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In this paper, first, we shall give the explicit structure of the graded ring A(I'x(3)) or
A(T&(3)), of Siegel modular forms of genus two (of even weights) belonging to the
discrete subgroup I',(3) or T'¥(3) of Sp(2, R), respectively. (Sec. 1. Theorem 1,3) We
shall also give the ideals of cusp forms of these rings explicitly there. Secondly, we shall
show that the Satake compactifications S(I'y(3)\H,) and S(I'§(3)\ H,) of the quotients
of the Siegel upper half space H, of genus two by the above groups are rational varieties
(Sec. 1. Theorem 2), and besides, we shall show that these are weighted projective
spaces (Sec. 1. Theorem 4), although the graded rings above are not weighted poly-
nomial rings. Here, for any natural number p, we denote by I',(p) the group defind by:

Fo(p) = {(g g) e Sp(2,7); C = 0 mod p},

and by I'}(p) the subgroup of Sp(2, R) generated by I'y(p) and p, where
00 -1 0
_1]00 0 -1
P=/lp 0 0 0
0 p 0 0

In the appendix, we also give graded rings of Siegel modular forms belonging to some
level two subgroups.

Historically, first, Igusa [6] [7] [8] gave explicitly the graded rings of Siegel modular
forms belonging to the several discrete subgroups of Sp(2, R) with 2 power level. It was
also shown by Coble [1] and van der Geer [2] that the Siegel modular variety with
respect to the level three principal congruence subgroup I'(3) of Sp(2, Z) is a rational
variety. So, it is clear that S(I',(3)\ H, ) is unirational, because it is covered by the rational
variety S(I"(3)\ H,). But it was not known whether it is rational, because our variety is
of dimension three, and Castelnuovo’s lemma is false in general in such cases. Besides,
explicit structures of the graded rings were not known in any cases of level three.
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Now, we outline our proof and the content of each section of this paper. In Sec. 1,
after reviewing the definitions of several known Siegel modular forms, we shall state
our main results as Theorem 1, 2, 3, 4. In Sec. 2, we shall write down the dimension
formula of Siegel modular forms belonging to I',(3). This is obtained easily by using
the dimension formula of cusp forms belonging to I';(3) of weight k > 5 by Hashimoto
[3], of k <4 by Yoshida [11], and the surjectivity of ¢-operator given by Satake [9]
for k > 6. In Sec. 3, we shall define a certain submodule 4" of A(I';(3)), and we shall
show that the image of A’ under the Witt operator W (that is, the restriction of Siegel
modular forms to the diagonals of H,) is equal to the space of symmetric modular
forms on the diagonals of H,. (The precise definition will be given there.) The graded
ring of the symmetric modular forms is also given there. In Sec. 4, we shall show that
A’ coincides with A(I,(3)) by using the results in Secs. 1, 2, and prove Theorem 1, 2.
In Sec. 5, we shall prove Theorem 3, 4. In the appendix, we shall give graded rings of
Siegel modular forms belonging to some level two subgroups. The results in this
appendix was a part of [4], but this part has not been published before. We shall omit
the proof there, because the proof is almost the same as in the case of level three and
it can also be proved, at least in principle, by using Igusa’s result on the level two
principal congruence subgroup. (cf. [7])

Notations. We shall use the standard notation C, R, or Z for the complex numbers,
the real numbers, or the rational integers. For any ring R, we shall denote by M,(R)
the set of all n by n matrices and by 1, the n by n unit matrix. When R is an algebra
over Candr,,..., 1, € R, we denote by C[r,,...,r,] the ring generated by r,, ..., 7,
over C.

1. Main Results

1.1. Preliminaries

We denote by H, the Siegel upper half space of genus n defined by:
H,={X+iYeM,(C);'X =X,'Y = Y e M,(R), Y > 0(Y: positive definite)}.
We denote by Sp(n, R) the usual real symplectic group of size 2n:
Sp(n,R) = {g € M,,(R);gJ,/g = J.},

where

0 —1
J, = ( ) > € M,,(R).

Any element g of Sp(n, R) acts on H, by:

o A B
g(Z) = (AZ + BY(CZ + D) for g = (c D>.
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For any element g € Sp(n, R), any non-negative integer k, and any function F on H,,
we write

Filg). = F(9(2)) det(CZ + D).

