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THE CUSP STRUCTURE OF THE PARAMODULAR

GROUPS FOR DEGREE TWO

Cris Poor and David S. Yuen

Abstract. We describe the one-dimensional and zero-dimensional cusps
of the Satake compactification for the paramodular groups in degree two
for arbitrary levels. We determine the crossings of the one-dimensional
cusps. Applications to computing the dimensions of Siegel modular forms
are given.

1. Introduction

Paramodular groups arise naturally in the classification of polarized abelian
varieties. The orbits of the Siegel upper half space under the action of a
paramodular group constitute the moduli space of equivalence classes of abelian
varieties with a fixed type of polarization. This interpretation of the paramod-
ular groups and their automorphic forms played an important role in the ar-
ticles of Siegel and Christian and in the textbook of Igusa (see [3, 13, 19]).
More recently, the degree two case has become of particular interest. Roberts
and Schmidt have given a systematic theory of newforms [15] for paramodular
groups of degree two. Brumer and Kramer have proposed the Paramodular
Conjecture [2], a testable modularity conjecture relating certain abelian sur-
faces of conductor N defined over Q to certain weight two Hecke eigenforms
for the degree two paramodular group of level N . This recent interest in de-
gree two may have more to do with the identity of a paramodular group as
an orthogonal group rather than as a symplectic group (see [7]). In order to
maintain contact with the large body of techniques for computing with Siegel
modular forms however, it is still important to study degree two paramodular
groups as symplectic groups.

In this article we determine the structure of the Satake compactification
for each paramodular group of degree two. That is, we completely classify the
1-cusps and the 0-cusps as well as the incidence relations among them. The dou-
ble cosets corresponding to the 1-cusps were already classified by Reefschläger
in his thesis [14]. The result is very nice: for level N , there is one double
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Figure 1. The cusp structure of K(4).

coset for each positive integral divisor of N . Due to a theorem of Satake [18],
possessing the cusp structure has the immediate application of determining
the codimension of the cusp forms inside the space of modular forms for even
weights k > 4. We give two illustrations, made possible by our results here, of
Satake’s theorem. Let the degree two paramodular group of level N be given
by

K(N) =























∗ N∗ ∗ ∗
∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗









: ∗ ∈ Z















∩ Sp2(Q).

Thus, elements of K(N) are characterized as rational symplectic matrices
with certain divisibility properties. Let Mk (K(N)) and Sk (K(N)) be the
Siegel modular forms and cusp forms, respectively, automorphic with respect to
K(N). For N = 4, the three 1-cusps cross as in Figure 1 and for even k > 4, we
have dimMk (K(4))−dimSk (K(4)) = 2+2 dimSk (SL2(Z))+dimSk (Γ0(2)) .
In [12], the generating function of the modular forms for K(4) was given:

∞
∑

k=0

dimMk(K(4)) tk

=
(1 + t12)(1 + t6 + t7 + t8 + t9 + t10 + t11 + t17)

(1 − t4)2(1 − t6)(1− t12)

= 1 + 2t4 + 2t6 + t7 + 4t8 + t9 + 5t10 + 3t11 + 10t12 + 3t13 + · · · .

The cusp structure of K(4) and an application of Satake’s Theorem yield the
following new result.

Theorem 1.1. We have
∞
∑

k=0

dimSk(K(4)) tk

=
t7+t8+t9+2t10+t11+2t12 + t16 + t17 + 2t18+t19+t20+t21+t23 − t28+t29

(1− t4)2(1− t6)(1− t12)
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Figure 2. The cusp structure of structure of K(N) for squarefree N .

= t7 + t8 + t9 + 2t10 + 3t11 + 4t12 + 3t13 + 5t14 + 6t15 + 10t16 + · · · .

Proof. Satake’s Theorem gives us:

dimMk (K(4))− dimSk (K(4)) = 2 + 2 dimSk (SL2(Z)) + dimSk (Γ0(2))

for even weights k ≥ 5. The modular forms of odd weight are necessarily cusp
forms. We use the known generating functions

∑

k∈Z
dimSk (SL2(Z)) t

k =

t12/
(

(1−t4)(1−t6)
)

and
∑

k∈Z
dimSk (Γ0(2)) t

k = t8/
(

(1− t2)(1− t4)
)

, along

with the known generating function for
∑∞

k=0 dimMk(K(4)) tk, to obtain our
conclusion for weights k ≥ 5. For weights k ≤ 4, only the weight four space
is nontrivial. There cannot be a nontrivial cusp form in the two dimensional
space of weight 4 because the cusp forms of weight 8 are one dimensional. �

For squarefree N , the 1-cusps are spheres and all cross at a unique 0-
cusp as in Figure 2. By Satake’s Theorem for even weights k > 4 we have
dimMk (K(N))−dimSk (K(N)) = 1+τ(N) dimSk (SL2(Z)) . This cusp struc-
ture and our choice of global representatives will be made use of in [11], where
Ibukiyama and Kitayama compute the dimensions dimSk (K(N)) for square-
free N and k ≥ 4. Previously, the dimensions dimSk (K(N)) were known for
prime levels N and k ≥ 3 by the work of Ibukiyama (see [9, 10]). For prime
levels, the structure of the cusps and their configuration is known for all para-
horic subgroups of general degree (see Propositions 3.6 and 5.2 in Ibukiyama’s
article [8]). By piecing together the situation for prime levels, one may obtain
a proof that paramodular groups of squarefree level have exactly one zero-cusp
in arbitrary degree. We thank R. Schulze-Pillot for this observation.

In order to give context to the presentation of the cusp structure of the
paramodular groups in degree two, let’s review the situation in degree one for
Γ0(ℓ) and Γ1(ℓ), compare [4]. We set

P1,0(Q) =

{(

∗ ∗
0 ∗

)

: ∗ ∈ Q

}

∩ SL2(Q).

In order to compactify X0(ℓ) = Γ0(ℓ)\H1, we add a finite number of 0-cusps
Γ0(ℓ)\P

1(Q). These 0-cusps correspond to the double coset decomposition of
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Γ0(ℓ)\ SL2(Z)/P1,0(Z), which is parameterized by the set

(q, u) ∈
∐

q∈N: q|ℓ

(Z/ gcd(q, ℓ/q)Z)
×

as follows. For each q | ℓ, we select an û ∈ Z prime to ℓ that gives the class of u

in (Z/ gcd(q, ℓ/q)Z)
×
and complete in any manner to a matrix

(

û ∗
q ∗

)

∈ SL2(Z).
The corresponding disjoint double coset decomposition is independent of these
choices:

SL2(Z) =
⋃

q,u

Γ0(ℓ)

(

û ∗
q ∗

)

P1,0(Z).

