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Abstract

Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction
by
Nam Duc Trang
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor John Steel, Chair

This thesis belongs to the field of descriptive inner model theory. Chapter 1 provides a
proper context for this thesis and gives a brief introduction to the theory of AD*, the theory
of hod mice, and a definition of K/(IR). In Chapter 2, we explore the theory of generalized
Solovay measures. We prove structure theorems concerning canonical models of the theory
“AD* + there is a generalized Solovay measure” and compute the exact consistency strength
of this theory. We also give some applications relating generalized Solovay measures to the
determinacy of a class of long games. In Chapter 3, we give a HOD analysis of ADT +V =
L(P(R)) models below “ADg + © is regular.” This is an application of the theory of hod
mice developed in [23]. We also analyze HOD of AD*-models of the form V = L(R, u)
where p is a generalized Solovay measure. In Chapter 4, we develop techniques for the core
model induction. We use this to prove a characterization of AD" in models of the form
V = L(R, u), where u is a generalized Solovay measure. Using this framework, we also can
construct models of “ADg + O is regular” from the theory “ZF + DC + O is regular + w; is
P(R)-supercompact”. In fact, we succeed in going further, namely we can construct a model
of “ADg + © is measurable” and show that this is in fact, an equiconsistency.
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Chapter 1

Introduction

In this chapter, we briefly discuss the the general subject of descriptive inner model
theory, which provides the context for this thesis; we then summarize basic definitions and
facts from the theory of AD™, the theory of hod mice that we’ll need in this thesis, and a
definition of K”(R) for certain mouse operators J.

Descriptive inner model theory (DIMT) is a crossroad between pure descriptive set theory
(DST) and inner model theory (IMT) and as such it uses tools from both fields to study and
deepen the connection between canonical models of large cardinals and canonical models of
determinacy. The main results of this thesis are theorems of descriptive inner model theory.

The first topic this thesis is concerned with is the study of a class of measures called
generalized Solovay measures (defined in Chapter 2). In [28], Solovay defines a normal fine
measure o on P, (R) from ADg. Martin and Woodin independently prove that determinacy
of real games of fixed countable length follows from ADgr and define a hierarchy of normal
fine measures (u, | @ < wy), where each f, is on the set of increasing and continuous funtions
from w® into P,, (R) (this set is denoted X, in Chapter 2). They also define the so-called
“ultimate measure” f,, on increasing and continuous functions from «a (o < wy) into P, (R)
(this set is denoted X, in Chapter 2) and prove the existence of y,, from ADg, though not
from determinacy of long games. The obvious question that arises is whether the consitency
of the theory (T,) = “AD + there is a normal fine measure on X,” (for o < wy) implies the
consistency of the theory ADg. The answer is “no” and this follows from work of Solovay [28].
Woodin shows furthermore that (Ty) is equiconsistent with “ZFC + there are w? Woodin
cardinals”, which in turns is much weaker in consistency strength than ADg. This is the
original motivation of this investigation of generalized Solovay measures.

Generalizing Woodin’s above result, Chapter 2 computes the exact consistency strength
of “AD + there is a normal fine measure on X,” for all & > 0 and shows that these theories
are much weaker than ADg consistency-wise. Chapter 2 also contains various other results
concerning structure theory of ADT-models of the form V' = L(R, ), where p, is a normal
fine measure on X, (for @ < wj) and its applications.

The second topic of this thesis is the HOD analysis. The HOD analysis is an integral
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part of descriptive inner model theory as it is the key ingredient in the proof of the Mouse
Set Conjecture (MSC), which is an important conjecture that provides a connection between
canonical models of large cardinals and canonical models of determinacy. We recall a bit of
history on the computation of HOD. Under AD, Solovay shows that HOD F & is measurable
where k = w}. This suggests that HOD of canonical models of determinacy (like L(R)) is a
model of large cardinals. Martin and Steel in [16] essentially show that HOD*® = CH. The
methods used to prove the results above are purely descriptive set theoretic. Then Steel, (in
[42] or [37]) using inner model theory, shows VZOP is a fine-structural premouse, which in
particular implies VZIOP E GCH. Woodin (see [31]), building on Steel’s work, completes the
full HOD analysis in L(R) and shows HOD F GCH + © is Woodin and furthermore shows
that the full HOD of L(R) is a hybrid mouse that contains some information about a certain
iteration strategy of its initial segments. A key fact used in the computation of HOD in
L(R) is that if L(R) E AD then L(R) F MC!. It’s natural to ask whether analogous results
hold in the context of AD* + V = L(P(R)). Recently, Grigor Sargsyan in [23], assuming
V = L(P(R)) and there is no models of “ADg + © is regular” (we call this smallness
assumption (x) for now), proves Strong Mouse Capturing (SMC) (a generalization of MC)
and computes VEOP for © being limit in the Solovay sequence and V9P for © = 6,4, in a
similar sense as above.

Chapter 3 extends Sargsyan’s work to the computation of full HOD under (k). This
analysis heavily uses the theory of hod mice developed by Sargsyan in [23]. Chapter 3
also computes full HOD of AD"-models of the form L(R, u,) as part of the analysis of the
structure theory of these models. This is used to prove (among other things) ADg .13
implies (and hence is equivalent to) ADg o <-w?-II} for 1 < a < w; (I believe the case o = 1
has been known before).

The last topic of this thesis concerns the core model induction (CMI). CMI is a powerful
technique of descriptive inner model theory pioneered by Woodin and further developed
by Steel, Schindler, and others. It draws strength from natural theories such as PFA to
inductively construct canonical models of determinacy and large cardinals in a locked-step
process. This thesis develops methods for the core model induction to solve a variety of
problems. The first of which is a characterization of determinacy in models of the form
L(R, pto) (o < wy). I show that L(R, u,) FAD if and only if L(R, o) F © > wy (see Section
4.2). Another major application of the core model induction in this thesis is the proof of the
equiconsistency of the theories: “ZF + DC + O is regular + w; is P(R)-supercompact” and
“ADg + © is measurable” (see Section 4.3).

IMC stands for Mouse Capturing, which is the statement that if x,y € R, then * € OD(y) < z is in a
mouse over .
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1.1 AD"

We start with the definition of Woodin’s theory of AD™. In this thesis, we identify R with
w®. We use © to denote the sup of ordinals « such that there is a surjection 7 : R — «.

Definition 1.1.1. AD" is the theory ZF + AD + DCg and

1. for every set of reals A, there are a set of ordinals S and a formula ¢ such that
r e A& L[S z] F @[S, z]. (S,¢) is called an co-Borel code for A;

2. for every X < ©, for every continuous ™ : \* — w¥, for every A C R, the set 7~ 1[A] is
determined.

AD™ is arguably the right structural strengthening of AD. In fact, ADT is equivalent to
“AD + the set of Suslin cardinals is closed” (see [12]). Another, perhaps more useful,
equivalence of AD" is “AD + X; statements reflect to Suslin-co-Suslin” (see [40] for a more
precise statement).

Recall that © is defined to be the supremum of a such that there is a surjection from
R onto a. Under AC, © is just ¢". In the context of AD, © is shown to be the supremum
of w(A)? for A CR. Let A C R, we let 4 be the supremum of all a such that there is an
OD(A) surjection from R onto a.

Definition 1.1.2 (AD"). The Solovay sequence is the sequence (0, | a < Q) where
1. 0y is the sup of ordinals B such that there is an OD surjection from R onto (;
2. if a > 0 is limit, then 0, = sup{fs | § < a};

3. ifa=pF+1and 05 <O (i.e. B <), fizing a set A CR of Wadge rank 03, 0, is the
sup of ordinals v such that there is an OD(A) surjection from R onto v, i.e. 0, = 04.

Note that the definition of 6, for &« = [ + 1 in Definition 1.1.2 does not depend on the
choice of A. We recall some basic notions from descriptive set theory.

Suppose A C R and (N, X)) is such that N is a transitive model of “ZFC — Replacement”
and ¥ is an (wq,wq)-iteration strategy or just wi-iteration strategy for N. We use o(N),
ORY, ORDY interchangably to denote the ordinal height of N. Suppose that § is countable
in V but is an uncountable cardinal of N and suppose that T, U € N are trees on w x (§7)¥.
We say (T,U) locally Suslin captures A at § over N if for any a < ¢ and for N-generic
g C Coll(w, a),

AN N(g] = p[T|Nls] = RNWI\p[U]VEI,

2w(A) is the Wadge rank of A. We will use either w(A) or |A],, to denote the Wadge rank of A.
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We also say that N locally Suslin captures A at 6. We say that N locally captures A if
N locally captures A at any uncountable cardinal of N. We say (N, X) Suslin captures A
at 6, or (N,8,%) Suslin captures A, if there are trees T,U € N on w x (67)Y such that
whenever i : N — M comes from an iteration via 3, (i(7"),4(U)) locally Suslin captures A
over M at i(9). In this case we also say that (N, 0,3, T, U) Suslin captures A. We say (N, X)
Suslin captures A if for every countable § which is an uncountable cardinal of N, (N, X)
Suslin captures A at 6. When 0 is Woodin in N, one can perform genericity iterations on
N to make various objects generic over an iterate of N. This is where the concept of Suslin
capturing becomes interesting and useful. We’ll exploit this fact on several occasions.

Definition 1.1.3. I' is a good pointclass if it is closed under recursive preimages, closed
under 3%, is w-parametrized, and has the scale property. Furthermore, if ' is closed under
VR then we say that T is inductive-like.

Under AD", 31, 32 are examples of good poinclasses. If I' is a good pointclass, we say
(N, %) Suslin captures I if it Suslin captures every A € I'. The following are two important
structure theorems of ADT that are used at many places throughout this thesis.

Theorem 1.1.4 (Woodin, Theorem 10.3 of [35]). Assume AD" and suppose T' is a good
pointclass and is not the last good pointclass. There is then a function I defined on R such
that for a Turing cone of x, F(x) = (N, My, 0., X,) such that

1. N bp = Moy,
2. N E “ZF + 6, is the only Woodin cardinal”,
3. X, is the unique iteration strateqy of My,

4. N} = L(M,, A) where A is the restriction of 3, to stacks T € M, that have finite
length and are based on M, | 6.,

5. (NF,3,) Suslin captures T,
6. for any o < 6, and for any N} -generic g C Coll(w, ), (NF[g],X:) Suslin captures
Code((3z) my1a) and its complement at 6.

Theorem 1.1.5 (Woodin, unpublished but see [40]). Assume ADT+V = L(P(R)). Suppose
A is a set of reals such that there is a Suslin cardinal in the interval (w(A),04). Then

1. The pointclass X2(A) has the scale property.
2. Méf(A) <y L(P(R))

3. Lo(P(R)) <x, L(P(R)).
Finally, we quote another theorem of Woodin, which will be key in our HOD analysis.

Theorem 1.1.6 (Woodin, see [13]). Assume AD*. Let (0, | a < Q) be the Solovay sequence.
Suppose o =0 or a = [+ 1 for some 5 < §2. Then HOD E 0, is Woodin.
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1.2 Hod Mice

In this subsection, we summarize some definitions and facts about hod mice that will be used
in our computation. For basic definitions and notations that we omit, see [23]. The formal
definition of a hod premouse P is given in Definition 2.12 of [23]. Let us mention some basic
first-order properties of P. There are an ordinal A7 and sequences ((P(«a),X7) | a < A7)
and (67 | a < A7) such that

1. (67 | a < AP) is increasing and continuous and if « is a successor ordinal then P F 67
is Woodin;
2. P(0) = Lpu(P|6o)”; for o < AP, Pla+1) = (Lpo= (P|6,))P; for limit a < AP,
P
B

Pla) = (Lps"""" (Pl3.)"
3. PEXP is a (w,0(P),o(P))3-strategy for P(a) with hull condensation;
4. if o < B < A” then X extends X7
We will write 67 for 075 and ¥ = @&5,»X7 .

Definition 1.2.1. (P, X) is a hod pair if P is a countable hod premouse and ¥ is a (w, w, w1 )
iteration strategy for P with hull condensation such that X¥ C ¥ and this fact is preserved
by X-iterations.

Hod pairs typically arise in ADT-models, where w;-iterability implies w; + l-iterability.
In practice, we work with hod pairs (P, ¥) such that 3 also has branch condensation.

Theorem 1.2.2 (Sargsyan). Suppose (P,%) is a hod pair such that ¥ has branch conden-
sation. Then X is pullback consistent, positional and commuting.

The proof of Theorem 1.2.2 can be found in [23]. Such hod pairs are particularly impor-
tant for our computation as they are points in the direct limit system giving rise to HOD.
For hod pairs (Mg, Y), if X is a strategy with branch condensation and 7T is a stack on My,
with last model N, 2 7 18 independent of T. Therefore, later on we will omit the subscript

7 from ¥ ~.7 Whenever ¥ is a strategy with branch condensation and My is a hod mouse.

Definition 1.2.3. Suppose P and Q are two hod premice. Then P <poq Q if there is o < A<
such that P = Q(«).

If P and Q are hod premice such that P <;,q Q then we say P is a hod initial segment
of Q. If (P,Y) is a hod pair, and Q <}, P, say Q = P(«), then we let 3o be the strategy
of Q given by 3. Note that Yo NP =XP € P.

3This just means Y acts on all stacks of w-maximal, normal trees in P.
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All hod pairs (P, 3) have the property that ¥ has hull condensation and therefore, mice
relative to % make sense. To state the Strong Mouse Capturing we need to introduce the
notion of I'-fullness preservation. We fix some reasonable coding (we call Code) of (w, wy, wl)
strategies by sets of reals. Suppose (P, E) is a hod pair. Let I(P,X) be the set (Q, Yo, T)
such that T is according to ¥ such that i7 exists and Q is the end model of T and Yo is
the T-tail of ¥. Let B(P, %) be the set (Q, Yo, T) such that there is some R such that
Q = R(a), Tg = Lr(q) for some a < A* and (R, Sr,T) € I(P,Y).

Definition 1.2.4. Suppose X is an iteration strategqy with hull-condensation, a is a countable
transitive set such that My, € a* and T is a pointclass closed under boolean operations and
continuous images and preimages. Then Lply”(a) = Uscw, Lpy > (a) where

1. Lpy™(a) = aU {a}

2. Lp7i(a) = U{M : M is a sound S-mouse over Lp¥(a)® projecting to Lp>(a) and

having an iteration strategy in I'}.

3. Lpy™(a) = UgerLpL™(a) for limit \.
We let Lp™>(a) = Lp}"™(a).
Definition 1.2.5 (I'-Fullness preservation). Suppose (P, ) is a hod pair and I is a point-
class closed under boolean operations and continuous images and preimages. Then X is a

I-fullness preserving if whenever (7_:, Q) € I(P,Y), a+1< A andn > 6, is a strong
cutpoint of Q(a+ 1), then

Q|(n*)2e+l) = LphFew T (Qln).
and
Q|(5:)2 = Lp" ®r=eFawtn.7(Q[62).

When I' = P(R), we simply say fullness preservation. A stronger notion of I'-fullness
preservation is super [-fullness preservation. Similarly, when I' = P(R), we simply say super
fullness preservation.

Definition 1.2.6 (Super I'-fullness preserving). Suppose (P,X) is a hod pair and T' is a
pointclass closed under boolean operations and continuous images and preimages. > is super
[-fullness preserving if it is I'-fullness preserving and whenever (71, Q) € I(P,Y), a < A2
and x € HC is generic over Q, then

Lpt¥e@ (z) = {M | Qlz] F “M is a sound Lg()-mouse over x and p,(M) =27 }.

4 My is the structure that S-iterates.
By this we mean M has a unique (w,w; + 1)-iteration strategy A above LpL-*(a) such that whenever
N is a A-iterate of M, then A is a X-premouse.
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Moreover, for such an M as above, letting A be the unique strategy for M, then for any
cardinal k of Qlx], A B2 ¢ Qlx].

Hod mice that go into the direct limit system that gives rise to HOD have strategies that
are super fullness preserving. Here is the statement of the strong mouse capturing.

Definition 1.2.7 (The Strong Mouse Capturing). The Strong Mouse Capturing (SMC) is
the statement: Suppose (P,X) is a hod pair such that ¥ has branch condensation and is
[-fullness preserving for some I'. Then for any x,y € R, x € ODx(y) iff  is in some
Y-mouse over (P,y).

When (P, X) = () in the statement of Definition 1.2.7 we get the ordinary Mouse Captur-
ing (MC). The Strong Mouse Set Conjecture (SMSC) just conjectures that SMC holds below
a superstrong.

Definition 1.2.8 (Strong Mouse Set Conjecture). Assume AD™ and that there is no mouse
with a superstrong cardinal. Then SMC holds.

Recall that by results of [23], SMSC holds assuming (x). To prove that hod pairs exist in
AD™ models, we typically do a hod pair construction. For the details of this construction,
see Definitions 2.1.8 and 2.2.5 in [23]. We recall the I'-hod pair construction from [23] which
is crucial for our HOD analysis. Suppose I' is a pointclass closed under complements and
under continuous preimages. Suppose also that A7 is limit. We let

[(P,%) ={A]3(Q,%0,7T) € B(P,%) A <, Code(30)}.
HP" = {(P,A) | (P,A) is a hod pair and Code(A) € T'},

and

Mice" = {(a, A, M) | a € HC, a is self-wellordered transitive, A is an iteration
strategy such that (My,A) € HPY, My € a, and M < Lp"*(a)}.

If T'=P(R), we let HP = HP" and Mice = Mice'. Suppose (Myx,X) € HP'. Let
Micey, = {(a, M) | (a,%, M) € Mice"}.

Definition 1.2.9 (I'-hod pair construction). Let I' be an inductive-like pointclass and Ar
be a universal T'-set. Suppose (M,0,%) is such that M E ZFC - Replacement, (M,§) is
countable, & is an uncountable cardinal in M, ¥ is an (wq,w)-iteration strategy for M,
YN (L (V5)M € M. Suppose M locally Suslin captures Ar. Then the T'-hod pair construction
of M below ¢ is a sequence ((/\/'f | € < 6),Ps,X5,05 | B < Q) that satisfies the following
properties.

SWadge reducible to
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1. M ooy <s) “for all B < Q, (Ps,Xg) is a hod pair such that X5 € T'77;

2. (N? | € < 9) are the models of the L[E)-construction of VM and (/\/'B | € < 0) are

the models of the L|E, Yg]-construction of V;M. &g is the least v such that o(N?) = ~
and Lp*'(NY) E “y is Woodin” and dp41 is the least vy such that o(NP*') =~ and
Lpt>s (/\/'BH) F “y is Woodin”.

3. Py = Lpg(/\/:%) and g is the canonical strateqy of Py induced by 3.

4. Suppose dpy1 exists, N(iﬂ doesn’t project across dg. Furthermore, if B = 0 or is

successor and /\/’ﬂJrl = “0g is Woodin” and if § is limit then (05)7° = (5+) 5B+1 then

Ppi1 = Lpy,™* (/\/'(iﬂ) and Ygy1 is the canonical strategy Ppi1 induced by X.

5. For limit ordinals B3, letting Ps = Uy<5P,, Y5 = @y<pX,, and g = supy<po,, if g < 9
then let </\[gﬁ | € < 8) be the models of the L[E, ¥3]-construction of VM. If there isn’t
any ~y such that o(N2°%) = v and Lp"™3(N:P) E “y is Woodin” then we let Py be
undefined. Otherwise, let vy be the least such that o(N°7) = v and Lp" 3 (N:H7) E “y

is Woodin.” If N**P doesn’t project across 8z then Py = N;76|(6EW>N;’B; and g is the
canonical iteration strategy for Pg induced by Y. Otherwise, let Pg be undefined.

1.3 A definition of K’/(R)

Definition 1.3.1. Let Ly be the language of set theory expanded by unary predicate symbols
E,B,S, and constant symbols | and a. Let a be a given transitive set. A model with
paramemter a is an Ly-structure of the form

M = (M;€,E,B,S,1,a)

such that M is a transtive rud-closed set containing a, the structure M is amenable, ™ = a,
S s a sequence of models with paramemter a such that letting Se be the universe of S¢

o 5% =S ¢ forall € € dom(S) and S € Se if € is a successor ordinal;
o S¢ = UqceSy for all limit & € dom(S);
e if dom(S) is a limit ordinal then M = Uacdom(s)Sa and I =0, and

o if dom(S) is a successor ordinal, then dom(S) = .

"This means there is a strategy ¥ for P extending Y5 such that Code(¥) € I' and ¥ is locally Suslin
captured by M (at §).
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The above definition is due to Steel and comes from [46]. Typically, the predicate E
codes the top extender of the model; S records the sequence of models being built so far.
Next, we write down some notations regarding the above definition.

Definition 1.3.2. Let M be the model with parameter a. Then | M| denotes the universe
of M. We let (M) = dom(SM) denote the length of M and set M|¢ = S&M for all
E<IU(M). We set MI(M) =M. We also let p(M) < I(M) be the least such that there is
some A C M definable (from parameters in M ) over M such that AN |M|p(M)| & M.

Suppose J is a mouse operator that condenses well and relivizes well (in the sense of
[26]). The definition of Mf’ﬁ (more generally, the definition of a J-premouse over a self-
wellorderable set) has been given in [26] and [46]. Here we only re-stratify its levels so as to
suit our purposes.

Definition 1.3.3. Let M be a model with parameter a, where a is self-wellorderable. Suppose
J is an iteration strateqy for a mouse P coded in a. Let A be a set of ordinals coding the
cofinal branch of T according to J, where T s the least (in the canonical well-ordering of
M) such that J(T) ¢ |M| if such a tree exists; otherwise, let A= 0. In the case A # 0, let
A ={oM)+a | aec A} and £ be

1. the least such that Je(M)[A*] is a Q-structure of M|p(M) if such a £ exists; or,

2. & is the least such that Je(M)[A*] defines a set not amenable to M|p(M) if such a &
exists; or else,

3. & = sup(A*).
For a < &, we define M. For a =0, let Mg = M. For (0 < a <€, suppose M, has been
defined, we let
Mair = (|T(Ma)[A7]]; €,0, A" 0| T (M) [AT]], §™ Ma, I(Ma) +1,a).
For limit o, let My, = UgcoaMp. We then let Fj(M) = M. In the case A =10, we let
Fy(M) = (|T(M)|;€,0,0, 5" M, (M) +1,a).

In the case J is a (hybrid) first-order mouse operator®, we let J*(M) be the least level of
J(M) that is a Q-structure or defines a set not amenable to M|p(M) if it exists; other-
wise, J*(M) = J(M). We then define F;(M) as follows. Let My = M. Suppose for a
such that wa < o(J*(M)), we've defined M||a and maintained that |M||a| = |J*(M)||a],
let Mayr = (|75 M)||(a + 1)|:€,0,0,5 Mg, [(My) + 1,a), where S = SMe. If o is
limit and J*(M)l||a is passive, let M, = UscaMpg; otherwise, let M, = (Ugca|Mgl; €
VB, UgeqSM8, sUpgl(Mg),a), where E is £l Finally,

8This means there is a (hybrid) mouse operator J’ that condenses well such that there is a formula
in the language of J'-premice and some parameter a such that for every x € dom(J), J(z) is the least
M < Lp” (z) that satisfies [z, al.
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F;(M) = M, where wy = o(J*(M)).

The rest of the definition of a J-premouse over a self-wellorderable set a is as in [46]. We
now wish to extend this definition to non self-wellorderable sets a, and in particular to R.
For this, we need to assume that the following absoluteness property holds of the operator

J. We then show that if J is a mouse strategy operator for a nice enough strategy, then it
does hold.

Definition 1.3.4. We say J determines itself on generic extensions (relative to N = ./\/lfﬂ)
iff there are formulas p,v in the language of J-premice such that for any correct, non-
dropping iterate P of N, via a countable iteration tree, any P-cardinal 8, any v € OR such
that Py E p+ 0 is Woodin”, and any g which is set-generic over P|vy, then (P|v)[g] is closed
under J and J | Plg] is defined over (P|v)[g] by v. We say such a pair (p,1)) generically
determines J.

The model operators that we encounter in the core model induction condense well, rela-
tivize well, and determine themselves on generic extensions.

Definition 1.3.5. We say a (hod) premouse M is reasonable iff under ZF + AD, M
satisfies the first-order properties which are consequences of (w,ws,ws)-iterability, or under
ZFC, M satisfies the first-order properties which are consequences of (w,wy,wy+1)-iterability.

The following lemma comes from [27].

Lemma 1.3.6. Let (P,X) be such that either (a) P is a reasonable premouse and 3 is the
unique normal OR-iteration strategy for P; or (b) P is a reasonable hod premouse, (P,X)
is a hod pair which is fullness preserving and has branch condensation. Assume that MY
exists and is fully iterable. Then X determines itself on generic extensions.

Let M be a transitive model of some fragment of set theory. Let G be the canonical
Col(w, M)-name for the generic G C Col(w, M) and &, be the canonical name for the real
coding {(n,m) | G(n) € G(m)}, where we identify G with the surjective function from w
onto M that G produces. Let A be the strategy for N' = M{’ﬁ. Using the terminology of
23], we say a tree T on N via A is the tree for making M generically generic if the following
holds:

1. T | (o(M)+1) is a linear iteration tree obtained by iterating the first total measure
of M and its images o(M) + 1 times.

2. For a > o(M) + 1, E7 is the extender with least index in M7 such that there is a
condition p € Col(w, M) such that p IF i, does not satisfy an axiom involving E7
from the extender algebra Bs, where § is the Woodin cardinal of M.
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We denote such a tree Tys. Note that Ty, € V, T is nowhere dropping, and (h(Ty) < |M]T.
Also note that Ty, does not include the last branch. Given a formula ¢, let T, = Ty | A,
where A is least such that either A = lh(73,) or A is a limit ordinal and thereis P < Q(7Tas | A)
such that M (T, [ A) <P and P E ¢. Now suppose there is P < A such that N[0V < P
and P E ¢. Let A < 1h(7,7) be a limit. If A < 1h(7,7) let Q¥(Tar | A) = Q(M(Tar | N)).
Otherwise let Q¥¢(Ty | A) = P, where P is least such that M (7 [ A) <P < MAT%—M 1y and
PE .

We're ready to define J-premice over an arbitrary transitive set a. The idea that to
define a Y-premouse (over an arbitrary set), it suffices to tell the model branches of trees
that make certain levels of the model generically generic comes from [23], where it’s used to
reorganize hod mice in such a way that S-constructions work.

Definition 1.3.7. Suppose a is a transitive set coding /\/ll‘]’ﬁ. Suppose (p, 1) generically
determines J. Let A be the strateqy for M‘lj’ﬁ. We define Fj(a) to be a level of a model M
with parameter a with the following properties. There is o < (M) such that M|a E ZF. Let
a be the least such and let § be the largest cardinal of Mla = Ja(a). Let X < 1h(TY,) be a
limat. Let

Par = Q(Tmja T A).
Let B C o(P,,) be the standard set coding Py x. Let wy = o(Pay). Let for f < (M),

Ag ={o(M|B) +n | ne B} x{(a, \)}.
and define

Fraa(M|B) = J57 (M|3)

if no levels of JHM|B) is a Q-structure for (M|B)|p(M|B) or projects across p(M|B);
otherwise, let Fjo,\(M|B) = T(M|B).°.

Suppose M| has been defined and there is a A such that P, is defined, Tﬁla A e M5,
but for no B < I(M|B), Frar(M|B") # T(M|B’), we let then M|E* = Fy,A(M|B), where
& =U(Frar(M|B)) for the least such .

We say that T |\ is taken care of in M if there is a B < [(M) such that Fjq x(M]B)
<IM and Fja \(M|B) # T(M|B). So M is the least such that for every limit A < Ih(Ty,),

/\flla I\ is taken care of in M.

Finally, let F5(a) = M if no levels of M projects across . Otherwise, let Fij(a) = M|p,

where 3 is the least such that p,(M|B) < .

9Technically, Fjo.x(M)|B) is stratified as a model over a but we suppress the structure for brevity. See
Definition 1.3.3 for the stratification.
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Definition 1.3.8 (Potential J-premouse over a). Let a be a transitive structure such that a
contains a real coding N'. We say that M is a potential J-premouse over a iff M is a
model with parameter a, and there is an ordinal A\ and a increasing, closed sequence (Na) <\
of ordinals, such that for each o < A\, we have: -

(a) if a is not a self-wellordered set, then ng = 1 and M|1 = a; otherwise, either A =0 and
M= M|ny < M‘lj’ﬁ or else M|ny = /\/1‘1]’ti (in the sense of Definition 1.3.3),

(b) Ma <1UM),
(c) if a+ 1<\, then M|nay1 = F5(M|n.),
(d) if a+ 1=\, then M < F3(M|n,),"

(e) m = UM),

(f) if n = N and EM £ O (and therefore o is a limit) then EM codes an extender E
that coheres M|n and satisfies the obvious modifications of the premouse axioms (in the
sense of Definition 2.2.1 of [46]) and E is a x y-complete for all v < crt(E)'.

We define projecta, standard parameters, solidity, soundness, cores as in section 2.2 of

[46].

Definition 1.3.9. Suppose M is a potential J-premouse over a. Then we say that M is a
J-premouse over a if for all X < (M), M|\ is w-sound.

Definition 1.3.10. Suppose M is a J-premouse over a. We say that M is active if EM £ ()
or BM #£ (). Otherwise, we say that M is passive.

Definition 1.3.11 (J-mouse). Let M,a be as in Definition 1.3.9. We say that N is a
J-mouse over a if p,(N) = a and whenever N* is a countable transitive J-premouse over
some a* and there is an elementary embedding m : N* — N such that w(a*) = a, then N* is
wy + 1-iterable'? and whenever R is an iterate of N* via its unique iteration strateqy, R is
a J-premouse over a*.

Suppose M is a J-premouse over a. We say that M is J-complete if M is closed under
the operator F'j. The following lemma is also from [27].

Lemma 1.3.12. Suppose M s a J-premouse over a and M is J-complete. Then M 1is
closed under J; furthermore, for any set generic extension g of N, Ng| is closed under J
and in fact, J is uniformly definable over N|g| (i.e. there is a Lo-formula ¢ that defines J
over any generic extension of N ).

10We will also use M,, to denote M.

"This means whenever (X, | # € a x v) € M| is such that X, € Ej for each x € a x v, where b is a
finite subset of [h(E), then Nye, X, € Ep

12Sometimes we need more than just w; + l-iterability. See Chapter 4.
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If @ in Definition 1.3.11 is H,,, then we define Lp’(R) to be the union of all J-mice N over
a'3. In core model induction applications, we typically have a pair (P, ) where P is either
a hod premouse and X is P’s strategy with branch condensation and is fullness preserving
(relative to mice in some pointclass) or P is a sound (hybrid) premouse projecting to some
countable set a and ¥ is the unique (normal) strategy for P. Lemma 1.3.6 shows that X
condenses well and determines itself on generic extension in the sense defined above. We then
define Lp*(R)™ as above and use a core model induction to prove Lp®(R) F AD". What’s
needed to prove this is the scales analysis of Lp®(R) F AD' from the optimal hypothesis
similar to those used by Steel to analyze the pattern of scales in K(R).

13We'll be also saying J-premouse over R when a = H,,,
14Tn this thesis, we use Lp™(R) and K> (R) interchangably.
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Chapter 2

Generalized Solovay Measures

We work under the theory ZF + DC unless stated otherwise. For each @ < wy, for each
f:a— P, (R), fis nice if for all i, f(i) is coded by an element in f(i 4+ 1) (we will abuse
notation and write “f(i) € f(i+1)") and if 7 is limit, f(¢) = U;«;f(j). Let X, be the set of
all nice f: w® — P, (R). Also let X,, ={f:a — P, (R) | f is nice and o < wy }. For any
fra—= P, (R), welet Rf = U f(5).

Definition 2.0.13 (Fineness). For a < wy, o is said to be fine if for any o € P, (R), the
set of all g € X, such that o € g(0) has p,-measure one.

Definition 2.0.14 (Normality). For o < wy, a measure i, on X, is normal if

1. (Fodor’s property) For any F : Xo — Pu, (R) such that V5, fF(f) € f(O) AF(f) #9,
there is an x € R such that V;,_ f(x € F(f));

2. (Shift invariance) If X € po and 8 < w®, then {f? | f € X} € po where f5(i) =
F(B+1).

For a = wy, a measure i, on X, is normal if (1)-(2) hold for p, and
3. (Idempotence) If A, B € pin, then AAB={f"g| f€ANgE BAf g€ Xo} € pta.

Note that condition (1) of normality is the generalization of the Fodor’s property in the
ZFC context. This is all that we can demand for the following reasons. For a = 0, in the
context of DC, the exact statement of Fodor’s lemma reduces to countable completeness of
1o and this is not sufficient to prove, for example, Los’s theorem for ultraproducts using .
Suppose « > 0 and consider the function F' such that F(f) = {x € R | = codes f(0)}. There
can’t be an = € R that codes f(0) for u,-measure one many f.

Here’s an easy lemma that characterizes (1) in terms of diagonal intersection. The proof
of the lemma, which does not use the axiom of choice, is easy and we leave it to the reader.

Lemma 2.0.15 (ZF + DC). Fiz o < wy and suppose ji, is a fine measure on X,. The
following are equivalent:
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(a) For all (A; | 2 e RN Ay € pio), Doer = {f € Xa | [ € Nucp0)Aa} € Ha-
(b) Vi f (F(f) C £(0) = Fa¥;,_f x € F(f).

We need the following (unpublished) theorem of Woodin, which proves the existence of
models of “ADT + there is a normal fine measure on X,” for & < w; from AD™ + ADg. A
corollary of Theorem 2.0.16 is Theorem 2.0.17, a well-known theorem of Solovay (a = 0) and
of Martin and Woodin (a > 0).

Theorem 2.0.16 (Woodin). Assume AD"+ADg. Let A CR. There is a tuple (M, E 83, T)
such that

1. E isa weakly coherent extender sequence on M in the sense that if F € E and ip :
M — Ult(M, F) is the ultrapower map then M agrees with Ult(M, F') up to Ih(F);

2. E witnesses that & is a measurable limit of Woodin cardinals in M,

3. 1 is a Col(w, d)-term in M and 3 is an iteration strategy for M such that if i : M — N
is an iteration map according to X, then for any g C Col(w,i(d)) generic over N,

AN N[g] =i(7),.

Theorem 2.0.17 (Martin,Woodin). Assume AD" + ADg. Then for all o < wy, there is a
normal fine measure p, on X,.

Proof. We'll use Theorem 2.0.16 to show there is a normal fine measure p,,, on X,,. The
measures i, can be constructed from g, as follows. For any A C X,
A€pas{feXy [ [lacA} € py,.

We proceed to define p,,. Let A C X,,. A € pg, if for all B C R coding A', letting
(Mg, Eg,0p,%p,75) be as in Theorem 2.0.16 for B, g C Col(w, < dp) be Mp-generic, J, be
the a'-limit of Woodin cardinals in Mp, then (RM5l9/%] | 5, < §5)2 € (14),.

Lemma 2.0.18. p,, is a normal fine measure on X, .

Proof. We first show s, is a measure. Suppose not. There is an A C X, such that there
are B,C C R coding A and (Mg, Eg,dp,X5,78), (Mc, Ec,dc, Xc, 7c) as in Theorem 2.0.16
for B and C' respectively and

Mp F 0 ”_Col(w,<53) fG € T4,
but
Me B DI cow,<se) fo & Ta.

'The coding is so that if M captures B by 75, then M captures A by some 74.
2From now on, we’ll denote this sequence f,.
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We will get a contradiction by a back-and-forth argument that produces iteration maps
i: Mg — Np, j: Mc — N¢ such that there are gg C Col(w, < i(dp)) generic over Np,
gc C Col(w, < j(6¢)) generic over N¢ such that f,, = f,..

We informally describe the first w steps of this process. Let (0, | n < w) and (v, | n < w)
be the first w Woodin cardinals of Mp and Mg respectively. Let My = Mp and Ny = M.
We first iterate My below dy to produce iy : My — M; and gy € Col(w,ig(dp)) such that
No|yo € Mi[go]. We then iterate in the window [yp,7;1) and produce jo : Ny — N; and
hy C Col(w,jo(71)) such that Milgo]|do € Nilho]. In general, for all 0 < n < w, we
produce i, : M, — M, in the window [i, 1 0+ 0ig(dy_1),4n_10 - 01i(d,)) and g, C
Col(w, i, o -+ 01ig(0,)) extending g,_1 such that N,lho, ..., hu—1]|(Jno1 0+ 0 Jo(Yn-1)) €
M, 11[gn] and then j, : N,, — N, in the window [jn,—1 00 jo(Yn-1);Jn-10° - © Jo(Vn)),
hy, C Col(w, jpo---0jo(Vn)) extending h,_; such that M, 1[g,]|(in 0" 0ig(0,)) € Niy1[hnl.
Let M, and N, be the direct limits of the M,’s and N,,’s respectively. Let (0* | n < w) and
(7 | n < w) be the first w Woodins and their sup of M,, and N, respectively. Then it’s
clear from our construction that oy = {My[g,]|0% | n < w} = {Ny[ha]]7¥ | n < w} is the
symmetric reals at 0“ of M, and v of N,,. Let g, C Col(w, d¥) be M, generic realizing o, as
the symmetric reals and h,, C Col(w,~%) be N, generic realizing oy as the symmetric reals.
We then repeat the back-and-forth process described above using the next w Woodins. When
we use up the Woodins on one side but not the other, we hit the measure of the measurable
Woodin cardinal of the shorter side to create more Woodin cardinals and continue the back-
and-forth process. The coiteration will stop successfully when we use up the Woodins on
both sides. It’s easy to see that this process stops successfully and we produce G on the M
side and H on the N side such that fo = fy. Contradiction.

It’s easy to see that p,, is fine. To verify property (2) of normality, suppose X € p,, and
a < wy is such that X, =4 {f* | f € X} ¢ p, where f*(i) = f(aw+1). So thereis B C R
coding X, X, such that letting (Mp, Egp, o5, 25, 7g) be as in Theorem 2.0.16 for B, we have

Col(w, < 0p) IFM2 fo € 7x A fir & Tx,-

Let My = Ny = Mg and run the back-and-forth argument as above to get a contradiction.
The difference here is in the first w steps of the coiteration: on the M side the iteration uses
the first w Woodins of My and on the N, side the iteration ignores the first w® Woodins of
Ny and uses the w® + i*" Woodins of Ny. The process stops successfully and results in the
end models M,, and N,,, generics G for M, and H for N,, such that f; = fjj. But then
M, [G)E fo ¢ X, while N, [H| E f& = fo € X,. This is a contradiction.

To verify property (1) of normality, suppose F' is such that X = {f € X,,, | F(f) #
DAF(f) C f(0)} € p, but forallz € R, Y, = {f € X |2z € F(f)} ¢ pto,. Let BCR
code F, X, {Y, | = € R} and let (Mp, Ep, 65, Y, 75) be as in Theorem 2.0.16 for B. Letting
g C Col(w,dp) be generic over Mp, we have

Mg[gl F fy € Tx AVz € RME(f, ¢ 1v,),

which means
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Mpg] F F(fy) # DN EF(fg) € f4(0) AV € RY=(x ¢ F(fy)).

For each = € f,(0), let M, = Mg[z] and g, C Col(w,< dp) generic over Mg[z| such
that f,(0) = f£,.(0); also, let My = Mp. Now use the back-and-forth argument above to
coiterate {M, | = € f,(0)} above the first w Woodins of each model. The process terminates
successfully and produce for each x € f,;(0) a model M°, a generic g5° over Mo° (at the
measurable limit of Woodins of the model) such that

1. for all z,y € f4(0), fgee = fyee;
2. for all x € fy(0), fyee(0) = f4(0);
3. for all z € f,(0), x & F(fge).

(1)-(3) imply F(fgoo) = 0 for any = € f4(0). This is a contradiction.

To verify (3), suppose A, B € p,, and let (M, E.S, Y., 7) witness this. This means M is
both A-iterable and B-iterable via ¥ and the term 7 computes the terms 74 and 75. Let
g € Col(w,d) be M-generic and let f = f,. Hence f € A. Now let ¢ : M — N be the
ultrapower map via a measure on 0 in M. By coiterating N above § and M and using a
back-and-forth argument similar to the above, we get an iterate P of N (above §) such that
letting j : N — P be the iteration map, there is a generic h C Col(w, j(i(d))) over P such
that h extends g and f,\ f, € B. This means f, € A~B. Hence we finish verifying (3). O

]

It’s not clear that under AD" +ADg, the measure 1, defined above is the unique measure
satisfying (1)-(3) of Definition 2.0.14. However AD* + ADg implies that the measures i,
(for @ < wy) are unique. AD" 4+ ADg implies p is unique (see [47]) (we just need DCg for
the proof of the main theorem in [47] for showing pg is unique). To show uniqueness of ji,
for a > 0, we need the following definition. We identify P, (R) with Xj.

Definition 2.0.19. Fiz 0 < a < w;. Suppose A C X,,. We say that A is a club® if there is
a function F : R — R such that cl, p = A where

clop ={f € Xo | VB F"f(B)~ C f(B) NF"f(B)< € f(B+1)'}.

Martin and Woodin actually proves that under AD" + ADg, real games of length « for
any a < w; are determined. Hence for any o < wy, for any A C X, either A contains a
club or R\ A contains a club. By the same arguments Solovay uses to prove p is normal
under ADg, we have that if (A, | A, C X, Az € R) is a sequence of clubs then the diagonal
intersection

3For a = 0, the notion of a club is just the usual notion of club for subsets of P, (R). Again we confuse
Xy for P, (R).
4Recall that this means that there is a real in f(3 + 1) that codes an enumeration of F" f(3)<¥
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AzA:Jc —def {f € Xa | f € mazef(())14ac}

contains a club.

We show 17 is unique and the proof of the other cases is similar. So suppose A € ;. It’s
enough to show A contains a club, that is A contains cl; p for some F' as in Definition 4.3.27.
It’s easy to check that the followmg is an equivalent definition of p1. We say A € p, if for all
B C R coding A, letting (Mg, EB, dp, Xp,Tp) be as in Theorem 2.0.16 for B except that Ep
witnesses that dp is a limit of w? Woodin cardinals in Mp, g C Col(w,d) be Mp-generic,
fg € (Ta)g. Fix an (M4, Ex,84,54,74). Then for a club of o € Py, (R), o is closed under
Y 4. Let F be such that for all o € P, (R) closed under F, ¢ is closed under ¥4. Using
genericity iteration, it’s easy to see that for all f € cly p, f € A. This shows that whenever
A € uy, then A contains a club. Hence p; is the unique normal fine measure on X, since it
is just the club filter on X;. A similar proof works for 2 < a < wy.

2.1 When a=0

2.1.1 The Equiconsistency

We assume familiarity with stationary tower forcing (see [14]) which will be used in the proof
of the following theorem of Woodin.

Theorem 2.1.1 (Woodin). The following are equiconsistent.
1. ZFC + there are w? Woodin cardinals.

2. There is a filter p on P, (R) such that L(R, u) & ZF+ DC+ AD + p is a normal fine
measure on P,, (R).

We first prove the (1) = (2) direction of Theorem 2.1.1. Assume 7 is the sup of w? Woodin
cardinals and for each ¢ < w, let n; be the sup of the first wi Woodin cardinals. Suppose
G C Col(w, < 7) is V-generic and for each i, let R* = U,,RVI¢I%) and ¢; = RVICICw<m)],
We define a filter F* as follows: for each A C R* in V|G|

Ae F* < Invm > n(o, € A).
We call F* defined above the tail filter.
Lemma 2.1.2. L(R*, F*) E F* is a normal fine measure on P, (R*).

