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Dimensions of Cusp Forms for T'y(p)
in Degree Two and Small Weights

By C. POOR and D. S. YUEN

Abstract. We investigate degree two Siegel cusp forms of small weight for Ty (p).
Using the Restriction Technique we compute some dimensions and verify the con-
jectures of HASHIMOTO in some examples of weights three and four. For weight
two we determine the dimension for primes p < 41 and find only lifts, We ex-
plain in general how to compute spaces of Siegel cusp forms for subgroups of
finite index in [T,

1 Introduction

See the end of this section for a list of basic notations used in this article. For weights
k > 5, the dimensions of the spaces of cusp forms in degree two for I'¢(p) were
computed by K. HASHIMOTO [7]. He also gave conjectural dimension formulas
in the cases of weights 3 and 4, leaving only weights 1 and 2 untouched. The
intervening years have not seen many examples to test his conjectures. It is the proof
of the upper bound that makes the computation of dim Sé‘ (To(p)) difficult. Recent
techniques make the computation of this upper bound feasible for Siegel modular
forms. We use Vanishing Theorems [16] and the Restriction Technique [17, 21] to
compute dim Sé‘ To(p)) for k = 2, 3, 4 and for small primes p. For k = 1, all
examples were trivial and we refer to [12] by T. IBUKIYAMA and N. SKORUPPA,
where it is shown that 5'21 (To(N)) = {0} for all positive integers N. Lower bounds
are given by constructing Siegel modular cusp forms. This paper both explains how
to use the Vanishing Theorems and the Restriction Technique for subgroups of finite
index and performs the following computations. For primes p = 2 and p = 3 the
results can be found in [26, 9].

Theorem 1.1. For weight k = 4, we have the following dimensions:

p 273 5 7 11 13
dimS; (To(p) |0 1 1 3 7 11

Conjecture 7-1 in [7], pg. 485-486 of K. HASHIMOTO is true in all these cases.
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Theorem 1.2, For weight k = 3, we have the following dimensions:

11 13 17 19 23
6 o 1 1 2

p 2 35
dim S5 (To(p)) [0 0 0

7
0

Conjecture 7-2 in [7], pg. 486 of K. HASHIMOTO is true in all these cases.

Theorem 1.3. For weight k = 2, we have the following dimensions:

35 7 11 13 17 19 23 29 31 37 41
0001 0 1 1t 3 3 3 2 6

p 2
dim S5 (To(p)) | O

For primes p < 41, the Hecke eigenforms in S% To(p)) are all lifts of elliptic
eigenforms, they are either Yoshida lifts, Saito-Kurokawa lifts, or both.

These computations are feasible because of two theoretical innovations. First,
although SIEGEL had estimated the number of Fourier coefficients needed to de-
termine a Siegel modular form, these estimates were rough and superior ones were
discovered in [16]. Section 2 surveys these estimates, relaxes some restrictions
found in [16], and provides an improved list of constants for estimations with Siegel
modular forms on subgroups of finite index. Section 3 works out specific details
for the subgroup I'o(p). Second, the Restriction Technique, introduced in [17],
efficiently produces linear relations among the Fourier coefficients of Siegel mod-
ular forms. The restriction of a Siegel modular form to a modular curve gives an
elliptic modular form; known linear relations among the Fourier coefficients of el-
liptic modular forms may then be pulled back to produce linear relations among the
Fourier coefficients of Siegel forms. Along with a determining set of Fourier coeffi-
cients, these linear relations provide upper bounds for dim Sé‘ (To(p)). Whether or
not this method always generates a complete set of linear relations is unknown. An
exposition of the Restriction Technique for level one and some partial converses to
the generation question can be found in [21]. Section 5 here explains the Restriction
Technique for subgroups of finite index but refers to [17, 21] for full details.

The weight two case is interesting because the L-functions of the rational non-
lift Hecke eigenforms may also be those of rational abelian varieties. It would be
most interesting to find a weight two rational Hecke eigenform that is not a lift
of elliptic eigenforms but we evidently need to extend our search to higher levels
to reach this goal. Also, the dimension of dim S% (To(p)) may grow more slowly
than O(p3), which is the growth rate of HASHIMOTO’s dimension formulas for
k > 2. The weight three case is also interesting as it corresponds to holomorphic
differential forms on the modular threefold To(p)\#,. We thank R. SCHARLAU
for discussions at AIM in Palo Alto in 2003 about the paper [24]. Many of the
experimental results in [24] become theorems by using Theorem 2.5 (or 3.3) here.
We thank S. BOCHERER for communicating the general result in Section 6. We
thank A. BRUMER and T. IBUKIYAMA for discussions about this work and for their
encouragement. We thank the referee for improving the Introduction and for short-
ening a number of proofs.
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Notations. Letn, k € ZT.

¢ P, (R) = real positive definite » x » matrices and !Pjemi(R) = real positive
semidefinite # X n matrices.

o H, = {Q € C™" | Qsymmetricand Im(2) > 0} = Siegel upper half
space.

e Sp,(F) = symplectic 2n x 2n matrices over a ring F.

e Define I', = Sp,,(Z) = the Siegel modular group.

o To(V) = {(£5)eSp,@ | C=0 mod N}, and A,(Z) = {({8) €
Spa(2)}.

o V,(Z) = symmetric n X n matrices over Z. For S € V,(Z), define ¢(S) =
(5%) € Sp,(Z). For U € GLy(Z), define u(U) = (¥ %) e Sp,(@).

e ForQ e J, ando = (£ 5) € Sp,(R), define 0 (Q) = (4Q + B)(CQ +
D)~1, and for f : #, — C, define (f|;0)() = det(CQ + D)~* f(o(Q)).

e For ' C Iy, of finite index, define the Siegel modular forms of weight & with
respect to the subgroup I” to be M,’; (I") and the Siegel cusp forms to be S,’f I,
see [6].

e When ¢ (V,(Z)) C I', we have the Fourier expansion

F@ =Y aw; Ne(t, )
teXy,

for f e S,’f (). Here, {t, Q) = tr(tQ), e(z) = €*™ and X, = integral-valued
half-integral positive definite » x » matrices.

e For f € S,’f(F) as above, define the support of 1 to be supp(f) = {r € X, |
a(t; f) # 0}, and the semihull of f to be

v(f) = Closure(ConvexHull(R> 1 supp(f))) inside !P,femi R).

e For T, u € GL,(R), define T[u] = u'Tu.
e Fors € J’,femi(]R), define
(1) m(s) = inf,ez,\ 0} #'su, the Minimum function.
(2) tr(s) = inf,ecL, z) tr(u'su), the reduced trace function.
(3) 8(s) = det(s)!/", the reduced determinant function.
4) w(s) = infuep,® %, the dyadic trace function.