For X1(ℓ) = Γ1(ℓ)\H1, the cusps are parameterized by

(q, u, d) ∈
∐

q∈N: q|ℓ

(Z/ gcd(q, ℓ/q)Z)
×
× (Z/ℓZ)

×

and the disjoint double coset decomposition is

SL2(Z) =
∐

q,u,d

Γ1(ℓ)

(

∗ ∗

∗ d̂

)(

û ∗
q ∗

)

P1,0(Z).

Here, û is as before and the integer d̂ is prime to ℓ and gives the class of d in

(Z/ℓZ)
×
. The matrix

( ∗ ∗
∗ d̂

)

∈ Γ0(ℓ) is completed from d̂ in any manner.
For the paramodular group K(N), the 1-cusps K(N)\H∗

2,1 correspond to
the double cosets K(N)\ Sp2(Q)/P2,1(Q), where

P2,1(Q) =























∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗









: ∗ ∈ Q















∩ Sp2(Q).

As Reefschläger has shown, the number of 1-cusps is τ(N), the number of
positive divisors of N . This number is perhaps more interesting than any par-
ticular choice of representatives for the double cosets in K(N)\ Sp2(Q)/P2,1(Q)
because, once the number of 1-cusps is known, any full number of inequivalent
representatives must give a complete set of double coset representatives. For
example, we have the following theorem.

Theorem 1.2 (Reefschläger). Let N ∈ N. We have a disjoint union

Sp2(Q) =
⋃

m∈N:m|N

K(N) C1(m)P2,1(Q), with C1(m) =

(

1 m 0 0
0 1 0 0
0 0 1 0
0 0 −m 1

)

.

The number of 1-cusps is τ(N).

These coset representatives do have the nice property that for any integer m,
C1(m) and C1(gcd(m,N)) represent the same double coset. In Theorem 4.3, we
complete the study of the 1-cusps by showing that the boundary component
corresponding to a double coset as above is isomorphic to the compactification
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of Γ̃1(ℓ)\H1, where the group is Γ̃1(ℓ) = {σ ∈ SL2(Z) : σ ≡ ±( 1 ∗
0 1 ) mod ℓ}

and ℓ = gcd(m,N/m).

For the paramodular group K(N), the 0-cusps K(N)\H∗
2,0 correspond to

the double cosets K(N)\ Sp2(Q)/P2,0(Q), where

P2,0(Q) =























∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗









: ∗ ∈ Q















∩ Sp2(Q).

Theorem 1.3. Let N, f,N0 ∈ N with N = f2N0 and N0 squarefree. We have

a disjoint double coset decomposition

Sp2(Q) =
⋃

c,b

K(N)C0(b̂c)P2,0(Q), with C0(x) =

(

1 0 0 0
0 1 0 0
0 x 1 0
x 0 0 1

)

,

(c, b) ∈
∐

c∈N: c|f

(Z/cZ)
×
/{±1},

where b̂ is prime to N and gives the class of b in (Z/cZ)× /{±1}. The number

of 0-cusps is 1 + xf/2y.

These coset representatives have the following nice properties: For m | N
and M prime to N , K(N)C0(Mm)P2,0(Q) = K(N)C0(Mℓ)P2,0(Q) where ℓ =
gcd(m,N/m). For ℓi ∈ N with ℓ2i | N and integers Mi prime to N , Proposi-
tion 5.3 proves that

K(N)C0(M1ℓ1)P2,0(Q) = K(N)C0(M2ℓ2)P2,0(Q)

if and only if ℓ1 = ℓ2 and M1 ≡ ±M2 mod ℓ1.

The incidence relations among the boundary components of the Satake
compactification follow from these properties. For a divisor m | N , set ℓ =
gcd(m,N/m). The boundary curve of the Satake compactification correspond-

ing to a divisor m | N is isomorphic to the modular curve Γ̃1(ℓ)\H1, whose

0-cusps are of the form Γ̃1(ℓ)
( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

P1,0(Z) with q and u as in the case

of Γ0(ℓ), and d̂, which we may pick prime to N , running over the classes of

(Z/ℓZ)
×
/{±1}. In the Satake compactification, S (K(N)\H2), the 0-cusps are

identified according to:

Γ̃1(ℓ)

(

∗ ∗

∗ d̂

)(

û ∗
q ∗

)

P1,0(Z) 7→ K(N)C0

(

d̂
ℓ

q

)

P2,0(Q).

This completely describes the crossing of the boundary curves at the 0-cusps,
compare Theorem 6.2. On the other hand, given a 0-cusp, we can count the
number of times each boundary curve crosses this 0-cusp. This final result is
given as Theorem 1.4. For n ∈ N, define

ϕ′(n) =
∣

∣(Z/nZ)×/(±1)
∣

∣ =

{

1 if n ≤ 2,

ϕ(n)/2 if n > 2.
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The reader may enjoy verifying that
∑

c|f φ
′(c) = 1+xf/2y, so that the number

of zero-dimensional cusps of S (K(N)\H2) is indeed 1+xf/2y, with N = f2N0

for f,N0 ∈ N and N0 squarefree.

Theorem 1.4. Let N ∈ N. Fix m | N and the one-dimensional cusp cor-

responding to K(N)C1(m)P2,1(Q). Call ℓ = gcd(m,N/m). Its inequivalent

zero-dimensional cusps all correspond to K(N)C0(bc)P2,0(Q) for c | ℓ and

gcd(b,N) = 1 where b runs over distinct elements of the group (Z/ℓZ)×/(±1).
Each zero-dimensional cusp is crossed by the curve the following number of

times,
ϕ′(lcm(c, ℓ/c))ϕ(gcd(c, ℓ/c))

ϕ′(c)
,

which is
{

1
2ϕ(ℓ/c) if c ≤ 2 and ℓ > 2c,
ϕ(lcm(c,ℓ/c))ϕ(gcd(c,ℓ/c))

ϕ(c) otherwise.

We thank T. Ibukiyama for encouraging the second author to write this
article at the RIMS Conference, Automorphic forms, trace formulas and zeta

functions in Kyoto, Japan during January of 2011. We thank R. Schulze-Pillot
for obtaining Reefschläger’s thesis [14] for us.

2. Notation

We set J =

(

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)

and JN =

(

0 0 1 0
0 0 0 1/N
−1 0 0 0
0 −N 0 0

)

. We largely follow

Freitag’s textbook [5]. For example, the symplectic group over a ring R is
Spn(R) = {γ ∈ GL2n(R) : γ′Jγ = J} and for a subgroup G ⊆ Spn(R), we call
Gpr = G ∩ R+M2n×2n(Q) the projective rational elements of G. Useful types
of symplectic matrices are u(A) =

(

A 0
0 A∗

)

for A ∈ GL2(R), and t(B) = ( I B
0 I )

for B ∈ M sym
2×2 (R). Besides the standard congruence subgroups we use

Γ̃1(ℓ) = {A ∈ SL2(Z) : A ≡ ( 1 ∗
0 1 ) mod ℓ or A ≡

(

−1 ∗
0 −1

)

mod ℓ},

G(ℓ, δ) = ( 1 0
0 δ ) Γ̃1(ℓ) ( 1 0

0 δ )
−1

for ℓ, δ ∈ N. For a set U and subgroups Bq ⊆ U indexed by q ∈ A, we use
a disjoint union in the form

∐

q∈A Bq = ∪q∈A ∪x∈Bq
(q, x) ⊆ A × U . For two

square matrices A and B, we set A ⊥ B = (A 0
0 B ).

