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 MODULAR FORMS AND PROJECTIVE INVARIANTS.1

 By JUN-ICHI IGUSA.

 To Weil on his 60th birthday.

 We shall denote by 25y the Siegel upper-half plane of degree g and by
 A (rP (t)) the graded ring of modular forms on 2iv belonging to the principal

 congruence group rg(l) of level 1. Although modular forms are transcen-

 dental functions on 5g, the ring A (rg (1)) is "algebraic" in the sense that
 it is of finite type over C. This is a consequence of the theory of compacti-

 fications (cf. 1, 4). Furthermore, we can make an approximation of A (r (1) )

 by a ring of carefully chosen theta-constants in such a way that A(rP(1))

 will become the integral closure of the ring of theta-constants within its field

 of fractions. This is our fundamental lemma in [8]. Using this fact, we

 shall show that there exists a ring homomorphism

 p: A(rg(1))-*S,

 in which S is the graded ring of projective invariants of a binary form of

 degree 2g + 2, such that p increases the weight or the degree by a ig ratio.
 Actually, we have a ring homomorphism p from the subring of A (rP (1))

 consisting of polynomials in the theta-constants (whose characteristics m

 satisfy 2m Omodl) to the ring S, and we can extend p to A(rg(1)) pro-
 vided that: if A(rP0(1)) contains an element of an odd weight, there exists

 at least one monomial q in the theta-constants defining an element of A (rP (2))

 of an odd weight such that 41 (f) 0 O at some point T of Og associated with
 a hyperelliptic curve. It is defined for every odd g and at least for g =2, 4.

 There are homomorphisms from A (rg (1)) to other graded rings which are
 of considerable interest. We shall, however, confine ourselves to the homo-

 morphism p, which has some immediate applications to the investigation of

 A (rg (1)). The homomorphism p is bijective for g = 1, injective for g = 2,
 and the kernel is a principal ideal generated by a cusp form of weight 18

 for g = 3. In this way, we can obtain the structure theorem of A(rg(1))
 for g = 1, 2. In the case when g = 2, we shall calculate the square of the

 cusp form of weight 35 as a polynomial in the four basic modular forins of

 even weights. In the case when g = 3, we shall show that there are no cusp

 1 This work was partially supported by the National Science Foundation.
 Received May 20, 1966.
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 818 JUN-ICHI IGUSA.

 forms of weights less than twelve. This enables us to answer, without using

 "ungeheure Rechnung," a problem of Witt [21] concerning the numbers of

 representations of matrices of degree three by the well-known two classes of

 even quadratic forms of discriminant one in dimension 16. As a consequence,

 the difference of their analytic class invariants for g = 4 will give a remark-

 able cusp form of weight 8, and it will play a significant role in the theory

 of modular varieties of genus four.

 1. The group of characteristics. Let I denote an even positive integer

 and $ an abelian group of type (1, 1, , 1). We assume that a is put into

 duality with itself by a multiplicative, non-degenerate, alternating bilinear

 form

 $X $3(uz, v) --- el (u, v) E ,uj,

 in which pi is the cyclic group of l-th roots of unity (in some field of charac-
 teristic not dividing 1). We recall that a multiplicative bilinear form is

 called alternating if it takes the value 1 along the diagonal. If we denote

 by 2$ the kernel of the duplication u -4 2u of $ and if we put b (ilu, ilv)
 = el(u, -Ijv), we get a multiplicative, non-degenerate, alternating bilinear

 form (r, s) -> b (r, s) defined on 2M, and b (r, s) is symmetric and p2-valued.
 Therefore, the rank of v is even, say 2g. Also b (r, s) considered as a 2-cocycle

 of 21 iS the coboundary of a p2-valued 1-cochain c(r) of 2$, i. e.,

 c(r)c(s) =b(r,s)c(r+s), c(r) += 1

 for r, s in 2$. We may say that b (r, s) is the multiplicative bilinear form
 (or bi-character) associated with the multiplicative quadratic form (or charac-

 ter of the second degree) c (r). We shall denote by T the set of all such

 1-cochains. Actually, we consider T as the set of indices for the 229 cochains

 and denote them as ca(r), cp(r), . If we define a + t for a in T and t
 in 2$ by

 ca+t(r) b(t,r)ca(r),

 the union X of 2 and T becomes a vector space over Z/2Z of dimension

 2g + 1. We embed 2X into an abelian group , containing $ as a subgroup
 of index 2 such that 2< becomes the kernel of the duplication of N. This is
 possible in one and only one way. We call X the group of characteristics of

 degree g and of level 1. Also, elements of $ are called period-characteristics
 and elements of X- are called theta-characteristics.

 Now, we shall introduce a P2-valued function defined on T. We first
 observe that, for r, t in 21 and a in T, we have
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 MODULAR FORMS AND PROJECTIVE INVARIANTS. 819

 ( ca(r))2 22gCa(O) =22g,

 ca(r) =229 (r 0),0 (otherwise).
 a

 Using the first identity, we put

 I ca(r) =20e(a),
 r

 and we say that a is even or odd according as e (a) = ? 1. One sees imme-

 diately that the number of even characteristics is 29-1 (29 + 1) and the number

 of odd characteristics is 20-1(29- 1). We can express ca (r) in terms of e (a).

 In fact, we have

 e (a)e() = (i) 2 , ca (r + t) Cs (t)
 r,t

 -(1)2 E. b(t,a+/ 3 r)ca (r)
 r,t

 Ca(a +/,).

 After these remarks, we shall consider the orthogonal group of $ with respect
 to the bilinear form el(u, v) and denote it simply by 0(Y). An element M

 of 0(Y) is, therefore, an automorphism of v with the property el(M u, M v)

 el (u,v) for all u, v in $.

 THEOREM 1. Every M in 0(Y) can be extended uniquely to an auto-

 mnorphism of X such that e(M - ) = e(a) for all a in T. In this way X

 becomes an 0(X)-module.

 Proof. We fix an element S of T. We shall first prove the extendability.

 For a given Ml, consider the function X: 2X -- /L2 defined by

 X (r) - ca (M-1 *r) Cd& (r).

 Then x is a character of 2$ in the sense X(r+s) =-X(r)x(s). Hence there
 exists a uniquely determined element r(M) of 2M satisfying x(r) = b(r(M), r)
 for every r in 2$. Put

 M- (S+u) =8+r(M) +M u

 for all u in $. Then, the so-extended Al gives an automorphism of the group
 X keeping T stable. Moreover, we have

 e(M * ( + r) )e,(S+r)-=c(r(M) )

 for all r in 2$. Now, if we have ca(r(M)) - 1, we will get e(M ) a)- e(a)
 for all a in T. This contradicts e (a) =29. Therefore, we have e (M a)
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 820 JUN-ICHI IGUSA.

 e (a) for all a in T. We shall next prove the uniqueness of the extension.

 Suppose that M* is an extension of AI and put M* 8 =-- 8 + r* (M). Then the
 condition that e (M* -ca) = e(a) for all a in T implies

 b (r, r* (M) ) co (M-l1 -r) ca (r) =1

 for all r in , and hence r* (Mi) - r(M). Finally, because of the uniqueness,
 the process of extension is a homomorphism of 0 (X) to the group of auto-

 morphisms of 3E. Therefore X becomes an 0 (X) -module. This completes

 the proof.

 Once we have this theorem, we can interpret the classical theory of

 characteristics [cf. 11] as a theory of the O(X) -module X. Since there is no

 difficulty in doing this, we shall mention only the following theorem of
 Frobenius, which can be reduced to the Witt theorem for the metric vector

 space 2 over Z/2Z:

 COROLLARY. Suppose that we have two sequences of the samiie numnber

 of elements in T, say a(, a222, * and 81, 32, * * . Then, there exist an element

 Il of 0 (X) with the property 211 a= l-fl 11 a2 =/32, . . if and only if, under
 the mapping ac-*, /3,, linearly independent subsequences correspond to each
 other and the functions

 e (a) , e (a, ,B,y e (a) e (/3) e (y) e (a + A+ -y)

 take same values at corresponding elements and triples.

 We can also decompose X into domains of transitivity with respect to

 0(Y). We recall a terminology introduced by Frobenius. We say that three

 elements a, A, y of T are syzygous or azygous according as e (a, /3, y) + 1.

 A sequence is called azygous, say, if all triples in the sequence are azygous.

 There exists an azygous sequence of 2g + 1 linearly independent elements

 in T, and they form a base, called an azygous base, of 2?. The equivalence

 of azygous bases can be determined by the above corollary.

 Now, let g denote a generator of the cyclic group fAl. A sequence of 2g
 elements ul'. , ugt', u1", , u9" of $ is called a canonical base of $ with
 respect to g if we have

 eL(ut', u") =, ez(u", u,') =

 and el(other pair) =-1 for i =1,2, ,g. If we map u1',u2', to the

 elements (1/1) t (1, O, O, * * *), (1/l) t (0, 1, 0,. . . ) * * * of Q2g, we get an iso-
 morphism $ z(Q/Z)2g. If m, n mod 1 are the elements of (Q/Z)29 which
 correspond to u, v in $, we have
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 MODULAR FORMS AND PROJBCTIVE INVARIANTS. 821

 We also observe that, if M is an element of 0 (X), it transforms a canonical
 base to a canonical base. Therefore, if we introduce g X g matrices a, b, c, d
 with coefficients in Z as

 /M u' au{ct4t + bu"

 tMvq Uff M' + dub"

 in which u' and ut" are column vectors determined by the canonical base, the
 2g X 2g matrix composed of a, b, c, d mod I is an element of Sp (g, Z/lZ).
 We shall denote this matrix also by M. In this way, we get a well-defined
 correspondence O(?i) ---Sp (g, Z/lZ), and it is an isomorphism of the two
 groups. We note that, if m mod 1 corresponds to u, then tllIm nod 1 corres-
 ponds to M * u.

 On the other hand, if we fix an element 8 of T, we get a bijection
 X-fl-.(Q/Z)29 by 8+u-->u--mmod1. We shall call mmodl the
 coordinate vector of 8 + u with respect to 8 (and with respect to the canonical
 base of $).

 LEMMA 1. A canonical base of a determines a uniqu?e even characteristic
 S such that, if m mod 1 is the coordinate vector of an element a of T with
 respect to 8, we have

 e(x) = (

 for every a.

 Proof. Let 8 denote an even characteristic and a = 8 + r an arbitrary
 element of T. Since e(a) - e(a)e(8) ===ca(r) and since r - (- I)4tm'm"
 defines an element of T, there exists a uniquely determined element n mod 1
 of 2(Q/Z)2g such that we have

 e(aX) = (-- 1)4(tn,'mDn+tm'n?"ImPn').