® Uy = SUDyep, (R) %, the Hermite constant.

2 Vanishing Theorems

For computational purposes it is convenient to choose a function ¢ to linearly order
the support of a Siegel modular form.

Definition 2.1. A function ¢ : P™(R) — Ry is called fype one if

(1) Forall s € P»(R), ¢(s) > 0,
(2) foralli € R>g and s € P77 (R), ¢(As) = Ag(s),
(3) forallsy, s; € PE(R), p(s1 + 52) = P(s1) + P (s2).

A type one function is continuous on &,(R) and respects the partial order on
PEM(RY). The following vanishing theorem is essentially from [16], pg. 215.
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Theorem 2.2. Let ¢ be type one. For alln € Z7T there exists a c,(¢p) € Ruq such
that
VkeZ*, ¥V feSk infg (supp(f)) > @k = f=0. @.1)

The constant c,(¢) may be taken to be = SUDge g, infyer, @ ((Ima (Q))_l).
Proof. There is an Qg € J, where ¢ r(Q2) = det(Im Q)k/ 2| f (£2)] attains its max-
imum. The Semihull Theorem from [16], pg. 211 says that 7= (Im Qo)~! e v( f )

if f is nontrivial. Therefore, for some a; > 0 with Zas Z 1, we have x =
> sesupp(f) ¥sS arbitrarily close to ﬁ (Im Qo)‘l. By the continuity of ¢ we have

900 = (Y ass) = D asd(s) = Y s infs (supp(/)) > inf (supp(/))

arbitrarily close to £ ¢ ((Im Q0)~!) so that £ ¢ (tmQo)~!) > infe (supp(f)).
Any Q € T, (Q0) also has this property so that infyer, 4ﬂ¢ ((Ima(Qo)) ) >
inf¢ (supp(/)) and £ supge s, infoer, ¢ (Mo (2)7!) > inf¢ (supp(f)). O
Theorem 2.3. Equation (2.1) holds if we select for c,, (p) the following:

(1) For the Minimum function m, c,,(m) = 4” f ,un

(2) For the reduced trace t, ¢, (tr) = f n ;,Ln

(3) For the reduced determinant 8, cy, (3 )= 4 — f M-

(4) For the dyadic trace w, cn(w) = 4 ji .

5) Forn=1,c1(¢) = ﬁd)(l) and this is optimal.
(6) Forn=2,cy(m) = 110 and this is optimal.

(7) Forn =2, cp(ir) = é and this is optimal,
(8) Forn=2, co(w) = L.
) Forn=3, c3(m) = é and this is optimal.
(10) Forn =3, c3(f) = 4-3;% i
(11) Forn =4, c4(m) = % and this is optimal.
(12) Forn =4, ca(tr) = %% i
(13) Forn=5,¢c5(0 = £ % %
1.2
(14) Forn =S5, cs(m) = W 2.
(15) Forn=6,co(m) = 7 7= 5.
12
(16) Forn =1, c7(m) = W 3.

Proof. Estimates (1)—(4) were proven in [16], pp. 216~218. The formula (5)
c1(¢p) = %(ﬁ (1) follows from the Valence Inequality. Estimates (6)—(8) were proven
in [19], pg. 71. A reference for (9) c3(m) = § and (11) ca(m) = § is [23]. Esti-
mates (10), (12) and (13) were proven in [19], pg. 63. Estimates (14)-(16) were
published in [20]. O

The constants in Theorem 2.3 are the best currently known to the authors.
Item (8) is the estimate used in the computations of this paper. The following
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Theorem for cusp forms on subgroups of finite index is also essentially from [16],
pp- 215-216.

Theorem 2.4. Let ¢ be type one. For all n € Z7 there exists a cy(¢p) € Ruo
such that: For any subgroup I' C Ty, with finite index I and coset decomposition
I, = Ule ' M;, we have

I
VkeZ*, ¥ f e SKI), %Zinfqb supp(fIM)) > cp(Ple = f =0. (2.2)

i=1
Any constant ¢, (¢) for which equation (2.1) holds makes equation (2.2) hold, and
conversely.

Proof. If f is level one then

1< 1 & _
7 2 infe (supp(f1M) = + 3 inf@ (supp(,)) = inf (supp(/))

i=1 i=1
and so any constant valid for equation (2.2) is also valid for equation (2.1). On
the other hand, assume that c,(¢) is valid for equation (2.1). If f € S,’; )
then Norm(f) = ]_LLI fIM; € Sjk is level one. We have supp Norm( f)) C
Y.isupp(fIM;) so that inf (supp (Norm(f)) = inf@(3 7 supp (fIM))
> Y[infe (supp (f1M)). Thus } ¥ [infe (supp(fIM)) > ca(@)k im-

plies inf¢ (supp Norm(f))) > Y I, infe (supp(fIM)) > ca(¢)Ik so that
Norm( /) = 0 by Theorem 2.2 and hence f = 0. O

3 To(p)

We explain how to use the Vanishing Theorems for a subgroup of finite index in
I'y. We work out the details of Section 2 and find determining sets of Fourier co-
efficients for S§ (To(p)), p a prime. The dimension of S§ (To(p)) was determined
in {7) for k > 5, and in [12] for £ = 1, so we focus on weights k = 2,3,4
here. Recall the definitions I'0(N) = {(4 8) € Sp,(Z) | C =0 mod N}, and
An(@) = {(4 B) € Sp,(Z)}. The index is [Tz : To(p)] = (1+ p)(1 + p*) and the
double coset decomposition has three double cosets:

Iy =To(p)Eo UTo(p)E1A2(Z) U To(p) E2 Ao (Z),
where E, = I, & J, forr = 0, 1, 2; namely,

1000 1000 0 010
= (3308): m=(3800): ==(%180).