3. Satake compactification

To review the Satake compactification, define the Grassmannian of rank n
subspaces ofC2n, GrC(2n, n) = M rank n

2n×n (C)/GLn(C), as well as GrisoC (2n, n) =
{[MN ] ∈ GrC(2n, n) : J [MN ] = 0}, the Grassmannian of isotropic rank n sub-

spaces. The symplectic group Spn(C) has a natural left action on GrisoC (2n, n).
Let Vn(C) = M sym

n×n(C) be the vector space of n-by-n symmetric matrices viewed
as a subset of the isotropic Grassmannian via the identification Vn(C) ∋ W 7→
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[WI ] ∈ GrisoC (2n, n). For m = 0, 1, 2, . . . , n, we define analytic maps (by conven-
tion, H0 = {∞})

jn,m : Hm → GrisoC (2n, n)

Z 7→

[

I
(

Z−1 0
0 0

)

]

.

Note that jn,n : Hn → GrisoC (2n, n) coincides with the embedding of Hn ⊆

Vn(C) ⊆ GrisoC (2n, n). These jn,m are introduced because, setting Zn = Zm ⊥
iλIn−m ∈ Hn for Zm ∈ Hm and letting λ → +∞, it is clear that jn,m (Hm) is in
the closure of jn,n (Hn). Among the jn,m (Hm) for 0 ≤ m ≤ n, only the image
of Hn is stable under Spn(R)

pr and so we define H∗
n,m = Spn(R)

prjn,m (Hm).
Consequently, the disjoint union

S = H∗
n,n ∪H∗

n,n−1 ∪ · · · ∪ H∗
n,1 ∪H∗

n,0 ⊆ GrisoC (2n, n)

is stable under the action of Spn(R)
pr. Let Γ ⊆ Spn(R)

pr be a subgroup
commensurable with Spn(Z). We define S (Γ\Hn) = Γ\S to be the Satake

compactification of Γ\Hn. This is well-defined because elements of Γ that act
trivially onHn also act trivially on S. Satake defined an intrinsic topology on S
and proved that Γ\S is indeed compact in the quotient topology (see [16, 17]).
Furthermore, this quotient topology on Γ\S agrees with the topology induced

by Γ\GrisoC (2n, n) and S (Γ\Hn) is the closure of Γ\H
∗
n,n inside Γ\GrisoC (2n, n).

One can check that the stabilizer inside Spn(R)
pr of jn,m (Hm) is Pn,m(R)pr

where

Pn,m(F) =























A11 0 B11 B12

A21 A22 B21 B22

C11 0 D11 D12

0 0 0 D22









∈ Spn(F)















.

We have a homomorphism ωn,m : Pn,m(R)pr → Spm(R)pr, defined by sending

σ 7→
(

A11 B11

C11 D11

)

, that satisfies σjn,m(Z) = jn,m (ωn,m(σ)Z) for all Z ∈ Hm

and σ ∈ Pn,m(R)pr. We call the kernel Hn,m of ωn,m a Heisenberg group. As
a set we have H∗

n,m = ∪γΓγjn,m(Hm) where γ runs over representatives for
Γ\ Spn(R)

pr/ Stab (jn,m(Hm)), say Spn(R)
pr = ∪γΓγPn,m(R)pr. In this way,

the components of Γ\H∗
n,m correspond to a double coset decomposition and

it is these double cosets that we usually work with. For each piece of this
double coset decomposition, setting Γγ = ωn,m

(

γ−1Γγ ∩ Pn,m(R)pr
)

, we have
the isomorphism

Ψn,m,γ : Γγ\Hm
∼= Γ\Γγjn,m(Hm) ⊆ S (Γ\Hn) ,

given by sending ΓγZ 7→ Γγjn,m(Z). This gives the boundary components the
structure of modular varieties and these varieties, or often their closures, are
referred to as the m-cusps of S (Γ\Hn).

Now Γγ ⊆ Spm(R)pr is commensurable with Spm(Z) and so has its own
Satake compactification S (Γγ\Hm). In order to extend Ψn,m,γ to S (Γγ\Hm),
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we need the homomorphism in,m : Spm(R) → Pn,m(R) defined by

(

A B
C D

)

7→









A 0 B 0
0 In−m 0 0
C 0 D 0
0 0 0 In−m









.

The map Ψn,m,γ extends to a continuous map Ψn,m,γ : S (Γγ\Hm) → S (Γ\Hn)
and the image of S (Γγ\Hm) is the closure of Γ\Γγjn,m(Hm) inside S (Γ\Hn).
The extension Ψn,m,γ : Γγ\H

∗
m,ℓ → Γ\H∗

n,ℓ is defined by sending Γγρjm,ℓ(Z) 7→

Γγin,m(ρ)jn,ℓ(Z) for Z ∈ Hℓ and ρ ∈ Spm(R)pr. One can show this map is well-
defined by using the identities: jn,ℓ (ωm,ℓ(τ)Z) = in,m(τ)jn,ℓ(Z) for all Z ∈ Hℓ

and all τ ∈ Pm,ℓ(R)
pr; and in,m (ωn,m(σ)) ∈ σHn,m for all σ ∈ Pn,m(R)pr.

Thus we may consider cusps of cusps. We may have anm-cusp with an ℓ-cusp
of its own that we wish to identify as a boundary component of S (Γ\Hn). For
n > m > ℓ and γ ∈ Spn(R)

pr, consider an ℓ-cusp of S (Γγ\Hm) corresponding
to a double coset ΓγρPm,ℓ(R)

pr with ρ ∈ Spm(R)pr. The ℓ-cusp as a boundary
component of S (Γ\Hn) corresponds to the double coset Γγin,m(ρ)Pn,ℓ(R)

pr. If
this is the same double coset for inequivalent representatives γ, then it means
that two m-cusps intersect at this ℓ-cusp; for equivalent γ but inequivalent ρ,
it means that the m-cusp has self intersection.

