , Gi) with Gi occurring a times
by Syma(Gi) and Syma(G1, . . . , G1, . . . , G6, . . . , G6) with Gi occurring ai times and
a =
∑

i ai is abbreviated by Syma(Ga1
1 , . . . , G

a6
6 ).

Remark 16.1. If V � C2 is a C-vector space with ordered basis e1, e2 then we
shall use the ordered basis e⊗(n−i)

1 ⊗ e⊗i
2 for i = 0, . . . , n for Symn(V ).

We ask when the expression (16.1) gives rise to a vector-valued Siegel modular
form on Γ[2] as opposed to only on Γ[4, 8].

We shall write the j + l theta characteristics occurring in (16.1) as a 4 × (j +
l)-matrix M where each characteristic is written as a length 4 column. We first
write the odd theta characteristics, then the even ones. A similar problem involving
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polynomials in the theta constants was considered by Igusa and Salvati Manni [20,
Corollary of Theorem 5; 27, Eq. 20]. One finds in an analogous manner the following.

Proposition 16.1. The expression (16.1) gives a modular form in Mj,(l+j)/2(Γ[2])
if and only if the matrix M satisfies M ·M t ≡ 0 mod 4. If we write each of the
j + l characteristics in M as (ε(i)1 ε

(i)
2 ε

(i)
3 ε

(i)
4 )t, then these conditions can be written

equivalently as

(i)
∑j+l

i=1 ε
(i)
a ≡ 0 mod 4 for any 1 ≤ a ≤ 4,

(ii)
∑j+l

i=1 ε
(i)
a ε

(i)
b ≡ 0 mod 2 for any 1 ≤ a < b ≤ 4.

We also want to know the action of S6. For this we have the following lemma.

Lemma 16.1. The action of X (respectively, Y ) on the gradients Gi for i =
1, . . . , 6 of the odd theta functions is given by

ρ(X) =




0 1 0 0 0 0

1 0 0 0 0 0

0 0 ζ 0 0 0

0 0 0 ζ 0 0

0 0 0 0 ζ 0

0 0 0 0 0 ζ



, ρ(Y ) =




0 0 0 0 0 ζ

ζ6 0 0 0 0 0

0 ζ7 0 0 0 0

0 0 ζ6 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0



.

We give examples of modular forms constructed in this way; a number of these
will be used later.

Example 16.1. We take

F = Sym6(G1, . . . , G6).

This is a modular form of weight (6, 3) on Γ[2]; it is S6-anti-invariant and necessarily
a cusp form. The space S6,3(Γ[2]) is 1-dimensional and generated by F . The product
Fχ5 generates the 1-dimensional space S6,8(Γ) of level 1. A form in this space
was constructed by Ibukiyama in [15], cf. [8]. He used theta functions with pluri-
harmonic coefficients.

Example 16.2. We consider

G12 = Sym2(G1, G2)ϑ1 · · ·ϑ6 ∈M2,4(Γ[2]).

We can vary this construction by taking for any pair Gi, Gj of different gradients of
theta functions with odd characteristics the six even nj that are complementary to
the four that correspond to a pair of odd ones via Lemma 3.1. The modular forms
constructed in this way form a representation of S6 that is s[3, 13] + s[2, 14].

Remark 16.2. The restriction of G12 to the 1-dimensional boundary components
of A2[Γ[2]]∗ vanishes on 14 of those, while it is a multiple of the unique cusp
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form (ϑ00ϑ01ϑ10)4 on Γ0(2) times the vector (1, 0, 0) on the remaining boundary
component. (Note that (1, 0, 0) is a highest weight vector of our representation.)
This gives the correspondence between the 15 boundary components and unordered
pairs of odd theta characteristics. See also Lemma 7.1.

As a variation, consider

G11 = Sym2(G1)ϑ2
1ϑ

2
4ϑ

2
6.

Also this is a modular form of weight (2, 4) on Γ[2] and its orbit under S6 spans
the representation s[2, 14], see Example 16.5.

Example 16.3. We have

Sym2(G1, G2)ϑ2
2ϑ

2
4ϑ7ϑ8ϑ9ϑ10 ∈ S2,5(Γ[2]).

For fixed (i, j) there are three choices for the factor ϑ2
aϑ

2
bϑcϑdϑeϑf so that

Sym2(Gi, Gj) times this factor is a modular form of weight (2, 5) on Γ[2]. Formally
we find a representation s[32]⊕s[3, 2, 1]⊕s[22, 12], but we know S2,5(Γ[2]) = s[22, 12].
We thus find relations, for example

ϑ1ϑ7ϑ10Sym2(G1, G2) − ϑ4ϑ5ϑ9Sym2(G1, G4) + ϑ2ϑ6ϑ8Sym2(G1, G6) = 0.

This identity shows that

Sym2(G1, G2) ∧ Sym2(G1, G4) ∧ Sym2(G1, G6) = 0

which gives using the S6-action

Sym2(Gi, Gj) ∧ Sym2(Gi, Gk) ∧ Sym2(Gi, Gl) = 0. (16.2)

Example 16.4. We have

Sym2(G1)ϑ2
2ϑ

2
4ϑ

2
5ϑ

2
9ϑ

2
10 ∈M2,6(Γ[2]).

We can build 72 modular forms of this type, 12 for each Sym2(Gi) and one can
show that these generate a representation s[3, 2, 1] + s[3, 13].

Similarly, we have

Sym2(G1, G2)ϑ3
7ϑ

3
8ϑ

3
9ϑ

3
10 ∈ S2,7(Γ[2]).

Finally,

Sym4(G1) ∈M4,2(Γ[2]), Sym4(G1, G2, G3, G4)ϑ5ϑ6ϑ7ϑ8 ∈M4,4(Γ[2]),

and

Sym4(G1, G1, G2, G2)ϑ2
iϑ

2
j ∈M4,4(Γ[2]) for (i, j) = (1, 3), (2, 4) and (5, 6).

Example 16.5. For a given 1 ≤ i ≤ 6 there are 10 triples (a, b, c) such that

f [i; a, b, c] = Sym2(Gi)ϑ2
aϑ

2
bϑ

2
c

lies in M2,4(Γ[2]). The relations (5.1) in Sec. 5 imply obvious relations among these
forms and using these we are reduced to four different triples for each i; e.g. for
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i = 1 we have the four forms f [1; 1, 2, 5], f [1; 1, 4, 6], f [1; 2, 3, 6], f [1; 3, 4, 5]. In total
we get 24 forms that form a S6-representation s[3, 13] + s[22, 12] + s[2, 14]. But
since M2,4(Γ[2]) = s[3, 13] + s[2, 14] we have a space s[22, 12] of relations and these
relations are generated by the S6-orbit of the relation

f [3; 2, 3, 8]− f [1; 3, 4, 5] + f [2; 3, 4, 6]− f [6; 3, 4, 10] = 0.

Example 16.6. The form Sym6(G3
1, G

3
2)ϑ7ϑ8ϑ9ϑ10 is a cusp form of weight (6, 5)

on Γ[2] and has an orbit of 15 elements, generating formally a representation
s[5, 1] + s[4, 12]; its contribution to S6,5(Γ[2]) is s[4, 12], thus giving a s[5, 1] of rela-
tions.

Example 16.7. We have in M8,4(Γ[2]) the form Sym8(G4
1, G

4
2)ϑ7ϑ8ϑ9ϑ10. Its S6-

orbit generates formally the representation s[6] + s[5, 1] + s[4, 2]. We also have
the six forms Sym8(G8

i ) ∈ M8,4(Γ[2]) that generate a representation s[6] + s[5, 1]
and
∑

i Sym8(G8
i ) ∈ M8,4(Γ) and it is not zero since its image under the Siegel

operator is

2π8(ϑ8
00ϑ

8
01ϑ

8
11)(τ11)(1, 0, . . . , 0)t.

