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In this paper, we show that the graded ring of Siegel modular forms of I'o (V) C Sp(2,7Z)
has a very simple unified structure for N = 1, 2, 3, 4, taking Neben-type case (the case
with character) for N = 3 and 4. All are generated by 5 generators, and all the fifth
generators are obtained by using the other four by means of differential operators, and
it is also obtained as Borcherds products. As an appendix, examples of Euler factors of
L-functions of Siegel modular forms of Sp(2,Z) of odd weight are given.
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1. Introduction

In this paper, we give examples of congruence subgroups I" of Sp(2, Z) such that the
graded ring A(T') of Siegel modular forms of T" is generated by five modular forms,
among which four are algebraically independent and the other is neatly described
by using the first four. It is well-known as Igusa’s theorem that the ring of Siegel
modular forms of degree two belonging to the full modular group Sp(2,Z) are
generated by four algebraically independent forms ¢4, ¢6, X10, X12 and a modular
form y35, where the suffices are the weights of the forms. It is also well known that
X35 1s expressed as a Borcherds product (cf. Gritsenko and Nikulin [9]). In Igusa’s
paper [17], the modular form x35 was given by an average of theta constants over
azygous triples and this is rather complicated. Here we give another very simple
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way to construct xss from ¢4, ¢g, X10, X12 by using a differential operator. Now we
explain the result for other groups. For any natural number N and n, we put

ryY(N) = {gz (‘é g) € Sp(n,Z); C =0 mod N}.

When n = 2, we write I'o(N) = F(()Q)(N ) for the sake of simplicity. We denote by
13 the character of T'g(3) defined by 3(vy) = (ﬁf’m) and by 14 the character of

To(4) defined by () = (geny ) We put T§*(3) = {5 € To(3); vs(7) = 1} and
Tyt (4) = {y € To(4);¢a(7) = 1}

Theorem 1.1. For each I’ = Sp(2,7), To(2), T*(3), or T$*(4), the graded ring
A(T) of Siegel modular forms is generated by five Siegel modular forms consisting of
four algebraically independent forms and another one constructed by the first four
by using a differential operator. The fifth generator is also expressed as a Borcherds
product.

As for precise generators and the differential operators, see Sec. 2. We note that
the generators of the ring for Sp(2,Z), I'g(2) and 1"34 (4) have been already known
in [17,12,11]. So for these groups, a new point here is that the fifth generator is
obtained by a simple differential operator and has a Borcherds product expression.
The result on generators for FB% (3) is newly obtained, and we can reprove our
former result on I'g(3) in [12] more easily and satisfactorily by our new result. Of
course this kind of theorem is in a sense accidental, and there are some other discrete
subgroups for which the same theorem holds even among subgroups containing the
principal congruence subgroup I'(2), for example, the unique subgroup I'.(1) of
index two in Sp(2,Z), but we omit further results here.

Since our expression of X35 is so simple, it is now very easy to calculate many
Fourier coefficients of x35. Hence in Appendix A, we give a table of some Fourier
coefficients. We also give Euler factors at 2 of spinor L function of Siegel cusp forms
of Sp(2,Z) of odd weight which have never appeared in any literature as far as the
authors know.

Finally we would like to say a few words on our differential operators. A general
theory of holomorphic differential operators on Siegel modular forms which produce
new modular forms from given several modular forms was studied in Ibukiyama
[13] in full generality. Our differential operator in the above theorem is one of these
operators. In one variable case, this kind of operators are called Rankin—Cohen
differential operators. Starting from modular forms of one variable of weight &
and [, we obtain a new modular form of weight k + [ + 2v by this operator where v
is a non-negative integer. We can also consider differential operators on more than
two modular forms of one variable but we cannot get a new result, namely, this
kind of operator is obtained by combination of those on two forms. As for Siegel
modular forms, the situation is slightly different. For example, the Rankin—Cohen
type differential operators on two Siegel modular forms of weight k£ and [ are defined
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for degree two in [5] and for general degree in [7], and the weight of constructed
Siegel modular form is k + 1+ 2r where v is a non-negative integer. So, for example,
if we start from modular forms of even weight, then we get only a modular form
of even weight in this case. But as we see in the theorem, if we start from several
modular forms more than two, it happens that we get odd weight from even weights.
This is a very interesting point and a trick for our construction. The same sort of
construction is also valid for vector valued Siegel modular forms which will appear
elsewhere (cf. [14-16]).

2. Differential Operators

We review Siegel modular forms to fix notation. For any natural number n, we
denote by H,, the Siegel upper half plane of degree n

H,={Z¢e M,(C); 'Z =2, Im(Z) > 0}.
For any commutative ring R, we define the symplectic group over R by
Sp(n, R) = {g € M2,(R); 'gJg = J}
0 1n
1, 0

Sp(n,R) and a character x of I', we say that a holomorphic function F(Z) on
H,, is a Siegel modular form of weight k£ with character x if

where J :< and 1, is the unit matrix. For a discrete subgroup I' C

F((AZ + B)(CZ + D)™') = x(y)det(CZ + D)*F(Z) for any v = (él, g) el
and bounded at cusps. We denote by Ag (T, x) the space of all Siegel modular forms
of weight k of I' with character xy. When x is the identity character, we write
Ap(T) = Ar(T, x) and call f € Ag(T") just a Siegel modular forms of weight k. We
put A(T) = @, Ax(T'). The space A(T) is a graded ring.

For Z € H,, we write the (4, j) components of Z by z;;. We put (n) = n(n +
1)/2 + 1. For (n) numbers of Siegel modular forms f; € Ay, (T') of weight k; (1 <
i < (n)), we define a new function {f1,..., fin) fnt1 by

kifi kafe - kmy—1fiy-1 kwy S

0f1 afs .. Of(ny—1 Of(ny

0z11 0211 0z11 0z11
{flv ey f(n)}n+1 =

df1 ofs .. Of(ny—1 9f(n)

OzZnn OzZnn OzZnn OzZnn

Proposition 2.1. (1) The above function {f1,..., fin)}n+1 s a Siegel cusp form
of weight ki + -+ + kny +n+ 1.
(2) If f1,-- . f(ny are algebraically independent, then {f1,..., fimy}ns1 # 0.
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Proof. For v > 2, put F, = f¥/fF Then F,(yZ) = F,(Z), namely, these are
automorphic functions on H,, invariant by I". Define F'(Z) by the Jacobian.

O(Fy, ..., Fry)

F(Z) - 8(211, ey Znn) ’

Then we have
0(z11,212,- -+ » Znn)

__0B0D),.. Fw(0Z) (D) (7)n)
8((72)11,(72)12,...7(7Z)m) 6(211,212,...727”1)

= F(vyZ)det(CZ + D)~ " *

F(Z) =

Hence F(Z) is a meromorphic Siegel modular form of weight n+1 of I". We also have

k1 ky—1 ofv ky ) kol 3f1
o/ 11) =l ) 3 — w1t 5
. ky fri—t of,  kuf, Of1
; f{% (azlj - klfl 8 azzg)
This implies that
ko4 4kny 41
{fla”'vf(n)}nJrl L F(Z)

k<n Y(fafa-- )t

This means that {f1,..., fin) }nt1 is a holomorphic Siegel modular form of weight
ki1+- -4k +n+1. In particular, if f, (1 < v < (n)) are algebraically independent,
then f* /fF are local parameters of (n) — 1 dimensional variety T'\H,,, so the
functional determinant does not vanish identically. Hence we get (2). |

When n = 2, for any Z € H,, we write

Z = (T Z) .
z w
For any Siegel modular form f of degree two, we denote by a(t1,to,t; f) =
a(ty,ta,t) the Fourier coefficient of f at

t1 o t)2
t/2 ty )
Now first we apply this to level 1 case. We denote by ¢4 or ¢g the unique
modular form of Sp(2,Z) of weight 4 or 6 such that a(0,0,0; ¢4) = a(0,0,0; ¢g) = 1.



Int. J. Math. 2005.16:249-279. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF OKLAHOMA on 10/01/15. For personal use only.