An immediate virtue of the Satake compactification is the existence of a
global Φ-map. We consider only the special case where m = n − 1, ℓ = n −
2 and Γ ⊆ Spn(Q), appropriate for degree two paramodular groups. The
usual map Φ : Mk (Γ) → Mk (ωn,n−1 (Γ ∩ Pn,n−1(Q))) is defined by (Φf) (Z) =
limλ→+∞ f(Z ⊥ iλ) for Z ∈ Hn−1. This maps satisfies

Φ(n−r)(f | δ) =
(

Φ(n−r)(f)
)

| ωn,r(δ)

for δ ∈ Pn,r(Q) and integers r = 0, 1, . . . , n− 1. We now fix representatives γi
for a disjoint double coset decomposition Spn(Q) = ∪p

i=1ΓγiPn,n−1(Q) and

set Γi = ωn,n−1

(

γ−1
i Γγi ∩ Pn,n−1(Q)

)

. Define Φ̃ : Mk (Γ) → ⊕p
i=1Mk(Γi)

by f 7→
∏p

i=1 Φ(f | γi). Any element
∏p

i=1 fi ∈ Im Φ̃ satisfies the following
condition:

(1)
∀ 1 ≤ i, j ≤ p, ∀h1, h2 ∈ Spn−1(Q),we have Φ(fi | h1) = Φ(fj | h2)

whenever Γγiin,n−1(h1)Pn,n−2(Q) = Γγjin,n−1(h2)Pn,n−2(Q).

This condition amounts to saying that the fi agree where the cusps cross. In
[18], Satake proved that for even weights k > 4 the condition (1) characterizes

the image of the global Φ̃ map. The restriction on the weight in his proof arises
from the need to have convergent Poincare series; for some relaxation to k = 4
in degree two see [1].
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4. The one dimensional cusps

We review Reefschläger’s result that the 1-cusps of a paramodular group of
level N correspond to divisors of N . It is possible to do this briefly because the
proof has been streamlined by Gritsenko, who introduced a useful invariant.
The paramodular group K(N) stabilizes the lattice LN =diag(1, 1, 1, N)Z4 and
the transposed groupK(N)′ stabilizes the dual lattice L∗

N=diag(1, 1, 1, 1/N)Z4.
For X ∈ Q4, the fractional ideals X ′JLN and X ′L∗

N are invariants of the or-
bit K(N)X because (σX)′JLN = X ′σ′JLN = X ′Jσ−1LN = X ′JLN and
(σX)′L∗

N = X ′σ′L∗
N = X ′L∗

N . These fractional ideals both scale by α when
we replace X by αX for α ∈ Q∗. In order to remove this scaling factor, define

1-inv(X) = (X ′JLN) (X ′L∗
N )

−1
; this fractional ideal is an invariant of the

orbit K(N)[X ] for [X ] ∈ P3(Q) and is in fact an integral ideal containing NZ

because JLn ⊇ NL∗
N . The following algorithmic result is due to Gritsenko (see

[6]).

Proposition 4.1 (Gritsenko). Let N ∈ N and [X ] ∈ P3(Q). We have

K(N)[X ] = K(N)
[

(d 1 0 0)′
]

for 1-inv(X) = dZ ⊇ NZ.

This result classifies K(N)\Sp2(Q)/P2,1(Q) as well. Denote the second col-
umn of σ ∈ Sp2(Q) by σ2; then defining 1-inv(σ) = 1-inv(σ2), this is an
invariant of the double coset K(N)σP2,1(Q). Proposition 4.1 implies that this
invariant separates the double cosets as well.

Proposition 4.2. Let N ∈ N, σ ∈ Sp2(Q). We have K(N)σP2,1(Q) =
K(N)u( 1 d

0 1 )P2,1(Q) for 1-inv(σ) = dZ ⊇ NZ. Furthermore, for d | N , we

have 1-inv (u( 1 d
0 1 )) = dZ.

Proof. Take σ ∈ Sp2(Q). By Proposition 4.1, there exists a γ ∈ K(N) such

that (γσ)2 = α
(

d 1 0 0
)′

for dZ = 1-inv(σ2) = 1-inv(σ) and α ∈ Q∗.

Then
(

u( 1 d
0 1 )

−1
γσ
)

2
=
(

0 α 0 0
)′

and so u( 1 d
0 1 )

−1
γσ ∈ P2,1(Q), as easily

follows from the symplectic conditions. �

The disjoint double coset decomposition

Sp2(Q) =
⋃

d∈N: d|N

K(N)u( 1 d
0 1 )P2,1(Q),

of Theorem 1.2 follows from Proposition 4.2. The use of the double coset
invariant 1-inv has streamlined the exposition so that the essentially algorith-
mic nature of the double coset decomposition is confined to Proposition 4.1
and invoked only once. In the Appendix we present this algorithm explicitly
enough to write a computer program to implement it. One should not expect
every classification of double cosets to be reformulated so efficiently in terms
of invariants. Even for Γ0(ℓ) in degree one, one does not proceed wholly by
invariants. The group Γ0(ℓ) acts on the lattice Lℓ = Z ⊕ ℓZ and Γ0(ℓ)

′ acts
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on L∗
ℓ = Z ⊕ 1

ℓZ, so that X ′JLℓ and X ′L∗
ℓ are ideals that are invariants of

the orbit Γ0(ℓ)X for X ∈ Z2. Applied to the first column, these invariants are
enough to give the divisor q | ℓ of a normal form Γ0(ℓ)

(

û ∗
q ∗

)

P1,0(Z). The entry
û is then varied by actions that fix q and attempts to define a single complete
invariant on Γ0(ℓ)\ SL2(Z)/P1,0(Z) do little more than restate the classification
problem. We now complete the classification of the 1-cusps by identifying the
one dimensional boundary component corresponding to each positive divisor
of N .

Theorem 4.3. Let N,m ∈ N with m | N and set ℓ = gcd(m,N/m). Let

δ = 1
ℓ
N
m ∈ N so that N = mℓδ. Denote γ = C1(m). Then

Γγ = ω2,1(γ
−1K(N)γ ∩ P2,1(Q)) = ( 1 0

0 δ ) Γ̃1(ℓ) ( 1 0
0 δ )

−1
.

Proof. Take any
(

a b
c d

)

∈ Γγ . There exists a preimage
( a 0 b e

f g h p
c 0 d q
0 0 0 r

)

∈ γ−1K(N)γ ∩ P2,1(Q),

where a, b, c, d, e, f, g, h, p, q, r ∈ Q. Then the matrix

γ

( a 0 b e
f g h p
c 0 d q
0 0 0 r

)

γ−1 =

(

a+fm m(−a+g−fm) b+em+hm+pm2 e+mp
f g−fm h+pm p
c −cm d+qm q

−cm cm2 m(−d+r−qm) r−qm

)

is in K(N). This implies that f, c, q ∈ Z and then a, g, d, r ∈ Z follow. From
e+mp, h+mp ∈ Z, and from

b+ em+ hm+m2p = b−m2p+m(e+mp+ h+mp),

we conclude that b−m2p ∈ Z. The paramodular divisibility condition p ∈ 1
NZ

then implies that b ∈ gcd(m2,N)
N Z = 1

δZ. The paramodular divisibility condition

N | (−cm) implies N
m | c, or

ℓδ | c.

