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Paramodular forms and compact twist

Tbmoyoshi Ibukiyama

In the early eighties, the author proposed several explicit conjectures on
correspondence between (global) Siegel modular forms of the split Sp(4) and
automorphic forms of the compact twist of Sp(4), both belonging to parahoric
subgroups locally. Actually we treated two cases, one is for paramodular type
subgroups, and the other is for the minimal parahoric subgroups. These two
conjectures were based on the evidence of global dimensional equality and
numerical examples supporting the conjectures. (cf. [5], [4], [3]). This was
an attempt to generalize the classical but neatly described Eichler correspon-
dence between modular forms of SL(2) and SU(2), rather than the general
Jacquet-Langlands correspondence. The project was abandoned for many
years but now I restarted this with young mathematician S. Wakatsuki, in
particular in the case of paramodular groups treated in [4]. Here we would
like to report some new results as well as our old thoughts. We give our con-
jecture in section 4 and evidence on global dimensional equality in section 5.
A new expli'cit result on the dimension of vector valued Siegel paramodular
forms is announced in section 6.

1 Pai'amo‘dular groups, Siegel modular forms,
and pew forms |

We fix a prime p throughout the paper, and denote by K(p) the so called
(global) paramodular group defined as follows..

Z 7 p'Z Z
_ N vZ Z I T

pZ Z Z Z

Locally this is one of the parahoric subgroups of Sp(4,Q,). We denote by
pr,; the irreducible rational representation of GL(2) defined by pr;(g) =
det(g)*¥Sym;(g) where Sym; is the j-th symmetric tensor representation.



For any function F on the Siegel upper half space H, of degree two an,
9=(48) € Sp(4,R), we write

(Flkj)lgl = p(CZ + D)'F(Z).

his is a Q-form of GSp(4) and we can expect that there should exist a %;od
; espondence between automorphic forms of GSp(é%, @4) and Gga. ere
e give necessary definitions. Let G4 be the adelization and G, or G its
| components. Let O be a maximal order of D and Dy or O, the local

: ; . ; ; . For any prime
Let I be any discrete (arithmetic) subgroup of Sp(4,R). A holomorphic cus mpletion at a prime . VX; ﬁ(}){ axpr%edfj:g;net tgeOflo(ggl group a?; I;), we
form of T' of weight p; ; is a C?*1-valued holomorphic function F(Z) on H. # p, we put Uy = Gg N M3(0g).

such that F'ly ;[y] = F for all v € I" which vanishes at the boundaries of th ange the model. We put

Satake compactification of I'\H,. We denote: by Sk,;(I") the space of cusp

1
forms of weight py ; belonging to I

G = {9 € My(Dy); g (2 (1)) ‘g =n(9) <(1) 0> ,n(g) € Q;‘} ,

We now define new forms of Sy ;(K(p)). We put p = ( 0 12). Three 0. 110N
” plz 0 U, = Gin ( p P) .
groups 5p(4,Z), p~*Sp(4, Z)p and K (p) contains the same Iwahori subgroup P o \r0, O
Z Z L Z Since G = Gy, we identify these two groups.from now on. We put 4U i
pL L L Z o [iprime Un- We take a rational representation (1) V) of U Sp(4) =
B =S mn pZ pZ Z pZ € ]\}ZT(ZH), gt = 15} (H: the Hamilton quaternions) corresponding to the
pZ 7 Z Z ung diagram parameter f1 > fo > 0. We assume that f; = fo mod 2.

hen pj, s, factors through USp(4)/{*1l2}. We define a representation of

For I € 5,;(5p(4,2)) + Sk, (07" Sp(4, Z)p) C Sk ;(B(p)), we put 'y by

Tr(F) = Z Flisv]-

YEB(P\K(p)

In [4], we defined the space of old forms of S ;(K (p)) as Tr(Sk;(Sp(4,Z)) +
Sk;(5p(4,Z)) and the space of new forms as the subspace of Sk (K (p))
orthogonal to the old forms. (In [4], we treated only the scalar valued case,
i.e. the case of j = 0, but we need no essential change for j > 0.)

Locally at p there are three maximal compact subgroups of Sp(4,Q,) up
to conjugation, i.e. the completion of K(p), Sp(4,Z,) and p~'Sp(4, Zy)p,
and we are regarding in the above that those representation whose local
component at p has a fixed vector by Sp(4,Z,) or p~1Sp(4,Z,)p are "old
forms”. Recently we have more general theory by Roberts and Schmidt [g]
for local theory of new vectors for paramodular groups, of level p™. Our old
(global) definition is essentially the same as their local definition for the level
D case.

