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 ON SIEGEL MODULAR FORMS OF DEGREE TWO.

 By Tadashi Yamazaki.

 Introduction. Let Hn be the Siegel upper half plane of degree n and
 rn(f) the principal congruence subgroup of Sp(n,Z) of level ('. Let A(rn(f))jt
 be the space of modular forms of weight k with respect to rn(P) and put

 A(rn(f))-?k>0A(Tn(f))k.

 Then A(Tn(()) is a positively graded, integral domain and finitely
 generated over C, and the projective variety ^(rn(P)) associated with this
 graded ring is the Satake compactification of the quotient Tn(V)\Hn. In [9]
 Igusa showed that the blowing up ^lt(rn(P)) of S (r?(P)) with respect to the
 sheaf of ideals defined by all cusp forms is non-singular for n = 2 or 3 and (' > 3.

 We shall examine the condition under which multiple forms on T2(\))\H2
 can be extended to ^(T^P)) (See. 2). It follows immediately from this study
 that the variety 91L (T2( P)) is of general type for P > 4.

 We can construct a line bundle L on ^lt(r2(P)) which corresponds to
 modular forms of weight one with respect to T2( f) for P > 3. It is a natural
 problem to establish the explicit Riemann-Roch theorem for this line bundle L.

 In See. 3 we shall calculate the related intersection numbers. The result is given
 as follows;

 (i) c(L)3 = 2-63-25"1f10 n (l-p-2)(l-p-4),
 p/f

 (ii) c(L)2c(D)=0,

 (iii) c{L)c(Df= -2-33-1f8n(l-p-2)(l-p-4),

 (iv) c(D)3= -ii-2-23-1e7n(i-p-2)(i-P-4),
 (v) c2c(D)=2-3e7II(l-p-2)(l-p-4),
 (vi) c2c(L)=4c(L)3,

 where D is a divisor determined by the complement -flt (Tz(()) ? T2(f)\H2.
 It follows from the results in See. 2 that the canonical bundle K of
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 40 TADASHI YAMAZAKI.

 9TL(r2(C)) is given by 3L-[D]. Therefore by the Riemann-Roch theorem and
 the vanishing theorem of Kodaira's type, we obtain the following dimension
 formula for the vector space S(r2((1))Jt of cusp forms of weight k > 4: (See. 4)

 dimS(r2(f:))fc=^0-2-103-35-1(2fc-2)(2/c-3)(2/c-4)II(l-p-2)(l-p-4)

 -2-63~2(2fc-3)P8n(l-p-2)(l-p-4)

 + 2-53-1fIl(l-p-2)(l-p-4).

 This formula was also obtained by Y. Morita (under a slightly stronger restric-
 tion on the weight k) by using the Selberg trace formula ([11]).

 1. The principal congruence subgroup Tn(\') of level (' is defined by

 rn((?) = {MeSp(n,Z);M = /2nmod f},

 and the index is given by

 [rn(i);rn(P)] = r(2"+?II II (i-P~2*).
 p\ I' 1< k < n

 The boundary of the Satake compactification >(Tn(l')) of the quotient
 Tn(2)\Hn is a disjoint union of quasi-projective varieties, each of which is a
 conjugate of the image of Tm(^)\Hm under the dual 0* of the Siegel 4>-operator
 for some m<n.

 Let 91t(rn(e))->S (Tn(t)) be the monoidal transform of > (rn(f)) along its
 boundary.

 Theorem. ([9]). The monoidal transform \^lt (rn(P)) is non-singular for
 n = 2 or 3 and t > 3.

 Now the local parameters for n = 2 and (' > 3 are given explicitly as
 follows. Let to be a point of GK(T2(^)) such that its projection is the image
 point of a point t0 of Hv Then take a sequence of points in r2((')\//2 which
 converges to w, and take representatives of these points in H2 to obtain a

 sequence of points with (t,z,w) = ( z\ say, as a typical term. By taking a

 subsequence if necessary, we can assume that (t,z) converges to (t0,z0) and
 Im w?>oo. Let ?=e(u/l)-, then ??>?0 = 0, where e(x) stands for e27rix. If we
 denote the local parameters at ?0, z0, and ?0 by t ? t0, z ? z0, and ? respectively,
 then (t? t0,z? z0,?) is a local coordinate system of ^>lt (r2(P)) at co. ([9])