For each non-negative integer k and each discrete subgroup I' of Sp(n, R) with covol-
ume finite, we say that any holomorphic function F on H, is a modular form of weight
k belonging to T, if it satisfies the following conditions (1) and (2):

(1) F|[y],=FforanyyeT

(2) F is holomorphic at each cusp.
(It is well known that the condition (2) is automatically satisfied when n > 2) If a
modular form F vanishes on every cusp of the Satake compactification S(I'\H,) of
I'\H,, then we say that F is a cusp form. We denote by A4,(I'), or S(I), the space of
Siegel modular forms, or cusp forms, of weight k belonging to I, respectively. It is well
known that, for any natural number d, we have

S("\H,) = Proj (i Akd(r))

We denote by A(I) the graded ring of Siegel modular forms of even weights belonging
tol:

AD) = 3 4x(D).

and by K(T') the function field of S(I'\H,).

1.2. Modular forms

Now, we review the definition of several modular forms on H, given explicitly. For
any natural number k > 4, we denote by E,(Z) the Eisenstein series on H, of weight k
belonging to Sp(2, Z), normalized so that the constant term of the Fourier expansion
of E, is 1. We put E; = E,(3Z). It is trivial that E; is a modular form belonging to I',(3)
and that E, + 3*E; to I'¥(3). Yoshida [11] defined severed modular forms belonging
to I'3(3). We quote some of them below. We denote by S the 4 x 4 matrix defined by:

1 0 32 0
g0 1 0 32
32 0 3 0
0 32 0 3

For column vectors x = (x,, X5, %3,%X4), ¥ = ‘(¥1, V2, V3, Va) € R*, set

‘xSx 'xSy>

Qey) = <’xSy 'ySy
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and
¢ =(xX1y3 — V1X3) + (X2V4 — ¥2X4)

d=(xy5 — y1X4) + (X3¥2 — ¥3X3) + (X1)2 — y1X2)-

According to Yoshida, we define three theta functions 6,, 0,, and 64 as follows:

0,(2) = ) exp(ni(tr(Q(x, y)Z))),

(x,y)

0.(2) = Y (c* — d*)exp(2mi(tr(Q(x, y)Z))),

x,)

06(Z) = Y. (c* — 6c*d? + d*)exp(2ni(tr(Q(x, ¥)Z))),

x,y)

where Z € H, and (x, y) extends over Z* @ Z*. The above functions 6,, 0,, 0, are Siegel
modular form of weight 2, 4, 6, respectively, which belong not only to I';(3) but also
to T#(3), and 6, and 6 are cusp forms (Yoshida [11] pp. 358—359).

1.3. Main results

We denote by f the element of A4(I'3(3)) defined by:

1 ‘ 271

fo = 552 (— 109863 + 38880 + 490,(E, + 81E,) — 4(Eq + 729E5)) + 33,506

We denote by B the subalgebra of A(I'$(3)) generated by 8,, 6, 0 and f¢ over C.

Theorem 1. Notations being as above, the ring B is a weighted polynomial ring. Each
graded ring A(T,(3)), or A(T¥(3)) is a free B-module of rank 4, or of rank 2, respectively.
More explicitly, we have

A(T3(3)) = B® B(E, + 81E)),

A(Ty(3)) = B® B(E, + 81E,) ® B(E, — 81E,) @ B(E; — T29Ey),
where we mean by @the direct sum as B-modules. Each ideal of cusp forms of each graded
ring is spanned by 0, and 0.

Theorem 2. The 3 dimensional varieties S(I'$(3)\H,) and S(I',(3)\H,) are rational.
The function field of each variety is given by

0, (E, + 81E}) 6,
X = sz 2
K(T#(3)) C(eg’ w6

(0. E, E4
) (G g )
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To write down relations between the generators of the graded rings above as simply
as possible, we introduce some more notations. We define

t2 = 02’
u4 = 04:

3321
v = — 1863 — 1728/, + 0,0, + 0,(E, + 81E)),

3321
0,0, — 0,(Eq + 81E},) + 19446,)/4,

we = (8203 — 1728f, + =~

xs = ((Eq + 81E,) — 8203 + 3246,)/16,
ya = (E, — 81E})/10,

1 13
2 = 5 (Es — T29E{) — 1 (Eq — B1E}).

We denote by T,, U,, Vs, We, X,, Ya, Zg seven algebraically independent weighted
variables, where each variable of T,, U,, Vg, Wg, X 4, Y,, or Zg, is of weight 2,4, 6, 6,4, 4,
or 6, respectively. Denote by I*, or I the ideal of the weighted polynomial ring
ClT,U,, Vs, Ws, X, ], or C[T,, U,, Vg, We, X4, Ya, Zo ], generated respectively by the
following e¢lements in each ring:

I*=(X2-T,W,), or
I=(X}—To,Wo, X, Y, —T,Zs, Y2 — T, Ve, X, Zo — W Yy, Y, Zo — Ve X4, Z2 — Ve W),
Theorem 3. We have the following isomorphisms between graded rings:
A(T¥3)) = C[Th, Uy, Vg, We, X, /1,
A(T,(3)) = C[ Ty, Uy, Vs, We, X4, Yo, Z6 /1.