0001 0-100 0 ~100
The width of a double coset is the number of distinct single cosets it contains
and the widths of the above double cosets are 1, p + p” and p°, respectively.
Our interest is in the double coset decomposition because for f e Sfj (Tp(£)) and
8 = ('6 Ku’i*) € An(Z) we have supp(f18) = u'supp(f)u. If ¢ is a class func-
tion then ¢ (supp(f|M)) depends only on the double coset I'o(£)MA,(Z). Let
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fe Sk (T'o(p)) and consider the three Fourier expansions:
2

(f1E)(®) = ) ao(De ((t, Q)),

teXo

(FIEN@ = Y ai®e((t,Q)),
rex

IED@ = ) ax®e((t, Q). 3.1
tE%Xz

In the first Fourier series the translation subgroup of To(p) is
{¢ e @ | (é 5) eTo(p)} = V2(Z) so that ¢ runs over X;. The similar-
ity subgroup of T'o(p) is {u € GL2(Z) | (4 %) € To(p)} = GL2(Z) so that
ao(u'tu) = det(u) ap(r) for all w € GLy(Z). For the third Fourier series, the trans-
lation subgroup is {¢ € V2(Z) | (}%) € EaTo(p)E2} = pVa(Z) so that ¢ runs
over %Xz. The similarity subgroup is {u € GLy(Z) ] (’6 l?*) € EgFo(p)Ez} =
GLy(Z) so that ax (u'tu) = det(u)kaz(t) for all u € GL2(Z). For the middle cusp
To(p)E1A2(Z), the translation subgroup is {¢ € V2(Z) | (é ¢) € Ello(p)E1} =
{(5&) | (42) € M@} so that ¢ runs over (§.0,) € Q) with
gg) € Xy, we call this set X;l) for convenience. The similarity sub-
group is {u € GL2(Z) | (4 %) € E\To(p)E1} = (3 9).To(p)) so that
a1 (u'ty) = det(u)¥a; () forallu € (( ”01 (1’), Fo(p)).
Our goal is to choose sets Gy, C1, C2 € P2(Q) so that the following map is
injective:

st o)) — [[Cx[Jex[]c
Co ¢ (¢3

J = (@0(®)seey, X (@1(D)ee, X (@2()ice, -

(3.2)

Theorem 3.1. For p, k € Z+, define
Co={t e Xy | wt) < (1 + p)k},
C1 =0,
ey ={re Lo | w) < §(H2)k}.

For these C, the map (3.2) is injective. That is, Co and C, are a determining set of
Fourier coefficients for elements of S’z‘ To(p)).

Proof Lety = £(1 + p)k. Let I = [I'2 : To(p)] = (1 + p)(1 + p?). Take an
fe Sé‘ (To(p)) and suppose that g, (¢) = 0 forall ¢ € G, and 0 < r < 2. Since the
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dyadic trace is a class function we have

1<A, 1
7 ;mfw (supp(fiM;)) = m X
(1infw (supp()) + (p + p*) infw (supp(f1£1)) + p* infw (supp(f|E2))).

Since infw (supp(f|E1)) > 0 we have

1. 1
7 ; infw (supp(f1M;)) > ES YD)

Hence we have f = 0 by Theorem 2.4 and item (8) of Theorem 2.3. O

1
(1y+0+p3—y) = —— =
r

Note that Cp and pC; in Theorem 3.1 represent the same classes so that we
immediately have the upper bound

dim 85 (To(p)) < 2#{classes [] | € Xz and w(t) < L(p + 1k}.

We will write a®c for %(Z Ic’) € V(Q). From [16], pg. 224 we know that for
reduced a’c with 2|b| < a < ¢ we have w(abc) = %(a + ¢ — |b|). This already
proves that dim 522 (T'o(p)) = 0 for p = 2, 3. For odd weights k, we automatically
have a,(#) = 0 for r = 0,2 if # has an improper automorphism; an improper
automorphism of 7 is a w € GL,(Z) with det(x) = —1 and u'tu = ¢. In the theory
of quadratic forms, forms possessing an improper automorphism are ususally called
ambiguous. We define ¢ to be nonamibiguous if it has no improper automorphisms.
Thus for odd &,

dim S5 (To(p)) <
2#{classes [1] | te X, w() < %(p + Dk and ¢ nonamibiguous}.

This already proves that dimS21 To(p)) = 0 for p = 2,...,23 and that
dim Sg To(p)) = 0 for p = 2,3,5,7. To illustrate, we give the following sets
of determining Fourier coefficients:

For 85 (No(11)), Co={te Xz | w(r) < 1}
= [2121U2%2] U [2'4] U [2%4] U [4%4] U [216] U [414];

€2 = Co.
For 85 (To(11)), € = {te: | wn < 36—6 and ¢ nonamibiguous}
= [416] U [4!8];
e = £Co.

4 Restriction Technique for Sé‘ To(p)

Consider f € Sé‘ (T'o(p)) with Fourier expansions at the cusps Eg and E; given by
equation (3.1). Let Cp and G, be as in Theorem 3.1. Our goal is to generate linear
relations among the Fourier coefficients of f at Gy and C;. Toward this end we will
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generate linear relations on the Fourier coefficients from possibly larger sets B¢ and
By with Gy € Bp and G, C By. After fixing By and B,, we then choose a set
A C Pu(Z) and for each s € A we apply the technique of restriction to modular
curves. We summarize this technique and refer to [21] for more details. Denote
@5 : H1 — FH, by ¢s(r) = s7. Then we have (see [18], pg. 375)

¥ : S5 (To(p)) — ST (To(pe))
where £ € Z* satisfies £s~! € P,(Z). Let g1, ..., gn be a basis of M2 (To(pe)).

Forany f € Sé‘ (To(p)) there must be parameters ¢1, .. ., cy € C such that
N
Orf =) cmgm. (4.1)
m=1

For each o € I'; we have
N
(¢:f) loako = Z Cmgm2k0- 4.2)
m=1

We obtain a countable set of linear equations by expanding both sides of equa-
tion (4.2) into Fourier series. The equations on the ¢,, that one obtains in this man-
ner depend only upon the coset I'g(p€)o. The point is that much is known about
elements of M12k (To(pt)) and that each gy, |20 can be expanded in a Fourier series
by known methods. For example, we may generate M12k (To(ptL)) via theta series
and transform these theta series using the shadow theory of modular forms [22].