Graded Rings of Siegel Modular Forms, Differential Operators and Borcherds Products 253
We denote by x10 or x12 the unique cusp form of Sp(2,Z) of weight 10 or 12 such
that a(1,1,1;x10) = a(1,1,1;x12) = 1. Then the function
44 696 10x10 12x12

O¢s  0ds  Oxz0  Oxaz

1 {¢ ¢ } 1 or or or or

= e =2 4, 6 10 1253 = 3
X (2mi)3 06 X10 X (27i)3 | 960 886 Ox10 Ox12
0z 0z 0z 0z
99 946 Ox10  Ixaz
ow ow ow ow

is a modular form of weight 44+ 6+ 10+ 12+ 3 = 35. This does not vanish, since ¢y,
6, X10, X12 are algebraically independent. We denote by E4 or Eg the Eisenstein
series of SLa(Z) of weight 4 or 6 with constant term 1. Let ¢19,1 or ¢12.1 be the
Jacobi cusp form of weight 10 or 12 of index one given in Eichler—Zagier. The
Fourier—Jacobi expansion of x is given by

1 OFE OF. 1 0 0
(pz)Qm (4E48—6 — 6% 6T4> * omi ( 5 1¢12 1~ P 3 1) +ol)

= —3456A12¢2372(p) + O(p ),
where ¢ = exp(27iT), { = exp(27iz), p = exp(2miw) and

$a32 = 12¢(C — (N + O(¢°)
= 12(47i)(A(7))?*2 4+ O(2?)

is a non-zero Jacobi form of weight 23 of index 2. We see that a(2,3,1;x) = 2% - 3%
We can see x # 0 also by this calculation. We put x35 = x/(2° - 3*). Then
X35 is the unique Siegel modular form of weight 35 of degree 2 of Sp(2,Z) such
that a(2,3,1;xs5) = 1. Denote by T'.(1) is the unique index two subgroup of
Sp(2,Z). We have a cusp form ys of T'.(1) of weight 5 such that x2 = x10 [17].
Then {4, ¢s, X5, X12}3 is the modular form of weight 30. We denote this by x30.
Then xs35 is equal to Xxs5Xx30 up to constant. It is known that A(Sp(2,Z)) =
Clga, ¢6, X10, X12, X35] and A(I'c(1)) = Clo4, ¢6, X5, X125 X30]-

We note that the Eisenstein series ¢4, ¢¢ are the same function as those in
Igusa [18, p. 848]. But our normalization of X109, x12, X35 are different from Igusa’s
notation. In fact, Igusa’s function yi0, x12 or xss in [18, p. 848] is —1/4, 1/12 or
/4 times of out x10, X12 Or X35

Remark. y35 is an odd function with respect to z. In the above E for any Siegel
modular forms F' of even weights are odd function with respect to z and all the other
derivatives are even. Hence this fits the fact. The Fourier coefficients a(t1,t2, ) at

(i}Q Zz) satisfies a(ty,ta, —t) = —a(ty,ta,t).

3. Siegel Modular Forms of Odd Weights of Level 2

The ring of modular forms of I'y(2) was determined in Ibukiyama [12], and all the
generators are given by theta constants. First we review this theorem here, and
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then we show that in this case also the Siegel modular form of weight 19, which is
the fundamental generator of odd weights forms, is obtained by differentiating even
weights forms.

As usual, we define theta constants of characteristic m = *(*m/, 'm”) €
Z* (m', m” € Z?) by

1 m/ m/ m/ m//
=3 (5t ()2 (5 ) (00 5) )
pEZ?

where we put e(r) = > and Z € Hy. We put

X = (85000 + 85001 + o010 + Fo011)/4;

Y = (8000080001 6001000011)?,

Z = (8100 — Oo110)° /16384,

K = (00100001100100001001 6110001111 ) /4096.

Each X,Y, Z, or K is a modular form of T'g(2) of weight 2, 4, 4, 6 respectively,
and these four forms are algebraically independent. There also exists a cusp form
X19 of weight 19 belonging to I'o(2), given explicitly by theta constants as follows.

8 = 00000800010001080011801000011001000010010110001111,

0 (01000 01001 01100 1111)/1536
T = (6o10000110)* /256,
X19 = 00'(8Y Z — X?T + YT + 1024ZT + 96T* — 8X K ) /32.

Here a(2,3,1; x19) = —1.
We know that

Proposition 3.1 [12, p. 34].
A(To(2)) =C[X,Y, Z, K] ® x19C[X,Y, Z, K].
where & means a direct sum as modules.

The only thing we would like to claim here is the following proposition.

Proposition 3.2.
2X 4Y 47 6K

o0X oY 0Z O9OK

=——— X
X 512(2mi)3 90X Y 97 9K

0z Oz 0z 0z

oX Y. oz OK
ow ow ow ow
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The constant is obtained by calculation of the Fourier coefficient of this determi-
nant at (2, 3,1). We see that x19 divides x3s. This is obvious since I'g(2) C Sp(2,Z)
but also clear from the relation

0 5 5 s
{¢47¢67X107X12}3 = {X7 Y7 ZaK}3 X (¢4 ¢6 X10 X12)

XY, Z,K) ’
where we put

O0¢a  Ods  Oxio Ixuz

0X 0X 0X 0X

% % 9x10 Oxi2

(¢, b6, x10,X12) | v @Y

3(X7 Y7 Z7 K) % % aXlO axlg

A oZ A A

O¢a  Ods  Oxio Ixuz

oK oK oK oK

The last functional determinant is calculated explicitly if we use the relations

by =4X%—-3Y +12288 7,

b= —8X3+9XY 4+ 73728 X Z — 27648 K,
X100 = YK,
x12 =3Y%2Z -2XYK + 3072 K2

The result is

81(—67108864.X*K? + 65536 X*Y?Z — 16384 X K'Y
—Y* —16384Y°Z + 68719476736 ZK* — 67108864Y>Z?).

4. Siegel Modular Forms of Level 3
We put

P3(y) = (de_t?’D> for v = (;)40 g) e To(3).

We put Fg"" (3) = {y € Tv(3);¢3(y) = 1}. Then the group I‘g"‘ (3) is index 2 in
['o(3). We have already given the structure of ACve®) = @ = Aay,(To(3)) in [12],
but in this section, we describe @, Ak(Fg’S‘ (3)) explicitly and reprove the result
for Alever) in [12] fairly easily.

For any even integral symmetric matrix S of size n and Z = (: i) € Hs, we
define a theta function by

05(2)= 3 emillasare2lasuz+ysye),

T, YyEL™
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We take the following three even symmetric matrices

2 1
A2—(1 2)7

2 -1 0 0 0 o0
-1 2 -1 0 0 0
0 -1 2 -1 0 -1
Es=1 o o 1 1 0
0O 0 0 -1 2 0
0O 0 -1 0 0 2
and

4 5 6 4 2 3
5 10 12 8 4 6
6 12 18 12 6 9

* _ or—1 __
E6_3E6_4 8 12 10 5 6
2 4 6 5 4 3
3 6 9 6 3 6

We have det(As) = 3, det(Eg) = 3 and det(E;) = 243 = 35 and these have
level 3. By these conditions, we see 04,(Z) € A1(I'o(3),v3) and 0g,(2), 0p:(Z) €
As3(T0(3),v3) (cf. [2]). We define another theta function with spherical function.
We put

and for = = (z;), y = (y;) € R*, we put

txSyx t;r:&;y)

Q@) = (tySz;x tySsy

As in [12], we put
04(2) = Y (& —d*) exp (2mitr(Q(z,y)Z))

z,yEeL*

where ¢ = (z1y3 — z3y1) + (T2ys — y224), d = (21y2 — y174) + (T3Y2 — y322) + (T1y2 —
y122). We know that 04 € S4(T'0(3)) (cf. [12]).
To make symbols consistent with those in [12], we put

ar = 04,,

fBs = O, — 106%, + 95;,
03 = 0, — 90E:,

V4 = O4.
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We put
(5] 3ﬂ3 4’}/4 354

dar  9Bs Ov 0o
1 1 or or or or

X14 = 59 510 X Ta\3
29.310 © (274)3 | 9oy 9Bs  Ova  Bda
0z 0z 0z 0z

dai By Ova Ok
ow ow ow ow

Then x14 € A14(T'0(3),v¥3) with a(2,3,1; x14) = 1.
We put

B = Cla, 33,74, 03],
C = Claf, 33,03, 74),

and denote by B(°49) or B(eve®) the submodule of the graded ring B consisting of
odd degree or even degree elements, respectively. Namely, we have

B(even) _ (C[OZ%7 alﬁ?n 103, Y4, 5%, 6%7 5363].