 Furthermore, since we have

 le(a) =-, (_1)4'm'l" =2
 a m

 using again the fact that r- (-1)4tm'm" defines an element of T, i.e.,

 4 (t7n*rn + tmint' - tmn') -4(t (m + n)'(m + n)" + tnW') mod 2,

 we get 2tn'n" --0 mod 1. Since the correspondence 8 -* n mod 1 is a bijection
 from the set of even characteristics to the set of n mod 1 in 2(Q/Z) 20 with this

 18
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 822 JUN-ICJOI IGUSA.

 property, there exists one and only one even characteristic 8 which is mapped
 to 0 mod 1. This completes the proof.

 We note that, if we multiply 1l to the elements of a canonical base of $
 we get a canonical base of 2N. The element S in Lemma 1 depends only on
 this canonical base of 4$. Another remark is that, if M is an element of
 0 (X) and if m mod 1 is the coordinate vector of an element 8+ u of X -$
 with respect to 8, the coordinate vector of ML-1 (8 + u) with respect to the
 same 8 is given by the following familiar expression

 (i - m + Q( d) ? mod .
 After these preliminaries, we shall proceed to show that every principally

 polarized abelian variety possesses a group of characteristics of level 1, which
 is intrinsically associated with the polarization, provided the characteristic

 of the universal domain, say K, does not divide 1. Let J denote a principally
 polarized abelian variety of dimension g ? 1 with X as its polar divisor (in
 the sense that it is positive and l(X) = 1, i. e., its g-fold intersection-number
 equal to g!). We shall assume that X is symmetric in the sense that it is

 invariant under -ida, in which idi denotes the identity automorphism of J.
 As before, we shall denote by I an even positive integer with the above assump-

 tion. Then 1J is an abelian group of type (1, l,y , 1) and of rank 2g.
 We introduce 129 functions ;0u on J indexed by the points u of .J as

 (ou) c I * (Xu,-X) .

 Then we introduce the same number of functions V/z on J as

 ( =X) (1-idj)-'(Xu-X).

 We observe that 4, can be replaced by aup, with a, in K*, the multiplicative
 group of K. At any rate, once pu is chosen, we can normalize the constant
 factor in ipu so that we have +6 (z) I -+ ( (lz), in which z is a generic point

 of J over a common field of definition of J, p. and u. The definition implies
 that we have

 qu+v (z) =c (u, v) *?(z) >p (z-u)

 with c (u, v) in K* for all u, v in 1J. Moreover (u, v) -* c(u, v) is a 2-cocycle
 of iJ with coefficients in K*. Also, we have

 Pv(z+u) =ez(ue ) q(bz)
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 MODULAR FORMS AND PROJECTIVE INVARIANTS. 823

 with el(u, v) in yt for all u, v in 1J. Furthermore (u, v) -* el(u, v) is a multi-
 plicative, non-degenerate bilinear form, depending only on the polarization,
 such that

 ej (u ,v) = c(u, v)/c(v, u).

 All these are in Weil [17]. We call el (u, v) the canonical bilinear form on 1J.
 It is clear, by what we have said, that we can take 1J with its canonical bilinear

 form as i and construct a group of characteristics X of degree g and of level 1.

 We shall show that elements of X - $ also admit a geometric interpretation.
 For a moment, we shall assume that I 2. Then, the divisor (fr) is

 symmetric for every r in 2J, and hence we have

 Vr (-Z) = ex (r) * tr (Z)

 with cx (r) = ? 1 depending only on X and r. If r' is a point of 4J such that
 2r' = r and if s is a point of 2J, using the identity defining c (r, s), we get

 akr+8(Z) = const. ~r(Z)qs(Z- q ).

 We replace z by - z + r in this identity, and we get

 b (r, s) cx (r + s) = cx (r) cx (s).

 We shall also examine the dependence of cx (r) on X. We note that sym-
 metric polar divisors on J are of the form Xt with t in 2J. We shall show
 that we have

 ex,r (r) == b (t, r) ex (r) .

 If t' is a point of 4J such that 2t' = t, the divisor of the function z - r(Z tl
 is given by (2 idj)-(X+t - XEt). Moreover we have

 *r (-Z z M ) e x (r) Ar(Z + tt)

 =cx (r) b (t, r) A(z- t'),
 whence the assertion.

 Going back to the case when I is an even positive integer, we see that
 we can identify T with the set of all symmetric polar divisors. Furthermore,
 the group structure in 2 is given by X + t = Xt. Therefore, we can identify

 X - with the set of all X. with u in $.
 Now, we say that a level I structure is given in J if a canonical base of

 IJ is chosen. Then, we can summarize our results in the following way:

 THEOREM 2. Let I denote an even positive integer not divisible by the
 characteristic. Then a principally polarized abelian variety J possesses an
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 824 JUN-ICHI IGUSA.

 intr insically defined group of characteristics X such that a IJ with its

 canonical bilinear form and T the set of 22g symmetric polar divisors. In

 particular, the concept of even and odd symmetric polar divisors is intrinsic

 and each level 2 structutre in J determines a unique even symmetric polar
 divisor.

 The unique symmetric polar divisor in this theorem is the even charac-

 teristic denoted by S in Lemma 1. We call this polar divisor simply the
 theta-divisor associated with the level 2 structure. We note that the number

 of even divisors is 29-1 (29 + 1) and the number of odd divisors is 2'-1 (29 -1).

 We note also that, if J -* J' is a specialization of principally polarized abelian

 varieties with level I structures, the theta-divisor of J specializes uniquely

 to the theta-divisor of J' over this specialization.

 Finally, if a level 1 structure is given in J and if m, n mod 1 are the

 coordinates of u, v in 1J, we get a mutiplicative bilinear form c'(u, v) on 1J as

 c'(u, V) =
 Since we have

 c'(u, v)/c'(v, u) el (u, v) = c(u, v)/c(v, u),

 the 2-cocycles c (u, v) and c' (u, v) are in the same cohomology class [cf. 17,

 pp. 157-8]. Therefore, by replacing 45 by all4O, with a, in K*, we can assume
 that we have c (u, v) =- c' (u, v). When we make this normalization, we have

 c (u, v) I = 1 for all u, v in 1J. In the following, especially in proving Theorem

 3, we shall use only this property of the normalization (in the case when I= 2).

 Now, we consider a vector bundle L over J for the divisor class con-

 taining (I id) - (0), in which e is the theta-divisor for some level I structure

 in J. Also, we fix a section e of L such that the divisor of zeros of 9, which

 we shall denote by (9) , is (I idj)(-1(E). Then, for every u in .J, we (Iel ne
 a section O of L by Ou- = /u 0. It is clear that we have (6n)O = (l idj)-1 (-)l .
 The 19g sections thus introduced form a base over K of the vector space of

 sections of L over J. Moreover, the 12C elements 64, (0) of the stalk Lo are
 the algebraic analogue of the classical theta-constants, and hence we call them
 algebraic theta-constants of degree g aind of level I evaluated at J. We refer
 to Mumford [13] for a general theory of theta-constants.

 2. Hyperelliptic case. First we consider, in general, a non-singular
 curve C of genus g ? 1 and we denote by (J, p) its jacobian variety. Also,
 we shall denote by W the image in J of the (g - 1)-fold product of C and by

 f a canonical divisor of C. Then J is a principally polarized abelian variety
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 AIODULAR FORMS AND PROJECTIVE INVARIANTS. 825

 with W,7 as a polar divisor for every z on J. Moreover, the divisor +-1 (Wt)
 is defined if and only if

 z + 10(f ) -c 2 (Pi)
 =1

 has a unique solution, and we have

 g

 10-1 (WZ) =Ept.
 j=1

 This is a weak form of "Theorem 20" i-n [171. Also, the divisor X W,
 is symmetric if and only of the point c has the property

 2c?4(f) =0.

 On the other hand, suppose that u, v are points of 1J. Then, we can calculate
 el (u, v) as follows. We take two divisors a, b of degree zero on C with
 disjoint supports and with the property + (a) = , + (b) = v. Let f, h denote
 functions on C defined by (f) =1 - a, (h) =1I-. Then we have

 h, (a)If (b) -=el (it, v).

 We say that C is hyperelliptic if there exist two points P1, P2 on C with
 the property I (P1 + P2) = 2. We shall show that, if P1', P2' are another
 points of C with the same property, then

 a=(9-2)(Pl+P2) + (P1 +P2')

 is a canonical divisor. At any rate, it has the same degree as f. Moreover,
 we have 1(f-a) =I(a)-(g-1) ?1, and hence a and I are linearly
 equivalent. In particular, we have

 (g9 2) (PI + P2) + (PI' + P-_') ( 91) (PI + P2),

 and hence P1' + P2-' P1 + P2. Therefore, the complete linear system
 P1 + P, c consists of all P1' + P2' with the property (P1' + P2') = 2. We

 shall denote this complete linear system by g2. We note that g2 converts C
 into a two-sheeted covering of the projective line D = K U oo. Moreover, the
 (numerical) function x: C -->D is unique up to an automorphism of D.
 From now on, we shall assume that the characteristic of K is different from
 2. Then, the different of the covering consists of 2g + 2 distinct points
 QO, Q 1 , Q2.fl+, say, and we have

 2g+1

 (dx) == E Qi- 2(x)
 j -
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 826 JUN-ICHI IGUSA.

 Since (dx) is a canonical divisor, by what we have said, it is linearly equiv-

 alent to (g - 1) (x) O. Consequently, there exists a function y on C with

 the property

 2g+1

 (Y) = I Qi- (g + 1) Wx<..
 i=0

 The function y is unique up to a constant factor and, if we assume that

 al x(Qj) 70, oo for i = 0, 1, 2g + 1, we can normalize the constant
 factor so that we have

 2g-1

 Y2-II (X_a,)
 i=o

 We note that the function-field of C over K is K (x, y). For the sake of

 simplicity, we shall normalize 0 by 'P(Qo) =0. Then we get +(f) =- 0.

 LEMMA 2. Put s, - = (Qj) for i=-1, 2, ,2g + 1. Then these 2g + 1
 points of 2J have the following properties

 2g+1

 E i sx- 0, b (si, sj) (i --+ j) .
 i=1

 Proof. Since the first part is clear, we shall prove only the second part.

 If i1, i2, i3, i4 are distinct indices among 0, 1, , 2g + 1, we have

 b (.0 (Qil) - (A ) MO+9 (Qi.) 0 J)

 = ((x- a)/(x-aia))(Qi- Qi2)/((x-a,)/(x- a2))(Q 1 Q1j),

 and this is 1. Therefore, taking i, 0, we get b (s, sj) = b (si, Sk) whenever
 i, j, k are distinct indices among 1, , 2g + 1. We shall show that any

 2g points among s,, s2, , s2,+, form a base of 2J. Otherwise, by changing
 indices, we will get s + - + sp = 0 for some p satisfying 1 ? p ? 2g.
 Consequently, there exists a function f on C with the property

 f2=H (x -a,I/x-ao).
 j=1

 Since a,, a1, ,ap are distinct, clearly f itself is not contained in K (x).