 2. Let m be a vector in Z2n and m',m" be vectors in Zn determined by
 the first and the last n components of m. Now if r is a point in Hn and z is a

This content downloaded from 129.15.14.45 on Sun, 26 Aug 2018 22:38:33 UTC
All use subject to https://about.jstor.org/terms



 ON SIEGEL MODULAR FORMS OF DEGREE TWO. 41

 point in Cn, the following series

 ?m ('.*)" 2 ei\\p + m' /2)r(p + m' /2) + \p + m' /2)(z + m" /2)\
 p<=Zn

 converges absolutely and uniformly in every compact subset of H? X Cn.
 Therefore for a fixed m, it represents an analytic function of the two variables r
 and z, which is called the theta-function of characteristic m. If we put 2 = 0, we

 get an analytic function 9m(r) = 9m(r90) on Hn, which is called the theta-
 constant. There are ten theta-constants which are not identically zero for n = 2.

 We denote by 9 (r) the product of all such functions.

 Proposition. ([8]). Let xp(r) = 9(r)2, then it is a unique cusp form of
 weight ten with respect to T2(l).

 The modular form in the above proposition has the following Fourier-
 Jacobi expansion;

 4'(r)=[-6(9006meoi)(t)69u(t,zf+ ? ? ? }e(w),

 where the unwritten part is a convergent power series in t, z, and e(w).
 Let r = (t,z,w) be the coordinate of H2 and dr = dt/\dz/\dw. Using the

 above cusp form i//(t), we set

 <P = ,Kt)W0;

 then it is r2(l)-invariant 10-ple 3-form on H2. Therefore it is, in particular,
 r2(P)-invariant, so it can be regarded as a 10-ple 3-form on r2(P)\H2
 C 9JI (T2( P)). Now we examine the condition under which <p can be extended to
 thewholeof c?H(r2(P)).

 The differential dr is expressed as

 dT=^-ldt;\dz/\i~ldt 2m

 with respect to the local coordinate system (t-t0,z- z0,?). Now <p has the
 following expansion;

 <p = const. [(ff00Mio)(01^ii(*.?)6+---K3e"10(*AcfaAd010, where the
 unwritten part is a convergent power series in t, z, and ^. Therefore <p is
 holomorphic with respect to (t - t0, z - z0, Q if and only if 3 P - 10 > 0. Therefore
 if P >4, <p can be extended to 91L(r2(P)) by the continuation theorem as a
 holomorphic 10-ple 3-form.
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 42 TADASHI YAMAZAKI.

 By a well-known asymptotic behaviour of the dimensions of the vector
 spaces of modular forms with respect to Sp(2,Z), we obtain:

 Theorem *. The non-singular model \^lt (r2(P)) is of general type for
 l > 4. In particular, in this case, it is non-rational.

 3. From now on we fix a level f > 3. Throughout this section we shall
 denote by Y the Satake compactification of the quotient r2(f)\//2, and by
 7t:X->Y the Igusa's desingularization. We denote by D and B the complements
 of T2(V)\H2 in X and Y respectively. Then D and B are decomposed into the
 same number of irreducible components,

 D=^Dt, B=^Bt,

 where the number /x(C) of irreducible components is given by ([2])

 Each Bt is isomorphic to the standard compactification of ri((')\//1, namely it is

 set-theoretically the union of ri(P)\H1 and cusps F;;

 B,-(r1(0\if,)uP1u-uPr((?

 where the number v(l) of cusps is given by

 *W-^II(l-p-a).

 The restriction of tt to Dt, which we also denote by tt, gives rise to a
 projection D^?>BV By this projection, Dt is the elliptic modular surface of level

 i in the sense of Shioda [13]. That is, its general fibers are elliptic curves with
 level i structures and it has singular fibers over the cusps of Bt. The singular
 fibers consist of l lines with multiplicity one and with self-intersection number
 -2, and i lines intersect like edges of an ?-gon. [9] (For terminology see [10].)

 The group r2(l)/r2(C) operates on X as a group of automorphisms and Dts
 are mapped isomorphically to each other by this group.