Theorem 4.1. The four modular forms a1, B3, V4, 03 are algebraically independent.
We have

P Ax(T§2(3)) = B @ Bxua,
k=0
@Ak(l“o@)) = B @ Carx14 ® CPax14 ® CO3x14 & Co1 30314,
k=0
P Ak(To(3), ¥s) = B @ BEvew .
k=0

Proof. For any function F(Z) on Hs, the Witt operator W is defined by

wEnre =F (5 ).

where W (F') is a function on Hy x Hy. In order to describe the images of generators
under W, we define functions on 7 € H; by

fi(r) = Z e((fzAyx)T) = 1469+ 6¢> 4 - -,

rE€Z2

fo(r) = > e(("wEgz)r) = 1+ 72q + 270¢> + 720¢° + - - -,
€76

fa(r) = > e((‘wEia)r) = 1+ 54¢% + 72¢° + - - -.
€76

We have f; € Aj(T\V(3),4), fa, f3 € A3(TSY(3), ), where we put () = ¥(d) =
(_73) for v = (a b) IS Fél)(?)). We know that A;g(l"(()l)(?))) = Ak“(Fél)(?)),q/}) =

3c d



Int. J. Math. 2005.16:249-279. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF OKLAHOMA on 10/01/15. For personal use only.

258 H. Aoki & T. Ibukiyama

for odd k. We see by usual dimension formula that

> (dim AR (D§Y(3)) + dim A (T (3), 9))tF = m

k=0

Since f§ — fs vanish at ico and fi does not, two forms f; and f3 are algebraically
independent. Comparing the dimensions we have

Clfr, f3] = @ (Ao (T ) @ Agp1 (T (1)(3)a¢))-
k=0

Also we have f3 = (4f3 — f2)/3. We write f; = f;(r) and f; = f;(w). Then since
W) = fify, W(0g,) = fofy and W(0g;) = fsfs, we have

W(on) = fufy,
W (B3) = 6(f11)° + 2fafs — 4(fi fo + (1) fo,
W(d3) = —16(f1f1)* + 4(f2f5 + (£1)3F2),
Wi(ys) =0

Since it is obvious that W(ay), W(03), W(d3) are algebraically independent, we
see the four forms a1, O3, d3, y4 are algebraically independent by a standard induc-
tion as in Igusa [17, I]. It is known that the dimension formula of modular forms
belonging to I'g(3) is given by

o p o (L4261 4 16) +£15(1 4 262 4 19)
kzz:odlmAk(FoB))t = B A1 PP

(cf. [12, p. 23]). Since B(V*") = C' @ Cayf3 ® Ca1d3 ® CPsds, we see Blever) =
@2’;0 Az (T'0(3)) by comparing the dimensions. We show that aqx14, B3X14, d3X14,
a1 0303x14 are free generators of the module over C'. This is equivalent to say that
ai, B3, 03, a13303 are free over C. Since C = Cla?, 33,83,74], the proof is easily
obtained by comparing parity of the degree of each variable. Hence we see that

@ Azk—1(T'o(3)) = Carxia ® CPsx14 ® Cdzx1a ® CarP303x14,

comparing the dimensions. Next, we prove the assertion for Fg’3 (3). Assume that
f € Ag(To(3),13). Then we see a1 f € Art1(To(3)). If k is even, then aqf is
divisible by x14. If x14/c1 is holomorphic, then x14/a1 € A15(T(3)). But we
have A;3(I'g(3)) = {0} by dimension formula and this is a contradiction. Put g =
a1f/x14- Then g € B. Then we have of f? = g?x3,. We have a1, f?, g, X34 € B
and B is a weighted polynomial ring. Since (x14/a1)? is not holomorphic, x?, is not
divisible by a2 as an element of the weight polynomial ring. So a; divide g2. But
since g € B, this means that g is divisible by a7 and g/a1 € Ax_14(T(3)) C B.
Hence f € Byia. If k is odd, then oy f € Apy1(To(3)) € Blve™) . Again, we see
a3 f? € Bleven) 2 ¢ Bleven) Qo if we put oy f = P(a1,f3,03,74) where P is a
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polynomial of even (weighted) total degree, then P? is divided by «f. This means
that a; divides P in B and hence we have f € B. The assertion for I‘g’3(3) is
obvious from these. O

In [12], we needed seven generators for @, A2x(I'o(3)). Notation being as in
[12, p. 21], (but see correction of several misprints in [12] in the last page of this
paper,) we can show that to = a?, uy = 4, v6 = 5%, wg = ﬂ%, T4 = o103, Ys = 103,
and zg = B303. Also, by comparing the images under the Witt operator and Fourier
coefficients of both sides, we can show that

G4 =8y +41t2 —162uy + 5y,

11 7 91
b6 = 2TTt3 — 2187 touy + 80 taxy + 5 V6wt 5 % + oty

X10 = (64 t‘;u;; + 32 x4touy — 16 yatous — 4 zgug + ugvp + 4ugwg) /6144,

X12 = (—124416 tyuys — 192 tayswe — 768 tazy + 16 taysve + 256 taxswe
+ 4096 t3x4 + 1536 tywe — 1024 t3ys + 16 ws — vZ — 16 wezg
+ 4vgzg + 4096 S + 7776 tozguy + 10077696 tou?
— 62208 t3w4uy + 31104 t3ysuy + 2519424 x4uf — 1944 tovguy

— TT76 tywgug — 68024448 u — 1259712 ysu?)/3981312.
In particular, we have
X10 = 74(8a3 + 233 — 63)?/6144.
For the sake of simplicity, from now on we put a = a1, b = 3, ¢ = v4, d = d3. To
write down the formula for x?,, we define two modular forms fig of weight 18 and
foa of weight 24 of I'y(3) as follows.
f1s = 634894848 ab3c? + 201216 a®d>b — 5178816 a®d>c — 60949905408 a”c?b
+ 27264 a®b>d? — 5441955840 a”c*d — 79501824 a°b3c — 23040 aSb*d>
— 124032 a3b*d — 11156009472 a*c?b? — 7938048 a'%bd
— 5462016 a”b?d + 279936 a’d*c + 2516904576 a*c2d® — 5598720 abc
— 949542912 a''eb + 152285184 a'led — 416544768 a®b?c 4+ 16796160 a®d?c
+ 1344435190272 a3c*b — 44079842304 ¢*bd — 1365504 aSb3d
+ 28065792 a'?b? — 4096 b°® — 143259487488 a’c*d
+ 15073280 a'® + 125 d° + 174680064 a®bdc + 6158592 a*b>dc
— 979776 a*d®bc — 839808 a*b?d*c — 24670199808 o' c?
— 34012224 ad?bc® — 32134205039616 a’c? + 476171136 ab’dc?
+ 58786560 a’b?de + 839808 a’d?be + 7890835968 a’lc?bd
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— 181398528 ad®c® + 42528 a®b*d® — 9120 a*d*b

— 559104 a®d?b 4 26112 a3V + 3648 b*d? + 952b3d> — 150 d°b

— 1572864 a*5d + 38535168 a'%b + 1132032 a’b* — 788299776 a'c
— 22039921152 ¢*? — 2544 a3d® + 8691712 a®b> — 1056768 a'2d?
+ 185344 a°d® — 22039921152 ¢3d? — 1536 b°d — 1140 d*b?

+ 2556630853632 a’c® 4 5088 a®d?,

foa = — 1970749440 a"d*bc? — 165888 a®b°c — 43008 a®b*d>
— 16926659444736 abc® + 4478976 ach® + 8411086946304 a°c*b
+ 27895062528 aSc3d® + 15881803923456 a®c* + 201553920 b d>
+ 3604480 a'?b* + d® + 16777216 a** + 103195607040 a'5¢?
+ 28311552 a'®h? — 1048576 a'8d? + 589824 ab°
— 2208301056 a*°c 4 8324176896 a>c*bd* — 340402176 a*c*b?d>
+ 101559956668416 c5 — 256 a®d® — 40310784 ¢®b* + 2048 a®b”
+ 13107200 a'56% — 64532889133056 a’c® — 1867840487424 a'?c3
+ 24576 a?d* — 12317184 ac®b®d? — 64 b5d% + 48 d*b*
— 77760 a%cb?d* + 20155392 ¢*d* — 12db? + 217728 a’cb*d?
+ 33554432 a®'b + 53248 a5b° + 103514112 a''d?be — 3072 a3b°d?
— 1617408 a®d*c — 594542592 a3 ¢ + 35831808 a®b?d?c
— 93560832 a®b'c + 1110158991360 a’c*b? — 71833817088 a’d>c*
+ 8424 a2dSc — 808704 a®d*be — 404397785088 ac3b? — 3312451584 a'7ch
+ 8448 aSd*b* — 6967296 a°b°c + 4976640 a°b3d*c + 2799360 ad*bc?
— 1572864 a'5d%b — 933888 a'?b%d? + 1152 a>d*b® + 636014592 a’b*
— 128 a®dSb — 278528 b3 d? + 24576 a®d*b + 25194240 a*d*c?
— 36199084032 a3c®b® 4 114661785600 a'3c?b + 103514112 a'd?c
— 1507945807872 a°c3b + 8814624768 a"b3¢? + 47584641024 a'°c?b?
— 3224862720 a'0c2d® — 1974730752 o b?c.