Example 16.8. The form Sym4(G1, G2, G
2
3)ϑ

3
7ϑ8ϑ9ϑ10 is a cusp form in S4,5(Γ[2])

that generates a s[3, 2, 1] representation in this space.

17. Identities Between Gradients of Odd Theta Functions and
Even Theta Constants

The fact that we have two ways of constructing modular forms and that we can
decompose the spaces where these forms live as S6-representations, easily leads to
many identities. In this section we give a number of such identities, and in some
sense these can be seen as generalizations of Jacobi’s famous derivative formula for
genus 1

∂ϑ11

∂z

∣∣∣∣
z=0

= −πϑ00ϑ01ϑ10

to vector-valued modular forms of genus 2. For generalizations to scalar-valued
modular forms we refer to [10, 23, 12, 13].

To motivate the fact that such an identity for vector-valued modular exists,
we recall some of the results of [13]. Indeed, consider Riemann’s bilinear addition
formula (4.2) for the case when the characteristic [µν] is odd. Differentiating this
identity with respect to zi and zj , and evaluating at z = 0, one obtains [13],
Lemma 4:

2
∂ϑ[µ

ν

](τ, z)
∂zi

·
∂ϑ[µ

ν

](τ, z)
∂zi

∣∣∣∣∣∣
z=0

=
∑

σ∈(Z/2Z)2

(−1)σ·νΘ[σ](τ)
∂Θ[σ + µ](τ, z)

∂zi∂zj

∣∣∣∣∣∣
z=0

.

Using the heat equation for the theta function, the second-order z-derivative in
the right-hand side can be rewritten as a constant factor times the τ -derivative.
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By summing over ν with coefficient (−1)ν·α the Rankin–Cohen brackets on the
right can be written as linear combinations of expressions on the left: the result
is [13, Lemma 5], an identity between a quadratic expression in the gradients and
a combination of Rankin–Cohen brackets.

We now give an identity between the two types of vector-valued modular forms
that we constructed. To rule out any ambiguities of notation we fix the coordinates
by putting

Sym2(Gi, Gj) =




G
(1)
i G

(1)
j

G
(1)
i G

(2)
j +G

(2)
i G

(1)
j

G
(2)
i G

(2)
j


 for Gi =

[
G

(1)
i

G
(2)
i

]
;

we also write the bracket, which is given as 2 × 2 matrix-valued, as vector-valued
via

[f, g] =
[
a b

b c

]
�→

 a2b
c


.

Lemma 17.1. The following identity holds for modular forms in M2,2(Γ[2, 4]) :

Sym2(G1, G1)ϑ2
1 = 2π2([ϑ2

2, ϑ
2
5] + [ϑ2

4, ϑ
2
6] + [ϑ2

8, ϑ
2
9]);

it yields similar identities under the action of S6. Moreover, for all 1 ≤ i < j ≤ 6
we have the identity Gij = −π2Hij in M2,4(Γ[2]). (Here the Gij are defined in
Example 16.2 and the Hij in Example 15.1.)

For example, for (i, j) = (1, 2) we have

Sym2(G1, G2)ϑ1ϑ2ϑ3ϑ4ϑ5ϑ6 = −π2[ϑ2
1ϑ

2
3, ϑ

2
2ϑ

2
4].

Proof. The space M2,4(Γ[2]) is generated by the 15 forms Gij , because we know
that dimM2,4(Γ[2]) = 15 and the 15 Gij are linearly independent by Remark 16.2.
By comparing Fourier coefficients we then find the relation

f [1; 1, 2, 5] = G12 +G15 = −π2(H12 +H15)

with f [1; 1, 2, 5] defined in Example 16.5, H12 = −[ϑ2
2ϑ

2
4, ϑ

2
5ϑ

2
6] and H15 =

−[ϑ2
2ϑ

2
8, ϑ

2
5ϑ

2
9]. Dividing by ϑ2

2ϑ
2
5 gives the desired identity in M2,2(Γ[2, 4]). The

second identity also follows by comparing Fourier coefficients.

We end with the following question.

Question 17.1. Is the algebra
⊕

j,kMj,k(Γ[4, 8]) generated over the ring
⊕

k∈Z

M0,k(Γ[4, 8]) by the [ϑa, ϑb]? Is the algebra
⊕

j,kMj,k(Γ[2, 4]) generated over the
ring
⊕

k∈Z
M0,k(Γ[2, 4]) by the brackets [Θ[µ],Θ[ν]]?
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18. Wedge Products

In this section we calculate some triple wedge products of modular forms of weight
(2, 4) that give information about the vanishing loci of these modular forms. We
start by looking at a triple wedge product of the form

Sym2(Gi1 , Gj1) ∧ Sym2(Gi2 , Gj2) ∧ Sym2(Gi3 , Gj3),

where we recall that the Gi’s are the gradients of odd theta functions. A direct
computation, by writing out the summands of this wedge product, and matching
the individual terms, shows that it is equal to the sum of two triple products of
Jacobian determinants, for example to

D(i1, i2) ·D(j1, i3) ·D(j2, j3) +D(i1, j3) ·D(j1, j2) ·D(i2, i3),

where D(a, b) = Ga∧Gb are the usual Jacobian nullwerte. By a generalized Jacobi’s
derivative formula (see [23, 13]) each such Jacobian determinant is a product of four
theta constants with characteristics, and thus we obtain an expression for such a
triple wedge product as an explicit degree 12 polynomial in theta constants with
characteristics.

Proposition 18.1. We have the following identities in S0,15(Γ[2]) :

G12 ∧G34 ∧G56 = π6χ5ϑ
4
1ϑ

4
2ϑ

4
3ϑ

4
4(ϑ

4
5 − ϑ4

6) = −π6χ7x1x2x3x4;

G12 ∧G13 ∧G45 = π6χ
3
5ϑ

2
1ϑ

2
4ϑ

2
6

ϑ2
2ϑ

2
7ϑ

2
9

and

G12 ∧G13 ∧G14 = 0.

Since we know that the zero divisors of the ϑ4
i are the components of H1 we

deduce the following.

Corollary 18.1. The modular form G12 does not vanish outside the Humbert sur-
face H1.

A calculation using the Fourier–Jacobi expansion of the theta constants shows
that G12 vanishes on six components of H1 and does not vanish identically on the
other four as one sees by using the group action. On the component given by τ12 = 0
it equals

π2ϑ4
00ϑ

4
01(τ11) ⊗ ϑ4

00ϑ
4
01ϑ

4
10(τ22) ·




0
0
1


.

19. Bounds on the Module Generators

We now turn to the module structure of the Rev-modules

Mε
j =

⊕
k≡ε mod 2

Mj,k(Γ[2]) for ε = 0 and ε = 1
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and similar ones where the Mj,k are replaced by spaces of cusp forms Sj,k. First
note that Rev =

⊕
k evenH

0(A2[Γ[2]], Lk) with L the determinant of the Hodge
bundle. By the Koecher principle we have H0(A2[Γ[2]], Lk) = H0(Ã2[Γ[2]], Lk)
with Ã2[Γ[2]] the standard toroidal compactification. Similarly, we have

Mj,k(Γ[2]) = H0(A2[Γ[2]], Symj(E) ⊗ Lk) = H0(Ã2[Γ[2]], Symj(E) ⊗ Lk).