 Since we have [K(x,y): K(x)] =2, we get K(x,f) =K(x,y). Therefore,

 the different of K (x, f)/K (x) has to be of degree 2g + 2, and hence

 2g + 2 = p or p +1 according as p is even or odd. But this contradicts
 p 2g. Now, suppose that we have b (si, sj) = 1 for some i 7 j satisfying
 1 ? i, jy? 2g + 1. By changing indices, we can assume that j = 2g + 1.
 Then, by what we have shown in the beginning, we get b (si, s2U+1) = 1 for
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 MODULAR FORMS AND PROJECTIVE INVARIANTS. 827

 i =- 1, 2, , 2g. Since sI, s2, *, form a base of 2J, this implies

 =S2+1 0, but this is a contradiction. The lemma is thus proved.
 We note that, although we have shown in the course of the above proof

 that 29 of the points S1, S2< . .S2g+ are linearly independent over Z/2Z,
 this fact is a consequence of Lemma 2. Actually, the lemma shows that the

 symmetric polar divisors WT, for i 1, 2, * * , 2g + 1 form an azygous base
 of the group of characteristics of level 2 intrinsically attached to J. In

 particular, all symmetric polar divisors of J can be written as W, with

 S Sel + Si2 + + S40)

 in which 1 _ i1 < i2 < * < ik 2g + 1 and either we take k 1, 3,

 2g + 1 or we can equally take k 0,1, , g. We shall use the second way

 of expressing all symmetric polar divisors.

 LEMMA 3. The polar divisor W does not contain points of 2J of the

 form shi + - + si, with 1 i1 < < ig ? 2g + 1, but it contains all
 other points of 2J.

 Proof. A point of the form s4 + + sjk is contained in TV if and
 only if there exist g - 1 points P1i , Pg- on C satisfying

 (k ( Qi + - + Qk) =( P1 + + Pg-1 )
 The second part of the lemma follows from this fact. As for the first part,

 we have only to disprove the existence of P1, , Pg l for k = g. In other
 words, we have only to prove

 I(Q ? + + Qig QO) 0

 or l(Q?.+ + Q,,)=1 for 1?i1< .<ig?2g+1. Suppose that f
 is a function on C with the property (f) + Q,, + + Qig >- 0. By changing
 indices, we may assume that i1 = 1, , ig = g. We can write f in the form

 f = (A (x) + B (x) y) /D (x),

 in which A (x), B (x), D (x) are in K [x] without any common factor. Suppose

 that P is one of the Qo, Qly - . , Q If we denote the multiplicities of
 x -x(P) in A(x), B(x), D(x) by a, b, d, we get

 ordp(f) =min(2a, 2b + 1) -2d.

 Since we have min (a, b, d) = 0, the only case when we have d ? 1 is the case
 when P = Q1, , Qg. It is possible, in this case, that we have d = 1.

 Then necessarily we get a ? 1, b 0. On the other hand, suppose that P is
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 828 JUN-ICHI IGUSA.

 different from Qo, Q', , Q,,. Then f is finite at P and at its conjugate.
 In other words, both f and its conjugate are finite at P. Consequently

 A(x)/D(x) and B(x)y/D(x) are finite at P. In the case when x(P) #oo,
 we also have y (P) 7 oo, and y (P) #70 by assumption. Therefore, we get
 D(x(P)) 5L0. We have thus shown that D(x) divides both A(x) and

 (x - a,) (x- ag). Put A(x) C==C(x)D(x) and consider the case when
 x(P) =soo. The condition that C(x) and B(x)y/D(x) are finite at P means

 that C(x) = const. and deg. B (x) + g +1I - deg. D (x) < 0. On the other
 hand, we have shown that deg. D (x) ? g, and hence B (x) 0. Therefore,
 we get f = const., and this completes the proof.

 We shall, now, incorporate the observations made in the previous section.

 In general, if X and Y are symmetric polar divisors not containing 0, we can
 replace z in x?r+y (- z) = cx(X + Y) qix+y(z) by 0, and we have qx+y(O) #0,
 oo. Therefore, we get cx (X + Y) = 1, and hence e (X) = e (Y). Conse-
 quently, if we put

 e(k) ==e(W +sil+ + *s.)

 for 1 . i . < <ik-? 2g + 1, Lemma 3 shows that e (g) does not depend
 on the sequence. Suppose that 1 <ic ? g and assume that e (k) does not
 depend on the sequence. Put

 X W + Sth + -+ Sk-2

 and let ik+, denote one of the 1, 2, * , 2g + 1 different from il, . ik
 Then, we have

 1 b (s ,Shk i-J ) e ( X) e ( X + sjk-l e ( X + sjJ e (k )

 b (Sik+1, Sikl) -e (X) e (X + sJkl) e (X + Sik+l) e (c),

 and hence e (X + sik) = e (X + Sik+1). Using this formula, we see immediately
 that e (k - 1) does not depend on the sequence. Therefore e (k) is well
 defined for 1 ? ik g and also (trivially) for k = 0. The exact value of
 e (k) will be given by the following lemma:

 LEMMA 4. We have

 e(k) = 1 for k-g+2'g++3 mod4.

 Proof. We have observed already that -1 = e(k - 2)e(k) for 1 < k : g.
 The lemma will, therefore, be proved if we show that e (g) = 1, e (g -1)
 = - 1. For this purpose, we take the sum of e (X) for the 22g symmetric
 polar divisors X. Then we get
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 20 - e(g)(2g+1) (2I+l \ +
 g -

 +e(g 1) ( 2g + 1) (2g + 1) +

 We observe that the coefficients of e(g) and e(g -1) in the above identity

 are positive integers Moreover, the former is equal to the latter plus 29.

 Therefore, the only possibility is e (g) = 1, e (g - 1) -- 1. q. e. d.

 Now, we divide the 2g + 2 points Qo, Ql, , Q2,+1 into two sets, each
 consisting of g + 1 points, in two different ways. We can write two such

 partitions as

 ((Qi:0.. nQy nQl,,1.. nQi,)n (Q Wi ..Qjpn Qil.1 5 nQitq)

 ( (Qiv . yQipQi- 5 nQ,I,,). (Qj17 .QAPQ411n -5QI))n

 in which Qj1=Qo and p + q-g + 1. Then we necessarily have 1?_ p ? g.
 For the sake of simplicity, we put

 q q

 a=l a=1

 We take p independent generic points M,, , -,M4 of C over a common
 field of definition of C, p, J and consider the function on C defined by

 Ml -> (08'/08") (p (ML + + M)). Then, the divisor of this function
 can be determined. First of all, the divisor of the function p8'/pa on J is

 2 (V- Ws ) Moreover, if we put

 p

 j=2

 then q-1 (W,) is defined and, if we denote by Ali' the conjugate of Mi, we have

 P q

 +-l (WZ) 2 mill + QlaX
 i=2 a=1

 This is a key point, and we have used the fact that 1( z Qi) =) 1 (cf. proof
 a=i

 of Lemma 3) and "Proposition 8" in Weil [16]. Therefore, the divisor

 of the function in question is

 q

 2 Y,E Qiaw Qja )
 a=1

 and hence this function differs from
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 fx (X-a.ia,/x- a.,,)
 a=1

 by a constant factor (depending on M2 , M). In this way, we get
 the following identity

 (4t/c+8"t) ( P c(Mi)) ! lc ]I (x (Mi) -aa'/X (M) -as"),
 J=1 _=1 a=1

 in which c is a constant factor.

 We recall that the divisor of the function f8 /p8 on J is 2 (W8V' W- ,)
 Moreover, if we put

 p p.
 s- 20 (Q,)., t- 2 Q^.
 a=1 a=1

 we have s + s' + s" + t 0. Therefore, by Lemma 3 we see that (qS /qS,) (s)

 and (0s/4ls-) (t) are both defined and different from 0, oo. After this remark,

 we replace Ml, - * *, Mp, by Qil, - *, Qi, and also by Qj&, - * *, Qj, in the above
 identity, and take the products of both sides of the so-specialized identities.
 Then we get

 (4S'/08") (S) (48'/P8") (t) = c2-times

 II II (ifl-') (jata'l) /(ifia" (ta"1).,
 f=1 a=i

 in which (I J) stands for a, - aj. We shall show that the left-hand side is
 ? 1. In general, if r, s, t are arbitrary points of 2J, we have

 (r+,s/Pr+t) (Z) - (c (r, s) /c (r, t) ) (4S/Pt) (z-r).

 In this identity, we replace r, s, t by s, s', s" and also by t, s', s", and take the

 products of both sides of the so specialized identities. Then, the left-hand
 side of the new identity is equal to 1. Moreover, it is permissible. by Lemma
 3, to replace z by 0 in the right-hand side, and we get

 (08 /081 ) (s) (08 10.9 ) (t) _= c (s, s8') c (t, stt) /c (s, s') c (t, s') .

 We now take into account of the normalization that we have introduced at

 the end of the previous section. Then, the right-hand side is simply v 1,
 as asserted.

 After this remark, we return to the identity involving c and we replace
 Ml,* *, Mp by Q1, . , Qtp. This is permissible and, combining all that
 we have said, we obtain the following identity
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 (+Sb+8'/':P8" ) ( 0) 2-(48/4S") (S) 2

 Pq

 ? II H (8ii/) (jifia"))/(ioiax") (oia'i).
 P=1 a=1

 Before we state the theorem we have just proved, we shall recall some of the

 definitions introduced in this section.

 The non-singular curve C is of genus g ? 1 and carries a complete
 linear system g2 of degree two and of dimension one; the 2g + 2 points

 Qo, Q1, , Q2g+1 are the points Q of C such that 2Q belong to 02; (J, 4) is
 the jacobian variety of C with the canonical function 4 normalized by

 4 (QO) =- , and k (Qj) -si for i-1, 2, - , 2g + 1. In addition to these,

 we shall denote by 0 the theta-divisor for some level 2 structure in J, and

 by t the sum of si for which e ( -,J =-1. Also, for s =-l + - + si. with
 1 ? i1 < <igi ? 2g + 1, we shall denote by D* the product of the dis-
 criminant of

 (x- ao) (x ah) *(x - C4

 and the discriminant of its complementary factor in the product of all x - ak

 for k- 0, 1, , 2g + 1. With these notations, we can state the following
 theorem:

 THEOREM 3. We have OB+t(0) '0 for s in 2J if and only if s is of

 the form si1 + + s,, with 1 < i1 < < ig ? 2g + 1. Furthermore
 08+t(O)8 and D, are proportional in the sense that their ratio is independent
 of s.

 We have only to show that we have W = et. Suppose that we define t

 by this. Then, by Lemma 4 we have

 e (Os8) es (t) =e (ot+,,) == e (ot+8,) =e (089j) ceS (t),

 and hence e(0,J)b(si,t) =e(? ) )b(sj,t) for i,j =1,2,* * ,2g+1. There-
 fore, by Lemma 2 we have e (si) =- e (.8,) if and only if s,, sj at the same
 time either appear or not appear in the expression of t as a partial sum of

 31, S2i * S2g+1. Since the sum of these 2g + 1 points is 0, we seee that

 t is equal to the sum of s, for which e (?,i)= 1. This is our previous
 definition of the point t.

