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Abstract4

We analyze scales in Lp
GΩ(R,Ω�HC), the stack of sound, project-5

ing, Θ-g-organized Ω-mice over Ω�HC, where Ω is either an iteration6

strategy or an operator, Ω has appropriate condensation properties,7

and Ω�HC is self-scaled. This builds on Steel’s analysis of scales in8

L(R) and Lp(R) (also denoted K(R)). As in Steel’s analysis, we work9

from optimal determinacy hypotheses. One of the main applications10

of the work is in the core model induction.11

1 Introduction12

There has been significant progress made in the core model induction in13

recent years. Pioneered by W. H. Woodin and further developed by J. R.14

Steel, R. D. Schindler and others, it is a powerful method for obtaining15

lower-bound consistency strength for a large class of theories. One of the key16

ingredients is the scales analysis in L(R), and further, in Lp(R) (also denoted17

K(R)); see Steel’s [16], [18] and [19]. Applications include Woodin’s proof18

of ADL(R) from an ω1-dense ideal on ω1 and Steel’s proof that PFA implies19

ADL(R), amongst many others.20

To use the core model induction for stronger results (for example, to21

construct models of “AD++Θ > Θ0”) one would like to have a scales analysis22
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for hybrid mice over R – structures beyond Lp(R). In this paper we present23

such an analysis. There have been recent works that make use of methods24

and results from this paper, for example [21], [4], and [7].25

This paper owes a strong debt to Steel’s scale constructions in [16], [18]26

and [19], and to Sargsyan’s notion of reorganized hod premouse, [5, §3.7].27

Indeed, these are the two main components, and the main work here is in28

putting them together.29

For the purposes mentioned above, one would particularly like to have30

a scales analysis for something like LpΣ(R), the stack of “projecting Σ-mice31

over R”, where Σ is an iteration strategy with hull condensation. Unfor-32

tunately, the usual definition1 of “Σ-premouse over R” doesn’t make sense,33

because R is not wellordered. One might try to get around this particular34

issue by arranging Σ-premice by simultaneously feeding in multiple branches35

instead of feeding them in one by one. But it seems difficult to define an36

amenable predicate achieving this, as discussed in 3.52. Even if one could37

arrange this amenably, the scale constructions in [18] and [19] do not appear38

to generalize well with such an approach, because of their dependence on the39

close relationship between a mouse over R and its local HOD.40

We deal with these problems here by using the hierarchy of Θ-g-organized41

Σ-premice, a kind of strategy premouse. The definition is a simple variant42

of g-organization, which is essentially due to Sargsyan; its main content is43

just that of the reorganization of hod premice. We similarly define (Θ-)g-44

organized F-premice for operators F , where operators are defined in [11].245

Given either Ω = Σ or Ω = F as above, we only define (Θ-)g-organization46

assuming that (Ω, X) is nice for some X ∈ HC; this demands both a degree47

of condensation and of generic determination of Ω; see 3.8.48

Given a nice (Ω, X) and self-scaled Υ ⊆ HC (see 3.45; this holds for49

Υ = ∅) we define Lp
GΩ(R,Υ) as the stack of all sound, countably iterable50

Θ-g-organized Ω-premice built over (HC,Υ), projecting to R. We will ana-51

1Roughly, that is: Given Σ-premice N E M, with N reasonably closed, and letting
T be the <N -least iteration tree for which N lacks instruction regarding the branch
b = Σ(T ), then b is the next piece of information fed in to M after N .

2Many readers will probably be comfortable reading the present paper without knowl-
edge of [11], as the particulars of [11] are not strongly related to our purposes here. In
fact, one could completely ignore the role of operators and focus entirely on strategy mice,
without losing any of the main ideas. There is significant overlap between [11] and §2 of
the present paper. For better readability, the common themes are generally presented in
both papers. A few things are omitted in one, but can be seen in the other.
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lyze scales in this structure. If Υ = Ω�HC, the analysis can be done from52

optimal determinacy assumptions. We remark that when LpΩ(R,Υ) is well-53

defined (such as when Ω is a mouse operator), we usually have LpΩ(R,Υ) 6=54

Lp
GΩ(R,Υ), but if Ω relativizes well (or something similar to this; see [15,55

Definition 1.3.21(?)]), the two hierarchies agree on their P(R), and actually56

have identical extender sequences (see 4.11).57

The scale constructions themselves are mostly a fairly straightforward58

generalization of Steel’s work in [16], [18], [19]; we assume that the reader59

is familiar with these.3 Let (Ω, X) be nice and Υ self-scaled, and let M60

end a weak gap of Lp
GΩ(R,Υ). The construction of new scales over suchM61

breaks into three cases, covered in Theorems 5.17, 5.22 and 5.26; these are62

analogous to [18, Theorems 4.16, 4.17] and [19, Theorem 0.1] respectively.63

Thus, for the first we must assume that J (M) � AD. In the context of64

our primary application (core model induction), this assumption will hold if65

Ω�HC /∈ M|α and there are no divergent AD pointclasses ; see 5.55. For the66

latter two the determinacy assumption is just that M � AD, but there are67

also other assumptions necessary. If Υ = Ω�HC then the latter two theorems68

cover all weak gaps, and so one never needs to assume that J (M) � AD.69

We won’t reproduce all the details of the proofs in [18] and [19], but will70

focus on the new features, and fill in some omissions. The most significant71

of the new features are as follows. First, we must generalize the local HOD72

analysis of a level M of Lp(R) to that of a level M of Lp
GΩ(R,Υ). As73

in [18], we establish a level-by-level fine-structural correspondence between74

H, the local HOD of M, and M itself, above ΘM. The fact that we are75

using Θ-g-organization is very important in establishing this correspondence76

(and as for Lp(R), the correspondence itself is very important in the scales77

analysis). Second, an issue not dealt with in [19], but with which we deal78

here, is that a short tree T on a k-suitable premouse N may introduce Q-79

structures with extenders overlapping δ(T ). Third, a new case arises in the80

scale constructions – at the end of a gap [α, β] ofM whereM|β is P -active;81

that is, strategy information is encoded in the predicate of M|β. (It seems82

this case could have been avoided, however, if we had arranged our strategy83

premice slightly differently.)84

The paper is organized as follows. In §2 we discuss strategy premice (in85

3One needs familiarity with said papers for §§4,5 of this paper. If the reader has
familiarity with just [16], one might read the present paper, referring to [18] and [19] as
needed to fill in details we omit here.
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the sense of iteration strategy) in detail, give a new presentation of these,86

and prove some condensation properties thereof, assuming that the iteration87

strategy involved has hull condensation and has a simply definable domain.88

In §3 we discuss g-organized and Θ-g-organized Ω-premice, and prove related89

condensation facts. In §4 we analyse the local HOD of M / Lp
GΩ(R,Υ). In90

§5 we analyse the pattern of scales in Lp
GΩ(R,Υ).91

92

1.1 Conventions and Notation93

We use boldface to indicate a term being defined (though when we define94

symbols, these are in their normal font). Citations such as [10, Theorem95

3.1(?)] are used to indicate a referent that may change in time – that is, at96

the time of writing, [10] is a preprint and its Theorem 3.1 is the intended97

referent.98

We work under ZF throughout the paper, indicating choice assumptions99

where we use them (DCR in particular will be assumed for various key facts).100

We write DCA for the restriction of DC to relations on A. Ord denotes the101

class of ordinals. Given a transitive set M , o(M) denotes Ord ∩ M . We102

write card(X) for the cardinality of X, P(X) for the power set of X, and for103

θ ∈ Ord, P(< θ) is the set of bounded subsets of θ and Hθ the set of sets104

hereditarily of size < θ. We write f : X 99K Y to denote a partial function.105

We identify ∈ [Ord]<ω with the strictly decreasing sequences of ordinals,106

so given p, q ∈ [Ord]<ω, p�i denotes the upper i elements of p, and p E q107

means that p = q�i for some i, and p / q iff p E q but p 6= q. The default108

ordering of [Ord]<ω is lexicographic (largest element first), with p < q if p/q.109