Note that the Hodge bundle E extends to the toroidal compactification and L

extends to the Satake compactification. The Rev-modules Mε
j for ε = 0, 1 are of

the form ⊕
k

H0(X,F ⊗ Lk)

over Rev =
⊕

k H
0(X,Lk) and as L is an ample line bundle on the Satake compact-

ification (but only nef on Ã2[Γ[2]]) they are finitely generated (cf. [24, pp. 98–100]).
Recall that we have

Rev = C[u0, . . . , u4]/(f)

with f a homogeneous polynomial of degree 4 in the ui. We set

T = C[u0, . . . , u4].

The group S6 acts on it; the action on the space of homogeneous polynomials of
degree 1 is the irreducible representation s[23]. So we may write T as the symmetric
algebra Sym∗s[23] and Rev as the (virtual) T -module

Rev = T − T (−4). (19.1)

We can view Mε
j as a T -module and then a theorem of Hilbert [26, p. 56] tells

us that it is of finite presentation. But because of (19.1) it is then not of finite
presentation when viewed as a module over Rev and we get (infinite) periodicity.
The fact that it is also a Rev-module implies that its Euler characteristic is zero as
stated in Remark 12.2.

By what was observed in Sec. 14 the situation is similar for modules of modular
forms on Γ1[2] over the ring

⊕
k M0,4k(Γ1[2]). Again we can view the modules as

modules over a polynomial ring in five variables (with a non-modular S6-action).
In order to determine the structure of these modules it is useful to have bounds

on the weight of generators and relations of these modules. Here the notion of
Castelnuovo–Mumford regularity applies. We refer to [24, I, pp. 90 ff]. Let Fr,s be
the vector bundle Symr(E) ⊗ det(E)s and F ′

r,s = Symr(E) ⊗ det(E)s ⊗ O(−D),
where D is the divisor at infinity of the toroidal compactification X = Ã2[Γ[2]]. So
the sections of Fj,k are the modular forms of weight (j, k) on Γ[2] and those of F ′

j,k

the cusp forms of weight (j, k) on Γ[2]. We consider the modules

Mε
j =

⊕
k≡ε mod 2

Γ(X,Fj,k) and Σε
j =

⊕
k≡ε mod 2

Γ(X,F ′
j,k).

Here we can consider these as modules over the polynomial ring C[u0, . . . , u4].
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Siegel modular forms of genus 2 and level 2

Recall that one calls a vector bundle F m-regular in the sense of Castelnuovo–
Mumford with respect to an ample line bundle L if

Hi(X,F ⊗ Lm−i) = 0 for i > 0.

The relevance of this notion is that it implies

(1) F is generated by its global sections,
(2) for k ≥ 0 the natural maps

H0(X,Lk) ⊗H0(X,F ⊗ Lm) → H0(X,F ⊗ Lm+k)

are surjective.

In our case we will apply this to the case L = det(E)2 and F = Fj,r or F ′
j,r for

some j and small r. However, since L is ample only on A2[Γ[2]] and nef on Ã2[Γ[2]]
one needs to adapt these notions slightly. The main point is that by the Koecher
Principle the sections of Fj,r on A2[Γ[2]] automatically extend to sections over all
of Ã2[Γ[2]]. The cohomological mechanism (cf. [24, Vol. I, proof of Theorem 1.8.3])
thus works the same way.

Note that we have Serre duality

Hi(X,Fj,k)∨ = H3−i(X,Fj,3−j−k ⊗O(D)), Hi(X,F ′
j,k)∨ = H3−i(X,Fj,3−j−k).

So a necessary condition for F ′
j,0 (respectively, F ′

j,1) being m-regular with respect
to det(E)2 is that H3(X,F ′

j,0 ⊗ det(E)2m−6) = 0 and by Serre duality this gives

Mj,9−2m−j(Γ[2]) = (0) (respectively,Mj,8−2m−j(Γ[2]) = (0)).

So the dimension formulas give restrictions on the regularity. A bound on the reg-
ularity gives bounds on the weights of generators, see for example [24, Vol. I, The-
orem 1.8.26].

We give here two results on the regularity.

Proposition 19.1. The vector bundle F ′
2,1 = Sym2(E) ⊗ det(E) ⊗ O(−D) is 3-

regular with respect to det(E)2.

Proof. We have to prove the vanishing of H1(X,F ′
2,5), H2(X,F ′

2,3) and
H3(X,F ′

2,1). By Serre duality the vanishing of the H3 comes down to the non-
existence of modular forms of weight (2, 0). The cohomology H1(X,F ′

2,5) occurs
as the first step of the Hodge filtration of the compactly supported cohomol-
ogy H4

c (A2[Γ[2]],V4,2), see [11, 4]. Here Vk,l is a local system defined in [4].
In fact, the Hodge filtration on Hi

c(A2[Γ[2]],Vk,l) has the steps Hi(X,F ′
k−l,−k),

Hi−1(X,F ′
k+l+2,−k), Hi−2(X,F ′

k+l+2,1−l) and Hi−3(X,F ′
k−l,l+3). Since V4,2 is a

regular local system the H4
c consists only of Eisenstein cohomology by results

of Saper and Faltings, cf. [9, 28]. By Eisenstein cohomology we mean the ker-
nel of the natural map H•

c (A2[Γ[2]],Vk,l) → H•(A2[Γ[2]],Vk,l). This cohomology
is known by results of Harder (see [14, 31]) and does not contain a contribution
of this type. Harder dealt with the case of level 1, but the results can easily be
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extended to the case of level 2, cf. also [31, 3]. The cohomology H2(X,F ′
2,3) occurs

in H5
c (A2[Γ[2]],V2,0) and again in the Eisenstein cohomology. But this contribution

is zero, see [14, 4].

Proposition 19.2. The vector bundle F2,0 = Sym2(E) is 3-regular with respect to
det(E)2.

Proof. Now we have to show the vanishing of H1(X,F2,4), H2(X,F2,2) and
H3(X,F2,0). Instead of compactly supported cohomology we now look at the Hodge
filtration of Hi(A2[Γ[2]],Vk,l) with the steps Hi(X,Fk−l,−k), Hi−1(X,Fk+l+2,−k),
Hi−2(X,Fk+l+2,1−l) and Hi−3(X,Fk−l,l+3). The space H1(X,F2,4) occurs in
H4(A2[Γ[2]],V3,1). Again this is Eisenstein cohomology, i.e. occurs in the coker-
nel of the natural map H•

c → H• and it vanishes. Similarly, H2(X,F2,2) occurs in
H5(A2[Γ[2]],V3,1). For H3(X,F2,0) we take the Serre dual H0(X,F2,1⊗O(D)). But
any section of this on A2[Γ[2]] extends by the Koecher principle to a modular form
of weight (2, 1) and thus vanishes; indeed, it is automatically a cusp form and if
S2,1(Γ[2]) 
= (0) we land by multiplying with ψ4 ∈M0,4(Γ) in S2,5(Γ[2]) which is the
S6-representation s[22, 12], and hence S2,1(Γ[2]) is a s[22, 12] too; then χ5S2,1(Γ[2])
is a s[4, 2]; but S2,6(Γ[2]) does not contain a s[4, 2]. For another argument see the
proof of Lemma 20.2.

20. The Module Σ2(Γ[2])

In this section we determine the structure of the Rev-module of cusp forms

Σ2 = Σ2(Γ[2]) =
∞⊕

k=0,k odd

S2,k(Γ[2]).