Proof. Suppose not. So this statement is forced by the empty condition in Col(w, < 7).

Claim. There is a forcing P of size less than the first Woodin cardinal such that in V¥,
L(R,C) F “C is a normal fine measure on P, (R)” where C is the club filter on P, (R).
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Proof. Let k be the first measurable cardinal and U be a normal measure on x. Let j :
V' — M be the ultrapower map by U. Let Py be Col(w, < k). Let G C Py be V-generic.
Col(w, < j(k)) = j(P) is isomorphic to PyxQ for some Q and whenever H C Q is V[G]-
generic, then j can be lifted to an elementary embedding j : V[G] — M|G][H] defined by
7T (16) = j(7)gsn. We define a filter F* as follows.

A€ F < VH C Q(H is V[G)-generic = RV € j*(A)).

It’s clear from the definition that F* € V[G]. Let R* = RVIl is the symmetric reals. We
claim that L(R*, F*) E F* is a normal fine measure on P,, (R)*. Suppose A € L(R*, F*) is
defined in V[G] by a formula ¢ from a real z € R* (without loss of generality, we suppress
parameters {U, s}, where s € OR*“ that go into the definition of A); so 0 € A & V[G] F
plo,z]. Let v < K be such that x € V[G | o] and we let U* be the canonical extension of U
in V[G | a]. Then either Vi. BV[G | a] E 0 IFoow <p) @R, 2] or Vi SVIG | o] E 0 IFcow.<p)
—w[R, x]. This easily implies either A € F* or =A € F*. We leave the proof of normality
and fineness to the reader.

Since Pg+ has size w; in V[G], we can then let P; be the iterated club shooting poset
defined in 17.2 of [4] to shoot clubs through stationary subsets of Pg«. By 17.2 of [4], P,
does not add any w-sequence of ordinals. Letting H C Py be V[G]-generic, in V[G][H]|, we
still have L(R*, F*) E F* is a normal fine measure on P,, (R)* and furthermore, F is the
restriction of the club filter on L(R*, F*). Our desirable P is Pox[P;. O

By the claim, we may assume that in V, the club filter F on P, (R) has the property
that L(R, F) E F is a normal fine measure on P,, (R). Let A > 7 be inaccessible and let

S={X <V, | X is countable, v € X, 3n € X N~ such that
for all successor Woodin cardinals A € X N (n,7), if D C Qy,D € X
is predense then X captures D}.

By lemma 3.1.14 of [14], S is stationary and furthermore, letting H C P(P,,(V)))/Zns be
generic such that S € H, then for some £ < 7, for all £ < § <~ and 9 is Woodin, H N Qs
is V-generic. We may as well assume € is less than the first Woodin cardinal and hence for
all 6 <, 0 is Woodin, H N Q.4 is V-generic.

Let j : V — (M, E) be the induced generic embedding given by H. Of course, (M, E)
may not be wellfounded but wellfounded at least up to A because j”\ € M. For each o < w?,
let jo : V' — M, be the induced embedding by H N Q. , let M* be the direct limit of the
M,’s and 7% : V. — M* be the direct limit map. Note that j,,7* factor into j.

Let R* = RM" and for each i < w, 0; = RM where M = lim,My;in. Let G C Col(w, <
7) be such that U,<,, RV = g, for all i. Let F* be the tail filter defined in V[G]. We claim
that if A € j7*(F) then A € F*. To see this, let 7 € M* witness that A is a club. Let @ < w?
be such that M, contains the preimage of m. Then it is clear that Vm such that wm > «
and 1’0,, C o,,. This shows j*(F) C F* and hence L\(R*, 7*(F)) = LA\(R*, F*) E F* is a
normal fine measure on P,, (R*). Since A can be chosen arbitrarily large, we're done. ]
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Lemma 2.1.3. L(R*, F*) F AD".

Proof. We use the notation of Lemma 4.4. Note that from the proof of Theorem 4.4,
L(R*, F*) = L(R*,F) where F is the club measure on P, (R*). We want to show the
analogy of Lemma 6.4 in [29], that is

Lemma 2.1.4. Let H C Col(w, < 7) be generic, R* be the symmetric reals, v € RVICI?] for
some o < 7y, and Y be a formula in the language of set theory with an additional predicate

symbol. Suppose
dB € L(R*, F*)((HC™, €, B) E ¥[z])
then
3B € HomZ '™ (HCVIE e, B) & y[a)).

Such a B in Lemma 2.1.4 is called a -witness. Assuming this, the lemma follows from
the proof of Theorem 6.1 from Lemma 6.4 in [29]. To see that Lemma 2.1.4 holds, pick the
least yo such that some OD(z)*® ") yp-witness B is in L,,(R*, F*) and by minimizing the
sequence of ordinals in the definition of B, we may assume B is definable (over L. (R*, F*))
from = without ordinal parameters. We may as well assume z € V. We want to produce an
absolute definition of B as in the proof of Lemma 6.4 in [29]. We do this as follows. First
let ¢ be such that

u € B & L, (R F*) E plu, zl,
and
P(v) = “vis a Y-witness”.

Let C denote the club filter on P,, (R) and 6(u,v) be the natural formula defining B:

O(u,v) =  “L(R,C)F C is a normal fine measure on P,, (R) and L(R,C) F 3B[B]
and if 7y is the least « such that L.(R,C) F 3By[B]
then L, (R,C) E p[u,v]”.

We apply the tree production lemma (see [29]) to the definition 6(u,v) with parameter
x € RY. It’s clear that stationary correctness holds. To verify generic absolutenss, let § < ~y
be a Woodin cardinal; let g be < ¢ generic over V and h be < ¢ generic over V[g]. We
want to show that if y € RV

Vgl F Oy, x| & Vg|[h] F Oy, z].

There are Gy, G1 C Col(w,< 7) such that Gy is generic over V[g] and G, is generic over
Vgl[h] with the property that Ry, = R, and furthermore, if 7 < 7 is a limit of Woodin
cardinals above ¢, then Rg, | n =Rg, | n°. Such Gy and G, exist since h is generic over

[GoNnCol(w,<n)]

5R*GO is the symmetric reals defined by G and similarly for Rz, . Ry [ n = RV9] and

R [n= RV 4IM[G1NCol(w,<n)]
1
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Vl]g] and 6 < . But this means letting F; be the tail filter defined from G; respectively
then L(Ry,, Fo) = L(RE,, F1). The proof of Lemma 4.4 implies that L(R,C)"l¥ is embed-
dable into L(Rf,, Fo) and L(R,C)VI" is embeddable into L(Rf;, , F1). This proves generic
absoluteness. This gives us that BNRY € H 0m‘</7 and BNRY is a ¢-witness. Hence we're
done. 0

The proof of the convers of Theorem 2.1.1 is contained in the proof of Theorem 2.1.5,
especially that of Lemma 2.1.6.

2.1.2 Structure Theory

We now explore the structure theory of L(R, 1) (under determinacy assumption of course).
We prove the following theorem, which is also due to Woodin.

Theorem 2.1.5 (Woodin). The following holds in L(R, u) assuming L(R, pu) E AD" + p is
a normal fine measure on P, (R).

1 (Lg ).t T Lg(R)[ul) <s, (LR, ), 0); furthermore, u | Ly (R[] is contained in
the club filter.

2. Suppose L(R, ) E po, 1 are normal fine measures on Py, (R). Then L(R, u) E o =
M-

To prove (1), we first assume in some generic extension of L(R, p), there is a class model
N such that

1. N E ZFC+ there are w? Woodin cardinals;

2. letting A be the sup of the Woodin cardinals of NV, R can be realized as the symmetric
reals over N via Col(w, < \);

3. letting F be the tail filter on P, (R) in N[G] where G C Col(w, < A) is a generic over
N such that R is the symmetric reals induced by G, L(R, ) = L(R, F).

In N[G], let D = L(I',R) where I' = {A C R | L(A,R) £ AD"}. Woodin has shown
that D F AD" and I' = P(R)”. We claim that ' = P(R)*®#_ Suppose not, then there
is an A € D\L(R,u). By general theory of AD", ©L®#) is a Suslin cardinal in D and
P(R)“®1) C Hom* where Hom* is the pointclass of Suslin co-Suslin sets of D. By the proof
of Lemma 4.4, F N L(R, F) = CN L(R, F) where C is the club filter on P, (R). This shows
L(R,p)“ € "D and furthermore, (R, u1)* exists in D. This is a contradiction to the fact that
D is in a generic extension of L(R, p).

Suppose (L(R, ), ) E ¢ where ¢ is a ¥ statement. Since L(R, p) F © is regular, by a
standard argument, (Lg(R, u), ) <1 (L(R, u), 1). This means there is a £ < © such that
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(Le(R, p), uN L (R, ) E ¢. Thereis aset B C Rin L(R, 1) such that B codes the structure
(Le(R, p), uN L (R, 1)) and hence there is a ¢ such that

By the existence of N and the previous section, there is o < A and a B € NI&1° such that
(HCNE e B) E ¢.

But (HCNIClel e B) < (HC, €, B*) where B* € Hom* is the canonical blowup of B. This
gives us a k < 97 such that (L. (R, p1), pN L. (R, 1)) F ¢. Since ¢ is ¥y, we have (Lg (R, p1),

Lg (R, 1)) E ¢.

Lemma 2.1.6. There is a forcing notion P in L(R, u) and there is an N in L(R, u)¥ satis-
fying (1)-(3) above.

Proof. Working in L(R, i), fix a tree T for a universal X7 set. For any real x, by a X2
degree d,, we mean the equivalence class of all y such that L[T,y| = L[T,z|. If di,ds are
Y2 degrees, we say d; < dy if for any x € dy and y € dy, x € L[T,y]. Let D = {{d; | i <
w) | Vi(d; is a X% degree and d; < d;y1)}.

Next, we define a measure v on ). We say A € v iff for any oo-Borel code S for A,
Vio LIT,S|(o) £ AD" + 0 = R+ 3(0,U) € Py (0,U) I- G € Ag. In the definition of
v, Py is the usual Prikry forcing using the ¥ degrees in LT, S](0), ( is the name for
the corresponding Prikry sequence, Ag is the set of reals coded by S. Note that whether
A € v does not depend on the choice of S. To see this, let Sy, S; be codes for A. Let
T =], T and S° =[], S; be the ultraproducts by p. Then since L[T>, S§°|(R)NP(R) =
L[T>, SI(R) N P(R) = L(R,u) N P(R), the Py2 forcing relations in these models are
the same, in particular, L[T°, S¢°|(R) F 3(0,U) € Psz (0,U) Ik G € Age if and only if
L[T>=,S¥|(R) £ 3(0,U) € Psp (0,U) IF G € Age. The claim follows from Los’ theorem.

Let P be the usual Prikry forcing using v. Conditions in P are pairs (p, U) where p =
(d_% | i < nAd e DA € di11(0)> and U is a v splitting tree® with stem p. (p,U) <p (¢, W)
if p end extends ¢ and U C W. P has the usual Prikry property, that is given any condition
(p,U), a term 7, a formula ¢(x), we can find a (p,U’) <p (p, U) such that (p, U’) decides the
value of p[7]. Let G be P generic. We identify G with the union of the stems of conditions
in G, i.e., G is identified with (al7 i <wAIU({d | j <i),U) € G). We need some notations
before proceeding. We write V for L(R, p); for any g € D, let w! = sup,wl’ =901 and
d(g i) = sz =91 g produce a model with w? Woodin cardinals, we use the following
theorem.

Theorem 2.1.7 (Woodin). Assume AD". Let R, S be sets of ordinals. Then for a (Turing,
¥2) cone of x, HODg[R’S’I} F sz[R’S’m] is a Woodin cardinal.

6This means if ¢ € U, then V4dg~d € U.
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For any countable transitive a which admits a well-ordering rudimentary in a and for any
real x coding a, let

Q2 = HODZL ™ | (8(x) + 1).
We now let
(0

and

—

dy = 0(d°(0)).
For i < w, let
0, = Qg)?(zdrl)7
and
80, = 8(dO(i + 1))
This finishes the first block. Let Q° = U;QY. In general, we let

j+1 (0
&= Y

and
5y = §(H(0)).
For i < w, let

Q! = Qdﬁl(m)
i+1 T Wi+l )

and
oL = o(d (i + 1)),
We observe that the following hold.

L. for all i, HOD (") N V[G] e = HOD{gyi41yy N V600

2. for all a € D, Vig Vi, L[T™, a,g] N Vsgs1 = HODY, ;N Viggie1 = HODY, ;1 N

v

Vigriy+1 = L[T*,a,g [N Vs(gri)+1-

3. for any a as above, for a cone of d, P(a) N Q% C L[T,al.



CHAPTER 2. GENERALIZED SOLOVAY MEASURES 24

(1) follows from the Prikry property of P. (2) follows from the definition of v since Vig, g
is a Prikry generic for some local Ps2. To see (3), assume not. For a cone of d, let by =
the least b C a such that b € Q4\L[T, a]. Since a is countable, there is a fixed b such that
b = by for a cone of d. But then b is OD(T,a) which implies b € L[T*°, a] by a standard
arguments. Contradiction.

By (1)-(3) and the above construction, in HOD%[}G]’V), the inner model

N = L[T>(Q’ | i,j < w)] F &} is a Woodin cardinal for all 7, j < w.

Letting A = sup, ; 5;, by Vopenka, there is a G C Col(w,< A) generic over N such that
R: = RY. In N[G], let F be the tail filter. It remains to see that L(R, 1) = L(R, F). Suppose
A e L(R, F)issuch that A € Fbut u(A) =0. Let A* ={d € D|uUd € A}. Then v(A*) =0.
Recall G = <d_; | i < w) is our Prikry generic. Since the Prikry forcing is done relative to
v and v(A*) = 0, only finitely many d are in A*. Since A € F, Im¥m > n(d* € A*).
Contradiction. Hence we’re done. O

The lemma finishes the proof of (1) in Theorem 2.1.5. (2) of Theorem 2.1.5 is also a
corollary of the proof of Lemma 2.1.6. One first modifies the definition of P in Lemma 2.1.6
by redefining the tree U in the condition (p,U) to be vy-splitting at the even levels and v;-
splitting at the odd levels where v; is defined from p; in the exact way that v is defined from
w1 in the proof of Lemma 2.1.6. Everything else in the proof of the lemma stays the same.
This implies L(R, p9) = L(R, 1) = L(R, F) and pg = 3 = F. To see this, just note that
since we already know L(R,F) E AD" 4+ F is a normal fine measure on P,, (R), it suffices
to show if A € F then A € pg and A € ;. Suppose there is an A € F such that A € pg
and A ¢ py (the cases A € pi\po and A ¢ po N py are handled similarly). Let A* be as
above. Then A* € vy\ry. For any condition (p, U), just shrink U to U* at the even levels by
intersecting with A* and at the odd levels by intersecting with —A*. Then (p,U*) IF A ¢ F.
Contradiction. This finishes the proof of Theorem 2.1.5.

Remark: The proof of Theorems 2.1.1 and 2.1.5 also shows that L(R,u) E AD if and
only if L(R, u) E ADT.

2.2 When a >0

2.2.1 The Equiconsistency
This section is devoted to the proof of the following theorem.

Theorem 2.2.1. 1. For a < w, the theories “AD™ + DC + © = 0y+ there is a normal
fine measure on X,,” and “ZFC+ there are w®*t? Woodin cardinals” are equiconsistent.
For o > w, the theories “AD" + DC + there is a normal fine measure on X,” and
“ZFCH there are w™™' Woodin cardinals’ are equiconsistent.
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2. For a < wy limit, the theories “ADY+DC+V3 < a3us(ug is a normal fine measure on
X3)” and “ZFC+ there are w* Woodin cardinals’ are equiconsistent. For a = wy, the
theories “AD" + DC+ VS < aFus(ps is a normal fine measure on Xg)” and “ZFC +
there is a k such that the order type of the set {£ < k | £ is Woodin} is k are equicon-
sistent.

3. The theories “AD" + DC + there is a normal fine measure on X,,,” and “ZFC + 3k
(k is mesurable A K is a limit of Woodin cardinals)” are equiconsistent.

We begin with the following defintion.
Definition 2.2.2. For each o < wy, let D be the set of all X2 degrees in L(R, )"

Do ={g:w*™ =D |g(B) <g(B+1)Ag(B) = supg(y) for limit 3.
y<
Definition 2.2.3. Let D be as in Definition 2.2.2 and let p be the cone measure on . Let
P_y be the Prikry forcing relative to p. Conditions in P_y are (p,T) where p is an increasing
sequence of X2 degrees and T is a u-splitting tree with stem p. The ordering <p_, on P_; is
as follows:

(p,T) <p_, (q,5) < p end extends g NT C S.

We now prove (1). We first consider the case o < w. We assume a > 0 as the case « =0
is dealt with in the previous subsection. We prove the theorem for = 1. The cases where
1 < @ < w are proved similarly. Suppose AD" 4+ DC+ there is a normal fine measure on X;.
Let p; be such a measure and work in L(RR, ), which satisfies ADT + DC + y; is a normal
fine measure on X;. For each f € Xj, let Ry = Ugf(B) and let F; be the tail filter on Ry
defined as follows: for any A € P, (Ry),

A e Fr e 3Invm > n(f(m) € A).

For f € Xy, let My = HOD]E{LJP(L[JR{%)}’M). Note that if fi, f» € X, are such that f; =* f, i.e.
364, By such that fI* = £ then My, = My,. Let M = [1; My/p1. Then it’s easy to verify
that Los theorem holds for this ultraproduct with respect to shift invariant functions, that

is if F'(f1) = F(f2) whenever f; =" f; and ¢ is a formula, then V7, fM; F o[F(f)] <& M F
Pl[F .

Lemma 2.2.4. For a pi-measure one f, the following hold:

1. Rf = RMf,'

"Working in L(R, y1,), suppose 7,y € R. We say x < y if v € HOD;L(R’”O‘)’”O‘). We say = and y are
Y2-equivalent, and write z = y if z < y and y < z. Finally, z < yif 2 <y and y £ x. A X} degree d is
an equivalence class consisting of reals which are Y%-equivalent. < naturally induces a partial order on X%
degrees. Also under AD the cone filter on the ¥2 degree is an ultrafilter.
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2. My E ADY + F; is a normal fine measure on Xy.

Proof. Suppose (1) fails, which means R # R (note that the functions Fy(f) = Ry and
Fy(f) = RMs are shift invariant). Let z € R\R™. So z = [Af.z],, and the function F(f) =z
for all f is obviously shift-invariant. By fineness, V7, f(x € Ry). This is a contradiction.

We now verify V7 f(M; F Fy is a measure). Suppose not. For each such f, let F'(f) =
{z € Ry | 3A € ODMi(z, F;)(A ¢ Fy A=A ¢ F;)}. By normality, we may assume
Jz € RYS, f (z € F(f) C f(0)). For each such f, let Ay be the least ODM (x, Fy) set that
is not measured by F; and suppose that V3 f(f(0) € Ay) (the other case is similar). This
implies V7, f(f(1) € Ay) because V;, f(M; = My-) where f*(3) = f(8+1). This easily gives
Ay € Fy. Contradiction.

Fineness is obvious. It remains to verify normality. By normality of y; and the above
argument, we have

VZIfEKAg | T € Rf VAN Ag; € ]:f> € Mf (AJ;Ag §é ff).
This means V%, f3z € f(0) (f(0) ¢ Af). By normality, we get
0¥, (F(0) & A,
Fixing such an z, it’s easy to see that for all n < w, V%, f (f(n) ¢ Af). This contradicts the
fact that Af € F;.
Finally, to show V5 f(M; F AD"). Suppose Ve f(My F -AD™). By normality, vy, [FA;
M; E A; witnesses “AD". We may assume that whenever f; =* fo, A;, = Ay,. Hence the

function F(f) = Ay is shift invariant. This means M F [A;],, witnesses that AD™ fails.
Since R C M C L(R, ;) E ADY, M £ AD*. Contradiction. O

Working in L(RR, u11), let T be the tree for a universal 7 set and suppose fi is a normal
fine measure on X,. An example of such a py is the projection of y; to a normal fine measure
on Xg. If S is an wi-Borel code, we let Ag be the set interpreted by S. Let 1y be a measure
on Dy defined as follows: for any A C Dy,

A€y« forany S wi-Borel code of AV}, o
(LT, S](0) E “AD* + 0 =R +3(0,U) e P_1(0,U) E G € Ag").
In the above, G is the canonical Py-name for the generic filter. 14 is well-defined and is a
measure. Let Py be the Prikry forcing relative to vy. Let v be the measure on Iy defined
as follows: for any A C Dy,
A€ewn & forany S co-Borel code of AV, f
(M;EADT +R; =R +3(D,U) € Py(0,U) E G € As),

We rename the filter F; defined as above to 11 to allow for filters of the form p/ for various
« that appear later on. The definition of 1, makes sense by Lemma 2.2.4. Let P; be the
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Prikry forcing relative to v;. Conditions in Py are pairs (p, U) where p = (d7 |1 <nA di e
D, Adi € di11(0)> and U is a v, splitting tree with stem p. (p,U) <p, (¢, W) if p end extends
g and U C W. Py and P; have the usual Prikry property, that is for ¢ € {0,1}, given any
condition (p,U), a term 7, a formula ¢(z), we can find a (p,U’) <p, (p,U) such that (p,U’)
decides the value of ¢[7].

Let G be generic for P;. By a similar proof to that of Lemma 2.1.6, in L(R, p1)[G], there
is an NV such that

1. N E ZFC+ there are w?® Woodin cardinals;

2. letting ;. be the limit of the first w?k Woodin cardinals in N and let A = sup,, &, there
is G C Col(w, < A) generic over N such that R}, =g.¢ U, RNGl] = RR;

3. Let G be as above and let F be defined as in (x) below relative to N,G. Then
L(RE, Hom*) = P(R)X®7) and L(R, u;) = L(R*, F).

(1) suffices for what we want to prove. We'll use (2) and (3) in the proof of Theorem 2.2.12
and some other occasions.

Now suppose V E ZFC+ there are w® Woodin cardinals. By working in the resulting
model of the full background construction L[E], we may assume that letting A be the sup
of the Woodin cardinals, every countable M embeddable into (an sufficiently large initial
segment of ) V' has Hom_, iteration strategy. Let G C Col(w, < \) be V-generic and R¢ be
the symmetric reals. Let 75 be the sup of the first w?k Woodin cardinals in V. By induction,
let (7§ | n < w) be the limits of Woodin cardinals below vy and (77 | n < w) be the limits
of Woodin cardinals below 7 and above 7;_;. In V[G], we define the following filter F as
follows

Ae FeIdmvn >m((RVEM | E<w)ed). ()
Lemma 2.2.5. L(Rg, F) E Rg = R+ AD" + F is a normal fine measure on X,.

Proof. That Rg = RE®6F) is clear since F is definable in V[G] from Rg and in fact, there
is a symmetric term for F [ V(Rg).

Claim 1. F is a measure on L(Rg, F).

Proof. Suppose not. By minimizing counter-examples, we may assume there is an x € Rg,
a B € L(Rg, F) not measured by F such that B is definable from x. By moving to a small
generic extension containing r, we may assume x € V'; suppose (RV[GWI)C] | k <w) € B (the
¢-case is similar). Hence there is a formula ¢ such that ¢(z,79,A) holds in V[G]. Let M
be countable transitive such that there isa nm: M — V and € M. Let X be the Hom_)
iteration strategy for M. By a standard genericity iteration argument, there is a -iterate
M, of M such that there is a Col(w, < A) generic H over M, such that Rz = Ry and for
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all k,n < w, RVICMER] = RMaFIODY ] We note here that L(Rg, F)M=" = [(Rg, F)VIC]
(up to the ordinal height of M,,). Since ¢(x, 7, A) holds in M, [H], (RVI¢IT | n < w) € B.
Repeating the argument gives us that for all k& < w, (RVI¢I] | n < w) € B, which means
B € F. Contradiction. O

Claim 2. F is normal fine in L(Rg, F).

Proof. Fineness is obvious. Let us verify normality. Property (2) of normality follows from
the proof of Claim 1. The idea is the following: if A € F and assume without loss of generality
that funwmnt1) =def (RVIG] | |k < w) € A for all n. Fix m < w. Using the same notation as
in Claim 1, we can iterate M to My so that for all n (funwms1) ™" = fomim)wmemi)-
Property (1) of normality is verified as follows. By Lemma 2.0.15, it is enough to verify the
following: Suppose (A, |z € ReANA, € F) € L(Rg, F). Then AperyAv =aer {f € Xa | f €
Necf)yAz} € F. Suppose not. Assume without loss of generality that fy, ¢ AgergAq,
that is 3x € fy,(0) fow & Az. Without loss of generality, we may assume z € V. Let M be
countable transitive as in the proof of Claim 1 and z € M. By iterating and shifting blocks as

in the proof of Claim 1, we have M, such that ( fonwmt1))™> (H] — fun41)w(n+2)- This means

x € f(i/fj’l (0) and fé‘f:” = fow2 ¢ As. Repeating this we get A, ¢ F. Contradiction. O

Claim 3. AD" holds in L(Rg, F).

Proof. Tt suffices to prove AD holds in L(Rg, F) since by general AD" theory, every set of
reals has oo-Borel code in L(Rg, F). This is enough to force an N with properties (1)-(3)
as above, which will give us AD" in L(Rg, F). Suppose not. Let A be such that A is not
determined, A is defined over L(Rg, F) by (¢, x). Without loss of generality, we may assume
xeV. Let

Y(f,z) = Col(w, < ) IF L(RE, F) E o[f, z].

InV,let B={f|¢(f,x)}. It’s enough to show B € HomY, since this will imply A = B*,
which will give us a contradiction to the fact that A is not determined. To see B € HomY,,
it’s enough to show B is projective in X where ¥ is a Hom.) strategy for a countable
transitive M containing x and embeddabble into V. But f € B iff there is a countable
iteration tree according to % with end model N such that f is generic over N at the first
Woodin cardinal of N and N[f] E ¢[f, z]. This is because we can further iterate N above the
first Woodin to an N, such that there is a generic H C Col(w, < AV>) such that R}, = R,
and letting G be the tail filter defined from (N, H), then F agrees with G. This finishes

the proof of the lemma. O
]

The proof of the second clause of (1) follows from that of the first clause and the proof of (2).
We now proceed to the proof of (2). Suppose o < wy is limit. Suppose V = L(R, ji) satisfies
AD" and dom(fi) = o and V3 < a(fi(8) is a normal fine measure on Xz). We first assume
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a = w. Let v, be defined from p, as above and P, be the Prikry forcing associated to v,.
We define P, a version of Prikry forcing relative to the sequence of measures (v, | n < w)
as follows. (p,T) € P, if

e In < w(n = dom(p)) and VYm < n(p(m) € D,,);
e m<n—1-=p(m)ep(m+1)(0);

e pis a stem of the tree T;

* Vg € T(m = dom(q) — (V;, flg € f(0)Ag"f€T))).

Let G C P, be generic. Using the construction of Lemma 2.1.6, in L(R, i), we get a model
N E ZFC + there are w* Woodin cardinals.

Now for the general case of limit o > w, first fix an fg : w — [ increasing and cofinal
for each limit 5 < a. We define v from pg by induction on 8 < a as above. We define the
poset P, relative to f, (a similar comment applies to limits 5 < «). This means (p,T) € P,
if

e dn < w(n = dom(p)) and Vm < n(p(m) € Dy, (m));

e m<n—1—p(m)epm+1)0);

e p is a stem of the tree T

e Vg € T(m =dom(q) — (v}, flae f(0O)ANg feT)).

Vfa(m)

Let G C P, be generic. Again, using the construction of Lemma 2.1.6, in L(R, i), we get a
model N F ZFC 4 there are w® Woodin cardinals.

For the converse, suppose V F ZFC+ there are w® Woodin cardinals. Suppose also that
the transitive collapse of a countable elementary substructure of V has H 0m‘<//\—strategy,
where A is the sup of the Woodin cardinals in V. Let f : w® — A be the increasing and
continuous enumeration of the Woodin cardinals and their sups. Fix, for 0 < g < v < a,
fa : w? — W7 be increasing and continous (and cofinal if 0 < ) such that each f(£) is a
limit ordinal. Let G C Col(w, < A) be V-generic and R}, be the symmetric reals. For each
0< B <a,let

A e Fg & Imvn > m(RVICT a8y € A

Using the techniques developed above, it’s not hard to see that L(RE, (Fs | f < «)) F
AD" + V8 < a(Fp is a normal fine measure on Xp).

For the second clause of (2). First suppose V E ZFC+ A = 0.t.({d < A | § is Woodin}).
Let k be the first cardinal such that there is an embedding j : V' — M such that cp(j) = &
and V.10 € M. Fix such a j. Let U be a measure sequence on V, derived from j such
that cof(Ih(U)) > kT (such a U exists by the assumption on &, see [6]). Let P be the
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Radin forcing defined relative to U (see [6]). Let C be a Radin club induced by a P5-generic
g. By standard theory of Radin forcing, C' has order type x and k remains regular (hence
inaccessible) in Vg] (see Theorem 5.19 in [6]). Let G C Col(w,< k) be V[g] generic. In
V[C,G], let R* = RVI®Cl and F, be the club filter on X, in the sense of Definition 4.3.27.
The following lemma is key.

Lemma 2.2.6. In V[C,G|, L(R*, F,) E F, is a normal fine measure on X,. In fact
L(R* (F, | @ <w)) EVa <wy F, is a normal fine measure on X,.

Proof. Fix an a. To make the proof simpler notationally, we will assume that o = w®.
We need the following definition. Suppose D C C' is of order type wa. D is good if D
is closed and for any 8 € D, letting 3}, be the least element of C bigger than 3, we have
(DIB+1,C1B+1)eV,[C|~,G | 7] for some v < BF,. For any limit § of D, let

05 = UpeRVICIClo]
and
op = (o3 | B is a limit in D).

It’s clear that in V[C,G], op € X,. We want to show that the set A = {op | D is good}
contains a club. To this end, let F' be defined as follows. For any x € R*, let 5 € C be the
least such that x € V[C' | 8,G | 5] and define F'(x) to be the first real (in the ordering given
by G | f+1) coding a bijection between w and (Vz,C' [ 8,G | ). Let 7 € cly r. We want to
show that 7 = op for some good D. This will show that A contains a club. This is easy. For
example, to extract the first w elements of our desired D, let gy be a real that enumerates
(7(0), F"7(0)<*) in order type w (we take xo € 7(1) if 7(1) exists and zo be any such real
otherwise). Using xo and the fact that 7(0) is closed under F', we can easily construct an
w-sequence of C' coded by zg as follows. Let (y; | i < w) be an enumeration of 7(0) as coded
by zo. By induction, we construct a sequence (3° | n < w) as follows.

e if n =0, let 33 be the ordinal coded by F(y,) (note that 50 € C);

o if yor1 & VplC | B2,G | BY), then S5, > B9 is the ordinal coded by F(ynt1);
otherwise, 82, = (9.

We can just repeat this procedure if o > 1. For instance, we construct the sequence (5} | n <
w) given by 7(1) as before but we demand that xy € Vau[C' [ By, G | Byl It’s easy to verify
then that the sequence D = (8! | i < a An < w)U (sup, 8’ | n < wAi < a) is good and
furthermore, op = 7.

For each z € R*,let A, = {op | D is good and = € op(0)}. By the discussion above, each
A, contains a club. Let F! C F, be the restriction of F, to {A, | z € R*}U{-A, | z € R*}.
It’s enough to show that the model M = L(R*, F.) E F., is a normal fine measure on X,.
Note that N C V(R*) is a definable class of V(R*).

Suppose not. Let A be a counterexample. Without loss of generality, we may assume
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A is definable (over V(R*) from a real z € V (otherwise, letting 5 < x be such that
x e VIC | B,G | B], we can just work in N = V[C' | 8,G | ] as the ground model and
force with (Pg*Col(w,< k))™). Suppose without loss of generality that it is forced (by a
condition of the form ((§,U), B)) that op € A where D is just the first wa elements of C.
Note that D is a good sequence. We want to show that A € F/, by showing that op € A for
every good sequence D. Fix such a D. Let C' = D U C\D. By the basic analysis of Radin
forcing, the following hold:

e any closed cofinal subsequence E of C' (E need not be in V[g]) is Radin generic for

—

Pg¢ over V for some £ < IA(U);

e if F/ is a closed cofinal subsequence of C' such that there is a f < k such that for all
v > fB,7€FE << veC then Eis V-generic for Pp.

Hence, C" is Radin generic for P5. Let v = sup(D) and 7* be the least element of C' bigger
than . Since D is good, (D,C | v) € V3[C | v,G | f] for some 8 < ~*. To prove the
claim, it’s enough to construct (inside V[C, G]) a Col(w, B) generic G* such that (C' [ v,G |
B) € V[D,G*]. Then, by homogeneity and the Solovay factor lemma for Col(w, < k) and
nice factoring properties of Py, there is a Col(w, < k) generic G’ extending G* such that
V[D,G*][C'\D,G"] = V[C',G"] and RVI®E] = RVICC] which implies MVIGE = pVIC el
Notice then that D is the first wa elements of C’ so it must be that op € A.

We now proceed to the construction of G*. This is standard. Working in V[C' [ v,G | 7*],
let 0 = RVI€G181 Note that o codes (C' | v,D,G | 7). Then there is a G* C Col(w, < f3)
generic over V[D] that realizes o as the symmetric reals. By absoluteness, there is such a
G*in V[C | v,G | v*]. By the property of o and G*, we have (C' [ v,G | v) € V[D,G*].
This completes the proof of the lemma. O

The lemma implies that the proof of Theorem 2.1.1 can be used to show that if H C
Col(w, < A) is V[g, G]-generic, R* is the symmetric reals, and p, is the tail filter on the X,
of Vg, G](R*) for each av < A, then in V[g, G](R*), the model

L(R*, (1o | @ < wy))® E AD' + p14 is a normal fine measure on X, for all o < w;.
For the converse, we assume
LR, (o | @ <w;)) EADT + Va < wy (e is a normal fine measure on X,,).

Working in L(R, (ua | @ < wq)). We want to force a model of ZFC+ there is a limit of
Woodin cardinals s such that the order type of the set of Woodin cardinals below « is &.
This is done by defining a Prikry forcing P,,, as follows. Let p be the club measure on w;
and v, be the measure defined from p, for each a < w;. Elements of P,, are pairs (p,U)

where 3n such that p = (cﬁ |t <nAVi <ndy < wl(cﬁ €D,,) A\Vi <n(a; < aqq)) and U

8Note that in V[g, G](R*), A = w;.
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is a tree of height w with stem p and Vq € UV,aV; fq"f € U. It's easy to see P, has the
Prikry property and forcing with P, gives the desired large cardinal property.

We now prove (3). Suppose V' FE ZFC + Jk(k is a measurable cardinal which is a
limit of Woodin cardinals). Suppose furthermore that if 6 >> x and X < Vj is count-
able and m : Mx — Vj is the uncollapse map, then Mx has Hom., iteration strat-
egy. Let f : K — &k be the increasing continuous enumeration of the set S = {a <
k | a is a limit of Woodin cardinals} and g a normal measure on k. Let G C Col(w, < k)
be generic over V and for each a € S, R, = Up RV Also let R, = RVI?. We define a
filter F¢ as follows. First, let j : V' — M be the ultrapower map by p and H be V[G]-generic
such that j lifts to an embedding (which we also denote by j) from V|G| to M|G|[H]. Say

AeFa e Ry | £ <a< k) €i(i)(A).°
It’s not hard to see that L(R{,, Fg) F “R = Rf A F is a measure on X,,”.
Lemma 2.2.7. L(R{, F¢) E Fe is normal and fine.

Proof. We verify fineness first. Let o € P,, (Rf,) and
X, =1{h € X,, | 0 €h(0)}.

We want to show X, € Fg. Let x € R}, code 0 and f < k be such that z € V[G | f].
Working in V[G | f], let u* be the natural extension of u. Let j* : V[G | ] — M|G | 5]
be the ultrapower embedding by p*. Let G* C Col(w, < k) be V[G | ] generic such that
VIG] = VIG | B][G*]. Let Fg- be defined over V|G | B][G*] from p* the same way Fg
be defined over V[G] from p. It’s clear that L(RY, For) = L(RE, Fo) E Fo = Fo- and
X, € Fg+. This means X, € Fg.

We now verify normality. (3) of Definition 2.0.14 follows easily from the (equivalent)
definition of Fg. To verify (1) of Definition 2.0.14, note that if F'is as in the statement of (1),
then j(j)(F) (R | # < a < j(r)) € R and is nonempty. Let z € j(5)(F)((Rjf)@a) | & <
a < j(k)). Then x witnesses the conclusion of (1). (2) of Definition 2.0.14 is verified using
the iterability of My in M to shift blocks as before (and note that Mx has Hom (. -strategy
in M). We leave the details to the reader. [

Lemma 2.2.8. L(R, F5) F AD".

Proof. Suppose B € L(RE,, Fo) N P(R) is defined by (¢, z) over L(R},, F¢). That is,

9We abuse the notation a bit here in this definition. j(j) is the ultrapower map from M into
Ult(M,j(r)) = N and it lifts to j(j) : M[G][H] — N[G][H][K] for some K C Col(w,< j(j)(x)). The
definition is equivalent to A € Fg < V},aV},B IFcoi(w,<p) fa,p € A
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Without loss of generality, we simplify our proof by assuming no ordinal parameters are
involved in the definition of B and x € RY. Fix # >> x and let X < V, be such that X is
countable and (z, ) € X. Let 7w : M — Vj be the uncollapse map and (k*,v) = 7 !(k, u).
By our assumption, let 3 be a HomY,-iteration strategy for M. Letting §}! be the first
Woodin cardinal of M, the set B can be defined as follows

yeB < 3(T,b) € ¥3g(b=%(T)AgC Col(w,i] ()") Ny € M][g]
/\MbT[g] F @ ||—COZ(UJ,<iZ’(H*)) L(R, F) = gO[y,Z’]) (*)

In (%), R is the symmetric term for the symmetric reals for Col(w, < i/ (k*)) and F is the
symmetric term for the filter defined from i] (v) the same way Fg is defined from pu. It
suffices to verify (x) since this implies B € Hom™.

We now verify (). It suffices to show that for any YX-iterate N of M, we can further
iterate N to P such that letting k¥ be the image of x*, there is an H C Col(w, < x7) generic
over P such that da < k (« is a limit of Woodin cardinals and for all limit of Woodin
cardinals 8 < k (RPIHI8] = RVIGHe+A]))  Without loss of generality, we may assume N = M
and @ = 0. By induction, suppose in V|G | f(«)], there is an X-iterate M, of M via
Qo : M — M, such that letting k, = i,(k*) and v, = i,(v),

1. f(a) < Ka;

2. 3H, C Col(w, < f(a)) such that if  is a successor ordinal, then V3 < a(RVICI®)] =
RMalHIFBN) and if o is limit, then V3 < a(RYIC O] = RMalHIFB)]),

We describe how to fulfill (1) and (2) for e+ 1. First inside V[G | f(a+1)], let M = M, if
f(Q) < kg and M} = Ult(M,,v,). Let (z, | n < w) be an enumeration of RVI¢I/(@+D] inside
VIG | f(a+2)]. Then let M, be a X-iterate of M} according to the genericity iteration
procedure that successively makes x,, generic at §,, where (9; | i < w) are the first w Woodin
cardinals of M} above f(«a). It’s easy to check that (1) and (2) holds for a + 1.

Let M, be the direct limit of the M,’s for @ < k. It’s easy to check that

® Ry = R;
o C={a<k|a=k.} €

e letting H C Col(w, < k) be generic over M, such that Va < x(RM<GIf(@)] = RVIGIf(@)])
and Fpy be the filter defined from v, then L(R},, Fy) = L(R, Fa).

The key to verifying the last item is that if B € v, then B contains a tail of C'. This finishes
the proof of the lemma. O

For the converse of (3). Suppose

L(R, jt,,,) E ZF + AD" + © = 0y + p, is a normal fine measure on X, .
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Working in L(R, 1, ), let v,, be defined from p,, the same way v, is defined from p,, that
is, letting oy be the order type of the domain of f for all f € X, and /Lg be the “tail filter”
concentrating on sequences of length w® < a defined relative to f1°, we say

Aecwv, & VSV, f(S5isan oo-Borel code for AN f € X, =
HODy, Jor, F30,0) ke, g € As).

wh | B<ay
For the definition of v, to make sense, we need the following lemma.

Lemma 2.2.9. ‘v’zwlf HODRf
measure on Xg.

>|:AD++R:RJ:—I—VB < af ,ug is a normal fine

Ul | B<ay

, _ + _
Proof. We sketch the proof. The proof of VMWlf My =gey HODRfU<H{3 | B<ay) FAD"+R = Ry
is similar to that of Lemma 2.2.4. We verify the last clause. Suppose V;mfﬂﬁ < ap(M;E

,ug is not a measure on Xg). By normality, there is a 5 < w; such that Vzwl My F ug is not
a measure on Xg. We may as well assume 3 is the least such. By normality, we can choose
VZWI f an Ay witnessing this. The A;’s are chosen so that if f and g agree on a tail, then
Ay = Ay Suppose without loss of generality that Vj, fog € Ay. Then Vj f fssip € Ay
etc. This means VZWIA s ,ué. Contradiction.

Fineness is obvious. To verify normality, note that property (2) of Definition 2.0.14 is

obvious from the fact that the ,ué’s are tail filters. Properties (1) is verified as in the proof
of Lemma 2.2.4. O

Let T be a tree for the universal X2 set and let P, be the Prikry forcing associated to
Vi, . Now the proof of Theorem 2.1.5 adapted to P,,, we get the following facts (which will
not be used in this proof)

(Léj <R7 :uuq)’ ﬂw1) =<5 (L(Rv /‘Lwl)7 :U“wl) (*)

and

(LR, fe)s o) F iy i unique ().
Let G C P, be a Prikry generic and

fo=Ulp | 3U((nU) € G)}.

Note that fG can compute G. Let Ng = U; N fg(z‘)ll be the model associated with the generic
G. We know that

0Note that V;Wlf and for all 8 < ay, wh < ay. Furthermore, HOD{S (uh | B<ay))URy
HNfg(i) is defined the same way as in the proof of Lemma 2.1.6. There Nfg(i) (j) is denoted as Q; Also

|=af:w1.

O(N];‘G(i)) is the supremum of a7 ;) many Ng_,-Woodin cardinals.
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Ng E wy is a limit of Woodins and o.t.({§ < wy | Ng E ¢ is Woodin}) = wy,

and furthermore by the Prikry property of P, , M =4,y L[T', Ng] does not produce bounded
subsets of w} that are not in Ng.

Lemma 2.2.10. Suppose o < w{ and g : o — wy is increasing in V[G]. Suppose also that
g€ M. Then g is not cofinal.

Proof. We first claim that the sequence § = (o(Nz, ) | i < w) is not in M. This is

where we use property (3) of Definition 2.0.14. By (3) for example, the sequence f =def
(fa(0)" fa())(fa(i) | i > 2) and the filter G2 associated with f” is also a Prikry generic
and V[fe] = V[f] = V[G] = V[@'] and Ng = Ng'3. So it’s impossible to define § from Ng.