Let M = (X,A1, . . .) be a first-order structure with universe X and110

predicates, constants, etc, A1, . . .. We write bMc for X. If L is the first-order111

language of M, then definability over M uses L, unless otherwise specified.112

If L′ ⊆ L, then, for example, Σ1(L′) denotes the Σ1 formulas of L′, and if113

X ⊆ M, then ΣM1 (L′, X) denotes the relations which are Σ1(L′)-definable114

over M from parameters in X. A transitive structure is a first-order115

structure with with transitive universe. We sometimes blur the distinction116

between the terms transitive and transitive structure. For example, when we117

refer to a transitive structure as being rud closed, it means that its universe118

is rud closed. For M a transitive structure, o(M) = o(bMc). An arbitrary119

transitive set X is also considered as the transitive structure (X). We write120

trancl(X) for the transitive closure of X.121
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Given a transitive structure M, we write Jα(M) for the αth step in122

Jensen’s J -hierarchy over M (for example, J1(M) is the rud closure of123

trancl({M}). We similarly use S to denote the function giving Jensen’s124

more refined S-hierarchy. And J (M) = J1(M).125

We take (standard) premice as in [20], and our definition and theory126

of strategy premice is modelled on [20],[3]. Throughout, we define most of127

the notation we use, but hopefully any unexplained terminology is either128

standard or as in those papers. The article also uses a small part of the theory129

(and notation) of hod mice, as covered in the first parts of [5]. (However,130

the main scale calculations are not related particularly to hod mice, and131

can be understood without knowing any theory thereof.) For discussion of132

generalized solidity witnesses, see [24].133

Our notation pertaining to iteration trees is fairly standard, but here are134

some points. For T a putative iteration tree, we write ≤T for the tree order135

of T and predT for the T -predecessor function. Let α + 1 < lh(T ) and136

β = predT (α + 1). Then M∗T
α+1 denotes the N E MT

β such that MT
α+1 =137

Ultn(N , E), where n = degT (α + 1) and E = ETα , and i∗Tα+1 denotes iNE , for138

this N , E. And for α + 1 ≤T γ, i∗Tα+1,γ = iTα+1,γ ◦ i∗Tα+1. Also let M∗T
0 = MT

0139

and i∗T0 = id. If lh(T ) = γ + 1 then MT
∞ = MT

γ , etc, and bT denotes [0, γ]T .140

A premouse P is η-sound iff for every n < ω, if η < ρPn then P is n-141

sound, and if ρPn+1 ≤ η then letting p = pPn+1, p\η is (n+ 1)-solid for P , and142

P = HullPn+1(η ∪ p). The η-core of P is cHullPn+1(η ∪ pPn+1). Here Hull and143

cHull are as defined in 2.21.144

2 Strategy premice145

Definition 2.1. Let Y be transitive. Then %Y : Y → rank(Y ) denotes the146

rank function. And Ŷ denotes trancl({(Y, ω, %Y )}). For M transitive, we say147

that M is rank closed iff for every Y ∈M , we have Ŷ ∈M and Ŷ <ω ∈M .148

Note that if M is rud closed and rank closed then rank(M) = Ord ∩M . a149

Definition 2.2 (J -structure). Let α ∈ Ord\{0}, let y be transitive, Y = ŷ,150

D = Lim ∩ [o(Y ) + ω, o(Y ) + ωα)

and let ~P = 〈Pβ〉β∈D be given.151

We define J ~P
β (Y ) for β ∈ [1, α], if possible, by recursion on β, as follows.152

We set J ~P
1 (Y ) = J (Y ) and take unions at limit β. For β + 1 ∈ [2, α], let153
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R = J ~P
β (Y ) and suppose that ~Po(R) = (P0, . . . , Pn−1) for some n < ω, and154

that for each i < n, Pi ⊆ R and is amenable to R. In this case we define155

J ~P
β+1(Y ) = J (R, ~P �R,P0, . . . , Pn−1).

Note then that by induction, ~P �R ⊆ R and ~P �R is amenable to R.156

For m < ω let LJ ,m be the language with binary relation symbol ∈̇,157

predicate symbols ~̇P and Ṗi for i < m, and constant symbol cb.158

Let m < ω. An m-J -structure over Y is an amenable LJ ,m-structure159

M = (J ~P
α (Y ),∈M, ~P , Y ;P0, . . . , Pm−1),

where α ∈ Ord\{0} and ~P =
〈
~Pγ
〉
γ∈D

with domain D defined as above, the160

universe bMc = J ~P
α (Y ) is defined, ∈̇M = ∈ ∩bMc, lh(~Pγ) = n for each161

γ ∈ D, ~̇PM = ~P , ṖMi = Pi, and cbM = Y .162

Let M be a m-J -structure over Y , and adopt the notation above. Let163

l(M) denote α. For β ∈ [1, α] and R = J ~P
β (Y ) and γ = o(R), let164

M|β = (R,∈ ∩R, ~P �R, Y ; ~Pγ,0, . . . , ~Pγ,m−1)

where ~Po(M),i = Pi. We writeN EM, and say thatN is an initial segment165

of M, iff N = M|β for some β. Clearly if N E M then N is an m-J -166

structure over Y . We write N /M, and say that N is a proper segment167

of M, iff N EM but N 6=M.168

A J -structure is an m-J -structure, for some m. a169

Definition 2.3. A J -structure M over A is acceptable iff for all N /M170

and all α < o(N ), if there is X ⊆ A<ω × α<ω such that X ∈ J (N )\N , then171

in J (N ) there is a map A<ω × α<ω onto→ N . a172

The following lemma is proven just like the corresponding fact for L.173

Lemma 2.4. Let M be a J -structure over A. Then there is a map, which174

we denote hM, such that175

hM : A<ω × l(M)<ω
onto→ M

whose graph is Σ
M�LJ ,0
1 , uniformly in M. Moreover, for N EM, we have176

hN ⊆ hM.177
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Definition 2.5. LetM be an acceptable J -structure over A and ρ < o(M).178