 We also note that the number of si such that e(eHS) - -1 is congruent
 to g mod 4. At any rate, we can write t in the form sil+ - *+ si with
 0 - k i? g such that e (OJ) takes the sign E for i = i1, * , i7, and the opposite
 sign for the remaining 2g + 1- k indices. Then, we have e (e) =- e (k) = 1,
 and hence k I g, g+1mod4. Also, we have E=e(kl-1). Therefore, if
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 c-gmod4, we get e= -1 and, if kI==g+lmod4, we get e=1. In the

 second case, we have only to observe that 2g + 1- kI - g mod 4. This remark
 will be used later in proving Lemma 8.

 Finally, we shall make some observations which we shall use in Sectioni 4.

 Suppose that J and J' are principally polarized abelian varieties with sym-

 metric polar divisors X and X' such that (J', XI) is a specialization of (J, XV).
 Then, a point, say s', of 2J' on X' which does not come from a point of 2J

 on XV over the above specialization is singular on X'. Suppose, in fact, that

 s' is simple on X'. Consi(ler the graphs of +idi in the product J X J an(l
 restrict them to X x X. Call the restrictions A, T; similarly for A', T'.

 Then (A', T'A T') is the unique specialization of (A, T, A T) over the given
 specializationl. In fact, we have only to apply the principle of conservation

 of numlber in its local form. Since A' n T' is zero-dimensional, the components

 of A' T' are precisely all points of A' n T' which are simple on XV' x X';
 similarly for A 1X. Therefore, by assumption s' X s' is in A' T'. We already
 have a contradiction here. We note that A and T are transversal at every
 simple point of X X X in A n T. The same is true for A' and T'. Therefore,
 if all points of A7 and X' are simple, the numbers of points of order two on

 XV and on ,X' are same. Another remark is that, in the special case when

 g9=-3, if the symmetric polar divisor has a singular point, the polarized
 abelian v ariety can not be the jacobian variety of a non-hyperelliptic clurve.
 This is a simple consequence of "Proposition 18" in Weil [17].

 3. The homomorphism p. From now on, we shall take the field C
 of all complex numbers as our universal domain. Let J denote a complex
 torus of (complex) dimension g and A a positive divisor on J. Then there
 exists a theta-function with IX as its divisor of zeros. The precise meaning
 is as follows. The universal covering group 3 of J is a vector space over C
 of dimension g and the kernel D of the canonical homomorphism 3 --)J is
 a lattice in 3. A holomorphic function z -> 0(z) defined on 3 is called a

 t-heta-function belonging to P if it has the property

 0 (z + dl) =e (Ld (z) + Cd) '0 (Z)

 for every d in D with a C-linear form Ld(z) and a constant cd both depending
 on (d. A theta-function determines a positive divisor on J, provided that it
 is not the constant zero. A fundamental existence theorem in the theory of
 theta-functions asserts that every positive divisor of J can be obtained in this
 ra [cf. 191. Now, we can extend Ld(z) uniquely to a "quasi-hermitian
 form" on 3 as (z, z') -* 2iL'4' (z) and its hermitian part is a Riemann form
 l)elonging to D. In particular. if we put
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 <z, z'>-~L,, (z) -lz,(z')

 this alternating form is Z-valued on D. If the divisor X has the property

 that l(X) = 1, all elementary divisors of the alternating form <d, d> on D

 are equal to 1. Therefore, we can choose a base d1, , d2g of D so that
 we get

 (<dj, dj>) - ( g) 1g 0

 Then we choose a C-linear isomorphism 3 _ Cg so that (d, d2g) is mapped
 to (r1g). This is always possible and we get a point v of the Siegel upper-

 half plane 25. We note that the choice of the base of D is not unique but,

 once it is chosen, the isomorphism 8- C is unique. In particular, the
 point T is unique up to the modular transformation T -11T with M1 in

 Sp (g, Z). Furthermore, we have

 0(z) -Oo(z) * e(1 t(p + m')T(p + m') + t(p + m') (z + m")),

 in which 9, (z) is a "trivial theta-function," i. e., a funietion of the form
 exp (polynomial of degree two), and m',i m" are column vectors in Rg. We

 shall denote the theta-series on the right-hand side by Om (r, z) in which mn
 is the column vector composed of m' and m". We note that the last normaliza-

 tion is unique only in the sense that m mod 1 is unique. We refer to [8] for

 basic properties of the theta-function Om(r, z) of characteristic m. We shall
 translate results in the previous sections into the language of theta-functions.

 First of all, the complex torus J admits a projective embedding given by

 Z > (Om (T,lZ ) ) 1m_0 mod 1

 for any 1I_ 2. In fact, this is true for every given point T of eg. Because
 of this fact, if there is no danger of confusion, we shall sometimes call J an

 abelian variety and use the language introduced for abelian varieties. For

 instance, we say that the above projective embedding is compatible with the

 principal polarization on J with X as a polar divisor. Also, we shall denote

 by 0 the divisor of J determined by 0, (T, Z)). We fix an isomorphism
 IJ I (Q/Z)29 defined by u = (Tl)m mod (r1g)Z2- __ m mod 1. Then we have

 10U (Z) (!0_,tn(Tn Z) /00(TN Z) ) I

 +uX(z) 0=-m (' zZ)/0o(Tr ,Z))

 Therefore, we get

 c(u,v) =e((2tnm'm") (u,v O-m,n mmod 1)

 ci3 (r)-==e (- 2 tm'm") (2r - 0; r -> m mod 1) .
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 Consequently, the base of IJ giving rise to the above isomorphism 1 I(QZ)2g
 is canonical with respect to g = e (1/i). MIoreover 0 is even and, in fact,
 it is the theta-divisor for the level 2 structure in J determined by this
 canonical base. It is now clear that the theta-constants Om(T) OmQ 0(T) are
 indeed the theta-constants in the sense of Section 1. Furthermore, in the
 case when 1I=-2, the theta-function .m(r, z) is even or odd if ?r is even or
 odd, i. e., if 4tm'm" is even or odd for r -- m mod 1.

 Suppose, on the other hand, that a non-singular curve C of genus g is
 given. We take a base of the homology group H1(C,Z) so that the corres-
 ponding 2g X 2g intersection-matrix takes the canonical form, i. e., becomes

 a matrix composed of 0, 1g, -g1, 0. Then we take g linearly independent
 differentials of the first kind on C such that the period-matrix takes the form

 (T1g). This is always possible and we get a point T of Sg. As before, the
 choice of the base of H1 (C, Z) is not unique but, once it is chosen, the choice
 of the g differentials is unique. We shall denote by J the principally polarized

 abelian variety determined by the point T. Then J is the jacobian variety
 of C. Moreover, the canonical function 4 is given by the following integral

 1 p

 +(P) ) dzmod (T1g)Z2g,
 PO

 in which dz denotes the column vector of the g differentials and P0 a point
 of C. Furthermore, the image W by p of the (g -1) -fold symmetric product
 of C is of the form Ok with a point ic of J satisfying 2kc=-+(f), in which f
 is a canonical divisor of C. This is a consequence of the Riemann vanishing
 theorem.

 There is a slightly different way to describe analytically a principally

 polarized abelian variety with a level I structure. Let -r denote a point of %
 and consider the complex torus Cg/ (Tig) (IZ)2g. Since this is complex-
 analytically isomorphic to C/g(rlg)Z2g in an obvious way, we can consider
 C9/(T19) (lZ)29 as a principally polarized abelian variety. There is a nice
 projective embedding compatible with the polarization, and it is given by

 zE ( n, (2lTr, 2z))
 O ) /2 I n'_O mod 1

 by the kernel of the epimorphism C0/(Tl') (lZ)2g _ Cg/ (Trlg)Z20 coming from
 the identity map of CG. We shall prove the following important lemma:

 LEMMA 5. For every 1 ? 3, there exist irreducible, non-singular, quasi
 projective varieties U, U* over C and a morphism f: U*-* U such that:
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 (i) U is conmplex-analytically isomorphic to the quotient variety rg(l)\\g,
 (ii) if Tf denotes the graph of the morphism f and if u denotes the point of

 U which corresponds to any given point r of 5 the cycle Ja-= f-'(u) of U*
 is well definzed by the following intersection-product

 Tf (U* X u) f-l (u) X u,

 and its support is the principally polarized abelian variety with the level I

 structure which is complex-anaytically isomorphic to C9/(r1g) (IZ)29 and it

 has coefficient one, (iii) there exist 129 rational cross-sections for f: U* -* U

 such that their values at the point u of U are the points of l(J.).

 Proof. We consider the so-called Satake compactification of the quotient

 variety rg+, (I) \3g+,, which is the projective variety associated with the graded

 ring A(r+1(1)) [cf. 1,4]. We then take its monoidal transform along the

 singular locus. We know that the image points in the compactification of

 all limits

 rim T Z
 Jm(V)-*>+c (t z w

 for T in Sg fill up a quasi projective variety U, which is complex-anaytically
 isomorphic to rg(l)\Sg. We denote by U* the proper transform of U by the

 monoidal transformation and by f the restriction to U* of the monoidal

 transformation. Then, they have the properties stated in the first part.

 As for (ii), if we take any point To of g and if uo denotes the corresponding
 point of U, the variety U* is complex-analytically isomorphic over a small

 neighborhood of uo to the variety determined by the following N- (21)g
 rings

 C<<T--ro>>[01(Tr,Z)/Ok(, %),. %O0N(T,Z)/0k(T,Z)]

 for kc17 2, , N, in which C<T - To>> is the ring of convergent power-
 series in the coefficients of r - To and 01 (r,z), ,ON (r,z) are the theta-
 functions

 0 nt (21T,2z) 21n'=0mod1
 (o )

 arranged in some order. We refer to [10] for its proof. This shows that
 the cycle f-1 (uo) calculated by the analytic theory of intersections is irre-
 ducible and it is complex-analytically isomorphic to the principally polarized

 abelian variety with the level I structure determined by the point vo. We have
 onlv to recall that, as far as algebraic cycles are concerned, the analytic and
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 algebraic theories of intersections are same. Finally, we shall prove the
 property (iii). Choose any vector x in Z2g. Then, to every point u of U,
 we associate the point s (u) of Ju which corresponds to (T1l) xmod (Tig) (IZ)2o

 under the isomorphism JU Cg/ (Tlg) (IZ) 2g. It is clear that s (u) is uniquely
 determined by u and, in this way, we get a holomorphic cross-section s of
 f: U* ->U. We observe that the inhomogeneous coordinates of s with
 reference to the ambient projective space of U* are meromorphic (and
 algebraic) functions on U, and hence they are rational functions on U [cf. 1].
 This shows that the cross-section s is rational. q. e. d.

 An immediate conasequence of Lemma 5 is that, if h: TV-* U is a
 morphism of a normal algebraic variety TV to U and if we consider the fiber-
 product IV* =- U* X W over U, the projection TV* - W defines an " algebraic
 family " of principally polarized abelian varieties with level I structures, and
 every such family can be obtained in this way. In particular, the triple
 (U*, U, f) is unique up to an isomorphism.