Now suppose g : w — o(Ng) is increasing and cofinal and is in M. Let ((¢,,U,) | n <
w) enumerate in descending order the elements of G. Suppose without loss of generality
(g0, Up) € G forces all the relevant facts above g. By induction, we define ¢'(n), (p,, T,,) € Py,
as follows. Let (p_1,7-1) = (qo,Up) and set g(—1) = ¢'(—1) = 0. Let ¢’'(n) be the least
a > max{g¢'(n — 1),g9(n — 1)} such that o =o.t.{y < «a | 7 is Woodin in Ng}. Note that
g € L[T, Ng|. For each n, there is a condition (¢, W) < (pp_1,T,-1) and (¢, W) < (qk,,, Uk, ),
where k,, is the largest k such that ¢’'(n) > o(N,, ) that satisfies the following:

® Ny =def Uicin(q)NVgi) < Ng;
e o(Ng) = g'(n);
e all Woodin cardinals in N, are Woodin cardinals in Ng.

Let (pn, T,) be such a (¢, W). Note that we use DC to construct the sequence ((p,,T,) | n <
w). Let H be the upward closure of {(p,,T},) | n < w}. By the construction of H and the
fact that ¢’ is cofinal in w}’, we get that H is generic. However, Ng = Ny and ¢’ € L[T, Ny]|
give us a contradiction to the previous claim.

Now, we're onto the most general case. Assume a < w} and g : @ — wy is increasing
and cofinal and g € M. We aim to get a contradiction. This is easy. Let x € V code a and
let ¢ € L[T, Ng,z] be a cofinal map from w into w} defined from g and z. Running the
same proof as above (but replacing L[T, Ng| by L[T, Ng, x]) gives us a contradiction. O

So we have
M E wy is an inaccessible limit of Woodin cardinals.

Let pg be a filter on w; defined (in V[G]) as follows.

G = {(p,U) | p<a f A f e U]}

B3Formally speaking, we obtain G’ as 7”’G where 7 : P, — P,, is a projection defined as follows.
W(((A?U)) = ((Z)v U)a W((p7 U)) = ((Z)a U) if lh(p) = ]-, and ’/T((pa U)) = (p*v U) where lfp = (vafl» U afn) then
p* = (f(;-\fh afn)'
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A € pg < InV¥m > n (o(Ny,(m)) € A).
The following lemma completes the proof.

Lemma 2.2.11. L[T, Ng|[uc] F png witnesses that w is a measurable limit of Woodin
cardinals.

Proof. By idempotence (property (3) of Definition 2.0.14), it’s easy to see that pg measures
all subsets of w} in LT, Ng]. Indeed, if A is defined by a formula ¢ with parameters (T', Ng)
in V[G] and o(Ng)) € A. Let 7. G be defined as in Lemma 2.2.10, we get that V[G'] = V[G]
and Ng = Ng and O(N]?,(O)) = o(Nf)) € A. Repeating this, we get that A € .

Next we want to see that L[T, Ng][ug] F wy is inaccessible. By the Prikry property,
L[T, Ng][uug] adds no bounded subsets of w} to Ng. By the same proof as that of Lemma
2.2.10, we get that no cofinal h : a — wy (for a < wy’) can exist in L[T, Ng][uc].

Finally, we need to show L[T, N¢llug] F pe is a countably complete measure. First
we verify that L[T, Ng|lug] F pe is a measure. Again, the proof in the first paragraph
generalizes here. The point is that letting f’ ,G" be as in the first paragraph, not only
V[G] = V[G'], N¢ = Ng but also pug = pg. To verify countable completeness, suppose
there exists (4, | n < wA A, € ug) € LT, Ng|[pe] and A =45 NyA, ¢ pe. Without
loss of generality, we may assume fg(0) ¢ A. So there is an n such that fo(0) ¢ A,. Fix
such an n. Let f/,G’ be as above. Then we have V[G] = V[G'], N¢ = Nar, jig = icy, and
o(Nj) = o(Njyy) & Ay. Repeating this, we get A, ¢ Ag. Contradiction. O

2.2.2 Structure Theory

We prove the following theorem.

Theorem 2.2.12. Suppose o < wy and L(R, i) E AD" + DC+ 1y, is a normal fine measure
on Xo. Then for each f < « there is a unique normal fine measure on Xg in L(R, p,). If

a is limit, L(R, (ug | B < a)) E pg is the unique normal fine measure on Xgz. Furthermore,
if a < wy, then L(R, puy) E© =6y

Proof. For the first clause of the theorem, we only prove a representative case: o = 1. The
other cases are similar. So assume o = 1. So we have
L(R, ;) E AD" + py is a normal fine measure on X;.
Let po be the measure on Xy defined from iy, that is letting 7 : X7 — X be n(f) = U, f(n),
A€ py & mA] € py.
We want to show

L(R, 1) E Vi € {0,1} p; is the unique normal fine measure on Xj.
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The proof is just a combination of techniques used earlier. To show uniqueness of py, let )
be any normal fine measure on X in L(R, u1). Let v/} be defined from ,ul the same way v, is
defined from p;. Let P} consist of pairs (p,U) where p = <dZ i <nA deD Ad € dz“(O))
and U is a tree with stem p that is v;-splitting at the even levels and v]-splitting at the odd
levels. (p,U) <p; (q,W) if p end extends ¢ and U C W. By the same reasoning as in the
proof of Theorem 2.1.5, L(R, 1) = L(R, p}) and py = pf.

Now let pf be a normal fine measure on X, and 1, be the measure on Dy induced by
o To show g = g, we modlfy the forcing P} as follows. Let P/ consist of pairs (p,U)
such that p = <cﬁ i < nA di € d”l(O) AN2i+1<n= (d2Z € Dy A d%*! € D)) and
U is a tree with stem p such that U is yy-splitting at levels of the form 4n, vy-splitting at
levels of the form 2n + 1, and v{-splitting at levels of the form 4n + 2. The ordering of
the poset is the obvious ordering. Let <cﬁ | i < w) be a generic sequence that gives rise to
a model N E ZFC + Jw® Woodin cardinals and an N-generic G such that Rf, = R. Let
(05,0" = (0} | 1 <j<w) |i<wAa}e P, (R)) be the sequence given by (d' | i <w). Let
Fo, F1 be defined as follows.

AeFL & InvVm >n oo™ € A,
and
AeFys InvYm >nof € A

It’s easy to see that L(R, 1) = L(R, Fy) E py = F1 A o = pgy = Fo.

For the second clause, let v be limit and denote i = (ug | 8 < o). We assume L(R, [i) F
AD™ + VB < a(pg is a normal fine measure on Xj3). Let f : w — «a be increasing and
cofinal and vg be the measure on Dg induced by pz. Let Pf, be a poset defined as follows.

Conditions are pairs (p, U) where p = (d' | i < n AVi(d" € Dy))). U is a tree with stem p
that is vg-splitting at every level 3 < a. The ordering is the usual ordering. So in general if
(p,U) € Pt 4, pis finite and U is a tree of height a and the function f guides the extension

of the stem p. Let G be a generic and <ci; | i <w) be the union of the stems of conditions in
G. Let N be the model given by U as above. That is N F ZFC+ there exist Ug-,w” Woodin
cardinals and there is an N-generic H such that R}; = R. In N[H], for each 8 < a, let Fp
be the tail filter on X5. Then L(R, i) = L(R, F) where F = (F5 | 8 < a). This also proves
uniqueness of pg for all j.

Finally, we prove that for each a@ < wy,

L(R, jta) F © = 6.

Suppose not. In L(R, i), let M = L(P(R)) and H = HOD}'. By a refinement of Theorem
2.0.16, if A C X, is a Suslin co-Suslin set, there is a mouse My that is (coarsely) A-iterable
with Suslin co-Suslin iteration strategy. Furthermore, M4 has w® + 1 Woodin cardinals. By
Theorem 1.3 in [18], the real game with w® moves with payoff A is determined. This implies
that the club filter is a normal fine measure v on the Suslin co-Suslin subsets of X,. Now
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it’s not hard to modify Theorem 1 of [47] to show that v is unique, hence v agrees with p,
on the Suslin co-Suslin sets. Furthermore, we get that v is OD* and hence v | P(R)” € H.
This implies L(R, p1o) € H. Contradiction. O

We now summarize more useful facts about the model M = L(R,u,) (0 < o < wy)
assuming M E AD™ that are parallel to those in the case o = 0. The proof of the following
theorem combines the techniques developed above along with the proof of the corresponding
theorems in the case a = 0. Since there is nothing new, we will omit the proof.

Theorem 2.2.13. Suppose 0 < o < wy; and M = L(R, uy) F AD" + po is a normal fine
measure on X.. The following hold in M assuming M = AD™.

e © =0y and L(P(R))M £ © = 0,
® Ji, is the unique normal fine measure on X, ; furthermore, p, | A2 is the club filter;

o Letting Mgz = Lg2(R, o), then (Mg, pro | A7) <1 (M, pia).

We now sketch the proof of the following key theorem which is needed in the proof of
Theorems 2.3.10 and 2.3.11.

Theorem 2.2.14. For —1 < o < wy, let M = L(R, po) and suppose if o« = —1 then p, =0
and if « > 0 then M E AD" + p, is a normal fine measure on X,. Suppose (R, po)* exists.
Then there is a premouse M such that

o M is active;

o M E there are w2 Woodin cardinals if & < w; otherwise, M E there are w*™ Woodin
cardinals.

o M is (wy,w)-iterable.

Remark: The case & = —1 has been known to Woodin. For o > 0, like the o = —1 case,
the proof makes heavy use of the structure theory of M, especially the HOD analysis.

Proof sketch of Theorem 2.2.14. The sketch makes heavy use of the HOD analysis done in
the next section. The reader is advised to consult the relevant results there. Let I' = (32)M
and Q = Env(I"). We'll use the following facts.

Theorem 2.2.15. Assume M, ji,, T, Q are defined as above and assume (R, py)* exists. Then
(a) Q=PR)M;

(b) there is a sjs** A sealing Q9;

l4sjs stands for self-justifying system, which is a countable collection A of sets of reals such that if A € 4
then so is = A and a scale on A has its norms in A.
15This means A is cofinal in
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(c) letting A be the universal (X2)M -set, then there is a sjs A sealing Q0 containing A.

We sketch the proof of Theorem 2.2.14 for the case @ = 0. The other cases are similar.
First let A be as in ¢) of Theorem 4.2.5. Since A is countable, fix in V' an enumeration
(A, | n < w) of A. Hence there is a real z such that for each n < w, A, is O D Ewolto)
We assume x = (). The case x # () is just the relativization of the proof for x = (). The
proof of Theorem 6.29 in [41] and a reflection argument (as done in the next section, where
the HOD computation of L(R, 1) without assuming Mi}z exists is discussed) can be used
to show that for any n < w, there is a pair (P, ¥,) such that

(a) o(P,) = Ord and there are w? countable ordinals (d, | o < w?) with sup A such that for
a < w? P, Ed, is Woodin and furthermore P,, = L[P,|\];

(b) Va < w? P,|((0,)1*)Pr is T-suitable (we call such a P, w?-suitable);

(c¢) X, is an M-fullness preserving strategy that respects @y, Ag.

We sketch the construction of such a pair (P,,%,). In fact, we show that for every A which
is ODF®po)mo) there is a pair (Pa, X4) satisfying (a)-(c) for A. Suppose not. Working in
L(R, 19), let ¢ be a formula describing this. By 3j-reflection (Theorem 2.1.5), there is a
model N = L. (R, uo) (for some x < §%) such that N & MC+ AD +DC+ZF~ + © = 6y + ¢.
Note that po N N is the club filter on P(Xp)V.

Now let Q = P(R)Y and we may assume Q = Env((X?)Y). We can construct a pair
(N, A) such that

e there are (1; | 1 < w?) such that A/ F n; is Woodin for all i
e letting A = sup, ;, then N' = L. [N])] for some ~;

e p(N) < X and A is N-fullness preserving strategy for N above p(N') and A condenses
well.

See Subsection 3.2.2 for such a construction. N is w?-suitable relative to N but A ¢ N.
We may assume p(N) < ng. Let A € ODY witness ¢". By suitability, there is a term
7V; € N such that for any g C Col(w,n;) generic over N, ANN[g] = (7%;),. We will show
that for each i < w?, a A-iterate Q; of N is (A4,i)-iterable (i.e. for any A-iterate R of Q,
letting j : @ — R be the iteration map, j( fl) = Tzi). By comparing all the Q;’s, we get a
A-iterate Q such that Q is (A,4)-iterable for all i < w?. Contradiction.

To this end, first note that for any A-iterate P of N/, there is a further A-iterate P’ such
that the derived model of P’'¢ (at the sup of its Woodins) is N. Also for a A-iterate P
of N, we'll use (n! | i < w?) to denote the Woodin cardinals of P. Fix an i < w?. For
notational simplicity, for a A-iterate P of N, we denote TZZ- by 7%. Suppose there is a

sequence (Q,, |n < w) such that

6By ”derived model”, we mean the model of the form L(R*, ;) where R* is the symmetric reals for the
symmetric collapse at the sup of the Woodins of P’ and p is the tail filter as constructed in [44].
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o Oy = Qand 9,4 is a A-iterate of Q,;
o letting ij 41 : Qr — Qry1 be the iteration map, then iy jyq (75F) # TAQ’““.

For k <, let ix; =150 igrt1. Let Q, be the direct limit of the system (i, | k < 1).

We get a contradiction using the definability of A in N and the fact that each Q can be
further iterated to realize N as its derived model. Indeed, by a similar construction as that
of Theorem 6.29 in [41], we can construct

Qi

1. maps ji : Qr — 9 where crt(jx) > 0,7 and jj is an iteration map for k < w;

2. maps i}, : QF — Qf such that if; o gy = ji oy, for k <1 < w;
3. N can be realized as the derived model of Qf for each k < w;

4. letting Q¢ be the direct limit of the Q}’s under maps 7y ;’s, then O is embedded into
a A-iterate of A/ and hence is well-founded.

This is enough to get a contradiction as in Theorem 6.29 of [41]. This completes our sketch.

Finally, we can then use Corollary 5.4.12 and Theorem 5.4.14 of [26] to get a premouse P
that is w?-suitable and an (wy,w;)-strategy ¥ for P that is M-fullness preserving, condenses
well, and is guided by A. Since (R, ) exists, P* exists. Hence we're done. O

2.3 Applications

2.3.1 An Ultra-homogenous Ideal

We prove the following two theorems. The first one uses Py, forcing over a model of the
form L(R,u) as above and the second one is an application of the core model induction.
Woodin’s book [48] or Larson’s handbook article [15] are good sources for Pp,x.

Theorem 2.3.1. Suppose L(R, u) E “AD" + 1 is a normal fine measure on P, (R)” and let
G be a Pyax generic over L(R, ). Then in L(R, u)[G], there is a normal fine ideal T on
P, (R) such that

1. letting F be the dual filter of T and A C R such that A is OD, for some x € R, either
AeF orR\Ae F;

2. 1 1s precipitous;

3. for all s € [OR)¥, for all generics Gy,Gy C IT, letting jg, : V — Ult(V,G;) = M,
fori € {0,1} be the generic embeddings, then ja, | HODiz g = jo, | HODyz g and
HODLY® = HOD}} evV.

RVU{RYV} RVU{RY }
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Proof. For each ¢ € P, (R), let M, = HODWYF ) Suppose G is a P, generic over

oU{o}

L(R, ). Note that L(R, u)[G] E ZFC since Ppax wellorders the reals. In L(R, p)[G], let
IT={A]|3I A, | 2eR)(AC VyerAs ANVx (u(Az) =0o0r A, =9))},

where S = {0 € P,,(R) | GN 0 is Pyax [ o-generic over M, }. It’s clear that in L(R, u)[G],
7 is a normal fine ideal. Let F be the dual filter of Z.

Lemma 2.3.2. Let 7= = {A | 3(A, | v € R)(A C V,erA, AVx pu(A,) = 0)}. Let F~ be
the dual filter of Z~. Suppose A € F~. Then AB,C such that u(B) =1 and C is a club in
L(R, pu)[G] such that BNC C A.

Proof. Suppose 1 lFp,,. 7: R — p witnesses {0 | Vo € 0 0 € 7(z)} € F~. For each z € R.
let D, ={p|p| 7(x)}. It’s easy to see that D, is dense for each x. Furthermore,

VioVr € o(D, No is dense in Py [0 A{qg€ D, No | ql-o €7(x)} is dense.)

For otherwise, 3, ¢V),0 v € 0Aq € D,NoAq Ik o & 7(x). This contradicts that ¢ IF 7(x) € p.
Let B be the set of o having the property displayed above. u(B) = 1.

Let A C R code the function z — D, and let G be a Pa-generic over L(R, ). Hence
D={o|Veeocoerngx)}eF .Lt C={o](0,ANo,GNo) < (R, A G)}. Hence C is
a club in L(R, 1)[G] and BNC C D. O

Lemma 2.3.3. Let T, F~ be as in Lemma 2.3.2. Then S ¢ T~

Proof. Suppose not. Then =S € F~. The following is a ¥;-statement (with predicate pu)
that L(R, p)[G] satisfies:

3B, C(u(B) =1ACisaclub AVo(oc € BNC = 3D C o(D € HODXFY A G 1 D = ))).

oU{o}

By part (1) of Theorem 2.1.5 and the fact that Py.ay is a forcing of size R, Lg2 (R, p)[G] satisfies
the same statement. Here y coincides with the club measure and hence Ly (R, p)[G] F =S
contains a club. Let C be a club of elementary substructures X, containing everything

relevant (and a pair of complementing trees for the universal 2 set). Then it’s easy to see
that C* C S where C* = {0 | c = RN X, A X, € C}. This is a contradiction. O

We now proceed to characterize Z-positive sets in terms of the Py, forcing relation over
L(R, p).

Lemma 2.3.4. Suppose p € Pra and 7 is a Poay term for a subset of P, (R) in generic
extensions of L(R, ). Then the following is true in L(R, u).

P IFBpa T 08 I-positive < V,0 Vg CPuu [0 (p€g=Iqg<gqlrp,,, o0dET).
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Proof. Some explanations about the notation in the lemma are in order. “V*g C P . [ 0”7
means “for comeager many filters g over P [ 07; “F*g C Phax | 07 means “for nonmeager
many filters g over P... [ ¢”7. These category quantifiers make sense because ¢ is count-
able. Also we only force with Py, here so we’ll write “ IF” for “IFp, . 7 and “p < ¢” for

“p <p,.. ¢ . Finally, “g < ¢” means “Vr € g ¢ < 1r”.

Claim. Suppose in L(R, p), Vo X, is comeager in Py, [ 0. Then V3oVG, (Gy is Prax |
o-generic over M, = G, € X,).

Proof. Suppose o — X, is OD,, , for some x € R. Let A = {y € R | y codes (0, g) where g €
Xo}. Hence Ais OD,,,. Let S be an OD,, , oo-Borel code for A. Hence, V5o S € M,.

For each such o, let G, € X, be M,-generic and H be M,[G,]-generic for Col(w, o).
Then

M,[G,|[H] E (0,G,) € X,.

In the above, note that we use S € M,. Also 1o p € Py | 0 can force (0, G) ¢ X,. Hence
we're done. n

Suppose the conclusion of the lemma is false. There are two directions to take care of.
Case 1. plF 7 is Z-positive but V03" (p € gAVg<gglFo & ).

Extending p if necessary and using normality, we may assume V,0¥*g(p € gA\Vq < g q F
o ¢ 7). Let T be the set of such 0. Let G be a Py, generic and p € G. By the claim and
the fact that S € F, 7¢NSNT # 0. Solet 0 € 7¢NSNT such that p € GNo. Then GNo
is M,-generic and Vg < GNo gk o ¢ 7. But 3¢ < G N o such that ¢ € G by density. This
implies o ¢ 7. Contradiction.
Case 2. plkreZandVioVg(peEg=Jg<gqlroer).

Let T be the set of o as above. Let GG be P, generic containing p. Hence T' € F. Let
ceTNSN—-1gand p e GNo. By density, 3 < GNo g€ GAqlFo € 7. Hence 0 € 71¢.
Contradiction. m

Now suppose [ is a Py, name for a function from an Z-positive set into OR and let 7
be a name for domf and for simplicity suppose 0 I+ f : 7 — OR. Let F : P, (R) — OR be
defined as follows:

F(o) =  «, where «, is the least a such that
Vg CPuax [0 g <gqlk-derAf(5)=d,, and

0 otherwise.

Clearly, F' € L(R, u1). It’s easy to see using Lemma 2.3.4 that if G is Pya-generic, then in
L(R, p)[G], F agrees with fg on an I-positive set. We summarize this fact.
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Lemma 2.3.5. Suppose G is a Ppax generic over L(R,pu). Suppose f : A — OR in
L(R, 1)[G] and A is T-positive. Then there is a function F : P, (R) — OR in L(R,pu)
such that {o | F(o) = f(0)} is Z-positive.

Working in L(R, u)[G], let H C ZT be generic. We show that (1)-(3) hold. Let A C R
be OD, for some x € R. By countable closure and homogeneity of Pua.x, © € L(R, )
and hence A € L(R,p). Since F | L(R,u) = p, we obtain (1)!7. Lemma 2.3.5 implies
Vs € ORY HOD; € V and is independent of H. To see this, note that s € L(R,u) as
Prax is countably closed and L(R, i) E DC; furthermore, by homogeneity of P, HOD, C
HODSL(R’”) and there is a bijection between OR and HODy in L(R, i1). So Lemma 2.3.5 applies
to functions f : S — HOD, where S is Z-positive. This implies jy [ HOD, = j, [ HODj,
which also shows (2).

To show jy | HODgz is independent of H, first note that Z is generated by p and
A =4 {T C P,,(R) | 3C(Cisacluband TNC = SNC}. Note that A is definable in
L(R, u)[G] (from no parameters). To see this, suppose Gg, G are two Py, generics (in
L(R, 1)[G]) and let Sg, be defined relative to G; (i € {0,1}) the same way S is defined
relative to G. Also let Az, C w; be the generating set for G;. Let p € Gy N G and
ap,a; € P(w1)P be such that j;(a;) = A; where j; are unique iteration maps of p. The proof
of homogeneity of Py, gives a bijection 7 from {q | ¢ < p} to itself. It’s easy to see that

C= {U ’ (07 Puax [ 0,7 TU) = (RvaaX?ﬂ-)}’

is a club and Sg, N C' = Sg, N C. By homogeneity of P., there is a bijection (definable
over) L(R, u) from OR onto HODz. So the ultraproduct [0 — HODz]y using functions in
L(R, p)[G] is just [0 — HODz], using functions in L(R, u).

Finally, to see HOD%&’U{RV} = HOD%}U{RV} € V, note that for any generic H, letting V' =
L(R, )]G, HOD%&SE’];V)} is represented by o HOD},/U{J}. Let f be such that dom(f) =S

where S is Z-positive and Vo € S, f(o) € HODY, (o} By normality, shrinking S if necessary,

we may assume Jz € RVo € S, f(0) € HOD};J} and Lemma 2.3.5 can be applied to this f.
We finished the proof of Theorem 2.3.1. O

A normal fine ideal Z on P, (R) is ultra-homogenenous if it satisfies (1)-(3) in Theorem
2.3.1. The next theorem then gives the equiconsistency of the conclusion of Theorem 2.3.1
with w? Woodin cardinals. It is technically an application of the core model induction but
the core model induction argument has been carried out in [46] so we will not reproduce it
here.

Theorem 2.3.6 (ZFC). Suppose there is an ultra-homogeneous normal fine ideal T on
Po(R). Then in V[G] for some (possibly trivial) G, there is a filter p on P, (R) such

1"The proof of (1) in fact shows more. It shows that if A C R is OD, for some s € OR“, then A € F or
R\Ae F
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that
L(R, u) E “AD + 1 is a normal fine measure on P, (R)”.

Proof. Suppose not. By Lemma 4.5.1 of [46], the existence of a normal fine ideal Z on P, (R)
such that Z is precipituous and for all generics Go,G; C ZT, s € OR”, jg, | HODg = jg, |
HOD, € V and HODL[i) = HODLY ) € V implies ADX®). Let M = K(R). Let F
be the directed system in M, M., = dirlimF in M. Fix a generic G C Z" and let j = jg

be the generic embedding. To prove the theorem, we consider two cases.

Case 1. OK®) < ¢+

We first observe that the argument giving Theorem 4.6.6 in [46] can be carried out in this
case. This is because hypothesis of Case 1 replaces the strength of the ideal in the hypothesis
of Theorem 4.6.6 in [46] and ultra-homogeneity implies pseudo-homogeneity. Hence we get

a model N containing R U OR such that N =AD" 4+ © > 6.
In N, one can easily show that the club filter p on P,, (R) restricted to Pg,(R) is in
HODg and is a normal fine measure there. This implies

L(R, pt) + AD + p is a normal fine measure on P, (R).

This finishes the proof of the theorem in Case 1.

Case 2. OF®) > ¢+

Recall that F is the dual filter to Z. Let p = F N M. First we observe by (1) that p is
a normal fine measure on P, (R)M. Next, we need to see that u doesn’t construct sets of
reals beyond M. This is the content of the next lemma.

Lemma 2.3.7. L(R,u) C M.

Proof. We first prove the following claim.

Claim. 4 is amenable to M in that if (A, | x € RA A, € P(P,,(R)M) € M then
(Az |z e RAu(A,) =1) € M.

Proof. Fix a sequence C = (A, | x e RA A, € P(P,,(R))M) € M and fix an co-Borel code
S for the sequence. Let T be the tree for a universal (32) set. We may assume S € ODM
and is a bounded subset of ©™. We also assume S codes T. By MC and the definition of
T,S in M, it’s easy to see that in M,

Vio(P(o) N L(S,0) =P(o) N L(T,0) = P(c) N Lp(0)).

Let S* = [0 +— S|, and T* = [0 — T, where the ultraproducts are taken with functions in
M. Now, S*,T* may not be in M but

PR) N L(S*,R) = P(R) N L(T*,R) = P(R)™.
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This implies C € L(S*,R). For each = € R,

A ep & (Vyo)lo€ AxNP,,(0))
& (Vo)(L(S,0)F 0 IFcoi(w,e) 0 € Az NP, (0))
= L(S*,R) = @ H_Col(w,]R) R e 14$

The above shows p [ C € L(S*,R). Since p [ C can be coded by a set of reals in L(S*,R),
i | C € M. This finishes the proof of the claim. ]

Using the claim, we finish the proof of the lemma as follows. Suppose « is least such that
JAC P, (R) A€ Lot1(R)[u)\La(R)[u] and A ¢ M. By properties of o and condensation
of p, there is a definable over L, (R)[u] surjection of R onto L,(R)[x]. This implies o < ¢*.
Also by minimality of o, P(R) N L, (R)[u] € M.

Now, if P(R) N Ly(R)[u] € P(R)M, then Lemma 4.3.24 gives us N Ly (R)[1] € M which
implies A € M. Contradiction. So we may assume P(R) N Lo (R)[u] = P(R)M. This means
OLa®) — M > ¢+ This contradicts the fact that o < ¢*. O

Lemma 4.3.24 implies L(R, i) E AD + pu is a normal fine measure on P, (R). This fin-
ishes the proof of the theorem. n

2.3.2 Determinacy of Long Games

Definition 2.3.8. Let 3 be an ordinal and A C w*. A is B-11} if there exist I} sets A, for
a < 0 such that Ag =0 and

A={rew’ | Ja < P(ais odd Nz € NycnA\An)}
We also say A is < B-II1 if A is a-II} for some a < f3.
We define the class of long game determinacy we're interested in.
Definition 2.3.9. Let o < wy. Then we say

1. AD, 11 (AD, .<-w*-11}) holds if all integer games of length o with 113 -payoff (<-w?-
1 -payoff, respectively) are determined.

2. ADg I} (ADg o<-w?-111 ) holds if all real games of length « with 3 -payoff (<-w?-11;-
payoff, respectively) are determined.

As a warm-up for the main theorem (Theorem 2.3.11), we prove the following theorem.
One can think of Theorem 2.3.10 as a special case (when a = 1) of Theorem 2.3.11 where
the relevant model here is L(R) (as opposed to L(R, p,)). The structure theory of L(R) is
well-known.

Theorem 2.3.10. The following statements are equivalent:
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1. ADg 11}, ADg,,<-w?-11}, and ‘R* emists.”
2. ADw’wzlJ%, ADw7w2<—w2—LI%, and “AD"®) and RY exists.”

Theorem 2.3.11. 1. Forl < a < w the following statements are equivalent: AD,, ,1+a117,
AD,, i+a<-w?1}, ADg yolli, ADg o <-w?-11}, L(R, fiq—2) F “AD" + p14_2 is a normal
fine measure on X,_o” and (R, jiq_o)* exists, where piq_o is the club filter on XY .

2. For w < a < wy the following statements are equivalent: AD,, go+11l7, AD,, yo+1<-w?-
1}, ADg o111}, ADg o1 <-w?-II1, L(R, o) E “AD" + p1, is a normal fine measure
on X, and (R, p ) exists, where ji, is the club filter on X .

3. For 1 < a < wy such that o is a limit ordinal, the following statements are equivalent:
AD, w11}, AD,, yo<-w?-I1i, ADg oIli, ADg o <-w?II1, L(R, {us | 8 <)) F “AD™ +
s is a normal fine measure on Xg for all B < a” and (R, {us | B < «))* exists, where
pp is the club filter on X} .

From the above theorems, we easily get the following.
Corollary 2.3.12. For a < ws, the following hold.
1. Ifa =1, ADg 11} is (logically) strictly weaker than AD,, ye+111].
2. If 1 < a <w, ADg eIl is equivalent to AD,, e+1115.
3 Ifw<a<w, ADR,WI:H 18 equivalent to ADw’wal:H.

Proof of Theorem 2.3.10. We start with the proof of part 1.

“R* exists” implies ADg, <-w?-II: The proof of this is just Martin’s proof that “0* exists”
implies AD,, ,,<-w?-I1} (cf. [5]).

ADg , <-w*-II] implies ADg,IIi: This is clear since the poinclass II} is contained in the
pointclass <-w?-II}.

ADg 11} implies “R* exists”: This is the main implication. We will follow Woodin’s proof
of Harrington’s theorem that AD,, ,II} implies “0* exists.”

Let v be a (large) regular cardinal. Let N = V,. We want to show that N Col(w.R) |- RV*
exists. Then by absoluteness, R¥ exists in V. To this end, we play the following game Gj.
Gy consists of w rounds. At round k, player I plays xor, nor and player II responds with
Toki1, Nok+1, where ok, Topr1 € R and nok, noky1 € w. The game stops after w rounds are
finished. Let 0 = {zy | k <w}, yr = (nox | k <w) and yrr = (nog41 | £ < w).

Before describing the winning condition for the players in the game G, let us fix some
notation. For an x € w*!®, let E, = {{n,m) | x(n) = m} be the ordering coded by z, let
M, be the transitive collapse of the structure (w, E,) if E, is wellfounded, and let |z| be the
rank of F, if E, is wellfounded. Finally, if M is an w-model, let std(M) be the standard
part of M. Using the notation introduced, player Il wins the play if

18In this paper, R is the same as w®
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(a) E,, is not a total order which is a wellorder; or
(b) M,,, is an w-model of “ZF \ Powerset + V = L(0)” such that |E,,| < std(M,,,).
I ‘ g, Mo To, Mo
II ‘ T1,Nq
The game Gy

It’s clear that the above condition is X1 so Gy is determined.

Lemma 2.3.13. Player I cannot have a winning strategqy in Gg.

Proof. Suppose 7 is a winning strategy for I. If (p,y) is a play by II and 7(p,y) = (p*, y*),
then we let p* = 7(p,y)o and y* = 7(p,y);. For a club of M* < N, 7 € M*. Let M be
the transitive collapse of M* and 0 = RN M. Then we have 7[o] C o and 7 [ 0 € M. Let
g € Col(w,0) be M-generic and g € V. Working in M|g], let

A =A{|7(o,yr1)1| | (o,y11) is a play by II in Go}.

By Xl-boundedness, sup(A4) < w;. So II can defeat 7 | o by playing (o,y;;) such that
yrr € Mlg] and M,,, is Lg(o) such that § > sup(A). Contradiction. O

Yyrr

Now let 7 be II's winning strategy. Again, let M* < N be countable such that 7 € M*.
Let M be the transitive collapse of M* and ¢ = RM. Let g C Col(w, o) be M-generic and
g € V. We claim that o* exists in M[g]. By the above discussion, this finishes the proof of
part 1.

Since from now on, we'll work inside M|g], we will rename 7 [ o to 7 and denote G,
to be the game G where players are only allowed to play reals x; € ¢ in their moves. Let
r € RM code o, 7. What we will show is that in M[g], for any v > ©%(9)if ~ is admissible
relative to x, then « is a cardinal in L(c). This implies that o¥ exists (see for example [7]).

Suppose « is a counterexample. By moving to a generic extension of M|g] where «
is countable if necessary, we may assume a < w{w 9 Let 2 € R be such that a is the
least admissible relative to (z,z). Such a z exists. Since « is not a cardinal of L(o), let
©M?) < ~ < a be the largest cardinal of L(o) below . The next lemma is the key lemma
and is the only place where the existence of 7 is used.

Lemma 2.3.14. There is an X C P(v) N Lu[x, 2] such that if (P, E) is an w-model such
that

1. PE ZFC\ Powerset;
2. v,z € P;
3. std(P) = «;
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4. PE T is a winning strategy for II in G, and r enumerates o, T;
then X = (P(y) N L(0))".

Proof. Let (P, Ey), (P1, E1) be two w-models satisfying (1)-(4). We will occasionally con-
fuse the set P; with the structure (P, E;). We further assume that R N R = REal?]
and P(7) N P(y)r = P(y)lel=2l. Given any w-model (P, Ep) satisfying (1)-(4), we can
always find an w-model (Py, Ey) satisfying (1)-(4) and is "divergent” from ([P, Ey) in the
above sense. We want to show (P(v) N L(c))™ = (P(y)NL(a)). Let A € (P(y)N L(c))™.
We show that A € (P(y) N L(c))™. Of course, the converse is symmetrical.

Let ag € Ord™ be such that a > a = std(FP), a is additively closed'®, and (P, Ey) &
“A € Lgy(0).” Let a1 € Py be such that a; > « and a; is additively closed. The following
fact is key.

Claim 1: ({b| bEpao}) = ({b | bE1a1}) = a+ aQ.

Proof. We prove ({b | bEpap}) = a + oQ; the other equality is similar. We define an
equivalence ~ on qq as follows. Let a,b € Ord™ be such that aFyag and bEya, we say

a~beIP<ala=pF+bVb=L+a).

Clearly, ~ is an equivalence relation on the set {b € Ord™ | bEya}. We claim that for all
bEyag, [b]~ has an Ep-least element. To see this, first note that for any 8 < «, 8]~ = [0]~
has an FEy-least element, namely 0. Now suppose b ¢ std(Fp). Note then that the set

{b—a | aEyb}

is finite in P and hence is actually finite since P, is an w-model and hence it is correct about
finiteness. This in turns implies the set

{b—B|BEDAB < a}

is non-empty, finite, and is bounded in a. But this implies [b]. has an Ej-least element as
claimed.

Now let ¢, d ¢ std(F,) be such that cEydEyag and ¢ = d. We want to show that there is
an e such that cEpeEod, ¢ ~ e, and e » d. To this end, let d* = min([d]..). By the claim
above, d* exists and cEyd* and ¢ »~ d*. But this means {c¢+ | § < a} is not cofinal in d*,
so we can choose an e such that cEyeEyd* as required.

The above shows that {[c|. | cEpap} = 1+ Q, which implies {c | cEpap} = a+aQ. O

Claim 1 implies that Col(w, ag)®® = Col(w, a;) = Col(w, a + aQ). Next we build two
generics Gy, G as follows:

(a) G;is P; generic for Col(w, a;) where i = 0, 1;

9This means for all bEyag, b+ ag = ag.
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(b) {(i,7) | Go(i)EoGo(5)} = {(2,7) | G1()) ExG1(j)};
(C) Pompo[Go] :Po, lepl[Gl] :Pla PgﬂPl[Gl] :Pompl, and lePO[GO] :Pompl,
(d) P;|G;] E 7 is a winning strategy for II in G,.

The requirement (b) can be ensured by a standard back-and-forth argument and the require-
ment (c¢) can be ensured by choosing sufficiently generic Gy and G;. The requirement (d) is
just by Xl-absoluteness.

Now let h € R be such that Ey, = {(i,7) | Go(i)EoGo(j)}-

Claim 2: A € P[G4].

Proof. First mote that h € Fy[Go] N Pi[G1] and hence 7(0,h) € PFy[Go] N P[G1]. We
then have Py|Gy| F “h gives a wellordering of length a¢ and (o, h) codes a model of V' =
L(o) with standard part > ag.” This means Fy[Gy] F “A is coded by 7(o, h).” Since 7(0, h)
€ P[G4], A € P[G4]. O

Claim 2 implies A € P;[G1] N Fy. ¢) implies that A € P;. Hence we're done. O
Using Lemma 2.3.14, we get.

Lemma 2.3.15. Let R, C v and R, € L,i1(0) be a coding of the canonical bijection
e:yxy—. Let X be as in Lemma 2.5.1/, then X C L(o) and in fact,

(X7, Ry, €) < (P(y) N L(09),7, By, €).
Proof. We prove X C L(0), the proof of that
(Xa’% R’Y’ G) = (P(’}/) ﬂ L(U)/% R"/7 E)

is very similar. Let A € X. By definition of X, A € L[z, z]. Suppose A ¢ L(o). This is a
fact in M|g] about A, z, z, o, o; hence, there is an w-model P in M|g] such that

e PF ZFC \ Powerset;
e 1.2,0,2€ Pand PFE 7 is II's winning strategy for G, and  enumerates o, 7;
o o = std(P);
e PEA¢ L(0).
This contradicts the Lemma 2.3.14. [

Let k = (yF)5@). Let X be as in Lemmata 2.3.14 and 2.3.15 and let L, (o) be the tran-
sitive collapse of X.

Claim: 7 < a.
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Proof. Fix a P as in Lemma 2.3.14. 7 cannot be bigger than « since then « € std(P). a =17
is also impossible since then « is definable in P, which in turns implies o € std(P). ]

Lemmata 2.3.14 and 2.3.15 and the claim give us a contradiction since they together
imply that £ < a, which contradicts the definition of +.

Now we are onto the proof of part 2. The implications that are proved are indicated in
Figure 2.1. The theory (T) in Figure 2.1 is: AD¥(®#0) (R p0)* exists.
“ADL®) and R’ exists” implies AD,, :<-w?-II}: By Woodin’s theorem (mentioned in
the Remark after Theorem 2.2.14), there is a premouse M such that

e M is active, p(M) = w, and M is sound;
e M F there are w Woodin cardinals;
e M is (wy,w)-iterable.

The existence of M is what we need to run the proof in Chapter 2 of [19] to obtain the
conclusion.
AD, :<-w*-II} implies AD,, ,2II{: This is clear.
AD, .11} implies “ADL® and R* exists”: By part 1, ADg,II} implies “R¥ exists.”
AD,, .11} implies ADg ,II] since any real game of length w can be simulated (in an obvious
way) by an integer game of length w?. It remains to prove ADY(®)

Suppose not. Let v be the least such that there is a formula ¢ and a real « that defines over
L.(R) a nondetermined set, that is, there is a set A € L(R) such that A is not determined
and

ye Ae L,(R)FE ¢z, yl.

Let G be the following game. G is a game on integers with w many rounds (R; | i < w) and
each round is of length w. In round Ry, the players take turns playing integers (n; | i < w).
In round R; for i > 0, player I starts by playing a pair of integers (z}, m;), player II responds
with an integer x%, player I responds with an integer z%, player II plays z} etc. At the
end of the play, the players have played: a real y = (n; | i < w), a countable set of

AD,, s <-w*II! — AD, sII! —— ADp 11}

ADR,oﬂ <—w2—1:[% (T)

Figure 2.1: Implications in the proof of part 2 of Theorem 2.3.11
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reals 0 = {2' | 0 < i < w}, where ' = (2 | £ < w), and player I also plays a real
z=(m; | 0<i<w). If z¢oc,Iloses. If z does not code a wellordering of w (i.e. z ¢ WO)
then I loses. Otherwise, let 7, be the ordinal z codes, then

I wins the play of Gy iff L, (o) F AD and L, (o) F ¢ly,z| and (¢, x) defines over L. (o) a
nondetermined set.

0 0 1
I‘no Ng -+ Ty, Mo Ty o Ty, My x5

II\ ny 9 rl

The game G,

Clearly, the winning condition for player I is II}(z). By our assumption, the game G is
determined. We proceed to get a contradiction from this.

Suppose player I wins via strategy 7. Let Kk >> v be regular and let M* < V, be
countable such that 7,2 € M*. Let M be the transitive collapse of M* and let 0 = R, Let
7w M — V, be the uncollapse map and 7(c,7,) = (R,7). Note that ¢ is closed under 7.
By elementarity, in M, -, is the least ordinal £ in L(o) such that there is a nondetermined
set definable over L¢(o) and (¢, ) defines such a set. So we can via II’s moves play out all
the reals in o and 7 is forced to build the model L. (o). But then 7 when restricted to Ry
is the winning strategy for player I in the nondetermined game with payoff set defined by
(¢,x) over L, (o). Contradiction.

Suppose now player II wins via strategy 7. Let M, 0,7, be as the previous paragraph.
Again, o is closed under 7. By a similar reasoning, we can via I’s moves, force 7 to build the
model L., (o) and hence 7 restricted to Ry is II's winning strategy for the nondetermined
game defined over L, (o) via (¢,z). Contradiction. O

Proof of Theorem 2.3.11. We only prove part 1) of the theorem. Part 2) and 3) are similar.
We prove the case o = 2 for part 1). The proof of the other cases is the same. Let j be the
club filter on Xy in V.

AD, ; <-w?IIj implies AD, sII}: This is clear.

AD,, 11} implies ADg,2117:% This is also clear since every real game of length w?® with
I} payoff can be simulated by an integer game of length w? with the same payoff.

ADg .11} implies L(R, o) E “AD™ + p is a normal fine measure on X;” + (R, z10)*
exists: Assume ADg »II]. We first show L(R, uo) F “ADT + g is a normal fine measure
on X,.” To this end, suppose not. Let v be the least such that L, (R, y19) defines a set that
is either not determined or not measured by py. To be more precise, let (¢, x) be such that
¢ is a formula and z € R and

(a) either there is an A C R such that A is not determined and Vy e Ry € A < L. (R, po) F
¢ly, z], or

200ne can also prove directly that AD,, 31§ < ADg 211} and AD,, s <-w?I} < ADg > <-w*II} by
modifying the argument in [2].
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(b) there is an A C X, such that A ¢ pp and ~A ¢ py and Vo € Xg 0 € A < L (R, o) E
¢lo, 7.