We denote by Sp<(K (p)) the space of new forms.

Ga — Goo — Goo/R*1, = USp(4)/{1,} 25 GL(V)

nd denote this also by py, f,. A V-valued function f(g) on G 4 is defined to be
automorphic form of weight py, s, belonging to U if f (ugav) = pp. ) f(g)
any a € G, u € U, and g € G4. We denote the space of these au-
oinorphic forms by My, 5, (U). We interpret M 52U m;)lre concretely as
Jlows. We take a double coset decomposition G4 = UjZ;Ug;G and put
GNg g Weput Vi = {v € V;pp s (v)v = for al_l vy € Tu}. Then
e have My, ;,(U) = ©, VT (cf. [1]). The constant function on G4 is an
utomorphic form of weight poo. Since we some‘gimes want to exclude the
onstant function, we denote by S o(U) the orthogonal complemen.t of the
ce of constant functions in Moo(U). When (f1, fo) # (0,0), we just put

"fl Wf2 (U) = Mf1 Jf2 (U>

Thara lifting.and old forms

define old forms of My, ;,(U), we must explain Thara lifting fr_om USp(2) x
(2) to G4 (cf. [7], [6]). This is a kind of compact version of Saltf)-K'urokawa
fting or Yoshida lifting. We put fi + fo = 2v (12 a non—negat_we 1nteger>.
ake the space Hg, of (real) harmonic polynomials of 8 variables. Since
R® where H is the Hamilton quaternions, we can regard P € Hy,

2 Compact twist
et D be the division quaternion algebra ramified only at p and co. We put
G = {g € Mz(D); g%G = n(g)12,n(g) € Q%,}

r ;



i = F
x 0%) and T(m) of (G4,U). >S)r in other word,él:" —)II:} ii’?f:)l};reané
is a common eigenform of D or G4. We put S(m)F1 : 2
F, = 7(m) Fy, where S(m) and T'(m) are the Hecke operafcb)rs consisting
ose elements of similitude norm m. We er’c'e so(m) =m s(m})l. hat
wder the assumption that F' is a common elgenzfqrm, we can s gwh
)5 0 if and only if the coefficient of ¥r (1) at e*™" does not vanish.

as a function on H?, so we write P = P(z, y) (z, ¥y € H). The compa
orthogonal ‘group SO(8) is acting naturally on Hay. We put USp(n)

{9 € M,(H);9'7 = 1,}. Then (a,g) € USp(2) x USp(4) acts on Hs, b
P(z,y) — P((ciz,ay)g). For any integers a and b with > b >0, we deno
by (0a-s, Va—s) the symmetric tensor representation of USp(2) of degree g —
and by (p.4,V, ) the representation of U Sp(4) corresponding to the Youn
diagram parameter (a, b). The space Hs, can be decomposed into irreducib

‘ 3 ) ; bove,
representations of USp(2) x USp(4) as em 3.1 ([7],[6]) Assumptions and notation being the same as a

ume that 9p # 0. Then we have
s Z e L(s,F3) = L(s —b—1, F)L(s,%F).

a+b=2v,a>b>0

where V,, is the representation space of 0,y ® pap (Vap is more explicitl ‘we define
given but we omit the details here.) We take a double coset decomposition o k
the adelization D}: D = UL, D*h,0% where O% = H* [Loprimes O - For.
with 1 < ¢ < h, we write E; = D* N h;'O%h;. For any (¢,k) with 1 <4 <
and 1 < x < H, we denote by V;%XF” the space of E; x I', invariant vector
in -V, 4. Then the space <

Ls9p)= ] (-clgg+ gorera=ae)

gianyprime

ol where c(m) is the Fourier coefficient of ¥r, and

1

L(s,Fy) = (1 = so(p)p™) " H(l — solg)q + ¢t

E;xT
Wep = PDiichigesuV, ;7 " I

is the tensor product of automorphic forms of D of weight o,_, with respec
to Of and M 4(U). We take F = (F,,) € W where F,, € VT, '
There exists a maximal left O-lattice L in D? such that U = {9 €
Ga;Lg = L}, where we put Lg = Ny(Lygy N D?), L, = O, ® L. This is
so called a maximal lattice in the non-principal genus. We put L;, = h;Lg,.
For F' = (F,,) € W, we put