Then ρ is an A-cardinal of M iff M has no map A<ω × γ<ω onto→ ρ where179

γ < ρ. Let ΘM denote the least A-cardinal ofM, if such exists. We say that180

ρ is A-regular in M iff M has no map A<ω × γ<ω cof→ ρ where γ < ρ. We181

say that ρ is an ordinal-cardinal of M iff M has no map γ<ω
onto→ ρ where182

γ < ρ. a183

Lemma 2.6. LetM be an acceptable J -structure over A and 0 < ξ < l(M).184

Let κ be an A-cardinal of M such that κ ≤ o(M|ξ). Then rank(A) < κ ≤ ξ185

and κ = o(M|κ).186

Lemma 2.7. There is a Σ1 formula ϕ ∈ LJ ,0 such that, for any acceptable187

J -structure M over A, we have the following.188

Suppose Θ = ΘM exists. Then:189

1. Θ is the least α such that P(A<ω)M ⊆M|α.190

2. bM|Θc is the set of all x ∈ M such that trancl(x) is the surjective191

image of A<ω in M.192

3. Over M|Θ, ϕ(0, ·, ·) defines a function G : Θ→M|Θ such that for all193

α < Θ, we have G(α) : A<ω
onto→ M|α.194

4. Θ is A-regular in M.195

Let κ0 < κ1 be consecutive A-cardinals of M. Then:196

5. κ1 is the least α such that P(A<ω × κ<ω0 )M ⊆M|α.197

6. bM|κ1c is the set of all x ∈ M such that trancl(x) is the surjective198

image of A<ω × κ<ω0 in M.199

7. Over M|κ1, ϕ(κ0, ·, ·) defines a map G : κ1 →M|κ1 such that for all200

α < κ1, we have G(α) : A<ω × κ<ω0
onto→ M|α.201

8. κ1 is A-regular in M.202

Proof. We just prove parts 1–4; the others are similar.203

Let γ be least such that P(A<ω)∩M ⊆M|γ. Then γ is a limit ordinal.204

By acceptability, for every α < γ, M|γ has a map A<ω
onto→ M|α.205
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Now suppose that γ < Θ, and let g : A<ω
onto→ γ<ω be inM. Let h = hM|γ.206

Then because g, h ∈ M, clearly M has a map f : A<ω
onto→ M|γ, so M has207

a map A<ω
onto→ P(A<ω)M, a contradiction.208

So γ = Θ, which gives parts 1,2.209

Now consider part 3. Let α < Θ. We will define g : A<ω ×A<ω onto→ M|α,210

and the uniformity in the definition will yield the result. Let β ∈ [α,Θ) be211

least such that212

P(A<ω) ∩M|β 6⊆ M|α.

Let h = hM|β. Let x ∈ A<ω be such that for some y, f = h(x, y) is such213

that f : A<ω → M|α is a surjection (such x exists by acceptability). Let214

y be least such, and f = h(x, y). Then for z ∈ A<ω, define g(x, z) = f(z).215

For all other (x, z), g(x, z) = ∅. This completes the definition of g, and the216

uniformity is clear.217

Part 4 now follows.218

Corollary 2.8. Let M be an acceptable J -structure over A and let γ be an219

A-cardinal of M. If γ is a limit of A-cardinals of M then M|γ satisfies220

Separation and Power Set. If γ is not a limit of A-cardinals of M then221

M|γ � ZF−. In particular, M|ΘM � ZF−.222

Lemma 2.9. Let M be an acceptable J -structure over A such that ΘM223

exists. Let κ ∈ [ΘM, o(M)). Then κ is an A-cardinal of M iff κ is an224

ordinal-cardinal of M.225

Proof. Suppose κ > Θ = ΘM and κ is an ordinal-cardinal, butM has a map226

f : A<ω × γ<ω onto→ κ

where γ < κ. For each y ∈ γ<ω, let fy : A<ω → κ be fy(x) = f(x, y), and let227

gy be the norm associated to fy (that is, fy(x) < fy(x
′) iff gy(x) < gy(x

′), and228

rg(gy) is an ordinal). Then gy ∈M and rg(gy) < Θ, because the prewellorder229

on A<ω determined by fy is inM|Θ andM|Θ � ZF−. Similarly, the function230

y 7→ (fy, gy) is in M. Let231

h : Θ× γ<ω onto→ κ

be as follows. Let (α, y) ∈ Θ×γ<ω. If α /∈ rg(gy) then h(α, y) = 0; otherwise232

h(α, y) = f(x, y) where gy(x) = α. Then h ∈M, a contradiction.233
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Definition 2.10. Let M be an acceptable J -structure over A and let κ <234

o(M). Then (κ+)M denotes either the least ordinal-cardinal γ of M such235

that γ > κ, if there is such, and denotes o(M) otherwise. By 2.9, if ΘM ≤ κ,236

then (κ+)M is the least A-cardinal γ of M such that γ > κ, if there is such,237

or is o(M) otherwise. This applies when E 6= ∅ in 2.11 below. a238

Definition 2.11. Let L = LJ ,2∪{ċp, Ψ̇}, where ċp, Ψ̇ are constant symbols.239

Let Ė = Ṗ0 and Ṗ = Ṗ1.240

Let a be transitive and A = â. A potential hybrid premouse (hpm)241

over A is an amenable L-structure242

M = (J ~P
α (A),∈M, ~P ,A;E,P ; cp,Ψ)

where ĖM = E, etc, with the following properties:243

1. M̄ =M�LJ ,2 is a 2-J -structure.244

2. Either P = ∅ or E = ∅.245

3. If E 6= ∅ then α is a limit and there is an extender F over M such246

that:247

– rank(A) < µ = crit(F ),248

– F is A<ω × γ<ω-complete for all γ < µ,249

– E is the amenable code for F , as in [20], and the premouse axioms250

[22, Definition 2.2.1] hold for (bMc , ~P ,E).251

(It follows thatM has a largest cardinal δ, and δ ≤ iF (µ), and o(M) =252

(δ+)U where U = Ult(M, F ), and iF (~P �(µ+)M)�o(M) = ~P .)253

4. For every N̄ E M̄, N = (N̄ ; cp,Ψ) is a potential hybrid premouse over254

A (so cp,Ψ ∈ J (A)).255

LetM be a potential hpm. We write N EM iff N is as above. Likewise256

N /M. For α ≤ l(M), M|α denotes the N EM such that l(N ) = α, and257

M||α denotes the potential hpm N which is the same as M|α, except that258

EN = ∅. (So PM||α = PM|α always, which will help ensure that PM||α is the259

kind of structure we want to consider.) a260
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Remark 2.12. Let N be a potential hpm over A. Suppose EN codes an261

extender F . Clearly κ = crit(F ) > ΘM > rank(A). By [22, Definition 2.2.1],262

we have (κ+)M < o(M); cf. 2.7. Note that we allow F to be of superstrong263

type (see 2.14) in accordance with [22], not [20, Definition 2.4].4264

Remark 2.13. From now on we will omit “∈M” from the list of predicates265

for J -structures M.266

Definition 2.14. Let M be a potential hpm over A. We say that M is E-267

active iff EM 6= ∅, and P -active iff PM 6= ∅. Active means either E-active268

or P -active. E-passive means not E-active. P -passive means not P -active.269

Passive means not active. Type 0 means passive. Type 4 means P -active.270

Type 1, 2 or 3 mean E-active, with the usual distinctions.271

We write FM for the extender F coded by EM (where F = ∅ if EM =272

∅). We write EM for the function with domain l(M), sending α 7→ FM|α.273

Likewise for EM+ , but with domain l(M) + 1.274

If F = FM 6= ∅, we sayM, or F , is superstrong iff iF (crit(F )) = ν(F ).275

We say that M is super-small iff M has no superstrong whole segment.276

We define Msq as in [3]. (Unless M is type 3, we have Msq =M.) a277

Definition 2.15. Let L− = L\{Ė, Ṗ}. Let L+ = L ∪ {µ̇, ė}, where µ̇, ė are278

constant symbols.279

Let N be a potential hpm over A.280

If N is E-active then µN =def crit(FN ), and otherwise µN =def ∅.281

If N is E-active type 2 then eN denotes the trivial completion of the282

largest non-type Z proper segment of F ; otherwise eN =def ∅.5283

IfN is not type 3 then C0(N ) = N sq denotes the L+-structure (N , µN , eN )284

(with µ̇N = µN etc).285

If N is type 3 then define the L+-structure C0(N ) = N sq essentially as286

in [3]; so letting ~P = ~PN and ν = ν(FN ),287

N sq = (J ~P �ν
ν (A), ~P �ν,A;E ′, ∅; cpN ,ΨN , µN , ∅)

where E ′ is defined as usual. We also let (N sq)unsq = N . a288

4The main point of permitting superstrong extenders is that it simplifies certain things.
But it complicates others. If the reader prefers, one could instead require that F not be
superstrong, but various statements throughout the paper regarding condensation would
need to be modified, along the lines of [3, Lemma 3.3].