 Lemma 1. The Euler number e(Dt) of Dt is given by

 e(Dj)=(V(f)

 *I was informed by Prof. Igusa that this result is already known among some of the specialists,
 but there is no statements with complete proofs in the literature.
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 ON SIEGEL MODULAR FORMS OF DEGREE TWO.  43

 Proof. By the theory of elliptic surface, e(Di) is equal to the sum of the
 Euler number of singular fibers of Dt., so that we have,

 ^(Di) = ,(P)(l-l+P) = /,(P).
 Q.E.D.

 Lemma 2. ([13]). Let K(Dt) be the canonical bundle of Di and let
 tt.D^B. be the natural projection. Then we have

 K(Di) = TT*Mi,

 where M{ is a line bundle on B{ which corresponds to cusp forms of weight
 three with respect to T^P). Moreover the degree of Mt is given by

 deg(Mi)=2-3P2(P-4)n(l-p-2).

 As in Section 2, we denote by 9 (r) the product of all even theta constants
 of degree two. We know that it is a cusp form of weight five with respect to
 T2(2) and its square is a cusp form of weight ten with respect ot T2(l). We have
 the following.

 Theorem. ([5]). Let A be the set of diagonal elements in H2. Then the
 zero set of 9(r) is precisely the union of all T2(l)-conjugates of A.

 Let E be the closure of r2(P)\r2(l)A in X, and decompose E into
 irreducible components;

 Lemma 3 Under the decomposition E = 2Ea, the number A(P) of irreduc?
 ible components is given by

 Proof. Let

 M0=^n(i+p-2).

 G={Mer2(l);MA = A}
 and

 G' =

 a,  0 foj 0
 a. 0

 0 c,

 0 di 0
 :r2(i)
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 44 TADASHI YAMAZAKI.

 It is easy to see that G'sT^lJxr^l), G'cG with [G;G'] = 2, and
 G=G'uG'V, where

 V=

 0 10 0
 10 0 0

 0 0 0 1

 0 0 10

 Since Gnr2(P)=G/nr2(P)^ri(P)xri(P), wehave

 M0 = [ra(i);r2(f)G]

 = [r2(i);r2(P)][r2(P)G;r2(r)]-1

 = |[r2(i);r2(P)][G';G'nr2(f)]-1

 = |p10n(i-p-2)(i-p-4)[P3n(i-P-2)]-2

 -|rti(i+P-?).
 Q.E.D.

 As we have remarked before, the group r2(l)/T2(F) operates on X as a
 group of automorphisms and by this action the sets of components {DJ and
 {Ea} are homogeneous. Therefore, to study the intersection properties among
 them, it suffices to see at special places. Let Dx be the component of D at the

 infinity in the sense that Im u;?>oo, where t = ( z j is the coordinates of H2.

 With the same notations as in the proof of lemma 2, let Ex be the closure of
 r2(P)n G\A in X. Obviously the quotient T2(f )n G\A is isomorphic to (Tx(l)\
 H1)X(ri(P)\H1). We remark that, if w is the coordinate of Hv we can take
 e(w/() as the local coordinate of the cusp at the infinity in the standard
 compactification (ri(P)\/f1)* of Tl(()\Hl. This is the same as that of X which
 determines the divisor Dv Therefore it follows from the form of the local
 coordinate system of X at DY (See. 1), that Dx and Ex intersect transversally
 with multiplicity one. The intersection D1El is isomorphic to the standard
 compactification of T1(i)\Hv More precisely, on Dx it consists of origins of
 general fibers of tt, and on Ex it is isomorphic to the product (T1(P)\H1)*X F,
 where P is the cusp at the infinity in the standard compactification of T1(\))\HV
 Therefore Ev hence each ?a, is isomorphic to (ri(P)\H)*X(ri(P)\/f1)*.

 If D{ intersects with Ev the intersection DiE1 takes form on EY of either
 (ri(P)XH1)*X{cusp} or (cusp}X(ri(P)\//1)*. There are 2v(()Dt9s which in-
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 tersect with EY, and they are given by

 45

 10 0 0

 0 a 0 b
 0 0 10

 0 c 0 d

 Dl or

 0 a 0 b

 10 0 0

 0 c 0 d

 0 0 1 0J

 D,

 where I a J runs over a complete set of representatives of ri(l)/ri(P)rioo

 with

 r,-{(j >)eSL(2.
 On the other hand, if Ea intersects with Dl9 the intersection Ea-DY is a

 image of a section of tt which consists of points of order P of general fibers of tt.