We have bc ∈ ℓZ and, in particular, bc ∈ Z. The determinant of the above
4-by-4 matrix is (ad − bc)gr, which must be 1. Then ad − bc, g, r ∈ Z forces
ad−bc, g, r = ±1. Furthermore, the symplectic condition forces ad−bc = 1 and
g = r = ±1. Now, looking at the (1,2)-entry, we see that N

m | (−a + g − fm).

Since ℓ | m and ℓ | N
m , then ℓ | (g − a). Similarly, looking at the (4,3)-entry, we

deduce that ℓ | (d− r). Hence

a ≡ d ≡ r mod ℓ,

where r = 1 or r = −1. Thus Γγ ⊆ ( 1 0
0 δ ) Γ̃1(ℓ) ( 1 0

0 δ )
−1

because

( 1 0
0 δ )

−1 ( a b
c d

)

( 1 0
0 δ ) =

(

a bδ
c/δ d

)

∈ Γ̃1(ℓ).

Conversely, take any
(

a b
c d

)

∈ G(ℓ, δ). Then a, c, d ∈ Z and b ∈ 1
δZ where

ℓδ | c and a ≡ d ≡ r mod ℓ for some r = ±1. Let b = b0/δ and c = c0ℓδ where
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b0, c0 ∈ Z. Since gcd(mℓ , δ) = 1, there exist k, z ∈ Z such that b0 = m
ℓ k + δz.

Since ℓ | (r − d) and ℓ | (r − a), there exist q0, t0, f, x ∈ Z such that

r − d = mq0 + δℓt0 and r − a = mf + xℓδ.

For u, y ∈ Z to be chosen later, let

B =









r − ℓδx Nx mu+ z u
f r − fm 0 k/N

c0ℓδ −c0N r − ℓδt0 +mδy q0 + δy
−c0N c0mN N(t0 −

m
ℓ y) r −mq0 −mδy









.

The conjugate of B by γ is:

γ−1Bγ =









a 0 b ℓδu−k
ℓδ

f r −k
ℓδ k/N

c 0 d q0 + δy
0 0 0 r









.

Note ω1(γ
−1Bγ) =

(

a b
c d

)

, and this is independent of u, y ∈ Z. If we can find

u, y ∈ Z such that γ−1Bγ ∈ Sp2(Q), then B ∈ Sp2(Q) and so B ∈ K(N) and
thus ω1(γ

−1Bγ) ∈ Γγ and the proof would be complete. The matrix γ−1Bγ
being symplectic requires that

(γ−1Bγ)J(γ−1Bγ)′−J=

(

0 kx−fz−ru 0 0
−kx+fz+ru 0 fd+c0k+q0r+rδy 0

0 −(fd+c0k+q0r+rδy) 0 0
0 0 0 0

)

vanishes. To make B symplectic, we need to make kx − fz − ru = 0 and
fd + c0k + q0r + rδy = 0. Since r = ±1, we can set u = r(kx − fz) to make
kx − fz − ru = 0. Next we claim δ | (fd + c0k + q0r) so that we can define
y = − r

δ (fd+ c0k+ q0r) ∈ Z to make fd+ c0k+ q0r+ rδy = 0. To see this, call
X = fd+ c0k + q0r. Then

mX = mfd+mc0k +mq0r

= (r − a− xℓδ)d+mc0k + (r − d− δℓt0)r

= 1− ad+ c0km− ℓδrt0 − dℓδx

= −b0ℓc0 + c0km− ℓδrt0 − dℓδx

= −ℓδc0z − ℓδrt0 − dℓδx.

Therefore ℓδ | mX and δ | m
ℓ X follows. Since gcd(δ, mℓ ) = 1, it follows that

δ | X and this completes the proof. �

The group Γ̃1(ℓ) has come up in a natural manner and we will need to have
good control over its cusps.

Lemma 4.4. We have the disjoint double coset decomposition

SL2(Z) =
⋃

q,u,d

Γ̃1(ℓ)

(

∗ ∗

∗ d̂

)(

û ∗
q ∗

)

P1,0(Z),
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where the indices run over

(q, u, d) ∈
∐

q∈N: q|ℓ

(Z/ gcd(q, ℓ/q)Z)
×
× (Z/ℓZ)

×
/{±1},

where û, d̂ are prime to ℓ and give the class of u ∈ (Z/ gcd(q, ℓ/q)Z)
×

and d ∈

(Z/ℓZ)
×
/{±1}, respectively. The matrices

(

û ∗
q ∗

)

∈ SL2(Z) and
( ∗ ∗
∗ d̂

)

∈ Γ0(ℓ)

are completed in any manner. Furthermore, we may choose d̂ and the upper

left entry of
( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

prime to any given natural number.

Proof. The double coset decomposition of Γ̃1(ℓ) follows from the standard de-
composition of Γ1(ℓ) mentioned in the Introduction. Consider a representative

(

a b

c d̂

)(

û ∗
q ∗

)

=

(

aû+ bq ∗

cû+ d̂q ∗

)

.

Note that gcd(aû+ bq, cû+ d̂q) = 1. We will show that d̂ and aû+ bq may
be chosen relatively prime to any given natural number without changing the

double coset. Preserving gcd(d̂, ℓ) = 1, we may reselect d̂ from the arithmetic

progression d̂, d̂ + ℓ, . . . , d̂ + jℓ, which contains infinitely many primes, and
complete to a new matrix

(

a b
c d̂

)

∈ Γ0(ℓ). Consider this done. For j ∈ N.

the representative
(

a+jc b+jd̂

c d̂

)

∈ Γ0(ℓ) works just as well and the progression

(a+ jc)û+ (b+ jd̂)q = (aû+ bq) + j(cû+ d̂q) contains infinitely many primes

because aû+ bq and cû+ d̂q are relatively prime. Therefore we may pick both

d̂ and aû+ bq prime to any fixed natural number. �

5. Equality among the K(N)C0(Z)P2,0(Q)

We determine when representatives C0(x) and C0(y) give the same double
coset in K(N)\ Sp2(Q)/P2,0(Q).

Lemma 5.1. Let N,m ∈ N with m | N and set ℓ = gcd(m,N/m). Let M ∈ Z

such that gcd(M,N) = 1. Then

K(N)C0(Mm)P2,0(Q) = K(N)C0(Mℓ)P2,0(Q).