(r) = 3 Fio(a)etrinrintie)

xELin

definition of L(s, F5) is given in the next section

define the space of old forms to be the subspac.e of Sap(U) generfat;g
ose F, such that ¥pem 7 0 for some autom'orphm elgenfg;in Fy of D}
respect to éj of weight o,_;. We denote this space by o .(U ). l
We note that by Eicher’s theorem, Fi cor(l;)esponds to an elliptic modular
form of weight @ — b+ 2 belonging to I'y’(p) where

TV (p) = {(‘; Z) € SLy(Z);c =0 mod p} .

where 7 is the variable of the upper half space and n(L;,) the positive gen-

erator of the Z-ideal generated by the norms of z € L;.. We also put . .
i Local L functions at good and bad primes

3 ) .
Ip(r) = Z Z; mﬁm(ﬂ.

Since it is easy to see that Lt is equivalent to Ej for our choice of I/ , and
since F is a harmonic polynomial of degree 2v = a + b, we see that 9(r) €

a2 prime g # p, wé vé‘ee that U, = GSp(2, Z,), so for each common eigen—v
F € Sy ;(K(p) or F € Myyj_3x-3(U), we define

=1 k=

' : j—4y —2s 2k+j—3-3s 4k+25—6—45)—1
Aat4+4(SLo(Z)), the space of elliptic modular forms of weight a 4+ b + 4 of 1= Mg~ + (M@)? = A(¢?) — 42— Aq)g +4 )

SLy(Z), and if a + b £ 0, this is a cusp form. ,
We can naturally define the action of Hecke operators of G4 and DionF.
We assume that F' is the common eigenform of all the Hecke operators S(m)

T(QF = Aq)F and T(¢)F = M@ F. Here T(q”) its the ;S'p(él, Z,)
e coset consisting of ¢ € GSp(4,Q,) N M4(Z,) with gJ*g = q"J.
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Now we consider the L function at the bad prime p. The Hecke algebra for. .
10
the pair of G} and U, is generated by T'(1,p) = Up (O p) Up, R(p) = Uy,
and U,7~!. We put

, . (0, 70 0 1\ (01
T(p)z{gern<7rO”p OP”>;9<1 0> G=p (1 _0>}.

Then we can show that

ketch of the proof. ‘We can show that the action on ¢, of the double coset
corresponding t0 i +e-Ar +q+1 induces Sp(4, Z,) fixed vector which should
zero by our assumption that ¢, is a. new vector of level p. The details
‘omitted here. (Roberts and Schmidt informed me later that this can be
own also by using their table of the classification of the local representation
)

Judging from this split GSp(4) case, it is also natural that we took the
gree three local L function for the compact twist defined as above.

- In both split and compact case, the global L function is defined to be the
oduct of the local L functions at all primes, including the bad prime.

L 1+ pR(p)u
Y T == (T(@) — pR(p))u + PP R(p*)u?

v=0

Let F € My, ;,(U) be a common eigenform of T'(p) and R(p) with T'(p)F Conjectures and comparison of dimensions

7(p)F and R(p)F = r(p)F. We note that r(p?) = p/1*/2 and r(p)
+plfitf)/2, Although the denominator in the above series is of degree two
with respect to p~—%, we define the local L function of F at p to be the degree
three one with respect to p~° given by

following conjecture was first proposed for the scalar valued case in [4].
jecture 5.1 For any integer k > 3 and even 7 > 0, we have an linear
Sk (K(p)) = S35 s x-3(U)

that L{s,F) = L(s,zp( )) (including the bad Euler factors) for any
on eigenforms F' € S ;(K(p)) of Hecke operators.

1
(1 =r(p)p*=*)(1 = (7(p) — pr(p))p* + r(p*)p~2*)

The reason of this definition is as follows.

For the split GSp(4), for a local new vector ¢, of the local admissible
representation 7 of (paramodular) level p, Roberts and Schmidt gave th
definition of local L-function by ‘

L,(s,F)=

‘e can show the following relation between dimensions which gives a
d evidence for the above conjecture.