 There are P2 such sections so that there are the same number ?a's which
 intersect with DY, and they are given by

 l 0 0 b
 a 1 fo 0
 0 0 1 -a

 0 0 0 1

 *i.  0<a<P, 0<fo<P.

 Now the partial derivative d0(r)/dz does not vanish on A, where

 T = {z w)' ^ So that i{ a^^ Ea does not intersect with Ep in r2(P)\H2.
 On the other hand it is easy to see that if a = /?, then EanEpC\Di = <i> for every
 i. We summarize the results.

 Lemma 4. The divisor E is a disjoint union of non-singular surfaces each
 of which is isomorphic to the product BYXB2, where B{ is the standard
 compactification o/ri(P)\H1.

 Lemma 5. Let EasRY x R2, and let pi be the i-th projection of RYX R2.
 Let Li be a line bundle on Rt which corresponds to modular forms of weight
 one with respect to T^P). Then the normal bundle N(Ea) of Ea in X is given by

 iV(?a)=-(p1*L1 + Pj*L2).

 Proof. Since the ?a's are conjugate under the group T2(l), we may assume
 Ea is the closure EY of T2( P) n G \A in X, where G and A are the same as before.
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 TADASHI YAMAZAKI.

 M =

 in r2( ^nG, and if we set t = f ~ j and Mr = t' = I f

 z = z/^cJ+d^CzW + d2) - cYc2z2}

 ??)?
 then

 Therefore we have

 limz /z=(cYt+ dY) l(c2w-rd2)
 z->0

 Since the local coordinate of (T^P^Hj)* at a cusp is the same as that of E2
 induced from X, we obtain the lemma. Q.E.D.

 On the Satake compactification Y, we have a natural ample line bundle M
 which corresponds to modular forms of weight one. We set

 L = 7T*M.

 Since the graded ring A (T2( P)) is normal, it follows from the definition of
 the Satake compactification that the 0-th cohomology group H?(Y, l? (kM)) is
 canonically isomorphic to the vector space A(r2(P))fc of modular forms of
 weight k with respect to T2(P). Since Y is a normal variety,

 hence we have

 H?(X,e(kL)) = H?(Y,e(kM)),

 H?(X,e(kL)) = A(T2(n)k.

 Lemma 6. The restriction L\Ea of L to Ea is expressed as

 where the notations are the same as in Lemma 5.

 The proof is straight forward, so we omit the proof.

 Lemma 7. Let [E] and [D] be line bundles which are determined by the
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 ON SIEGEL MODULAR FORMS OF DEGREE TWO. 47

 divisors E and D. Then the line bundle 10L has the following expression;

 10L = 2[?]+f[D].

 Proof. As we have observed, we have the cusp form 92 of weight ten with
 respect to T2(l), and it is naturally interpreted as a section of the line bundle
 10L on X. Since the divisor of zeroes of 92 is 2?+ CD, we have 10L = 2[E] +
 t[D]. Q.E.D.

 We shall always identify a cohomology class in //6(X,Z) with its value at
 the fundamental cycle X.

 Theorem 1. Let c(E)be the Chern class of the line bundle [E]. Then we
 have

 c(?)3 = 2-63-2P10n(l-p-2)(l-p-4).

 Proof. Since E = 2Ea is a disjoint union,

 c(?)3=2c(EJ3.

 As in Lemma 5, let Ec = Rx X R2 and let Li be a line bundle on R. which
 corresponds modular forms of weight one with respect to I\(P). Then we have

 c(Eaf = c(N(Ea)f

 = [-c(Pl*Ll + p2*L2)]2
 = 2c(p1*L1)c(p2*L2)

 =2[2-33-^n(i-p-2)]2
 = 2"53-2ffl(l-p-2)2,

 hence

 c(Ef = \(()c(Eaf

 =2-63--2f10n(i-p-2)(i-p-4).

 Q.E.D.