By Igusa [18, p. 849], we get
(x35)% = —x10f7sf2a/ (270 - 3*%).

(Note that our notations are slightly different from those in Igusa [18].)
To obtain a relation between y35 and x14, we calculate the following functional
determinant

(¢4, ¢6, X10, X12)

185 = T8 (a, b, ¢, d)
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By computer calculation we see easily that
jacss = (8a® 4 2b — d) f13/(2%° - 3%).

Since 293%y35 = jacys (23 14), we get
X35 = X14 X fis(8a® +2b — d)/2%.

Incidentally, we have a(0,0,0; f15) = 22!, a(0,0,0;8a® + 2b — d) = 2%, and the
product is 22°. We have a(2,3,1;x35) = a(2,3,1;x14) = 1 and a(t1,t2,t12;X35) =
a(tl,tg,tlg;xl4) =0ift; <2and ta <3ort; <2 and ty < 3. This fits the above
relation.

By virtue of the relation y19 = ¢(8a + 2b — d)?/(2!* - 3) and the above, we get

Xia=—c- fau/ (2% -3%)

where c is the cusp form of weight 4.

5. Siegel Modular Forms of Level 4

First we review the results in [11]. We define a character ¢4 of T'g(4) by ¥4(y) =
(55) for any v = (g g) € I'p(4). We define a subgroup of I'g(4) with index two
by

T (4) = {y € To(4);¢ha(y) = 1}.
We put

J172 = 0oo00(22),
fl = f12/27
92 = 00000(22)* + 00100(22)* + 01000(22)* + 01100(22)*,
ha = 00000(22)* + 00001(22)* + 00010(22)* + 00011 (22)*,
f3 = (60001(22)00010(22)00011(22))?,
X1 = x5(22) (00001 (22)* — 00010(22)")
X (00001 (2Z)* — 00011 (22)*) (00010 (22)* — 60011(22)*)/4096.

Then we have fi € A1(To(4),¢4), g2, ha € As(To(4)), fs € As(To(4),4)
and x11 € A11(T0(4)). We know that dim A11(I'9(4)) = 1 and a(3,2,1;x11) = —1
(cf. [11]).

Theorem 5.1 (Hayashida—TIbukiyama [11]). Four forms f1, g2, he, f3 are alge-
braically independent and we have

@Ak(FZ)“M)) = Cl[f1, 92, ha, f3, x11]-
k=0
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Again we see that

fi 292 2hy 3f3

Ofi 992 0Ohy Ofs
1 or or or or

—_— X
218.3(2mi)3 | oL 092 Ohy Ofs
Oz Oz Oz Oz

Ofi  Og2 Oha Ofs
ow ow ow ow

X11 =

Indeed, since f1 and fs are Siegel modular forms with character and go and ho are
without character, we see that {f1, g2, ho, f3}3 is a Siegel modular form without
character of weight 11. Comparing a Fourier coefficient, we get the result.

6. Borcherds Product

In this section, we give a construction of x19, x14 and 11 by Borcherds product. As
for Siegel paramodular groups, a concrete theory of Borcherds product is treated
in Gritsenko and Nikulin [9]. But the Borcherds product for congruence subgroups
'y (N) is not well-known, since I'g(/N) is not an automorphism group of a lattice in
general. So first we explain the essence of our way to construct Borcherds product
shortly. Since we use a weaker version of Jacobi forms for construction of Borcherds
product, we explain this first.

For any function ¢ on Hy x C and g € SLy(R) and X = (\, ) € R?, k € R,

we put
2
— +b =z
g~k em cz at
[kmlg] = (e7 )"e <c7'—|—d> (c7’—|—d’c7'+d ’

Pl [X, K] = €™ (V2T + 2Xz + At + K)P(T, 2 + AT + p),

where we put e™(x) = €2™? for any z € C. For simplicity, we write ¢|,,,[X,0] =
®|m[X]. Let T be a subgroup of SLy(Z) of finite index. We denote by I'/ the semi
direct product T' x Z? where the product is defined as in Eichler—Zagier [6, p. 9].
Then the above operations of v € I' and X € Z? define an action of I'/. For any
integers k and m with m > 0, a holomorphic function ¢ on H; x C is called a weak
Jacobi form of weight k and index m of I'/ when it satisfies the following conditions:

(1) ¢lkmly] = ¢ for any y € T.
(2) ¢|m[X] = ¢ for any X € Z2.
(3) ¢ has the Fourier expansion
&7, 2) km[Y] = ch(n, De(nt + 12)
n,l
for all v € SLo(Z) and besides ¢y (n,l) = 0 unless n > 0 (cf. [6]). (In the usual
definition of Jacobi forms we assume that c,(n,l) = 0 unless 4nm — 12 > 0.)

Instead of the condition (3), we sometimes use weaker condition.
(3*) There is ng such that ¢, (n,l) =0 for all n < ng and all v € SLy(Z).
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If ¢ satisfies (1), (2) and (3*), we say that ¢ is a very weak Jacobi form. We
denote by J‘”eak(l—“] ) or Jp% © (T'/) the space of weak, or very weak Jacobi forms,
respectively. Sometimes we consider Jacobi forms with character y of I, taking the
condition ¢|i m[Y] = x(7)¢ instead of the condition (1). The space of such Jacobi
forms is denoted by Ji . (I'/, x) and so on. It is obvious that if ¢(7, 2) is very weak
then a(7)p(r, 2) is a weak Jacobi form for some modular form «(r) of I'. (For
example, take a to be some power of A where A is the Ramanujan delta function.)

Also we denote by A(T") the graded ring of all holomorphic modular forms on
H; belonging to I and by Ag(T", x) the space of holomorphic modular forms of I" of
weight k with character xy. When  is trivial, we write Ag(T') = Ax(T, x). We define
P01 € JSTH(SL2(Z)”), ¢-21 € JUSH(SL2(Z)) and d-12 € J¥§5(SLa(Z)”) as
in Eichler—Zagier [6, pp. 108 and 110]. Namely we put

¢10 1
A

=(=24C+C ) +q(—124+8¢C+8¢C =2 —2¢" ) + - -+,
_ ¢121
¢0,1 = A
= (10+C+¢ 1) +q(108 — 64¢ — 64¢ ™1 +10¢% +10¢72) 4 - - -,
Q112
$_12= A
=(C=¢N+aBEC-¢H+E =+
where ¢10,1, 12,1 O ¢11,2 is a unique element in Jm71(SL2(Z)J)7 J1271(SL2(Z)J)7
J1172(SL2(Z)J) up to constant.
By the way, we have the following product expansion (cf. [3, p. 184,
Theorem 6.5]).

P2,

rm (L-¢"0°0 —q"¢CY)°

Praalna =i H (T
¢-12(m2) = (1= ) H l_qu(iz(i]n_)2q< ),

We denote by J¥e2k (I'/) the graded ring of weak Jacobi forms of even weight

even,*x
of arbitrary index. We also denote by J3gsk (I'7) the vector space of weak Jacobi

forms of arbitrary odd weight, and by J***(I'7) the space of arbitrary weight and
index.

Proposition 6.1. We have
YR (TT) = AT)[¢—2,1, do,1] & d—1,2A(T)[¢—2,1, do,1].

When —19 € ', more precisely we have

ngeeaﬁk*(rJ) ( )[¢ 21u¢0,1]7
TGN (D7) = o1 208, (D).
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Proof. Since our proof is almost the same as in [6], we sketch an outline shortly
here. First we assume that —15 € I'. Assume that k is even. For any ¢ € J;V)'fsk (7,
we see ¢(1,—z) = ¢(7,z) so take the Taylor expansion ¢ = > ;= f(7)z%". We
denote by J‘”eak(l—“] )(r) the space of those ¢ € J‘”eak(l—“] ) such that f; = 0 unless
t > r. By the mapping from ¢ to f,, we get the exact sequence

0 — R (r + 1) — JEREITT) () — Agar (D).