On the other hand, we can compute the Fourier series of (qb;" f ) |2ko in terms of
the Fourier coefficients of /. First, we compute ¢¥ f as follows [17]

Ne=Y( X )

jeZt teXp:t,s)=j

= Z ( Z v(j, s, t)ao(t))qj

JETF rexg

4.3)

where g = e(r). Here Xac‘l ={(¢ ) e %, | 0<2b=<a=x<clandv(j,s,1) =
card{v € [#] | (v, s} = j} for even k, while for odd k£ we define

if ¢ is not nonamibiguous,

v(j, s, 1) = [0

Y veltliv.sy=; 8¢, v),  ift is nonamibiguous,
where for nonamibiguous ¢ we define

8(t,v) = +1, if and v are properly equivalent,
|-t ifr and v are improperly equivalent.

The v(J, s, t) are readily computable number theoretic functions. Also, note that
for odd &, ¢} f is identically zero if s is not nonamibiguous. The Fourier expansion
of (¢} f) lo is computed in the next three Lemmas and Propositions. The following
Lemma may be proven from the general recipe given in [10], Proposition 3.4.
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Lemma 4.1. Let (£ 8) e Sp,(Z). Then we have

A B w Z
<C D)*ME’<0 W*)
Jor some M € To(p) and some (’g’ ,,5*) € Sp,(Z), and where r = rank]Fp ) e
{0,...,n}.

Although the following Proposition is stated for n = 2, it is true for general 7,
and is an easy consequence of Lemma 4.1.

Proposition 4.2. Let s € Po(Z) and £ € 7 such that ) e PoZ). Leto =
(25) e SLy(Z). Then we have

al, bs\ _ A B
(cs_1 d12> = ME, (0 A*)
for some M € To(p), somer € {0, 1,2} andsome (*§ &) € Spy(Q). Furthermore,
ifptlthenr =0ifp|candr =2ifpfec.

Proposition 4.3. Let f < Sé‘ To{p)) along with the hypothesis of Proposition 4.2,
we have

(85 NNako) (0) = det(A)* (FIkEr) (AsA't + BAY).
Proof. This follows as in the proof of Proposition 2.3 in [17]. 0O

Now we are able to expand both sides of equation (4.2) into Fourier series; how-
ever, for computational purposes we truncate the series (4.3) once Fourier coeffi-
cients from outside the set By appear. For J € Q, define the truncation operator
Truncy as truncation at order g”. Define:

J(s,m, T, B)=sup{jelZ | {teT|(s,0) <j}cB)

Applying the operator Trunc,, 1, ,,&,) to the Fourier expansion of (4.1) gives us
14+ J(s, 1; X2, By) number of equations involving the Fourier coefficients of f
with indices from By and the parameters ¢, ..., cy. We get other sets of such
equations by considering (¢} /)|o for other cusps o. We truncate the Fourier series
of equation (4.2) at

J (As A, widthpe(0); X2, Bo), ifr = 0 and
J(As AL, widthpe(0); £ X2, B2), ifr =2.

In this manner we get 1 + width,, (o). more linear equations involving the Fourier
coefficients of f with indices from By, B, along with the parameters c1, . .., cy.

The hope is that by using the collection of equations over all cusps ¢, we can
eliminate the parameters cy, . . ., ¢y and thus obtain relations among the Fourier co-
efficients of f with indices from By, B;. Finally, by using s from a large enough
set #, we hope we can generate enough linear relations among the Fourier coeffi-
cients of f with indices from By, B, to deduce enough linear relations among the
Fourier coefficients of f with indices from Gy, C; to yield an optimal upper bound
ondim S¥ (To(p)).
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Although Proposition 4.3 completes the theoretical desription of the Restriction
Technique, for computational purposes it is beneficial to be even more specific. The
following is a straightforward generalization of [17], Prop 2.4.

Proposition 4.4. With the hypotheses of Proposition 4.3 and with the additional
hypothesis that gcd(c, pl/c) = 1, let ¢ € Z such that ¢c =1 mod pl/c. Then we
have
(¢} Nluo) (x) = det(A)F (fleEr) (AsA'(T + dé))
= det(A) Pl ¢ (FIkEr) (T +d&)

Furthermore, ifr = 0 orr = 2 this is

det(A) Y ( 3 v(, AsAl, t)ar(t))e('c +dey

JEQF tex®

Xy, ifr=0
here X5 = 172 .
wnere X, %x;ed’ ifr =2
These calculations can be further simplified by choosing s so that p¢ is square-
free. By choosing p { £, Proposition 4.2 insures that only the cases r = 0 and
r = 2 will occur. And choosing £ squarefree allows us to use Proposition 4.4 to
further advantage in the following way. Since p£ is squarefree, each cusp o has a
representative of the form
—(10
o= (c l)

where ¢ ranges over the divisors of pf. Let ¢ be as in Proposition 4.4 for this o.

Then
1 0y (ptjc —¢ I ¢\ c
c 1)\ pt 1-¢é)\0 pt/c) pt’

Note that (p I%C 1:2c) is an Atkin-Lehner involution, denoted by W, where we

write ¢ = p?l. Note that W, is the Fricke involution. For g € Mlzk To(pl)),

r+é)
=)

(1 )@= @l (o ) =@ @ (

Thus we can avoid the whole T + ¢ business by replacing (z + ¢) by t to get the
first part of the following Corollary.

Corollary 4.5, Let f € Sé‘ To(p)) have Fourier expansions as in equation (3.1).
Lets € Poy(Z) and £ € L7 such that £s~' € Py(Z). Leto = (25) € SLy(D).

Assume that ¢ | pf. Denote ¢ = p—f. Assume ged(c, ¢y = 1, which is automatically
true if pL is square free. We have

al, bs\ A B
(cs’1 d]z)_MEr (0 A*)
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Jor some M € To(p), somer € {0,2} and some ( f*) € Spy(Q). We haver =0
if p 1 candr =2 otherwise. For any such choice of ('6" ) we have

@ (@ 1) (37) = det Y (0 o7, s 0ar0))a?

JeQF rext)
and equivalently,
(@ DIE) (@) = @ det(AY 3 (D0 v, Gs Al nar () g’
JEE rex®

= (& det(A)* (¢34, i (F1ED) ().
Proof. The second equation is gotten by replacing t by ¢t on both sides of the first
equation. (I

Using the second form above that avoids fractional exponents speeds up calcula-
tions.