5In [3], the (analogue of) e is referred to by its code γM. We use e instead because this
does not depend on having (and selecting) a wellorder of M.
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Definition 2.16. L+-Q-formulas and L+-P-formulas are defined analo-289

gously to in [3, §§2,3], using the language L+, but with the rΣ1 of [3] replaced290

by Σ1. a291

Lemma 2.17. There are L+-Q-formulas ϕ0, ϕ1, ϕ2, ϕ4 and an L+-P-formula292

ϕ3, such that for all wellfounded L+-structures N with µN ∈ Ord(N ):293

– For i ∈ {0, 1, 2, 4}, N � ϕi iff N = C0(M) for some type i potential294

hpm M.295

– If N = C0(M) for a type 3 potential hpm M then N � ϕ3, and if296

N � ϕ3 then EN codes an extender F over N and if Ult(N , F ) is297

wellfounded then N = C0(M) for a type 3 potential hpm.298

Proof. This is a routine adaptation of the analogues [3, Lemma 2.5], [3,299

Lemma 3.3] respectively, with the added point that we can drop the clause300

“or N is of superstrong type” of [3, Lemma 3.3], because we allow extenders301

of superstrong type.302

Definition 2.18. Let N be a potential hpm. Let R be an L+-structure303

(possibly illfounded). Let π : R → C0(N ).304

We say that π is a weak 0-embedding iff π is Σ0-elementary (therefore305

R is extensional and wellfounded, so assume R is transitive) and there is306

X ⊆ R such that X is ∈-cofinal in R and π is Σ1-elementary on elements of307

X, and if N is type 1 or 2, then letting µ = µR, there is Y ⊆ R|(µ+)R ×R308

such that Y is ∈ × ∈-cofinal in R|(µ+)R × R and π is Σ1-elementary on309

elements of Y .310

Let M,N be type i potential hpms. A weak 0-embedding π from M311

to N , denoted π : M → N , is a weak 0-embedding π : C0(M) → C0(N ).312

(So for example, if i = 3 then dom(π) 6= bMc).) a313

Lemma 2.19. Let M be a potential hpm, let R be an L+-structure and let314

π : R → C0(M) be a weak 0-embedding.315

Suppose M is type i 6= 3. Then R = C0(N ) for some type i potential316

hpm N . In fact, for any L+-Q-formula ϕ, if C0(M) � ϕ then R � ϕ.317

Suppose M is type 3. For any L+-P-formula ϕ, if C0(M) � ϕ then318

R � ϕ. If Ult(M, FM) is wellfounded then R = C0(N ) for some type 3319

potential hpm N .320

The proof is routine, so we omit it.321

11



Definition 2.20. Let R be an L+-structure. Let Γ be a collection of L+-322

formulas with “x = ċ” in Γ for each constant ċ ∈ L+. Let X ⊆ bRc. Then323

HullRΓ (X) =def (H,∈′, ~P ′, cbR;E ′, P ′; ċpR, Ψ̇R, µ̇R, ėR),

where H is the set of all y ∈ bRc such that for some ϕ ∈ Γ and ~x ∈ X<ω, y is324

the unique y′ ∈ R such thatR � ϕ(~x, y′); and ∈′ = ∈R∩H2 and ~P ′ = ~PR∩H,325

etc. If R is transitive, then C = cHullRΓ (X) denotes the L+-structure which326

is the transitive collapse of HullRΓ (X). (That is, bCc is the transitive collapse327

of H, and letting π : bCc → H be the uncollapse, EC = π−1(ER), etc.) a328

Definition 2.21. Let M be a potential hpm and R = C0(M). The fine329

structural notions for M are just those of R. We sketch the definition of330

the fine structural notions for R. For extra details refer to [3],[20]; we331

also adopt some simplifications explained in [9].6 Let A = cbR.332

We say that R is 0-sound and let ρR0 = o(R) and pR0 = ∅ and C0(R) = R333

and rΣR1 = ΣR1 . (Here and in what follows, definability uses L+.)334

Now let n < ω and suppose that R is n-sound (which will imply that335

R = Cn(R)) and that ω < ρRn . We write ~pRn = (pR1 , . . . , p
R
n ). Then ρRn+1 is336

the least ordinal ρ ≥ ω such that for some X ⊆ A<ω × ρ<ω, X is rΣRn+1 but337

X /∈ bRc. And pRn+1 is the least tuple p ∈ Ord<ω such that some such X is338

rΣRn+1(A ∪ ρRn+1 ∪ {p, ~pRn }).

For any X ⊆ bRc, let339

HullRn+1(X) = HullRrΣn+1
(X),

and cHullRn+1(X) be its transitive collapse. Then we let340

C = Cn+1(R) = cHullRn+1(A ∪ ρRn+1 ∪ ~pRn+1),

and the uncollapse map π : C → R is the associated core embedding.341

Define (n+ 1)-solidity and (n+ 1)-universality for R as usual (putting all342

elements of A into every relevant hull). We say that R is (n + 1)-sound iff343

R is (n+ 1)-solid and C = R and π = id.344

6The simplifications involve dropping the parameters un, and replacing the use of gen-
eralized theories with pure theories. These changes are not important, and if the reader
prefers, one could redefine things more analogously to [3],[20].

12



Now suppose that R is (n+ 1)-sound and ρRn+1 > ω (so ρRn+1 > rank(A)).345

Define T = TRn+1 ⊆ R by letting t ∈ T iff for some q ∈ R and α < ρRn+1,346

t = ThRrΣn+1
(A ∪ α ∪ {q}).

(This denotes the pure rΣn+1 theory, as opposed to the generalized rΣn+1347

theory of [3].7) Define rΣRn+2 from T as usual. a348

Definition 2.22. Let k ≤ ω and let M,N be a k-sound potential hpms.349

A (near) k-embedding π :M→ N , literally a (near) k-embedding350

π : C0(M)→ C0(N ), is analogous to the corresponding notion in [20] (but the351

elementarity is with respect to the language L+ the fine structure is that of352

C0(M) and C0(N )). If k ≥ 1, a weak k-embedding π :M→N is likewise,353

but analogous to the corresponding notion in [12, Definition 2.1(?)].8 Recall354

that when k = ω, each of these notions are equivalent with full elementarity.355

A (weakly, nearly) k-good embedding π : M → N is a (weak, near)356

k-embedding π :M→N such that cbM = cbN and π�cbM = id. a357

Definition 2.23. Let N be an ω-sound potential hpm. We say that N358

is < ω-condensing (or satisfies < ω-condensation) iff for every k < ω,359

every (k + 1)-sound potential hpm M, every weak k-embedding π : M →360

N such that ρ = ρMk+1 ≤ crit(π) and ρ < ρNk+1, either M / N or M /361

Ult(N|ρ, FN|ρ). a362

Definition 2.24. A hybrid premouse (hpm) is a potential hpmM such363

that every N /M is ω-sound and < ω-condensing. a364

Lemma 2.25. Lemmas 2.17 and 2.19 hold with every instance of potential365

hpm replaced by hpm.366

We now proceed to defining strategy premice, or, Σ-premice, for an it-367

eration strategy Σ. We first define the process we use to feed in branches368

determined by Σ. For γ ∈ Ord and b ⊆ Ord, we write γ+b for {γ+α ‖ α ∈ b}.369

Given a structureM, an iteration tree T ∈ M of length ωλ, and a T -cofinal370

branch b, Woodin noticed that M can be extended to a structure N over371

which b is added with an amenable predicate, with N = (Jλ(M), o(M) + b).372

We will use a variant of this:373

7As in [3, §2], it does not matter which we use.
8Note that this definition of weak k-embedding diverges slightly from the definitions

given in [3] and [20].
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Definition 2.26 (B, bM). LetQ be an hpm over A withN = cpQ transitive.374