Suppose (a) holds. Let G5 be the following game. G5 consists of w many rounds (R; | i < w)
and each round is of length w. In round Ry, the players take turns playings integers (n; | i <
w). In round R; for i > 0, player I starts by playing a pair (zjy,m;), where 2, € R and
m; € w, player II responds with a real z¢, player I responds with a real x%, player II plays
a real x4 etc. At the end of the play, the players have played: a real y = (n; | i < w), a
countable set of reals 0 = Up>,0%, where o = {2 | i < w}, and player I also plays a real
z=(m; |1 <i<w). Ifz¢o,lloses. If z does not code a wellordering of w (i.e. z ¢ WO)
then I loses. Otherwise, let 7, be the ordinal z codes and C, be the tail filter generated by
the sequence (o}, | k > 1)?!, then

I wins the play of G, iff L, (o,C,) E “AD + C,, is a normal fine measure on X,” and
L, (0,Cy) E ¢ly, x],where (¢, x) defines over L, (o,C,) a nondetermined set. (k)

0 0 1 1
I ‘ no Ng -+ Ty, Mo Ty e Ty, My x5
11 ‘ ny 9 rl
The game Go

The game G5 can be considered a real game of length w? with IT}(z)-payoff. So by our
assumption, (G5 is determined. Suppose I wins G5 via strategy 7. Let k >> v be regular
and (My | k < w) be such that

o M, <V, for all k < w;
o r. 7€ My;
o My C My for k < w and M, = U<, M.

Let o, = R™r for k < w and 0 = Upepo, = RM. Let 7 : N — M,, be the uncollapse map
and let m(v,, ug) = (7, o). Note that for all k < w, oy is closed under 7 and hence so is o.
We defeat 7 | ¢ as follows. For ¢ < w, let player II play out ¢; in round R;,; then I is forced
to construct (via 7) the model L,: (o, C,) satisfying (x).

Lemma 2.3.16. L. (o,p8) = L, (0,C,) and v, = 7.

Proof. Note that by elementarity, in N, L, (o, if) is the least level over which (¢, z) defines
a nondetermined set. It’s enough to prove that pf N L, (o, pf) € C,. This easily implies
L, (o,18) = Lys(0,C,). Let A C X' be a club in N and let f : 0= — o witness this.
By definition of N and o, In¥m > n flo5*] C 0,,. This means InVm > n o, € A, which
implies A € C,. This finishes the proof of the lemma. O

2lBe C, < Invm > n o, € B.
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By the lemma, in N, 7 | ¢ when restricted to Ry of G5 is I’s winning strategy for the
nondetermined game defined by (¢, z) over L. (o, ug). Contradiction. A similar (and a bit
easier) reasoning gives a contradiction from the assumption that II has a winning strategy
in GQ.

Now suppose (b) holds. Then (¢, z) defines over L, (R, y10) a set A such that A ¢ pp and
—A ¢ po. Let G5 be the following game. G3 has w rounds {R; | i < w} and each round is
of length w. For i < w, player I starts round R; by playing a pair (zj,n;), where z}) € R
and n; € w, II responds with a real z!, I then responds with a ral z}, II plays a real z} in
response etc. Let o; = {z% | K < w}. Additionally, if i > 0, we require that the real z}, must
code a;_1?* (otherwise, I loses). At the end of the play, let o = U;04, y = (n; | i < w), and
let C, be the tail filter defined by the sequence (o; | i < w). If y ¢ WO, I loses. Otherwise,
letting 7, be the ordinal coded by y, then

I wins the play of G5 < x € 0 and L., (0,C,) E “AD +C,, is a normal fine measure on X"

and (¢, z) defines over L, (o,C,) a set not measured by C, and o9 € C,.  (*%)
I ‘ 22, o 3 -z} (codes ag), my 3

0 1
I | 20 o]

The game G3

The winning condition for player I in Gj is IT{(z) so G3 is determined. First let 7 be I's
winning strategy. Let £ >> v be regular and (M} | k < w) be such that

o M; <V, forall k <w;
o .7 € My;
o My C My, for k < w and M, = U, M.

Let 0, = R™ for k < w and 0 = Upcpor, = RM. Let m : N — M, be the uncollapse map
and let 7(v,, ug) = (7, p0). Note that for all k& < w, oy is closed under 7 and hence so is
o. We defeat 7 [ o as follows. We consider the following sequence (P, | n < w), where
each P, is a complete play of GG3 according 7. We describe how II plays in P,. In round
R;, 11 plays out 0,1, (since 0,1, is closed under 7, at the end of round R;, the players play
out the countable set of reals 0;.,). At the end of the play P,, the players play out the
sequence S, = (04, | @ < w) (note that US,, = o) and 7 constructs a model L. (o, C,)
satisfying (xx), where C), is the tail filter given by S,,. Note that C,, = C,, for all n, m. Let
C be C,, for some (any) n. Hence by the fact that L..(o,C,,) satisfies (xx), for all n,m,
Ln(0,Cy) = Lym(0,Cy,). Let & = 7, for some (any) n. Let A be the set not measured by C'
defined by (¢, z) over L¢(o, C'). Recall that for each n, the countable set of reals played out
in Ry of P, is 0, we have by the fact that 7 is I's winning strategy that ¢, € A. So A € C

22This just means that xf) can compute an enumeration in order type w of o;_;
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after all. Contradiction.

Assume now II has a winning strategy in G3. The same reasoning as above gives us a
contradiction. The only difference is we get that for all n, o, ¢ A so =A € C.

Now it remains to prove (R, uio)* exists. The proof is a combination of techniques used
in the proof that ADg 21} = L(R, o) F “AD™ + o is a normal fine measure on X,” and
ADg I} = R* exists. We sketch only the proof here.

Recall that at this point, we have proved L(R, p9) F AD" 4+ g is a normal fine measure on
Xo. We describe a real game G of length w? with IT} payoff. A typical play of G is as follows.
At round R;, player I starts the round by playing (z{,n;) where z}, € R, n; € w, player II
responds with (2%, m;) where 2! € R, m; € w, player I responds with %, player II plays z}
in response. In general, for k& < 1, player I plays a real z, while player II plays a real z, ;.
At the end of the play, the players play a sequence (o; | i < w), where o; = {x; | j < w},
player I plays a real = (n; | i < w), and player II plays a real y = (m; | i < w). Let C be
the tail filter generated by the sequence (o; | i < w) and o = U;0;.

Using the notation introduced in the proof of ADg I} = R, Player II wins the play if

(a) E, is not a total order which is a wellorder; or

(b) M, is an w-model of “ZF \ Powerset + V' = L(o,C) + ADT + C is a normal fine measure
on X,” such that |E,| < std(M,).

Again, G is determined and player I cannot have a winning strategy in G. Hence II has
a winning strategy 7. Let x be a large, regular cardinal in V', and M* < V, be countable
such that M* is the union of an increasing sequence (M) | n < w) of countable elementary
substructures of V., and 7 € Mg . Let M be the transitive collapse of M* and 7 is the
uncollapse map. Let 7(o,uf) = (R, ). Let ¢ C Col(w,o) be M-generic and g € V.
We prove that of exists in M[g] by proving in M|[g], there is a real = such that for every
v > OH@HE) if « is admissible relative to x then 7 is a cardinal in L(o, ug). The rest of the
proof is similar to that of the corresponding part in the proof of ADg I} = R¥. We leave
the details to the reader.

L(R, o) E “AD* + pg is a normal fine measure on X,” + (R, )" exists implies
AD,,  <-w?IIj: Theorem 4.2.5 implies there is a premouse M such that

e M is active, p(M) = w, and M is sound;
e M E there are w? Woodin cardinals;
e M is (wy,w)-iterable.

The existence of M is what we need to run the proof in Chapter 2 of [19] to obtain the
conclusion.

AD, ; <-w®-II} implies ADg,2 <-w?-II{: This is again clear since every real game of
length w? with <-w?-II} payoff can be simulated by an integer game of length w? with the



CHAPTER 2. GENERALIZED SOLOVAY MEASURES 95

same payoff.

ADg > <-w?-II] implies ADg,2II3: This is also clear.

The above implications cover all the equivalences that need to be proved. Hence we're
done. O
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Chapter 3
HOD Analysis

3.1 When V = L(P(R))

3.1.1 The Successor Case

3.1.1.1 Preliminaries

Let (P,Y) be a hod pair such that ¥ has branch condensation. We let K*~(R) be the
union of all A" such that A is a X-premouse over R (in the sense of [27])!, p,(R) = R, and
whenever M is countable transitive such that P € M and M elementarily embeds into N,
then M has a unique w; + 1-iteration strategy A such that whenever Q is a A-iterate of M,
then Q is also a Y-premouse. We say M is Y-iterable. Finally, let K*(R) = L(K>~(R)).

Let (P,X) be as above. We briefly describe a notion of Prikry forcing that will be
useful in our HOD computation. The forcing P described here is defined in K*(R) and is
a modification of the forcing defined in Section 6.6 of [41]. All facts about this forcing are
proved similarly as those in Section 6.6 of [41] so we omit all proofs.

First, let T' be the tree of a $2(X) scale on a universal ¥2 set U. Write P, for the
Y-premouse coded by the real x. Let a be countable transitive, x € R such that a is coded
by a real recursive in . A normal iteration tree U on a O-suitable X-premouse Q (see
Definition 3.1.20, where (Q, X)) is defined to be 0-suitable) is short if for all limit £ < (h(U),
Lp=(M(UE)) E §U|E) is not Woodin. Otherwise, we say that U is maximal. We say that a
O-suitable P, is short-tree iterable by A if for any short tree 7 on P,, b = A(T) is such that
MZ is O-suitable, and b has a Q-structure Q such that Q < /\/le Put

Fr=A{P, | z <r x,P, is a short-tree iterable O-suitable 3-premouse over a}

For each a, for z in the cone in the previous claim, working in L[T, 2], we can simultaneously

compare all P, € F* (using their short-tree iteration strategy) while doing the genericity

'Here we assume Y. is sufficiently iterable that the definition of ¥-premouse over R makes sense; see [27]
for more details.
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iterations to make all y such that y <; x generic over the common part of the final model
Q*~. This process (hence Q%) depends only on the Turing degree of x. Put

Qi = Lp;;(Q77), and 67 = 0o(Q57).

By the above discussion, Q% 6% depend only on the Turing degree of x. Here are some
properties obtained from the above process.

1. F¥ # () for z of sufficiently large degree;
2. 9%~ is full (no levels of QF project strictly below §7);
3. Q¥ F o7 is Woodin;

4. P(a) N Q% =P(a) NODr(aU{a}) and P(6%) N QF = P(6) N ODr(Q%~ U{Q%});
5. 6% =t

a — M

Now for an increasing sequence d= (dy, ..., d,) of Turing degrees, and a countable transitive,
set

Qo(a) = Q% and Q;;1(a) = Qéj(;) fori<n

We assume from here on that the degrees d;;1’s are such that Q‘g;‘(;) are defined. For d as
above, write Q%(a) = Q;(a) even though Q;(a) only depends on d|(i + 1). Let x be the cone
measure on the Turing degrees. We can then define our Prikry forcing P (over L(T,R)) as
follows. A condition (p, S) € P just in case p = (Q¢(a), ..., Q%(a)) for some d, S € L(T,R) is a
“measure-one tree” consisting of stems ¢ which either are initial segments or end-extensions

of p and such that (Vg = (Qf(a),..., Q¢(a)) € S)(V;d) let f = (&0),...,ék),d), we have
(Ql(a), ..., Q{kﬂ)(a)) € S. The ordering on P is defined as follows.

(p,S) < (¢, W) iff p end-extends ¢, S C W, and Vn € dom(p)\ dom(q) (p|(n+1) € W).

P has the Prikry property in K*(R). Let G be a P-generic over K*(R), (Q; | i < w) =
U{p | 3X(p, X) € G} and Q = |, Q;. Let §; be the largest Woodin cardinal of Q;. Then

PO)NL[T,(Q; |i<w)] CQ,,
and
LT, Q) = L[T,(Q; | i <w)]F §; is Woodin.

Definition 3.1.1 (Derived models). Suppose M = ZFC and A\ € M s a limit of Woodin
cardinals in M. Let G C Col(w,< X) be generic over M. Let Rf, (or just R*) be the
symmetric reals of M[G] and Homy, (or just Hom*) be the set of A C R* in M(R*) such
that there is a tree T' such that A = p[T] N R* and there is some o < A such that
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MIG | o] F “T has a <-A-complement”.

By the old derived model of M at \, denoted by D(M, \), we mean the model L(R*, Hom™).
By the new derived model of M at \, denoted by D (M, \), we mean the model L(T", R*),
where I' is the closure under Wadge reducibility of the set of A € M(R*) NP(R*) such that
L(A,R*) E AD*.

Theorem 3.1.2 (Woodin). Let M be a model of ZFC and A\ € M be a limit of Woodin
cardinals of M. Then D(M,\) E AD*, D*(M,\) B AD". Furthermore, Hom* is the
pointclass of Suslin co-Suslin sets of Dt (M, ).

Using the proof of Theorem 3.1 from [36] and the definition of K*(R) from [27], we get that
in K*(R)[G], there is a X-premouse QF extending Q. such that K*(R) can be realized
as a (new) derived model of QF at w}, which is the limit of Woodin cardinals of QZ.
Roughly speaking, the X-premouse QF is the union of X-premice R over Q,, where R is
an S-translation of some M <1 K*(R) (see [23] for more on S-translations).

3.1.1.2 When a=0

We recall some basic notions from descriptive inner model theory. All the notions and
notations used in this section are standard. See [26] and [38] for full details. Here, we’ll try
to stay as close notationally as possible to those used in [26] and [38]. The reader who are
familiar with basic descriptive inner model theory can skip ahead to the actual computation
and come back to this when necessary.

Definition 3.1.3 (k-suitable premouse). Let 0 < k < w and I be an inductive-like pointclass.
A premouse N is k-suitable with respect to T iff there is a strictly increasing sequence (6; | i <
k) such that

1. for all 6, N E “0 is Woodin” iff 6 = &; for some i < 1+ k;
2. ORN = sup({(6;™)N|n < w});

3. Lp"(N[€) = N|(ED)T for all cutpoints € of N where Lp* (N|€) = U{M | N|E I M A
p(M) = &N M has iteration strategy in I'};

4. if €€ ORNN and & # 6; for all i, then Lp"(N|€) B 7€ is not Woodin.”

Definition 3.1.4. Let N be as above and A C R. Then Tﬁ{,j 18 the unique standard term
o € N such that 09 = ANNg| for all g generic over N for Col(w, v), if such a term exists.
We say that N term captures A iff 71/4\{1, exists for all cardinals v of N.

If N,T are as in Definition 2.1 and A € T, then [26] shows that N term captures A.
Later on, if the context is clear, we’ll simply say capture instead of term capture or Suslin
capture. For a complete definition of “N is A-iterable”, see [38]. Roughly speaking, N is
A-iterable if N term captures A and
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1. for any maximal tree 7 (or stack 71) on N, there is a cofinal branch b such that the
branch embedding i] =g i moves the term relation for A correctly i.e., for any x
L . MT
cardinal in V', i(7}/,) = T i)’
2. if T on N is short, then there is a branch b such that Q(b, T)? exists and Q(b,T) <
Lpt (M(T))3; we say that T7b is [-guided.

This obviously generalizes to define ff—iterability for any finite sequence A.

Definition 3.1.5. Let N be k-suitable with respect to X2 and k < w. Let A = (A; | i < n)
be a sequence of OD sets of reals and v = (6;)N. Then

1. ”yﬁf = sup({&|¢ is definable over (N|v, Tﬁjék, ...,Tﬁ;fmék)} Ndo);

2. Hi}/ = HullN(Wﬁf U {Tﬁgﬁk, ...,Tﬁ,ék}), where we take the full elementary hull without
collapsing.

From now on, we will write 74 without further clarifying that this stands for Tﬁ{ s Where

§ is the largest Woodin cardinal of N'. We’ll also write 77, for TN(SN for I < k. Also, we’ll
) 1

A,
occasionally say k-suitable without specifying the pointclass T'.

Definition 3.1.6. Let N be k-suitable with respect to some pointclass T' and A € T'. N is
strongly A-iterable if N is A-iterable and for any suitable M such that if i,5 : N — M are
two A-iteration maps then i | Hﬁf =j | HY'

Definition 3.1.7. Let I' be an inductive-like pointclass and N be k-suitable with respect to
I’ for some k. Let A be a countable collection of sets of reals in I' U I. We say A guides a
strategy for N below 56\/ if whenever T is a countable, normal iteration tree on N based on
(56‘/ of limit length, then

1. if T is short, then there is a unique cofinal branch b such that Q(b,T) exists and
Q(b, T) < Lpt (M(T))*, and

2. if T is maximal, then there is a unique nondropping branch b such that z'bT(Tﬁ{N) =

Tﬁiu) for all A € A and cardinals ;1 > 5 of N and §(T) = sup{’yfg | A e A} where

2Q(b,T) is called the Q-structure and is defined to be the least initial segment of M that defines the
failure of Woodinness of §(7).

3This implicitly assumes that Q(b,7) has no extenders overlapping §(7). We're only interested in trees
T arising from comparisons between suitable mice and for such trees, Q structures have no extenders over-
lapping §(7).

4Again we disregard the case where Q-structures have overlapping extenders.
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We can also define an A-guided strategy that acts on finite stacks of normal trees in a similar
fashion.

The most important instance of the above definition used in this paper is when A is
a self-justifying-system that seals a ¥; gap. A strategy guided by such an A has many
desirable properties.

We state a theorem of Steel’s which essentially says that Mouse Capturing implies Mouse
Capturing for mice over R.

Theorem 3.1.8 (Steel, see [35]). Assume AD* +V = L(P(R)) + © = 6y + MC°. Then
every set of reals is in a (countably iterable) mouse over R projecting to R. In other words,
V = K(R), where

= LU 15 R-sound, p, =R, an 15 countably iterable}).
K(R)=LU{M | MisR d M)=R d M bl bl

Next, we prove the following theorem of Woodin’s which roughly states that HOD is
coded into a subset of ©.

Theorem 3.1.9 (Woodin). Assume AD" +V = L(P(R)). Then HOD = L[P] for some
P CO i HOD.

Proof. First, let
P={(a,d) | d={ag,a1,....,an) € O d = (ag,as,...,an),Vi < n(a; C a;)}.

P is a poset with the (obvious) order by extension. If g is a P-generic over V' then ¢ induces
an enumeration of order type w of (©,U,<oP(7)). Now let

Q' ={(d,4) | d={(a,a1,...,a,) € O, A C P(ag) x Plov) X ... x P(av,), A € OD}.
The ordering on Q* is defined as follows:
(@ A) < (3, B) & Vi < dom(@)a(i) = 5(i), B|(P(&(0)) x ... x P(@(dom(a) — 1)))¢ C A.

There is a poset Q € HOD N P(O) that is isomorphic to Q* via an OD map =. For our
convenience, whenever p € Q, we will write p* for m(p). Furthermore, we can define 7 so
that elements of Q have the form (&, A) whenever p* = (&, A*). In other words, we can
think of 7 as a bijection of © and the set of OD subsets of P(ag) x P(ay) X ... X P(a,) for
ap, aq, ..., o, < ©. For notational simplicity, if p* = (&, A*), we write o(p*) for @ and s(p*)

for A*.

Claim 1.  Let g be P-generic over V.. Then g induces a Q-generic G, over HOD. In
fact, for any condition ¢ € Q, we can find a P-generic g over V' such that ¢ € G, and G, is
a Q-generic over HOD.

®MC stands for Mouse Capturing, which states that if z,y € R and 2 € OD(y) then z is in a sound mouse
over y projecting to y.
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Proof. As mentioned above, ¢ induces a generic enumeration f of (©,U,<gP(7)) of order
type w. Furthermore, for each n < w, f(n)o < © and f(n); C f(n)o. Let

G = Unco{((f(0)o, ., f(1)0), A) € Q [ {f(0)1, ... f(n)1) € A”}.

We claim that G is Q-generic over HOD. To see this, let D C Q, D € HOD be a dense
set. Let p = f|(n+ 1) for some n. It’s enough to find a ¢ = ({«g, .., ), (ag, ..., ) € P
extending p such that D, N D # () where

D, ={({ag, ..., am), A) | {ag,...,am) € A™}.
If no such q exists, let 7 = ((f(0)o, ..., f(n)o), B), where
be B* & Vit e DVe(b e ¢ s(t)).
Then r is a condition in Q with no extension in D. Contradiction. O]

For each o < ©, n < w, and (g, ..., an), let Aq (ag,..an) = ((Q0, ..., ), A) such that
Va € A*(a € a(n)). We can then define a canonical term in HOD for a generic enumeration
of UycoP(7). Foreachn < w,let o, = {(p, &) | p € Q,p < Aq (ao,....an) fOr some (g, ..., ) €
O™ Y let 7= {(A4,0,) | n <w, A € Q}. Then it’s easy to see that Whenever G is P-generic
over HOD induced by a P-generic over V, 7¢ enumerates U,<gP(7) in order type w. This
means we can recover P(R)" in the model L[Q, 7][G] by AD" (here we only use the fact that
every set of reals has an oo-Borel code which is a bounded subset of ©).

To sum up, we have L[Q, 7] C HOD C L[Q, 7][G] for some Q-generic G over HOD. By
a standard argument, this implies that L[Q, 7] = HOD. O]

Now let F = {(M, A) | A is a finite sequence of OD sets of reals and M is k-suitable for
some k and is strongly A-iterable}. We say (M, A) <z (N, B) if A C B and M iterates
to a suitable initial segment of A/, say N7, via its iteration strategy that respects A. We
then let T A) (W, B) Hj{y — HgF be the unique map. That is, given any two different

iteration maps 49,4, : M — N~ according to M’s iteration strategy, by strong ff—iterability,
1o | Hﬁfl =1 | H%, so the map T A), (W, B) is well-defined. The following theorem is
basically due to Woodin. We just sketch the proof and give more details in the proof of
Proposition 3.1.12.

Theorem 3.1.10. Assume V = L(P(R))+ AD" + MC+© = 6y. Given any OD set of reals
A and any n € w, there is an lz—suz'table M that is strongly A-iterable. The same conclusion
holds for any finite sequence A of OD sets of reals.

Proof. We'll prove the theorem for n = 1. The other cases are similar. So suppose not. By
Theorem 3.1.8, V = K(R). Then V F ¢ where ¢ = (Ja) (K(R)|aw E “ZF~ + O exists +
(3A) (A is OD and there is no 1-suitable strongly A-iterable mouse))”.
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Let v < 02 be least such that K(R)|y E ¢. Such a v exists by 3-reflection, i.e. Theorem
1.1.5. Then it is easy to see that 7 ends a proper weak gap, say [7,7] for some 7 < . Fix
the least such A as above. By [39] and the minimality of 7, we get a self-justifying-system
(sjs) (A; | i < w) of ODK®I sets of reals in K (R)|y that seals the gap”. We may and
do assume A = Ap. Let I' = Z{{(R)W and 2 a good pointclass beyond K(R)|(y + 1), i.e.
PR)E®IOH) C Ag. Q exists because v < §2. Let N* be a coarse Q-Woodin, fully iterable
mouse. Such an N* exists by [35] or by Theorem 1.1.4. In fact by Theorem 1.1.4, one can
choose N* that Suslin captures §2 and the sequence (A4; | i < w). Also by [35], there are
club-in-ORY" many I'-Woodin cardinals in N*. It can be shown that the L[E]-construction
done inside N* reaches a P such that P is 1-suitable with respect to I' (hence has canonical
terms for the A;’s) and P E “§y and §; are Woodin cardinals” where §y and §; are the first
two ['-Woodin cardinals in N*. Let ¥ be the strategy for P induced by that of N*. By lifting
up to the background strategy and using term condensation for the self-justifying-system,
we get that ¥ is guided by (A4; | i < w), hence (P,X) is strongly A-iterable. But then
K(R)|y E"P is strongly A-iterable.” This is a contradiction. O

The theorem implies F # &. Moreover, we have that F is a directed system because
given any (M, A), (N, B) € F, we can do a simultaneous comparison of (M, A), (N, B),
and some (P, A @® B) € F using their iteration strategies to obtain some (Q, A ® B) € F
such that (M, A), (N, B) <z (Q,A @& B). We summarize facts about My, proved in [26]
and [41]. These results are due to Woodin.

Lemma 3.1.11. 1. M, s wellfounded.
2. My has w Woodin cardinals (53", 61" ...) cofinal in its ordinals.
3. Oy = 63" and HOD|Oy = Mo|65">.

We’ll extend this computation to the full HOD. Now we define a strategy >, for M.
For each A € OD N P(R), let Tﬁj‘k"" = common value of T(p a)c(Th ) Where T(p ) o0 i
the direct limit map and TZik is the standard term of P that captures A at §7. 3 will
be defined (in V) for (finite stacks of) trees on Myo|03"™ in My. For k > n, My F
“Col(w, M=) x Col(w, §,">) IF (Tﬁj‘n“)g = (Tﬁj‘km)hﬂ/\/loo[g]” where g is Col(w, 01>=) generic
and h is Col(w, 5,?/‘&) generic. This is just saying that the terms cohere with one another.

Let G be Col(w,< A=) generic over M., where M is the sup of Woodin cardinals
in M. Then R, is the symmetric reals and Af, := Uk(Tﬁj‘k‘x’)Gwé\Am.

Proposition 3.1.12. For all ACR, A is OD, L(AL,RE) E AD™.

"This means that for all i, ~A; and a scale for A; are in (A4; | i < w). Furthermore, the A;’s are cofinal
in the Wadge hierarchy of K(R)|~.
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Proof. Suppose not. Using X-reflection, there is an N, which is a level of K(R) below §?
satisfying the statement (T) = “AD* + ZF~ 4+ DC + MC + JA(A is OD and L(AL, RE) ¥
AD™))”. We may assume N is the first such level. Let

U ={(x,M): M is a sound z-mouse, p,(M) = {z}, and has an iteration strategy in N}.

Since MC holds in N, U is a universal (X%)V-set. Let A € N be an OD set of reals witnessing
¢. We assume that A has the minimal Wadge rank among the sets witnessing ¢. Using the
results of [46], we can get a B= (B; : i < w) which is a self-justifying-system (sjs) such that
By = U and each B; € N. Furthermore, we may assume that each B; is OD in N.

Because MC holds and T* =4.; P(R)" & A%, there is a real = such that there is a sound
mouse M over x such that p(M) = 2 and M doesn’t have an iteration strategy in N. Fix
then such an (z, M) and let 3 be the strategy of M. Let I' be a good pointclass such that
COd@(Z),E, U,U¢ € Ar. Let F be as in Theorem 1.1.4 and let z be such that (N}, 4.,X,)
Suslin captures Code(X), B,U,U-.

We let ® = (32)V. We have that ® is a good pointclass. Because B is Suslin captured
by N7, we have ((5;)/\/5 -complementing trees T, S € N which capture B. Let k be the least
cardinal of V¥ which, in N¥ is < d,-strong.

Claim 1. N} E “k is a limit of points 1 such that Lp" (N¥|n) E “n is Woodin”.

Proof. The proof is an easy reflection argument. Let A = 6 and let 7 : M — N\ be an
elementary substructure such that

1. T, S € ran(m),
2. if ep(m) = n then VnNz* C M, n(n) =9, and n > K.

By elementarity, we have that M F “n is Woodin”. Letting 7=1((T,S)) = (T, S), we have
that (T, S) Suslin captures the universal ® set over M at (p™)™. This implies that M is
®-full and in particular, Lp* (N7|n) € M. Therefore, Lp" (N|n) E “n is Woodin”. The
claim then follows by a standard argument. O

Let now (n; : i < w) be the first w points < k such that for every i < w, Lp"" (N|n;) E “n;
is Woodin”. Let now (N : i < w) be a sequence constructed according to the following rules:

1. Ny = L[E[M:
2. Nip1 = (L[E]NG])V i
Let N, = Ui NV;.
Claim 2. For every i < w, N, £ “n; is Woodin” and N_,|(n;) )N = Lp"™" (N5).

Proof. 1t is enough to show that
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1. Nig1 E “n; is Woodin”,
2. N; = Vi,
3. Niga|(n)yNeer = Lp™ (N).

To show 1-3, it is enough to show that if W < N, is such that p,(W) < n; then the
fragment of WW’s iteration strategy which acts on trees above 7; is in I'*. Fix then 7 and
W < Ny is such that p, (W) < n;. Let € be such that the if S is the &-th model of the full
background construction producing N;,; then C(S) = W. Let 7 : W — S be the core map.
It is a fine-structural map but that it irrelevant and we surpass this point. The iteration
strategy of W is the m-pullback of the iteration strategy of S. Let then v < n;;1 be such
that S is the &-th model of the full background construction of N*|v. To determine the
complexity of the induced strategy of S it is enough to determine the strategy of Nf|v which
acts on non-dropping stacks that are completely above 7;. Now, notice that by the choice
of 741, for any non-dropping tree 7 on N|v which is above 7; and is of limit length, if
b = X(T) then Q(b,T) exists and Q(b,T) has no overlaps, and Q(b,T) < Lp'" (M(T)).
This observation indeed shows that the fragment of the iteration strategy of Nf|v that acts
on non-dropping stack that are above 7; is in I'*. Hence, the strategy of W is in I'*. O]

We now claim that there is W < Lp(N,,) such that p(W) < n,. To see this suppose not.
It follows from MC that Lp(N,,) is 32-full. We then have that z is generic over Lp(N,,) at the
extender algebra of A, at 1. Because Lp(N,,)[z] is Xi-full, we have that M € Lp(N,,)[z]
and Lp(N,,) E “M is n-iterable” by fullness of Lp(N,,). Let 8 = (L[E][z]}V*[" where the
extenders used have critical point > 79. Then working in N, [z] we can compare M with S.
Using standard arguments, we get that S side doesn’t move and by universality, M side has
to come short (see [23]). This in fact means that M < S. But the same argument used in
the proof of Claim 2 shows that every KL < S has an iteration strategy in I, contradiction!

Let now W < Lp(N,,) be least such that p,(W) < n,. Let k,I be such that p,(W) < ny.
We can now consider W as a W|n,-mouse and considering it such a mouse we let N =
C,(W). Thus, N is sound above 7. We let (7; : i < w) be the Woodin cardinals of N and
Y = sup,_, Vi

Let A be the strategy of N'. We claim that A is I'*-fullness preserving above 7. To see
this fix A™* which is a A-iterate of N such that the iteration embedding i : N — N* exists. If
N* isn’t T*-full then there is a strong cutpoint v of N* and a N*|v-mouse W with iteration
strategy in I'* such that p,(W) = v and W 4 N*. If N* is not sound above v then N** wins
the coiteration with W; but this then implies W 4 N*, which contradicts our assumption.
Otherwise, N* <« W, which is also a contradiction. Hence A is I'*-fullness preserving.

Now it’s not hard to see that A" has the form J5,(N]y) and JF(N|y) satisfies “my
derived model at v satisfies (T).” This is basically the content of Lemma 7.5 of [41]. The
argument is roughly that we can iterate N to an R such that R = J(QZL), where QF is
discussed in the previous subsection and the Prikry forcing is done inside N.
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Now let N* be the transitive collapse of the pointwise definable hull of N'|¢. We can then
realize N as a derived model of a A-iterate R of N* such that R extends a Prikry generic
over N (the Prikry forcing is discussed in the previous subsection and R is in fact the QF
where Q7 is as in the previous subsection). We can then use Lemmas 7.6, 7.7, and 6.51 of
[41] to show that MY is a A-iterate of N*.

In N, let A C R be the least OD set such that L(A},, R%) # AD. Then there is an iterate
M of N* having preimages of all the terms Tﬁf‘k“. We may assume M has new derived model
N (this is possible by the above discussion) and suitable initial segments of M are points
in the HOD direct limit system of N. Since N = AD', M thinks that its derived model
satisfies that L(A,R) F AD". Now iterate M to P such that M, is an initial segment of
P. By elementarity L(A%, Rg) F ADT. This is a contradiction. O

Definition 3.1.13 (X). Given a normal tree T € My and T is based on My |0y. T is
by Yoo if the following hold (the definition is similar for finite stacks):

o [fT is short then X picks the branch guided by Q-structure (as computed in My,).

o [fT is maximal then X (T) = the unique cofinal branch b which moves T%OO correctly

. . M M
for all A€ ODNP(R) i.e. for each such A, ip(T457) = Tyl

Lemma 3.1.14. Given any such T as above, ¥ (T) exists.

Proof. Suppose not. By reflection (Theorem 1.1.5), there is a (least) v < ¢7 such that N =
K(R)|(v) E ¢ where ¢ is the statement “ZF~ + DC + MC + 37 (X (7T) doesn’t exist)”. We
have a self-justifying-system B for I'* = P(R)V. By the construction of Proposition3.1.12,
there exists a mouse N with w Woodin cardinals which has strategy I' guided by B.

By reflecting to a countable hull, it’s easy to see that MY is a I'-tail of N/ (the reflection
is just to make all relevant objects countable). Note that by Theorem 3.1.10, for every A,
which is OD in N, there is a [-iterate of N that is strongly A-iterable. Let XY be the
strategy of MY given by I'. Tt follows then that for any tree 7, XY (7) is the limit of all
branches b4+, where A is OD in N and b4+ moves the term relation for A* correctly. This
fact can be seen in N. This gives a contradiction. O

It is evident that L(M, Xo) € HOD. Next, we show M, and ¥, capture all of HOD.
In L(My,Xoo), first construct (using X,) a mouse M7 extending M, such that o(M)
is the largest cardinal of MZ as follows:

1. Let R be the symmetric reals obtained from a generic G C Col(w,< A=) over
L(Mso).

2. For each A% (defined as above where A € P(R)NODX®) (we know L(RY, A%) E ADY),
S-translate the Rf-mice in this model to mice S extending M, with the derived model
of § at MM D+(S, MW=) = L(Rg, A%). This is again proved by a reflection argument
similar to that in Proposition 3.1.12.
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3. Let MI = UsS for all such S as above. It’s easy to see that M1 is independent of G.
By a reflection argument like that in Proposition 3.1.12, we get that mice over M,
are all compatible, no levels of M projects across o(My).

Remark 3.1.15. 56\/“"’ is not collapsed by Y., because it is a cardinal in HOD. ¥, is used to
obtain the A% above by moving correctly the Tﬁf" in genericity iterations. L(M,) generally

does not see the sequence (7'2/2oo | k € w) hence can’t construct Ay;; that’s why we need X..
Since Yo collapses 021>, 55 .. by genericity iterating Mo |65 to make M, |6 generic
for i > 0, it doesn’t make sense to talk about D(L(Meu, Xo))-

Lemma 3.1.16. HOD C L(M.,¥)

Proof. Using Theorem 3.1.9, we know HOD = L[P] for some P C ©. Therefore, it is enough
to show P € L(M,Y). Let ¢ be a formula defining P, i.e.

a € P e K(R)E ¢la).

Here we suppress the ordinal parameter. Now in L(Mag, So) let m 1 Moo|((071) )M —
(Mgo)P (M) where 7 is according to Yo,. We should note that X -iterates are cofinal
in the directed system JF defined in D(MZI , A=) by the method of generic comparisons
(see [23] for more on this).

Claim: K(R) F ¢[a] & D(ME, \<) E ¢[r(a)] (%)

Proof. Otherwise, reflect the failure of (xx) as before to the least K(R)|y and get a self-
justifying-system B of OD sets along with an w-suitable mouse N with g—guided iteration
strategy I'. By genericity iteration above its first Woodin, we may assume D(N, M) =
K(R)|y. Fix an a witnessing the failure of (x). Let o : N|[((B) )N = (Moo)PV>) be
the direct limit map by I' (by taking a countable hull containing all relevant objects, we can
assume o exists). We may assume there is an @ such that o(@) = a. Notice here that s E®N

is a tail of I as S5®1 moves all the term relations for ODEK® gets of reals correctly and
I' is guided by the self-justifying system B, which is cofinal in P(R) N ODX® It then
remains to see that:

D(ML, M=)k glr(a)] & DN, AY) & glo(@)] (+ ).

To see that (xxx) holds, we need to see that the fragment of I" that defines o (@) can be defined

. N . I . . ME®I DNV

in D(N, ). This then will give the equivalence in (x#x). Because a < 05"~ = "= :
— N

pick an A € B such that fyﬂ]N”\ )'> a. Then the fragment of I" that defines o (@) is definable

from A (and N|(6})) in D(N, XV), which is what we want.

The equivalence (xxx) gives us a contradiction. [
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The claim finishes the proof of P € L(M,Ys) because the right hand side of the
equivalence (xx) can be computed in L(Me, o). This then implies HOD = L[P] C
LMo, So). 0

Remark 3.1.17. Woodin (unpublished) has also computed the full HOD for models sat-
isfying V. = L(P(R)) + AD* + © = 6. To the best of the author’s knowledge, here’s a
very rough idea of his computation. Let M., >, P be as above. For each a@ < O, let X,
be the fragment of ¥, that moves a along the good branch of a maximal tree. Woodin
shows that the structure (R, (X, | @ < ©)) can compute the set P. This then gives us that
HOD C L( My, Xwo).

3.1.1.3 When O =0,,

Recall that in this section we assume © = 6,,, for some a. We state without proof the
theorem that will be important for the computation in this section.

Theorem 3.1.18 (Sargsyan, Steel). Assume AD" + SMC. Suppose (P,X) is a hod pair
below ADg + “© is reqular™ such that ¥ has branch condensation and is fullness preserving.
Then

{ACR: A€ ODs(y) for some real y} = P(R) N K*(R).
First we need to compute V3IOP. Here’s what is done in [23] regarding this computation.

Theorem 3.1.19 (Sargsyan, see Section 4.3 in [23]). LetI' = {A CR | w(A) < 0,}. Then
there is a hod pair (P, %) such that

1. X is fullness preserving and has branch condensation;
2. MI(P, )0, = VHOP, where MY (P, %) is the direct limit of all S-iterates of P.

It is clear that there is no hod pair (P, %) satisfying Theorem 3.1.19 with I" replaced
by P(R) as this would imply that ¥ ¢ V. So to compute VIOP we need to mimic the

computation in the previous subsection. For a more detailed discussion regarding Definitions
3.1.20, 3.1.21, 3.1.22, and 3.1.23, see Section 3.1 of [23].

Definition 3.1.20 (n-suitable pair). (P,X) is an n-suitable pair (or P is an n-suitable
Y-premouse) if there is 6 such that (P|(67*)7, %) is a hod pair and

1. PE ZFC - Replacement + “there are n Woodin cardinals, 6y < 01 < ... < 6, above §”;
2. o(P) = SUPi<w(6,)F ;

3. P is a X-premouse over P|J;

8i.e., there are no inaccessible limit of Woodins in P.
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4. for any P-cardinal n > 6, if n is a strong cutpoint then P|(n™)” = Lp*(Pln).

Sometimes, we just refer to P as being n-suitable. For P, as in the above definition, let

P~ =P|(6™)” and

B(P,X)={BCPR)xRxR | BisOD, and for any (Q,A) iterate of
(P~,X), and for any (x,y) € Biga), codes Q}.

Suppose B € B(P~, %) and s < o(P). Let 7f,, be the canonical term in P that captures B
at k i.e. for any g C Col(w, k) generic over P

Bp-x) NPlg) = (75,)s-

For each m < w, let
7735:2 = sup(HullP(Tg(n:z)p) N1o),

P.E P2
HB,m - HUHP(VB,m U {7—173)7(7721”1)77})7

PE P,
P)/B - Supm<w73,ma

and
Py P
Hp™ = Um<wHB7m.

. .- . by by by by : ]
Similar definitions can be given for yg’ ,Hg’ , g’ ,Hg’ for any finite sequence B €
7m 7m

B(P~,%). One just needs to include relevant terms for each element of B in each relevant
hull. Now we define the notion of B-iterability.

Definition 3.1.21 (B-iterability). Let (P,X) be an n-suitable pair and B € B(P~,%). We
say (P,X) is B-iterable if for all k < w, player II has a winning quasi-strategy for the
game Gg’kz) defined as follows. The game consists of k rounds. Fach round consists of a
main round and a subround. Let (Py, %) = (P,%). In the main round of the first round,
player I plays countable stacks of normal nondropping trees based on P, or its images and
player II plays according to g or its tails. If the branches chosen by player II are illfounded
or do not move some term for B correctly, he loses. Player I has to exit the round at a
countable stage; otherwise, he loses. Suppose (P*,3*) is the last model after the main round
is finished. In the subround, player I plays a normal tree above (P*)~ or its images based on
(0,7), where § and ~ are two successive Woodin cardinals of P*. If the tree is short, player IT
plays the unique cofinal branch given by the Q-structure. Otherwise, Player II plays a cofinal
nondropping branch that moves all terms for B correctly. Player 11 loses if the branch model
he plays is illfounded or the branch embedding (if in the case the tree is mazimal) does not
move some terms for B correctly. Suppose (Py,%1) is the last model of the subround. If
II hasn’t lost, the next round proceeds the same way as the previous one but for the pair
(Py,%4). If the game lasts for k rounds, II wins.
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Definition 3.1.22 (Strong B-iterability). Let (P, %) be an n-suitable pair and B € B(P~, X).
We say (P,Y) is strongly B-iterable if (P,Y) is B-iterable and if 1 is a run of Gg:i and
ro 1S a Tun of ngi for some ny,ny < w according to some (any) B-iterability quasi-strategy

of P and the runs produce the same end model Q then the runs move the hull HE’E the

same way. That is if 11 and 1o are B-iteration maps accoring to r1 and ry respectively then
. Py . P
1 [ HB = 19 r HB .

Definition 3.1.23 (Strong B-condensation). Let (P,X) be an n-suitable pair and B €
B(P~,X). Suppose ¥ has branch condensation and is fullness preserving. Suppose (P,Y) is
strongly B-iterable as witnessed by A. We say A has strong B-condensation if whenever
(Q,%0,Ag) is a A-iterate of (P,X, ), for every Ag-iterate (R,YXr,Ag) of (Q,3g,Ag),
suppose 1 : Q — S is such that there is some k : & — R such that 7 = k o i where
Jj:Q — R is according to Ag, then R is n-suitable and furthermore, k_l(Tgk(H)) = Tgﬁ for
all S-cardinal k above §%.

Now we're ready to define our direct limit system. Let

F={(P,,B) | BeB(P %) (P ,X) satisfies Theorem 3.1.19, (P, X) is n-suitable
for some n, and (P,Y) is strongly B-iterable}.

The ordering on F is defined as follows:

(P,%,B) < (Q,A,C) < BCC,3kIr(ris arun of Ggf with the last model P*
such that (P*)™ = Q7, Spoy- = A, P* = Q|(n**)©
where Q En > o(Q™) is Woodin).
Suppose (P, %, E) < (Q, A, é) then there is a unique map WE;’E)’(Q’A) : Hg,z — HB%A. (F,=x)
is then directed. Let

M, = direct limit of (F, <) under maps W%P’Z)’(Q’A).

Also for each (P, X, B) € F, let
(P,X),00 . 7P,
T : Hg — M

be the natural map.
Clearly, M., C HOD. But first, we need to show F # (). In fact, we prove a stronger
statement.