 Before we shall apply this consideration to our problem, we introduce

 some terminology and notations. We shall denote by W the Zariski open
 subset of C29+2 consisting of points with distinct coordinates. Then IV is
 an irreducible (quasi projective) algebraic variety defined over Q. Suppose
 that a (a,a,, a , a2g+,) is a point of W. Then a non-singular model C
 of the plane curve defined by the equation

 2g+1

 y2 -I (x- as)
 j=O

 will be called a hyperelliptic curve associated with a. Also, the point T of
 a, such that Cg/(-rlg)Z2g is complex-analytically isomorphic to the jacobian
 variety of C will be called the point of Sg associated with a.

 LEMMA 6. Let V denote a normal algebraic variety which is complex-
 analytically isomorphic to the quotient variety rg(2)\Vg. Then, there exists
 a morphism h: W-- V such that, for every a in W, the image point h(a) is
 the point of V which corresponds to one of the points of eg associated with a.

 Proof. We consider the triple (U*, U, f ) for some even level I ? 4.
 Then the finite group rg (2)/rg (1) operates on U as a group of automorphisms

 and the corresponding quotient variety is isomorphic to V. Let p: U -* V
 denote the associated epimorphism. We choose a field of definition, say K,
 of the data involved and pick a generic point a of W over K. Let T denote
 one of the points of (Zg associated with a and u the corresponding point of U.
 Put p(u) =- v. We shall show that v is rational over K(a). Suppose that
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 (C', ie, v') is a generic specialization of (C, u, v) with reference to the field

 K (a). Then., there exists a point ' of (a, to which corresponds u'. Moreover
 J f-h (u) specializes uniquely to J., = f-1 (ue) over the above specialization,
 and they are the jacobian varieties of C and C' respectively. We also note

 that the level I structure in Ju specializes uniquely to the level I structure

 in J.,. On the other hand, because the specialization is taken over K (a)
 and is generic, clearly C and C' are isomorphic. Therefore Ju and Ju' are

 isomorphic. Furthermore, the images in J. of the level 2 structure in Ju

 under the specialization on one hand and under the isomorphism on the other

 are same. Consequently, the point r' is of the form M r with M in rT (2),

 and hence v== v. This shows that v is rational over K (a). The rest is clear.

 We note that the morphism h in Lemma 6 is not intrinsic. In fact, we

 can combine h with any one of the elements of rg(1)/rg(2) operating on V
 as a group of automorphisms. From now on, we shall consider the cases

 when I - 1, 2. We shall assume that the characteristic m in 0m satisfies

 2m Omod 1.

 After these preliminaries, we shall proceed to construct a homomorphism

 from the ring A (rg (1)) of Siegel modular forms to the ring S of projective
 invariants of a binary form of degree 2g + 2. We recall that the ring

 A(rg(l)) is the graded ring generated by holomorphic functions , on g
 satisfying the functional equation

 V/(M - r) ==det (cT + d)k +(z

 for every M in r (l) (plus a condition at infinity for g =- 1). As for the

 ring S, it is defined in the following way. In general, consider a homo-

 geneous polynomial of degree r in n variables xi, . ,

 U 7X{l - rl... **r.

 The group SL (n, C) operates on the variable space "contragrediently" and,

 if we require that the above form is invariant, the same group operates on the

 coefficient space. In this way, we get an irreducible representation of

 SL (n, C) of degree

 (r+n-1

 We consider the graded ring of polynomials in the ur,... r with coefficients
 in C and operate SL(n,C) on this graded ring using its action on its homo-

 geneous part of degree one defined by the above representation. Then, the

 invariant subring, say S (n,r), is a graded, integrally closed, integral domain

 19
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 over C. According to the first main theorem in the classical theory of
 invariants, it is of finite type over C [cf. 20]. We note that, if I is an
 element of S(n,r), we can evaluate I at any special homogeneous polynomial
 of degree r in n variables or at any polynomial of degree r in n -1 variables.

 At any rate, with this notation, the ring S is given by S(2, 2g + 2). In the
 special case when n = 2, the following elementary lemma is useful:

 LEMMA 7. Let 41, - r, denote independent variables over C and put
 Pr(X) - (X-e1) . (X-er)- Suppose that f($) is an element of the ring
 C [4i, $ 4r]. Then, there exists a homogeneous element I,, of S3(2, r) of
 degree w satisfying f(e) =Iw (Pr(X)) if and only if (i) f satisfies the func-
 tional equation

 r

 f (M - ) _ H (7t,+ ))W-W- W
 j=1

 in which (M e)t= (41 + p) (ye+ 8)-1 for every Mi in SL(2,C) with coeffi-
 cients a, Al, y, 8, and if (ii) f is symmetric in 4 ,

 We note that an expression of the form

 (et- 6j) (Se a l) *

 in which every $j appears w times, satisfies the condition (i). We also note
 that the graded subring of C [6,, - , $r] generated by elements f (t) satisfying

 the condition (i) is integrally closed in this ring. We leave the verification
 as an exercise to the reader.

 Now, we take a point a of W and consider the point T of 25 associated
 with a. Then, exactly

 (2g + I ) 21 (2g + 2)

 of the 0m (T) are different from zero. On the other hand, there are same
 number of decompositions PI(x)PI1(x) of P2g+2 (x) into products of two poly-

 nomials PI (x), Pi1 (x) each of degree g + 1. Theorem 3 states that, if D (PI),
 D (P1,) denote the discriminants of PI (x), P11 (x) and put D, = D(PI)D(PI1),
 there exists a bijection from the set of 0 (,r)8 :4 0 to the set of DS such that
 we have

 Orn(,T)8 p4* D8,

 in which p4 is independent of Om (.7) After this remark, we shall prove the
 following lemma:

 LEMMA 8. Let k denote a positive integer and consider a product
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 Orn* 69m2k such that (Or *6 * m2k) (r) #; 0 at the point r of S. associated
 with a. Then, by replacing each Om(T) #A0 by the corresponding (D8)118,
 we get a product of integral powers of a, - aj if and only if Om, 6.,, defines
 a modular form of level 2.

 Proof. In general, suppose that we have 1- 2 mod 4. Then . . OM24
 with lma - 0 mod 1 defines a modular form of level l if and only if we have

 (ml k I m (in, * * *2k)() - (c/21) (1 0 /

 - (2/1)-times a half-integer matrix.

 This is a consequence of our fundamental lemma in [8]. We shall consider

 the special case when 1 = 2, and proceed to prove the if-part. We shall use
 C, J etc. to denote the hyperelliptic curve associated with a, its jacobian
 variety etc. Then, with respect to the level 2 structure in J that we have

 explained before, the points s- = p(Qj) have coordinates in 2 (Q/Z) 2g. For
 the sake of simplicity, we shall denote them by st mod 1. Also, we put t
 si mod 1, in which the summation is extended over those si satisfying 4ts's"--1
 mod 2. Then we have am(T) #0 if and only if we have

 mn-sj+ * * -+s1,+tmodl

 for some 1 i . .< <ig,? 2g +1. This is a consequence of Theorem 3.

 On the other hand, if Om, * -m27 defines a modular form of level 2, we have

 tx (ml. . . M2k)(Ml. . M21)X +1 k - txx" 0mod 1

 for every column vector x composed of x', x" in Zg. We shall show that

 a.6-aj appears with an integer exponent in the product of (D,)118 which
 corresponds to Om, .. Oj2k. Put

 x-= 2( 0 ) (s +sj) mod2

 for 0 < i < j?< 2g + 1, in which we put s,-00mod1. Then, for the above
 vector m mod 1, we have

 e (xm) b (si + sj, s4+ + si, +t

 Now, in the case when i> 1 we have b (si + sj, si * **+si,) -1 if and
 only if (ai - a1) i appears in (D8)1/8. Moreover, a case-by-case examination
 shows that b(si + sj, t) =-.-e(j tx'x"). Therefore, we get e(txm) =1, i.e.,

 txm = 0 mod 1, if and only if either (ai - aj) I appears in (D,)"18 and
 tx'x7'_ 1 mod 2 or (a,-aj) does not appear in (D,8)1/8 and tx'xfl' 0mod 2.
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 In the case when i = 0, we have (- 1)9-lb (sj, si, + + sj,) - 1 if and only
 if (a, -- aj) appears in (D,) 1/8. Also in this case, if we denote by p the
 number of i for which 41sis'" - 1 mod 2 holds, we have (- 1) P-1b (sj, t)
 e (-e txx"). We have shown at the end of the previous section that we

 have p = g mod 4. Therefore, the same conclusion as in the case when i ? I
 holds also in the case when i = 0. After these preparations, let e denote the
 exponent of (ai - aj) I in the product of (DP)1/8 we are talking about. Then
 we get

 i(2c -e) + 1k7 =O mod 1, or

 le -O mod 1,

 according as tx'7fl' 1, or txx" 0_ mod 2, and hence e - 0 mod 4. This
 completes the proof of the if-part. As for the only-if part, since we do not
 have to use it in this paper, we shall leave it as an exercise to the reader.

 We shall consider the subring of A (rg (2)) consisting of polynomials in
 the theta-constants (with coefficients in C). This ring is generated over C

 by a finite number of monomials, say g',+, Ok,, * * * , of respective degrees
 2k1, 2t2y . * in the theta-constants. Then, we can find an algebraically closed
 subfield K of C such that we have

 C [+k,5 Ok2j . . .*] == C K Kf [Ikl, ~kw . ..*

 Choose a generic point a of W over K and let r denote one of the points of (g
 associated with a. Then we have

 fk, (JT) _== A P2 (Jkj) (a),

 in which P2 ('Oki) (a) is contained in K[a] for i 1, 2, . Therefore, each
 P2 (ikj) defines a polynomial function on W, and we can define p2 (a) for
 every + in K[k1, qk:2, * ] so that p2 gives rise to a ring homomorphism. Then

 we extend p2 to C [+1, , k2,l ] by linearity. If we introduce 2g + 2 letters
 ao*,*a1, a2g+,* the ring of all polynomial functions on W - C2g+2 can

 be identified with C[a*]-C OKK[a]. Moreover, ifVk is a monomial in the
 theta-constants of degree 2k contained in A (rg (2)), then P2 (glk) is a product

 of at* aj* in which every ai* appears lgqc times. In particular, the image
 or the range of p2 is contained in the subring of C [a*] defined by the condition

 (i) of Lemma 7 (after an obvious change of notations). We observe that P2
 is not intrinasic. In fact, we can combine p2 with any one of the elements of
 rg (1)/rg (2) operating on A (rg (2) ) as a group of automorphisms, because
 it keeps the domain of p2 stable.