Let λ > 0 and let T be an iteration tree9 on N , with lh(T ) = ωλ and375

T �β ∈ Q for all β ≤ lh(T ). Let ζ ∈ [1, λ] and b ⊆ ωζ be such that b∩ β ∈ Q376

for all β < ωζ.377

Then B(Q, T , ωζ, b) denotes the potential hpm S such that Q/S, l(S) =378

l(Q) + ζ, ES = ∅,379

P S = {T } × (o(Q) + b)

and for each R such that Q /R E S,380

PR = {T } × (o(Q) + [0, γ)T )

where o(Q) + γ = o(R). (Note that S is amenable.) We also write bS = b381

and T S = T , and for R, γ as above, we write bR = [0, γ)T and T R = T .382

If ζ = λ then we write B(M, T , b) for B(M, T , ωλ, b). a383

Our notion of Σ-premouse N for an iteration strategy Σ, proceeds basi-384

cally as follows. For certainM/N , we will identify an iteration tree T ∈ M,385

via Σ, such that Σ(T ) is not encoded into M, but Σ(T �α) is encoded into386

M, for all limits α < lh(T ). Let S = B(M, T ,Σ(T )). In a common case,387

then either S E N or N E S. (For the kind of Σ-premouse most central to388

this paper, we will actually need a generalization of this, in which there will389

be some R such that M /R / S and R /N , but N disagrees with S above390

R.) Clearly if lh(T ) > ω then S codes redundant information between M391

and S (the branches Σ(T �α) for α < lh(T )) before coding Σ(T ) itself over392

S. The point of this redundancy is that it smooths out the theory a little:393

it seems to allow one to prove slightly nicer condensation properties, given394

that Σ itself has nice condensation properties, while keeping the definition of395

Σ-premouse simple.10 The key facts are given in 2.36 and 2.38 below.396

We now give some terminology relating to iteration strategies we will use397

in this section. Typically the domain of an iteration strategy consists of some398

simply definable class of trees; we will assume that it is Σ0 definable.399

Definition 2.27. Let P be a transitive structure and λ ≤ Ord. A putative400

λ-iteration strategy for P is a function Σ such that dom(Σ) is a class of401

iteration trees T on P of limit length < λ, and for each T ∈ dom(Σ), Σ(T )402

9We formally take an iteration tree to include the entire sequence
〈
MTα

〉
α<lh(T )

of

models. So N is determined by T , and “T is an iteration tree on N” is Σ0(T ,N ).
10Difficulties that arise if one codes Σ by only feeding Σ(T ) itself are discussed in 2.47.
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is a T -cofinal branch. Given such a Σ, we say that Σ has recognizable403

domain iff there is a Σ0 formula ψ in the language of set theory such that404

for all trees T on P , we have T ∈ dom(Σ) iff T is via Σ and lh(T ) < λ and405

ψ(T ).11 A λ-iteration strategy for P is a putative strategy Σ such that406

every putative tree via Σ is in fact an iteration tree. (Note here that Σ(T )407

might fail to be defined for some tree T via Σ.) A (putative) iteration408

strategy for P is a (putative) λ-iteration strategy for P , for some λ. a409

Definition 2.28. Let M be a potential hpm. Then J hpm(M) denotes the410

unique potential hpm N such thatM/N and l(N ) = l(M)+1 and PN = ∅.411

For ordinals α, we define J hpm
α (M) inductively as follows.412

– J hpm
0 (M) =M and J hpm

1 (M) = J hpm(M).413

– J hpm
β+1 (M) = J hpm(J hpm

β (M)).414

– For λ limit, J hpm
λ (M) is the unique passive potential hpm N such that415

N = limβ<λ J hpm
β (M).416

Let a be transitive and A = â and P ,Ψ ∈ J (A). Then J hpm(A;P ,Ψ)417

denotes the unique passive potential hpm N over A, with cpN = P , ΨN = Ψ418

and l(N ) = 1. For α ≥ 0, J hpm
1+α (A;P ,Ψ) denotes J hpm

α (J hpm(A;P ,Ψ)). a419

Definition 2.29. An abstract strategy premouse (aspm) is an hpmM420

such that cpM is a transitive structure and ΨM is a putative strategy for cpM421

and there is χ ∈ Ord and sequences ~η = 〈ηα〉α≤χ and ~Σ = 〈Σα〉α≤χ such that422

~η is strictly increasing and continuous, η = 1, ηχ = l(M), ~Σ is an increasing423

(possibly not strictly) and continuous sequence of putative strategies for cpM,424

Σ0 = ΨM, and for each α < χ, either:425

– M|ηα+1 = J hpm(M|ηα) and Σα+1 = Σα; or426

– There is T ∈ M|ηα such that the following holds. We have that T is427

an iteration tree via Σα, but no proper extension of T is via Σα. Let428

N =M|ηα and N ′ =M|ηα+1 and θ = lh(T ). Then there is b ⊆ θ such429

that S =def B(N , T , b) is defined12 and either:430

11Since P = MT0 ∈ trancl(T ), ψ can reference P, and any of the models of T .
12That is, b ∩ β ∈ N for all β < θ. Note that possibly b = ∅ and N / S here. So in this

case, M is still considered a ϕ-indexed spm, even if there is no T -cofinal branch.
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– N ′ = S, b is a T -cofinal branch13 and Σα+1 = Σα ∪ {(T , b)}, or431

– N ′ / S and Σα+1 = Σα.432

Given an aspm M, we write χM = χ, ~ηM = ~η, etc, and ΣM = ΣMχ .14 We433

say thatM is a successor iff χ is a successor. IfM is a successor thenM−
434

denotes M|ηχ−1. a435

It is easy to see that the sequences ~η, ~Σ above are unique,15 so the notation436