We construct modular forms Φi for i = 1, . . . , 10 in the first nonzero summand
S2,5(Γ[2]) of Σ2 by setting

Φi = [xi, χ5]/xi = [ϑ4
i , χ5]/ϑ4

i = 4[ϑi, ϑ1 . . . ϑ̂i . . . ϑ10].

Remark 20.1. Some Fourier coefficients of Φ1 are given in Sec. 25. Eigenvalues of
Hecke operators acting on the space S2,5(Γ[2]) were calculated in [3].

The main result in this section is the following.

Theorem 20.1. The 10 modular forms Φi generate the Rev-module Σ2(Γ[2]).

Remark 20.2. As a module over the polynomial ring T in five variables the module
Σ2(Γ[2]) is generated by the Φi with relations of type s[16] in weight (2, 5), s[5, 1]
in weight (2, 7) and type s[32] in weight (2, 9) and a syzygy in weight (2, 11). But
over the ring of modular forms of even weight, which we recall is T − T (−4), it is
not of finite presentation and this pattern of (virtual) generators and relations is
repeated indefinitely (modulo 8).
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Before giving the proof we sketch its structure. We can calculate the action of
S6 on the spaces S2,k(Γ[2]) of modular forms (assuming the conjectures of [3]) for
small k. This suggests that there are nine generators in weight (2, 5). We construct
these forms and show (directly, not using the conjectures of [3]) that these forms
generate S2,k(Γ[2]) over the ring of even weight scalar-valued modular forms for
k ≤ 13. We also calculate the relations up to weight 13. We then use the bound on
the Castelnuovo–Mumford regularity of the module Σ2 over T and this shows that
there are no further relations between our purported generators and a comparison
of generating functions shows that we found the whole module Σ2. Thus the result
is independent of the conjectures in [3].

We begin by giving a table for the decomposition of S2,k(Γ[2]) as a S6-
representation for small odd k. At the end of this section we shall prove that
S2,k(Γ[2]) = (0) for k = 1 and k = 3.

S2,k\P [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

S2,5 0 0 0 0 0 0 0 0 1 0 0
S2,7 0 0 0 1 1 1 0 0 1 0 0
S2,9 0 1 0 2 1 2 1 0 3 1 1

S2,11 0 2 1 4 3 5 2 0 4 1 1
S2,13 0 2 2 6 5 9 4 1 8 2 1

Besides the Φi we can construct the weight (2, 5) forms

φij =


 ∏

k 	=i,j

ϑk


 [ϑi, ϑj ] (1 ≤ i, j ≤ 10).

To check that the φij are modular forms on Γ[2] one can use (an analogue of)
Proposition 16.1. Clearly φii = 0 and φij = −φji. Furthermore, these satisfy φij +
φjk + φki = 0. One sees easily that Φi = 4

∑10
j=1 φij . We also have the relations

φij = φ1j − φ1i and φ1i = (1/40)(Φ1 − Φi) and one thus obtains the relation

10∑
i=1

Φi = 0. (20.1)

To prove Theorem 20.1 we begin by analyzing the S6 action on the Φi.

Lemma 20.1. The 10 forms Φi generate the 9-dimensional s[22, 12]-isotypic sub-
space of S2,5(Γ[2]) and satisfy the relation

∑10
i=1 Φi = 0.

Proof. We calculate the action of S6 on the Φi (i = 1, . . . , 10) and find that it is for-
mally a representation s[22, 12]+s[16]. The s[16] corresponds to the relation (20.1).
Since the Φi are nonzero these must generate an irreducible representation s[22, 12]
in S2,5(Γ[2]). Alternatively, by restricting to the components of the Humbert sur-
face H1 one can also check that Φi for i = 1, . . . , 9 are linearly independent, cf. the
proof of Lemma 20.2.
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We now give the proof of Theorem 20.1. We first show that the Φi generate
S2,7(Γ[2]) and S2,9(Γ[2]) and we find relations there.

We obtain a relation in weight (2,7) as follows. A linear relation between the xi

like x1 − x4 − x6 − x7 = 0 implies by linearity of the bracket a relation [x1, χ5] −
[x4, χ5] − [x6, χ5] − [x7, χ5] = 0 and we can rewrite it as

x1Φ1 − x4Φ4 − x6Φ6 − x7Φ7 = 0.

Since the relations among the 10 xi generate an irreducible representation s[2, 14],
we get in this way a space s[2, 14] ⊗ s[16] = s[5, 1] of relations between the Φi over
Rev in weight (2,7).

One can check that the projections of the space generated by the xiΦj to the
s[4, 12], s[32], s[3, 2, 1] and s[22, 12]-part do give nonzero modular forms, and com-
paring this to the decomposition of S2,7(Γ[2]) into irreducible S6 representations
shows that the Φi generate S2,7(Γ[2]) over the ring of scalar-valued modular forms.
Now M0,2(Γ[2]) = s[23] and S2,5(Γ[2]) = s[22, 12] and comparing the two represen-
tations

s[23] ⊗ s[22, 12] = s[5, 1] + s[4, 12] + s[32] + s[3, 2, 1] + s[22, 12],

S2,7(Γ[2]) = s[4, 12] + s[32] + s[3, 2, 1] + s[22, 12]

it follows that we must have an irreducible representation s[5, 1] of relations, which
is just the space given above.

In a similar way we compare the representations in weight (2,9). We find
that S2,5(Γ[2]) ⊗M0,4(Γ[2]) equals as an S6 representation the representation of
S2,9(Γ2[2]) plus s[32] + s[3, 2, 1] + s[22, 12]; the contribution s[3, 2, 1] + s[22, 12] to
this excess comes from M0,2(Γ[2]) ⊗ s[5, 1] where s[5, 1] are the relations in weight
(2, 7). We are thus left with a relation space s[32] in weight (2, 9). Indeed, by cal-
culating the projections we check that M0,4 ⊗ S2,5 → S2,9 is surjective and the
explicit relations can be computed by projection on the s[32]-subspace. Since the
coefficients are not simple we refrain from giving these.

We can check again by projection on the isotopic subspaces of S2,11 that M0,6⊗
S2,5 → S2,11 is surjective. We thus find a syzygy of type s[16] in weight (2, 11). By
the result on the Castelnuovo–Mumford regularity of Proposition 19.1 there can
be no further relations. Therefore the Φi generate a submodule of Σ2(Γ[2]) with
Hilbert function

9t5 − 5t7 − 5t9 + t11

(1 − t2)5
.

Since this coincides with the generating series given in Sec. 12, the Φi must generate
the whole module. This completes the proof of the theorem.

Remark 20.3. If we work over the function field F of A2[Γ[2]] and consider the
module Σ2⊗F of meromorphic sections of Sym2(E) with E the Hodge bundle, then
the submodule F generated by the Φi has rank at least 3 since the wedge product
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Φ1 ∧ Φ2 ∧ Φ3 does not vanish identically. Using the relation
∑10

i=1 Φi = 0 and the
five relations of weight (2,7)

x6Φ6 = x1Φ1 − x2Φ2 + x3Φ3 − x4Φ4 − x5Φ5,

x7Φ7 = x2Φ2 − x3Φ3 + x5Φ5, x8Φ8 = x1Φ1 − x4Φ4 − x5Φ5,

x9Φ9 = −x3Φ3 + x4Φ4 + x5Φ5, x10Φ10 = x1Φ1 − x2Φ2 − x5Φ5

we see that F is generated by Φi with i = 1, . . . , 4. Indeed, after inverting the xi we
can eliminate Φ6, . . . ,Φ9 and then using (20.1) and x10Φ10 = x1Φ1 − x2Φ2 − x5Φ5

we can also eliminate Φ5. Using the relations of type s[32] in weight (2, 9) we can
eliminate Φ4 too and reduce the generators of F to Φ1,Φ2,Φ3. We refrain from
giving the explicit relation. So outside the zero divisor of the wedge Φ1 ∧ Φ2 ∧ Φ3

the forms Φ1,Φ2 and Φ3 generate the bundle Sym2(E) ⊗ det(E)5.