Also we can show that ¢(7, z) = 0 has exactly 2m zeros counting multiplicity inside
the fundamental parallelotope and we get J32%(I'/)(m + 1) = {0}. Hence we get

dim J¥eER(T7) < Z dim Ay o, (T).
r=0
Now ¢o,1, ¢—2,1 € Jueak (T'7) and since ¢o,1 = 12+ O(2%) and ¢_z1 = (2miz)? +
O(z*), the functions ¢§ 6" 5, (0 < a, 0 < b) are linearly independent over A(T').
Hence the maximum of the above inequality is attained.

The case for odd k is similarly proved. We see ¢(7, z) = —¢(1, —2), so take the
Taylor expansion ¢ = Y72 f;(1)z**1. We denote by Jye2<(/)(r) the space of
those ¢ € JY%5(I'7) such that f; = 0 unless ¢ > r. By the mapping from ¢ to f,
we get the exact sequence

0= JES() 4 1) = (7)) — Ao (T).
Also we can show Jye2%(T)(m — 1) = {0}. Hence we get
m—2

dim Jwea‘k FJ Z dim Ay 9,41 (T)
r=0

and

Todas (07) = ¢-12AT) 62,1, do.1].

Now we assume that —15 ¢ I'. For any Jacobi weak form ¢(7,2) € J,:ffjjk(FJ) we
consider two Jacobi forms f and g defined by

f = ¢(Ta Z) + ¢(T, Z)|k7m[_12]’

g = (b(Tv Z) - ¢(7—7 Z)'k,m[_12]‘
We denote by T' the group generated by I' and —1, and by x the character of T
which is defined by the natural projection to I'/T" 2 {£1}. Then f € Ji,,(I'7).
Since A(F) = Aeven(f‘) = @20:0 Agk(F)7 we see that f S Aeven( )[¢ 271,¢071] —+
H—1,2A¢ven(T)[P—2.1, ¢0,1]. On the other hand, we have g € Jweak(f“] X). We have
the following exact sequence as before.

0— Jweak(l—\J’ X)(S + 1) N JX(:sk(f‘J7 X)(s) — A}g+25+1(f7 X).

For even k we get
m—2

dim JX’f::k(fJ,X) < Z dim Ay 2511(T, X)
s=0
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and for odd k we get
dim Sy (D7 x) <)~ dim Apyaq (T X).
s=0
Since A (T, x) = Ap(T) if k is odd, we see that
9 € Aoad(D)[¢—2,1, d0,1] + ¢—1,240aa(I')[p—2,1, P0,1]-

By these we get the conclusion of the proposition. O

In a sense the Borcherds product is obtained as a log version of Saito—Kurokawa
lifting, so we need the result that the discrete group we consider is generated by
Jacobi group and an elementary change of variables. We shall show this now.

We consider four kinds of elements of Sp(2,Z).

01 0 0 1 0 O 0
1 0 0 O r 1 0 0

T=1o00 1| =190 1 2|
0 0 1 0 0 0 0 1
a 0 b O

o 10 0 (1, S

O(aab7ca d) - CN 0 d 0 ) U(S) - (0 12> ’
0 0 1

0
where z € Z, (°y ) € T{V(N), 1S = S € My(Z).

Lemma 6.2. For any natural number N, the group T'g(N) is generated by the above
four kinds of matrices.

Proof. Take v = (%¢ 5) € Io(IN) and put A = (a;;), C = (¢;j). We can assume
a11, a21 > 0 by multiplying C(—1,0,0,—1) or TC(—1,0,0, —1)T if necessary. Mul-
tiplication of T and u(z) gives the Euclid algorithm to the pair (a11,a21), so we
can assume that agq = 0. Then, since v € SL4(Z), a1 and N are coprime. Denote
by m the g.c.d. of a;; and ¢;11. Then if we put ¢y = ¢11/m and dy = —aq1/m, then
Ncy and dg are coprime. Hence there exists ag, bg such that agdy — bpcgN = 1.
Multiplying C/(ag, bo, co, do) from left for a suitable choice of ag, by, we may assume
that the first column of 7 is (m, 0,0, Ncao). Here m and Ncgo are coprime. Mul-
tiplying «(1) from left, this is changed into (m,m, Ncaa, —Ncaz). We take a pair
of coprime integers ¢y, d; such that ¢c;m + dicos = 0 and a pair a;, by such that
aydy —Nbiey = 1. Then multiplying C(aq, b1, c1,d1) and TC(ay, —b1, —c1,d1)T from
left, the first column becomes (a2, as,0,0) for some ay € Z. Since v € SL4(Z), we
have ag = 1. By multiplying u(—1) from left, we get (1,0, 0,0). Since v € Sp(2,R),
we have ¢19 = dis = 0 and dy; = 1. Then (;2221\, 22222) EF(()I)(N). Hence by
taking T'C(daa, —baa, —coaN, ag2)T7, we can assume that C = 0, dio = 0, and
a1 = age = di1 = dgo = 1. This is a product of u(z) and u(S) for suitable x
and S. O
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To construct a kind of Saito—Kurokawa lifting of weight 0, we define a Hecke
operator shifting indices as in [6]. We put

An(t) = {g: (c?v Z); a,b,c,d € Z,det(g) =t}.

For any ¢ € J,g%(l"gl)(N)J), we define

(Dlrm Vi) (7, 2) = tF1 Z (et +d)~Femt ( —cz? )

ct+d
(& h)eranan
& ar+b tz
ecr+d er+d)’
This operator is a mapping from Ji%, (F((Jl)(N)J) to JY (Fél)(N)J).
Now to calculate everything more concretely, we should describe representatives
of I‘él)(N)\AN(t). We take a complete set of cusps of I‘((Jl)(N). Namely, we take a

complete set of representatives {gs} of double coset Fél)(N NSL2(Q)/P(Q), where
PQ) = {(a b ) ja, b, € Q}. Since SLy(Q) = SL2(Z)P(Q), we may assume g; €

0 a !

SL2(Z). Now take g € An(t). Since g (1 0 ) € SLy(Q), we have

0o t—1t

(1) a b
geTly (N)gs(o d)

for some s, a > 0, b, d > 0 with ad =t. If

a b as b
o (5 5) =8 (g )

for as > 0, do > 0, then obviously g1 = g2, @ = a2, d = d3. Define a natural number
hs by

95 T (N)gs N P(Z) = {i ((1) h1n> in € Z},

where we put P(Z) = P(Q)NSLs(Z). Then b = by mod hsd. We put g, = (zs yS).

Zs  Ws

Then the condition for gs<8 Z) € An(t) is that azs = 0mod N and ad =t. As a
whole we see that

F(()l)(N)\AN(t) = U {gs (g Z) ja,b,d € Z,ad =t,azs = 0mod N,

sz,...,hsd—l}.
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Now we take ¢(, z) € J“w(F(l)( N)7). We put

o(7,2)]01]gs] = Z cs(n, De(nt + 12).
n,l
Here we note that (¢(7, 2)]0,1[gs])|1[(A, 11)] = ¢(7, 2)]0,1gs] for any integers A, u € Z.
So we get n € h;'Z, | € Z and it is shown as usual that cs(n,l) depends only on
4n — 1% and [ mod 2, so we write ¢, ;(4n — [?) = cs(n,1). Here n € h;'Z might not
be an integer. But if 4 { hy then [ mod 2 is determined only by 4n — [? and in this
case we write cs(4n — %) = cs(4n — [2) for simplicity.
We define an operator L by

Lo = ($loaVi)(r, z)e*™ .

t=1
For each cusp, we put ¢s(7,2) = @(7, 2)0,1]gs] and ns = N/(zs, N). Then we have

hsd—1

D D)L EED D DR €l PO

s t=1 ad=t,azs=0 mod N b=0

= Z i Z (ad)fldhs Z s 1(4nd — l2)e(am' +alz + tw)

s t=1 ad=t,aensZ n,lEZ
_th Z chl4nm—l)(ns(nT—l—lz—i—mw))“
s m=1n,l€Z
hs cs.1(dmn—1?)
= Z—log H (1 —e(ns(nt + 1z + mw)))°!
s s I,m,n€Z,m>1

We note that L¢ converges only for those Z € Hy such that Im(Z) is big enough,
namely Im(Z) — Y} is positive definite for some fixed Y. But by analytic contin-
uation, exp(L¢) becomes multi-valued meromorphic function on Hy according to
the general theory of Borcherds product (cf. [3, p. 177, Theorem 5.1] or [4, p. 88,
Theorem 3.22]). Its singularities and zeros are on so called rational quadratic divi-
sors. The behaviour on rational quadratic divisors is determined by exponents, and
in our case if n;thscs (N) are integers for N < 0, then the product is single valued
(here if 4mn —12? > 0 we see |e(nT+ 1z +mw)| < 1 on Hy and we can take the prin-
cipal value as a branch of (1 — e(n7 + 1z +mw)™s Pecs1mn=1)) and if ¢, ;(N) > 0
for N < 0 besides, then it is holomorphic).