 We shall try to extend P2 to the entire ring A (rg(2)). We first observe
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 that, if k is an even non-negative integer, there always exists an element

 tbk of A (r(2)) k which is a polynomial in the theta-constants satisfying
 P2 (qk) #0. For instance, we can take the 2k-th power of a suitable theta-
 constant as /k. After this remark, let f denote an arbitrary element of
 A (rg (2)) k' for any given positive integer k'. We shall assume that there
 exists an element 1k of A (rPg (2)) k which is a polynomial in the theta-constants

 satisfying P2 (k) #0 for some k_ Ick'mod 2. According to the above remark,

 this is not an assumption in the case when k' is even. By the same reason,
 we can assume that k is at least equal to k'. Pick an element f/' of A(rg(2))k,,
 which is a polynomial in the theta-constants satisfying P2 ('kh") # 0 for
 Ik-M" Ic - I. This is always possible. Now, we may assume that the mor-
 phism h in Lemma 6 is compatible with the homomorphism P2 in the sense
 that they are both defined by using the same point T of 3g associated with the

 given generic point a of W over K. Then, Lemma 6 shows that the corres-
 pondence a -> (&qk"/Ik) (T) defines a rational function on W, and it can be

 identified with an element, say ', of C(a*). On the other hand, both p2(k)
 andP2 (pk") are elements of C[a*] different from zero. Therefore, if we put

 P2(p) -'p2I(Vk)/p2(G/k"), this will be an element of C(a*), and we have

 v (') _ 1j c p2 (4) (a).

 In particular, we see that P2(q) does not depend on the choice of tk and 'e.
 On the other hand, we know that ij is integral over the domain of the

 original P2. This implies that P2 (*) is integral over the range of the original
 P2, and this is a subring of C [a*]. Therefore P2 (1&) is also contained in C [a*].
 In this way, we can extend P2 at least to the subring of A(rg(2)) generated
 by homogeneous elements of even weights2 so that P2 remains to be a ring
 homomorphism to C[a*]. Furthermore, the range of P2 is still contained
 in the subring, say S*, of C [a*] defined by the condition (i) of Lemma 7.
 The reason is that the range of the extended p2 is a subring of C[a*] and
 it is integral over St, and we know that Se is integrally closed in C[a*].

 LEMM31A 9. Let V, denote an element of A(rg(l)) for which P2(4') is
 defined. Then P2(4) is contained in the ring S.

 Proof. We may assume that + is a homogeneous element of weight k,
 say. We observe that P2(') is unique up to the factor i'k for a 0, 1, 2, 3,
 and hence the conclusion does not depend on the choice of P2. We shall denote

 2 We note that, if we are satisfied with defining P2 only on this subring, we can
 dispense with our Lemma 8. In fact, we can define P2 on the subring of A (r, (2))
 generated by the biquadrates of theta-constants without using Lemma 8. Then we have
 only to extend P2 using Lemma 7 (and using our fundamental lemma).
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 the elementary symmetric functions of (Gm)8 by Z 8 . We know that
 they are homogeneous elements of A (r,(l)) of respective weights 48, 8
 [cf. 8]. Furthermore, if a is a point of W and if X is one of the points of e_
 associated with a, then >4k(r) becomes the k-th elementary symmetric function

 of O?n(r)8O0 for k=1,2, * up to i (2g+2)!/((g+1)!)2. Conse-
 quently, we see by Lemma 7 that Ik P2 (k4k) is a homogeneous element of
 S of weight 2gk for k= 1,2 . Furthermore, if we denote by P2 +2 (X)
 the product of all .x - a, we have

 Z4k (T) = * I2gk (P29+2 (X))

 in which m #0 is unique (although t itself is not unique). On the other
 hand, we have I2. (P29+2 (x)) ) 0 as long as the point a is not very special.
 In fact, if Pg+1 (x) = X++ is an arbitrary polynomial of degree g + 1
 with distinct roots, we have 120 (P9+1 (x) 2) = 29 D (Pg+i (x) ) 2 & 0, in which
 D(P0+, (x) ) denotes the discriminant of P0?, (x). Consequently, we have
 >4 (T) Q 0 as long as a is not very special. After these remarks, we shall
 consider the plane curve defined by the equation y2 =P20+2 (x). We then
 consider the following differentials

 dxly,, xdxly, ..., xg-ldxly.

 On the non-singular model C of the above plane curve, they define linearly
 independent differentials of the first kind. Finally, we take a base of the
 homology group H1 (C, Z) so that the corresponding 2g X 2g intersection-
 matrix takxes the canonical form. We take representatives of the members
 of the base so that their images on the plane curve do not pass through the
 points of ramification. If we integrate the column vector of the above g
 linearly independent differentials along the 2g representatives, we get a

 g X 2g period-matrix. Furthermore, it ean be written in the form vi (: I 9)
 with a g X g non-degenerate matrix w. The matrix r is one of the points

 of la, associated with the point a. Now, if we put p2 (s) =I, we have
 +(r) === I(a) with an element I of the subring S* of C[a*]. The problem
 is to show that I is symmetric in a,*, a1,*, . , a2,+1*. It is sufficient to show
 that it is invariant under all transpositions, i. e., permutations interchanging

 only two indices. Suppose that the given transposition permutes a2g and a2011,

 8ay. We choose a smooth Jordan curve passing through a2, and a,,+1 such
 that the corresponding closed Jordan domain does not contain other points

 of ramification. We can then move both a2, and a2,+1 in the same direction
 on the Jordan curve keeping other points of ramification fixed. At the same
 time, we deform the hyperelliptic curve C together with the 2g representative
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 1-cycles, ancl we get 2g representative 1-cycles of a new base of H1 (CUZ)
 with a similar property. The new base (written as a column vector) is
 obtained by a left multiplication of an element of rP (1) to the original base.
 Therefore, the left-hand side of

 / (T) '/>4 (T) I =1(a) /12, (P29+2 (x) ) k

 goes back to its original value after the said deformation. Since 129 (P29+2 (x))
 is a symmetric fuinction of aoal, * , a2g9+, we see that I (a)4 is invariant
 under the said transposition. Hence it is invariant under the symmetric
 group. Since the symmetric group has only two representations of degree one,

 i. e., the principal character and " sgn," we see that I (a) is either symmetric

 or alterrnating. We shall show that the second possibility has to be rejected.
 We observe that the left-hand side of

 0 (T) /det (w) I (/A/det (w) I I(a)

 goes back to the original value after the deformation we are talking about.
 Consequently (M/det (w) ) changes its sign at the same time with 1(a) by
 the deformation.3 In order to examine this situation more closely, we choose

 a base of H1 (C, Z) so that the representative 1-cycle of the (g + 1) -th
 member of the base is a smooth Jordan curve containing a2, a29gl such that
 the corresponding closed Jordan domain does not contain other points of
 ramification, the representative 1-cycle of the first member of the base is a
 smooth Jordan curve such that the intersection of the corresponding two

 closed Jordan domains is a closed Jordan domain containing a2g only, and
 other representative 1-cycles are all outside the closed Jordon domain con-
 taining a,g, a,071. For the sake of simplicity, we shall assume that the point 0
 is in the Jordan domain containing a,, and a291. We then join a29 and
 a2g+1 by a smooth curve passing through 0 in the Jordan domain. Under these

 assulmptions, we move a9g and a2,+1 toward the point 0 on the curve keeping
 other points of ramification fixed. Then the g X 2g period-matrix will
 approach to a matrix of the following form

 /00 4 Whr *
 IV e r IVt0 wJ

 in which w'(r/1,l) is the analogue of w (rl) for the plane curve defined by
 the equation y =S=P29(x) = (x-ao) * * (x- a,1), and w" is the loga-

 I According to a formula of Thomae [153, we have detW)4- (27ri) 49U4. If we
 use this formula, we can skip the subsequent argument, which will be used, howrever, for
 some other purpose.
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 rithmic period of the differential dx/x(P,2g(x) )2 at the point x 0. In

 particular, the point T approaches to

 (00

 *o T*i

 while det(w) approaches to det(w') w" ?0. We shall show that (,u/det(w) )k

 has a finite limit different from zero. For this purpose, we consider

 >4(r) /det (w)4-(t/det (w) )4 '2 2f(P29+2 (X))

 Then, by the limit process we are considering, the left-hand side approaches

 to 2 -4'(T')/(det(w') *w")4 while I2g (P2g+2(x)) approaches to I2g(x2P2g(X)).

 We are denoting by '4' the analogue of :4 for the degree g-1. Therefore,
 the left-hand side is finite and different from zero. On the other hand, we

 have seen that J" (X2P2g (X)) is different from zero as long as P,g (x) is not
 very special. Now, suppose that l(a) is alternating. Then (t/det(w))ft has
 to approach either to 0 or to 0o uinder the limit process. We have shown,
 however, that this is not the case. Therefore I(a) is symmetric, and this

 completes the proof.

 As a consequence of Lemma 9, we see that the restriction of P2 to

 A (rg (1)) gives rise to a homomorphism p = p, from A (r (1)) n(domaini of

 p2) to S. We shall state our results in the following way:
 THEOREEM 4. Let A(rg(l)) denote the graded ring of Siegel modular

 forms of degree g and of level one, and let S denote the g1raded ring of

 projective invariants of a binary formt of degree 2g+ 2. T1hent, th7ere exists

 a ring homomorphism

 p: a subring of A (r9 (1))S,

 which increases the weight by a jg ratio. The homonomrphisrm p is uniquely

 defined except for the freedomib p-ia1p on the homogeneous par-t A(rg(l))k
 of weight k for a 0,1,2,3. The subring, i. e., the domain of p, contains
 all elements of even weights as well as all polynomials contained itn A (r(1))
 in the theta-constants. An element i of A(Frg(1)) belongs to the lvernel of

 p 'if and only if q vanishes at every point of (ag associated with a hyper-
 elliptic curve.

 We note that the domain of p coincides with A (rg (1) ) for every odd g.
 Furtherniore, since p is injective for g = 2, the theorem and our fundamental

 lemmna show that the domain of p coincides with A(rg(1)) in this case.

 Actually, we know a sufficient condition for the domain of p to coincide with

 A (r (1) ) wheni g is even and when A (rg (1) ) actually contains a homogeneous
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 element of an odd weight. The condition is that there exists an element q

 of A (r, (2)) k for an odd k which is a polynomial in the theta-constants and
 which satisfies p (T) 0 for at least one point T associated with a hyper-

 elliptic curve. We note that this condition is satisfied for g 4. In this

 case, there exist 126 theta-constants Om satisfying Om (T) # 0, and the product

 of such 0m defines an element of A(r4(2)) 63. We shall also remark that we

 have certain information concerning the image of p. In general, if S is any

 graded integral domain, we shall denote by F(S) the subfield of the field

 of fractions of S consisting of homogeneous elements of degree zero, i. e.,
 quotients of homogeneous elements of S of the same degree.

 SUPPLEMENT 1. The domain of p coincides with A (rg(1)) for every

 odd g and for g = 2,4. The range or the image of p is large enough that
 we have F(Im(p)) = F(S).