 Theorem 2. Let c(D)be the Chern class of the line bundle [D]. Then we
 have

 c(?)2c(D)=-2-43-1C9n(l-p-2)(l-p-4).
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 48 TADASHI YAMAZAKI.

 Proof. Since the sum 2Ea is disjoint,

 c(Efc(D)=^c(Eafc(D).

 On the other hand, by the intersection properties among Ea and D/s, we
 have

 c(Eafc(D) = c(N(Ea))c(D\Ea)

 = -2?'(f)2-33-1e3II(l-p-2),

 hence

 c(E)2c(D) = X(f)c(EJ2c(D)

 = -2-43-1e9n(i-p-2)(i-P-4).

 Q.E.D.

 Theorem 3. We have

 c(E)c(D)2 = 2-2f6n(l-p-2)(l-p-4).

 Proof. By the observation at the beginning of this section, we have

 c(Ea)c(Df=^c(Ea)c(Di)c(Di)

 = 2*>(P)2,

 hence

 c(E)c(D)2 = A(P)2*>(P)2

 = 2-2P8n(l-p"2)(l-p-4).

 Theorem 4. Let c(L) be the Chern class of the line bundle L. Then we
 have

 c(L)2c(D) = 0.

 Proof. Let iT:Di-^Bi be the natural projection. Then the restriction L\Dt
 of L to D{ is isomorphic to tt*L/, where L( is a line bundle on Bi which
 corresponds to modular forms of weight one with respect to T^P). Therefore
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 we have

 c(L)2c(D)=^c(Lfc(Di)

 = 2c(L|D, ,2

 = /x(P)c(7r*L/)2

 = 0.

 Q.E.D.

 Corollary. With the same notations as above, we have

 (i) c(Df= -ll-2-23-1P7n(l-p-2)(l-p-4),

 (ii) c(L)3 = 2-63-25-1P10n(l-p-2)(l-p-4),

 (iii) c(L)c(D)2=-2-33-1P8n(l-p-2)(l-p"4).

 These are direct numerical calculations based on Theorem 1, 2, 3 and 4 and
 Lemma 7, so we omit the proof.

 Theorem 5. Let c2 be the second Chern class of the tangent bundle T(X)
 of X. Then we have

 c2c(D)=2-3P7(P-2)n(l-p-2)(l-p-4).

 Proof. We have an exact sequence of vector bundles on D{\

 o??r(D,) ?>r(x)|D,-*tf (D,)-?o,

 where T(D{) is the tangent bundle of D. and N(D.) is the normal bundle of Dt
 in X. Therefore we have

 c2(T(X)\Di) = c2(T(Di)) + c1(T(Di))c(N(Di)).

 Since the second Chern class of a surface is its Euler number,

 c2(r(D,))-^(e).
 Since

 c(^(D)2=2c(L)c(Dj)2
 = ,x(()c(L\Di)c(N(Di)),

 it follows from the corollary to Theorem 4 that

 c(L|Dj)c(N(Dj))=-2-23-1r,n(l-p-2).
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 50 TADASHI YAMAZAKI.

 Now we remark that for any line bundle N on Bt, the intersection number

 of tt*N with a fixed line bundle on D{ is proportional with the degree of N.
 As we have observed in the proof of theorem 4, the line bundle L\Di is

 given by

 Lm=7r*L/,

 where L( is a line bundle on B{ which corresponds to modular forms of weight
 one.

 On the othe hand, the canonical bundle K(Dt) of Dt is given in Lemma 2,
 so that we have

 c(K(Dj))c(Ar(Dj)) = (degMj/degL;)(-2-23-10n(l-p-2)

 =(-2-2e4+e3)n(i-P-2).

 Hence we have

 c2c(D)=2c2(T(X)\Di)

 = ^(t)[c2(T(Di))-c(K(Di))c(N(Di))]

 = n(t)[h(K) + {2-2P-P)n(l-p-2)]

 = |(l!-2)fn(l-p-2)(l-p-4).
 Q.E.D.

 Theorem 6. We have

 c2c(?) = 2-43"2(!8(e-3)(l!-6)n(l-p-2)(l-p-4).