Now we see that L¢ is invariant by the action of F(()l) (N)”. Since ¢ is of weight 0,
this is also true for exp(L¢) which is actually given by the following infinite product

H (1 _( nCl m)ns)cgl(4mn 12 )hs/ns7
I,m,n€Z,m>0

where we put p = e(w). If this is invariant by exchange of 7 and w, then by
Lemma 6.2, we see that this is a Siegel modular form belonging to T'o(V). But
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actually this is false since we have terms with n < 0 while all m > 1 in the above
product. So to get invariance for this exchange, we must multiply something to
exp(L¢). To give such a candidate, we prepare notations. For integers m, [, n € Z,
we write (n,l,m) > 0if (1) m >0, n,l € Z,or (2) m =0,n > 0,1 € Z, or
(3)m=mn=0,01>0.For ¢(r, z) € J{', we denote by ¢ ;(N) the Fourier coefficients
at each cusp as before. We put d(¢) = 3°, 3,20 n<0mnicz ny thscs i (4mn —12).
For some integer b and positive integers a, ¢, we put

—1 2
F(T,Z,w) — qacbpc H (1 _ (qnclpm)ns)ns hscs,1(dmn—l1 )’

(n,l,m)>0
Frz) =g [T TT (= (g¢h™)(@ — (gn¢lyre)ne e
s m,l>1
H (1—q"™ n; ' hscs,1(0) H(l - CZ”S)ngthC&l(_ﬁ).

1>1

We note here that if N < 0, we have ¢, ;(N) # 0 only for finitely many N, so in the
above product expression of f(7,z), only finitely many different ! appears. Indeed
if ¢ is very weak, there is ng such that c¢s(n,r) = 0if n < ng. So, if N < 4ng — 1
for N = —r?mod 4 (r = 0 or 1), then cs;(N) = cs((N +72)/4,7) = 0. Also for
a fixed N < 0, the number of triples (n,m,r) with m > 1 and n < 0 such that
4nm — 12 = N < 0 is finite.

We denote by x a Dirichlet character modulo N and define a character of I'g (V)
or T§"(N) by xa() = x(det(D)) or x1(7) = x(d) for v= (& p)orv=(2 1),
respectively.

Proposition 6.3.

(1) If the relation

a—c= mhgscs | (dmn — 12
> X al )

s m>0,n<0,lmneZ

is satisfied, then we have F(w,z,7) = (=1)¥ P F(1, 2,w).

©2) If f(r,2) € JeoTSV(N),x1) and (=1)49) = (=1)kx(=1), then we have
F(Tvsz) € Ak(FO(N)7X2)'

Proof. The product F(r,z,w) was defined by multiplying something to exp(L¢)
so that it is relatively symmetric for 7 and w. The idea of this definition is explained
as follows. The part of the product in F' for m > 1, n, | € Z appears already in
exp(L@). There if m > 1, n > 1, then (1 — (¢"¢'p™)™) and (1 — (g™¢'p™)™) have
the same exponent ng 'hscs (4mn —1?). So this part is symmetric by exchange of T
and w without any change. When m > 1 and n = 0, to make the product symmetric,
the part [], [],,~;(1— (gm¢tyns)ns  haest (=) is multiplied to exp(L¢) in F(T, z,w).
So this part becomes also symmetric. Finally when m > 1 and n < —1, instead
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of multiplying a power of (1 — (¢™¢'p™)™), we multiply ¢%p°® to avoid a negative
power of p. Since (1 — (¢™¢'p")"™) = (—(¢™¢'p™)™)(1 = (¢~™¢"'p~")"), the part
coming from (—¢™¢'p™) and ¢%p° remains. Namely, we have
F(r,z,w) e e d _
i) — g% CptT(—1 (¢) lAB7
Faoan ¢ P (=) (pg~")"¢
where

A= Z Z mhscs 1 (dmn — l2),

s m>0,n<0,m,n,l€Z

B=Y" > Ihgce (4mn — 12).

s m>0,n<0,m,n,l€Z

We have B = 0 since cs (4mn — %) = c5 _;(4mn — [2). By our condition in (1),
we also have a — ¢ = A. Hence (1) is proved. Since F(r1,z,w) = f(7,2) exp(L¢)
and exp(L¢) is invariant by the action of Fél)(N )7, we see that under the action
of Fél)(N )7 the function F(r, z,w) behaves like a Siegel modular form of weight k
with character x2. By (1) and Lemma 6.2, we get F(7,z,w) € Ai(To(N),x2). O

In the above, we explained how to construct Borcherds product from an element
of J'§. Now conversely, if we are given a Siegel modular form F' € Si(I'o(V), x2)
and want to express F' by Borcherds product, how can one find ¢ € J{'§ which we
start from? About this we explain rought idea which is experimentally valid. We
take the Fourier—Jacobi coefficient fp, (7, z) of p™ of F' for the smallest m such that
fm # 0. Then if f,,,(7, z) is expressed as an infinite product and if ' can be written
as a Borcherds product, then f,, (7, z) should appear as a factor of the product. Since
there is no p in this product, this part should be the part for m < 0 which should
be multiplied to exp(L¢) to create symmetry. So f,,(7, z) should be equal to f(7, 2)
in the above proposition. Although we do not know which products in f,,(7, 2)
should correspond to which cusps, we just distribute some parts of (1 — (¢"¢'p™)")
to a cusp with ny = r and hope that there exists ¢ € J(’{fl”(F(()l)(N )7) such that
f(r,2) = fm(7,2)p™ for some a, b, ¢ satisfying the condition of (2). Concrete
calculations that this idea works will be given in the examples below.

Now we shall show that x19 € S19(T0(2)), x14 € S14(T0(3),%3), x11 €
S11(To(4)) are all obtained by Borcherds products.

For any prime p, Fél) (p) has two cusps represented by g; = 15 and gy = ((1) 7(1))
and we have ny = 1, ng = p and h; = 1, hy = p. We have

T ()\A () = {(g 2) € M2(Z);ad=t,b:0,...,d—1}

U{gg (g Z) € MQ(Z);ad:t,aEOmodp,b:O,...,pd—l}.
First, we consider Siegel modular forms of level 2. Since

x19 = n(7)*n(27)2¢_12p" + - --
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and
¢12= H — ") —-¢" ¢ -¢") 72,
and dlmSlg(Fo( )) = 1, if we can find a very weak Jacobi form ¢(r,z) €
Jgw(T5P(2)) such that
c1(—4) =1,¢1(0) = 6, cin) =0 ifn<0, n#0,-4, neZ,
c2(0) = 32, co(n) =0 ifn<0, n#0, neZ,

its Borcherds lift should be x19, where c1(n) or ca(n) are the Fourier coefficients

of ¢ or ¢z = ¢lo,1[g2]-
Now we construct this ¢. Define modular forms of I‘él)(Q) by

a(r) = 0oo(27)* + 10(27)* € Ao (TS (2)),
1
B(r) = 15bo0(27) Bo(27)" € A4V (2)).
Their Fourier expansion at cusps 0o and 0 are given by

afr) =14 24q + 24¢* + - - -,
T)=0+q+8¢ +

;0=
(o][f 75]) 0 =302

1
:_5_12(]%_12(1_4_...7

(2|1 5 ]) 0 = 55 (a2 - a8t/

We note that 3(7) = n(27)¢/n(7)®. Hence 3 has no zero on H;. Now 3¢ should
be a weak Jacobi form of weight 4 and index 1. Then by virtue of Proposition 6.1,
B¢ should be written as

B(1)¢(1, 2) = (ac(1)® +ba(7)B(T)) P2, (T, 2)
+ (coz(r)2 +dB3(7)) o (T, 2)

for some a,b,c,d € R. Imposing the condition on the Fourier coeflicients we
demanded, now we find

_af1)? (poa(T,z) —alT)p_o1(T, 2)
o5 = 5 ( E )
+ 2 a(M)p-21(7,2) — Sp0a(r;2).