 Suppose that F(S) is strictly larger than F(Im(p)). Then we can find

 two general hyperelliptic curves which are birationally equivalent to the plane

 curves defined by y2 - P2g+2 (x) and y2 P2g?28 (x) such that P2g+2 (x) and
 P2g+2 *I(x) are not projectively equivalent but the jacobian varieties of the

 hyperelliptic curves are isomorphic (as principally polarized abelian varieties).

 According to the Torelli theorem [cf. 18], if that is so, the two hyperelliptic

 curves have to be isomorphic, and hence P20+2 (x) and P20+2*(x) have to be

 projectively equivalent. We thus have a contradiction.

 SUPPLEMENT 2. Let x denote a cusp form of A(rg(l)) for which p(X)
 is defined. Then p (x) is divisible in the ring S by the discriminant of a

 binary form of degree 2g + 2, which has weight 2(2g +41).
 We shall use the same notations as in the proof of Lemma 9. Then we

 have

 X (T)/ )k =p (X) (P29+2 (X) ) /I29 (P2g+2 (x))

 By the limit process a20, a2,+1 - O, this relation will specialize to the following
 relation

 0?= p(X) (X2P20(X))/129(X2P2g(X)),

 and hence p (x) vanishes for a29* - a2g+1* = 0. Therefore p (x) is divisible
 by a,0g* - a2g+1 in C [a*]. Since p (x) is symmetric, it is divisible by the
 product of all a* - aj* for i 4-j. Since the corresponding quotient is alter-
 nating, it is divisible by the same product. Therefore p (x) is divisible by
 the discriminant.

 A consequence of this supplement is that, if the weight of the cusp form

 x is smaller than 8 + 4/g, we necessarily have p (x) = 0. We shall see that

 the smallest g for which such x exists is 4.
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 4. Applications. The reason why the homomorphism p is of some use

 is that the ring S is easier to examine than the ring A (rP(1)). For instance,
 the generating function of the graded ring S(n,r) can be calculated. In

 general, if N,. denotes the dimension of the homogeneous part of degree w
 of a graded ring generated over C by a finite number of homogeneous elements

 of positive degrees, the generating function of the ring is the power-series

 1 + NJt + N2t2 +* . The series is convergent for I t I < 1, and it has a
 rational function of t as its analytic continuation such that the denominator

 is a product of a certain number of polynomials of the form 1 - tP. In the

 present case where S (n, r) is the given graded ring, because of the complete

 reducibility of representations, the dimension Nw is the number of the trivial

 representation contained in the representation of SL (n, C) on the vector

 space of homogeneous polynomials of degree w in the ur1... l with coefficients

 in C. Therefore, if we denote by , , 4b the weights of the representation

 for w - 1, we have

 Nw == (1/n !) . . . e (ij(D, + *+ itnmD) ' A3L do, . .* dOn-i

 in which the summation is extended over non-negative integer solutions of

 ...+ +i- w and in which +? * * + + =O and

 A II (e (+)e g)).
 i<j

 We refer to Weyl [20] for this formula. Passing to the generating function,

 we get

 Nwtw t_ (1/n !)fI(1 - e1(t)t)-- AA d( * d-pn-i
 We=0 0 O =1

 In the special case when n =2, the n = r + 1 weights are simply ro, (r -2) 4w,
 rb. Therefore, the integral for Nw will give the difference of two

 numtbers of partitions while the integral for the generating function can be

 calculated using residue symbols. For r = 2g + 2 we have

 co

 E! Nttw= (1/2 (1 -t) )'Res 1,< I <1- Z2) (t_Z-2)
 W=O

 9+1

 g+1

 * (11 (Z2k-t) (Z2k- t-l))-ldz).
 kl=
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 The residue at z = oo exists only in the case when g =0, and we get
 Res,, -1. Other residues exist at z - t-1/20 for a = 1, g + 1, and
 there the residue is given by

 ( 1/2ax) (1 tlI/) 2t-((g2+3g+4)/2a)+l

 g+1

 *H I (t -t-k101) I t t-kla!) ) -1.
 k=1 k3& ka

 Consequently, for g 0, 1, 2, 3 the generating function is given by

 1/(1_t2)~, 1/(1-_t2) (1 _t3)

 (1 + t5)/(1t2) (1 _t4) (1 _t6) (1 _t10)

 (1 + t8 + t9 + tlO + t18)/ l (1 _tp)
 p=-2

 We shall, now, consider each case separately. We shall denote the roots

 of P2g+2(x) by -,, * * * 2?+2 and, for the sake of simplicity, put (ij) = -e.
 We note that for g = 1, 2 the homomorphism p is injective. Suppose first
 that g=1. Then we get two elements of A(J1(1)) as

 2 4 = (9m) ( 8, 2 +6 (Om )8 (O )4

 in which (O.)8(on)4 with tm ((00), tn (O1) has +-1 as its coefficient.
 The p-image of 2 * '4 and 2 *t6 are '2 and I3 with the following irrational
 expressions

 12(P4(x)) (X (12)2(34)2

 I3 (P4 (X)) E(1 2) 2 (34 ) 2 (13 ) (24) .

 The form of the generating function of S shows that we have S- C [2, 13],
 and hence

 A (r, (1)) C[+,6

 The homomorphism p is, therefore, a bijection decreasing the weight by a
 2 ratio. We note also that the p-image I6 of the cusp form of the smallest
 weight

 (22/3 3) ( (+4 )3 (62)- (OM )8

 is the discriminant of P4(x).

 We shall next consider the case when g = 2. There are five elements of
 A(r2(l)) to be examined, and they are

This content downloaded from 129.15.14.45 on Sun, 09 Sep 2018 16:35:25 UTC
All use subject to https://about.jstor.org/terms



 848 JUN-ICHI IGUSA.

 22. i4 (OM)"

 22 -6 ? (O_m1Om2Om3)4
 syzygous

 214x lo II ( 2m)

 217 3X12-= (Om1Om2. *Om6)

 23953i.X35 (Hm)( _ + (OnlOm20ms)2).
 azygous

 In the second symmetrization, the monomial (mOmflms)4 with tml (O 0 0 0),
 tm2= (0001), tIn =(00 1 0) has + 1 as its coefficient. In the definition
 of X12, the summation is extended over fifteen complements of the so-called
 Gopel quadruples. A G6pel quadruple consists of four distinct even charac-

 teristics which form a syzygous sequence. In the definition of X35, the sym-

 metrization of + (Om`Om2Om3) 20 is taken by the stabilizer of H 0, in Sp (2, Z)

 modulo the stabilizer of (0 O,,On.dm3)20 with tm, - (O 0 0 0), tm2 (0 0 0 2),

 tM3 = (O 1 0 0). Incidentally, we are assuming that this monomial has + 1

 as its coefficient and also that the coefficients of m in HOrn are 0, 1. We shall

 denote the p-images of 22. P4, 22 +6, * by I4,, * . We observe that the

 graded ring S is generated by homogeneous elements A, B, C, D, E of respec-

 tive degrees 2, 4, 6, 10, 15 such that E2 is a polynomial of A, B, C, D. This

 is a consequence of the form of the generating function of S. We can take

 A (P6 (x)) ) (12) 2 (34) 2(56) 2

 B(P6()) x)- (12)2(23)2(31)2(45)2(56)2(64)2

 C (P6(X) ) E (12)2(23)2(31)2(45)2(56)2(64)2(14)2(20)2(36)2

 -D(P6(x)) (12)2(13)2 . - (56)2

 E (P, (x) )= det 1 1 + 42 &1$2 -
 1 3+ &4 43

 5+ 6 $5$6
 and we get

 14=B, 16=(D) (AB-3C), Io == D
 I12 =AD, I356 53*D2E.

 Similar calculations were made by Bolza [3] nearly eighty years ago.

 Now, if 'Ik is an arbitrary element of A (r2(1))k, its p-image is a poly-
 nomial in A, B, C, D, E with coefficients in C. Therefore fk can be written
 in the form

 F0 (P4, 1f6,) X10, X12) + I Fp (ij2 k6, X12) (X12/XlO) v
 p>1
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 multiplied by x35/ (x10)2 if k is odd, in which FP. denote polynomials in + 6,

 Xo,, X12 with coefficients in C. On the other hand, the restrictions of if4, +,
 X12 to = T12= 0 are algebraically independent over C and

 X12/xIO = (rE)-2 + ' *

 X35sXlo = e (Tl) e(T2) (e-(Tl)- ('r2) ) (lrl-) -+ **

 in which T is the (j, j)-coefficient of T for j = 1, 2. Therefore, unless F, =0
 for all p > 1, the modular form ik will have a pole along e= 0. Furthermore,

 in the case when k is odd, we can write tk in the form

 Go (O +4 6n X1IOn X12 ) X-35 + EGP ( *42 f Gn X12 ) ( X3 5/ ( X10 ) P )

 in which Gp denote polynomials in q,, i6,, x1,o X12 with coefficients in C. Again,
 unless Gp =0 for p = 1, 2, the modular form qk will have a pole along e = 0.
 We have thus obtained the following result

 A (r2 (1)) =C [V4, +6n X1o0 X12, X3551.

 This is our second proof for the structure theorem of A (r2 (1)) and the third

 for the structure of its subring A (r2 (1)) (2) generated by modular forms of

 even weights [cf. 91. Again, in the above proof, the exact analysis of the
 zeros of X1o is not necessary, while this is essential in the proofs of Freitag

 [5] and Hammond [6] for the structure of A (r2 (1)) (2).

 We also note that an explicit form of E2 as a polynomial of A, B, C, D

 can be calculated by a finite (admittedly rather tedious) process. The result

 can be translated into the language of modular forms, and it is as follows:

 (X35) 2- (1/21239) ' xio * ( 224315 (X12) 5-21339(4) 3 (X12 ) 4

 -21339 (6) 22(X12 ) 4+ 33(*4) 6 (X12)3

 -2 33 (*4) 3 (t6) 2(X12) 3-21438 (44) 246XIO (X12) 3

 -22331252 f4 (X1o) 2(X12)3 3+ 33 (6) 44(X12) 3

 + 213 637( j4)4(Xlo)2(x12)2 + 211365 * 7'4(I')2(XlO)2(X2)2

 - 2233953"6 (x1o) 3 (X12) 2- 32 (t4) (X1o) 2X12

 + 2 - 3 2(+4 )4 (+/) 2(Xlo) 2X 12

 + 211355 19 (q4) 3q6 (XIO) 3X12

 + 22038531 (q14) 2 (X1O) 4X12-32q4 (q6) 4 (XIO) 2X12

 + 211355 ('0) 3 (Xlo) 3X12-2(g4) 66 (XIO)a
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 + 212345' (M,4) 2(t66) 2 (X10) 4 + 2213754b4U6 (X10)

 -2 (6) 5 (X10) 3 + 2323955 (x10) 6) .

 Finally, we shall consider the case when g - 3. We shall first prove the

 following lemma which is not restricted to this case:

 LEMMA 10. The product of 2t-1(29 + 1) even theta-constants is an
 element of A (rg(1)) for g>3.