We now give some wedges of the Φi that give information about the vanishing
loci of the Φi.

Proposition 20.1. We have in S0,18(Γ[2]) the identity

Φ1 ∧ Φ2 ∧ Φ3 = 25χ2
5(x6 − x5)(3ϑ2

5ϑ
2
6ϑ

2
7ϑ

2
8ϑ

2
9ϑ

2
10 + ϑ2

1ϑ
2
2ϑ

2
3(ϑ

2
6ϑ

2
8ϑ

2
9 − ϑ2

5ϑ
2
7ϑ

2
10))/8.

The proposition is proved by brute force by computing a basis of the space of
modular forms involved. We know that Φ1 ∧Φ2 ∧Φ3 is divisible by χ2

5 and x5 − x6,
hence the quotient is a form f6 of weight 6, and actually a cusp form. In S0,6(Γ[2]),
a representation of type s[23], there are five linearly independent modular forms gi

(i = 1, . . . , 5) that are products of squares of six theta constants with characteristics
given by

[1, 2, 3, 5, 7, 10], [1, 2, 3, 6, 8, 9], [1, 2, 4, 5, 8, 10], [1, 3, 4, 5, 8, 9], [5, 6, 7, 8, 9, 10]

respectively. By computing the Fourier expansion of f6 and of the latter forms
g1, . . . , g5, we get the proposition.

Using the same method, we find

Φ1 ∧ Φ2 ∧ Φ4 = 25χ2
5(x6 − x5)(g1 + g2 − 2g3 − 3g5)/8,

Φ1 ∧ Φ3 ∧ Φ4 = 25χ2
5(x6 − x5)(g1 + g2 − 2g4 + 3g5)/8,

Φ2 ∧ Φ3 ∧ Φ4 = 25χ2
5(x6 − x5)(−g1 + g2 + 2g3 − 2g4 − g5)/8.

We now prove that S2,1(Γ[2]) and S2,3(Γ[2]) are both zero.

Lemma 20.2. We have S2,1(Γ[2]) = (0) and S2,3(Γ[2]) = (0).

Proof. Since multiplication by x1 is injective the vanishing of S2,3(Γ[2]) implies
the vanishing of S2,1(Γ[2]). We thus have to prove that S2,3(Γ[2]) = (0). The injec-
tivity of multiplication by x1 applied to S2,3(Γ[2]) and dimS2,5(Γ[2]) = 9 implies
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that dimS2,3(Γ[2]) ≤ 9. But since not every Φi is divisible by x1, as follows from
calculating the restriction to the components of the Humbert surface H1:

Φi

((
τ11 0
0 τ22

))
= ci(ϑ00ϑ01ϑ10)4(τ11) ⊗ (ϑ00ϑ01ϑ10)4(τ22)


0

2
0




with ci = −1/4 for i = 1, . . . , 9 and c10 = 9/4. We see that dimS2,3(Γ[2]) < 9.
By multiplication by ψ4 and ψ6 in M0,4(Γ) and M0,6(Γ) we land in S2,7(Γ[2])
and S2,9(Γ[2]) and by inspection we see that the only irreducible representations
in common in S2,7(Γ[2]) and S2,9(Γ[2]) are of type s[4, 12], s[32], s[3, 2, 1] and
s[22, 12], so for dimension reasons we must have S2,3(Γ[2]) = s[32] if it is nonzero.
If S2,3(Γ[2]) = s[32] we find that S2,3(Γ1[2]) = s[13] as an S3-representation and
since M0,2(Γ1[2]) = s[3] we find a representation s[13] in S2,5(Γ1[2]). But we know
that S2,5(Γ1[2]) = (0). Therefore S2,3(Γ[2]) = (0).

21. The Module Σ2(Γ1[2])

Recall that the ring Rev(Γ[2]) =
⊕

k M0,2k(Γ[2]) is abstractly isomorphic to the
ring R′ =

⊕
kM0,4k(Γ1[2]).

We therefore look at the following two R′-modules

Σ1 = Σ1(Γ1[2]) =
⊕

k

S2,4k+1(Γ1[2]) and

Σ3 = Σ3(Γ1[2]) =
⊕

k

S2,4k+3(Γ1[2]).

As before, we can consider these as modules over a polynomial ring in five variables
as well as over the ring of scalar-valued modular forms.

Theorem 21.1. The module Σ1(Γ1[2]) is generated over the ring R′ by the nine
cusp forms of weight (2, 9) generating a S3 representation 3s[2, 1] + 3s[13]. The
module Σ3(Γ1[2]) is generated by the four modular forms of weight (2, 7) forming a
S3-representation s[2, 1] + 2s[13] and the two pairs of forms of weight (2, 11) each
forming a S3-representation s[2, 1].

Remark 21.1. The generating functions for the dimensions of the graded pieces
of these modules are

9t9 − 5t13 − 5t17 + t21

(1 − t4)5
and

4t7 + 4t11 − 8t15

(1 − t4)5
.

This follows now from the results on Σ2(Γ[2]).

Proof of Theorem 21.1. In order to construct the generators explicitly, we look
at the eigenspaces of the action of Γ1[2]/Γ[2] = (Z/2Z)3; this group is generated
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by (12), (34) and (56) ∈ S6. So for a triple ε of signs we have a corresponding
eigenspace M ε

j,k ⊂Mj,k(Γ[2]). We have maps

M ε
0,k1

×M ε
j,k2

→Mj,k1+k2(Γ1[2]), M ε
0,k1

×M ε
0,k2

→M2,k1+k2(Γ1[2]),

given by the product (f, g) �→ fg, respectively, by the Rankin–Cohen bracket
(f, g) �→ [f, g].

For example, a form in the s[16]-part of M0,k(Γ[2]) gives rise to a form in M−−−
0,k ;

so as soon as this s[16]-part is not empty we get forms in M2,k+5(Γ1[2]) by taking
the bracket ψ �→ [ψ, χ5]. Using this idea we can construct forms in the following
way.

As the four generators in weight (2, 7) one can take: F1 = (x5 − x6)(Φ1 + Φ2 +
Φ3 + Φ4), and

F2 = (x5 + x6)(Φ5 − Φ6), F3 = (x7 + x8)(Φ7 − Φ8),

F4 = (x9 + x10)(Φ9 − Φ10),

with F1, F2 +F3 +F4 generating 2s[13] and F1−F3 and F2−F3 generating a s[2, 1].
To construct cusp forms of weight (2, 9) we take A1 = s1F2, A2 = s1F3 and

A3 = s1F4 and

A4 = (x5 + x6)(x7 + x8)(Φ9 − Φ10), A7 = (x5 + x6)ξ(Φ1 − Φ2 + Φ3 − Φ4),

A5 = (x7 + x8)(x9 + x10)(Φ5 − Φ6), A8 = (x9 + x10)ξ(Φ1 − Φ2 − Φ3 + Φ4),

A6 = (x5 + x6)(x9 + x10)(Φ7 − Φ8), A9 = (x7 + x8)ξ(Φ1 + Φ2 − Φ3 − Φ4).