Incidentally we can show that this has integral coefficients. Indeed we easily see o —
1 € 24q7Z][[q]]. Also we see ¢p1— p—2.1 € 12Z[[q, ¢, ¢ 1]] since (Esdo1— Esp—2.1)/12
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is the Eisenstein Jacobi form of weight 4 and of index 1 having integral coefficients
where E4 or Eg are Eisenstein series of SLy(Z) of weight 4 or 6, each belonging to
1 4 24Z][q]]. Since we have

o(r,2) = (O;((TT); - 32) (‘POJ(T’Z) - 01‘(27)“”‘2’1(“)) + 8a(r) a1 (T 2)

=q¢ '+ (6+CHCH+HEF128(C+CH+6(C+C))g+ -,

we see that all Fourier coefficients of ¢(7, z) are integers. Also we have
0 -1
ClE o

_ < 16a (%)2 —8) (900,1(7',2)—04(%) <P—2,1(T,z)>
a(3)" - 645 (3) ’

0 -1
1

and all Fourier coefficients of (qb|[ o

])(T, z) are integers.

Conclusion. Borcherds lift of

a® (po1—ap-pi1) | 32 8
(T) +t 5921~ 3¢%01

B
is x19. Namely we have
_ n m €1 (dnm—1?) n m €2 (dnm—1?)
xo=0¢¢"" J[ @-¢"¢p™)” (1—¢>¢*p™™)™ :
(n,l,m)>0
Secondly, we consider a Siegel modular form of level 3. Since
x1a = 0(1)°n(37)* ¢ 127, 2)p” + -+,
and dim S14(T'0(3),43) = 1, if we can find a very weak Jacobi form ¢(7,z) €
Jod (Fél)(?))) such that
c1(—4) =1,¢1(0)
62(0)

its Borcherds lift should be x14.
Now we construct this ¢. Put

a(r) = Y " P e A (0§Y(3), ),
T, y€ZL

7, ciln) =0 ifn<0, n#0,—4, n€Z,
21, c2(n) =0 ifn<0, neZ,

and
B 54n(37)°

()3 € AB(F(()I)(3)7 V),

B(r) = a(r)’
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where w(gc Z) = (=2) is a character of {"”(3). Their Fourier coefficients are

o(r) =1+ 6+ 0¢° +6¢° + - -,
B(r) =1 —36g — 54¢” — 252¢° + - -,
[0 —1] i T
(O‘ 1 0_)(7)__%0“(5)

1

@ik 1')(7)?5(7)
1 0] 3\/5 3

2

T 3V3

(14 6¢5 4 0g% +6q+---),

(1-36¢5 — baqs —252¢ + ---).

We note that o® — 3 has no zero on H; since it is expressed as an infinite product.
Because (a® — )¢ should be a weak Jacobi form of weight 3 and index 1 with
character y, (a® — 3)¢ should satisfy the condition
(a(r)® = B(1)d(7,2) = (aa(7)” + ba(7)* B(T)) p—2,1 (T 2)
+ (calr)? + dB(r)) doa (7. 2)

for some a, b, c¢,d € R. Comparing its Fourier coefficients, now we find

B 54a(T)3 00,1(7,2) — a(T)?p_2.1(T, 2)
000 = o 12 )
+alr) e z) — sg0a(r)

Since we have «(7)? — 1 € 12¢Z][¢]]*, and «(7)? — B(7) € 54Z[[q]]*, all the Fourier
coefficients of ¢ are integers by using ¢o1 = ¢_21 mod 12. Also

Qi

_ ( (54a (z)°

12
+3 (%) a(%) 2(257271(7, z),

[(1) o D (7, 2) are integers.

. 6) <¢0,1<T,z> ~a (§>2¢-2,1<m>>

Hence all Fourier coefficients of (qzﬁ

Conclusion. Borcherds lift of

5403 (90071—a2<,0271> 15 1

—_— 2 —_
1 + 5 a“p_21 290071
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is x14. Namely
_ n m €1 (dnm—1?) n m €2 (dnm—1?)
u=¢¢y I (-¢*¢pm™)” (1=g*¢*p*m)™ 7
(n,l,m)>0
where the meaning of (n,l,m) > 0 is as before.

Thirdly, we consider Siegel modular forms of level 4. Cusps of T’ 81)(4) are repre-
sented by g1 = 12,92 = (; 1) and g3 = (0 _[1)) Representatives of Ay(t) are given

by
T§Y (4)\Ay(t) {( )ad:t,b:O,...,d—l}
b sad=t, a €22, b=0 d—1
0 d ) - Y 9 - R
a b
U{gs(o d);ad:t,ae4Z,b:O,...,4d—1}.
Because

11 =1(7)*n(A7) 01 0p® +- -+,
and dim S11(To(4)) = 1, if we can find a very weak Jacobi form ¢(7,2) €
Jyw(T5Y(4)) such that
ca(—4)=1, ¢1(0) =6, c1(n) = ifn<0, n#£0,—4, n€Z,
co(n) = ifn <0, neZ,
¢3(0,0) = 16, cs(n,))=0 ifn<0, nez,

its Borcherds lift should be x11.
Now we construct this ¢. Define modular forms of I‘((Jl)(4) by

Oé(T) = 900(27‘)4 S A2(F
,B(T) = 910(27‘)4 S A2(F

Their Fourier coefficients are

0
0

(
0
(
0

a(t) = 1+8q+24¢* + - - -,
7) =0+ 16g +0¢* + - --,

e
(a (1) _é )(T):—%a(T/zx)

]. 1 1
== —2¢%" —6g2 +---,
1 q q? +

(2| ~5]) =160 -atra

S

1



Int. J. Math. 2005.16:249-279. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF OKLAHOMA on 10/01/15. For personal use only.

274 H. Aoki & T. Ibukiyama
and

We remark that 167(7)%* = afB(a — 8)*. Hence 8 has no zero on H;. Because
B¢ should be a weak Jacobi form of weight 2 and index 1, 8¢ should satisfy the
condition

N = N =
— O
[E—
N————
—~
A
|
2
b

B(r)e(r, 2) = (aa(r)? +ba(r)B(7) + cB(7)?) ¢-2.(7, 2)
+ (do(7) + €f(7)) ¢o.1(7, 2)

for some a,b, ¢, d, e € R. Comparing its Fourier coefficients, now we find

4;((:)) (@o,l(ﬂ z) — 043(7)@—2,1(772)>

20
+ 304(7')@—2,1(772)-

Since a(7)+ B(1) — 1 € 24Z][q]]*. Tt is shown as before that the Fourier coefficients
of the following three forms are integers.

165%()7) (¢0,1(Ta z) — (Oé(T)l-QF B(7)) 2,1 (7, Z))
+8a(7)p—2,1(7, 2),

% ((b‘ B (IJD (7,2) = 85((:)) (¢0,1(Taz) - (Oé(T)l-QF ﬂ(T))¢2,1(Tvz)>

+4B8(7)p—2,1(7, 2)

(as][(j ‘H)<T,z>:< L6ar (2 <¢ ((i)gﬂ(i))m,l(na)

(G

— ( )>¢ 21(7'2’)

¢(T’ Z) =

¢(T7 Z) =

\Q
B —

~— »J>|~I

Conclusion. Borcherds lift of

Ao (o1 —ap_21 20
o= 3 ( 3 + 5 P21

is x11- Namely, we have

xu=q¢¢"p [ @-g¢pm

(n,l,m)>0

)cl (4nm—1?)

x (1— qan21p2m)C2(4”m—12)/2 (1- q4n<-4lp4m)c3vl(4nm_l2) .
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Appendix A. Euler Factors

The simple expression of x35 makes it easy to calculate the Fourier coefficients of
Siegel modular forms of odd weights of Sp(2,7Z). So, we give here some examples
of Euler 2 factors of spinor L functions with some other eigen values.