Proof. Write N = mδℓ and note ℓ | m. Since gcd(mℓ , δ) = 1, there exist a, z ∈ Z

such that −am
ℓ + δz = 1. Since gcd(M,N) = 1, there exists k ∈ Z such that

M |(1 +Nk). Then define

P =





am
ℓ
(1−ℓδM) N m

ℓ
(M−kℓδ) −δ(m− 1+Nk

M
) aδ

m
ℓ
(−M+kℓδ)z m

ℓ
(−1+ℓMδ) −δ (m− 1+Nk

M
)δz/N

−M(1+mM−kN)z NM2 −(1+ℓMδ) (M−kℓδ)z

−NaM2 −NM(−1−mM+kN) N(−M+kℓδ) a(1+Mℓδ)



 ,

Q =





−1 −ℓδ δ(m− 1+Nk
M

) δ
z
m

a −aδ −(m− 1+Nk
M

)δz/N

0 0 −1+δz − z
ℓ

0 0 mδ −m
ℓ



 .



CUSPS OF PARAMODULAR GROUPS 457

We can see that P ∈ K(N) and Q ∈ P2,0(Q). The result follows from directly
checking that PC0(Mm)Q = C0(Mℓ). �

Lemma 5.2. Let ℓ,N ∈ N with ℓ2 | N . Let M1,M2 ∈ Z such that gcd(M1, N)
= gcd(M2, N) = 1. Then

K(N)C0(M1ℓ)P2,0(Q) = K(N)C0(M2ℓ)P2,0(Q)

if and only if M1 ≡ ±M2 mod ℓ.

Proof. Let δ = N/ℓ2 ∈ N. Suppose that there exist P ∈ K(N) and Q ∈ P2,0(Q)
such that PC0(M2ℓ)Q = C0(M1ℓ). By multiplying out the left hand side of
C0(M2ℓ)

−1P−1C0(M1ℓ) = Q, we see that, in order for P to have paramodular
divisibilities, Q must be of the form

Q =









a bℓ e f
c
ℓδ d g h/N
0 0 p q

ℓδ
0 0 rℓ s









,

where all variables are integers. We have

QJQ
′

− J =







0 −ce+bh−dfℓδ+agℓδ
ℓδ

bq+apδ
δ

−1 ℓ(ar+bs)

−−ce+bh−dfℓδ+agℓδ
ℓδ

0 cp+dq
ℓδ

cr+dsδ
δ

−1

− bq+apδ
δ

+1 − cp+dq
ℓδ

0 0

−ℓ(ar+bs) − cr+dsδ
δ

+1 0 0






,

and so the conditions for Q to be symplectic are

(2)

−ce+ bh− dfℓδ + agℓδ = 0,

bq + apδ

δ
= 1,

ar + bs = 0,

cp+ dq = 0,

cr + dsδ

δ
= 1.

Now, Q is symplectic if and only if P is symplectic. We have

P−1 = C0(M2ℓ)QC0(M1ℓ)
−1

=





a−fℓM1 ℓ(b−eM1) e f
c−hM1

ℓδ
d−gℓM1 g h/N

cM2−hM1M2−M1q

δ
ℓ(dM2−gℓM1M2−M1p) gℓM2+p

hM2+q

ℓδ

ℓ(aM2−fℓM1M2−sM1) ℓ2(bM2−eM1M2−rM1) ℓ(eM2+r) fℓM2+s



 ,
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and so along with the symplectic conditions of (2), P ∈ K(N) if and only if

(3)

ℓδ | b− eM1,

ℓδ | c− hM1,

δ | cM2 − hM1M2 − qM1,

ℓδ | dM2 − gℓM1M2 −M1p,

ℓδ | hM2 + q,

ℓδ | aM2 − fℓM1M2 − sM1,

δ | bM2 − eM2M2 − rM1,

ℓδ | eM2 + r.

Thus we have that C0(M1ℓ), C0(M2ℓ) are in the same double coset if and only if
we can find integer solutions a, b, c, d, e, f , g, h, p, q, r and s to Equations (3)
and (2) for given natural numbers N , ℓ and δ with N = ℓ2δ and given integers
M1 and M2 prime to N .

First, suppose C0(M1ℓ), C0(M2ℓ) are in the same double coset. It is not
hard to see that Equations (3) imply that δ | c, δ | b, δ | q, δ | r. The last
four equations in (2) imply that ds − ap = ds(ap + bq/δ) − ap(ds + cr/δ) =
(dsbq − apcr)/δ = 0 because dsbq = (dq)(bs) = (−cp)(−ar) = apcr. Thus
ds = ap. This implies bq = cr. Then, noting that s and r cannot both be zero,

a

s
=

d

p
=

−b/δ

r/δ
=

−c/δ

q/δ
.

Call this common value u
w where u,w ∈ Z and gcd(u,w) = 1. Then for some

A,B, v, z ∈ Z,

a = Au, s = Aw, d = Bu, p = Bw,

b = −δvu, r = δvw, c = −δzu, q = δzw.

The condition bq+apδ
δ = 1 becomes −δvuzw +AuBw = 1, or

uw(AB − δvz) = 1.

This already implies that u,w must be ±1.
From Equations (3), we see ℓδ divides M2(b − eM1) + M1(eM2 + r) =

M2b+M1r = (−M2δuv +M1δwv) = δv(M1w −M2u). Hence

ℓ | (M1w −M2u)v.

We similarly show that ℓ | (M1w−M2u)A. From ℓδ | (aM2−fℓM1M2−sM1),
we get that ℓ divides aM2 − sM1 = M2Au − M1Aw = −(M1w − M2u)A.
Let λ = ℓ/ gcd(ℓ,M1w − M2u), then it follows that λ | A and λ | v. Then
λ | (AB − δvz) forces λ = 1 and thus

M1w −M2u ≡ 0 mod ℓ.

Since u,w = ±1, then we have

M1 ≡ ±M2 mod ℓ,
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as claimed.
On the other hand, suppose M1 ≡ ±M2 mod ℓ. Fix u,w ∈ {±1} such that

M1w −M2u = ℓy for some y ∈ Z. Let t1, t2 ∈ Z such that N | (t1M1 − 1) and
N | (t2M2 − 1). Let

P =





uw(u+ℓM1t1t2y) 0 0 −uwt1t2y
0 u+ℓM1t1t2y −t1t2y 0

0 Ny
M1M2t1t2−1

δ
w−ℓM2t1t2y 0

Nuwy
M1M2t1t2−1

δ
0 0 uw(w−ℓM2t1t2y)



 ,

Q =









w 0 0 t1t2y
0 u uwt1t2y 0
0 0 w 0
0 0 0 u









.

Then P ∈ K(N) and Q ∈ P2,0(Q) and

P C0(M1ℓ)Q = C0(M2ℓ)

can be verified directly. �

Proposition 5.3. Let N ∈ N. Let ℓ21, ℓ
2
2 | N with ℓ1, ℓ2 ∈ N. Let M1,M2 ∈ Z

such that gcd(M1, N) = gcd(M2, N) = 1. Then

K(N)C0(M1ℓ1)P2,0(Q) = K(N)C0(M2ℓ2)P2,0(Q)

if and only if ℓ1 = ℓ2 and M1 ≡ ±M2 mod ℓ1.