 Proof. As in the proof of Theorem 5, we have an exact sequence of vector
 bundles on Ea;

 0^T(Ea)->T(X)\Ea->N(Ett)->0,

 therefore

 c2(T(X)\Ea) = c2(T(Ea)) + Cl(T(Ea))c(N(Ea)).

 The Euler number c2(T(Ea)) of Ea is given by

 c2(T(Ea)) = e(R1)Xe(R2)

 = [2-23-1c2(e-6)n(i-P-2)]2,
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 ON siegel modular forms of degree two. 51

 where Ea^RlXR2 and e(R{) is the Euler number of R{. On the other hand, if
 K{ is the canonical bundle of R{ and if p{ is the i-th projection of Rx X R2, then

 the canonical bundle K(Ea) of Ea is given by

 K(Ea) = p1*K1 + p2*K2.

 Therefore we have

 c(K (Ea))c(N(Ea))=-c(Pl*Kl + p2*K2)c( p*Lx + p2*L2)

 = -2c(p1*K1)c(p2*L2)

 = -2(2-23-1P-2-1f2)2-33-1e3n(i-p-2)

 = -2-43-2e5(e-6)n(i-p~2).
 Hence we obtain

 c2c(E)=2c2(T(X)\Ea)

 = X(f)[2-43-2C4(f-6)2+2-43-2e5(C-6)]n(l-p-2)2

 =2-43~2e8(e -6)(t -3)n(i-p_2)(i-p-4).
 Q.E.D.

 Corollary. We have

 c2c{L) = 4c(Lf.

 Proof. Since 10L = 2[E] + i [D], we have

 c2c(L) = 5~1c2c(E) + 10~1c2c(D)

 =2-43-25-1e10n(i-p-2)(i-p-4).
 Q.E.D.

 4. As an application of the results in Section 3, we shall calculate the
 dimension of the vector space S(T2(t))k of cusp forms of weight k with respect

 to T2(i). Let L,M,X,Y be the same as in Section 3. In Section 3 we have
 observed the following isomorphism

 H?(X,6(kL))^A(T2(l))k.

 As for the space S(T2(l))k of cusp forms, it is easy to verify the isomorphism:

 H?(Xye(kL-[D]))^S(T2(())k.
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 52 TADASHI YAMAZAKI.

 Now from the consideration in Section 2, it follows that the canonical

 bundle K of the Igusa's non-singular model is given by

 K=3L-[D],

 so that the first Chern class cY is given by

 Cl--c(K)

 = -3c(L) + c(D).

 If we apply the Riemann-Roch-Hirzebruch theorem to the line bundle
 Lk=kL-[D] on X, [6] we obtain

 Z(-iydimHr(X,6(Lk))

 = 6-lc(Lkf + 4-lc(Lk)\ + 12-lc(Lk)(cl2+c2) + 24-1clc2

 = 2-23-1(k-l)(k-2)(2k-3)c(L)3+(2-23-lk-2-2)c(L)c(D)2

 -2-33~lc(D)c2.

 To estimate the higher cohomology groups, we need the following vanish-
 ing theorem.

 Theorem.* ([4], [12]). Let Z be a normal projective variety, let m :Z'
 -*Z be a resolution and let K' be the canonical bundle of Z'. If B is an ample
 line bundle on Z, then

 Hr(Z',6(7T*B+K'))=0,

 for p > 0.

 In our case, the Satake compactification is normal, the line bundle M is
 ample and the canonical bundle K of the Igusa's non-singular model is given by

 K = 3tt*M-[D]

 = 3L-[D];

 therefore it follows from the above theorem that

 HP(X,6(kL-[D])) = 0,
 for k > 4 and p > 0.

 So we obtain the following.

 *I was informed this theorem by Prof. Freitag.
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 Theorem. Let S(T2(2))k be the space of cusp forms of weight k with
 respect to T2( f). Then we have the following dimension formula for l > 3 and
 k>4;

 dimS(T2(l))k = dimH?(X,e(kL-[D]))

 = 2-103-35-1(2fc-2)(2it-3)(2fc-4)Z10 n(l-p~2)(l-p-4)

 -2-63-2(2fc-3)Z8II(l-p-2)(l-p-4)

 +2-53-1z7n(i-p-2)(i-p-4).
 University of Tokyo
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