~ηM, etc, is unambiguous. We select the trees T for which we add Σ(T ) in a437

first-order manner:438

Definition 2.30. Let ϕ ∈ L+, M be an hpm and T ∈ M. We write439

T = T Mϕ iff cpM is transitive and T is a limit length iteration tree on cpM440

and T is the unique x ∈M such that M � ϕ(x). a441

The generality of the indexing device ϕ in the definition below was prob-442

ably influenced by Sargsyan’s [5, Definitions 1.1, 1.2].443

Definition 2.31. Let ϕ ∈ L+. A ϕ-indexed strategy premouse (ϕ-444

spm) is an aspm M such that letting ~η = ~ηM, etc, for every α < χ, letting445

N =M|ηα and N ′ =M|ηα+1, we have:446

– If T Nϕ is undefined then PN
′
= ∅ (so N ′ = J hpm(N )).447

– Suppose T =def T Nϕ is defined. Then PN
′ 6= ∅ and T N ′ = T (so T is448

the witness to the corresponding clause of 2.29) and T Rϕ = T for all R449

such that N E R /N ′, but if N ′ /M then T N ′ϕ 6= T .450

Let M be a ϕ-spm, and let ~η, etc, be as above. We say that M is451

ϕ-whole iff, if M is a successor and T =def T M
−

ϕ is defined, then either452

M = B(M−, T , b) for some b, or T Mϕ 6= T .453

Let Σ be a putative iteration strategy for a transitive structure P . Let454

ϕ ∈ L+. A ϕ-indexed Σ-premouse ((Σ, ϕ)-premouse), is a ϕ-spm M455

such that cpM = P and ΣM ⊆ Σ. a456

13Note that MTb might be illfounded. But in this case T ̂ b is not an iteration tree, so

there is no α ≤ θ such that T ′ = TM|ηαϕ is defined and T is properly extended by T ′.
14No particular demand is made on dom(ΣM) (though it is closed under initial segment).
15Adopt the notation of 2.29 and let α < χ. Then ηα+1 is the least η > ηα such

that either η = l(M) or PM|(η+1) = ∅ or PM|(η+1) = {U} × B for some U , B such that
B ∩ o(M|η) = ∅. (This is because 0 ∈ b whenever b is a branch through an iteration tree.)
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Clearly if M is a ϕ-spm then ΣM is the least putative strategy Σ such457

that M is a ϕ-indexed Σ-pm.458

It seems difficult to express ϕ-indexed spm-hood with Q-formulas. So we459

consider the more general notion of ϕ-indexed possible-spm, which we can460

express with Q-formulas, modulo the usual restrictions.461

Definition 2.32. A ϕ-indexed possible spm is an hpmM such that there462

is a ϕ-indexed spm N such that eitherM = N , or N is a successor, N−/M,463

T =def T N
−

ϕ is defined, and letting o(N ) = o(N−) + ζ, there is a T �ζ-cofinal464

branch b such that M = B(N−, T , ζ, b).465

We adapt terminology and notation for spms to possible-spms in the466

obvious manner. a467

So a ϕ-indexed possible spm only fails to be a ϕ-spm if, with notation as468

above, we have ζ < lh(T ) but b 6= [0, ζ)T . The following lemma is straight-469

forward:470

Lemma 2.33. Let ϕ ∈ L+. Then Lemma 2.17 holds with every instance of471

potential hpm replaced by ϕ-indexed possible spm.472

Definition 2.34. Let R,M be E-passive possible-spms and π : R 99KM.473

Then π is a very weak 0-embedding iff π is Σ0-elementary on its domain474

and there is an ∈-cofinal set X ⊆ R such that475

X ∪ o(R) ∪ cpR ∪ {cpR,ΨR, cbR} ⊆ dom(π),

π�cpR = id, and π is Σ1-elementary on parameters in X.476

Let C be a class of possible-spms. We say that C is very condensing477

iff for all E-passive M ∈ C and all E-passive possible-spms R, if there is a478

very weak 0-embedding π : R →M then R ∈ C. a479

Lemma 2.35. The truth of L+-Q-formulas is preserved downward under480

very weak 0-embeddings.481

We next consider preservation of Σ-pms, for strategies Σ with hull con-482

densation (see [5, Definitions 1.29–1.31]).483

Lemma 2.36. Let M be a ϕ-indexed spm, not of type 3. Let R be a ϕ-484

indexed possible spm.485
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(1 ) Let Σ be an iteration strategy with hull condensation. Suppose that M486

is a Σ-pm, cpR = cpM and either (i) ΨR ⊆ Σ and there is a very487

weak 0-embedding π : R 99K M, or (ii) there is a weak 0-embedding488

π : R →M above cpR. Then R is a Σ-pm.489

(2 ) Suppose there is π : M→R such that either:490

(a) π is Σ2-elementary, or491

(b) π is cofinal Σ1-elementary and either M is a limit or T M−ϕ is492

undefined, or493

(c) π is cofinal Σ1-elementary, M is a successor and T = T M−ϕ is494

defined and either bM ∈M or π is continuous at lh(T ).16
495

Then R is a ϕ-indexed spm.496

Proof. Part (1): We just consider the case (i). (So by 2.34, R,M are E-497

passive and π is above cpR.) We may assume that R is a successor and every498

proper segment of R is a Σ-pm, since π induces very weak 0-embeddings (in499

fact, fully elementary on their domains) from the proper segments of R to500

proper segments of M. It follows that M is a successor and π(R−) =M−.501

We may assume that T̄ = T R−ϕ is defined, so π(T̄ ) = T = T M−ϕ is defined.502

Let o(R−) + γ̄ = o(R) and o(M−) + γ = o(M). Then π induces a hull503

embedding from (T̄ �γ̄) ̂ bR to (T �γ) ̂ bM. Since the latter is via Σ, as is T̄ ,504

hull condensation gives that bR = Σ(T̄ �γ̄), so R is a Σ-pm.505

We leave (2)(a) and (2)(b) to the reader. Consider (2)(c). Note that506

π(M−) = R−, and since T = T M−ϕ is defined, so is π(T ) = T R−ϕ . Let507

o(M−) + γ = o(M), so o(R−) + γ′ = o(R), where γ′ = supπ“γ. Then bM is508

T �γ-cofinal, and since π“bM ⊆ bR, bR is π(T )�γ′-cofinal. So we may assume509

that γ′ < lh(π(T )), and must see that bR = [0, γ′)π(T ).510

Suppose bM ∈M. Then because π is Σ1-elementary, bR = π(bM)∩ γ′. If511

γ′ < π(γ) then since π(bM) is π(T )�π(γ)-cofinal, we are done. If γ′ = π(γ)512

then since γ < lh(T ), so bM = [0, γ)T , so bR = π(bM) and we are done.513

Now suppose that bM /∈M and π is continuous at lh(T ). Then γ = lh(T )514

and γ′ = lh(π(T )), contradiction.515

Corollary 2.37. For any strategy Σ with hull condensation and any ϕ ∈ L+,516

the class of ϕ-indexed Σ-pms M such that ΨM = ∅ is very condensing.517

16Cf. 2.41.
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A type 3 analogue of 2.36 follows easily from 2.36:518

Lemma 2.38. Let M be a type 3 ϕ-indexed spm. Let R be an L+-structure519

with cpR = cpM.520

– Let Σ be an iteration strategy with hull condensation. Let κ = µM and521

suppose UM = Ult(M|(κ+)M, FM) is a Σ-pm. Let π : R → C0(M)522

be a weak 0-embedding with π�cpR = id. Let µ = µR and UR =523

Ult(R|(µ+)R, FR). Suppose there is an elementary π′ : UR → UM524

with π ⊆ π′.525

Then R = Qsq for some type 3 ϕ-indexed Σ-pm Q, and UR is also a526

ϕ-indexed Σ-pm.527

– Suppose there is π : C0(M)→ R such that either (i) π is Σ2-elementary,528

or (ii) π is cofinal and Σ1-elementary. Let µ = µR and suppose that529

UR (as above) is wellfounded.530

Then R = Qsq for some type 3, ϕ-indexed spm.531

We now define Σ-iterability for Σ-premiceM. The main point is that the532

iteration strategy should produce iterates which are Σ-premice. One needs533

to be a little careful, however, because the iterates might contain iteration534

trees outside of the domain of Σ.535

Definition 2.39. Let Σ be an iteration strategy, ϕ ∈ L+ and X = (Σ, ϕ).536

Let M be a X-pm. A putative X-iteration tree T on M is defined as537

usual, with the added requirement thatMT
α is anX-pm for each α+1 < lh(T )538

(and for each such α, ETα ∈ E+(MT
α )). Let T be a putative X-tree on M.539

We say that T is a well-putative X-iteration tree iff T is a the models540

of T are all wellfounded. We say that T is an X-iteration tree iff MT
α is541

an X-pm for all α + 1 ≤ lh(T ).542

Let k < ω and let M ∈ B be a k-sound X-pm. Let θ ∈ Ord. The543

iteration game GX,M(k, θ) has the rules of GM(k, θ), except for the following544

differences. Let T be the putative tree being produced. For α+1 ≤ θ, if both545

players meet their requirements at all stages < α, then, in stage α, player II546

must first ensure that T �α + 1 is a well-putative X-tree, and if α + 1 < θ,547

that T �α+ 1 is an X-tree. Given this, if α+ 1 < θ, player I then selects ETα ,548

but we replace that requirement that lh(ETβ ) < lh(ETα ) for all β < α, with549
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the requirement that lh(ETβ ) ≤ lh(ETα ) for all β < α.17
550