Proof. Since ℓ21, ℓ
2
2 | N , let δ = N

ℓ1ℓ2
∈ N. In light of Lemma 5.2, we only need

to prove that K(N)C0(M1ℓ1)P2,0(Q) = K(N)C0(M2ℓ2)P2,0(Q) implies ℓ1 = ℓ2.
So assume there exist P ∈ K(N) and Q ∈ P2,0(Q) such that PC0(M2ℓ2)Q =
C0(M1ℓ1). Since C0(M2ℓ2)

−1P−1C0(M1ℓ1) = Q, by multiplying out the left
hand side, we see that Q must be of the form

Q =









a bℓ1 e f
c

ℓ2δ
d g h/N

0 0 p q
ℓ1δ

0 0 rℓ2 s









,

where all variables are integers. We have

QJQ
′

− J =









0 ∗ ap+ bq
δ − 1 ∗

∗ 0 ∗ ∗
∗ ∗ 0 0
∗ ∗ 0 0









,

and so in particular, we must have

ap+
bq

δ
= 1.

Now, we have

P−1 = C0(M2ℓ2)QC0(M1ℓ1)
−1



460 C. POOR AND D. YUEN

=







a−fℓ1M1 ℓ1(b−eM1) e f
c−hM1

ℓ2δ
d−gℓ1M1 g h/N

cM2−hM1M2−M1q

δ
ℓ2dM2−gℓ1ℓ2M1M2−ℓ1M1p gℓ2M2+p

hM2+q

ℓ1δ

ℓ2aM2−fℓ1ℓ2M1M2−sℓ1M1 ℓ1ℓ2(bM2−eM1M2−rM1) ℓ2(eM2+r) fℓ2M2+s






.

The divisibility conditions of P−1 ∈ K(N) force that δ | c, δ | b, δ | q, δ | r.
Let b = δb′ and q = δq′. Now let v = gcd(ℓ1, ℓ2) and denote ℓ′1 = ℓ1/v and
ℓ′2 = ℓ2/v so that gcd(ℓ′1, ℓ

′
2) = 1. Then the condition that

N | (ℓ2aM2 − fℓ1ℓ2M1M2 − sℓ1M1)

implies that ℓ1 | ℓ2aM2, which implies ℓ1 | ℓ2a, which implies ℓ′1 | ℓ′2a. Then

ℓ′1 | a. Let a = ℓ′1a
′. Then ap+ bq

δ = 1 can be rewritten as

(4) a′ℓ′1p+ δb′q′ = 1.

But N = ℓ1ℓ2δ and ℓ21 | N implies that ℓ1 | ℓ2δ which implies ℓ′1 | δ. Then
Equation (4) implies ℓ′1 | 1, which forces ℓ′1 = 1. This means ℓ1 | ℓ2. By the
same argument, we must also have ℓ2 | ℓ1. Thus ℓ1 = ℓ2. �

6. Reduction of the zero-cusps to canonical form

In this section we show that all double cosets K(N)σP2,0(Q), for σ ∈
Sp2(Q), are of the form K(N)C0(x)P2,0(Q) for some x ∈ Z. We begin the
reduction to this canonical form by relying on the classification of the one-
cusps. From σ ∈ K(N)u( 1 m

0 1 )P2,1(Q) for some m ∈ Z, it follows that σ ∈
K(N)u( 1 m

0 1 )i2,1(κ)P2,0(Q) for some κ ∈ SL2(Z).

Lemma 6.1. Let N,m ∈ N with m | N . For all
(

a b
c d

)

∈ SL2(Z),

K(N)C1(m)i2,1
(

a b
c d

)

P2,0(Q) = K(N)

(

1 0 0 0
0 1 0 0
0 mc 1 0
mc m2cd 0 1

)

P2,0(Q).

Proof. The result follows, using ad− bc = 1, from the calculation:

C1(m)i2,1
(

a b
c d

)

=

(

a m b 0
0 1 0 0
c 0 d 0

−cm 0 −dm 1

)

=

(

−a 0 −b 0
0 1 0 0
−c 0 −d 0
0 0 0 1

)(

1 0 0 0
0 1 0 0
0 mc 1 0
mc m2cd 0 1

)(−1 −dm 0 0
0 1 0 0
0 0 −1 0
0 0 −dm 1

)

.
�

We now show that the C0(Z) give double coset representatives for the zero-
cusps K(N)\H∗

0 by tracking the zero-cusps of the boundary curves K(N)\H∗
1.

Theorem 6.2. Let N ∈ N and σ ∈ Sp2(Q). There are R, r ∈ N with r | N
and R relatively prime to N such that K(N)σP2,0(Q) = K(N)C0(Rr)P2,0(Q).

Furthermore for m ∈ N with m | N , set ℓ = gcd(m,N/m) and δ = N/(mℓ)

so that N = mℓδ. Let Γ̃1(ℓ)
( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

P1,0(Z) be a double coset from

Γ̃1(ℓ)\ SL2(Z)/P1,0(Z)
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chosen as in Lemma 4.4 with:
( ∗ ∗
∗ d̂

)

∈ Γ0(ℓ),
(

û ∗
q ∗

)

∈ SL2(Z), q | ℓ and d̂ and

the upper left entry of
( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

relatively prime to N . Set

D = ( 1 0
0 δ )

( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

( 1 0
0 δ )

−1

so that the corresponding double coset from G(ℓ, δ)\ SL2(Q)/P1,0(Q) is

G(ℓ, δ)DP1,0(Q). We have i2,1 (D) ∈ K(N)C0((ℓ/q)d̂)P2,0(Q) with (ℓ/q) | N

and d̂ relatively prime to N .

Proof. By Theorem 1.1, we can write σ ∈ K(N)C1(m)P2,1(Q) for some m ∈ N

with m | N . Thus σ ∈ K(N)C1(m)i2,1
(

a b
c d

)

P2,0(Q) for some
(

a b
c d

)

∈ SL2(Q).

This double coset is unchanged if we reselect
(

a b
c d

)

from G(ℓ, δ)
(

a b
c d

)

P1,0(Q).
This is not altogether trivial; it uses the normality of the Heisenberg subgroup
H2,1 in P2,1(Q).

As in the statement of this theorem, first select

D = ( 1 0
0 δ )

( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

( 1 0
0 δ )

−1
= ( 1 0

0 δ )(
w ∗
z ∗ )(

1 0
0 δ )

−1
= ( w ∗

δz ∗ )

for some integer z ≡ d̂q mod ℓ with gcd(d̂, N) = 1 and for some integer w with
gcd(w,N) = 1. It follows that gcd(w, δz) = 1. Therefore, we can multiply D
on the right by something in P1,0(Q) to obtain D′ = ( w ∗

δz y ) ∈ SL2(Z) and D′ is
in the same double coset as D. By Lemma 6.1, we have the equality of double
cosets:

K(N)C1(m)i2,1(D
′)P2,0(Q) = K(N)

( 1 0 0 0
0 1 0 0
0 mδz 1 0

mδz m2δzy 0 1

)

P2,0(Q).