The Euler p-factor of the spinor L-function is given by

(1=AP)p~* + (A(p)* = AP*) —p** p™* = A(p)p™" 373 4 p* 074!
where A(p?) is the eigenvalue of the Hecke operator T'(p®) (cf. Andrianov [1, p. 88]).
We define the Hecke polynomial of a Siegel modular form F' at p by

Hy(u, F) = u' = Xp)u® + (A(p)* = A(p?) = p**~")u? = Ap)p™* ~Pu +p**~°.
If we denote a(t1, t2, t) the Fourier coefficient of Siegel modular form F' of odd weight

k at (:/12 tt/;) and a(t1,t2,t;p®) the coefficient of T'(p®)F' at the same matrix, we

have
a(2,3,1;2) = a(4,6,2) + 2""%(—a(2,3,1) + a(1,6,1)),
a(2,4,1;2) = a(4,8,2) + 2*"3(—a(2,4,1) + a(1,8,1)),
a(2,3,1;4) = a(8,12,4) + 2872 (—a(4,6,2) + a(2,12,2))
—22k=4(4(2,3,1) + a(1,6,1)),
a(2,4,1;4) = a(8,16,4) + 28~ 2((1(2 16, ) a(4,8,2))

— 2" 4(a(1,8,1) + a(2,4,1)),
a(2,3,1;3) = a(6,9,3) — 3~ 2(a(2,3,1)+a(1,6,1)),
a(2 ,4,1,3) a(6,12,3),
a(2,3,1;5) = a(10,15,5),

a(2 4,1,5) a(10,20,5) — 5572a(2,4,1),
a(3,4,2;2) = a(6,8,4) — 2"72a(2,6,2).

By using these relations, we can calculate Hecke polynomials at 2. We put xs39 =

Pax35, Xa1 = X3506, X43 = X3507, X45.c = X3504P6, X45,c = X35X10-
Since we get

T(2)x45.. = —10766446755840 45, + 6671813516187402240 45 ..,
T(2)xa5.c = 205209645, — 11638111469568 45,

We get eigenforms
Xa5,4 = Xas,e + (— 212384 % 32v/3219068329) y 45,

The eigenvalues and Hecke polynomials Ha(u, F') at two for the above F' are given
as follows.

(2, x35) = —25073418240 = —217 . 3% . 5. 13- 109,
(4, x35) = 138590166352717152256 = 23 - 313 - 25773193,
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A2, x30) = —283917680640 = —220 .32 . 5. 11 - 547,
(4, x30) = —3619320962049810366464 = —24° - 109 - 1249 - 24179,
A2, x41) = —1478110740480 = —2'8 . 3% . 5. 11 - 3797,

A4, xa1) = 205535162772980871725056 = 2% . 4127 - 724722623,
(2, xa3) = —4069732515840 = —2'7 - 3% . 5. 127 - 1181,

M4, xa3) = —7025213863729397585936384,

= —2%.137- 461 - 32587 - 198689,
A(2, xa5,+) = 2'7 - 3(—67 - 425207 + 167+/3219068329),
A4, xa5,+) = 2% (—3563629466346751 T 3% - 1249236899+/3219068329),

Hy(x35,u) = u* + 25073418240u” + 416299159590409338880u
+ 267 25073418240u + 2134,
= (u® 4 196608 (63765 + v/931783609)u + 2°7)

x (u® + 196608 (63765 — v/931783609) u + 2°7),
Hj(x30,u) = ut 4 2839176806401 + 65339104410568260321280u>
+ 283917680640 - 275 + 2150

= (u? + (141958840320 + 15728641/12276590561u + 27°)
x (u? + (141958840320 — 15728641/12276590561u + 27°),
Hy(xa1,u) = u* + 1478110740480u> 4 1677044743445695745228800u2
+ 1478110740480 - 27 + 21%8
= (u® — (—739055370240 + 3932161/505009125721)u + 2™)
x (u? — (—739055370240 — 3932161/505009125721)u + 2™),
Hj(xa3,u) = u* + 4069732515840u® + 18752233335756256738017280u>
+ 4069732515840 - 283, + 2166
= (u® — (—2034866257920 + 196608+/122398046613649)u + 2°%)

x (u?® — (—2034866257920 — 1966081/122398046613649)u + 2%%),
Ho(xa5,4,u) = u® — 217 . 3(—67 - 425207 + 1671/3219068329)u*

+2°2.13(31 - 37 - 2746651 + 32 - 29 - 71v/3219068329) u?

— 2104 3(—67 - 425207 + 167+/3219068329) u + 2'7*.

Here we used the following Fourier coefficients.
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det(2T) matriz X35

23 (1,6,1) 0
31 (1,8,1) 0
23 (2,3,1) 1
31 (2,4,1) —69
92 (2,12,2) 0
124 (2,16,2) 0
92 (4,6,2) —16483483648
124 (4,8,2) 1137360371712
207 (6,9,3) —6265491005023317
279 (6,12,3)  815894058438939960
368 (8,12,4)  70785096262933807104
496 (8,16,4) —4884171642142432690176
575 (10,15,5) 9470081642319930937500
775 (10,20,5) —8686092839378577431953125
matrix X41
(1,6,1) 0
(1,8,1) 0
(2,3,1) 1
(2,4,1) —573
(2,12,2) 0
(2,16,2) 0
(4,6,2) —928354926592
(4,8,2) 531947372937216
(6,9,3) 2768920684226993187
(6,12,3)  735522550617806304840
(8,12,4) —2601900568881288708096
(8,16,4) 1490889025968978429739008
(10,15,5) —5831121555872266319789062500
(10,20,5) 2298951723283032840588498046875
matrix X45,e
(1,6,1) 0
(1,8,1) 0
(2,3,1) 1
(2,4,1) —333
(2,6,2) 0
(2,12,2) 0
(2,16,2) 0
(3,4,2) 25408
(4,6,2) —1970353733632
(4,8,2) 656127793299456
(6,8,4) 6398259637015019520
(6,9,3) —655720652892490105293
(6,12,3)  327664547555580051912360
(8,12,4) —64969484995119491019964416
(8,16,4)  21634838503374790509648150528
(10,15,5) —759034780255193943867539062500
(10,20,5) —125818587788001795724244501953125

X39

—146478727168
—25047862345728
—82431566868072467
—217956527251764468840
—4861737998451763838476
—831357197735251616464896
8882040686918464920937500
13960716477716715796158046875

X43

—1870709260288
—768861505978368
—29309429601382173237
—27036577077185266412040
—6303243753020672396230656
—2590633182491496354850799616
—44890110453445302863489062500
240280725067655812260048046875

X45,c
0

_H O OOOoOOoOOo

2052096

—683347968

—11585971814400
—206480972614698
68758163880694434
5978206147637673984
—1990742647163345436672
735523870120782234375000
—244929448750220484046875000
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Some more eigenvalues at other primes are given by

(3, x35) = —11824551571578840 = —23 - 311 . 5. 4817 - 346429,
A(5, x35) = 9470081642319930937500 = 2% - 33 . 57 - 13- 23 - 41 - 137 - 668289019,
(3, x30) = —1274599574571722040 = 23 - 3'2 . 5 . 59959599211,
(5, x30) = 8882040686918464920937500
=22.32.57.11-47-61-73 - 46141 - 29729663,
(3, xa1) = —1283634468791983080 = —2° - 312 . 5. 122321 - 493657,
(5, xa1) = —5831121555872266319789062500
=—22.3%.5%.11-20413117- 123110838817,
(3, xa3) = —65782425978552959640 = —23 - 31 . 5 . 343836777839.
(5, xa3) = —44890110453445302863489062500

= —22.3%.5%.41-773- 17657 - 1901457470879,
A3, xa5.4) = —940124365399227162888 F 66073911236703361/3219068329
= —23.3%5(1552657 - 5274739 + 23 - 312 - 7487+/3219068329),
A5, xa5.4) = —915248281886926157933039062500
+ 23536763843865031500000000v/3219068329
=22.3.5%.13(—11- 83 - 3290133403025431747
+26.29% . 751 - 3733 - 5119391/3219068329).

Correction of the paper [12]

(1) p. 20, in the definition of fg, the coefficients of 626, should be —2271/3328
instead of 2271/3328.

(2) p. 21, in vg and we, the coefficients of 64605 is —3321/4 instead of 3321/4.

(3) p. 24, the coeflicient of goxe is —1728 instead of —1729.

(4) p. 27, 1 8, the right-hand side of W (E, — 81E,) —100 instead of 100 and +10
instead of —10.

(5) p. 29, 1.17, the coefficient of 5 fg should be 110592 instead of 432 and that of
0206 is —124416 instead of 124416.

(6) p. 29,14, E4+ E; should be replaced by Fy + 81E;. The coefficient of 05 fg is
172800 instead of 675/256.

(1) (7) p. 30, in Eq. (1), the coefficient of (E4 +81E)) fs is —108 instead of 180 and
that of 03 fg is —20520 instead of —34200.
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