Proposition 4.6. Let f € Sg To(p)). Let s € P»(Z) and £ = det(s). Assume that
ptL Then

(G N We = ¢5 1.
Proof. We will apply the second part of Corollary 4.5 with ¢ = p and ¢ = £ and
o =(19)to get that

Y k
GENIWe = (%) dot(AY P 10

Note r = 0 because p | ¢, and we have to compute +4 according to Proposition 4.2.
Let ¢ be as in Proposition 4.4 so that £ | (¢c — 1). Observe

I 0\ (s -1 shoer
es™V 1) T \el (1—=éo)s7! 0 =

has (d a _cgsﬁl) € Tp(p) because ¢ = p and because (1 — éeys~! is integral.
Thus we may take 4 = s~!. Then observing that (%)k det(A)* = 1 and that
%Asﬁt = ¢s~1 is properly equivalent to s (because s is 2 x 2) completes the

proof. O

Proposition 4.7. Let f € Sk (To(p)). Lets € Po(Z) and £ € LT such that
£~ € Py(Z). Assume that p | L. Then

(@ NIy = p*e3 (fIE2).

Proof. We will apply the second part of Corollary 4.5 withc¢ = £ and ¢ = p and
o =(19)to get that

14
@Dy = (B) detcaror (15D
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Note » = 2 because p { ¢, and we have to compute # according to Proposition 4.2.
Let ¢ be as in Proposition 4.4 so that p | (éc — 1). Observe

I 0\ _ —és .y 0 IN\[(I &
es7V 1) T\ =é)] —cs~U)\=1 0J\O I

has ((1:22)1 —;I_[) € To(p) because p | (1 — éc) and because cs~

Thus we may take 4 = I. The Proposition follows immediately. O

1 is integral.

In the case where £ is prime, the above two propositions tell us how to get the
other expansions (¢; /)| W from just the ¢¥ f expansion.

5 Upper Bounds

Form € Z%, a € R, denote |ot|, = max{f € 1Z | B < a}. Note that we
have |o|,n < o. Recall in n = 2 that the dyadic trace of a half-integral form takes
values in %Zzo- From a weight k and a prime p we construct our set of determining
Fourier coefficients Gy LI G, and, using an auxillary parameter 8, our net By and
B; as follows:

Co={te Xz | wt) < £(p + 1))z and ¢ nonamibiguous if k odd}
and &; = %Go,

Bo = {t € X2 | w() < B and ¢ nonamibiguous if k odd} and B, = %30.

Our choices are given in Tables 1 through 3. Also, we choose a set A C
P2(Z). Note that for k£ odd, we only need nonamibiguous forms in Cp, Ca,
Bo, B, and A. We ran the Restriction Technique with the choices in Tables 1
through 3 and obtained upper bounds for dim Sé‘ (T'o(p)) as reported in these ta-
bles. By |[Coll and |[Bo]] we denote the number of classes in Gy and By,
respectively. For the first Table we use the sets: Fo = (212,213,314,44),
Fi = FyuU (214,315,525}, B, = {395,415 597,526,616} and 3 =
{216, 217,219, 303,309,316, 416, 419, 56, 517, 518, 527, 627, 637, 638, 718, 8°8}.

Instead of going through each Table, we give an example for weight two. To
enjoy any brevity of exposition the reader must cede us the ability to compute with
elliptic forms. Our programs used theta series to span spaces of elliptic forms. This
allowed us to compute the expansion of an elliptic form in a Fourier series at any
cusp. MAGMA will also give these cusp expansions when the cusp is given by an
Atkin-Lehner involution, as in the following example.

Example. We consider 57 (T'o(11)) and use ¢} : S ([p(11)) — S§ (To(11£)) for
s=(39)(59),(31), (31)and £ = 1,2, 3, 5, respectively. The determining set is
given by Cg and G, where Gy = [212]U[2°2]1U 2141 U [2°4]U 4241 U[2l6]U[414]
and C; = ﬁ(?o and the net is given by By = G U [4°4] U [4%6] U [296] and
B, = 1 Bo.
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p s+l lIGl B I[Bo]| A dimS3 (To(p)) <
2 0.5 0 0
3 1.0 0 0
5 1.5 1 2 2 212 0
7 2.5 3 25 3 212 0
11 3.5 7 4 10 212,213 101,19 1
13 4.5 13 5 17 same as above 0
17 55 21 7 39 212,314, 414 1
19 6.5 32 75 46 Fy 1
23 7.5 46 95 84  Fyu3®3 2la 3lg 3
29 9.5 84 12 156 Fu4ls 3
31 10.5 109 125 172 F U395, 526 3
37 12.5 172 15 281 FIUFR 2
41 13.5 211 165 361 FUBUF 6
Table 1. Upper Bounds for k = 2
p L3+l iG] B I[Boll A dimS) To(p)) <
2 1.0 0 0
3 1.5 0 0
5 2.5 0 0
7 3.5 0 0
11 5.5 2 7 6 315 0
13 6.5 6 8.5 15 314,315 0
17 8.5 15 13 72 315 526 1
19 9.5 23 135 &4 315 526 1
1 1 1 1
23 115 47 17 185 1;;35 ,5635266‘;257 2
Table 2. Upper Bounds for k = 3
p [ 13(p+Dl2 I[Cl B B0l A dimSi (To(p) <
2 15 1 1.5 1 212 0
3 2.5 3 3.5 7 213 1
5 3.5 7 6 27 212,393,214 314 1
1 0
7 5.0 17 8 55 Zlééﬂjl A 3
1 1 1
11 7.5 46 115 138 30233,253126";’1 . 7
1 1 0 1 1
13 9.0 74 13 192 iﬁj{?ifgﬁfsjs’;@' 11

Table 3. Upper Bounds for k£ = 4

First, consider s = (} ). For f € 83 (I'o(11)) we have ﬁé ?)f e S} (To(11))
and
(¢’E : 1)@ = 2a02'2) + a0(2°2)) 4>
+ (4a0(2°2) + 2a0(2°4) + 4ap(2'4) ¢
+ (4a0(2°4) + 2a9(2°6) + 4ao(2'2) + 2a9(2'4)
+ 4ap(2'6) + ap(4%4) + 2a9(4'4) + 2ap(4%4))g* + ...,

)N @) = 1216}, 1 ) (f1E2) (@
2

1
0
= 1212a2(32) + @2 (32))g* + ...