Finally, to construct generators of weight (2, 11) we consider

L1 = (x3
1 + x3

2 − x3
3 − x3

4)(Φ7 − Φ8),

M1 = ξ(x7 + x8)(x9 + x10)(Φ1 − Φ2 + Φ3 − Φ4),

L2 = (x3
1 − x3

2 − x3
3 + x3

4)(Φ9 − Φ10),

M2 = ξ(x5 + x6)(x7 + x8)(Φ1 − Φ2 − Φ3 + Φ4),

L3 = (x3
1 − x3

2 + x3
3 − x3

4)(Φ5 − Φ6),

M3 = ξ(x5 + x6)(x9 + x10)(Φ1 + Φ2 − Φ3 − Φ4).

The generators that we need are the nine forms Ai of weight (2, 9) generating a
representation 3s[2, 1]+3s[13], the four modular forms Fi of weight (2, 7) generating
a representation s[2, 1]+2s[13] and the two pairs L3−L1, L3−L2 andM1−M2,M1−
M3 of weight (2, 11), each generating a representation s[2, 1]. One checks that these
forms generate up to weight (2, 19) and that the Castelnuovo–Mumford regularity
is bounded by 3. This finishes the proof.
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22. The Module M2(Γ[2]) and its Γ1[2]-Analogue

In this section, we determine the structure of the Rev-module

M2 = M2(Γ[2]) =
∞⊕

k=0

M2,2k(Γ[2]).

In Example 16.2 we constructed 15 modular forms Gij in M2,4(Γ[2]); recall that
these are proportional to the Hij . As shown in Remark (16.2) these are linearly
independent.

Theorem 22.1. The Rev-module M2 is generated by the fifteen modular forms
Gij .

As in the preceding section the S6 action is an essential tool for proving this
theorem. We list the representations involved:

M2,k\P [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

M2,4 0 0 0 0 0 0 1 0 0 1 0
M2,6 0 0 1 0 0 2 1 1 0 0 0
M2,8 0 0 2 1 0 3 3 2 1 2 0

M2,10 1 2 5 3 0 5 5 3 2 3 0
M2,12 0 1 7 4 1 11 8 6 4 4 0

The generating function for dimM2,k with k ≥ 4 even is

15t4 − 19t6 + 5t8 − t10

(1 − t2)5
. (22.1)

We know already that the 15 forms Gij generate a S6-representation s[3, 13] +
s[2, 14].

Lemma 22.1. The 15 forms Gij with 1 ≤ i < j ≤ 6 form a basis of the space
M2,4(Γ[2]).

Remark 22.1. By using the forms Fij = [xi, xj ] = [ϑ4
i , ϑ

4
j ] we find in this way the

∧2s[23] = s[3, 13]-part of M2,4 as the xi generate a s[23]. The Fij can be expressed
in the Gij , for example

F12 =
1
π2

(−G12 +G56 −G15 −G26).

Now M2,6 decomposes as s[4, 2] + 2s[3, 2, 1]+ s[3, 13] + s[23] as a representation
space for S6 and M0,2 = s[23] and since

s[2, 14] ⊗ s[23] = s[4, 2] + s[3, 2, 1],

s[3, 13] ⊗ s[23] = s[4, 2] + s[4, 12] + s[3, 2, 1] + s[3, 13] + s[23]
(22.2)

we expect to find relations of type s[4, 2] + s[4, 12]. One checks that M0,2 ⊗M2,4

generates M2,6. We get a s[4, 12] of relations of the form

xiFjk − xjFik + xkFij = 0. (22.3)
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These relations follow immediately from the Jacobi identity for brackets. The rela-
tions of type s[4, 2] either come from the vanishing of a s[4, 2] in the right-hand
sides of (22.2) or from an identification of a copy of s[4, 2] in these right-hand sides.
The latter is the case. We give an example of such a relation:

x1(2G23 −G25 +G35 +G56) − x2(G24 +G45) − x3(G13 −G15) − x5G26

+ x8(G36 +G56) − x9(G34 −G45) + x10(G12 −G15) = 0.

Denote the left-hand side of the relation (22.3) by Rijk . Then we have the syzygy

xiRjkl − xjRikl + xkRijl − xlRijk = 0 (22.4)

and it generates an irreducible representation s[32] of relations in weight (2, 8).
In a similar way we expect a syzygy of type s[16] in weight (2, 10). Write Rijkl

for the left-hand side of (22.4). Then we have

x1R2345 − x2R1345 + x3R1245 − x4R1235 + x5R1234 = 0. (22.5)

This is a S6-anti-invariant syzygy in weight (2, 10). By using the result on the
regularity Proposition 19.2 we can derive now as we did above that we cannot have
more relations. The Gij thus generate a submodule of Mev

2 with Hilbert function
given by (22.1). Since this coincides with the generating function of our module
Mev

2 we have found our module. This proves the theorem.
Since the forms H ′

ij defined in Example 15.2 satisfy similar relations we can
deduce in a completely analogous way the following theorem.

Theorem 22.2. The 15 modular forms H ′
ij ∈M2,8(Γ1[2]) from Example 15.2 gen-

erate the module
⊕

kM2,4k(Γ1[2]) over the module
⊕

kM0,4k(Γ1[2]).

23. Other Modules

23.1. The module M4

We treat the Rev-module M4 =
⊕

k M4,2k(Γ[2]).

Theorem 23.1. The module M4 over Rev is generated by six modular forms of
weight (4, 2) generating a representation s[2, 14], 15 modular forms of weight (4, 4)
generating a representation s[2, 14] and five modular forms of weight (4, 4) gener-
ating a representation s[23].

The proof is similar to the cases given above. First we look where the generators
should appear, we then construct these and check that these generateM4,k for small
k, and then use the bound on the Castelnuovo–Mumford regularity to bound the
weight of the generators and relations.
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The S6 representations for small k are as follows:

M4,k\P [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

M4,2 0 0 0 0 0 0 0 0 0 1 0
M4,4 0 0 1 0 0 1 0 1 0 1 0
M4,6 0 0 2 0 0 3 2 2 1 2 0
M4,8 1 2 5 2 0 6 4 3 2 4 0

M4,10 1 2 8 4 1 12 8 6 5 6 0
M4,12 2 5 14 8 3 20 13 9 8 8 0

The generating series is

∑
k∈2Z>0

dimM4,kt
k =

5t2 + 10t4 − 10t6 − 10t8 + 5t10

(1 − t2)5
.

We also give the cusp forms:

S4,k\P [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

S4,4 0 0 0 0 0 0 0 0 0 1 0
S4,6 0 0 1 0 0 2 1 1 1 1 0
S4,8 0 1 3 2 0 5 3 2 2 3 0

S4,10 1 2 6 4 1 10 7 4 5 5 0
S4,12 1 4 11 8 3 18 12 7 8 7 0

The generating function is

∑
k∈Z≥2

dimS4,2kt
2k =

5t4 + 45t6 − 95t8 + 55t10 − 10t12

(1 − t2)5
.

Using the map S4,2 ×M0,2 → S4,6 we see that S4,2 = (0). In weight (4, 2) we find a
space of Eisenstein series s[2, 14] of dimension 5 instead of the usual s[23]+ s[2, 14].
We now construct generators for our module. We expect generators s[2, 14] in weight
(4, 2), of type s[23] + s[2, 14] in weight (4, 4), relations of type s[6] + s[4, 2] both in
weight (4, 6) and (4, 8) and a syzygy of type s[23] in weight (4, 10). That is what
we shall find.

Proposition 23.1. The forms Ei = Sym4(Gi) for i = 1, . . . , 6 are modular forms
of weight (4, 2) and satisfy the s[16]-type relation E1−E2 −E3 +E4 −E5 +E6 = 0.
They generate the space M4,2 = M

s[2,14]
4,2 .