The isomorphisms are obtained by mapping each T,, Uy, Vg, We, X, Yo, 0r Zg to each t,,
Uy, Vgs Wes X, Va, OF Zg, respectively.

Now, we shall state some more details on these varieties. For each quadruple of
natural numbers i,, i,, i3, is, we denote by a; , f;,, 7i,, 6;, algebraically independent
weighted variables of weight i, i,, i3, Or i, respectively. We denote by P(iy,i,,i3,i4)
the three dimensional weighted projective space of weight iy, i,, i3, iy. By definition,
we have

P(iy,iz,i3,i4) = Proj(C[“i,aBiz,Vi3’5i4])-
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We denote by Cla;,,B,,,7:,, 9, ]2) the graded subring consisting of elements of even
weights of Cla; , B;,,7:,,6;,]

Theorem 4. We have the following isomorphisms between graded rings:
A(Fg‘(3)) = Clay, B35 74,96 12)
A(F0(3)) = Clay, B3,74,0312)-
These isomorphisms induce the following (biregular) isomorphisms between algebraic
varieties:
S(T¥(3)\H,) =~ P(1,3,4,6), and
S(To(3\H,) = P(1,3,3,4).
Each isomorphism between graded rings will be given explicitly below.

Isomorphisms between graded rings:
(1) in case of I';(3)
An isomorphism is given by mapping the generators as follows:

0‘%"92, Bg—'w6’

5:%_’06, Ya =04,
B3 — x4, %103 Y4,
B363 - z¢,

(2) in case of I[;(3)*
In this case, an isomorphism is given by restricting the above isomorphism to the
subring C[a,, 5,74, 961 (2) of C[ay, B3, 4, 03](2), Where we identify J¢ with 63.

Remark 1. For odd k < 13, there is no Siegel modular form of weight k belonging
to Iy(3). So, the graded ring Y %, A,(T(3)) is not isomorphic to C[ay, B3, 4,63 ]-

Remark 2. By virtue of Abel’s fundamental theorem on Z-modules, it is trivial that
any weighted projective space is rational. So, Theorem 2 is a direct consequence of our
Theorem 4. But, in this paper, we shall prove Theorem 2 more directly without using
Theorem 4.

2. Dimension Formula
First, we review the following Proposition.

Proposition 2.1. (Hashimoto [3] for k > 5, Yoshida [11] for k < 4) We have

& (2 O+ 1 — 10 + (1 + 202 +15)
‘;1 (dlm Sk(F0(3)))tk = 1 = )1 = 1 — 17 .
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Proof. This is obtained just by gathering the individual data for each dim S(To(3)
in [3] [11] together. The details will be omitted here. O

Next, we show

Proposition 2.2. We have

N 142 1+ 101+ 2% + 1)
Z, @m AL =" )i i — ooy

Proof. The boundary of S(I,(3)\H,) have two 1-dimensional components, both of
which are isomorphic to S(I'y (3)), where we denote by I'y(3) the subgroup of SL,(Z)
defined by:

ri3) = {(‘c’ Z) € SL,(Z);c = 0 mod 3} .

And these 1-dimensional components intersect with each other at a point p which
corresponds to a cusp of S(I'(3)) (cf. [4], [5]). In this case, for each k, the generalized
Siegel ®-operator in the sense of Satake [9] is the mapping ®, of 4,(Ix(3)) into the
following C-linear space 0A;:

04y = {(f,9) € A(T33)) x AT (3))S = g on p},

and defined by:

cpk(F(z))=<lim FC f) lim (F|[Jz]k)<’ Z))
=i t' i z T

If k is odd, then 4, = 0and A4,(I,(3)) = Si(To(3)). Hereafter, we assume that k is even.
The above @, is surjective for any even k. In fact, when k > 6, this is contained
in the more general theorem of Satake (loc.cit.,). When k = 2, or 4, we can show the
surjectivity of @, directly by mapping 6,, 63, E,, and E,, by ®,. Hence, for even k, we
have

dim A4,(To(3)) = dim S,(T,(3)) + dim 04,.