Next, we note thatN | δm2, so that the simple element ( I 0
S I ) is inK(N) for S =

(

0 0
0 m2δzy

)

. So we obtain K(N)C1(m)i2,1(D
′)P2,0(Q)= K(N)C0(mδz)P2,0(Q).

We have z = d̂q + kℓ for some integer k, so that mδz = mδd̂q + kN and

K(N)C0(mδz)P2,0(Q)=K(N)C0(mδqd̂)P2,0(Q). Using Lemma 5.1, and the

equality gcd(mδq, N
mδq ) = ℓ/q, which follows from ℓ | m, we have

K(N)C0(mδz)P2,0(Q) = K(N)C0((ℓ/q)d̂)P2,0(Q),

which is the final assertion of the theorem. The first assertion follows by setting

R = d̂ and r = ℓ/q. �

7. Proofs

We are now ready to prove Theorem 1.3 on the zero-cusps of the Satake
compactification and Theorem 1.4 on the zero-dimensional cusps of the one-
dimensional cusps as stated in the Introduction.

Proof of Theorem 1.3. From Theorem 6.2, we know that

Sp2(Q) =
⋃

r,R

K(N)C0(Rr)P2,0(Q)
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where r runs over r | N and R is prime to N . This countable union however,
is not disjoint. By Lemma 5.1, we know we can restrict the union to r = ℓ =
gcd(m,N/m), that is, to ℓ | f . By Lemma 5.2, we know that for fixed ℓ we can

restrict R to run over the classes of (Z/ℓZ)
×
/{±1}. This union is then disjoint

by Proposition 5.3. Counting the 0-cusps has already been left as an exercise
to the reader. �

Proof of Theorem 1.4. Using the decomposition from Theorem 1.3, for each
b, c ∈ N where c2 | N and gcd(b,N) = 1, we need to count how many times a
double coset G(ℓ, δ)DP1,0(Q) yields the double coset equality

K(N)C1(m)i2,1(D)P2,0(Q) = K(N)C0(bc)P2,0(Q).

From Theorem 6.2 and by Proposition 5.3, and using the notation from the
proof of Theorem 6.2, we can see that each such D must come from

( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

where c = ℓ
q and d̂ ≡ ±b mod c. The number of such

( ∗ ∗
∗ d̂

) (

û ∗
q ∗

)

is the number

of
(

û ∗
q ∗

)

times the number of such
( ∗ ∗
∗ d̂

)

. The number of
(

û ∗
q ∗

)

is ϕ(gcd(q, ℓ/q)).

The number of
( ∗ ∗
∗ d̂

)

with d̂ ≡ ±b mod c is the number of elements from

(Z/ lcm(q, ℓ/q)Z)×/(±1) that are equivalent to ±bmod c, which is ϕ′(lcm(q,ℓ/q))
ϕ′(c) .

Plugging back in q = ℓ/c gives the formula ϕ′(lcm(c,ℓ/c))ϕ(gcd(c,ℓ/c))
ϕ′(c) . The second

formula follows by considering the cases of c ≤ 2 and c > 2, and noting that
when c ≤ 2 we have ϕ(c) = 1 and ϕ(lcm(c, ℓ/c)) = ϕ(ℓ/c). �

Proposition 7.1. Let N,N0, f ∈ N with N = f2N0 and N0 squarefree. For

even k > 4 we have

dimMk (K(N))− dimSk (K(N))

= 1 + xf/2y+
∑

m∈N:m|N

dimSk

(

Γ̃1(gcd(m,N/m))
)

.

Proof. In the paramodular case by Theorem 4.3, Γm = G(ℓ, δ) ∼= Γ̃1(ℓ) for
ℓ = gcd(m,N/m) and N = mℓδ. For even k > 4, by Satake’s theorem [18],
the codimension of the cusp forms is the dimension of the modular forms
in ⊕m|NMk(Γm) that satisfy condition (1) of section 3. All the cusp forms
⊕m|NSk(Γm) satisfy condition (1). The dimension of the Eisenstein series sat-
isfying condition (1) is the number of zero-cusps of S (K(N)\H2) because, in
the elliptic modular case for even k ≥ 4, there is a basis of Eisenstein se-
ries supported at single cusps, compare the dimension formulae in [4], pages
87–88. �

8. Appendix

Proposition 4.1 (Gritsenko). Let N ∈ N and [X ] ∈ P3(Q). We have

K(N)[X ] = K(N)[
(

d 1 0 0
)′
] for 1-inv(X) = dZ ⊇ NZ.
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Proof. We may select a representative X ∈ LN with X ′L∗
N = Z. In coordinate

form, writing X ′ = (x1, x2, x3, x4), we may assume that x1, x2, x3, x4/N
are integral and that gcd(x1, x2, x3, x4/N) = 1. Both these properties are
preserved by the action of the paramodular group K(N). First, we select a
representative X with x4 = 0 by the following procedure: For X ∈ LN , if
x4 6= 0 then g = gcd(x2, x4/N) is also nonzero and we have g = ax2 + bx4/N
for some integers a and b. We obtain









1 0 0 0
0 a 0 b/N
0 0 1 0
0 −( x4

gN )N 0 x2

g

















x1

x2

x3

x4









=









x1

g
x3

0









∈ K(N)X.

Second, we select a representative X with x3 = x4 = 0: take
(

a b
c d

)

∈ SL2(Z)

with
(

a b
c d

)

( x1
x3

) = (m0 ) for m = gcd(x1, x3) so that








a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

















x1

x2

x3

0









=









m
x2

0
0









.

Third, we select a representative X with x4 = N . Since X ′L∗
N = Z, we have

gcd(m,x2) = 1 and there are integers a and b with am+ bx2 = 1, so that








1 0 0 0
0 1 0 0
0 aN 1 0
aN bN 0 1

















m
x2

0
0









=









m
x2

aNx2

N









.

Fourth, we get a representative with x2 = 1 and x4 = 0. Since N 6= 0, we
may apply the procedure of the first step as before but note that this time g =
gcd(x2, 1) = 1, so that we have a representative of the form X ′ = (x1, 1, x3, 0).
Fifth, by a repetition of the second step we have a representative of the form
X ′ = (m, 1, 0, 0). Finally, notice that 1-inv(X) = mZ + NZ = dZ so that
αm+ βN = d for some integers α and β. We have Gritsenko’s result:

(

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

)(

1 0 −m
d

0
0 1 0 0
0 0 1 0
0 0 0 1

)( 1 0 0 0
0 1 0 0
α βN 1 0
βN −βmN 0 1

)(

m
1
0
0

)

=

(

d
1
0
0

)

∈ K(N)X.
�
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