1
0

(@

1
0
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There is only one cusp form of weight 4 whose g-expansion begins with ¢2 and it
is in the Fricke plus space:

(@10 =4 —4¢° +2¢" +8¢° + - -

If we set d)* = c(n(r)n(llr))4 and eliminate the parameter ¢ in
(69) P

121(;5* (1 0)(f(|)£%'2) = ¢ (n(z)n(117))* as well, we obtain the equations
0= 4a0(202) + a0(2°4) + 4a0(2 2) + 2ap(2'4),
0= day(37 )+az( )+4a (3 )+2a (2”‘)
0= —2a2( ) +4a2( ) +2a2( ) +2a ( ) +4a2(21—) +a2(41—4)
200 (1) + 20(42),
0 = —2a9(2°2) + 4a0(2°4) + 2a9(2°6) + 2ap(2'4) + 4ap(2'6) + ag(4°4)
+2a0(4'4) + 2a0(4°4),
0 = a9 (22) +2ap(2'2) — 121ay(42) — 2425 (32).
A similar analysis for s = (} §) gives the equations
0 = 4ay (202) + a0(2°4) + 4a0(2'2) + 2a0(2'4),
0=4a(32) + a(3R) + 4a(32) + 2m(3
0 = a9(2°2) + 2ag (204) + a0(2°6) + 4a0(2'2) + 2a9(26),
0=a(%2) +2a(5) + ar (5F )+4az( 22) +2az(211—f),
0 = ap(2°2) + 2a0(2'2) — 121ay(32) — 242, (32).
For s = (21) we have ¢%, \ : S3(To(11)) — S} (I'0(33)) and the ex-

(13)

pansions under the Atkin-Lehner involutions W11 = (3, %), w3 = (1 7}),
Wss = (%5 0) are
(¢( 21 1)) = a0(2'2)g> + 3a0(2°2)g* + (3a0(2'2) + 3ap(2'4))q°
+ (6a0(2°4) + ap(4%4))¢°
+ (6a0(2'4) + 3a0(2'6) + 3ag(4'4))q”
+ (6ao(2°2) + 6a0(2°6) + 3ag(4°4) + 3an(4%6))g® + - - -,

((¢z%%)f)|W11)(r) 121(a(22)¢> +3a2(11)q+ Y,

along with (67, |\ /)W = &%, |\ f-and (675, |\ /)| W33 = (6%, ;\ /)| P11
(12) (12) (12) (12)
The subspace SV C Sf (T'0(33)) of cusp forms g for which the vanishing of

2, g|Ws, gIlWi1, g|lWas is each of at least order ¢> and for which g|W3 = g is
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2-dimensional. A basis for SV is

¢’ -3¢°-2¢°+6¢°+ -,

q*—20° —q®+5¢°+ .
This space SV is stable under the Atkin-Lehner involutions and in fact is fixed under
each Atkin-Lehner involution. Using these facts and setting (q&Z% % ) f ) )= oz(q3 —

3¢5 +---) + B(g* — 2¢° + - - -) gives the equations
a02'2) = a,
3ap(2°2) = B,
3a9(2'2) + 3ap(2'4) = —3a — 28,
6a9(2°4) + ap(4*4) = —2a — B,
6a0(2'4) + 3ap(216) + 3ag(414) =0,
6a0(2°2) + 6a0(2°6) + 3ap(4%4) + 3ag(4%6) = 6a + 58

and corresponding equations in as(. . .)s. Eliminating the parameters gives the lin-
ear relations

0 = 2ap(2°2) + 2a0(2'2) + ap(2'4)
0 = 2a9(2'4) + ap(2'6) + ap(4'4)
0 = 2a0(2'2) + 3a0(2°2) + ap(4%4) + 6a9(2°4)
0 = 2a0(2'2) + 3a0(2°2) — 249 (2°6) — ap(4°4) — ap(4%6)
0 = ap(2'2) — 121a2(32)
0 = a9(2%2) — 121ay(%2)
0=2a(%7) + 2a2(2§—3) +ar(52)
0= 20 (31) + an (36) + (4
0=2an(33) + 36n(3P) + an () + Gen( )
0=2m(32) +3a(32) - 2(%F) - () - an(4)
A similar analysis for s = (2 }) gives the linear relations

0 = 4a9(2°2) + ag(2°4) + 4ao(2'2) + 2ap(2'4),

0 = ag(2°4) — 2a9(2'4) + 4ap(2'6) + 4ap(4%4),

0 = 3a0(2°4) + 2a0(2°6) + 2ag(2'4) + 2a0(4'4)

0= ap(2'2) — 121ay(32)

0 = ap(2°2) — 121ay(%2)

= ap(2'4) — 121ax(%H)



74 C. Poor and D. S. Yuen

0= 40 (32) + ar(3) + 4 (32) + 2a2(3E),
0= az(—) - 2a2(2—1) + 4a2(3—1§) + 402(%)
0= 3a2( 1) +2az(2 6) +2a2(21—4) +2"2(41 )

The solution space of these 29 equations has a one-dimensional projection onto the

Fourier coefficients from G and ¢, and is spanned by the following solution.

a0(2'2) | a0(2"2) | ap(2'4) | ap(2°D) | ap(4%4) | a0(4'4) | a0(2'6)
1 -1 0 0 1 1 -1

with all @y (4F bey mra0(a’e). Thus dim 82 (To(11)) < 1.

The techmque illustrated in the Example almost tells the whole story. For odd
weights, one must additionally keep track of the proper equivalence classes of the
indices of the Fourier coefficients. Finally, in the case of 822 (To(41)) the linear re-
lations provided by the forms in 4 have an 11-dimensional nullspace on the Fourier
coefficients from Gy LI G;. We used the fact that if ao(7'; f) are the Fourier coeffi-
cients of a Siegel modular cusp form then

(T3 T =0 e 1)+ o Pl )] )

q—1
423 a(GTI(2 )] /) +agT; £)
a=0

are the Fourier coefficients of the Siegel modular cusp form 7, /. Here 7 is
the standard Hecke operator on Sé‘ (To(p)), see [8] or [25]. The intersection of
the 11-dimensional nullspace and its image under 7> was 6-dimensional, hence
dim 2 (To(41)) < 6.

6 Lower Bounds

Until this point we have discussed only upper bounds for dim Sé‘ To(p)). We ad-
dress the question of lower bounds by actually constructing cusp forms. The charm
of the subject has always been the diversity of ways in which modular forms arise.
Although our topic remains the same, this section has a decidedly different flavor as
we cast about for constructions of cusp forms.