Theorem 3.1.24. Suppose (P,%) satisfies Theorem 3.1.19. Let B € B(P,X). Then for
each 1 < n < w, there is a Q such that Q= is a Y-iterate of P, (Q,YXo-) is n-suitable,
(Q,%o-, B) € F as witnessed by A; furthermore, A has strong B-condensation.
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Proof. Suppose not. By ¥j-reflection (Theorem 1.1.5), there is a transitive model N coded
by a Suslin, co-Suslin set of reals such that Code(X) € P(R)N and

N E ZF\{Powerset} + AD" + SMC + “© exists and is successor in the Solovay sequence”
+“InaB € B(P,X)PQ ((Q,Lo-) is n-suitable and (Q, X, B) € F)”.

We take a minimal such N (so N is pointwise definable from RU{>}) and fix a B € B(P, X))V
witnessing the failure of the Theorem in N. Using Theorem 1.1.4 and the assumption on
N, there is an z € R and a tuple (N}, d,,>,) satisfying the conclusions of Theorem 1.1.4
relative to ', a good pointclass containing (P(R)Y, U, XY (R U {X})). Futhermore, let’s
assume that N* Suslin captures (A | A is projective in 3)). Let Q = P(R)Y. For simplicity,
we show that in N, there is a Y-iterate (R, Xg) such that there is a 1-suitable (S, Xz) such
that (S,¥g, B) € F and (S, Xx) has strong B-condensation.

By the assumption on N, N F V = K¥(R). Now N} has club many (32(%))? Woodins
below &, by a standard argument (see [30]). Hence, the (£2(X))%-hod pair construction done
in N} will reach a model having w Woodins (these are X?(¥)"-full Woodins). Let Q be the
first model in the construction with that property and with the property that the (new)
derived model of Q is elemetarily equivalent to N. So (Q~,¥o-) is an iterate of (P,X);
to simplify the notation, we assume (Q~,¥o-) = (P,X). We may also assume that Q is
pointwise definable from Yg- and Q F ZFC™ (this is because N is pointwise definable from
{£}U{R} and derived model of Q is elementarily equivalent to N). Let (02 | i < w) be the
first w Woodins of Q above o(P). A similar self-explanatory notation will be used to denote
the Woodins of any A-iterate of Q. Let A (which extends X) be the strategy of Q induced
from the background universe. A is )-fullness preserving. At this point it’s not clear that A
has strong B-condensation. The proof of Theorem 3.1.10 doesn’t generalize as it’s not clear
what the corresponding notion of a self-justifying-system for sets in B(P, ) is.

We now show that an iterate (R,Ag) of (Q,A) is strongly B-iterable and in fact Ag
has strong B-condensation. Once we prove Ag is B-iterable, we automatically get strong B-
iterability by the Dodd-Jensen property of Ax (recall Q is sound and A is Q’s unique strategy
so A has the Dodd-Jensen property and iteration maps according to A is fully elementary
because Q F ZFC™). Once we have this pair (R, Ag), we can just let our desired S to be
RI((5R) ).

Suppose no such (R, Ag) exists. Using the property of Q and the relativized (to X)
Prikry forcing in N (see [36]), we get that for any n, there is an iterate R of Q (above 03)
extending a Prikry generic and having N as the (new) derived model (computed at the sup
of the first w Woodins above o(P)). Furthermore, this property holds for any A iterate of
Q. As before, without going further into details of the techniques used in [36], we remark
that if R is an R-genericity iterate of Q, then the new derived model of R is N. In other
words, once we know one such R-genericity iterate of Q realizes N as its derived model then



CHAPTER 3. HOD ANALYSIS 71

all R-genericity iterates of Q do. Let (¢, s) define B over N, i.e.
(R,¥,z,y) € B < NFE((R,T,2,y)),s].°

The following argument mirrors that of Lemma 3.2.15 in [23] though it’s not clear to the
author who this argument is orginially due to. The process below is described in Figure 3.1.
From now to the end of the proof, all stacks on Q or its iterates thereof are below the 509 or

its image. By our assumption, there is <f, S, Qi Ri, i, 0i,Ji | i <w) € N such that
1. Qy = 9; 75 is a stack on Q according to A with last model Qy; my = i%; S, is a stack
on Q with last model Ry; ¢ = i°°; and jy : Rg — Q.
2. ﬁ is a stack on Q; according to A with last model Q;,q; m; = z'ﬁ; S: is a stack on 9,
with last model R;; 0; = i jo : Ri — Qiq1.
3. for all k, m, = jj o 0.

Q Qk41 R Qk+1
4. for all k, Wk(TB,’;OQk) # TB ;Q,CH or ji(T Bl; ) # TB#SZQ,CH.

Let Q,, be the direct limit of the Q,’s under maps m;’s. We rename the (Q;, R;, m;, 0, Ji | @
< w) into (QY, RY, 7Y 0¥ 59 | i < w). We then assume that N is countable (by working with
a countable elementary substructure of N) and fix (in V') (z; | i < w)- a generic enumeration
of R. Using our assumption on Q, we get (QF, RI', wl*, o, j=*, 7", kI' | n,i < w) such that

1. QY is the direct limit of the Q}’s under maps 7;*’s for all i < w.

2. RY is the direct limit of the R}’s under maps £'’s for all i < w.

3. Q" is the direct limit of the Q}'’s under maps 7'’s.

4. foralln <w,i<w, 7w : QF — QO ;071 QF = RY; 4 - R — QY and 7' = jiloo}.
5. Derived model of the Q¢’s, R¥’s is N.

Then we start by iterating Q3 above 509 5 to 9O} to make z-generic at (519 0 During this
process, we lift the genericity iteration tree to all R? for n < w and Q° for n < w. We pick
branches for the tree on QY by picking branches for the lift-up tree on Q° using Ago. Let

QO — QO be the iteration map and W be the end model of the lift-up tree on QO We

then iterate the end model of the lifted tree on RJ to R} to make xy generic at 5 O with
branches being picked by lifting the iteration tree onto VW and using the branches accordlng

9As pointed out by J. Steel, the argument can be simplified by choosing a B that is simply definable, i.e.
s = (). Since we know the new derived model of Q is elementarily equivalent to N, A automatically witnesses
that (Q,¥g-) is B-iterable and it’s also not hard to see that A has strong B-condensation. The dovetailing
argument at the end of the proof is not needed.
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to Ayy. Let kJ : RY — R} be the iteration embedding, o} : Q) — R} be the natural map,
and X be the end model of the lifted tree on the W 81de We then iterate the end model
of the lifted stack on QY to Qi to make z, generic at 5 I with branches being picked by
lifting the tree to X and using branches picked by Ay. Let 70 : QY — Q1 be the iteration
embedding, j} : Ry — Q1 be the natural map, and 7§ = j} o o}. Continue this process of
making xy generic for the later models RY’s and Qs for n < w. We then let Q. be the
direct limit of the Q! under maps 7}’s. We then start at Q) and repeat the above process

to make x; generic appropriate iterates of (52Q 0 etc. This whole process define models and
maps (QF, R, wl o,y 7" k' | n,i < w) as described above. See Figure 3.1.

Note that by our construction, for all n < w, the maps 7¥’s and 7%’s are via A or its
appropriate tails; furthermore, Q“ is wellfounded and full (with respect to mice in N). This
in turns implies that the direct limits Q%’s and R{’s are wellfounded and full. We must then
have that for some k, for all n > k, 7¥(s) = s. This implies that for all n > k

Qw

w7 oy) = 7,
B,é;

ow -
B,50 n+1

We can also assume that for all n > k, 0%(s) = s, j¥(s) = s. Hence

w(, Q5 R“’
o (T = ;
n B,(SOQ%) B, SR
G ) = T
n - oW B
B (5 B4, n+
This is a contradiction, hence we’re done. O

Remark 3.1.25. The proof of Theorem 3.1.24 also shows that if (P,X) is n-suitable and
(P,%,B) € Fand C € B(P~,X) then there is a B-iterate Q of P such that (Q,>o-, B&C) €
F;in fact, (Q,¥o-, B ® C) € F is witnessed by a quasi-strategy A that has strong B & C-
condensation.

It is easy to see that M|, = V2P, Let (n; | ¢ < w) be the increasing enumeration of
Woodin cardinals in M, larger than 6,. Theorem 3.1.24 is used to show that M, is large
enough in that

Lemma 3.1.26. 1. M, is well-founded.
2. Moo = Vé{OD. In particular, ng = ©.

Proof. We prove (1) and (2) simultaneously. For a similar argument, see Lemma 3.3.2 in
[23]. Toward a contradiction, suppose not. By X;-reflection (Theorem 1.1.5), there is a
transitive model N coded by a Suslin, co-Suslin set of reals such that Code(X) € P(R)" and

N E ZF\{Powerset} + DC 4+ SMC + “© exists and is successor in the Solovay sequence”
+“(1) and (2) do not both hold”.
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Figure 3.1: The process in Theorem 3.1.24
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As in the previous lemma, we take a minimal such N and let 2 = P(R)Y. We then
get N FV = K*R) and a (Q,A) with the property that Q F ZFC\{Powerset}, Q is
pointwise definable from ¥g-, has w Woodin cardinals above Q~. Furthermore, A is -
fullness preserving and for all B € B(P, )V, there is a A iterate (R, Ag) of Q such that Ar
has strong B-condensation. (Q,A) also has the property that any A iterate R of Q can be
further iterated by Az to S such that N is the derived model of S.

Fix (o | i < w) a cofinal in ©% sequence of ordinals. Such a sequence exists since
Q = Env((X2)V). For each n, let

D, ={(R,¥,z,y) | (R,V)isahod pair equivalent to (P, ), = codes R,
y € the least ODJ set of reals with Wadge rank > o, }

Clearly, for all n, D,, € B(P,X)". By replacing (Q, A) by its appropriate iterate, we may
assume A has strong D,,-condensation for all n. Let D = (D, | n < w). Before proving the
next claim, let us introduce some notation. First let for a set A(A C Ror A € B(P,Y)),
Tﬁ’ﬁl be the canonical capturing term for A in Q at (67™)<. Set

Voom = sup{HE(P U {r5.0,}) N do};
7%;0 = Supm<w7%fm'
Claim 1. For any A-iterate (S, Y) of Q. Suppose i : Q@ — S is the iteration map. Then
i(do) = 5Upi<w7?);0-
Proof. Working in N, let (A; | i <w) be a sequence of ODy, sets such that A is a universal
¥2(X) set; Ay = R\ Ag; the (A; | i > 2) is a semiscale on A; (note that (A; | i > 2) is Wadge
cofinal in ). Suppose ¢; and s; € OR<“ are such that

r€A & NE @ s,
Now for each 17, let

A ={(R,V,z,y) | (R,¥)isa hod pair equivalent to (P,X), x codes R,
NE ¢V, s, y]}

By the choice of the A;’s (or just by the fact that Q is pointwise definable (over Q) from

{Xo-}), we get
5o = ) Q,0
0 = SUPi<wYar -
By arguments in [26], we get that A is guided by (A; | i < w) for stacks above Q~ and
below dy. This is just a straightforward adapatation of the proof of a similar fact in the case

© = 6y. This fact in turns implies

Q,0
00 = SUPi<wVp, -
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To see this, fix an A7. We'll show that there is a j such that 7%;0 > 7%;0. Well, fix a real
coding P and let j be such that

w(A;) = w((A))psx) < w((Dj)psaw))-
Let z be a real witnessing the reduction. Then there is a map i : @ — R such that

1. i is according to A and the iteration is above Q= = P;

2. z is generic for the extender algebra A of R at §*.
Note that Z(TAQ) = 7'5;, z'(TDQj) = ];j, and R[z] F 74» <, 7p; via z. Hence 7'7% e X =
{reR*| 3 eA)(plFr T <y 7p, via )} and |X|® < 6% (by the fact that the extender
algebra A is §®-cc). But X is definable over R from ng, hence | X|® < 'y}DZ;O. Since 7',{1%; €X,
”yzélo < 775]’,0 which in turns implies ’szlO < fyg;o.

Now to finish the claim, let (S, T) be a A iterate of Q. Suppose i : Q@ — S is the iteration
map. Let R =i(P) and Xg be the tail of ¥ under the iteration. We claim that

i(do) = supi<w'y}g’i0.(*)
This is easily seen to finish the proof of Claim 1. To see (x), we repeat the proof of the
previous part applied to (S, Y) and (B; | i < w) where By is a universal ¥%(Xg); B; = R\ B;
(B; | i > 2) is a semiscale on B;. We may assume (S, Y) is guided by (B; | i < w) for stacks
above R and below i(dy). Now we are in the position to apply the exact same argument as
above and conclude that (x) holds. Hence we’re done. O]

Since A has the Dodd-Jensen property, the direct limit M., (Q,A) of A-iterates of Q
below 4 is defined and is wellfounded (note that we allow iterations based on Q7). Let
(62 | i < w) be the first w Woodins of Q above Q~ and zglo\o 1 Q@ = My(9Q,A) be the
direct limit embedding. For (R, Az), an iterate of (Q, A) below 5, let @%é\f have the ob-
vious meaning and zg% be the iteration map according to A. By a similar argument as
in the computation of HOD'® we get (n, | n < w) = (zgé\o(@g) | i < w). Alsoin N,
Moo (Q, A)|ny, = M|y, for all n and hence My = Moo(Q, A)|sup,,.,m- In particular,
M is wellfounded.

Working in N, we first claim that

Claim 2. M (Q,A)[no = V1P, (x)

Proof. To show (x), it is enough to show that if A C « < 1y and A is OD then A €

Mo (9, A). To see this, let i be such that vgj""(g’A)’O > o (such an 7 exists by the proof of
Claim 1). Let

C={(R,V,z,y) | (R,V¥)isa hod pair equivalent to (P,X), = codes R, y codes (N,~)
such that (N, ) is 1-suitable, A is strongly D; iterable via a

quasi-strategy ® extending ¥, v < vgfi’o, ﬂg’w)’m(v) € A}
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By replacing Q by an iterate we may assume (Q,A) is C-iterable. Let 75 = TCQ( 5+
(99

Te =155 (TCQ) The following equivalence is easily shown by a standard computation:

o and

§€AIff Moo(QA) Flky ey “if @ codes zgé\o(?),y codes (Moo(Q, N)|ng, €)
then (z,y) € 7.

For the reader’s convenience, we’ll show why the above equivalence holds. First suppose
€€ A. Let (§,2) € I(Q,A) be such that there is a v < yg’io and Zg; (7) = £. Then we have

(letting v = zgg(éo))

S FlFcoiwptey “if x codes 282(73), y codes (S|v,v) then (z,y) € ZSQ(TC%A)”

By applying zgi to this ,we get
Mo (Q,A) FIF Copu i) “If @ codes zgé\o(P),y codes (Moo(Q, A)|ng®, €) then (z,y) € 7¢”.

Now to show (<), let (S,Z) € I(Q, A) be such that for some v < ’yg’io, € = zgfo(fy) Let
v = ig:g(éo), we have

S FlF ooy “if 2 codes z%é(?),y codes (S|v*¥,v) then (z,y) € ZSQ(TCQA)”
This means there is a quasi-strategy ¥ on S(0) (S(0) = S|(v*)¥) such that (S(

S04
1-suitable, ¥ extends 282(2)), and WU is D;-iterable. We need to see that 7T§)i(0)

&. But this is true by the choice of D;, £ = @‘;i(y), and the fact that ¥ agrees with = on

how ordinals below ’yf)’io are mapped.
The equivalence above shows A € M (Q, A), hence completes the proof of (x). H

(%) in turns shows that 7y is a cardinal in HOD and 7y < © (otherwise, HOD|n, =
Mo (Q, N)|no E © is not Woodin while HOD £ © is Woodin). Next we show

Claim 3. g = 0. (xx)

Proof. Suppose toward a contradiction that 7y < ©. Let Q(0) = Q|(6¢“)<, Ay = A|Q(0),
and My (Q,A)(0) = M (Q, A)|(nd*) M= Let 7 =i [ Q(0); so 7 is according to Ag.
By the Coding Lemma and our assumption that 7y < O, m, M (Q,A)(0) € N. From this,
we can show Ag € N by the following computation: Ag(7) = b if and only if

1. the part of 7 based on P is according to X;

2. if zf exists then there is a o : Mf — Moo (Q, A)(0) such that 7 = o o] ;
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3. 71A/\/lb71 is @-structure guided.

By branch condensation of Ag, (1),(2), and (3) indeed define Ay in N. This means A, is
ODY from ¥ (and some real x); hence Ag € N. So suppose v = w(Code(Ay)) < % In N,
let

B={(R,¥,z,y) | (R,V)isahod pair equivalent to (P,X), x codes R, y € Ag
where Ag is the least OD(Code(V)) set such that w(Ag) > 7
and Ag is not projective in any set with Wadge rank ~}

Then B € B(P,X)Y. We may assume Mg respects B. It is then easy to see that whenever
(R,Ar) € 1(Q(0),Ap) (also let S <R be the iterate of P), Ag is projective in Code(AR)
(and hence Ag is projective in Code(/Ay)) because Az can compute membership of Ag by
performing genericity iterations (above &) to make reals generic. This contradicts the choice

Claims 2 and 3 complete the proof of the lemma. n

Now we define a strategy >, for M, extending the strategy ¥ of M = VQEOD. Let
(P, X, A) € F and suppose P is n-suitable With (0; | i < m) being the sequence of Woodins of
P above P, let TM°° = common value of 7 s (T 15,) Zoo Will be defined (in V) for trees on

Mo|no in My,. For k> n, M, E”Col(w, nn) x Col(w,ng) IF (’/’An )g = (TAk ) N Mslg]”
where ¢ is Col(w,n,) generic and h is Col(w,n;) generic and (TAn )g is understood to be
A(Mw,Ew N Moo[g]. This is just saying that the terms cohere with one another.

Let MM~ = sup;,n;. Let G be Col(w, AM=) generic over M. Then R is the symmetric
reals and Ay, := Uk(T,f;\jlkw)Gmk-

Proposition 3.1.27. For all A € B(M_,Y5), L(AL, R:) E AD"

Proof. We briefly sketch the proof of this since the techniques involved have been fully spelled
out before. If not, reflect the situation down to a model N coded by a Suslin co-Suslin set.
Next get a “next mouse” N with w Woodin cardinals that iterates out to (possibly a longer
mouse than) MY . A also has the property that its derived model is elementarily equivalent
to N.

Let A C B(M_,X2) be the least OD set such that L(AL, R%) ¥ AD'. Then there is
an iterate M of N having preimages of all the terms T%k . We may assume M has derived
model K*(R) and suitable initial segments of M are in FV. Since we have AD", M thinks
that its derived model (in this case is K*(R)) satisfies that L(Ap ), R) E AD™, where we
reuse (P,Y) for an equivalent (but possibly different) hod pair from the original one. Now
iterate M to Q such that M, is an initial segment of Q. By elementarity L(A%, RE) E AD*.
This is a contradiction. O
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Definition 3.1.28. Given a normal tree T € My, and T is based on My|0y. T is by Y
if the following hold (the definition is similar for finite stacks):

o [fT is short then X picks the branch guided by Q-structure (as computed in My).

o If T is mazimal then X (T) = the unique cofinal branch b which moves T%OO correctly

for all A € OD such that there is some (P, 3, A) € F i.e. for each such A, ib(Tﬁ)“) =
M
TA*,O'

Lemma 3.1.29. Given any such T as above, Xoo(T) exists.

The proof of the lemma is similar to the proof of Lemma 3.1.14. So we omit it.

It is evident that L(M,>s) € HOD. Next, we show M, and X, capture all un-
bounded subsets of © in HOD. In L(M,, X), first construct (using 3.,) a mouse ML
extending M, such that o(M,) is the largest cardinal of M7 as follows:

1. Let R be the symmetric reals obtained from a generic G over M, of Col(w, < A=),

2. For each A% (defined as above) (we know L(R%, A%) F AD™), pull back the hybrid mice
over R in this model to hybrid mice S extending M, with D(S, \M=) = L(R, A%).

3. Let ML = UsS for all such & above. M is independent of G. By a reflection
argument (and Prikry-like forcing) as above, the translated mice over M, are all
compatible, no levels of M} projects across o(My,), and M1 contains as its initial
segments all translation of RE-mice in D(MFE MM=). This is just saying that M
contains enough mice to compute HOD.

Remark 3.1.30. O is not collapsed by ¥, as it is a cardinal in HOD. ¥, is used to obtain

the A7 above by moving correctly the T%S" in genericity iterations. L(M,) does not see

the sequence (741 |k € w) hence can’t construct A%. Also since Yo, collapses 8,7, 55" ..,
it doesn’t make sense to talk about D(L(M, 3uo))-

Lemma 3.1.31. HOD C L(M.,>)

Proof. Using Theorem 3.1.9, we know HOD = L[P] for some P C ©. Therefore, it is enough
to show P € L(My, X ). Let ¢ be a formula defining P, i.e.

a€ P& VEJa]

We suppress the ordinal parameter here. Now in L(My,Xs) let m 1 My|(ndT)Me —
(Moo ) M=) where 7 is according t0 Te.

Claim: a € P < DML, A=) E ¢[r(a)]. (x)
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Proof. Otherwise, reflect the failure of (x) as before to get a model N coded by a Suslin
co-Suslin set, a hod pair (P, %) giving us HOD|6,, such that

N EZF +DC+AD" +V = K*(R) + (3a)(¢[a] ¥ DML, S F ¢[r(a)]).

Fix such an «. As before, let N be the next mouse (i.e. A has w Woodins (§; | i < w) on
top of P) with p(N) < sup;0;) with strategy A extending ¥ and A has branch condensation
and is Q-fullness preserving, where Q = (X£2)N. We may assume A is guided by D where

D = (D, | n < w) is defined as in Lemma 3.1.26. As before, we may assume N has derived
model N. Let o : N|((6))*H)N — (My)PWVAY) be the direct limit map by A. We may
assume o (@) = « for some @. Working in N, it then remains to see that:

DML, X>) E ¢lr(a)] & D(N,AY) E dlo(@)] (xx).

To see that (xx) holds, we need to see that the fragment of A that defines o(@) can be defined

in D(N,A"). This then will give the equivalence in (x*). Because a < 1y, @ < &y, pick an n

such that such that ngo > @. Then the fragment of A that defines o(@) is definable from

D,, (and N|(6))) in D(N, AY), which is what we want.
The equivalence (*x) gives us a contradiction.

The claim finishes the proof of P € L(Mu,¥w). This then implies HOD = L[P]
LMy, Xu).

din O

Lemma 3.1.31 implies HOD = L(M, X)), hence completes our computation.

3.1.2 The Limit Case

There are two cases: the easier case is when HOD F “cof(©) is not measurable”, and the
harder case is when HOD F “cof(©) is measurable”.
Here’s the direct limit system that gives us V3P,

F={(Q,A) | (Q,A) is a hod pair; A is fullness preserving and has branch condensation}.
The order on F is given by
(Q,A) <7 (R,¥) < Q iterates to a hod initial segment of R.

By Theorem 1.2.2, <7 is directed and we can form the direct limit of F under the natural
embeddings coming from the comparison process. Let M, be the direct limit. By the
computation in [23],

(Moo| = Vé{ op.

M as a structure also has a predicate for its extender sequence and a predicate for a
sequence of strategies.

We quote a theorem from [23] which will be used in the upcoming computation. For
unexplained notations, see [23].
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Theorem 3.1.32 (Sargsyan, Theorem 4.2.23 in [23]). Suppose (P,X) is a hod pair such that
3 has branch condensation and is fullness preserving. There is then Q a Y-iterate of P such
that whenever R is a Lg-iterate of Q, av < A%, and B € (B(R(a), Sg(q))) T ROT)Er(ain))

1. YR(a+1) ts super fullness preserving and is strongly guided by some

é - <B1, ’ Z < w> g (B(R(Og),ER(Q)))L(F(R(a+1)7ER(&+1)));

2. there is a (S,Xs) € I(R(a + 1), Xr(a+1)) such that Xs has strong B-condensation.

We deal with the easy case first.

3.1.2.1 Nonmeasurable Cofinality

The following theorem is the full HOD computation in this case.
Theorem 3.1.33. HOD = L(M,)

Proof. To prove the theorem, suppose the equality is false. Then by Theorem 3.1.9, there
is an A C © such that A € HOD\L(M,) (the fact that L(M) € HOD is obvious). By
¥-reflection (i.e. Theorem 1.1.5), there is a transitive N coded by a Suslin co-Suslin set
such that

N E ZF  +AD" +V = L(P(R)) + SMC + © exists and is limit in the Solovay sequence
+HOD F “cof(©) is not measurable ” + “IB C (B € HOD\L(M,))”.

Take N to be the minimal such and let B witness the failure of the theorem in N. Let ¢
define B (for simplicity, we suppress the ordinal parameter) i.e.

a€B < NE¢]
Let Q = P(R)". There is a pair (P,X) such that:
1. P = Lg(U,,rP,) for some A';

2. for all v < A7, Pj is a hod mouse whose strategy 3, € 2 is Q-fullness preserving, has
branch condensation, and \7¢ = 3;

3. ify < n < )\7), 'PW hod 7377;
4. B is least such that p,(Lg(U,<xrPy)) < 0o(U,x»Py));
5. P E cof(A\”) is not measurable;

6. X has branch condensation and extends @, rX.;
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Such a (P,Y) can be obtained by performing a Q-hod pair construction (see Definition
1.2.9) inside some N} capturing a good pointclass beyond 2. We may and do assume that
(Uyerr Py, ®,<»2,) satisfies Theorem 3.1.32 applied in N. This implies that the direct
limit M of all ¥-iterates of P is a subset of HODY. Let j : P — M be the natural map.
Then in N, MZ|7(\7) = M.

Now pick a sequence (y; | ¢ < w) cofinal in A\” such that §,»,, is Woodin in P, an
enumeration (z; | i < w) of R and do a genericity iteration of P to successively make each x;
generic at appropriate image of §,7,,. Let Q be the end model of this process and ¢ : P — Q
be the iteration embedding. Then by assumption (5) above, we have that N is the derived
model of Q at i(AF).

In N, let D be the derived model of MZ at © and

Too - Moo — (MOO)D

be the direct limit embedding given by the join of the strategies of M,’s hod initial segments.
Then by the same argument as that given in Lemma 3.1.16, we have

a € B & DE ¢ro(a).

The proof of Lemma 3.1.16 also gives that B € (L(My,))", which contradicts our assump-
tion. Hence we're done. O

Remark 3.1.34. [t’s not clear that in the statement of Theorem 35.1.33, “My” can be
replaced by VoD,

3.1.2.2 Measurable Cofinality

Suppose HOD F cof(©) is measurable. We know by [23] that VEOP is |V, | where N, is
the direct limit (under the natural maps) of F, where F is introduced at the beginning of
this section. Let

where p is the order zero measure on coff1°P(@). Let f : cof'°P(0) =45 a — O be a

continuous and cofinal function in HOD. For notational simplicity, for each 8 < «, let Ag be
the strategy of My (f(5)) and X5 be the strategy of N (f(5)). Let

MY, = Ulto(HOD, p)|(©7F)VHoHOD#),
and
NE=U{M | N S M, p(M) =06, M is a hybrid mouse satisfying property (*)}.

Here a mouse M satisfies property () if whenever 7 : M* — M is elementary, M* is
countable, transitive, and 7(0*) = O, then M* is a Be<o-2g-mouse for stacks above O,
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where Yf is the strategy for the hod mouse M*({) obtained by the following process: let
(P,¥X) € Fand ¢ : P — My be the direct limit embedding such that the range of i
contains the range of m [ M*(§); 3¢ is then defined to be the 7o i~ l-pullback of 3. It’s
easy to see that the strategy % as defined doesn’t depend on the choice of (P,%). This is
because if (Py, 2o, i) and (P, X1,41) are two possible choices to define ¥}, we can coiterate
(Po, o) against (Py,%1) to a pair (R,A) and let i; : P; — R be the iteration maps and
let iy : R — M be the direct limit embedding. Then Xy = A% and ¥; = A"; hence the
e igl—pullback of ¥y is the same as the 7 o i; '-pullback of ¥; because both are the same
as the 7 o4, -pullback of A.

We give two characterizations of HOD here: one in terms of M7 and the other in terms
of Nt. The first one is easier to see.

Theorem 3.1.35. 1. HOD = L(Ny, MZL).
2. HOD = L(NZ).

Proof. To prove (1), first let j, : HOD — Ulto(HOD, ) be the canonical ultrapower map.
Let A € HOD, A C ©. By the computation of HOD below ©, we know that for each limit
f<a,

ANbpe € IN<(f(B))].

This means
Ju(A)NO e ML.
We then have

v € AS ju(v) € ju(A)NO.

Since j,|© agrees with the canonical ultrapower map k : Ny, — Ulto(No, 1) on all ordinals
less than O, the above equivalence shows that A € L(N,,, M1). This proves (1).

Suppose the statement of (2) is false. There is an A C © such that A € HOD\N}. By
¥ -reflection (i.e. Theorem 1.1.5), there is a transitive N coded by a Suslin co-Suslin set
such that

N E ZF +DC+V = L(P(R)) + SMC + “O exists and is limit in the Solovay sequence ”
+“HOD F cof(©) = « is measurable as witnessed by f”
+“JA C ©(A € HOD\WNY)".

Take N to be the minimal such and let A witness the failure of (2) in N. Let p, j,,
Moo, ML, Ny, NI be as above but relativized to N. Working in N, there is a sequence
(Mg | B < a,f is limit) € HOD such that for each limit 3 < o, My is the least hod initial
segment of N |0y(g) such that AN 6 is definable over Mg.

Let Q = P(R)V. Fix an N} capturing a good pointclass beyond €. Now, we again do
the Q-hod pair construction in N} to obtain a pair (Q, A) such that
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1. there is a limit ordinal A€ such that for all v < A2, Q4 is a hod mouse with A9 = 3
and whose strategy W, € Q is Q-fullness preserving, has branch condensation;

2. ify << A2, Q) Dpoa Qy;

3. Q is the first sound mouse from the L[E, @, o ¥,][U, 0 Q,]-construction done in N}
that has projectum < o0(U,.»0Q,) and extends Lp®+<x2¥7(U,_,00Q,) '* and A be
the induced strategy of Q.

From the construction of Q and the properties of NV, it’s easy to verify the following:
1. Let 6o = 0(Uyx2Q,) and 1 = o( Lp*®<x2¥7 (U, .12 Q,)). Then n = (650)<.
2. A ¢ Q.
3. Q E d,o has measurable cofinality.

Let Mo (Q, A) be the direct limit (under natural embeddings) of A-iterates of Q.
Lemma 3.1.36. M. (Q,A) exists.

Proof. First note that A is Q2-fullness preserving. To see this, suppose not. Let k: Q@ — R be
according to A witnessing this. It’s easy to see that the tail Az of A acting on R|k(n) is not
in Q (otherwise, A% = A by hull condensation and hence A € Q. Contradiction.) However,
@, r¥r(y) € 2 since the iterate of N by the lift-up of k£ thinks that the fragment of its
strategy inducing @, r ¥r(,) is in 2. Now suppose M is a @, \r Vr(y)-mouse projecting
to dy= with strategy = in Q and M ¢4 R (again, Z acts on trees above dy= and moves the
predicates for @, \r Wg(,) correctly). We can compare M and R (the comparison is above
5y=). Let M be the last model on the M side and R on the R side. Then R <t M. Let
7 : R — R be the iteration map from the comparison process and ¥ be the 7 o k-pullback
of the strategy of R. Hence ¥ € Q since = € Q. ¥ acts on trees above d,o and moves
the predicate for @,.,e WV, correctly by by our assumption on = and branch condensation
of @, eWV,. These properties of ¥ imply that Q < LpQ’EDKAQ\P”(UyQQ Q,). Contradiction.
For the case that there are v < A%, 6% <7 < /%, and 7 is a strong cutpoint of R, and M
is a sound Wg(y)-mouse projecting to n with iteration strategy in €2, the proof is the same
as that of Theorem 3.7.6 in [23].

Now we show A has branch condensation (see Figure 3.2). The proof of this comes from
private conversations between the author and John Steel. We’d like to thank him for this.
For notational simplicity, we write A~ for @, eWV,. Hence, A ¢ Q and A~ € Q. Suppose
A does not have branch condensation. We have a minimal counterexample as follows: there
are an iteration i : @ — R by A, a normal tree &/ on R in the window [, ) where { < v

01f M« LpQ’ﬂaon‘I’w(U,KAQ Q,) and M extends U, e Q- then M is a mouse in N in the sense that
N knows how to iterate M for stacks above o(U <2 Q).
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are two consecutive Woodins in R such that supi’d e < &, two distinct cofinal branches of
U: band c = Ag(U), an iteration map j: Q@ — & by A, and a map o : MY — S such that
j = 0o oi. We may also assume that if R is the first model along the main branch of

the stack from Q to R giving rise to ¢ and iz : R — R be the natural map such that
ZﬁR(E) = ¢ and iz (7) = 7, then the extenders used to get from Q to R have generators

below &. This gives us sup(Hull®(£ U {p}) N~) = v where p is the standard parameter of
R. Let ® =A% and &~ = EB§<)\MZb/{ Prqu(e)- It’s easy to see that &~ € 2. By the same proof

as in the previous paragraph, ® is Q-fullness preserving. This of course implies that MY is
Q-full and ¢ ¢ Q.

Now we compare MY and MY. First we line up the strategies of MY|6(U) and MY|5(U)
by iterating them into the (Q-full) hod pair construction of some N (where y codes (z, MY,
MY)). This can be done because the strategies of MY|6(U) and of MY|5(U) have branch
condensation by Theorems 2.7.6 and 2.7.7 of [23]'!. This process produces a single normal
tree W. Let a = ®(W) and d = Ay (W). Let X = Hull®(£U{p})N~. Note that (i)’ oig! )X
C (W) and ¥ 0 ¥”X C §(W). Now continue lining up MY and MY above §(W) (using
the same process as above). We get 7 : M)¥ — K and 7 : M}¥ — K (we indeed end up
with the same model IC by our assumption on the pair (A, A7)). But then

(moiy oif)’X = (T o)) o i)’ X.
But by the fact that (i} 0 /)" X C §(W) and i} o 4”X C §(W) and 7 agrees with T above
IOW), we get
(1YY o i)' X = (i% 0 i) X.

This gives ran(iV) N ran(i}’) is cofinal in §(W), which implies @ = d. This in turns easily

implies b = c¢. Contradiction. Finally, let R and S be A-iterates of Q and let Az and Ag
be the tails of A on R and S respectively. We want to show that R and S can be further
iterated (using Ax and Ag respectively) to the same model. To see this, we compare R
and S against the Q-full hod pair construction of some Ny (for some y coding (z,R,S)).
Then during the comparison, only R and S move (to say R* and S*). It’s easy to see that
R* = &* and their strategies are the same (as the induced strategy of N; on its appropriate
background construction). []

By the properties of (Q,¥) and A, we get that p(M(Q,A)) < © and (HOD|O)Y =
Mo (Q,A)|O. Let k be the least such that p,1(Q) < dye.

Claim. M (Q,A) ¢ N

1'We note here that suppose (P,¥) is a hod pair and P F 6% has measurable cofinality. Then knowing
that all “lower level” strategies of all iterates of (P, ¥) has branch condensation does not tell us that ¥ itself
has branch condensation.
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Figure 3.2: The proof of branch condensation of A in Lemma 3.1.36

Proof. Suppose not. Let i : @ — M, (Q, A) be the direct limit map according to A. By an
absoluteness argument (i.e. using the absoluteness of the illfoundedness of the tree built in
Nlg] for g C Col(w, |IM(Q,A)|) generic over N of approximations of a embedding from Q
into M (Q, Z) extending the iteration embedding according to @z e Vs on Q|dye), we get
a map 7 such that

1. me N
2. m:Q — My (Q,A);
3. for each B < A<, 7|Q(p) is according to Wg.

4. m(p) = i(p) where p = pi(Q).

This implies that 7 = ¢ € N since Q is dye-sound and p(Q) < 5*°. But this map determines
A in N as follows: let 7 € N be countable and be according to A, N can build a tree
searching for a cofinal branch b of T along with an embedding o : M] — M (Q, A) such
that m = 0 04/ . Using the fact that A has branch condensation, we easily get that A € N.
But this is a contradiction. O]

Returning to the proof of (2), let j =45 j, : HOD — Ulto(HOD, p) and W = j((Mp | f <
a, f is limit) ) (a). Let i : Moo(Q,A) = Ulti,(M(Q, A), ) be the canonical map. Note that
A ¢ M (9, A). To see this, assume not, let R<IM(Q, A) be the first level S of M (Q, A)
such that A is definable over S.

We claim that R € N. Recall that W is the first level of M such that j(A4) N O is
definable over W. Now let

kiR = Ulto(R, p) =ager R*

be the Yp-ultrapower map. By the definition of YW and R* and the fact that they are both
countably iterable, we get that YW = R* € N. Let p be the standard parameters for R. In
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N, we can compute ThiX(© U p) as follows: for a formula 1 in the language of hod premice
and s € <%,

(¥,5) € ThF(©Up) & (1,(s)) € ThF (O Uk(s)).

Since ThY (O U k(s)) = Th¥(© U k(s)) € N, j|© € N, and k(s) € W € N, we get
ThX(©Up) € N. This shows R € N.

To get a contradiction, we show R <t NI by showing R is satisfies property (%) in N.
Let I be a countable mouse embeddable into R by a map k € N. Then we can compare
K and Q against the Q-full hod pair construction of some N, just like in the argument on
the previous page; hence we may assume K <1 Q (Q <K can’t happen because then A € N).
The minimality assumption on Q easily implies K <1 Lp*®+<x2¥7(Q|d,0). But then N can
iterate K for stacks on K above dye = d,x, which is what we want to show. The fact that
R <A NI contradicts A ¢ N1,

Next, we note that Ulto(HOD, u)|© = Ultpx(Mo(Q,A),1)|© and i|© = j|O. Let
R = ThM=(2N(© U {p}) where p = pp(Ms(Q,A)) and S = ThVIHM=(QM:1) (0 U {i(p)}).
We have that M, and § are sound hybrid mice in the same hierarchy, hence by countable
iterability, we can conclude either M, < S or § < M,,.

If M, <8, then M, € Ultp(My(Q,A), 1). This implies A € M (Q,A) by a compu-
tation similar to that in the proof of (1), i.e.

feAS MLH(Q,AN)E (i|O)(5) € M,.

This is a contradiction to the fact that A ¢ M (Q,A). Now suppose S < M,. This
then implies S € Ulto(HOD, p), which in turns implies M, (Q,A) € HOD by the following
computation: for any formula ¢ and s € ©<¥,

(¢,5) € R< HODE (¢, (j|O)(s)) € S.

This is a contradiction to the claim. This completes the proof of (2). O

Theorem 3.1.35 completes our analysis of HOD for determinacy models of the form
“V'=L(P(R)) below “ADg + O is regular.”

3.2 When V = L(R, u)

We prove the case o = 0. The other cases are similar. Throughout this section, we assume
L(R, p) E AD* + 1 is a normal fine measure on P, (R). We’ll be using the following theorem.

Theorem 3.2.1 (Woodin). Suppose L(R, p) E AD" +u is a normal fine measure on P, (R).
Then in L(R, u), there is a set A C © such that HOD = L[A].
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3.2.1 HOD'®# with M,

We assume g comes from the club filter, MSJQ exists and has Hom,, iteration strategy. We’ll
show how to get rid of these assumptions later on. We first show how to iterate M,z to
realize p as the tail filter.

Lemma 3.2.2. There is an iterate N of M2 such that letting \ be the limit of N'’s Woodin
cardinals, R can be realized as the symmetric reals over N at X and letting F be the tail filter
over N at A\, L(R, ) = L(R, F).

Proof. Let d; be the sup of the first wi Woodin cardinals of M2 and v = sup, d;. Let £ > wy
be such that H(¢) F ZFC™. In VCU@HE®) et (X; | i < w) be an increasing and cofinal
chain of countable (in V') elementary substructures of H({) and o; = RN X;. To construct
the A as in the statement of the lemma, we do an R-genericity iteration (in VCo@-HE)) a5
follows. Let Py = /\/lfj2 and assume Py € X,. For ¢ > 0, let P; be the result of iterating P;_;
in X;_; in the window between the w(i — 1)"* and wi'™ Woodin cardinals of P;_; to make
o,_1 generic. We can make sure that each finite stage of the iteration is in X;_;. Let P, be
obtained from the direct limit of the P;’s and iterating the top extender out of the universe.
Let A be the limit of Woodin cardinals in P,. It’s clear that there is a G C Col(w, < )
generic over P, such that R =4 ¢ RY is the symmetric reals over P, and L(RR, u1) is in P,[G].
Let F be the tail filter on P, (R) defined over P,[G]. By section 2, L(R, F) E F is a normal
fine measure on P, (R).

We want to show L(R, u) = L(R, F). To show this, it’s enough to see that if A C P, (R)
is in L(R, ) and A is a club then A € F. Let 7 : R<¥ — R € V witness that A is a club. By
the choice of the X;’s, there is an n such that for all m > n, 7 € X,,, and hence 7”0 5¥ C o,,.
This shows A € F. This in turns implies L(R, u) = L(R, F). O

Let MZ be the direct limit of all iterates of M,z below the first Woodin cardinal and
H* be the corresponding direct limit system. We’ll define a direct limit system H in L(R, p)
that approximates H*. Working in L(R, u), we say P is suitable if it is full (with respect
to mice), has only one Woodin cardinal 67 and P = Lp,(P|6”). The following definition
comes from Definition 6.21 in [41].

Definition 3.2.3. Working in L(R, ), we let O be the collection of all functions f such
that f is an ordinal definable function with domain the set of all countable, suitable P, and

VP € dom(f)(f(P) € 7).

—

Definition 3.2.4. Suppose f € O<%, P is suitable, and dom(f) = n. Let

— —

TYr.p) = Sup{HUUP( <O>(P)> T (n - 1)(73)) A 5P}>

and
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We refer to reader to Section 6.3 of [41] for the definitions of f—iterability, strong f—
iterability. The only difference between our situation and the situation in [41] is that our
notions of “suitable”, “short”, “maximal”, “short tree iterable” etc. are relative to the
pointclass (32)X®# instead of (X2)X®) as in [41].

Now, let (P, f) € H if P is strongly f—iterable. The ordering on H is defined as follows:

—

(P, f) <u (Q,7) < f C A Qis a psuedo-iterate of P2.

—

Note that if (P, f) <3 (Q,g) then there is a natural embedding =
We need to see that H # ().

(pr)V(Q7q) : Hpaf - HQ7§

Lemma 3.2.5. Let f € O<“. Then there is a P such that (P, f) € H.

—

Proof. For simplicity, assume dom(f) = 1. The proof of this lemma is just like the proof of
Theorem 6.29 in [41]. We only highlight the key changes that make that proof work here.

First let v,[P be as in the proof of Lemma 2.1.6. Let a be a countable transitive self-
wellordered set and x be a real that codes a. We need to modify the ()7 defined in the proof
of Lemma 2.1.6 to the structure defined along the line of Subsection 3.1.1.1. Fix a coding of
relativized premice by reals and write P, for the premouse coded by z. Then let

F&={P. | z<px and P, is a suitable premouse over a and P, is short-tree iterable}.
Let
Qa = Lp(Q37),

where Q% is the direct limit of the simultaneous comparison and {y | y <r z}-genericity
iteration of all P € F27. The definition of QF comes from Section 6.6 of [41]. As in the proof
of Lemma 2.1.6, we have:

1. letting <aﬁ | i < w) be the generic sequence for P and <Q§ | i,j < w) be the sequence

of models associated to <aﬁ | i < w) as defined in the proof of Lemma 2.1.6, we

have that the model N = L[T>°, M@):] £ “there are w? Woodin cardinals”, where
M(d% _ L[Ui Uj Q;L

2. letting A be the sup of the Woodin cardinals of N, there is a G C Col(w, < A), G is
N-generic such that letting R¥, be the symmetric reals of N[G] and F be the tail filter
defined over N[G], then L(R{, F) = L(R, p) and F N L(R, ) = p.