As we have

3...fork>4

. — A 1
dim 04, = 2dim §(T5 (3)) + {1 fork=2’

and

2 . . £ + 10
kZ1 (dim S,(T5 3)))¢* = (1 =1 =)

we get our Proposition 2.2. O
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3.  Witt Operator

We denote by B the subalgebra of A(I,(3)) defined as in Sec. 1 and by A’ the
B-submodule of A(T,,(3)) generated by 1, E, + 81E}, E, — 81E},and Eg — 729E over
B (as B-module). In the next section, we shall see that 4’ is actually a ring and equal
to A(I,(3)). In this section, we shall see the explicit structure of the image of 4’ by the
Witt operator W. The Witt operator W is defined to be the mapping of the set of
functions F on H, to the functions on H; x H, as follows:

W(F)(m')=F<T 0)
0 7

It is trivial that W is a ring homomorphism.

Now, we shall call a holomorphic function F(z,7’) on H; x H, a symmetric modular
form of weigth k belonging to I'd(3), if it satisfies the following two conditions:

(1) F(xr,7') = F(7,1),

(2) For any fixed t' € ¥, the function F(z,7’) on 7 € H, belongs to 4,(I; (3)).
By a similar argument as in Witt [10], we can show that these conditions (1), (2) are
equivalent to the following single condition (3):

(3) For some integer r > 0 and some forms f;, g; € 4,(T¢(3)) (i = 1,...,r), we have

T

F(z,7) Z (fi(Dg9:(r") + g:(0fi(1).

We denote by Sym,(I';(3)) the space of all symmetric modular forms of weight k
belonging to I’y (3). We also define a graded ring Sym(I'§(3)) by:

Sym(Ii(3)) = @ Symy(T4(3)).
It is easy to see that
W(A(T,(3))) = Sym([(3)).

We shall describe the explicit structure of Sym(I'} (3)). First, we clarify the structure
of A(T§(3)). We denote by g,(resp. x¢) the unique normalized modular (resp. cusp)
form of weight 2 (resp. 6) belonging to I'}(3). We also denote by g, the normalized
Eisentein series of weight 4 belonging to SL,(Z). The forms g, and y, are algebraically
independent. In fact, g, is not a cusp form, while y is, and if P(x, y) is any polynomial
such that P(g,, x¢s) = 0, then P(x, y) is divisible by y, so, if we replace P(x, y) several
times by P(x, y)/y, we can assume that P(x, y) is a polynomial only on x, which is a
contradiction. Now, we see that g,, g,, and x, span A(I'} (3)). More precisely, we get

A(Fol(3)) = C[g2, 461 ® 94CL 925261,

g5 = —993 + 10939, — 17299, %6,
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where @ means a direct sum as modules. In fact, as dim Ag(T} (3)) = 3, there exists a
linear relation between g2, g3, g2g.4, and g, xs. We get the above explicit relation by
using the following Fourier coefficients:

g2(t) = 1+ 129 + 369 + 12¢° + -,
ga(t) = 1 + 240q + 2160g> + 67204 + ---,
1e(t)=q— 6% +9¢> + -+,

where te H, and q = exp(2nit). Now, take a polynomial P(x,y,z) such that
P(g,,%6,94) = 0. We can assume that the degree of P with respect to z is one and
that the degree with respect to y is minimal among those which satisfy the above
relation. Then, we have P(x,0,z) = ax" + bzx""2? for some a, be C and a natural
number n > 2. As ¢ is a cusp form and g, does not vanish at each cusp, the form
ag? + bg, must be a cusp form. This implies that a = b = 0, because g3 and g, are
linearly independent and dim S,(I'5 (3)) = 0. Hence, P(x, y, z) is divisible by y and we
can replace P(x, y, z) by P(x, y, z)/y, which is a contradiction.

Next, we shall determine the ring structure of Sym(I; (3)). We denote by 7 (resp. ')
the first (resp. second) argument of an element of H, x H,.Fora pair(f,g) € A(I3(3))?,
we shall often consider a function f(z)g(t’) on H, x H,. To distinguish the variables
7 and 7’ in such cases, we shall denote f(z) by f and f(z') by f.

Proposition 3.1. The symmetric modular forms g,g5, g3xs + 95 Xe> and xsXs are
algebraically independent. Besides, we get

Sym(T5 (3)) = CLg293,93xs + 95 X6> X6 Xs»9adar 9394 + 95 94-929aXe + 9594X6]

= S ®(9494)S D (9394 + 97°94) ® (9294 X6 + 929426)S
where
S = C[9293.93%6 + 95 X6 X6 X6 1
and @ means the direct sum as S-modules.