Let α, θ ∈ Ord. The iteration game GX,M(k, α, θ) is defined just as551

GM(k, α, θ), with the differences that (i) the rounds are runs of GX,Q(q, θ)552

for some Q, q,18and (ii) if α is a limit and neither player breaks any rule,553

and ~T is the sequence of trees played, then player II wins iff M
~T
∞ is defined554

(that is, the trees eventually do not drop on their main branches, etc) and555

wellfounded.556

The game GX,Mmax (k, α, θ) is like GX,M(k, α, θ), except that player I may557

not drop in model or degree between rounds. (For example, in both games,558

after the first round has produced a successor length k-maximal tree T0, the559

second round forms a q-maximal tree T1 on Q, for a certain (Q, q). In GX,Mmax ,560

Q = MT0
∞ and q = degT0(∞), whereas in GX,M, player I chooses Q E MT0

∞561

and q ≤ ω, with q ≤ degT0(∞) if Q = MT0
∞ . Likewise at the start of every562

later round.)563

If α is a limit ordinal, the game GX,M(k,< α, θ) is like GX,M(k, α, θ),564

except that if the game runs through α rounds with no player breaking565

any rules within those rounds, then player II wins automatically, irrespec-566

tive of whether the direct limit model is defined or wellfounded. Likewise567

GX,Mmax (k,< α, θ).568

Now X-(k, θ)-iteration strategy, X-(k, α, θ)-maximal iterability, etc,569

are defined from these games in the obvious manner.570

The game GX,Mhod (k, α, θ) is just like GX,M(k, α, θ), except that if at the571

end of round β a successor length normal tree Tβ has been produced, and572

both players have met all their obligations up to that point, and bTβ drops in573

model or degree, then player II wins. Hod X-(k, α, θ)-iteration strategy574

and -iterability are defined using GX,Mhod (k, α, θ). a575

Remark 2.40. The requirement, in GM(k, θ), that lh(ETβ ) ≤ lh(ETα ) for β <576

α, is weaker than requiring lh(ETβ ) < lh(ETα ), because of superstrongs. See577

17 Thus, if we reach a putative tree T of length θ, then II wins iff either θ is a limit or
MTθ−1 is wellfounded. If θ = α+ 1, we cannot in general expect MTα to be an X-pm. For
example, suppose that θ = ω1 + 1 and Σ is an (ω1 + 1)-strategy for some P ∈ HC. Then

MTω1
could have ϕ-whole successor proper segments N such that U = T N−ϕ is defined, but

lh(U) > ω1 + 1. In this case U /∈ dom(Σ), so N is not an X-pm. In applications such as
comparison, in this circumstance we only need to know that MTω1

is wellfounded. So we
still decide the game in favour of player II in this situation.

18Recall that (considering the rules of GM(k, α, θ)) if a round of GX,M(k, α, θ) reaches
a tree of length θ, then the game finishes at that point. So Q here will certainly be an
X-pm.
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[11, Remark 2.44(?)] regarding this and changes to the comparison algorithm578

that are needed to accommodate superstrongs.579

Remark 2.41. Lemma 2.36 left open the possibility that R fails to be a580

ϕ-indexed spm, when π : M → R is cofinal and Σ1-elementary, M is a581

successor, T = T M−ϕ is defined, bM /∈M and π is discontinuous at λ = lh(T ),582

so M is ϕ-whole, λ′ = sup π“λ < lh(T ′) where T ′ = π(T ) = T R−ϕ , and583

bR 6= [0, λ′)T ′ . Now let X = (Σ, ϕ), where Σ has hull condensation and584

ϕ ∈ L+, and suppose further thatM is a X-iterable X-pm, as witnessed by585

some strategy Λ. We describe two standard circumstances below which will586

then lead to contradiction.587

First, suppose that π :M→R is via Λ. Then because Λ is a X-iteration588

strategy, bR = [0, λ)T ′ , a contradiction.589

Second, suppose that Σ has hull condensation, π is any degree 0 iteration590

embedding of M (π need not be via any iteration strategy). We will show591

that bM ∈M, for a contradiction.592

Because π is a degree 0 iteration embedding, the discontinuity implies that593

M �“There is E ∈ E which is a total measure and lh(T M) has cofinality594

κ = crit(E)”. Let C ∈M, C ⊆ lh(T ) be a club of ordertype κ. Then595

σ = iME :M→ U = Ult0(M, E)

is continuous at all points of C. Let ζ = supσ“lh(T ). Then σ“C = σ(C)∩ ζ596

is club in ζ. But597

U � “ζ < lh(σ(T )) and cof(ζ) = κ is uncountable”.

So [0, ζ)σ(T ) ∩ σ“C is club in ζ, and C ′ ∈M where C ′ is the club598

C ′ = C ∩ σ−1“[0, ζ)σ(T ).

Because M is X-iterable, σ(T ) is via Σ. But then by hull condensation,599

Σ(T ) is the downward ≤T -closure of C ′, which is in M.600

Definition 2.42. Let M be an hpm and N E M. We say that N is a601

cutpoint ofM iff for all P EM, ifN /P and FP 6= ∅ then o(N ) ≤ crit(FP).602

And N is a strong cutpoint of M iff likewise, but with the conclusion603

replaced with “o(N ) < crit(FP)”. a604
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Definition 2.43 (Lp(Σ,ϕ)). Let Σ be a strategy with hull condensation for605