Here our convention is that if Gi = [a, b]t then Sym4(Gi) =
[a4, 4a3b, 6a2b2, 4ab3, b4]t. The following lemma is proved by a direct calculation.

Lemma 23.1. We have E1 ∧ E2 ∧ · · · ∧ E5 = −96π6χ4
5.

Corollary 23.1. Every linear relation of the form
∑
fiEi = 0 with fi ∈ Rev is a

multiple of E1 −E2 −E3 +E4 −E5 +E6 = 0. The Ei generate a submodule of M4

with generating function 5t2/(1 − t2)5.
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Proof. If
∑

i fiEi = 0 is a relation not in the ideal generated by E1 − E2 − E3 +
E4 − E5 + E6 then over the function field F of A2[Γ[2]] we can eliminate E6 and
E5 and then the wedge would be zero contradicting Lemma 23.1.

To construct the forms in the s[2, 14] space of M4,4(Γ[2]) we consider the 15
modular forms in the S6-orbit of

D1234 = Sym4(G1, G2, G3, G4)ϑ5ϑ6ϑ7ϑ8 ∈M4,4(Γ[2]).

The formal representation is of type s[3, 13] + s[2, 14], but these forms satisfy an
irreducible representation of type s[3, 13] of relations generated by

4D1234 −D1235 −D1236 −D1245 −D1246 −D1345 −D1346 −D2345 −D2346 = 0.

These forms are cusp forms and generate the space of cusp forms S4,4 = S
s[2,14]
4,4 .

A basis is given by the forms D1256, D1345, D1346, D1356 and D3456 as follows from
the fact that

D1256 ∧D1345 ∧D1346 ∧D1356 ∧D3456 = −π20χ6
5.

In fact, we find many linear identities between these forms. Simplifying one of those
leads to an identity like

Sym4(G1, G2, G3, G4)ϑ6ϑ7ϑ8

= Sym4(G1, G3, G4, G5)ϑ3ϑ4ϑ9 + Sym4(G1, G3, G4, G6)ϑ1ϑ2ϑ10.

Finally we construct generators in the s[23]-part of M4,4(Γ[2]). We consider
expressions

Ki,j,k,l = Sym4(Gi, Gi, Gj , Gj)ϑ2
kϑ

2
l

for appropriate quadruples (i, j, k, l). For example we take K1,2,1,3 ∈ M4,4(Γ[2]).
These modular forms satisfy many relations, e.g.

K1,2,1,3 −K1,2,2,4 −K1,2,5,6 = 0 due to ϑ2
1ϑ

3
3 − ϑ2

2ϑ
2
4 − ϑ2

5ϑ
2
6 = 0.

We find 30 such forms in the S6-orbit and as it turns out these are linearly inde-
pendent and generate a s[4, 2] + s[3, 2, 1] + s[23] subspace of M4,4. If p denotes the
projection on the s[23]-subspace the five forms R1 = p(K1,2,1,3), R2 = p(K1,2,2,4),
R3 = p(K1,3,1,10), R4 = p(K1,3,4,9) and R5 = p(K1,4,2,10) form a basis of s[23]-
subspace of M4,4(Γ[2]) as a calculation shows. As it turns out their wedge is zero
since these satisfy a (S6-anti-invariant) relation

x2R1 − (x2 + x5)R2 − (x2 − x4)R3 − (x1 − x2 − x5)R4 + (x2 − x3 + x5)R5 = 0.

We now prove the theorem. One can show that this module is 3-regular in the
sense of Castelnuovo–Mumford as in Sec. 19. Then one checks that these generators
generate the spaces M4,2k for k ≤ 3. By [24, Theorem 1.8.26] this suffices. This
finishes the proof.
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23.2. The module Σ4

Another case is Σodd
4 (Γ[2]), where the representations are as follows:

S4,k\P [6] [5, 1] [4, 2] [4, 12] [32] [3, 2, 1] [3, 13] [23] [22, 12] [2, 14] [16]

S4,3 0 0 0 0 0 0 0 0 0 0 0
S4,5 0 0 0 0 0 1 0 0 1 1 0
S4,7 0 1 1 1 1 3 1 0 2 1 0
S4,9 0 2 2 3 2 6 3 1 5 3 1

S4,11 0 4 5 7 4 12 5 2 8 4 1

We expect generators in weight (4, 5) of type s[3, 2, 1] + s[22, 12] + s[2, 14]; rela-
tions of type s[5, 1] + s[4, 2] + s[4, 12] + s[3, 2, 1] in weight (4, 7) and a generator of
type s[3, 13] in weight (4, 9) and then periodic if viewed as a module over the ring of
even weight scalar-valued modular forms on Γ[2]. For the generators of the s[3, 2, 1]
part of S4,5(Γ[2]) we refer to Example 16.8 and we invite the reader to construct
the remaining ones; in fact, S4,5(Γ[2]) is generated by 30 cusp forms of the following
shape

Fabcd =
χ5

ϑaϑbϑcϑd
Sym2([ϑa, ϑb], [ϑc, ϑd])

for appropriate quadruples (a, b, c, d) of distinct integers between 1 and 10.

24. Modular Forms of Level One

We can use our constructions and results to obtain modular forms of level 1. Note
that the modules of vector-valued modular forms of level 1 for j = 2, 4 and 6 were
determined by Ibukiyama, Satoh and van Dorp, see [15, 16, 29, 32]. Ibukiyama used
theta series with harmonic coefficients. Here is a list of all cases where dimSj,k(Γ) =
1 for k ≥ 4:

j k j k j k

0 10, 12, 14, 35, 39, 41, 43 10 9, 11 20 5
2 14, 21, 23, 25 12 6, 7 24 4
4 10, 12, 15, 17 14 7 28 4
6 8, 10, 11, 13 16 6, 7 30 4
8 8, 9, 11 18 5, 6 34 4

We know that dimSj,2(Γ) = 0 for j = 2, . . . , 10, 14.
In all cases we can write down an explicit form generating the space. For j = 0

we know the generators by Igusa’s description of the ring of modular forms. We
give a number of these generators below, but note that all can be obtained from
theta series with spherical coefficients for the E8 lattice.

Example 24.1. (1) The form
∑10

i=1 χ5ϑ
8
i Φi generates the space S2,14(Γ). This form

is a multiple of the Rankin–Cohen bracket [E4, χ10] that occurs in the work of
Satoh [29].

(2) The forms [E4, E6, χ10] and [E4, E6, χ12] generate S2,21(Γ) and S2,23(Γ),
see [16].
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(3) The form
∑10

i=1 Sym2(Φi) generates the space S4,10(Γ).
(4) The form A = χ5Sym6(G1, . . . , G6) generates S6,8(Γ). A candidate generator

for S6,13(Γ) is {E4, A}, where we use the notation of [32].
(5) The form Sym12(G1, G1, . . . , G6, G6) generates S12,6(Γ).

25. Some Fourier Expansions

We give in the following two tables a few Fourier coefficients of Φ1 ∈ S2,5(Γ[2]) and
of D1234 ∈ S4,4(Γ[2])s[2,14]. We write the Fourier series as∑

a,b,c

A(a, b, c)eπi(aτ11+bτ12+cτ22) =
∑
a,c

γ(a, c)P (a, c)qa
1q

c
2,

where the first sum runs over the triples (a, b, c) of integers with b2 − 4ac < 0. For
a fixed pair (a, c) we collect the coefficients of qa

1q
c
2 = eπi(aτ11+cτ22) in the form

of a vector of Laurent polynomials γ(a, c)P (a, c) in r = expπiτ12 with γ(a, c) an
integer. Note that we have P (c, a) equals P (a, c) read in retrograde order: P (c, a)i =
P (a, c)n−i with n = 3 (for Φ1) or n = 5 (for D1234).