rem 5.2 (\cf [4] when j = 0. The case j > 0 is new.)
1 >4 and even j > 0, we have

q—3/2()\ﬂ_ + Ew)q—s + (q72u7r +‘1)q—2s + 6ﬂ_q—1/2q-—3s

LP(S’¢W) = 1
dim Sk,J(K(p)) — 2dim Sk,J(Sp(él,Z))

where the notation is as in [8]. But actually we can show that this L function = dim Skq;-3k—3(U) — dim Sory;_2(SLo(Z)) x Any (Fél)(p))
decomposes into the product of degree one and two. That is, we can show ~ :
the following theorem (obtained after the conference). 5*(T'5(p)) is the space of modular forms (not necessarily a cusp form)
(p) of weight 2, and for j > 0, ?j‘é’(l’(l)(p)) is the space of new cusp
f weight 7 + 2,

of. The first term of the right hand side is known in [2] II for any
The first term of the left hand side for j = 0 and k£ > 4 is in [4] and
e 7 > 0 and kK > 4 is a new result jointly obtained with S. Wakatsuki
en in the next section.

mark. We have also several partial results on comparison of traces of
perators, but not completed yet. ’

on the above relation, we give conjectures on the dimension of the

f new forms.

Theorem 4.1 In the above, we have
b+ €A +g+1=0.

In particular, we get

1
(14 q2,q7)(1 = ¢332 (N + (¢ + Dex)g™ + %)

L(S7 ¢7r) =



Conjecture 5.3 We assume that j is even with j > 0.
For even k > 3, we should have

[y

= Pl x (G +1)(k~2)G+k—1)(j+2k—3).

dim S5 (K(p) = dim Sio(K (p)) — 2dim So(Sp(4, Z)) + dim Spe_2(SLs(2) 2880 ~ 6

dim SpY, 5(U) = dim Sk_s-s(U) — dim Spx_s(SLs(Z)) x dim So(T§ ().

Il

' /576 i p#£2,
= DU +E=1kE-2)x { 1{/1152 ;fii 2.

[(=1)72(k = 2), = (G + k= 1), —(=1)"2(k = 2), (j + k — 1);4]x/2* -3

For odd k or positive j, we should have

m 537 (K (p))

dim S}c,J(K(p)) — 2dim Sk1j(Sp(4, Z)),

; : new i 2,
dim Sk+j—3,k—3(U ) = dim Sktj-3,5-3(U) — dim Soetj-2(SLa(Z)) x 2 (F(()l)(P . fp7
‘ - T B(—1)2(k —2), ~(+ k— 1), —(=1)72(k —2),(j + k — 1);4],/2° - 3
Of course this conjecture for Sy s, 3(U) implies a certain kind of non- S[(=1)*(k = 2), -0 + ) = (=17 ), (7 ) }k/
vanishing theorem of the Thara hftlng, with slight modification when % is ifp=2

even and j = 0. We omit the description in detail. »
= (f+k—-1,=(G+k—1),0;3 + [k — 2,0, —(k = 2); 3]4x)

6 An explicit dimension formula of S ;(K(p)) ) { 1/22. 3% ifp+#3

2.8 if.
Theorem 6.1 (See [4] when j = 0. Joint with S. Wakatsuki when j > 0 5/2°-8 ifp=3

For k > 4 and even j > 0, we have

cthkJ ZH +Z]

G +k—-1),-(G+k—-1),0,(j +k—1),( +k—1),0;6]/2* - 3°

o
I

( B(p+1)(=122k+j-3) (p+1)(=1)*( +1)
+ 7
\ 23 i "1 mod 4 ?
where H; and I; are given belowe. ‘ v ifp=1mo
—1)(=12@2k+j~3) | 5(p— (=12 + 1)
Here the condition k£ > 4 in the theorem comes from the condition on the é = p-1(Y 27( : ) + ( 973
convergence of the Godement’s trace formula. ; ] / ifp=3mod4 :
We use the following notation. For natural number m and n, we mean . fni/2s -
by las,...,a, : m], that it is a; if n = i'mod m. 3(—1)J/2(2k +7=3) 7= G+ 1)
+
. 27 273
itp=2
\ ’/,-,
§
8 9