For k = 2, the work of S. BOCHERER and R. SCHULZE-PILLOT [2] on the
injectivity of the Yoshida lift provides the dimension ¥ of the subspace of cusp
forms that is spanned by Yoshida lifts. We quote the results from the thesis of
M. KLEIN [13] from part of his Tabelle 2.3:

p|2 3 5 7 11 13 17 19 23 29 31 37 41 43
g0 000 1 0 1 1 2 2 2 2 3 3
d. /0000 0 0 0 0 6 0 0 1 0 1
)0 6 00 1 0 1 1 2 2 2 1 3 2
yi0o 000 1 0 1 1 3 3 3 1 6 3

Table 4. Dimension of Yoshida lifts
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In the Table above: g = dimS% To(p)); d+ = dim{f € S12 Tolp) | fIWp =
+f}; Wehave ¥ = d_ + (dz‘) + (dz*) for primes p < 389. In general, ¥ =
di + (dz‘) + (d2+) where dy, < d_ is the dimension of the space spanned inside of
{fe Sf To(p)) | f1W, = — f} by Hecke eigenforms whose L-function does not
vanish ats = 1.

The case of p = 37 requires further comment, the space of Yoshida lifts is one-
dimensional but we need a lower bound of 2 on dim S% (T'o(37)). We will see that
there is also a (generalized) Saito-Kurokawa lift in S%(F0(37)), see [15]. From
Table 4 we see that S%(F0(37)) has two eigenforms, one each in the Fricke plus
and minus spaces. By the Shimura correspondence these correspond to distinct,
and hence linearly independent, eigenforms of half integral weight. As sharpened
by KOHNEN [14], pg. 64 we have the noncanonical isomorphism, S% To(@7)) =

3
Sf (To(4-37))*. The generalized Saito-Kurokawa lift

SK : SI% (To@-37)" — S3(To(37))

is linear so that dim S2(I'o(37)) > 2.

One minor difficulty with the above discussion is that in [15] the generalized
Saito-Kurokawa lift was demonstrated only for even £ > 2, whereas we need the
case k = 2. In [15], the map SK was factored

_1
ST To@N) T — P T(N) — SETo(N))

for odd squarefree N. The second map holds for general £ but the proof of the first
map used Poincare series and so required £ > 2. The following ad hoc Lemma
amends Theorem 2 from [15] to include the case k£ = 2 but we should mention
that we have received from T. IBUKIYAMA [11] a development of the theory of the
Saito-Kurokawa lift to Sé‘ (I'g(N)) that treats all even weights in a uniform manner
for any N € ZT. See [5] for the definition of J,ZulSp(I‘o (V).

Lemma 6.1. The linear map 8 defined by

2 _
3 c(D)e(r - D, —I—rz) N 3 ¢(D)e(|D|7)

D<0,reZ,D=r? mod 4 D<0,D=0,1 mod 4

_1

induces an isomorphism between J,i”;Sp (To(N)) and Sf L(To(@NYT in the case
k=2

Proof. The space of Jacobi forms is an M (I'g(NV))-module. For g € M7 (Fo(NV))
and F e J T (To(N)) we have 8(g(r)F(t,2)) = g(41)8(F(z,2)); indeed,
this is true even as a map on formal series. We may use the statement of the

3

Lemma for even k > 2 by Theorem 2 of [15]. Take f € S} (To(dN)*. If
f(r) = ZD<0,DEO’1 mod 4 ¢(D)e(|D|1), define F by the convergent power series

F(T,2) = Y. p <0 rez, D=r? mod 4 c(D)e(’ZZDt +rz),sothat F: #; x C— Cis
holomorphic. Let E4 be the weight 4 Eisenstein series of level one. There exists Fg
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such that 8(Fg) = E4(4t) f(r). We have Fs(t,z) = E4(r)F(t,z) because they
have the same series expansion. Thus

Fg(z,
Pz = E%)

and we conclude F € J; 1 (To(NV)). Since the ¢g-expansions of Eisenstein series be-
gin with 1 at the cusps, equation (6.1) shows that F is a Jacobi cusp form. Therefore
4 is surjective in the case k = 2. It is clearly injective from the definition. |

(6.1)

More generally, S. BOCHERER has explained to us [1] that the Saito-Kurokawa
lifts of elliptic eigenforms in S% (To(p)) whose L-function vanishes at s = 1 are al-
ways linearly independent from the space of Yoshida lifts. The reason is essentially
that in this case the standard L-function of the Saito-Kurokawa lift does not have a
pole at s = 1 as it would were it in the span of the theta series, see Theorem 4.1
in [3]. Arguing from this result one may increase the dimension of the space of
known lifts in §2 (To(p)) to dy-(dy + 1)/2 + d—(d— + 1)/2.

For k = 3, the work of S. BOCHERER and R. SCHULZE-PILLOT [3] on Yoshida
lifts, while not giving a general injectivity result, does allow us to construct lifts in
specific cases. For example, in p = 17 we have the nontrivial Yoshida lift computed
in [3]. These are theta series with pluriharmonic coefficients. Let A € R” be an
even lattice of rank m and square determinantdet A = N 2 LetP: Mysm ) —»C
be a pluri-harmonic polynomial [6], p. 161 of degree v and define 95 p : #, — C
by

T, p(R) = Z P(L)e(3(LL', Q).

LeAr
The fanction #4, p is then a Siegel modular cusp form of weight 7 + v and level
Io(N) and degree n, see [6]. Furthermore for B, X € M;,x;,(C), the polyno-
mial P(X) = det(BXY is pluri-harmonic when v = 1 or whenever B satis-
fies BB' = 0. To list some Fourier coefficients of ¥4 p we let A = Z"M
for M € GL,(R), give the Gram matrix MM¢, and write the Fourier series
9a,p(R) = (cont) Yy a(T)e((Q, T)).

level MMt B cont. 4l6 418 4l10 6'12 628 6210 6212 8li2 8212
71 10
0010
ry(17) (}fl o %) /T 1 -1 -1 -1 1 1 -1 1 -3
01 2 o) 0100
4021
0010
To(19) 04112 4419 L 0 -1 0 ~1 o0 1 0 -1
2161 0100
1216
4100
1000
Ty (23) 1600 22 1 0 2 -2 0 0 0 2 0
0041 0100
0016
4100
1000
[o(23) 1600 23 1 2 0 -2 0 0 0 0 -2
002 1
007112 0100

This table of the Fourier coefficients of 94 p for A = Z™ M and P(X) = det(BX?)
shows that dim S5 (I'9(17)) > 1, dim S5 (T'o(19)) > 1 and dim S5 (['p(23)) > 2.
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For k = 4 we construct modular forms from the theta series of 8-by-8 in-
tegral positive definite even quadratic forms with square determinant. We ob-
tain cusp forms by taking linear combinations. For Q € £,(Q), let 22(Q) =
> vezma e(3(N'ON, Q). If Q = MM is the Gram matrix of the lattice
A = Z" M then 9€ = ¥, ;. For the construction of cusp forms from theta se-
ries, the following Lemma is useful.