The second key point is that whenever P is an iterate of M.z, we can then iterate P to
Q (above any Woodin cardinal of P) so that RY can be realized as the symmetric reals for
some G C Col(w, < §%) and L(R, ) = L(R, F) and N L(R, ) = F N L(R, p), where F is
the tail filter defined over Q[G]. This is proved in Lemma 3.2.2.

128ee definition 6.20 of [41] for the definition of psuedo-iterate.
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We leave it to the reader to check that the proof of Theorem 6.29 of [41] goes through
for our situation. This completes our sketch. O

Remark: The lemma above obviously shows H # ). Its proof also shows for any f e O<v
and any (P, §) € H, there is a g-iterate Q of P such that Q is (f U g)-strongly iterable.

Now we outline the proof that MT C HOD ®#)  We follow the proof in Section 6.7 of
[41]. Suppose P is suitable and s € [OR]<¥, let Lp 5 be the language of set theory expanded
by constant symbols ¢, for each x € P|6” U {P} and d, for each x in the range of s. Since
s is finite, we can fix a coding of the syntax of Lp , such that it is definable over P|§” and
the map z — ¢, is definable over P|6”. We continue to use P to denote the Prikry forcing
in Lemma 2.1.6.

Definition 3.2.6. Let P be suitable and s = {aq,- -+, }. We set
T(P)={6 € Lps | PP (p=(0,X)Aplk (M%, a1, an, 2)ecpisr F O},

In the above definition, M is the canonical name for the model M@ defined in
Lemma 3.2.5 where (d_%>l is the Prikry sequence given by a generic G C IP. Note that Ts(P)
is a complete, consistent theory of Lp s and if s C ¢, we can think of T5(P) as a subtheory
of T;('P) in a natural way (after appropriately identifying the constant symbols of one with
those of the other). Furthermore, Ty € O for any s € [OR]<.

Let N be the direct limit of H under maps TP (0.9) for (P, f) <# (9, q). Let TP oo -
Hp, 7 — N be the direct limit map. For each s € [OR]=* and P which is strongly T-iterable,
we let

Ty = mp1.),00(Ts(P)).

Again, s C t implies T C T}, so we let
T =J{T} | s € [OR]<“}.

We have that T* is a complete, consistent, and Skolemized!® theory of £, where £ =
U{Lns | s € [OR]=¥}. We note that 7™ is definable in L(R, 1) because the map s +— T
is definable in L(R, u).

Let A be the unique pointwise definable L-structure such that A E T*. We show A is
wellfounded and let N be the transitive collapse of A, restricted to the language of premice.

Lemma 3.2.7. N} = M1

13This is because of the Prikry property of P.
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Proof. We sketch the proof which completely mirrors the proof of Lemma 6.51 in [41]. Let ¥
be the iteration strategy of M, and ¥p be the tail of X for a X-iterate P of M, 2. We will
also use (07 | a < w?) to denote the Woodin cardinals of a Y-iterate P of M,:. We write
P~ = P|((65)*)7. Working in VU« R we define sequences (N | k < w), (N¥ | k < w),
(Jra | k<1< w), (i | B <w), (Gi | b <w), and (ji, | k <1 < w) such that

(a) Ny € HT for all k;

(b) for all k, Ny.1 is a Xy -iterate of N}, (below the first Woodin cardinal of N}) and the
corresponding iteration map is jg x11;

(c) the N’s are cofinal in H™;

(d) g : N, = N is an iteration map according to ¥y, with critical point > 5{)\/’“;

(e) Gy is generic over N for the symmetric collapse up to the sup of its Woodins and
RE, = RY:

(f) N&¥ = M! (@) for some (€"); which is P-generic over L(R, i) such that (M%)~ is coded by
a real in €°(0);

(8) Jiprr s N — N,y is the iteration map;

(h) for k <1, ji; 0 ir =41 © jiy, where ji, : N — N, and i : N — NJ? are natural maps;

)

)
(i) JrrrlNy = jlﬁk+1|(Néj)7;
(j) the direct limit N of the A}’ under maps ji/;’s embeds into a X+ -iterate of MZ;
)

(k) for each s € [OR]<¥, for all sufficiently large k,
NEEdle,s] & IpeP (p=(0,X)AplF (M E ¢z, s]),

for z € /\/’,§J|5é\/’:u

Everything except for (f) is as in the proof of Lemma 6.51 of [41]. To see (f), fix a k < w.
We fix a Prikry sequence (d"); such that N is coded into d°(0) and letting o; = {y €
RY | y is recursive in d’( ) for some j < w} , then for each i, 0; is closed under the iteration
strategy Yy=. We then (inductively) for all 4, construct a sequence ((;Z | i < w) such that ¢

is a Prikry generic subsequence of d' such that M) is an iterate of M2 (see Lemma 6.49
of [41]). The sequence (€'); satisfies (f) for N}*.

Having constructed the above objects, the proof of Lemma 6.51 in [41] adapts here to
give an isomorphism between A (viewed as a structure for the language of premice) and

M. The isomorphism is the unique extension to all of A of the map o, where o(c) = x
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(for x € MO+O|56M°+°) and o(dy) = ji () for k large enough such that ji, (o) = « for all
[ > k. This completes our sketch. O

Now we continue with the sketch of the proof that HOD*(R, p1) is a strategy mouse in
the presence of Mﬁ}z. Let A, be the supremum of the Woodin cardinals of MZT . Let R*
be the reals of the symmetric collapse of a G C Col(w, < Ay) generic over M and F* be
the corresponding tail filter defined in MZ [G]. Since L(R*, F*) = L(R, p), its has its own
version of H and N, so we let

H* = HLEEF) and (NL)* = (WL)LEWF),
Let A be the restriction of ¥+ to stacks T € M|\, where
e 7 is based on M;](S{)\/“;;
o L(R*, F*) E T is a finite full stack.

We show LIMT A] = HODX®#) through a sequence of lemmas. For an ordinal o, put

o = d,
and for s = {ay, -+ ,@,} a finite set of ordinals, put
st = {aik’ T 70‘2}'

—

Lemma 3.2.8 (Derived model resemblance). Let (P, f) € H and | < 7p 7, and n =
Tp ool Let s € [OR]™, and ¢(vo, v1,v2) be a formula in the language of set theory; then
the following are equivalent

(a) LR, F*) E ¢[Moo, 1, 5%,

— — — —

(b) L(R, ) E “there is an (R, f) > (P, f) such that whenever (Q, f) >4 (R, [f), then
¢(Qv 7T('P7f‘)7(Q,f_) (ﬁ)a 5) ”'
The proof of this lemma is almost exactly like the proof of Lemma 6.54 of [41], so we omit

it. The only difference is in Lemma 6.54 of [41], the proof of Lemma 6.51 of [41], here we
use Lemma 4.2.18.

Lemma 3.2.9. A is definable over L(R, ), and hence LIMZ , A] € HOD*®®

Proof. Suppose f € O is definable in L(R, u) by a formula ¢ and s € [OR|<¥, then we let
f* € OFRF7) be definable in L(R*, F*) from v and s*.

Sublemma 3.2.10. Let T be a finite full stack on Mjo\éé\/l‘; in L(R*, F*) and let b =
Ype (T). Then b respects f*, for all f € O.

14See Definition 6.20 of [41] for the precise definition of finite full stacks.
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The proof of Sublemma 3.2.10 is just like that of Claim 6.57 in [41] (with appropriate
use of the proof of Lemma 4.2.18. Sublemma 3.2.10 implies M, is strongly f*-iterable in
L(R*, F*) for all f € O. Sublemma 3.2.10 also gives the following.

Sublemma 3.2.11. Suppose Q is a psuedo-iterate® of My, and T is a mazimal tree on Q
in the sense of L(R*, F*). Let b= A(T); then for all n < 62, the following are equivalent:

(a) if (n) =¢&;

(b) there is some f € O such that n < 7y s+ and exists some branch choice'® of T that
respects f* and il (n) = &.

Since the (g +)’s sup up to 62 and i, is continuous at 6<, clause (b) defines A over

L(R, p). O
We have an iteration map
Too : Noo = N
which is definable over L(R*, F*) by the equality
2>

Too = UFeOT (N, ),00°

By Boolean comparison, m, € LM A]. This implies N is the direct limit of all A-iterates
of N, which belong to M7 and 7, is the canonical map into the direct limit. Lemma 3.2.8
also gives us the following.

Lemma 3.2.12. For alln < 56\4‘;, Too(N) = 1*.
Finally, we have

Theorem 3.2.13. Suppose Mfﬂ exists and is (w, OR, OR)-iterable. Suppose p is the club
filter on P, (R) and L(R,u) & AD" + u is a normal fine measure on P, (R). Then the
following models are equal:

1. HOD*®#)
2. LML, 7],
3. LIMI A
Proof. Since 1o, € LIML, A], LIMZL, 7] € LIMZL, A]. Lemma 3.2.9 implies LIMT,A] C
HODX®# It remains to show HOD*®® C LM, 7.]. By Theorem 3.2.1, in L(R, ),
there is some A C O such that HOD = L[A]. Let ¢ define A. By Lemma 3.2.8
aeAs LML ] EMEE (1IF LR, F) E ¢la’]).

By Lemma 3.2.12, a* = 7o («) and hence the above equivalence defines A over LM 7).
This completes the proof of the theorem. n

15See Definition 6.13 of [41].
16See Definition 6.23 of [41].
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3.2.2 HOD'®# without M’,

We now describe how to compute HOD just assuming V = L(R, u) satisfying AD". Let
H be as above. The idea is that we use X; reflection to reflect a “bad” statement ¢ (like
“Ni is illfounded” or “HOD # L(NF,A)”) to a level L.(R, 1) where k < §% (i.e. we have
that L. (R, u) E ¢). But then since p N L (R, ) comes from the club filter, all we need to
compute HOD in L, (R, i) is to construct a mouse N related to N just like Mﬁz related to
L(R, ). Once the mouse N is constructed, we sucessfully compute HOD of L, (R, u) and
hence show that L,(R, ) E =p. This gives us a contradiction.

We now proceed to construct A. To be concrete, we fix a “bad” statement ¢ (like
“HOD is illfounded”) and let N = L.(R,u) be least such that N E (1) where (T) =
“MC + AD" + DC+ ZF~ + 0 = Oy + 7. Let ® = (X2)V, I'* = P(R)Y and U be the
universal ®-set. We have that ® is a good pointclass and Env(®) = I'* by closure of N. Let
B = (B; | i <w) be a sjs sealing Env(®) with each B; € N and By = U. Such a B exists
(see Section 4.1 of [46]).

Because MC holds and T* & A?, there is a real x such that there is a sound mouse M
over x such that p(M) = 2 and M doesn’t have an iteration strategy in N. Fix then such
an (z, M) and let 3 be the strategy of M. Let I' C A? be a good pointclass such that
Code(X), B,U,U¢ € Ar. By Theorem 10.3 in [35], there is a z such that (NV*, 4., .) Suslin
captures C'ode(Y), B,U,U-.

Because B is Suslin captured by N > we have (6})N?-complementing trees T, S € N7
which capture B. Let # be the least cardinal of A7 which, in N* is < d,-strong.

Claim 1. N E “k is a limit of points 7 such that Lp" (N7|n) E “n is Woodin”.

Proof. The proof is an easy reflection argument. Let A = 6 and let 7 : M — N\ be an
elementary substructure such that

1. T, S € ran(m),
2. if cp(7) = n then M,N; C M, m(n) =90, and n > k.

By elementarity, we have that M F “n is Woodin”. Letting 7=1((T, S)) = (T, S), we have
that (T,S) Suslin captures B over M at n. This implies that M is ®-full and in particular,
Lp* (N7|n) € M. Therefore, Lp" (Nn) E “n is Woodin”. The claim then follows by a
standard argument. O

Let now (n; : i < w?) be the first w? points < & such that for every i < w, Lp" (NJ|n;) &
“n; is Woodin”. Let now (N; : i < w?) be a sequence constructed according to the following
rules:

"This means that whenever g is < (57)V*-generic over N, then in N*[g], p[T] and p[S] project to
complements.
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1. Ny = LIEPV: I,
2. if i is limit, V7 = U,;-;N; and N; = (L[E][N7])NZ 7,
3. Nip1 = (L[E][NG]N e,

Let N2 = Ujc,2 N,

Claim 2. For every i < w?, N2 E “n; is Woodin” and N_z|(n M = Lp™" (N;).
Proof. 1t is enough to show that

1. Nip1 E “n; is Woodin”,

2. N = Vi,

3. Nipa| ()N = Lp™ (M),

4. if 7 is limit, then Nj|((sup;.; n;“)N) = Lp" (V).

To show 1-4, it is enough to show that if W < N, is such that p,(W) < n; or if ¢ is limit
and W<N; is such that p, (W) < sup,; nj then the fragment of YW’s iteration strategy which
acts on trees above 7; (sup,;7n; respectively) is in I'". Suppose first that i is a successor
and W < Ny is such that p,(W) < ;. Let £ be such that the if S is the £&th model of
the full background construction producing A, then C(S)® = W. Let 7 : W — S be the
core map. It is a fine-structural map but that it irrelevant and we surpass this point. The
iteration strategy of W is the m-pullback of the iteration strategy of S. Let then v < ;14
be such that S is the £&th model of the full background construction of NV|v. To determine
the complexity of the induced strategy of S it is enough to determine the strategy of N¥|v
which acts on non-dropping stacks that are completely above 7;. Now, notice that by the
choice of 7,1, for any non-dropping tree 7 on N}|v which is above 7; and is of limit length,
if b= %(T) then Q(b,T) exists and Q(b, T) has no overlaps, and Q(b, T) < Lp"" (M(T)).
This observation indeed shows that the fragment of the iteration strategy of Nf|v that acts
on non-dropping stack that are above 7; is in I'*. Hence, the strategy of W is in I'*.

In the case i < w? is limit, the argument in the previous section that an iterate of M,
extends a Prikry generic shows that W cannot project across sup;<;n; and that W<iLp"™ (N}).
This completes the proof of the claim. n

Working in L(R, z1), we now claim that there is W < Lp(N,,2) such that p(W) < n,2. To
see this suppose not. It follows from MC that Lp(N:) is 32-full. We then have that z is
generic over Lp(N,2) at the extender algebra of N2 at 1. Because Lp(N,z2)[z] is X2-full, we
have that M € Lp(N,2)[z] and Lp(N_z2)[z] E “M is n,.z-iterable” by fullness of Lp(N_z2)[z].

18C(8S) denotes the core of S.
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Let S = (L[E][z]}V-2l#l"2 where the extenders used have critical point > 7. Then working
in M_2[z] we can compare M with S. Using standard arguments, we get that S side doesn’t
move and by universality, M side has to come short (see [23]). This in fact means that
M < S. But the same argument used in the proof of Claim 2 shows that every I < S has
an iteration strategy in I'*, contradiction!

Let .2 = sup, .2 n; and W < Lp(N,2) be least such that p,(W) < 1,2.We can show the
following.

Lemma 3.2.14. W = Je1(N,2) where & is least such that for some 7, Je(N,2) E “ZF +7
19 »

is a limit of Woodin cardinals + (T) holds in my derived model below 7".
Since the proof of this lemma is almost the same as that of Claim 7.5 in [41], we will not
give it here. However, we have a few remarks regarding the proof:

e we typically replace N by a countable transitive N elementarily embeddable into N
since the strategy of W is not known to extend to VR  Having said this, we will
confuse our N with its countable copy.

e We can then do an R¥-iteration of WV to “line up” its iterate with a P¥-generic.

Asides from these remarks, everything else can just be transferred straightforwardly from
the proof of Lemma 7.5 in [41] to the proof of Lemma 3.2.14. Now we just let N be the
pointwise definable hull of W|{. Letting A’s unique iteration strategy be A, we can show A
is ®-fullness preserving and for any f € (O<)N there is a strongly j?—iterable, N-suitable P
(in fact, P = Q~ for some A-iterate Q of N). We leave the rest of the details to the reader.

3.2.3 HODLI®w) for o > 0

For 0 < a < wy, the HOD computation for AD"-models of the form L(R, y,) is parallel to
that of the case a = 0. Therefore, we just state the results here. The notations used here are
from the previous sections or are just the obvious adaptation of the notations used before.

Theorem 3.2.15. Suppose o < wy and suppose V = L(R, j1,) E “AD" + i, is a normal fine
measure on X,.” Then HOD = L(Mu,, \), where My, is a premouse with w*™ Woodin
cardinals if o < w and w* Woodin cardinals if & > w and A is the strategy acting on finite
stacks of normal trees based on M|O in M, which picks the unique branch respecting f* for
all f € O. Here © is the first Woodin cardinal of My, and o(M,) is the sup of the Woodin
cardinals of M.

YHere “derived model” means the model L(R*, F*) where R* is the symmetric reals for the Levy collapse
at 7 and F* is the corresponding tail filter.
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There’s not much we can say about HOD of AD*-models of the form L(R, s, ) at this
point.

Question.  What is HOD when V = L(R, p,, ) satisfies “AD™ + p,, is a normal fine
measure on X, ”? Is ORM= the supremum of a measurable limit of Woodin cardinals in

LIM.]?



97

Chapter 4

The Core Model Induction

4.1 Framework for the Induction

This section is an adaptation of the framework for the core model induction developed in
[22], which in turns builds on earlier formulations of the core model induction in [26]. For
basic notions such as model operators, mouse operators, F-mice, Lp!, Lp", condenses well,
relativizes well, the envelope of an inductive-like pointclass ' (denoted Env(I")), iterability,
quasi-iterability, see [46].

Suppose (P,Y) is a hod pair such that ¥ has branch condensation. We assume here
that P is countable and X is at least (w, ¢’ + 1)-iterable. Hod pairs constructed in this
thesis satisfy this kind of iterability. One purpose of demanding this is to make sense of the
structure K*(R).

A plain X-mouse operator J is defined as follows. There is a formula ¢ in the language
of ¥-premice and a parameter a such that for each z € dom(J) (x is transitive containing
a), J(z) is the least M <1 Lp*(z) satisfying [z, a).

If T' is inductive-like such that ¥ € Ar and A = {A,, | n < w} is a self-justifying system
in Env(T'(x)) for some z € R such that Ay is the universal T set, then Jg, 4! is the mouse
operator defined as: Jy, 4(M) = (M*, €, B), where M = Lp_*(M) and B is the term
relation for A (see Definition 4.3.9 of [46]). Jx 4 is called a term relation hybrid mouse
operator.

Typically, mouse operators defined above have domain (a cone of) H,,. In this thesis,
we’ll need them to be defined on a bigger domain. For a mouse operator J as above, we
let Fy be the corresponding model operator as defined in Definition 2.1.8 of [46]. F is just
the stratified version of J. We are now in a position to introduce the core model induction
operators that we will need in this thesis. These are particular kinds of model operators that
are constructed during the course of the core model induction. These model operators come
from mouse operators that condense well and relativize well and determine themselves on

"'When T is clear, we just write Js 4.
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generic extensions.

Definition 4.1.1 (Core model induction operators). Suppose (P,X) is a hod pair such that
Y2 has branch condensation. We say F' 1s a ¥ core model induction operator or just Y-cmi
operator if one of the following holds:

1. For some a € OR, letting M = K*(R)|a, M = AD" + MC(X)?, one of the following
holds:

(a) F = Fj (as in the notation of Definition 2.1.8 of [46]), where J € J(M) is a
plain Y-model operator which condenses, relativizes well, and determines itself on
generic extensions.

(b) For some swo b € HC® and F is a X-model operator Fy coding the X-A-mouse
operator J = Jx 4 defined on a cone above b and A = (A; 1 i < w) is a self-
justifying-system such that A € OD{,\?E’m for some x € b and o ends either a weak
or a strong gap in the sense of [37] and A seals a gap that ends at o*.

(c) For some H, H satisfies a or b above and for some n < w, F is the v — M# (z)
operator or for some b € HC, F is the w;-iteration strategy of M7 (b).

2. For some a € HC and M < Lp*(a), letting A be M’s unique strategy, the above
conditions hold for F with L*(R) replacing M?®.

As mentioned above, the Y-cmi operators all condense, relativize well, and determine
themselves on generic extension. When ¥ = () then we omit it from our notation. Recall
that under AD, if X is any set then 0y is the least ordinal which isn’t a surjective image of
R via an ODx function. The following is the core model induction theorem that we will use.

Theorem 4.1.2. Suppose (P,Y) is a hod pair such that ¥ has branch condensation and for
every S-cmi operator F, MY exists. Then K®(R) £ AD* + 605, = ©.

The proof of Theorem 4.1.2 is very much like the proof of the core model induction
theorems in [20], [26] (see Chapter 7) and [34]. To prove the theorem we have to use the
scales analysis for K*(R). The readers familiar with the scales analysis of K (R) as developed
by Steel in [37] and [38] should have no problem seeing how the general theory should be
developed. However, there is a point worth going over.

2MC(A) stands for the Mouse Capturing relative to A which says that for z,y € R, x is OD(A, y) iff = is
in some A-mouse over y.

3b is self well-ordered, i.e. there is a well-order of b in Ly [b].
4This means that A is cofinal in Env(T'), where I' = 2. Note that Env(T') = P(R)M if a ends a weak

gap and Env(T") = P(R)KE(R)‘(O‘“) if o ends a strong gap.
SHere LA(R) is constructed up to ya, where 7 is the largest v such that A is a y-iteration strategy. In
this thesis, all A that we encounter have v, > © so we can confuse LQA (R) with LA(R).
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Suppose we are doing the core model induction to prove Theorem 4.1.2. During this
core model induction, we climb through the levels of K*(R) some of which project to R
but do not satisfy that “© = 6x”. It is then the case that the scales analysis of [37], [38],
and [27] cannot help us in producing the next “new” set. However, such levels can never be
problematic for proving that AD* holds in K*(R). This follows from the following lemma.

Lemma 4.1.3. Suppose (P,X) is a hod pair such that ¥ has branch condensation and for
every X-cmi operator F, /\/liw exists. Suppose M < K=(R) is such that p(M) = R and
ME “© # 05”. Then there is N <t K*(R) such that M <N, N E “AD" +© = 0y”.

Proof. Since M E “© # 0y it follows that P(R)M N (K*(R))M # P(R)M. It then follows
that there is some a < o(M) such that p(Ml|a) = R but Mla 4 (KZR)M. Let 7 :
N — M]a be such that N is countable and its corresponding wi-iteration strategy (coded
as a set of reals) is not in M. Let A be the iteration strategy of N'. Then a core model
induction through L*(R) shows that LA(R) & AD" (this is where we needed clause 2 of
Definition 4.1.1). However, it’s clear that LA(R) F “© = 0y”. It then follows from an
unpublished result of Sargsyan and Steel that L*(R) F P(R) = P(R) N K*(R). Let then
K < (K*(R))*"® be such that p(K) =R, K E © = 0y and A | HC' € K (there is such a
K by an easy application of ¥%(3) reflection). Since countable submodels of K are iterable
, we have that K < K*(R). Also we cannot have that K < M as otherwise A would have a
strategy in M. Therefore, M < K. m

We can now do the core model induction through the levels of K*(R) as follows. If we
have reached a gap satisfying “© = #x” then we can use the scales analysis of [27] to go
beyond. If we have reached a level that satisfies “O # s, then using Lemma 4.1.3 we can
skip through it and go to the least level beyond it that satisfies “© = 05”. We leave the rest
of the details to the reader. This completes our proof sketch of Theorem 4.1.2. In Subsection
4.2.5, we will outline a different (and somewhat simpler) approach from [46] to doing the
core model induction.

Finally, let us remark that many results using the core model induction seem to be relying
on the following conjecture.

Conjecture 4.1.4 (Quasi-iterability conjecture). ®Suppose (P,X) is a hod pair such that %
has branch condensation. Let I' be an inductive-like pointclass such that Ar is determined,
Y € Ar and T-MC(X)7 holds. Then for every A € Env(T), there is a strongly A-quasi-
iterable Y -premouse.

The above conjecture is particularly useful in core model induction arguments carried
out in some generic extension V]g]. It implies that in 1b) of Definition 4.1.1, there is (in

6 A version of this has been proved by Woodin, where “strongly A-quasi iterable” is replaced by “strongly
A-iterable”.

"This means for every transitive a € HC, and every b € Cr(a), we have b € Lp'*(a), which consists of
3 mice M over a such that M is sound, p,, (M) = a, and M’s unique iteration strategy is in T
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V|g]) a I-suitable X-premouse N where I' = ¥ and an (w;,w;) strategy ¥ of A guided
by A, hence ¥ condenses well. By the method of boolean comparison, we can get a pair
(NV,X) € V. One can then use the strength of the hypothesis satisfied by V' to continue with
the core model induction. In this thesis, we don’t assume Conjecture 4.1.4 as core model
inductions are carried out in V' and term relation hybrids are sufficient.

4.2 O > wy; Can Imply AD"

4.2.1 Introduction

It is well-known that the existence of an L(R, u)® that satisfies ZF +DC + pu is a normal
fine measure on P, (R)? is equiconsistent with that of a measurable cardinal. The model
L(R, ;1) obtained from standard proofs of the equiconsistency satisfies ©° = w, and hence
fails to satisfy AD. So it is natural to consider the situations where L(R, u) F © > wy and
try to understand how much determinacy holds in this model.

To analyze the sets of reals that are determined in such a model, which we will call
V', we run the core model induction in a certain submodel of V' that agrees with V' on all
bounded subsets of ©. This model will be defined in the next section. What we’ll show is
that K(R) F AD". We will then show ©X® = © by an argument like that in Chapter 7 of
[26]. Finally, we prove that

P(R)N K(R) =P(R),

which implies L(R, ) F AD. We state the main result of Section 4.2.

Theorem 4.2.1. '' Suppose V = L(R, u) E ZF+ DC + © > wy+u is a normal fine measure
on P, (R). Then L(R, u) F AD".

Woodin has shown the following.

Theorem 4.2.2 (Woodin). Suppose L(R, ) E AD + i is a normal fine measure on Py, (R).
Then L(R, u) E ADY + u is unique.

Combining the results in Theorem 4.2.2 and Theorem 4.2.1, we get the following.

Corollary 4.2.3. Suppose V = L(R, u) F ZF 4+ DC + © > wy + p is a normal fine measure
on P, (R). Then L(R,u) E AD" + p is unique.

8By L(R, 1) we mean the model constructed from the reals and using p as a predicate. We will also use
the notation L(R)[u] and L, (R)[u] in various places in the paper.

9A measure y on P, (R) is fine if for allz € R, pu({o € P, (R) | z € 0}) = 1. pis normal if for all functions
F:P, (R) = P, (R) such that p({o | F(o) Co}) =1, there is an x € R such that y({o | x € F(0)}) = 1.

109 is the sup of all a such that there is a surjection from R onto «

' The theorem is due independently to W. H. Woodin and the author.
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The equiconsistency result we get from this analysis is the following.
Theorem 4.2.4. The following theories are equiconsistent.

1. ZFC + There are w?> Woodin cardinals.

2. ZF+ DC+ AD' + There is a normal fine measure on P, (R).

3. ZF4+ DC + © > wy + There is a normal fine measure on P,, (R).

Proof. The equiconsistency of (1) and (2) is a theorem of Woodin (see [48] for more infor-
mation). Theorem 4.2.1 immediately implies the equiconsistency of (2) and (3). O

4.2.2 Basic setup

In this section we prove some basic facts about V' assuming V = L(R, u) F ZF +DC +
is a normal fine measure on P,, (R). First note that we cannot well-order the reals hence
full AC fails in this model. Secondly, w; is regular; this follows from DC. Now u induces a
countably complete nonprincipal ultrafilter on wq; hence, w; is a measurable cardinal. DC
also implies that cof(ws) > w. We collect these facts into the following lemma, whose easy
proof is left to the reader.

Lemma 4.2.5. Suppose V.= L(R, u) E ZF+ DC + p is a normal fine measure on P, (R).
Then

1. wq is reqular and in fact measurable;

2. coflwy) > w;

3. AC fails and in fact, there cannot be an wi-sequence of distinct reals.
Lemma 4.2.6. O is a reqular cardinal.

Proof. Suppose not. Let f: R — © be a cofinal map. Then there is an x € R such that f
is OD(u, z). For each a < O, there is a surjection g, : R — « such that g, is OD(u) (we
may take g, to be the least such). We can get such a g, because we can “average over the
reals.” Now define a surjection g : R — O as follows

9(Y) = gr@wo) (Y1) where y = (yo, y1).
It’s easy to see that ¢ is a surjection. But this is a contradiction. O]
Lemma 4.2.7. w; is inaccessible in any (transitive) inner model of choice containing w .

Proof. This is easy. Let N be such a model. Since P = L(N, ) is also a choice model and
wy is measurable in P, hence w; is inaccessible in P. This gives w; is inaccessible in N. [
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Next, we define two key models that we’ll use for our core model induction. Let
M = HJGPwl (R)Mg/,u where ]\4(7 = HODUU{U#}

and,

H =1l,ep,, ®)Ho /1 where H, = HODI{V(I;H}'

We note that in the definition of M, and H, above, ordinal definability is with respect to
the structure (L(R, p), ).

Lemma 4.2.8. Lds theorem holds for both of the ultraproducts defined above.

Proof. We do this for the first ultraproduct. The proof is by induction on the complexity of
formulas. It’s enough to show the following. Suppose ¢(z,y) is a formula and f is a function
such that VoM, F Jrv¢lx, f(0)]. We show that M F x|z, [f],).

Let g(o) = {z € o | (Jy € OD(u, 2))(My F ¢y, f(o])}. Then V;og(o) is a non-empty
subset of o. By normality of y, there is a fixed real x such that V},ox € g(0). Hence we can
define h(o) to be the least y in OD(u,x) such that M, E ¢y, f(o)]. It’s easy to see then
that M & @[[h],, [f]u]. o

By Lemma 4.2.8, M and H are well-founded so we identify them with their transitive
collapse. First note that M F ZF 4+ DC and H F ZFC. We then observe that Q = [Ao.w],, is
measurable in M and in H. This is because w; is measurable in M, and H, for all . Note
also that Q > © as Vo, ©" is countable and P(w;)" is countable. The key for this is
just an easy fact stated in Lemma 4.2.5: There are no sequences of w; distinct reals. By a
standard Vopenka argument, for any set of ordinals A € M of size less than 2, there is an
H-generic G4 (for a forcing of size smaller than €2) such that A € H[G4] C M and 2 is also
measurable in H|[G 4].

Lemma 4.2.9. P(R) C M.

Proof. Let A C R. Then there is an x € R such that A € OD(z, ). By fineness of u,
(V%o)(x € o) and hence (V;0)(ANo € OD(x, i1,0)). So we have (Vio)(ANo € M,). This
gives us that A = [Ao.ANo], € M. O

Lemma 4.2.9 implies that M contains all bounded subsets of ©.

4.2.3 Getting one more Woodin

By the discussion of the last section, to show AD holds in K(R), it is enough to show
that if F' is a cmi operator (that is defined on a cone on H,, above some a € H,,, i.e.
a € Ly[x]'?), then M*F (z) exists (and is (wy,w;)-iterable) for all z € H,, coding a. We may

12This is another way of saying F is defined on the cone above a.
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as well assume F' is a model operator that relativizes, condenses well, and determines itself
on generic extensions. Recall that by the discussion of Subsection 4.2.2, since we can lift F
to the cone on HY above a, we can then lift the M?’F—operator to the cone on HJ! above a
and for each z € HY coding a, we can also show M"" () has an (Q,Q)-iteration strategy
(in M).13

Theorem 4.2.10. Suppose F' is a model operator that relativizes, condenses well, and de-
termines itself on generic extensions. Suppose F' is defined on the cone on H,, above some
a € H, (and hence defined on the cone on HM above a). Then M (x) exists for all
x € H,, coding a. Furthermore, M () is (wy,w:)-iterable, hence (92, Q)-iterable in M.

Proof. To simplify the notation, we will prove that Mq(x) exists for all x € H,,. The proof
relativizes to any model operator F' as in the hypothesis of the lemma.

To start off, it’s easy to see that in M, the #-operator is total on Hg. This is because €2
is measurable in M. The same conclusion holds for H and any generic extension J of H by
a forcing of size smaller than €2 and J C M.

First, we prove

Lemma 4.2.11. For each = € R, M¥ () euists.

Proof. This is the key lemma. For brevity, we just show Mfﬁ exists. The proof relativizes
trivially to any real. Suppose not. Then in H, K (built up to ) exists and is Q + 1
iterable. This is because in H, the #-operator is total on Hg. Let kK = w;. By Lemma
4.2.7, K is inaccessible in H and in any set generic extension J of H and J C M. By [33],
K = KIS for any H-generic G for a poset of size smaller than 2. We use K to denote K.

Claim. (%)% = (kT)H.

Proof. The proof follows that of Theorem 3.1 in [24]. Suppose not. Let A = (x7)®. Hence
A < (kT)H. Working in H, let N be a transitive, power admissible set such that “N C N,
V. UJE, € N, and card(N) = k. We then choose A C & such that N € L[A] and
KEAN = KA, A = (505 and card(N)EA4 = k. Such an A exists by Lemma 3.1.1 in
[24] and the fact that A\ < (kT).

Now, since A% exists in H, (x*)"4 < (s7). By GCH in L[A], card” (P(x) N L[A]) = k.
So in M, there is an L[A]-ultrafilter U over x that is nonprincipal and countably complete
(in M and in V). This is because such a U exists in V' as being induced from p and since
U can be coded as a subset of w{ = k, U € M. Let J be a generic extension of H (of size
smaller than Q) such that U € J. From now on, we work in J. Let

j: LIA] = Ult(L[A],U) = L[j(A)]

13We’ll sometimes say a model operator F is total to mean that it’s defined on a cone above a certain a
when we don’t need to specify what a is.
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be the ultrapower map. Then j is well-founded, crit(j) = k, A = j(A) Nk € L[j(A)]. So
L[A] C L[j(A)]. The key point here is that P(x) N KA = P (k) N KLU To see this, first
note that the C direction holds because any k-strong mouse in L[A] is a k-strong mouse in
L[j(A)] as RN L[A] = RN L[j(A)] and L[A] and L[j(A)] have the same < k-strong mice.
To see the converse, suppose not. Then there is a sound mouse M <« KLUV such that
M extends K|\ and M projects to x. The iterability of M is absolute between J and
L[j(A)], by the following folklore result

Lemma 4.2.12. Assume ZFC + “there is no class model with a Woodin.” Let M be a
transitive class model that satisfies ZFC + “there is no class inner model of a Woodin”.
Futhermore, assume that wy € M. Let P € M be a premouse with no definable Woodin.
Then

P is a mouse < M E P is a mouse.

For a proof of this, see [25]. By a theorem of Ralf Schindler which essentially states that
K is just a stack of mice above wy (here wy < k), we have M < K’ = K. But A = (k")
and M < K|A. Contradiction.

Now the rest of the proof is just as in that of Theorem 3.1 in [24]. Let E; be the
superstrong extender derived from j. Since card(N) = k and A < kT, a standard argument
(due to Kunen) shows that F,G € L[j(A)] where

F = E; 0 ([j(r)]< x K*)

and,
G = B; 0 ([j(x)] x N).

The key is card(N) = k and card(K NP (k)" = k. We show F € L[j(A)]. The proof
of G € L[j(A)] is the same. For a € [j(r)]<¥, let (B, | @ < k) € L[A] be an enumeration of
P([k]leh) N KHA = P([k]leh) N KEUA) and

E,={B, | a<kNa€j(B,)}

Then E, € L[j(A)] because (j(B,) | a < k) € L[j(A)].

Hence (KU F) and (N, G) are elements of L[j(A)]. In L[j(A)], for cofinally many
€ < j(k), F|€ coheres with K and (N, G) is a weak A-certificate for (K, F' | €) (in the sense
of [24]), where

A=JP(sIM"
n<w

By Theorem 2.3 in [24], those segments of F are on the extender sequence of K4 But
then & is Shelah in KXV which is a contradiction. O

The proof of the claim also shows that (k7)X = (k%) for any set (of size smaller than
Q) generic extension J of H. In particular, since any A C w; = r belongs to a set generic
extension of H of size smaller than , we immediately get that ()% = wy. This is impossible



CHAPTER 4. THE CORE MODEL INDUCTION 105

in the presence of ;."* To see this, let C = (Cy | @ < w,) be the canonical O,-sequence in
K. Working in V, let v be the measure on P, (ws) induced by u defined as follows. First,
fix a surjection 7 : R — wy. Then 7 trivially induces a surjection from P,, (R) onto Py, (ws)
which we also call 7. Then our measure v is defined as

Acver A €

Now consider the ultrapower map j : K — Ult(K,v) = K* (where the ultrapower uses all
functions in V). An easy calculation gives us that j"wy; = [Ao.o], and A € v &< j"ws € j(A).
So let v = supj”w, and D = j(C) € K*. Note that (x7)5" = w, and since K* E ZFC, w, is
regular in K*. Also v < j(wy ). Now consider the set D,. By definition, D., is an club in v
so it has order type at least wo. However, let C' = (o < ws | cof(a) = w). Then j(C) = j/C
is an w-club in 7. Hence £ = D, N j(C) is an w-club in 7. For each o € limE C E,
D, = D,Na and D, has order type strictly less than w; (this is because cof(a) = w). This
implies that every proper initial segment of D, has order type strictly less than w; which is
a contradiction. O

The lemma shows that the M7 -operator is total on H, (in M as well as in V). This
implies that Vjo, M, is closed under the M#—operator on H,. By Lés, M is closed under

the /\/lfé—operator on HY. Similar conclusions hold for H as well as its generic extensions in
M. O

The above proof relativizes to any model operator F' in a straightforward way with only
obvious modifications. In particular, we replace ./\/l% by MQ’F, K now is obtained from the
Kt _construction, L[A] is replaced by L¥[A], and the model M in Lemma 4.2.12 is required
to be closed under F. By the discussion in Section 4.1, we have proved.

Lemma 4.2.13. M, =4; K(R) E AD" + © = 0.

Remark. ADX® is the most amount of determinacy one could hope to prove. This is
because if p comes from the Solovay measure (derived from winning strategies of real games)
in an AD* +ADg +SMSC universe, call it V (any ADg+V = L(P(R))-model below “ADg+©
is regular” would do here), then L(R, )" NP(R) C K(R)Y. This is because u is OD hence
P(R) N L(p,R) C Py, (R). Since AD* + SMC gives us that any set of reals of Wadge rank
< fp is contained in an R-mouse (by an unpublished result of Sargsyan and Steel but see
[35]), we get that P(R) N L(p, R) € K(R) (it is conceivable that the inclusion is strict). By
Theorem 4.2.2, L(R, ) E © = 6y, which implies L(R, u) F V = K(R). Putting all of this
together, we get L(R,u) F K(R) = L(P(R)) + AD™.

The above remark suggests that we should try to show that every set of reals in V =
L(R, u) is captured by an R-mouse, which will prove Theorem 4.2.1. This is accomplished
in the next three sections.

14The argument we're about to give is based on Solovay’s proof that square fails above a supercompact
cardinal.
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4.2.4 OK®R —g

Suppose for contradiction that ©K® < ©. For simplicity, we first get a contradiction
from the smallness assumption that “there is no model containing R U OR that satisfies
AD' + © > #y”. The argument will closely follow the argument in Chapter 7 of [26]. All of
our key notions and notations come from there unless specified otherwise. Let ©* = @K ®),
Let My, be HODX® | ©*. Then M., = M% | ©* where MZ is the limit of a directed
system (the hod limit system) indexed by pairs (P, A) where P is a suitable premouse, A is
a finite sequence of OD sets of reals, and P is strongly /T—quasi—iterable in K(R). For more
details on how the direct limit system is defined, the reader should consult Chapter 7 of [26].
Let I be the collection of ODX® sets of reals. For each o € P,, (R) such that Lp(c) = AD™,
let MZ and I'? be defined the same as My, and I" but in Lp(c). Let 87 = o(MZ). By
ADE®) and ©* < ©, we casily get

Lemma 4.2.14. V:0(Lp(co) E AD*, and there is an elementary map m, : (Lp(o), M, I?)
— (K(R), M, T).)

Proof. First, it’s easily seen that K'(R) F AD" implies Vo Lp(c) F ADT. We also have that
letting v be the induced measure on P, (K (R))

ViX X < K(R).

The second clause of the lemma follows by transitive collapsing the X’s above. Note that
V%o Lp(o) is the uncollapse of some countable X < K (R) such that R* = ¢. This is because
if M is an R-mouse then VX M € X. The 7,’s are just the uncollapse maps. O

We may as well assume (Vo) (Lp(o) = Lp(c)¥®) as otherwise, fix a o such that Lp(o) E
ADT and M< Lp(o) a sound mouse over o, p,(M) = o and M ¢ Lp(c)X® . Let A be
the strategy of M. Then by a core model induction as above, we can show that L*(R) F
AD" +6 > . Since this is very similar to the proof of PD, we only mention a few key points
for this induction. First, A is a wy +1 strategy with condensation and Vo A | M, € M, and
Vio A | H,JM] € H,[M]. This allows us to lift A to a Q + 1 strategy in M and construct
K" up to Q inside [], H,[M]. This is a contradiction to our smallness assumption.

Lemma 4.2.15. V;0 MY, is full in K(R) in the sense that Lp(MZ,) F ©7 is Woodin.

Proof. First note that Lpy(o) =gy Lp(Lp(c)) E ADT + © = 6, because P(R)LP2(?) =
P(R) (@), So suppose N7 > MY, is the Q-structure. It’s easy to see that N7 € Lp,(o) and
is in fact OD there.

Next we observe that in Lps(0), © = ©7. By a Theorem of Woodin, we know HODM":()
©7 is Woodin (see Theorem 5.6 of [13]). But this is a contradiction to our assumption that
N7 is a Q-structure for ©°. O
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The last lemma shows that for a typical o, Lp,(MZ,) is suitable in K (R). Let MZ" be
the hod limit computed in Lp(c). Let (I9)<¢ = {A, | n < w} and for each n < w, let A/,
be such that N, is strongly /fn—quasi—iterable in Lp(o) such that M%" is the quasi-limit of
the N,,’s in Lp(o). Let MZ* be the quasi-limit of the A,’s in K(R). We’ll show that 7/
is cofinal in ', MZ* = MZ* = Lp,(MZ,) and hence M%7 is strongly A-quasi-iterable in
K(R) for each A € 7/I'?. From this we’ll get a strategy X, for MZ" with weak condensation.
This proceeds much like the proof in Chapter 7 of [26].

Let T be the tree for a universal (X2)X®_set; let 7 = [[, T and T** = [, T*. To show
(V50)(myI7 is cofinal in T') we first observe that

(Vuo) (LT, MZ |07 = MT,),

that is, 7* does not create Q-structures for M2 . This is because M, is countable, wy is in-
accessible in any inner model of choice, L[T*, M ]|lw} = LT, MZ]|w{, and L|T, M,]|©7 =
M7, by Lemma 4.6. Next, let E, be the extender derived from 7, with generators in [y]<¥,
where v = supn/07. By the above, E, is a pre-extender over L[T*, M.