[a, c] γ(a, c) P (a, c)

[1, 1] 64
−r + 1/r
−r − 1/r
−r + 1/r

[2, 1] 1280
r − 1/r

0
0

[2, 2] 1280
r3 − 3r + 3/r − 1/r3

2r3 − 2r − 2/r + 2/r3

r3 − 3r + 3/r − 1/r3

[3, 1] 64
3r3 − 13r + 13/r − 3/r3

3r3 + 9r + 9/r + 3/r3

r3 + 9r − 9/r − 1/r3

[3, 2] 1280
−4r3 + 12r − 12/r + 4/r3

−4r3 + 4r + 4/r − 4/r3

−3r3 − 3r + 3/r + 3/r3

[3, 3] 64
−13r5 + 121r3 − 250r + 250/r − 121/r3 + 13/r5

−35r5 + 121r3 − 230r − 230/r + 121/r3 − 35/r5

−13r5 + 121r3 − 250r + 250/r − 121/r3 + 13/r5

[4, 1] 1280
−r3 − 5r + 5/r + 1/r3

0
0

[4, 2] 1280
−r5 + 5r3 − 10r + 10/r − 5/r3 + 1/r5

−2r5 − 10r3 + 12r + 12/r − 10/r3 − 2/r5

−r5 − 3r3 + 14r − 14/r + 3/r3 + 1/r5

[4, 3] 1280
5r5 + 19r3 + 14r − 14/r − 19/r3 − 5/r5

20r5 − 28r3 + 8r + 8/r − 28/r3 + 20/r5

12r5 − 28r3 + 24r − 24/r + 28/r3 − 12/r5

(Continued)
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(Continued)

[a, c] γ(a, c) P (a, c)

[4, 4] 1280
−5r7 + 19r5 − 25r3 + 15r − 15/r + 25/r3 − 19/r5 + 5/r7

−10r7 + 66r5 − 10r3 − 46r − 46/r − 10/r3 + 66/r5 − 10/r7

−5r7 + 19r5 − 25r3 + 15r − 15/r + 25/r3 − 19/r5 + 5/r7

[5, 1] 64
−5r3 + 145r − 145/r + 5/r3

−27r3 − 27r − 27/r − 27/r3

−9r3 − 27r + 27/r + 9/r3

[5, 2] 1280
8r5 − 8r3 − 16r + 16/r + 8/r3 − 8/r5

8r5 + 16r3 − 24r − 24/r + 16/r3 + 8/r5

3r5 + 14r3 − 3r + 3/r − 14/r3 − 3/r5

[5, 3] 64
−5r7 − 270r5 + 190r3 − 745r + 745/r − 190/r3 + 270/r5 + 5/r7

17r7 − 270r5 + 242r3 + 659r + 659/r + 242/r3 − 270/r5 + 17/r7

13r7 − 250r5 + 242r3 + 217r − 217/r − 242/r3 + 250/r5 − 13/r7

[6, 1] 1280
5r3 − 3r + 3/r − 5/r3

0
0

[6, 2] 1280
−13r5 + 5r3 + 50r − 50/r − 5/r3 + 13/r5

2r5 + 18r3 − 20r − 20/r + 18/r3 + 2/r5

3r5 − 3r3 − 6r + 6/r + 3/r3 − 3/r5

[1, 1] 256

0
0
1
0
0

[1, 3] 512

0
0

−1/r − 4 − r
2/r − 2r

−2/r + 4 − 2r

[1, 5] 256

0
0

1/r2 + 16/r + 20 + 16r + r2

−4/r2 − 32/r + 32r + 4r2

4/r2 + 16/r − 40 + 16r + 4r2

[1, 7] 1024

0
0

−2/r2 − 9/r − 9r − 2r2

8/r2 + 18/r − 18r − 8r2

−6/r2 + 6/r + 6r − 6r2

[3, 3] 1024

4/r2 − 4/r − 4r + 4r2

−10/r2 + 8/r − 8r + 10r2

−11/r2 − 8/r + 30 − 8r + 11r2

−10/r2 + 8/r − 8r + 10r2

4/r2 − 4/r − 4r + 4r2

[3, 5] 1024

−6/r3 − 2/r2 + 8/r + 8r − 2r2 − 6r3

24/r3 − 18/r + 18r − 24r3

−39/r3 + 26/r2 − 68/r − 68r + 26r2 − 39r3

+30/r3 − 8/r2 + 46/r − 46r + 8r2 − 30r3

−6/r3 − 16/r2 + 22/r + 22r − 16r2 − 6r3

(Continued)
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(Continued)

[a, c] γ(a, c) P (a, c)

[3, 7] 1024

4/r4 + 8/r3 − 16/r2 + 16/r − 24 + 16r − 16r2 + 8r3 + 4r4

−22/r4 − 32/r3 + 56/r2 − 16/r + 16r − 56r2 + 32r3 + 22r4

47/r4 + 16/r3 − 2/r2 + 32/r + 78 + 32r − 2r2 + 16r3 + 47r4

−42/r4 + 32/r3 − 96/r2 − 144/r + 144r + 96r2 − 32r3 + 42r4

12/r4 − 24/r3 + 48/r2 + 48/r − 168 + 48r + 48r2 − 24r3 + 12r4

[5, 5] 256

60/r4 + 64/r3 + 72/r2 − 96/r − 200 − 96r + 72r2 + 64r3 + 60r4

−324/r4 − 720/r2 + 567/r − 576r + 720r2 + 324r4

525/r4 − 128/r3 + 936/r2 − 192/r + 634 − 192r + 936r2 − 128r3 + 525r4

−324/r4 − 720/r2 + 576/r − 576r + 720r2 + 324r4

60/r4 + 64/r3 + 72/r2 − 96/r − 200 − 96r + 72r2 + 64r3 + 60r4
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Appendix A. Correction to “Igusa Quartic and Steiner Surfaces”

by Shigeru Mukai

This correction concerns the definition of the Fricke involution in [25]. The para-
graph before [25, Theorem 2] is not precise enough to determine our Fricke
involution of H2/Γ1(2). In fact, the two explanations, the analytic and the moduli-
theoretic one, conflict with each other. It should read as follows:

“The element 1√
2
( 0 I2
−2I2 0 ) ∈ Sp(4,R) belongs to the normalizer of Γ0(2), and

induces an involution of the quotientH2/Γ0(2), which is called the Fricke involution.
Moduli-theoretically, the Fricke involution maps a pair (A,G) to (A/G,A(2)/G).
We note that a 2-dimensional vector space V is almost isomorphic to its dual
V ∨, or more precisely, we have canonically V � V ∨ ⊗ detV . Hence the quotient
A(2)/G is canonically isomorphic to G via the Weil pairing. Therefore, the Fricke
involution has a canonical lift on H2/Γ1(2), which we call the (canonical) Fricke
involution of H2/Γ1(2). Our Fricke involution is the composite of 1√

2
( 0 I2
−2I2 0 ) and

the involution (J2 0
0 J2

), where we put J2 = ( 0 1
−1 0). It commutes with each element of

Γ0(2)/Γ1(2) � S3 and H2/Γ1(2) has an action of the product group C2 ×S3. Two
pairs (A,G) and (A/G,A(2)/G) (in H2/Γ1(2)) are geometrically related to each
other by Richelot’s theorem. See Remark 7.”
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