Proof. We denote by Sym’ the right hand side of the above equality, that is,
the subring of Sym(I'5(3)) spanned by the six symmetric modular forms mentioned
above. First, we shall show that Sym(Ij(3)) = Sym’. By definition, every symmetric
modular form of weight k is linear combination of several forms fg’' + f'g, where
(f.9) € A,(I'5 (3))>. But, by the explicit structure of A(I'J(3)), this is also a linear
combination of the following three kinds of symmetric modular forms:

(1) gsxg5xs + 9515 9526 (2a + 6b = 2c + 6d = k),
(2) 9528951894 + 9518 951894 (2a + 6b=2c + 6d + 4 =k),

(3) (949095289516 + 9515 95%8) (2a + 6b+ 4 =2c + 6d + 4 = k),
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where a, b, c, d are non-negative integers. Now, we must show that these three kinds
of forms belong to Sym'’. Dividing the above forms by (g,g5)™™*9 and (x¢xs)™"®,

we can assume that min(a, ¢) = min(b,d) = 0. Hence, the proof reduces to show that

the forms g3°x& + 9516, 93° 216 dq + 95°° 21894, and g3° 2 xegs + 95 1Eg4 be-

long to Sym’ for each e > 1. This can be proved by induction, using the following
relations:

(9326 + 9518 G316 + 952 16) = (3™ + g Vye)

+(9295) (e x6 )93 Vs ™ + g2 xe™),

3et+2,,re 13et+2 e 13e

93290 + 97 1890 = (9394 + 952 9.)(93° 16 + 95¢xE)

— (9321690 + 957 xE94)
BT E g, + 92V 20800 = (929406 + 9295X6) G2 XE + 957°1E)
—(9292) X6 x6)(93° V2 1 gs + 9577V 2 xEg0).

Hence, we get Sym(I5(3)) = Sym'. Next, we shall prove the second equality in Proposi-
tion 3.1. By the explicit structure of A(I'j(3)) which was shown before, it is clear that
Sym(I3(3)) is spanned by 1, g4gi, 9394 + 95294, and g2g4xs + 939426 as S-module.
As we have shown before, g,, g3, x6, and x5 are algebraically independent. This implies
also the algebraic independence of the three forms g,g5, g3 x5 + 95> X6, and x¢xs. Now,
assume that

P, + g4g4P; + (9394 + 95 94)Ps + (929aX6 + 9294X6)Pa =0
for some polynomials P, P,, Py,and P, of g,95, 93 xs + 95 X6, and x¢xs- Then, we get
P, + gi(g3Ps + g3x6Ps) = 0

(glzzpa + gax6Py) + g4P, =0,

and
P, =g3P; + g3%6P, =0

P, = g7 Py +g,06P, = 0.
So, we get P,(95>x6 — g3x5) = 0. But, by calculating the Fourier coefficients, we get
95’ %s — 93x6 = 7564q’% + --+ # 0.

Hence, we get P, =0foralli= 1, ..., 4, and that the sum is direct. Thus, we have
proved Proposition 3.1. O
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Corollary 3.2. The notations being as above, we have

14 2t* +¢®

Y. dim(Sym(I3(3)))t* =
k=1
Proof. Obvious. O
Proposition 3.3. We have

W(A') = Sym(T¢(3)).

Proof. Itiseasy tosee that the image of each generator of B under the Witt operator
W is given as follows:

W(b,) = 9,93,
wb,) =0,
W(0s) = 96x6x6,
W(fs) = 932x6 + 95 16>
We also get
W(E,) = gaga,
W(E,) = (10g5 — g4)(10g5> — g4)/81,
W(E, + B1E}) = 2,9, + 100(g,95)* — 10(g394 + 95°94),
W(E, — 81E}) = 100(g,93)* — 10(g34% + 952 94),
W(Es — T29E5) = —910(g,g3)* + 7560(g3xs + 95° 1) + 91(9,95 09294 + 97 94)

—1512(g,94x6 + 92941s)-
Hence, by Proposition 3.1, we get the required resulits. O
Remark. We also get
W(B + B(E, + 81E,)) = S ® (9494 + (1043 — g,)(10g5 — g,))S.