Lemma 4.2.16. (V:io)(Ult(L[T*, M%), E,) is well founded).

Proof. The statement of the lemma is equivalent to

Ult(L[T™, M ], 11, E, /1) is wellfounded. (%)

1[5 =E.

where E, is the extender from the ultrapower map j,, by p (with generators in [£]<*, where
&= supj:j@*). This uses normality of ;. We should metion that the equality above should
be interpreted as saying: the embedding by II, E,/u agrees with j, on all ordinals (less than
©).

Since p is countably complete and DC holds, we have that Ult(L[T**, M), E,,) is well-
founded. Hence we’re done. O

Theorem 4.2.17. 1. (V;0)(m, is continuous at 7). Hence cof(OF®) =w.

To see (%), note that

2. If i : M7, — S, and j: S = My are elementary and 7, = joi and S is countable in
K(R), then S is full in K(R). In fact, if W is the collapse of a hull of S containing
rng(i), then W is full in K(R).

Proof. The keys are Lemma 4.2.16 and the fact that the tree 7™, which enforces fullness for
R-mice, does not generate Q-structures for M7 . To see (1), suppose not. Fix a typical o
for which (1) fails. Let v = supn/©? < ©*. Let E, be the extender derived from 7, with
generators in [y]<“ and consider the ultrapower map

T: LIT*, MZ] = Ny =gy Ult(L[T*, MZ], E,).
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We may as well assume N, is transitive by Lemma 4.2.16. We have that 7 is continuous at
©7 and N, F o(T(MZ)) is Woodin. Since o(7(MZ)) = v < ©*, there is a @Q-structure Q
for o(7(MZ,)) in K(R). But Q can be constructed from 7™, hence from 7(7*). To see this,
suppose Q = I1,Q,/p and v = [l;7,/p. Then V3o Q, is the Q-structure for MZ |7, and
the iterability of O, is certified by 7. This implies the iterability of Q is certified by T™*.
But 7(7T*) € N,, which does not have @-structures for 7(MZ2 ). Contradiction.

(1) shows then that 7/I'? is cofinal in I". The proof of (2) is similar. We just prove the
first statement of (2). The point is that i can be lifted to an elementary map

L[T*, M%) — L[T, S|
for some T and j can be lifted to
j*: LT, S| = N,

by the following definition
7@ ()(e) = 7()((a))

for f € L[T*, MZ] and a € [0o(S)]<“. By the same argument as above, T certifies iterability
of mice in K(R) and hence enforces fullness for S in K(R). This is what we want. O

We can define a map 7 : M%Z" — MZ* as follows. Let x € MZ. There is an i < w and
a y such that in Lp(o), z = ﬂffivoo(y), where Wf/’i’oo is the direct limit map from Hﬁ? into
M%7 in Lp(o). Let
A,
7(x) = T Ma*(y)

where 74 witnesses (N, A;) < (MZF, A;) in the hod direct limit system in K (R).

N MEE

Lemma 4.2.18. 1. M7* = HT{‘,/,!%*; furthermore, for any quasi-iterate Q of M7, Q =

//Fo_ o,+
nggra and WI;&*’Q(TQ/IW ) =78 for all A € 7'T,.

2. T =1id and MZH = MZ".

1"
Tols

S m,=m .
4 Mg.éJr,oo

Proof. The proof is just that of Lemmata 7.8.7 and 7.8.8 in [26]. We first show (1). In this
proof, “suitable” means suitable in K (R). The key is for any quasi-iterate Q of MZ%*, we
have »

Using this and Theorem 4.2.17, we get HS T, Q for any quasi-iterate Q of MZ*. To see
this, first note that Q is suitable; Theorem 4.2.17 implies the collapse S of H%FG must be

suitable. This means, letting  be the Woodin of Q, HS o, (0 +1) = Q[(6 +1). Next, we
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show Hop [((67)9) = Q((6%)2). The proof of this is essentially that of Lemma 4.35 in
[11]. We sketch the proof here. Suppose not. Let 7 : & — Q be the uncollapse map. Note
that crt(r) = (6%)° and 7((6%)°) = (§7)9. Let R be the result of first moving the least
measurable of Q[((67)9) above § and then doing the genericity iteration (inside Q) of the
resulting model to make Q|6 generic at the Woodin of R. Let T be the resulting tree. Then
T is maximal with [h(T) = (67)9; R = Lp(M(T)); and the Woodin of R is (§7)<. Since
{#% | A € nT',} are definable from ~{7'§’(6+)Q | A e nl/T',}, they are in rng(w). This gives
us that supHﬂQgFU N (61)¢ = (6%)<, which easily implies (67)2 C H%FU. The proof that
(6t C H 78’1“0 for 1 <n < w is similar and is left for the reader.

(2) casily follows from (1). (3) follows using () and 7 = id. O

For each ¢ such that Theorem 4.2.17 and Lemma 4.2.18 hold for o, let 3, be the canonical
strategy for M2, as guided by 7/I'?. Recall 7I'? is a cofinal collection of ODX®) gets of
reals. The existence of ¥, follows from Theorem 7.8.9 in [26]. Note that X, has weak
condensation, i.e., suppose Q is a X, iterate of MZ" and i : M7 — Q is the iteration
map, and suppose j : MZT — R and k : R — Q are such that i = k o j then R is suitable
(in the sense of K(R)).

Definition 4.2.19 (Branch condensation). Let MZ" and X, be as above. We say that ¥,
has branch condensation if for any ¥, iterate Q of M%*, letting k : MZT — Q be the
iteration map, for any maximal tree T on M, for any cofinal non-dropping branch b of
T, letting i =i} , j : M — P, where P is a ©, iterate of M7, with iteration embedding k,
suppose k = joi, then b =3,(T).

Theorem 4.2.20. (V;,0)(A tail of X5 has branch condensation.)

Proof. The proof is like that of Theorem 7.9.1 in [26]. We only mention the key points here.
We assume that VZO’ no Y,-tails have branch condensation. Fix such a o. First, let X, =
rng(m, [ MZ") and

H = HOD{,U‘,Mgé+,M

ooa7rU1T*:X07Xo}’

where z, is a real enumerating MZ*. So H F ZFC 4+ “MY, is countable and w} is measur-
able.”

Next, let H be a collapse of a countable elementary substructure of a sufficiently large
rank-initial segment of H. Let (v, p, N/, v) be the preimage of (w}’, 7,, Moo, pt) under the un-
collapse map, call it 7. We have that H E ZFC™+ “y is a measurable cardinal as witnessed
by v.” This H will replace the countable iterable structure obtained from the hypothesis
HI(c) in Chapter 7 of [26]. Now, in K (R), the following hold true:

1. There is a term 7 € H such that whenever g is a generic over H for Col(w, < 7), then
79 is a (p, M%T, N)-certified bad sequence. See Definitions 7.9.3 and 7.9.4 in [26] for
the notions of a bad sequence and a (p, M2 N)-certified bad sequence respectively.
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2. Whenever i : H — J is a countable linear iteration map by the measure v and g is
J-generic for Col(w, < i(7y)), then (1) is truly a bad sequence.

The proof of (1) and (2) is just like that of Lemma 7.9.7 in [26]. The key is that in (1), any
(p, M7, N)-certified bad sequence is truly a bad sequence from the point of view of K(R)
and in (2), any countable linear iterate J of H can be realized back into H by a map ¢ in
such a way that m = o 1.

Finally, using (1), (2), the iterability of H, and an AD"-reflection in K (R) like that in
Theorem 7.9.1 in [26], we get a contradiction. O

Theorem 4.2.20 allows us to run the core model induction in L(3,,R) and show that
L(¥X,,R) F AD. This along with the fact that ¥, ¢ K(R) imply

L(S,,R) E © > 6.

This is a contradiction to our smallness assumption.

4.2.5 An alternative method

In this section, we outline an alternative method for proving AD holds in K(R) and the
existence of a model of “AD" +© > #,” containing all the reals and ordinals (if ©%® < @).
The method comes from [46]. We note that this method does not seem to work in all known
core model induction arguments. This method does apply in our case because of our specific
hypothesis (namely the existence of a supercompact measure on P, (R) in this section and
the existence of a supercompact measure on P,, (P(R)) in the next section).

We will use the terminology and notation from [46] for the argument we’re about to give.
The only notational difference is [46] uses Lp(R) to denote what we call K(R). Finally, in
this subsection, we work under the smallness assumption that there is no model containing
R U OR that satisfies “AD™ + © > #,” since otherwise, we can use the proof in the next
subsection to get a contradiction (namely L(R, p)“ € ” L(R, i), see the remark at the end of
next subsection).

Let « be the strict supremum of the ordinals v such that

1. the coarse mouse witness condition W7, holds;

2. 7 is a critical ordinal in K(R), that is, there is some U C R such that U and R\U have
scales in K (R)|(y + 1) but not in K(R)|v; and

3. 7+ 1 begins a ¥;-gap in K(R).

The proof of getting M%F for any model operator F’ we encounter in the core model induction

has been done in Subsection 4.2.3 and easily implies that « is a limit ordinal. By results in
Section 2.6 of [46] (which in turns uses the smallness assumption), the pointclass I' = E{((R)‘a
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is inductive-like and Ar = P(R) N K (R)|a. Since I' is inductive-like and Ar is determined,
Env(T") is determined by Theorem 3.2.4 of [46]. Since whenever 7 is a critical ordinal in
K(R) and W2, holds then AD holds in K(R)[(y + 1), we have that AD holds in K(R)]a.
The following lemma mirrors Lemma 4.5.1 of [46].

Lemma 4.2.21. Assume there is no model of “AD™ +0 > 0,”. Let « be the strict supremum
of ordinals v such that W3, holds, 7 is a critical ordinal in K(R), and v+1 begins a X1-gap
in K(R). Suppose there is a normal fine measure on P, (R), then Env(I') = P(R) N K(R).
Hence K(R) E AD™.

Proof. We first show Env(I') C P(R) N K(R). Let A € Env(l"), say A € Env(l')(x) for
some r € R. By definition of Env, for each countable o0 C R, ANo = A'No for some A’ that
is Aj-definable over K (R)|a from x and some ordinal parameter. Hence for p-almost all o,
z € o and ANo € Cr(o). By mouse capturing in K (R)|a (which follows from the coarse
mouse conditions W’s for v < «), for p-almost all 0, AN o € Lp(o). But then A € K(R).

Now assume toward a contradiction that Env(I') € P(R)N K (R). Hence o < OK®), Let
f* be the end of the gap starting at a in K(R). Let g = §* if the gap is weak and § = §*+1
if the gap is strong. Note that a < 3, P(R)X®IF = Eny(D)K®) C Eny(T) € P(R) N K (R).
Hence 8 < ©K® and K (R)|S3 projects to R. Furthermore, K (R)|3 F AD+T-MC. K(R)|3 E
[-MC is clear; if § = p*, K(R)|8 F AD by the fact that [a, %] is a ¥;-gap; otherwise,
K(R) E AD by Kechris-Woodin transfer theorem (see [10]). Since K(R)|3 projects to R,
every countable sequence from Env(I')X® isin K(R)|(8+1). The scales analysis of [37] and
[38], Theorem 4.3.2 and Corollary 4.3.4 of [46] together imply that there is a self-justifying-
system A = {4; | i <w} C Env(T')¥® containing a universal I" set.

Let U € A be a universal T set and say (A, | i < w) C Ais ascale on U. So U has a scale
in K(R)|(8+1) but U cannot have a scale in K(R)|3 because K (R)|NP(R) C Env(T)K®.
Hence f3 is a critical ordinal in K (R).

From the self-justifying system .4 we can get a sequence of model operators (F), : n <
w) where each F,, is in K(R)|(S + 1). Namely, let Fy = F4 be the term relation hybrid
operator corresponding to A (see Definition 4.6.1 of [46]), and let F,.; = M!™* be the
F,,-Woodin model operator whose existence comes from the proof in Subsection 4.2.3. Each
model operator F;, condenses and relativizes well and determines itself on generic extensions.
These model operators are all projective in A and are cofinal in the projective-like hierarchy
containing A, or equivalently in the Levy hierarchy of sets of reals definable from parameters
over K(R)|8. Together these model operators can be used to establish the coarse mouse
witness condition W, ;. Therefore 5 < a by the definition of a, which is a contradiction. [

The following lemma completes our outline.

Lemma 4.2.22. Suppose AD™ holds in K(R) and ©X® < ©. Assume V = L(R, 1), where
w is a normal fine measure on P, (R). Then there is a model of “ADT +© > 0" containing
all the reals and ordinals.
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Proof. The reader should consult Section 4.6 of [46] for the notations used in this proof.

Suppose toward a contradiction that the conclusion of the theorem is false. Let I' = E{((R”a,

where « is defined at the beginnning of the section. Then I' is inductive-like and Ar is
determined. Since Env(I') = P(R) N K(R) and ©K®) < O, there is a surjection from R
onto Env(I"). This means there is a normal fine measure on P, (Env(I")). Theorems 4.1.4,
4.3.2 and Corollary 4.3.4 of [46] imply that there is a self-justifying-system A = {A; | i < w}
sealing Env(T) and Ap is a universal T-set!®.

Using the proof and notations of Section 4.6 in [46] (with Lpg(R) there being K4(R)
here) and the proof of Lemma 4.2.21, we get that M =4 K*(R) F AD". We claim that A
is not OD,, in K*(R) for any x € R. Suppose not. Then there is some w-sound premouse M

over R projecting to R such that M is countably iterable in M and A € M (this is because
M = MC). Since M < K(R) and A is cofinal in P(R) N K(R), we have a contradiction. [J

4.2.6 AD in L(R, u)
Now we know ©K®) = 0. We want to show P(R) N K(R) = P(R).
Lemma 4.2.23. P(R) N L(T*,R) = P(R) N K(R).
Proof. By MC in K(R), we have
(V20)(P(0) N L(T,0) = Lp(c) NP(0)).
This proves the lemma. O

We now show that p is amenable to K (R) in the sense that u restricting to any Wadge
initial segment of P(R)X® is in K(R). The following lemma is due to Woodin.

Lemma 4.2.24. Suppose S = {(z,4,) | x € R AN A, € P(P,,(R))} € K(R). Then
plS={(xA4) | n(A:) =1} € K(R).

Proof. Let Ag be an oo-Borel code'® for S in K(R). We may pick Ag such that it is a
bounded subset of ©*. We may as well assume that Ag is ODX® and Ag codes T. This
gives us

(V5.0)(P(o) N L(As,0) = P(o) N L(T, o)),
or equivalently letting A% =[], As,

P(R) N L(A%, R) = L(T*,R).

15Tn fact, a fine measure on P, (Env(T)) suffices.
167f § C R, Ag is an co-Borel code for S if Ag = (T,v) where T is a set of ordinals and 9 is a formula
such that for all z €e R, x € S < L[T, z] E Y[T, z].
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We have the following equivalences:

& L(ALR)E 0 lFcowr R € A,

The above equivalences show that p | S € L(S*,R). But by Lemma 4.2.23 and the fact
that p [ S can be coded as a set of reals in L(S*,R), hence u [ S € L(T*,R), we have that
ulSeK(R). O

Lemma 4.2.25. P(R) N K(R) = P(R). Hence L(R, u) E AD.

Proof. First we observe that if «v is such that there is a new set of reals in L1 (R) 1]\ Lo (R)[14]
then there is a surjection from R onto L, (R)[u]. This is because the predicate p is a predi-
cate for a subset of P(R), which collapses to itself under collapsing of hulls of L, (R)[u] that
contain all reals. With this observation, the usual proof of condensation (for L) goes through
with one modification: one must put all reals into hulls one takes.

Now suppose for a contradiction that there is an A € P(R)NL(R, ) such that A ¢ K (R).
Let a be least such that A € L,11(R)[]\La(R)[r]. We may assume that P(R)N L, (R)[u] C
K(R). By the above observation, a < © = ©X® hecause otherwise, there is a surjection
from R on O, which contradicts the definition of ©. Now if P(R)NL,(R)[x] € P(R)NK(R),
then by Lemma 4.3.24, u | P(R) N Lo(R)[p] € K(R). But this means A € K(R). So we
may assume P(R) N L,(R)[p] = P(R) N K(R). But this means that we can in Lg(R)[u] use
p ] P(R) N Ly(R)[1] compute ©K®) and this contradicts the fact that ©K® = @. O

Lemma 4.2.25 along with Theorem 4.2.2 imply Theorem 4.2.1 assuming the smallness
assumption in the previous section. We now show how to get rid of it.

Recall that we have shown AD¥® . The proof of this section shows that if OK®) = @
then L(R,u) F AD, which proves Theorem 4.2.1. So suppose © > ©K®_ Then the proof
of Section 4.2.4 produces a strategy > with branch condensation such that ¥ is fullness
preserving with respect to mice in K (R) and 3 ¢ K(R). By a similar core model induction to
that of getting ADX® | we get ADX"®) Now K*(R) is the maximal model of ADT +© = 0.

Let M = K¥(R) and H = HOD}. Note that P(R) = P(R)X® = P, (R)M. We aim
to show that L(R, ) C H, which is a contradiction. By the proof of Theorem 4.3.24, we get
that v =gt po | P(R)? € M. Let 7 : R¥ — P,, (R) be the canonical map, i.e. 7(Z) =rng(Z).
Let A C P,,(R) be in H. There is a natural interpretation of A as a set of Wadge rank
less than 6}, that is the preimage A of A under 7 has Wadge rank less than 6}. Fix
such an A; note that A is invariant in the sense that whenever # € A and y € R¥ and
rng(Z) = rng(y) then y € A. Let G 7 and G4 be the Solovay games corresponding to A
and A respectively. In these games, players take turns and play finite sequences of reals and
suppose (z; | i < w) € R¥ is the natural enumeration of the reals played in a typical play in
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either game, then the payoff is as follows:
Player I wins the play in G if (z; | i <w) € A,

and
Player I wins the play in G4 if {z; | i <w} € A.

Lemma 4.2.26. G 4 is determined.

Proof. For each ¥ € R¥, let 0z = rng(¥). Consider the games Gf&' and G% which have the
same rules and payoffs as those of G ; and G4 respectively except that players are required
to play reals in oz. Note that these games are determined and Player I wins the game G%
iff Player I wins the corresponding game G°%.

Without loss of generality, suppose v({o € P,,(R) | Player I wins G%}) = 1. For each
such o, let 7, be the canonical winning strategy for Player I given by the Moschovakis’s
Third Periodicity Theorem. We can easily integrate these strategies to construct a strategy
7 for Player I in G 4. We show how to define 7(0)) and it’ll be clear that the definition of 7
on finite sequences is similar. Let p be the restriction of p on the Suslin co-Suslin sets of M.
Note that p € M. We know

Vo 7,(0) € o.

We have to use p since the set displayed above in general does not have Wadge rank less
than 6y in M. Normality of p implies

Jr € R V3o 7,(0) = .

Let 7(0)) = x where z is as above. It’s easy to show 7 is a winning strategy for Player I in
Ga. O

The lemma and standard results of Woodin (see [47]) show that p (as defined in the
previous lemma) is the unique normal fine measure on the Suslin co-Suslin sets of M and
hence p € OD™. This means p [ P(R)¥ = v is OD in M. This implies L(R,v) C H. But
L(R,v) = L(R, u). Contradiction.

Remark: Using a local version of Theorem 2.0.16 and the proof of Theorem 2.0.17, we
can get that whenever N is a model of “AD™ + © > 6,” then N satisfies “the club filter on
P., (R) is the (unique) normal fine measure on the Suslin co-Suslin sets.” This means that if
there is such a model N in L(R, i), then p restricted to the Suslin co-Suslin sets of N (call
this ) is in NV and is the club filter there. Hence L(R,v)* € "N and P(R, v) C Py, (R)Y, but
L(R,v) = L(R, ). Contradiction. This shows there cannot be such a model N in L(R, p).

Question: Suppose 0 < o < wy and L(R, py) E “ZF + DC + © > wy + i, is a normal fine
measure on X,”. Is it the case that L(R, u,) F AD'?
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4.3 ZF + DC + © is regular + w; is P(R)-supercompact

In this section, we study the consistency strength of the theory (T) = “ZF + DC + O is regular
+ wy is P(R)-supercompact”. In the first subsection, we discuss how to construct models of
theory (T) from strong determinacy hypotheses and from the derived model construction.
The second construction is of interest since it shows that it’s possible to put a normal
fine measure on top of a derived model without adding new sets of reals. The next three
subsections go through various stages of the proof that Con(T) is equivalent to Con(S) where
(S) = “ADg + there is an R-complete measure on ©.”

4.3.1 Digression: upper bound for consistency strength

In this section, we discuss how to construct models of the theory “ADgr + O is regular +
wy is P(R)-supercompact”, hence of the theory “ZF + DC + O is regular + w; is P(R)-
supercompact”. The first construction is done inside an AD"-model and the second con-
struction shows that we can get models of this theory by adjoining the club filter to the
derived model. We merely want to illustrate the methods used to construct such models;
the hypotheses used in Theorems 4.3.1 and 4.3.3 are by no means optimal.

Theorem 4.3.1. Assume AD™ + ADg + © = 0., where « is a limit ordinal and 0, is
regular in HODp where T = {A C R | w(A)'" < 0,}. Let pn be a measure on P, (T') coming
from the Solovay measure on P, (R). Let M = HODryy,y. Then P(R)YM =T and M F
ADg + O is reqular + p is a normal fine measure on P,, (P(R)).

Proof. By [47], i is unique and hence OD. This implies P(R)* =T and hence M F ADg +
© = 0,. The key point is P, (I)™ = P, (T) since by definition, T is closed under w-
sequences. This implies M F p is a normal fine measure on P, (P(R)). Finally, M F © =46,
is regular since if f : v — 0, for some v < 6, is in M, then f is OD,, for some A € T',
hence f is OD4 since p is OD. This means f € HODr to begin with. m

We remark that the hypothesis of the theorem is consistent. For example, it follows from
the theory “ADg + © is Mahlo” or “AD™ +© = 6,,,” where 6, is the largest Suslin cardinal.

Definition 4.3.2. Let 'y, ' be the collection of universally Baire sets and § is a Woodin
cardinal. We say that ¢ is good if whenever g is a < d-generic over V and G is a stationary
tower QZ([;Q] generic over Vg|, then letting 7 : V[g] — M C VI[g]|G] be the associated

embedding, j(T\%) = 1V

The following theorem comes from conversations between the author and G. Sargsyan.

17"Recall w(A) is the Wadge rank of A.
18We will also use Hom., to denote the collection of universally Baire sets.
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Theorem 4.3.3. Suppose there is a proper class of Woodin cardinals. Suppose there is
a cardinal &y which is a supercompact cardinal. Suppose (§; | 1 < i < w) is an increasing
sequence of good Woodin cardinals above dy which are also strong cardinals. Let G C Col(w, <
o) be V-generic. Then in V|G|, there is a class model M containing RVIC! such that M =
ADg+ there is a normal fine measure on P, (P(R)) + © is regular.

Remark: The hypothesis of the theorem follows from the existence of a proper class of
Woodin cardinals and two supercompact cardinals (see the proof of Theorem 3.4.17 in [14]).

Proof. We assume basic facts about universally Baire sets from [29] and [14]. Let I'y;, denote
the collection of universally Baire sets. Let G C Col(w, < dy) be V-generic. In V[G], let
R* = RVIC] and

Hom*={ACR"| AecV(R*) AJa<dIT € V|G|a] (V[G|a] F
“T' is dp-complemented” A p[T]NR* = A)}.

For more on Hom*, see [29]. In V|G|, we claim that Hom* = I'y,. Since Jy is a limit of
strong cardinals, it’s easy to see that Hom™* <T',;. To see the reverse inclusion, let A € I'y.
Let o be a (countable) homogeneity system witnessing this. We may assume the measures
in o have additivity s for some K >> §;. But then any p € o is a canonical extension of
some v €V (A€ p< 3B v B C A). This easily implies A € Hom*.

Let j : V — M witness dy is measurable. We define a filter on P,,, (Hom*)"®") as follows.

Ae F & V[G} H_C’ol(w,<j(60)) j*[Hom*] € j+(A)19.
It’s easy to see that F € V[G] and

L(Hom*, F) E “F is a normal fine measure on P,, (Hom*).”

Note that in the construction above (and in the proof that Hom* = FZ,)[G}), we only use
that dg is a measurable limit of strong and Woodin cardinals. The assumption that g is
supercompact is only used at the very end of the proof to conclude the model L(Hom*, F) E
ADg + O is regular.

Now we claim that |Hom*| = w; in V[G]. This is because Hom* is determined (in V'[G])
by Vs, and the sequence (Gla | a@ < dp). Since |[Hom*| = wy in V[G], we can use the
club-shooting construction in [4] to get a V[G]-generic G’ such that in V[G][G’], we have

e (OR¥)VIEl = (OR*)VICIIS] hence in particular, R* = RY[CIET,

o Hom* —TVjE _ pVield],

e In VI[G||G'], L(Hom*, F) E “F is a normal fine measure on P,, (Hom*)” and F comes
from the club filter.

Y+ VIG] - M[G][H] for H C Col(w, < j(6)) being V[G]-generic is the lift-up of j.
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To ease the notation, we rename V[G][G'] to V[G]. It remains to prove the following

Lemma 4.3.4. P(R)LHom"F) = Hom*.

Proof. Let 6 be the limit of the §;’s. Let H C QV([;G} be V[G]-generic and

jiVIG) > M CVIGH]

be the associated embedding. Let R* = RVICIH] and Hom** be defined in V (R**) the same
way Hom* is defined in V' (R*). By our assumption on 4,

j(Hom*) = Hom™.

There is a K C Col(w, < §) be V[G]-generic such that RVICIEl = R*  Let C be the club
filter on P, (Hom* )V®") in V[G][H], then we claim that

L(Hom**,j(F)) = L(Hom**,C) F C = j(F) A C is a normal fine measure on P,, (Hom™").

We can choose H so that for all 1 <n < w, HNQ;s, is V[G]—generic. Let j, : V]G] — M,
be the induced embedding by H N Q;,, hence M is the direct limit of the M,’s. Note that
the j,,’s factor into j via map k, (i.e. j =k, 0j,). Also for n <k, let j,, : M,, = My be
the natural embedding so that k,, is the limit of the j,;’s.

For each i < w, let 0; = (Hom*)Mi = I’Z,)[Hwi]. Let F* be the “tail filter” defined in
VI[G][H] as follows: A € F* < InVm > n k!0, € A. We claim that if A € j(CVI¢) then
A € F*. To see this, let n < w such that M, contains the preimage of A, say k,(A,) = A.
Then A, is a club in M,,. We claim that Vm > n k! 0,, € A. We prove this for the case m = n.
The other cases are similar. Since k,, = k110 jnny1, it suffices to show j;' . 0, € Jnnt1(An).
We have that in M, 0, = Us<u,Ta Where 7, € A,,. In M1, {Jnnt1(7) | @ < w{””} is
a countable subset of j, ,11(A,) whose union is j; .10, Since jn,i1(Ayn) is a club in
My, Jpni10n € Jnms1(An). Hence we're done with the claim. The claim proves that
L(Hom™,CVICIHY = L(Hom**, j(CVI®)) = L(Hom**, F*) E “CVICIIH] = j(CVI€l) = F* is
a normal fine measure”, where C is the club filter. Let us note that this argument also
shows that if K C Col(w, < §) is V[G]-generic and RVIGI% = RVIGIHI%] (hence by choice
of §;, (Hom*)VII¥l = ;) and G is the “tail filter” defined in V[G][K] from the sequence
(0; | i < w), then L((Hom*)VI¢, F) embeds into L((Hom*)VICIK] G).

Now it suffices to show L(Hom**,C) F AD*. This then will imply P(R)L(Hom™.C) =
Hom** since otherwise, there is A € P(R)XHom™ O\ Hom* such that L(A,R*) F AD'. By
the choice of § and a theorem of Woodin, Hom™ = {A CR* | A € V(R*™) A L(A,R™) E
ADT}?°. This is a contradiction. By elementarity, P(R)*(7om"7) — Hom* and hence the
lemma follows.

To show L(Hom**,C) E AD", we use the tree production lemma. Suppose not. Let
x € R*, T € V[G|[H|a] for some o < ¢ be a d-complemented tree, v be least such that

20Tn fact, this equality holds for § being limit of Woodin and < —d-strong cardinals.
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there is a counter-example of AD™ B € L(Hom™,C) definable over L.(Hom**,C) from
(o, z, p[T] NR*) ie.

y € B& L,(Hom™,C) E ¢y, p[T] NR*™, z].
Let 6(u,v) be the natural formula defining B (where C is the club filter):

O(u,v = “L(T'w,C) E C is a normal fine measure on P, (I'y) and L(Iy,C) E IB(AD™
1
fails for B) and if 7o is the least v such that L. (T, C) £ 3B(AD™ fails for
B)then L., (T'w,C) E ¢[u,p[T] NR,v]”.

We verify that the tree production lemma holds for 6(—, ). This gives B € Hom**. Without
loss of generality, let g € HCVH be such that (G, H|a, z,T) € V[g] and (Hom*)Vl9l = TV
and L((Hom*)Vl9 C) E C is a normal fine measure on P, ((Hom*)"9) where C is the club
filter in V[g]. We can make this assumption about g because ¢ is a limit of measurable
cardinals which are limits of Woodin and strong cardinals. Let £ < 0 be a good Woodin
cardinal. We first verify stationary correctness. Let K C Qvg be V[g]-generic, and

k:V]gl = N C V[g][K]

be the associated embedding. By the property of &, k(T ubg]) N = Fv[g” ). Furthermore,
CN C CVBIK] (here C denotes the club filter in the relevant un1verse) and by elementar-
ity, (F%,CN) F CV is a normal fine measure on P, (I'). This implies L(Ty, C)N =
L(Ty, C)VIIIE] | Hence we're done.

To verify generic absoluteness at £. We rename V]g] to V. Let g be < &-generic over V
and h be < £*-generic over V[g]. Let y € RVI9. We want to show

Vgl F Oy, x| & Vg|[h] F Oy, x].

There are Gy, G; C Col(w, < §) such that Gq is generic over V[g] and G is generic over
V[g][h] with the property that RVIGl%l = RVIGUS] for all §; > £ Also, (Hom*)VIGolo] =
(Hom*)VIGildil = I‘Zb[com = FZb[Gllai]. Let us denote this o;. Such Gy and G exist since h is
generic over V[g] and £ < 6. So we get that (Hom*)VWI%l = (Hom*)VIIIG] By the dls—
cussion above, L(Hom*,C)"19 is embeddable into L(Hom*, G)V19%] and L(Hom C)Vllh]

embeddable into L(Hom*, )V and L(Hom*, G)V19! (Gof — = L(Hom*,G)V g”h”Gﬂ, where
G is the “tail filter”?! defined from the sequence (0; | i < w). This proves generic absolute-
ness. [

Lemma 4.3.4 completes the proof of the theorem since by the derived model theo-
rem (cf. [29]), L(Hom*,R*) F AD" + ADg and Hom* = P(R)XHom"R) hence M =
L(Hom*,R*, F) E AD" 4+ ADg. Finally, Woodin (unpublished) has shown that L(Hom*, R*)
F ADg + O is regular and in fact, since M is very close to L(Hom*,R*) the same proof also
shows M FE ADg + O is regular. This finishes the proof of the theorem. O

21This piece of the proof was pointed out by the author’s advisor, Prof. John Steel. The author would
like to thank him for this.
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4.3.2 0O > 6

Without loss of generality, we assume V = L(P(R), u)?* and © is regular and p is a normal
fine measure on P, (P(R)). For each o € P, (P(R)), let M, = HODy i, and H, =
HODS. Let M =[], M,/p and H =[], H,/pu.

Lemma 4.3.5. Let (vg,v1) be a formula in the language of set theory and [f], € M. Then
Jz (M E Yz, [flu]) if and only if Vo3z (M, F ¢[z, f(0)]).

Proof. We prove the lemma by induction on the complexity of the formula . It’s enough
to show that if Vio3z (M, F ¢[z, f(0)]) then 3z (M F <[z, [f].]). For a typical o, let
A, ={z €0 | JyeOD(x) (M, E Py, f(o)])}. By our hypothesis, the function F(o) = A,
is such that Vio (F(o) # 0 A F(o) C 0). By normality of p, there is an x such that
Vio(z € F(0)). Fixsuch an z and let g(o) be the least OD(x) set y such that M, F ¢y, f(o)]
if such a y exists and () otherwise. Then M E ¥[[g],, [f],]- O

By the lemma, we can identify M and H with their transitive collapse. Let Q = [Ao.wi],,.
Lemma 4.3.6. 1. P(R) C M.
2. 2> 0.

Proof. For each ¢ € P, (P(R)), let R, = RN o and ©° = M, To prove (1), note first
that R = [Ao.R,], = R™. Let A € R. By fineness of pu, Vio (A € o). This means
Vio (ANR, € M,) and A = [Ad.ANo] € M (by Lemma 4.3.5). This finishes the proof of
(1).
For (2), it’s clear that © < Q since V%o (R, = R"~) is countable. Using the easily verified
fact that there are no sequences of w} distinct reals, we get P(R,) is countable, which
implies 07 < wy. O

We then observe that €2 is measurable in M and in H. This is because w; is measurable
in M, and H, for all . Using the fact that there are no sequences of wy distinct reals and
Lemma 4.3.5, we get, by a standard Vopenka argument, for any set of ordinals A € M of
size less than €, there is an H-generic G4 (for a forcing of size smaller than ) such that
A € H[G4] € M and Q is also measurable in H|[G 4].

With the set-up above, using a similar argument as in the previous section, we get a
model of “AD" +© > 6,”. The complete proof of this will be written up in [45]. Let us
mention one key point in adapting the proof of Section 4.2 in this situation. The proof
of Section 4.2 basically shows that if ©X® < © and there is a normal fine measure on
P, (R) then there is a model of “AD™ +© > 6,”. Since we have a normal fine measure on
P, (P(R)), we can get a model of “AD" + © > #,” without needing to check in advance
whether K®) < ©.

22V is a structure of the language of set theory with an extra predicate for .
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4.3.3 ADg + O is regular

Let 'y, = P(R)Ma and I'y,, = Ug<y, I'a. We assume throughout this section that there are
no class models M containing R such that M F ADg + © is regular.

Theorem 4.3.7. L(T',,,R)NP(R) =T,, hence L(T,,,,R) F ADg + DC. Furthermore, there
is a hod pair (P,Y) such that ¥ is T-fullness preserving, ¥ ¢ ', and L(X,R) E AD™.

Proof. Let H = HOD" and # = O'. Note that § < © and o(H) = 6. It’s enough to construct
a hod pair (P,X) as stated in the theorem since then we have L(X,R) F © = 6,41 and
Lo, = P, (R)*EF) by the maximality of I',,,. This shows that I, satisfies the first clause
of the theorem.

Suppose no such pair (P, %) exists. Write I for T',,. Let pur be the normal fine measure
on P, (I') induced by p. Vi o < T, let H, = HOD?. We then let

H = T1, LpDo<er %2 (3.} /ur. (4.1)

Let M be a structure of ZF~ 4+ DC such that P(R) — M and H™,T" € M. Let py; be the
normal fine measure on P,, (M) induced by p. It’s easy to see that

Ve o (o< M).

122,74

For each such o, let M, be the transitive collapse of ¢ and 7w, : M, — M be the uncollapse
map. Let m,(H"", w],07,17) = (H*,wy,0,T). Then by the definition of H*, H>" =

Lp®a<Wi’23f (H7) = U{M | HT <M Ap(M) < o(H)AM is a Bacue B -mouse in T'}. We
first prove the following.

Lemma 4.3.8. No level M of H' is such that p(M) < 6.

Proof. We start with the following.
Claim: For measure one many o, for any < w{, %" is I-fullness preserving.

Proof. Fix a f < w{. By the HOD analysis in I'?, there is a hod pair (P, ¥) such that
e > is ['?-fullness preserving and has branch condensation;

e H7([3) is an iterate of X.

Using 7., we get that m,(X) is an (wy, wy) strategy for P that is [-fullness preserving and has
branch condensation. Since ¥ = m,(¥) [ I'7, ¥ is an iterate of 7,(X) and hence satisfies
the conclusion of the claim. O

We are now ready to finish the proof of the lemma. Fix a ¢ in the claim. Let H”* be
the least level of H} that projects across #7. We may assume H* € M,; otherwise, let H* =
II,H /un and choose a transitive model N of ZF~ + DC such that P(R)UH*U{H*} C N
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and P(R) — N. We can then let py be the supercompact measure on P, (N) given by u
and work with the pair (N, uy) instead of (M, pay).

Let ¥, be the natural strategy of H} defined from 7, (see page 237 of [21]). The important
properties of X, are:

1. ¥, extends X7 =gef Da<ws Xno(a) and X, is ODygy;

2. whenever (7', Q) € I(H:,%,), for all v < A2, $7 g(a) is the pullback of some strategy
of a hod pair (R, A) such that A has branch condensation and is I'-fullness preserving
and hence by Theorem 2.7.6 of [23], X7 g(s) has branch condensation;

3. Xy is T'(H, X, )-fullness preserving by (2) and Theorem 2.7.6 of [23];
4. atail (Q, A) of (H%,%,) has branch condensation by (1)-(3) and Theorem 2.8.1 of [23].

If A ¢ I', where A is as in (4) above, then since A has branch condensation, we can run a core
model induction argument like above to prove L(A,R) E AD*. This pair (Q,A) witnesses
the second clause of the theorem. This also implies the first clause of the theorem since I',,,
is then equal to {A € L(A,R) | w(A) < 05™™} and hence is constructibly closed. This
completes the proof of Theorem 4.3.7 in this case.

Suppose then that A € I'. We can define a direct limit system F = {(Q",A) | (@, A) =
(Q,A)}in T'? (this uses that A € T'). Let M, be the direct limit of 7. Hence M., € HOD',
HODF|7C,24 <4 My by fullness preservation of ¥, and p; (M) < 7. This means M,
constructs a bounded subset of 7, in HOD" but not in HOD" |y,. This contradicts the fact
that HOD' |y, = VWIjODF and 7, is a strong limit cardinal in HOD". O
Lemma 4.3.9. V¥ o, there is a I'-fullness preserving strategy X, of H .

22,7}

Proof. First let V}, o, ¥, be the natural strategy of H} defined using 7, (on page 237 of
[21]). This strategy is mentioned in the proof of the previous lemma. There it was a strategy
for H}. We still have properties (1)-(4) of ¥, as described in Lemma 4.3.8. Fix such a o.
We may assume X, € I' as otherwise, the argument in Lemma 4.3.8 will finish the proof of
this lemma. Note that since 3, is OD¢sy, ;N (Ny =gey HODyug03)€ No. By (4) in Lemma
4.3.8, some tail of 3, has branch condensation and in fact, since N, is closed under ¥, in
N, there is a Y -iterate (Q, A) such that A has branch condensation. Let i : HI — Q be
the iteration map and A, = A’ is the pull-back of A to H}. Since i € Ny, Ay € ODgugsy
and note that A, has hull condensation.

What we’ve shown is that V;MU, there is a strategy A, for H} such that A, is ODyu0},
has hull condensation, and satisfies properties (1)-(4) in Lemma 4.3.8. By normality, there

23This means these hod pairs are Dodd-Jensen equivalent. The fine structural details involved in the
comparison process is described in [23].

2y, = sup(m,[07]) = Sup(ii?,+ 107]) < 0 since cof(#) is uncountable.
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is an z such that V;, o x € o and there is A, with hull condensation, is Ay € OD,uoy,
and satisfies (1)-(4) in Lemma 4.3.8. So V;, o, let A, be the least OD,,(s) such strategy
for H. We claim then that A, is [-fullness preserving. Suppose not. Let (U, M) witness
this, that is,  is a normal tree (or stack of normal trees) according to A, such that letting
i: "I — M be the iteration map, then M is not I-full.

Next, let P, be a 2-A,-suitable premouse over H}. Suppose there is N, <t P, such that
p(N,) < 07 and N, ¢ H}, then we let N' = [[ N, /pa and run a similar proof to that of
Lemma 4.3.8 to get a contradiction. Here are some details.

First suppose p(N,) < 6. Let £ = max{p(N,), }, where x is the cofinality in H} of 67.
We let 3¢ be the fragment of 3 for stacks on H above v, where 7 is the least o such that
51{; > £. Recall we have assumed without loss of generality that N, € M,, which means
7, acts on N, which in turns implies that whenever i : I — P is according to ¥ ¢, then
Ult(N,, E;) is wellfounded and in fact factors into N via some k such that 7, [ N, = ko i*,
where i* : N, — Ult(N,, E;) is the ultrapower map. We then consider the system F of tuples
(R,P,%) where (P,%) =p; (H},X;%) and if i : P — S and j : H] — R are comparison
maps, then Ult(N,, E;) = Ult(R, E;), where Ej is the (crt(j), dy=)-extender derived from j
and likewise for ¢. To see that this is a direct limit system, it’s enough to see that whenever
(Ro, Xo) and (R, ) are ¥ ¢-iterates of H, then letting j; : H — R; be the iteration maps
for i € {0,1}, letting S; = Ult(N,, E;,), then letting k; : R; — W; be comparison maps and
Vi = Ult(S;, Ey, ), then Yy = V. This is easy to see since kyo jo = kj 071 by the Dodd-Jensen
property of ¥¢. This means Yy = Ult(Ny, Expojo) = U(No, Erioj) = V1. By a similar
argument as that of Lemma 4.3.8, we get that Mo, =g dirlim(F) under iteration maps via
Y% is in HODEU}HUW. Furthermore, letting v = sup(ii";; [67]), then ~ is a limit of Woodin

cardinals in HODY; and M|y = HODY; |7. Yet p(Ms) < 7. Contradiction.

o Ho(v) o Mo (7)

Now suppose p(N,) = 6. The idea of the following argument goes back to [23]. Let
f : kK — 67 be an increasing and cofinal map in H}. We construe N, as the sequence
g = (N, | @ < k), where N, = N, N 5}’%2). Note that N, € H} for each o < k. Now
let Ro = Ulto(H, i), R1 = Ulty,(N,, 1), where p € HF is the measure on x with Mitchell
order 0. Let iy : HI — Ry, i1 : N, — Ry be the ultrapower maps. Letting § = 5/\7{;,
it’s easy to see that P(§)%0 = P(§)®'. This means (i;(N,) | @ < k) € Ry. By fullness
of HI in T, (iy(N,) | @ < k) € HF. Using i, (11(No) | @ < k) € H}, and the fact that
io | HI|07 =iy [ Ny|07 € HI, we can get N, € H} as follows. For any o, 5 < 07, a € N
if and only if ig(a) € i1(N3) = ig(N3). Since HS can compute the right hand side of the
equivalence, it can compute the sequence (N, | a < k). Contradiction. Hence we have
PO)NHE=P(67)NP,.