1 . p+1

5. 33 (2]{? +7 - )[ 1,0,1; 3}_74_2 + 5233 (] + 1)[—1,0, 153]2k+j—2
ifp=1mod3
-1

2233 (Qk +5=3)[-1,0,1: 340 + 2 U+ D[=1,0,1;3]k5

if p=2mod3
N

5 1,
DECERS 3232k +7 —3)[-1,0,1; 3542 + 3_3(3 + 1)[~1,0,1; 3]ok4j-2

if p=3.
[1,0,0,-1,-1,-1,-1,0,0,1,1,1; 12z if j =0 mod 12
[-1,1,0,1,1,0,1,-1,0,-1,-1,0; 12]y if j = 2 mod 12
1,-1,0,1,1,0,1,-1,0,-1,-1,0; 12)y ifj=4mod 12
(-1,0,0,-1,1,—-1,1,0,0,1,—1,1; 12y ifj=6mod12
1,1,0,1,-1,0,-1,-1,0,-1,1,0; 12]p if j = 8 mod 12
[~1,-1,0,0,1,1,1,1,0,0,—1,—1;12]x if j = 10 mod 12
2 .
3—202 1fp7é 2
Hg = 1
(1,0,0,-1,0,0,6)x (5 =0mod 6)
Co=4¢ [-1,1,0,1, — 106] ( =2 mod 6)
[0,-1,0,0,1,0;6] (j =4 mod 6)
2/5 ifp=+1mod5
H10—03X 1/5 1fp—5
fp=2,3mod5
(1,0,0,—1,0;5]; if j =0mod 10
[-1,1,0,0,0; ] if j =2mod 10
Cs={ 0 if j = 4 mod 10
[0,0,0,1,—1;5]; if 5 =6 mod 10
[0,-1,0,0,1;5], if j =8 mod 10
1/4 ifp=1,~1modS8
H11=O4>< 0 1fp§3,5mod8
1/8 ifp=2

10

where

Hyp =

I

I

where

Is

I

[1,0,0,—1;4]y =0
C.— -1,1,0,0;4)x 7=2
47 [-1,0,0,1;4], j=4
[13_1,070;4]k .]E 6

( _%(_1)(j+2)/2[1a0:_1§3}2k+j—2

S(-1)D020,0,-133),

1

50t (4= (F)) - r+

—27%(=1)72, ~1, (=172 14

mod 8
mod 8
mod 8
mod 8

if p=1mod12

if p=11 mod 12

0 if p=5,7mod 12
112( 1)@H-D/2(1,0,-1;3);,, i p=2or 3.
\
+1)+1 )
—p(5 + 1)(2k +j — 3)/2%3% + p+DG+1) 2)3%7 ) _ (j+1)/24

2%k — 3)/24.

1
—-A ifp=3,
g NP
I, = 1A+ 10 if p=1mod3
4718 9 P= ’
%B fp=2mod3.
A = —{1)_]#053]]9—-[170a_173]1+k
C = ”2[17071;3]11:_2[0,“17_1§3]j+k
B = 2A-C
—é % ([=1,~1,0,1,1,0; 6] + [L,0,~1, ~1,0, ;6] 4s) .

S 3 G)
—-é (1 + (‘73)) 1,0, 1; 3],

By several reasons, we propose the following coinjecture.

11



njecture 6.2 Fork > 4 ork = 3 andj > 0, the formula for dim Sk ; (K (p))

he same as above. For k = 3 and j = 0, the formula for dim S;30(K (p))
uld be the above formula plus one.
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ON INTEGRAL REPRESENTATIONS OF
AUTOMORPHIC L-FUNCTIONS FOR GSp(4)

ATSUSHI ICHINO

ABSTRACT. Among other means, an integral representation gives
the meromcﬁ‘phic continuation and the functional equation of an
automorphic L-function. In this note, recalling the doubling method
as an example, I will try to give some feeling for the techniques.
It is often the case that unique models play a role. In the case
of GSp(4), I will review the basic fact about the Whittaker model

and the Bessel model.

1. INTRODUCTION

Let F be a number field and A the ring of adeles of F'. Let G be
a connected reductive algebraic group over F. Let L% (G) denote
the space of square integrable functions f on G(F)\G(A) (with fixed
central character) such that

‘ / fluz) du
U(FN\U(4)

for almost all z € G(A), where U is the unipotent radical of any proper
parabolic subgroup of G over F. Then G(A) acts on L%, (G) via the
right regular representation and L2, (G) decomposes to a direct sum
of irreducible representations of G(A). Let 7 be an irreducible cusp-
idal automorphic representation of G(A), i.e., an irreducible subrep-
resentation of L2, (G). Then 7 is decomposed to a restricted tensor
product ®!m,, where , is an irreducible adm1851ble representation of
G, = G(F,) for each place v of F.

For simplicity, we assume that G is split over F'. For almost all v,
m, is unramified, i.e., v is non-archimedean and 7, has a fixed vector
under the action of G(0,). Let S be a finite set of places of F such
that, if v € S, then 7, is unramified. If v ¢ S, then we can associate
to 7, a semisimple conjugacy class :

¢y = Cy(my)

in G’ where G is the dual group of G over C. This ¢, is called the

Satake parameter of m,.
1