This means that the Witt operator is ‘surjective’ in our cases in a certain sense. It seems
interesting to ask whether this is always true.
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4. Proof of Theorems 1, 2

4.1. First, we shall prove Theorem 1. The four modular forms 6,, 8,, 6,, and f; are
algebracially independent. In fact, assume that

P(92,H4, 06af6) = Pl(02’06’f6) + 94P2(92, 941f6’06) =0

for some polynomials P(x, y, z, w} = P,(x, z,w) + yP,(x, y, z, w). Taking the images of
both sides of the above equation under the Witt operator W, we get

Px(W(ez), W(0), W(fa)) =0.

As we have mentioned before in Sec. 3, W(d,), W(f;) and W(f,) are algebraically
independent, so we get P, = 0. Hence, we can replace P by P/y, and by induction, we
get P = 0. Next, define the ring B as in Theorem 1 and denote by A’ the B-module
defined asin Sec. 3. We shall prove now that 1, E, + 81E,,E, ~ 81E),,and E; — 729Ej
are the B-free basis of A" as a B-module. In fact, assume that

P, + (E4 + 81E,)P, + (Eq — 81E4)P; + (Eg — T29E,)P, = 0

for some elements P, (i = 1,...,4)in B. Taking the images under the Witt operator, we
get

{W(P,) + 100(g,g5)> W(P, — P3) — 910(g2g3)* W(Ps) + 7560(g3 1 + 95’ X)W (Pa)}

+ 2(949 ) W(P,) + (9394 + 977 94) { — 10W(P, — P3) + 91(g,92) W(P,)}

— 1512((929426 + 9294 x6) W(Pa)

=0.

Hence, by Proposition 3.1, we get W(P;) = Ofor alli = 1, ...; 4. This fact also implies
that P, is divisible by 6, for each i =1, ..., 4, and by induction, we get P, =0
(i=1,...,4). Hence, we proved that the sum is direct. We proved here also that, if
W(F) =0 for F e A, then F € 6,A". Now, denote by A, the linear subspace of A4’

consisting of all the modular forms of 4’ of weight k. By the above results on the
B-module structure of A', it is easy to see that

© t+2t* + 8
: ’ 2k _
& im A2 = G e

Hence, by Proposition 2.2, we get A,,(I,(3)) = A%, for each k > 1 and A(T,(3)) = 4".
Incidentally, we can give an alternative proof of this fact by using Corollary 3.2 and
the following relation:
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dim A%, = dim A,_, + dim Sym,, (I3 (3)).

As E, + 81E, and all the elements of B belong to A(I'¥(3)), while (E, — 3*E})|[p]; =
—(E, — 3“E;) for any k > 4, we get A(I#(3)) = B + (E, + 81E},)B.

Now, we shall determine the ideal of cusp forms. We denote by S; the linear space
consisting of all elements of degree k in the ideal of A(I',(3)) spanned by 6, and 6. If
6,F + 05,G = 0 for some F € A,_4(I,(3)) and G € A,_¢(I(3)), then W(G) = 0. Hence,
G is divisible by 6,, and we get

dim Sy, = dim A,,_4(To(3)) + dim A5, _6(To(3)) — dim A, —y6(To(3))-

Hence, comparing the dimensions by Proposition 2.1 and 2.2, we get S, = S,([(3)).
The ideal of cusp forms in A(I'§(3)) is obtained almost in the same way and the proof
will be omitted here. Thus, we proved Theorem 1.

Secondly, we shall prove Theorem 2. For any discrete group I, the function field
K(I') of Proj A(T') is generated by the elements f/g of degree 0 in the quotient field of
A(T) such that f, g € 4,(T') for some k. Hence, it is obvious that K(I'}(3)) is spanned
by 0,/62, 8,/03, £+/63, and (E, + 81E,)/03. By routine calculation, we can show that
the image of the modular form

(Eq + 81E,)? — 10002(E, + 81E,) — 14766% + 4320,f; + 1244166,0,

under the Witt operator is 0. Hence, this modular form belongs to 6,4,(IF(3)). In
other words, we get

fe c C<94 0 E, + 81E4)'

03~ \ep'e o

By the similar argument as in the proof of Theorem 1, we can show that 6,, 0,,
6 and E, + 81E] are algebraically independent. Hence, the three-dimensional vari-
ety S(TF(3)\H,) is rational. Incidentally, we can show also by the same argument
that K(I'#(3)) is spanned by 6,/03, (E, + 81E,)/63, and f¢/63. Next, as (E, — 81E}) x
(Es — T29E() € A(T(3)), the function field K(T,(3)) is spanned by K(I'$(3)) and
(E, — 81E,)/62. Calculating the image under the Witt operator, we see that

(E, — 81E,)? — 1000,(E, + E,) + 18000 + %ez fo + 83025626, € 0, 4,(T(3)).