Lemma 6.2. Let | € Mé‘ (To(p)), and let W, denote the Fricke involution. If
®o(f) = 0and Oo(f|Wp) = 0 then f € S (To(p)).

Proof. From [6], pg. 127 it suffices to check ®o(f|M) = 0 for a complete set
of representatives r, =0 u To(p)M. For the M we may take the 1 representa-
tive Eg; the p representatives E2¢(S), where S € M;Xz(Z) represents each class
in M;Xz(IFp), and the p(p + 1) representatives E1¢ (( )u(U), where x € Z
represents each class in F, and U = (19) or U = (§ 1) where j € Z repre-
sents each class in F,,. These choices of U have bottom rows which represent each
one-dimensional subspace of ]F2 Our assumptions are equivalent to assuming that
®y(f|Eo) = 0 and Do(f|E2) = 0 and we will show that all other <I>0(f|M) =0
follow from these.

Let f be any Siegel form for a group of finite index. One elementary relation is
®o(f) = 0 if and only if ®o(f|£(S)) = 0. From this we see that $o(f]E2) = 0
implies @ (| E22(S)) = 0. Another elementary relation is ®@o(f[£1) = @o(/)I/.
This takes care of the representatives in the double coset I'o(p) £1A2(Z) that have

U = (19). For those with U = ((1)—11) we note that Elt((gg))u((?_jl)) =

u(JEat(( 1))E1, so that

®o(/121((§ 9))u((151)) = Po(S1u( Eat((]
= Do(flu(IE2t((]

))E1)
I

Now we make use of f € Mé‘ (To(p)) so that fju(J1) = f; then the vanishing of
Po(f|E2) is equivalent to that of ®o(f1u(J) E2t(( §)))I1- O

O\- ON

This Lemma, along with the standard action of the Fricke operator on theta series,
99| W, = i"™ det(Q) /2 e/ 29",

allows us to check if linear combinations of theta series are indeed cusp forms. For
standard lattices like Eg, A2, etc., we refer to [4]. For more obscure lattices we give
the Gram matrices here. For convenience in typesetting, if 0 and 0 are even forms
and O is the Gram matrix of the lattice A, then we define (O @ £ A)tobe
@ 0oLl _ RN

A nontrivial cusp form in Sg Te(3)) is

100 (42 @ Eg) — 900 (Ay ® EF) — ¢ (Eg) + 819 (3 - Es)
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so that dim Sg (To(3)) > 1. A nontrivial cusp form in Sg (To(5)) is

6250 (Qs ® Qs) — 360 (Ag @ Ag) — 9000 (4] © A%) — 3150 (As 4
+ & (Eg) + 6250 (5 - Eg)

so that dim S5 (To(5)) > 1. Here we set

21 —1-1
Qs = (_11 39 _21) and note det(Qs) = 5%.
“1-12 4

We have S2 (To(7)) 2 Span(f, T2 f, T2 f) where f = 36269(B®) — 12328(B @
AP) — 1920(B @ dg) — 94089 (B @ A) + 30 (Es) + 720307 - Eg). Here we
have

41110 2
14 ~-10 2 2
sip | 1-14 271 1 _ (21
A" =110 24 21 andB_(M)
02 1 —24 2
22 1-12 4

These forms are linearly independent so that dim S; {To(7)) > 3. On this space we
have T = 35T} — 324T; + 5161,

We have Sg To(11)) 2 Span(f1, f2, 3. f1, T2 fo, b f3, T22f1) where [ =
=38 (Q1) + 20 (Q2) + © (Q3) € S (To(11)) and f; = fH(Qy) fori = 1,2,3,
and where

20 -10 2111 4 0-2~1
o2 0-1). _ -1). _foa1 2
O="1060) QL={2103s4)] D=|2140])
0-10 6 “1-14 8 120 4

These forms are linearly independent so that dim S§ (Ce(11)) > 7.
We have S5 (To(13)) 2 Spen(f, o f, T2 f, ..., T} f. g, Tag, T}g) where f =

150 (0P) +39(0p ® Oc) — 20(Qa) — 168(Qp) and g = —9(QF) — 139(0 ®
0c) + 149(Qq) + 169(Qy) — 168 (0s). Here we have

sy

0473 3910 Y0033
_ ) _[o210). _{-11
=114 0 )5 Qb—(llzo)’ =7 3 {03
-120 8 1004 1 3 310
6 -3 3 3.3 2 21 21110000
3630231 0 14 21 011 =2
336 312 —2-2 1-24 20606060
Oe=|30361 130 o |1 124102
e=| 32016132 €=|0oo0o0o16=2131]]
3211 610 0 -1 0 026 3 1
5153316 0 0102 1 3125
102020 0 6 0 2013 135 12
2 000-1-10 0 4 1 -100 1 1 2
0 210-10 0 0 1 41 1-10 21
0 1200 1 1 1 11 4-10 1 2 -1
0,=|0 0021011 Os=| 0 1-1410-1-
r=}-1-1016 3 3 3 | 5=| 0 -10 1 4 -10 -1
10103 125 5 1 01 0-140 0
0 0113 5 121 1 2 2-100 6 -2
0 0113 5 ~112 2 J1 212110 =210

We mention that although we have an 11-dimensional space, the minimal poly-
nomial of 7> has degree 8. These linearly independent theta series show that
dim S35 (Fo(13)) > 11.
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7 Conclusion

The lower bounds of Section 6 all coincide with the upper bounds in the Tables of
Section 5. This proves the dimensions in the Theorems of the Introduction. The
results used modest computing power, mainly a desktop personal computer. We
plan a more computationally intensive search for paramodular cusp forms of weight
two.
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