We may assume now that 7, acts on P, and VZMT, Tor(Py) = Pr. Suppose A, is not
['-fullness preserving. By ¥2(A,)-absoluteness and the fact that P, is A,-full, P,[g] F “there
is some (T,R,Xg) € I(H},A,) such that R is not full” where g C Col(w,H]) is generic
over P,. So there is a strong cutpoint £ € [6%,6%,,) of R for some a < A such that there
is an A which is a sound Yg(,)-mouse projecting to £ but N ¢ R. N is iterable in P[g].
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Let i : P, — Q be the lift of i7 to all of P,. Note that Q is wellfounded since i’ factors into
To. Ps[g] can compare N and Q and sees that N wins the comparison. But this means A/
collapses cardinals of P,[g] above H*. Contradiction. O

Now, by [23], a tail (P,X) of (H},%,) has branch condensation. Let k : H} — P
be the iteration map. By the property of X, there is a map [ : P — H7T such that
To|HT =l o k. Finally, we claim that ¥ ¢ T" and since ¥ has branch condensation, we can
show L(X,R) E AD™.

It remains to prove the claim. First suppose:

(T) =4er For any X-iterate (Q, A) of (P, X), letting ip o : P — Q be the iteration map,
there is 7g : @ — HT be such that [ = 79 0ip o such that 7o agrees with the iteration map
via A up to A<.

Let My, be the direct limit of Y-iterates of P. If M, = H™, then it’s easy to see that
Y. ¢ T'. By the disussion of the last paragraph, we're done. Now suppose M., = H T («) for
some « such that 5;# < O By (T), there is an elementary map m : Mo, — H* such that
crt(m) = 6™=. The map m is defined as follows: for any z € M., let (R, ¥x) be a Y-iterate
of P such that ¥ has branch condensation and there is a y € R such that Z%Roo (y) = =,
then m(z) = 7r(y). It’s easy to see that m is well-defined and is elementary. By a standard
argument (see [3]), noting that 5= is on the Solovay sequence of T, L(T'|6*> R) F ADg +©
is regular. This contradicts our smallness assumption.

Now we prove that (T) holds. We accomplish this by proving Lemmas 4.3.11 and 4.3.13,
whose key ideas are due to G. Sargsyan. But first, let us start with a definition.

Definition 4.3.10 (Sargsyan). Suppose w, : HI — H™T is as above and A € HINP(07). We
say that 7, has A-condensation if whenever Q is such that there are elementary embeddings

viHE— Q, 7:Q — HY such that 7, = T ov, then U(T};) =To,ra, where
TY = {(6.5) | s € (7] A HE = ols, A]},

and

Tora={(6,5) | s € [B] for some o < A AH* E gling, (), m,(A)]}.
Lemma 4.3.11. V¢ o VA € HI NP(87) m, has A-condensation.

22,74

Proof. Suppose not. By normality of y5, there is an A such that vV, o, letting A, = (A,
then 7, does not have A,-condensation. Note that for o, 7 as above such that m, , exists,
Tor(As) = A;. We also let A = 7,(A,) for such a o.

Fix such a 0g and let 79 = 7, [ H} and Py, = H] . Let also Ay = A,,. Hence, there is
a tuple (Qg, 7o, 0¢) such that my : Py — Qo and ¢ : Qo — H™T such that 79 = gg o mg and
’/TO(TZ;)) # T0y.00.4,- Let o1 be such that 7, =45 71 does not have A,, =45 A;1-condensation

and there is a map & : 9y — P such that n,,,, = m 0 &. We write ¢ for m,,,,. By
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induction and using DC, we can construct a sequence (P;, Q;, 7, 7, &, 04, ¢; | © < w) such
that

1.7 =def To; - H; —def Pz — H—i—;
2. (Q;,m;,0;) witnesses that 7; does not have A; =45 A,,-condensation;

3‘ gb’b :def 7.‘—0'1',0'7;4,_1 - 7T7; o 5’1/7
4. 0y = Ti;10&;.

Let 7 be such that letting X = U;n[P;] U 0;[Q;], then X C 7 [HI]. Such a 7 exists since
O has uncountable cofinality. We can define A;-condensation relative to 77 = m_! o 7,
where m, is the natural map such that letting iiﬁr o HI — M- be the direct limit map,

T

My i Moor — HT, and 71, [ HE = m, 07, - Let Ax = m_'(A). We have a sequence
(Pi, Qi 78 iy iy 0F =aey mz ' 004, ¢ | © < w) such that

i

5. (Qi,m;, o) witnesses that 7 does not have A; =45 A,,-condensation, i.e. Wi(TZi) =+
TQZ',U,Z‘,AZ';

6. writing ¥; for ¥,,, we have (¢,s) € T’ & My . F (b[ii"(_a) (8), A%], where o is least

such that s € [071]<%;

7. ¢z =def To;0i01 — T3 O 617
% % ]
8. o =7, 0§;.

(6) follows immediately from the definition of TZ" and 7. We call the sequence (P;, Q;, 7, m;,
&, 00,0 | 1 <w) A-bad. We also assume the whole situation is inside an M, where 7, . exists
(there are jij-measure one many such €). We fix some notation. V% o, we let X =

Doens 2943 (o)

Lemma 4.3.12. There is a pair (0o, €) such that there is a hod pair WV, II) over (HF,X7)
such that W € M, and a hod pair OV*,11*) over (Py, Xy ) such that W* € M,, and II* =
[I™e0<. Furthermore, T (W*, I1*) witnesses that the sequence (P;, Qi 7,13, &, 05, s | 1 < w
is A-bad.

Proof. For a typical o, let 0, <<T" be the minimal pointclass that witnesses there is an A-bad
sequence starting with H,, i.e. H, is the Py of the sequence in the notation above. Also, let
D, be the collection of hod mice Q over (H,, > ) such that there is a strategy A for Q with
branch condensation and is I'-fullness preserving such that 2, < I'(Q, A); note that D, is
ODyyy. Let D = I1,D,\pp. Expanding M if necessary, we may assume M N D € M and
M N D # ( (regularity of © and the fact that O is singular allow us to do this).
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Fix W € M N D and for a typical o, let W, = 7, (W). Fix a sequence (o, | n < w) such
that for each n, there is an A-bad sequence S,, starting with H,, in M, . Fix such an S,
for each n and fix also strategy A,, for W, such that T'(W,, ,A,) witnesses the sequence S,
is A-bad. It’s easy to see that there are n < m such that T(OW,, , A,) = T(W,, , As7"™). We
can just let o, = 0g, 0, = € as in the lemma and let (W, II) = (W,,,, A,,) and (W*,IT*) =
(W, , Anmom). O

Now let (W*,1I*) and (W, II) be as in Lemma 4.3.12. Since we assume ['(OV*, IT*) is large
enough, there is a finite sequence of ordinals ¢ and a formula 6(u, v) such that in I'(W*, IT*)

=7

9. for every i < w, (¢, 3) € TZ = e[iPi(a) o0”

t], where « is least such that s € [67i]<%;
10. for every i, there is (¢;, s;) € TSZAi) such that —ﬂ[z’\;{(a)(si), t] where ¥; = X7, and «
is least such that s; € [§91]<v.

The pair (6,t) essentially defines a Wadge-initial segment of I'(W*, IT*) that can define the
pair (Mo -, A%).

Let E; be the (crt(7;), §%)-extender derived from 7; and F; be the (crt(&;), 67+!)-extender
derived from &;. Let Py = W*, Qf = Ult(P;", Ey), Py = Ult(Qy, Fy). We inductively define
Pr, Qf for all i. Let w7 : PF — QF, &+ Qi — P,y be the ultrapower maps and
¢ = m o0&, These maps in turn commute with the map £ : Py — W and hence we can
let TT" be the strategy of P;" and ¥ be the strategy of Q; obtained from pulling back the
strategy IT under the appropriate maps. We note that P;" is a X;-premouse and Q; is a
U,;-premouse for each 1.

By a similar argument as in Theorem 3.1.24, we can use the strategies IT;’s and Vs to
simultanously execute a RM<*-genericity iterations, where M* contains everything considered
so far and is closed under II. The process yields a sequence of models (P;’w, Q;fw | i < w)

and maps m;, : I — Qf | &« OQf — PL ., and ¢, = & onf . Furthermore, each
Pi,, Qi embeds into a Il-iterate of W and hence the direct limit Py, of (P;f,, @, | 4,j < w)

under maps ;"

's and &’s is wellfounded. We note that P, is a ¥-premouse and Q, is
a Wy-premouse. Let C; be the derived model of P}, D; be the derived model of Qf  (at
the sup of the Woodin cardinals of each model), then RM* = R% = RP:. Furthermore,
Ci N P(R) Q DZ N P(R) Q Ci+1 N P(R) for all 7.
(9), (10) and the construction above give us that there is a t € [OR]<“, a formula 0(u, v)
such that

11. for each 7, in Cy, for every (¢, s) such that s € 677, (¢, s) € TZ" & 6’[2'7235(&) (8),t] where
« is least such that s € [§7¢]<“.

Let n be such that for all i > n, ;" (t) = t. Such an n exists because the direct limit P is

wellfounded. By elementarity of 7" and the fact that 7T:_w [ P =m,

B,
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12. for all i > n, in D;, for every (¢, s) such that s € 6%, (¢,5) € T4  Olig)(a) w0 (5), 1]
where « is least such that s € [§2]<¥

However, using (10), we get

13. for every i, in D;, there is a formula ¢; and some s; € [§%]<“ such that (¢;, s;) € TSE A9
but ﬂ¢[z’gj—(a) (si),t] where « is least such that s € [§2]<¥

Clearly (12) and (13) give us a contradiction. This completes the proof of the lemma. [

Suppose (Q T) € I(HS,%,) is such that i7 : H} — Q exists. Let 47 be the sup of the
generators of 7. For each z € Q, say # = 7'(f)( )for f € T;F and s € [62]<, where §2 < ~7

%=
is least such, then let 7o(z) = Wg(f)('Q(QJ (s)). By Lemma 4.3.10, 7o is elementary. Note
also that 7,4 = 7, | HJ.

—

Lemma 4.3.13. Suppose (Q,T) € I(H},%,) and (R,U) € 1(Q,% o.7) are such that iT, i
exist and Xg 7 and Xy 5 have branch condensation. Then Tg = TR 01 U

Proof. Let x € Q. There are some f € H} and s € [’yf]@ such that x = ﬁ(f)(s). So

Tol2) = o f)('}og( }). On the other hand, 7 0 #(x) = 7 o (T (£)(5)) = w0 (f) (ig%7 o
o7 (5)) = mo (f)(ig2] (5)) = To(). O

The lemmas imply that (T) holds and finish the proof of the claim.
Remark: The proof above works more generally for any T' such that Ht E cof(©) is

measurable. If I' = ', , it’s automatic that M., ¢ HOD", so the proof above is superfluous.
]

The proof of Theorem 4.3.7 gives the following.
Theorem 4.3.14. Suppose there is no I' such thatI' = P(R)NL(I",R) and L(I',R) F ADr+©

is reqular. Suppose I’ = Ty, is the current mazimal pointclass such that ©F < ©. Then there is
a hod pair (P, %) such that > ¢ T' and is I'-fullness preserving and has branch condensation.
In particular, ', exists.

Proof. Using the same notations as in the proof of Theorem 4.3.7. We have three cases.

Case 1: cof(OY) = w. This case is easy. First we let (a,, | n < w) be an increasing
and cofinal sequence in O, where each «, is a member of the Solovay sequence of I'. Using
DC, we can choose for each n, a sjs A, at «, (i.e. members of A, are Wadge cofinal in T'|,,).
We then let A = @,, A, be the amalgamation of the A,’s. A defines a model operator F
that condenses and relativizes well. We can then prove L¥(R) F AD* +© = 0,,,. Then a
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hod pair (P, ) as in the conclusion of the theorem exists in L (R).

Case 2: cof(O") > w and H" F O is singular. This is the main case and the proof is
just that of Theorem 4.3.8.

Case 3: cof(©') > w and H™ F O is regular. We claim that this case cannot oc-
cur. For a typical o, HI F O is regular. Set ¥, = @,<0:X7 to be the join of the lower

level strategies. Then for a typical o, the iteration map (via 3,) Wii _ in the direct limit

system of I' maps ©7 to 7, where v, < O'% is a member of the Solovay sequence of I, say
vy = 0-. But this means H(«a) F 6% is regular and this implies L(T'|0L, R) £ © is regular (see
[3] for a proof). This contradicts the smallness assumption of the theorem. ]

The following completes the proof of the theorem.

Theorem 4.3.15. There is a pointclass I' such that I' = P(R) N L(I',R) and L(I',R) F
ADg + © is regular.

Proof. Suppose not. By Theorem 4.3.14, we can run the core model induction to produce a
pointclass T' such that OF = ©. Since © is regular, by a standard argument, I' = L(T',R) N
P(R). We give this argument below.

Suppose not. Let « be the least such that p(L,(I'yR)) = R. Hence a > O. Let
f:axT — L,(I',R) be a surjection that is definable over L, (I',R) (from parameters). We
define a transitive model M such that

1. RC M;
2. there is an elementary embedding from M into L, (I',R).

We first define a sequence (H; | i < w) as follows. Let Hy = R. By induction, suppose H,
is defined and there is a surjection from R — H,. Suppose (¢, a) is such that a € H,, and
L.(I,R) E 3zp[x, a]. Let (Vap, Bap) be the <iep-least pair such that there is a B € I' with
Wadge rank 3, such that

La(F>R) F %D[f(%,w’ B)? a]'

Let then H, 11 = H, U{f(Yaw, B) | Lo(I,R) E xp[z, a]) Aw(B) = foy Na € H,}. It’s easy
to see that there is a surjection from R — H,, 1. This uses the fact that © is regular, which
implies sup{f.y | @ € H, A Lo(I',R) E Jzp[z,a]} < ©. Let H = U, H,. By construction,
H < L,(T',R). Finally, let M be the transitive collapse of H. M clearly satisfies properties
1 and 2.

Say M = Lg(I'*,R). By the above properties of M, I'* = F|9§ for some 7 such that
0} < ©. But then p(Ls(I*,R)) = R. This contradicts that I'* is constructibly closed. This
gives L(I', R) F ADg + © is regular. O

25This is because cof(v,) = w while cof(OF) > w.
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4.3.4 ADg + O is measurable
The main result of this subsection is the proof that the theory (T;) = “ADg + DC + there is

an R-complete measure on ©” is equiconsistent with (Ts) = “ZF 4+ DC + there is a normal
fine measure on P,, (P(R)) + O is regular.” The proof of the main theorem also shows that
(Ty), (T2) are both equiconsistent with the theory (T3) = “ZF + DC + there is a normal

fine measure on P, (R) + there is an R-complete measure on ©.”

Theorem 4.3.16. Con(T,) < Con(T,). Furthermore, these theories are equiconsistent with
(Ts).

Woodin (unpublished) has shown that Con(P) follows from Con(ZFC + there is a proper
class of Woodin limits of Woodin cardinals), where (P)= “ZF 4+ DC + w; is supercompact”.
We conjecture that a (closed to optimal) lower-bound consistency strength for the theory
(P) is “ZFC + there is a Woodin limit of Woodin cardinals”. The methods developed in this
thesis, in particular the proof of Theorem 4.3.16, gives us the following.

Corollary 4.3.17. Con(ZF + DC + wy is P(P(R))-supercompact) = Con(Ty). In partic-
ular, Con(P) = Con(T).

The outline of the proof is as follows. We first show in subsection 4.3.4.1 that (T)
implies (Ty). Subsections 4.3.4.3 proves the converse of the theorem. We use the core model
induction (developed in the previous sections) to construct pointclass I' of “ADgr + O is
regular” such that L(I',R) N P(R) = I We then define a certain model H* extending
HOD! and a normal measure v on © over H*. Finally, using Theorem 4.3.19 in subsection
4.3.4.2, we show L[H*,v|(T) E (Ts).

4.3.4.1 (Ty) = (Ty)

Suppose V E (T;). The hypothesis implies there is a R-complete and normal measure on
© by a standard argument (see Theorem 10.20 of [9] and note that DC is enough for the
proof of the theorem). Let v be such a measure. For each a < O, let p, be the normal fine
measure on P, (P,(R)) derived from the Solovay measure po on P, (R) (i.e. we first fix a
surjection 7 : R — P, (R); then we let 7 : P, (R) = P,, (Pa(R)) be the surjection induced
from 7 and let A € p, < (7°)71[A] € po). It’s worth noting that by [47], p, are unique for
all @« < ©. We derive from v a measure p on P, (P(R)) as follows. Let A C P, (P(R)),
then

AcueVia Al PuR) =4s{o€A| o €P,(Pa(R))} E i

It’s clear that u is a measure. It’s also clear that u is fine since the measures pu,’s are fine.
It remains to show normality of u. We first need an alternative formulation of normality.

Lemma 4.3.18 (ZF+DC). Suppose p is a fine measure on P,,(X). The following are
equivalent.
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1. p 1s normal.
2. Suppose we have (A, | v € X N A, € u). Then Dpex Ay =aef {0 | 0 € Upeo As} € 1

The proof of the lemma is standard and we leave it to the reader. We proceed with the
proof. Suppose g is not normal. By Lemma 4.3.18, there is a sequence (A, | z € P(R)AA, €
w) but ApepmyAz ¢ . This means

ViV odr €0 o ¢ A,
By normality of u,, we then have
ViadrV, ox €0 No ¢ A, (4.2)

We now define a regressive function F': © — O as follows. Let F'(a) be the least § < « such
that there is an 2 € P(R) such that w(z) = §*° and V}, o 0 ¢ A,; otherwise, let F(a) = 0.
By 4.2, Via 0 < F(«) < a. By normality of v, there is a 3 such that Via F(a) = S.

For each z such that w(z) = 3, let

B,={a <O |V, 0c0¢ A}

Note that U, B, € v. Since there are only R-many such x, by R-completeness of v, there is
an x such that B, € v. Fix such an x. We then have

V,av, oo ¢ A, (4.3)

The above equation implies A, ¢ u. Contradiction.

4.3.4.2 A Vopenka Forcing

We prove a theorem of Woodin concerning a variation of the Vopenka algebra. This theorem
will play an important role in the next subsection. Suppose T is such that L(I',R) £ AD*
+ ADg and I' = P(R) N L(T,R). Let H be HOD*I"®) Woodin has shown that H = L[A]
for some A C OF (see [43]). We write © for ©OF. Let HT be a ZFC model such that A € HT
and V3t = V3

Theorem 4.3.19 (Woodin). There is a forcing P € ‘H such that
1. P is homogeneous;
2. there is a G C P generic over H™ such that H™(T)*" is the symmetric part of HT[G].

3. P(R)NHH() =T.

269y(x) denotes the Wadge rank of .
2TH+(T') is the minimal ZF model containing H* and I’
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In particular, HT(T') E ADg.

Proof. First, we define a forcing Q € L(I',R). A condition ¢ € Q if ¢ : n, — P(cy,) for some
n, < w and oy < ©. The ordering <g is as follows:

g<gren, <ngANa, <o, AN\Vi<n, q(i) N, =1r(i).
Now we define
P* = {A | 3as < O3ng <w AC Plas)" ANA € ODHIRY
The ordering <p- is defined as follows:
A<p- Beng<naAhag <asANANP(ag)"s C B.

It’s easy to see that there is a partial order (P, <p) € H isomorphic to (P*, <p«) and in H,
(P, <p) has size ©. Let 7 : (P, <p) — (P*, <p+) be the isomorphism. We will occasionally
confuse these two partial orders. (P, <p) is the direct limit of the directed system of complete
boolean algebras P, in H, where P}  is the Vopenka algebra on P(a)" and the maps
from P,, into Pg,, for « <  and n < m are the natural maps. It’s clear that P is
homogeneous. Similarly, Q is homogeneous and is a natural direct limit of the partial orders
{Q.=Qlala<6}.
Now let ¢ C Q be L(I',R)-generic. Let h C P be defined as follows:

pehs(g1n,) NPlay)™ € m(p).

Lemma 4.3.20. Write the filter h above hy. Then h, is generic over H and L(I',R) is the
symmetric part of H[hy]. In fact, for any condition p € P, there is a generic filter h over H
such that p € h and L(T',R) is the symmetric part of H|[h].

Proof. Suppose hy, is not generic over H. Then there is an open dense set D C P in H such
that h,N D = (. Fix a condition p € g which forces this. For each i < w, let p; be the join in
P, of all b which can be refined in P to an element of D by not increasing ¢ but (possibly)
increasing a,, that is there is a 8 > a;, and a d € Pg; such that d € D and d | o, = b.

Since D is open dense, the set {p; | i < w} is predense in the limit P, of the P, ;’s.
Since ¢ | a, =gy (9(n) | @, | n < w) is generic for Q | a,, there must be some ¢ > n, and
B > «, such that there is some b € Pg; N D such that (g | o) [ i € 7(b) | P(a,)’. But this
means we can easily refine p to a condition ¢ such that ¢ IF hnD # (). Just take g to be a
thread in b extending (g [ o) [ .

In fact, we just proved that given an open dense set D C P in H, for any condition
p € Q, there is a ¢ <g p such that ¢ Ig hND # (. Given g and h, as above, we also can
define g from h, in a simple way. Let b C « for some o < © such that b € L(I',R). Let
Dhan € P be such that ny,, . =n+1and ap, ., = aand b € T(pyan)(n). We can pick a
map (b, &, n) — Ppan in H. Then

b=h(a,n) < Apan € gn-
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We then can define symmetric P-terms for h(a,n) and ran(h) by

Tan = {(,0) [ bC aAp <ppran},
and
R={(p,0an) [ PEPAG<OAN < W}
By the proof above, we have the following.

Lemma 4.3.21. 1. For any h C Q generic over L(I',R), 0¥ = h(a,n) for all a,n and
R = ran(h) = Po(0)LTR),

2. For any condition p € P, there is an H-generic g such thatp € g and RY = Pe(@)L(F’R).

Since L(I',R) F AD" 4+ ADg, L(I',R) can be recovered over H from Pe(0)*"®). This
and Lemma 4.3.21 prove Lemma 4.3.20. O

Now work in L(H*,g) for a generic g over H such that R = Po(0)XTR) It makes sense
then to talk about the forcing @ in the model L(H™,g). Also, note that P € HT™. The
following lemma is the key lemma.

Lemma 4.3.22. There is a P-generic g* over H* such that
1. R = R9 = P (0)LIR),
2. HT(RI) NP (0) = Po(0)LTR) gnd HT(RI)NP(R) =T.

Proof. Let h* C Q be L(H™,g)-generic. As mentioned above, Q € L(H*, g) since RY =
Po(0)XTR)  Now, let g* = gp-. Using the proof of Lemma 4.3.20 and the fact that V3" =
V3t we get that g* is generic over H* and RY = RY.

Now we want to verify clause (2) of the lemma. For the first equality, it’s clear that
the D-direction holds. For the converse, if A is a bounded subset of © in H*(R"), then
using the automorphisms of P that are in H, it’s easy to see that there are some a@ < ©
such that A € HT[¢* | a]. The idea is that if py, p; € P decide differently the statement
“B e A7, then there is an automorphism in H that maps po to p, compatible with p;. This
is a contradiction. Now since P | a is ©-c.c. and VI = V2, A € H(RY), and hence
A € Po(©)LTR),

Note that the first equality of (2) shows that R N'‘H*(R9) = RY. Now we're onto the
second equality of (2). The D-direction holds since H(Pg(©)*TR)) = L(I',R) C H+(RY).
Let A C RV be in HT(RY"). First we assume A is definable in H*(R?") from an element
a € HT, via a formula ¢. Let & be a P | w-name for a real. The statement (&, a) is decided
by P [ w by homogeneity of P (i.e. HT E “D lkpy, ¥[z,a] V0 IFpy, —¢[&,a]”). Again, by
the fact that P | w is ©-c.c., we get that A € H[g* | w|, hence A € I". Now suppose A is
definable in H*(R?") from an a € H* and a b € Pe(0) TR, By a basic Vopenka argument,

there is a < O-generic G, over H and H* such that HODF "™ = H[G,] € HF[G). Let us
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use H,, to denote H[Gs] and H; to denote HT[G,]. Now in H,, we can define the poset P,
the same way that P defined but we replace OD by OD(b). Let g, be Py-generic over H,,
such that the symmetric part of Hy[gs] is Hy(Pe(©)LR). Now we get a generic g; over H;
from g, as before. A is then definable over H; (Pe(0)*"®)) from parameters in H, . Now,
we just have to repeat the argument above. This completes the proof of Lemma 4.3.22. [

Lemmata 4.3.20, 4.3.21, and 4.3.22 together prove Theorem 4.3.19. O

4.3.4.3 Con(Ty) = Con(T,)

The main result of this section owes much to conversations between the author and G.
Sargsyan when the author visited him in Rutgers in Fall 2012. The author would like to
thank him. Recall the following result of the previous subsections.

Theorem 4.3.23. Suppose (1) holds. Then there is a I' C P(R) such that L(I',R) E
ADg + © is regular.

Suppose there is no model of (T) and let I' be from Theorem 4.3.23 and be the maximal
such pointclass. We define a model H*t as follows. Let g be a normal fine measure on
P, (P(R)) witnessing (T3). Let pr be the normal fine measure on P, (I') induced by u.
Vo < I, let H, = HOD?. We then let

HT = HULPEBQ«—)U ne (Ha)/MF-
We define a measure v on OF over H* as follows. Let A € H*. Then
Aeve W, osuplonO) e A (4.4)

The definition only makes sense if cof(©F) > w. In fact, no I’ with cof(©") = w can satisfy
our hypothesis. Note also that the above definition makes sense for all A € V' but we only
care about those A’s in H*. First we show the following,.

Lemma 4.3.24. v is amenable to H*.

Proof. Let M <tH™ be sound and p(M) = OF (note that HT is the union of such M’s). Let
vpm = v | M. It’s enough to show vy € HT. Let N be a transitive model of ZF~ 4+ DC such
that there is a surjection of I' onto N and M,I" € N. Let uy be the normal fine measure
induced by p. V5, o, let 7, : M, — o be the uncollapse map. Let 7,(0,, My, v, Ho) =
(OF, M, vp, HODY). It’s easy to see that

HUVU/,UN = HUMm-
Now let X, = ®pcor ZZf” and H} = Lp¥s(H,). It’s also clear that
IoHy /iy =H"
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and
Vo My < HY.

We want to show ¥, o v, € HI. Fixsuchao, let N, = HODE{Jr s - Note that P(0,)NN, =
P(O,) N H} since HF is full in I. Let A = (A, | @ < ©,) be a definable over M,
enumeration of P(0,) N M,. We want to show (« | A, € v,) € N, which in turns implies
(| Ay € vy) € HTE.

Let v, = sup(m,[©,]) (note that 7,[0,] coincides with the the iteration embedding via
¥, and it’s part of our assumption that v, < ©'). Note that

Va <0, Ay € Vs & 75 € T,(A)|(75 + 1) (4.5)
and
(1o(Aa)|(e + 1) | @ < O5) € N (4.6)

4.6 is true because (m,(Ay,) | @ < O,) € HT. Hence (m,(A4d)|(7o +1) | @ < O,) € HT|O =
HOD". Since HOD" C N, we have 4.6.

By Equations 4.5 and 4.6, we have (« | A, € v,) € N,. This completes the proof of the
lemma. O

Now we want to show that v is normal and P(OF) N L[HT,v] = P(OY) N HT. Let
M <HT be sound and p(M) = O, From now to the end of Lemma 4.3.31, we will write ©
interchangably with O,

Lemma 4.3.25. vy =45 v [ M is normal.

Proof. Suppose not. Let N E ZF~ + DC be such that
1. there is a surjection 7 : [' — N
2. T, ur, M, vp € N,
3. N is transitive.

We may also assume that N sees a surjection from I' onto M. Working in V', let uy be the
measure on P, (V) induced by pr.

v .0, let T, © M, — o be the uncollpase map and (M, 0,) = ;' (M, 0). We define a
measure v, on 0, over M, as follows.

A€ v, & v =4ef sup(n,[0,]) € m,(A). (4.7)

It’s easy to see that
v,/ uny = vpm. (4.8)
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By the assumption on v, we have that Vj, o v, is not normal. This means

{me(f)(Ve) [ f € Mo} N e # 0076 (4.9)

In other words, V3 o3f € o f(7,) € oMo Af(75) < Yo. By normality of pun, 3V o f(7,) &
0N A f(75) < V5. Fix such an f € M and let

Al = {U | f(%f) ¢ oMNYe A f(’VU) < /70}' (4'10)
Note that A" € py. This implies that B € vy, where
B={v|f(v) <~} (4.11)

We may assume f is regressive everywhere. First we show that v, is weakly normal in the
following sense.

Lemma 4.3.26. There is an 1 < O such that V%, .o f(v,) <.

Proof. ¥}, 0, let iy : M, — N, be the iteration map according to X, =gef Ba<o, L, ().
Note that i, acts on M,. Let v} = i,(v,) and (f,, By) = (7, (f), 7, (B)). We have
then that V;NO' B, € v,, which implies that i,(B,) € v:. By normality of v}, Jn} <
VoV io(fo)(a) = m;. Let n, < ©, be largest such that iy(n,) < n;. Then it’s easy to
see that V) a f,(a) < n,. Let n = Il,n,/un < ©. Note that iy To(N,) = n. This means

VOV @ do(fo)(a) < m. Hence Vi o f(7,) <. B

i (Vo)
Let now A = {0 | f(7,) < n}. By the previous lemma, A € puy.

Definition 4.3.27. Suppose A C P, (N). We say that A is unbounded if for all o €
P, (N), there is a T € A such that o C 7. We say that A is a strong club (scub) if A
is unbounded and Vo € P, (N)VT C o, if whenever T is finite, then there is a 7' € A such
that 7 C 7" C o, then 0 € A. A is a weak club (wcub) if A is unbounded and whenever
(op | n <w) is a € —increasing sequence of elements of A then U,o, € A.

Clearly, a strong club is a weak club. This is a special case of the notion of scub introduced
in [1].

Lemma 4.3.28. Suppose B € uy. Then B meets every strong club. In particular, A meets
every strong club.

Proof. Suppose C' C P, (N) is a strong club and C' N B = (). Let F be defined as follows.
F(o) =0\U{7 | 7 CoAT € C}. By our assumption that C' is a strong club and CNB = {),
Vi .0 F(o) Co A F(o)#0. This means 325 o 0 € B\C Az € F(0).

We claim that this is a contradiction. Fix such an z. Since C is a strong club, there
is a o € C such that € ¢*. By fineness and countable completeness of py, the set
{0 € B| 0" C o} € uy. This contradicts the definition of F'. O
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Note also that the above lemma implies that if C' is a strong club, then uy(C) = 1.
Now let P be the natural forcing that shoots a weak club through A. Conditions in P
are countable W C A such that whenever (o, | n < w Ao, € W) is C —increasing then

Un,on, € W. VCO,Cl € ]P, Co <p Ciiff ¢ C C().

Lemma 4.3.29. P is (wy, 0o)—distributive.

Proof. Fix a condition Cy € P and a sequence D = (D; | i < w) of open dense sets in P. We
want to find a condition C' <p Cy such that C' € D; for all i.
Claim: The set D = {o | 0 < N} contains a strong club.

Proof. D is certainly unbounded. Now let 0 € P, (/N) and suppose for all finite 7 C o,
there is 7/ € D such that 7 C 7/ C 0. We want to show o € D. We prove by induction that
for any n, for any finite 7 C o, whenever 7 C 7/ C ¢ and 7/ € D then 7/ <y o <y, N.
This clearly holds for n = 0. Now suppose the claim holds for n and let ¥ be a II,
formula, 7 C o be finite such that N E 3z ¥z, 7]. By our assumption, there is a 7/ € D
such that 7 C 7/ C ¢. By definition of D, 7/ < N, hence 7" £ 3z U[z,7]. Let © € 7’ be a
witness. We have then 7/ F ¥[z,7]. But z € o and ¥ is II,;; by the induction hypothesis,
o E Uz, 7']. This proves the claim. O

Let N’ be a transitive model of ZF~ 4 DC such that P(R) —» N’ and N,P,D € N’ and
let N” be a countable elementary submodel of N’ such that P, D e N'NN e D. Such an
N" exists by the claim. By a standard argument, we can build a <p —descending chain of
conditions (C,, | n < w) such that

1. CnJrl € Dn;
2. C, € N” for all n;
3. U,C,=N"NN.

Let C =U,C,, U{N"N N}. Then C € P and C <p C, for all n. This means C' € D,, for all
n. Hence we’re done. O

Let G C P be V-generic. In V[G], DC holds and there is a weak club C' C A. Let then
C*={y, | 0 €C}.

Then C* contains an w—club in V[G]|. Now we proceed to derive a contradiction. Now
we use an abstract pointclass argument to generalize Solovay’s proof that w; is measurable
under AD to show the following.

Lemma 4.3.30. There is a k < OV such that:

1. the w—club filter on k is an n*-complete ultrafilter on P(k) N T;
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2. the set {0 € A | v, < k} is unbounded in P,,(T|k)*; in particular, {v, | o € A} is
unbounded in k;

3. Y& <, the set of 0 € A such that £ € o and v, < K is unbounded in Py, (I'|k).

Proof. Since Solovay’s proof is well-known, we only highlight the necessary changes needed
to run that proof in this situation. Working in L(T",R), let n* < p; < pa < © where p1, p are
regular Suslin cardinals. Furthermore, we assume that there is a prewellordering of length
n in S(p1)?°. Fix a prewellordering < of length n such that <€ S(p;) and let f : R — n be
the natural function induced from <.

We claim that there is a x which is a limit of Suslin cardinals of cofinality ps (in I') and &
satisfies clauses (2) and (3) of the lemma. To see such a & exists, first note that by Theorem
4.3.19, HT(T)NP(R) =T; since H*(T") is the symmetric part of some homogeneous forcing
and H* F O is regular, H"(T') F ADr + © is regular. Now the set Y of o N HT(T") such
that ¥, is I-fullness preserving is in H*(I") (note that v, is a limit of Suslin cardinals and
cof(y,) = w in HT(I")); also, for each £ < n, the set Y¢ of 0 € Y such that £ € o isin HT(T).
From these facts and the regularity of ©F in H*(T"), we easily get such a .

Fix such a k. We show that « satisfies (1) as well. Let Q be the Steel pointclass at x (see
[32] or [8] for the definition of the Steel pointclass). The properties we need for  are:

1. F®Aq C Ag (in fact, Ag = {V | w(Y) < k});
2. Qs closed under N, U with S(p;)-sets.

Let Z be an Q-universal set and 7 : Z — k be an {2-norm.

For each A € P(k) NT', we define the Solovay game G4 as follows. Players I and II take
turns to play natural numbers. After w many moves, say player I plays a real x and player 11
plays a real y. I wins the run of G4 iff either there is an ¢ such that either z; ¢ Z or y; ¢ Z
and letting j be the least such then y; ¢ Z or sup{m(x;),7(y;) | 7,j <w} € A.

Now we're ready to prove the w—club filter at x U, is an nT-complete ultrafilter. Note
that U, is an ultrafilter follows from AD and in fact, A € U, iff player I has a winning strategy
in the game G4. Fix a sequence (A, | a« < n A A, € U,). We want to show N,A, € U.
Since A, € U,, player I has a winning strategy for the game G4,. Let g : n — P(R) be such
that for all £ <, g(§) € {7 | 7 is a winning strategy for player I in G4, } and furthermore
Code(g,<) ={(z,7) | T € g(f(x))} € S(p1). Such a g exists by the coding lemma.

For each § < k, let Ye = {(7[y])n | n <w A Jz(z,7) € Code(g, <) ANVi(m(y;) < &)} It's
easy to see from the fact that 7 is Q-norm, €2 is closed under intersection with S(p;)—sets
that Y: € Aq. By boundedness, ¢(§) = sup{m(z) | z € Y¢} < & for all £. This easily implies
that I has a winning strategy in the game Gn_4,, which in turns implies N, A, € U,. m

28This is the collection of X € I' such that w(X) < &.
29For a Suslin cardinal £, S(€) is the pointclass of £—Suslin sets.
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Fix a x as in Lemma 4.3.30 and let U, be the w—club filter in I". Note that s has
uncountable cofinality in V[G]. Let D = {y | f(y) < n} € vp. By the coding lemma,
DNk el'. We claim that D Nk € U,,. Otherwise, D Nk is disjoint from an w—club £ € T
But in V[G], D N k contains an w—club, namely C* N k. In V[G], E remains an w—club,
hence has nonempty intersection with C* N k. This is a contradiction.

Finally, since D Nk € U, and U, is nt-complete (in H*), there is a & < n such that
D¢ = {v < k| f(y) = &} € U,. But then there is a 0 € C such that v, < , £ € o, and
f(7,) = & This contradicts the fact that Yo € C' f(v,) ¢ 0. This completes the proof of
Lemma 4.3.25. 0

Lemma 4.3.31. Let Ht+ = LpPa<et & (HT). Then P(O) N (KT, )% = P(O) NHT.

Proof. Suppose not. Then there is an M* < (K™, i) such that p(M*) < © and M* defines
a set not in H*. We may assume M* is minimal and p;(M*) < O. Let M be the transitive
collapse of Hull{" (© Upi"). Then M is transitive and M Y-defines a set not in H7.
Let N F ZF~ be transitive such that I' - N and M,T" € N. Let ux be the supercompact
measure on P, (N) induced by pr. Vin0s let 7y« M, — N be the uncollapse map. Let

To(Meg, Hq,05) = (M,HOD', ©).
Lemma 4.3.32. There is a strategy X2} for M, with the following properties:

1. ¥t is a my-realizable strategy that extends ¥,'. This means that whenever T is a stack
according to T, letting i : M, — P be the iteration embedding, then there is a map
k:P — M such that 7, = k oi.

2. Whenever (Q,A) € I(M,,SF), Va < A2, Aga) is ['(M,, EF)-fullness preserving and
has branch condensation. Hence 1 is T'(My, X1)-fullness preserving.

Proof. We prove (1) (see Diagram 4.1. The proof of (2) is just the proof of Theorem 2.7.6
of [23] so we omit it; we just mention the key point in proving (2) is that Ag(,) for a < A9
is a pullback of a strategy that is I'-fullness preserving and has branch condensation.

Fix a 0. Let v, = m,;'(vp). Suppose i : Mg, v, — P,vp is the ultrapower map us-
ing v,. We describe how to obtain a m,-realizable strategy Yp(,) for a < AP, We then
let X5 = @pcrrXp(a) and 7 be a stack on P according to X5 with end model Q. Let
j: P,vp = Q,vg be the iteration map and k£ : @ — R be the ultrapower map by vg.
We describe how to obtain 7,-realizable strategy Yo, for all a < A< and a 7,-realizable
strategy Yr(q) for all a < AR. The construction of the strategy for this special case has all
the ideas needed to construct the full strategy.

Let 7 < N be such that o, T € 7 and are countable there. pn-allmost-all 7 have this prop-
erty. Let m,, = 7, ! o m,, where 7, : N, — N is the uncollapse map. Let 7 (M., v, H,) =

30We identify v with the top extender indexed at o(H ") according to the rule of the fine-extender sequence
in [17].
31Recall that ¥, = @<, X7t is the join of the strategies of the H,(a)’s
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Figure 4.1: The construction of X7

(M,va,H). Working in Ny, let X = SpcamoXa, (o) and v = iif:‘joo()\/"‘f'). Let
i* : P — M, be such that i*(i(f) (M) = 7,.(f)(70). It’s easy using the fact that v,
is normal to show i* is elementary and 7,, = i* 04 (so m, = 7, 0 ¢* 0i). Note also that
i*(vp) = v,. Now, let (M, A) be a point in the direct limit system giving rise to H, be such
that ran(i* | A7) C ran(if ). There is some s : P|X” — N such that i}, os =i* | A”.
Then ¥ is simply the s-pullback of A. Note that A can be extended to a fullness preserving
strategy with branch condensation in I'. It’s not hard to show that the definition of >
doesn’t depend on the choice of (N, A) and the choice of 7.

Now every element of Q has the form j(f)(a) for some f € P and a € a(T)<“, where
04(’7_") is the sup of the all the generators used along 7. We let J* 1 Q — M. be such that

7)) = (F)(ir(ig.(a))). Hence i* = j* o j and 7, = j* 0 j o1

Finally, every element of R has the form k(f)(A<) for some f € Q. Let h : M, —
Ult(M,,v,;) be the ultrapower map and h* : Ult(M,,v,;) — M be such that =, = h* o h.
Then let k* : @ — Ult(M., ;) be such that k*(k(f)(A9)) = h(5*(f))(AMM7). It’s easy to see
that ho j* = k* o k. We can now derive the strategy Yy using h* o k* | A® the same way we
used i* | A7 to derive the strategy 5. Again, it’s easy to show that X3 is a m,-realizable
strategy. O

By a ZFC-comparison argument (Theorem 2.3.2 of [23]) and the fact that 31 is T'(M,, X1)
-fullness preserving, an iterate of ¥1 has branch condensation. Without loss of generality,
we may assume X1 has branch condensation.

Now by the maximality of I', ¥ € T". Otherwise, by a core model induction using ¥
has branch condensation, we get L(3X1, R) £ AD™ and the argument for getting a model of
“ADg + © is regular” gives a pointclass I strictly extending I" such that L(I",R) £ ADg + ©
is regular. We proceed to derive a contradiction from the assumption that X1 € T

First assume p;(M,) < O,. InT', we can define a direct limit system F = {(Q, A) | (Q, A)
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= (M,,XF)}32 (this uses that ¥F € T'). Let M, be the direct limit of F. Hence
M, € HOD', HODF|% <4 M, by fullness preservation of ¥, and p; (M) < 7,. This
means M, constructs a bounded subset of 7, in HOD' but not in HODF|%. This contra-
dicts the fact that HOD" |y, = VWIjODF and v, is a strong limit cardinal in HOD'.

Now assume p;(M,) = O, and let A C ©, be a set ¥; definable over M, but not in
Lp¥(H,) (A exists by our assumption). Say

a € Ae M, E Y, s, pt], (4.12)

for some s € ©5%. Recall that M, F O, is measurable as witnessed by v,. We define F
as above®. Let My, be the direct limit of F and let ir, o0 : M, — Mo, be the iteration
embedding. We have that HOD" |y, << Mo, € HOD" and p;(My) = 7,. Let A, be defined

over M, the same way A is defined over M, i.e.
o € As & My EYa, i, ols), pt=]. (4.13)

Since A, is OD', A is ordinal definable from (H,,Y¥,) in I'. By mouse capturing in T,
A € Lp* (H,). Contradiction. O

Lemma 4.3.33. SupposeI' = L(I',R)NT". Then LIHT,v](I')NP(R) =T and LIH*,v|(T) F
ADgr+ there is an R-complete measure on ©.

Proof. The equality of in the conclusion of the lemma follows from Theorem 4.3.19 with
HOD" playing the role of H and (H**,v) playing the role of H*. Hence we also get
(H™+,v)(T') E ADg. The R-complete measure on O in (H*",v)(I') comes from v from the
proof of Theorem 2.4 in [3]. The proof uses the fact that every A € I' can be added to
(H*T*,v) via a forcing of size < ©. O

This completes the proof of Theorem 4.3.16.

32This means these hod pairs are Dodd-Jensen equivalent. The fine structural details involved in the
comparison process is described in [23].

33We take Yg-ultrapowers for extenders with critical points > the image of ©, under iteration embeddings
by ¥, and ¥;-ultrapowers otherwise
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