Hence, we get

fo o of% Eo+ 81E, E, —81E,
03 02> 92 62 '

This implies that
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0, E, E
K(T. =Cl2% 24 24
Hence, the variety S(I'y(3)\H,) is rational. Thus, we proved Theorem 2.

Remark. By Theorem 1, we get the following dimension formulae:

‘ . . 1+
) (d1m Azk(ro (3)))t2 - - 12)(1 — t4)(1 - t6)2 » and

s

k

o tr+ 1% + 110
Z, (dim S (TG M = 1= ) — )1 — 5’

which have not been known before.

5. Proof of Theorems 3, 4

First, we shall prove Theorem 3. By Theorem 1, every modular form F € A(T,(3))
is equal to a + (E, + 81E})b + (E, — 81E,)c + (Eg — T29E§)d for some a, b, c, and
d € B. To get relations between generators, it is sufficient to give the above coefficients
a, b, ¢, and d € B for each of the following six modular forms:

(E4 + 81E})?, (E4 — 81E,)%, (Eq + 81EL)(E, — B1EL),
(E4 + 81E4)(E, — T29E;), (E, — 81E})(E¢ — T29E}), (E¢ — 729E;)*.

We already know each image of each generator of A(Fo(3)) under the Witt operator
W (cf. Sec. 3), and we have shown in Sec. 3 that ker(W| 4r a)) = 6, A(T5(3)). Hence,

by Proposition 3.1, we can calculate a, b, c, d at least up to the elements of 6, A(To(3))-
For example, we get

(E, — 81E,)(Eq — T29E,) = T0{1363(E, + 81E,) + 77760205 — 23463
_180(E, + 81E,) f, — 34200021} + 0,G (1)
for some G € A4(T,(3)). Here, by Theorem 1, we have
G =1c¢,03 + 30,0, + c30,(E4 + 81E}) + 406 + Csfs

for some constants ¢; € C (i = 1,...,5). As is well known, any modular form F € A(F0(3))
has the Fourier expansion of the following form:

F(Z) = Z a(T)eZn:itt(TZ),

where a(T) € C and T runs over all positive semi-definite half-integral symmetric ma-
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trices. We can determine the above coefficients ¢; (i = 1,..., 5), if we have sufficiently

many explicit Fourier coefficients a(T) for each modular form which appears in the
above relation. For the sake of simplicity, we denote the matrix

a b2
b2 ¢
by (a,c, b). By computer calculation, we get the following table of the Fourier coeffi-
cients:

(@,c,b) 0,G 036, 0,62 0,04(E, + 81E,) 0,0 0o

1,1,0) 43069320 —a8 0 —3936 0 0
(1,2,0) 1249214400 1728 0 — 58752 0 —48
(1,3,0) 13799124360 ~25968 0 —387552 0 288
2,2,0) 28946665440 — 48480 3456 — 1279680 —1152 —3849/2
2,2,1)  —13193296200 26640 —2304 401184 0 843

By using this table, we get
G= —315(154620904923 + 523567800,0, + 1615950,(E, + 81E,) + 78382080f¢). (2)

By the similar argument, we get the following relations:

(E, + 81E,)* = 10002(E, + 81E}) — 14760% — 1105920, f, + 1244166,0,

— 1049760 — 6480,(E, + 81E,), 3)
(E, — 81E,)? = 10003(E, + 81E},) — 180062 — 1728000, f, — 83025026, @)
’ ’ 160 1 2 ’
(Eq + BIE,)(E, — B1E,) = ——6,(Eq — 729E) — 12663(E, — 81E,)
— 3246,(E, — 81E,), (5)

1
(Eq + 81EL)(Eq — T29E;) = £ {2721605(E, — 81E,) — 655263(E, — 81E,)

—24192(E, — 81E,)f,} + 22602(E¢ — T29E%)

2835
2

— 3240,(E¢ — T29E;) — ©2"0,0,(E, — 81E,), (6)
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64(E — T29E5)* = 52998403 (E, + 81E,) — 88058880, f(E, + 81E})

+ 15240960, 04(E, + 81E,) — 95397126%

— 75730636863 f5 + 50904806463 0,

+2341011456f2 — 2633637888f,0, — 128306259963 07

—5374026030,(E, + 81E,) — 164459484030,

— 6035420160,0, fo — 12653807046,6, 0. 7
Some of these relations can be also deduced by the other relations without know-
ing the Fourier coefficients. For example, we can get the above expression (7) for
(E¢ — T29E;)? by using the above relations (1), (2), (3) and (4). In fact, we can obtain the
coeflicients a, b € B such that

(E4 — 81E)*(Eg — T29E,)* = a + b(E, + 81E}) (8)

by using only (1), (2), (3), (4) and not (7). Dividing each side of (8) by each side of (4) we
get (7). These calculations are fairly complicated but essentially a routine work, and

the details will be omitted here. By substituting the variables as in Sec. 1, we get the
following relations:

2 — 2 _
X3 =12 We Xa4Ys =132 Ya =06
— = 2 _
X4Zg = WeVa VaZe = VgX4 Zg = VgWs.