 Proof. We shall show that the product, say 9, is a modular form of

 level 2 for g > 2. If the coefficients of m are 0, 1, we have

 E (ml,)2-= (ms")2 22g-4

 X m<m1'- = m"mf_ t (i22gj)

 m 'm'" != 12g-4(29-1- L) (t-y )

 in which the summations are taken over the 29-1 (29 + 1) even characteristics.

 Therefore 0 satisfies the condition in [8] to define a modular form of level 2

 for g ? 2. In order to show that 0 is actually a modular form of level one,

 we observe that, if M is an element of Sp(g,Z), we have M =E(M) 9

 with some E(M) in C. Clearly M -* E(M) gives rise to a representation of

 Sp (g, Z/2Z) of degree one. On the other hand, it is well known that this

 group is simple for g ? 3. Therefore, in this case, we have E(M) = 1 for
 every M in Sp (g, Z). This completes the proof.

 We know that the product 9 does not define a modular form of level one

 for g = 1, 2. In fact, we have to take its eighth power, square respectively.

 Now, suppose that J* and J are principally polarized abelian varieties

 such that J is a specialization of J* over some field. Assume that J* is a

 jacobian variety. Then J is either a jacobian variety or a product of jacobian

 varieties. This is a theorem of Hoyt [7]. We shall explain the second case
 more generally. If a principally polarized abelian variety J is a product of

 abelian varieties A,, A, with a polar divisor of the form Xi X A2 + Al X XX,
 each Ai can be considered as a principally polarized abelian variety with Xi
 as its polar divisor for i =1, 2. In particular, if Al is a jacobian variety
 (with Xi as a polar divisor), we say that J is a product of the jacobian

 varieties Al, A,. Of course, this can be extended to the case of several factors.
 On the other hand, suppose that T and T are points of sg and E associated

 with J and Ai for i 1, 2. Then r is equivalent with respect to Sp (g, Z)
 to the following point

This content downloaded from 129.15.14.45 on Sun, 09 Sep 2018 16:35:25 UTC
All use subject to https://about.jstor.org/terms



 MODULAR FORMIS AND PROJECTIVE INVARIANTS. 851

 'T1 0A
 V T2J

 The point T may, therefore, be called a reducible point.

 After these remarks, we shall consider the special case when g = 3. We
 shall denote the modular form introduced in Lemma 10 by X18 for g = 3.

 Observe that x18 is a cusp form of weight 18. We shall show that the kernel

 of the homomorphism p is the principal ideal of A (r3 (1)) generated by X18.
 In general, let T denote a point of (g associated with a hyperelliptic curve.
 Then

 2-1(29 +1)- (2g+ + 010,l,10

 even theta-constants vanish at the point r. Consequently, the product of all

 even theta-constants is in the kernel of p for g > 3, and hence p (x18) = 0.

 In the following lemma, the modular form Y1,0 is the thirty-fifth elementary
 symmetric function of (m") 8:

 LEMMA 11. Let T denote an arbitrary point of )3. Then it corresponds

 to a non-hyperelliptic jacobian variety when x18(T) # 0. It corresponds to a
 hyperelliptic jacobian variety when X18 (T) = 0, >140 (T) 0 0, and it is reducible

 when X18 () = 140 (T) ==0.

 Proof. Before we start proving the lemma, we shall make it clear that it

 depends heavily on Lemma 5. Using the notations there, let u* denote a generic

 point of U over some common field of definition, say K, of U, U* and Tf.
 Also, let u denote the point of U which corresponds to T. Then J* - f- (u*)
 is a non-hyperelliptic jacobian variety (with a level 1 structure). Moreover

 J - f' (u) is the unique specialization of J* over the specialization u* + u
 with reference to K. Therefore J is either a jacobian variety or a product of
 jacobian varieties. In the second case, we have seen that the point T iS
 reducible. On the other hand, if J is a hyperelliptic jacobian variety, exactly

 one even theta-constant vanishes at T, and hence X18 (T) 0, 140 (T) #0.-
 Moreover, if T is irreducible, at least six even theta-constants vanish at r, and

 hence x18 (T)- 140 (T)- 0. Suppose that we have X18((T) = 0. Then, the
 symmetric polar divisor of J will carry at least 29 points of order two. A

 remark at the end of Section 2 shows that the symmetric polar divisor has
 a singular point. Another remark there shows that J can not be a non-hyper-
 elliptic jacobian variety. This completes the proof.

 We believe that Lemma 11 answers a question raised by L. Bers in a
 satisfactory manner. Stated in a very weak form, the lemma says that, if a
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 point T of 5, is not r educible, it corresponds to a jacobian variety of a curve
 (of genus three).

 Suppose now that +V is a homogeneous element in the kernel of the homo-

 morphism p. Then VI vanishes at every point of 3 associated with a hyper-
 elliptic curve. Therefore ' vanishes along every (irreducible) component of
 the divisor (x18) of the zeros of x18. Consequently, the quotient +/X18 is
 holomorphic in 23, and hence will define a modular form, provided that the
 divisor (x18) has no multiple component. We observe that all components
 of (x18) are conjugate with respect to Sp(3,Z). On the other hand, if Tr
 is a point of (2, where no even theta-constants vanish, and if w is a point
 of 24, we can expand x18 (T) with

 To Z
 T -- ( )

 into a power-series in the coefficients zi, z2 of z. Moreover, the leading form
 of this expansion is of degree six, and it is given by

 (21) (I yn. (TO) ) l 3 .0 S (W) )1

 *II ( (a00,/az1) 1 + (aGMo/aZ2) OZ2)
 mO

 in which the first two products are extended over ten and three even charac-
 teristics while the third product is extended over six odd characteristics.
 We are also putting

 (06mO (ton z) /azj) Z-0 = ( Gmo/azj) o

 for j = 1, 2. By our previous assumption on the point ro, this sextic form
 is different from zero, and the six linear forms are distinct. Actually, this
 sextic form defines a hyperelliptic curve of genus two, and the point T0 is
 one of the points of S2 associated with this hyperelliptic curve [cf. 12]. We
 note that the fact that the divisor (x18) has no multiple component can also
 be proved by a different method.

 THEOREM 5. The homomorphism p is bijective for g = 1, injective for
 g 2, and the kernel is the principal ideal of A (r3(1)) generated by the
 cusp form xL8 of weight 18 for g =3. In the case when g 9 2, the graded
 ring S is generated over the image ring by X12/X10 and X35/(Xio)2. In the
 case when g 3, there are no cusp forms of weights less than twelve. More-

 over, the C-base of A (r3 (1) )2k for k = 1, 2, ,5 is given by 0, q4'4 q6, (4/4)2n
 q4q4g, and 'fo such that f4r6, q10 Iio have tJ4, 'fs, Xio for degree two as their images
 under the '1-operator.
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 Proof. The first parts are already proved. We shall, therefore, prove

 the second parts. Suppose that x is a cusp form (different from the constant

 zero) of weight 2k for k ? 5. Then p (x) is a projective invariant of a binary

 octavic of weight 3k. Since x is not divisible by x1,, we have p (x) / 0. On
 the other hand, Supplement 2 to Theorem 4 shows that p(x) is divisible by

 the discriminant, which is a projective invariant of weight 14. The only
 possibility is that k = 5. But then the corresponding quotient will become

 a projective invariant of weight one, a contradiction. We shall prove the

 last part. By what we have shown, the dimensions of A (P3 (1)) 2k for

 = 1, 2, , 5 are at most 0, 1, 1, 1, 2. We shall construct modular form

 V6,, /10 of weights 4, 6, 10 which generate A (r, (1)) k for k < 5. We
 simply take

 As for tb,, we take

 0 4)(llO 0

 in which M mod 2 runs over Sp (3, Z/2Z) modulo its subgroup of index 135

 defined by "c =O." As for 0,, we denote the product of eight Om with
 =0 by P1 and by P2 the product of Em such that m3t M3 =0 and such

 that mo t(m,'m,'m"m2") runs over the set of six even characteristics in
 degree two in which ino' 0 mod 1. Then we consider

 -^ 214. *1 =o= (1/2,53 . 5 ) * Et M PI (P2) 2n

 in which M mod 2 runs over Sp (3, Z/2Z) modulo its subgroup of index 30240

 consisting of matrices which are composed of M0 mod 2 in Sp (2, Z/2Z) and

 of 1, such that "ce = 0 " in 310. It is easy to verify that 14, 06I, '10 thus
 constructed have the required properties. This completes the proof.

 Actually, we know considerably more about the graded ring A (r3(1)).
 The whole difficulty lies in the fact that this ring is complicated and not in

 the inadequacy of our method in any sense. We shall publish our results on

 some other occasion. Instead, we shall discuss a problem raised by E. Witt

 in [21].4

 As it has been observed by Witt, if a denotes a half-integer, positive,
 non-degenerate matrix with the property det (2u) -1, its degree is necessarily

 I We have been informed by Professors Siegel and Witt that this problem has been
 settled by M. Kneser in his forthcoming paper entitled, " Lineare Relationen zwischen
 Darstellungsanzahlen quadratischer Formen."
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 of the fornm 8k and, for every non-negative integer g, the corresponding theta-
 series

 f(T) - ze(tr (urtu))

 for r in ag defines an element of A(rg(1)) k. We note that the above
 summation is taken over the set of all 8k X g integer matrices. Clearly, if

 we apply the D-operator to fa for the degree g, we get f, for the degree g-1,
 and f I = 1 for g =0 . Moreover, if we expand f, into Fourier series as

 f (r) A (q,c, ) e (tr (U"T))

 in which &' runs over the set of all half-integer, positive matrices of degree g,

 the coefficient A (q, ') gives the number of representations of at by r.
 Now, if we consider the lattice in R8k consisting of vectors x with coeffi-

 cients xi satisfying x. -0 mod j, xi = xj mod i, 2 xi ;- 0 mod 1, the euclidean
 metric restricted to this lattice gives rise to an equivalence class of such a
 for any given k. We shall denote its representative by Uk. On the other
 hand, the class number of all possible cr is known for 7c = 1, 2, and it is 1, 2.

 For k = 2, if we denote the direct sum of two a, by cr11, then a,, and 02 form
 a complete set of representatives. The problem of Witt is whether we have

 A (U, ') -A (0'2, a') for all o' of degree 3, i. e., whether we have f,,, - f,2
 for g =3. Theorem 5 shows that the answer is affirmative. AMoreover, we
 have

 A (afn_, 14) -A (a2, 14) = 212335 . 7 . 53.

 We shall state this fact in the following way:

 COROLLARY. The difference x8 =- f11 - fX for the degree g =4 is a cusp
 form of weight 8 (different from the constant zero).

 We note that, in the case when g = 3, the unique modular form of
 weight 8 has four different expressions, one as an Eisenstein series (in the
 sense of Siegel), the second as ftal and the third as fa2, and the fourth as a

 homogeneous polynomial of degree two in (.m)"8 The resulting identities
 seem to be of highly non-trivial nature.

 THE JOHNS HoPrixis UNIVERSITY.
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