Hence, we proved Theorem 3. Next, take variables «,, B3, 74, and d; as in Theorem 4.
Then, the fundamental relations between o2, 82, 82, y,, o, B3, &, 63, and B39, are just
the same as those between t,, ug, v, Wg, X4, V4, and zq. So, we get Theorem 4. Thus,
we proved all the theorems in Sec. 1.

6. Appendix

In this appendix, we shall give the explicit structure of the graded rings A(I') for the
subgroups I' = I,(2) and B(2) of Sp(2, R), where I';(2) is defined as in the introduction,
and B(2) is the Iwahori subgroup of Sp(2, Q) defined by:

A B
B(2) = {( c D) € I,(2); A,'D mod 2 are lower triangular.}.

The content of this appendix was a part of [4], and is used to prove the main results
there, but has been omitted in the publication. We shall omit any proof here, because
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the proof is more or less similar to the one given in the preceding sections. (See also
Igusa [7].)

Foranym = ‘(m',m") € Z*(m/,m" € Z*) (row vectors), we define a theta constant with
characteristic m, as usual, by the following function on Z € H,:

. 1 t m’ ml t m/ m//
0, =0,(Z)= pEZZZ exp2m|:2 (p + 7>Z<p + 2) + <p + 2)7}

We also put
x = (63000 + 03001 + 85010 + 85011)/4,
¥ = (800008010800010011)%»
z = (03100 — 03110)%/16384,
k = (901009011091000010019110091111)2/4096,

L= (9010000110)4/256-

The functions x, y, z, k belong to A(T',(3)), and ¢ to 4(B(2)). The weight of each of these
forms is 2, 4, 4, 6, or 4, respectively. For convenience, we put

r=(x%—y— 1024z — 64t)/64.

Incidentally, it can be proved that all the Fourier coefficients of these five forms are
rational integers. (The proof is omitted here.)

Theorem A. The modular forms x, y, z, k are algebraically independent. We get
A(To(2) = CIx,y,2,k],

Proj(A(Ty(2))) = P(2,4,4,6), and
k
K(L2)=C (%;2;)

In particular, the variety S(T'o(2)\H,) is rational. The ideal of A(T(2)) consisting of cusp
forms is spanned by two cusp forms k and yz.

Next, denote by X, Y, Z, K, T, five algebraically independent variables and by J the
ideal of the polynomical ring C[X, Y, Z, K, T] spanned by

64K?* + 16XTK + T(—16YZ + X*T — YT — 1024ZT — 64T?).
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Theorem B. We get
A(B(2)) = C[x,y,2,k,1]
~(C[X,Y,Z,K,T}/J, and

k
K(BQ2)) = C<%,%,~2>-

x*"x*x
In particular, S(B(2)\H,) is rational. The ideal of A(B(2)) consisting of cusp forms is
spanned by three forms k, yz, and tr.

So far, we considered only modular forms of even weights. Finally, we give results
on modular forms of odd weights. We get 4,(B(2)) = Oforodd k < 9,and 4,(T;,(3)) = 0
for odd k < 17. Define functions 6, ¢, x,,, and x,, on H, by:

8 = 6600090001600109001160100801100100001001 91100011115
0" = (01300 — 01301 — O1i00 + 01711)/1536,

X114 = 60",

X190 = X11(8yz — x*t + yt + 1024zt + 961> — 8xk).

Then, we can show that y,, € S;;(B(2)) and x4 € S;4(I'6(2)).

Theorem C. For odd k > 11, we get A,(B(2)) = Si(B(2)) = X114k—11(B(2)), and for
odd k > 19, we get A,(T(2)) = S(T5(2)) = x19A44-10(T6(2)). Besides, we have

0% = 4096yk, and
0% = z{x* — 2048x2z + 10485762 — 64x>*t + 65536tz
— 2x2y + y? — 2048yz + 12288tr + 64yt + 4096xk).
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