a transitive structure P ∈ HC, ϕ ∈ L+ and X = (Σ, ϕ). Let a be transitive606

and A = â, with P ∈ J (A). Assume DCA.607

Let n ≤ ω and let M be an n-sound X-pm over A (and η ≤ o(M)). We608

say that M is countably (above-η) X-(n, ω1 + 1)-iterable iff for every609

countable hpm M̄, if P = cpM̄ and there is an elementary π : M̄ →M then610

M̄ is (above-η̄) X-(n, ω1 + 1)-iterable (where η̄ is the collapse of η).611

LpX(a) denotes the stack of all countablyX-(ω, ω1+1)-iterableX-premice612

M over A such that M is fully sound and projects to ω.19 Assuming DCR,613

and letting B ⊆ HC, LpX(R, B) denotes LpX((HC, B)), and LpX(R) denotes614

LpX(HC).20
615

Let N be an X-premouse. Then LpX+ (N ) denotes the stack of all X-616

premice M such that either M = N , or N /M, N is a strong cutpoint of617

M, M is o(N )-sound, and there is n < ω such that ρMn+1 ≤ o(N ) < ρMn618

and M is countably above-o(N ) X-(n, ω1 + 1)-iterable. Note that LpX+ (N )619

might have a largest element, which projects strictly across o(N ) and is not620

ω-sound. a621

Definition 2.44. Let Σ be an iteration strategy, ϕ ∈ L+, X = (Σ, ϕ) and622

M be an X-pm. Let k ≤ ω. ThenM is X-k-fine iff for each j ≤ k, we have623

(i) Cj(M) is a j-solid X-pm, (ii) if j < k then Cj(N ) is (j + 1)-universal,624

and (iii) if k = ω then Cω(N ) is < ω-condensing. a625

Lemma 2.45. Let Σ,P , ϕ,X, a, A be as in 2.43 (so we assume DCA). Then:626

– For k < ω, every k-sound, countably X-(k, ω1, ω1 + 1)-iterable X-pm627

M over A is X-(k + 1)-fine.628

– Every ω-sound, countably X-(ω, ω1, ω1 + 1)-iterable X-pm over A is629

< ω-condensing.630

– Every countably X-(0, ω1, ω1 + 1)-iterable X-pseudo-premouse over A631

is an X-pm.632

19DCA is enough to prove that this is a stack. For letM,N be such X-premice. Because
M,N are generated by ordinals and elements of A, by taking elementary substructures

which do not collapse A, we may assume that there are maps A<ω
onto→ M and A<ω

onto→ N .
But then by DCA, we may assume that A,M,N are countable, so we can compareM,N
as usual.

20Since R is not transitive, this is not an abuse of notation.
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– There is no countably X-(0, ω1 + 1)-iterable X-bicephalus over A.633

Proof. Consider for example the proof that M is X-(k + 1)-fine. We may634

assume that M is countable, by DCA. If AC holds (recall that our back-635

ground theory is ZF) then using the condensation lemmas 2.36 and 2.38, it636

is straightforward to see that the proofs of the copying construction, weak637

Dodd-Jensen21 and the fundamental fine structural theorems go through.638

But we may assume ZFC, because letting x ∈ R code M and Λ be an it-639

eration strategy for M as hypothesized, then we can pass to W = LΛ,Σ[x]640

(where we feed Λ,Σ into W like with strategy mice; we do not care about641

fine structure for W ), replacing Σ with Σ′ = Σ ∩W .642

We will build Σ-mice by background construction:643

Definition 2.46. Let a be transitive and A = â. Let Σ be an iteration644

strategy for a transitive structure in J (A), let ϕ ∈ L+ and let X = (Σ, ϕ).645

An LX [E, A]-construction (of length χ) is a sequence C = 〈Nα〉α<χ such646

that for all α < χ:647

– Nα is a X-pm over A and l(N0) = 1.648

– If α is a limit then Nα = lim infβ<αNβ.649

– If α + 1 < χ then letting N = Nα+1, either:650

– N is E-active and N||o(N ) = Nα and letting κ = µN , then651

Ult(N|(κ+)N , FN ) is an X-pm, or652

– Nα is X-ω-fine andM =def Cω(Nα)/N and l(N ) = l(M)+1. a653

We will consider fully backgrounded LΣ[E, A]-constructions. Assume654

DCA. Then given Nα and supposing that Nα is X-k-fine, countable X-655

(k, ω1, ω1 + 1)-iterability will be enough to verify that Nα is X-(k + 1)-fine.656

This iterability will be established (where we can) by the standard arguments,657

using the condensation lemmas.658

Remark 2.47. Our definition of Σ-premice (for an iteration strategy Σ)659

differs a little from the standard one. The standard one is along the lines of:660

givenM|α, letting T ∈ M|α be the <M|α-least tree for whichM|α does not661

21DCR seems to be used in the construction of an iteration strategy with the weak Dodd
Jensen property.
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know Σ(T ), and ωλ = lh(T ), let M|(α + λ) = (Jλ(M|α), B), such that B662

codes Σ(T ) amenably.663

Whatever one’s definition of Σ-premice, one would probably like to know664

that an ultrapower of a Σ-premouse is also a Σ-premouse. As has been665

observed by others, this is not true of the hierarchy described above. For666

suppose M|α, T and λ are as above, and lh(T ) has measurable cofinality κ667

inM|(α+ λ), and E is an extender overM =M|(α+ λ) with crit(E) = κ.668

Then U = Ult0(M, E) is not in the hierarchy. For iE is discontinuous at669

lh(E), but o(U) = sup iE“o(M).670

There seem to have been two approaches used to correct this problem671

(other than the one we use) used by others. One is to feed in all initial672

segments of Σ(T ) (even though they have been fed in earlier), immediately673

prior to feeding in Σ(T ) itself. But this approach seems flawed. For (∗) let674

M′ be a structure in this hierarchy, with BM
′ 6= ∅, but BM

′
coding a non-T ′-675

cofinal (for the relevant tree T ′) branch [0, ωγ′)T ′ (for some ωγ′ < lh(T ′)).676

Let π : M → M′ be fully elementary. Then clearly BM codes [0, ωγ)T677

where π(T ) = T ′ and π(γ) = γ′, and ωγ < lh(T ). But we need that678

[0, ωγ)T ⊆ Σ(T ), and this is not clear (even if Σ has hull condensation).679

The other correction, which is better, is to simply not feed in Σ(T ) in680

the case that lh(T ) has measurable cofinality inM|(α+ λ) (as witnessed by681

some measure on EM). For by the argument in 2.41,M already has Σ(T ) as682

an element, and there is a uniform procedure whichM can use to determine683

Σ(T ).684

Thus, one must show that the relevant ultrapowers and substructures of685

models in the resulting hierarchy are also in the hierachy. It is easy to see686

that ultrapowers preserve the relevant first-order properties.687

So letM′ be a Σ-premouse and let π :M→M′ be a weak 0-embedding.688

We want to know that M is a Σ-premouse, given that Σ has hull condensa-689

tion. We just need to verify the first-order properties.690

We need to rule out the possibility that BM = ∅ (and therefore BM
′
= ∅),691

but there is some B 6= ∅ such that (M, B) is a Σ-premouse. Let T ∈ M be692

the relevant tree (with B coding Σ(T )). Because π is a weak 0-embedding,693

this implies that T ′ = π(T ) is the least tree for which M′ does not know694

Σ(T ′), and π is discontinuous at lh(T ). Suppose also that M = C1(M′)695

and π is the core map, and M′ is (0, ω1, ω1 + 1)-iterable. Then by the usual696

proof of solidity (with a little extra argument to deal with the possibility697

that M is not a Σ-premouse), M and M′ are 1-solid and π(pM1 ) = pM
′

1 ,698

and then using the comparison argument in the proof of universality, and699
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the commutativity of π with the resulting iteration embeddings, one gets700

that lh(T ) has measurable cofinality in M, and therefore M is in fact a701

Σ-premouse, contradiction. (For the higher degree core maps, the present702

situation cannot arise, just by elementarity.)703

Now suppose that BM
′ 6= ∅. It is easy to see that BM codes some branch704

b through T , and that BM ∩M is cofinal in o(M) (by the Σ1-elementarity705

of π on a set cofinal in o(M)). But b need not be T -cofinal. (For example, if706

o(M′) has uncountable cofinality, it is easy to find N /M such that letting707

M = (N , BM′ ∩ N ) and π = id, then π :M→M′ is a weak 0-embedding,708

and T = T ′.) If we have that π is Σ1-elementary on a set X ⊆ o(M) which709

is both cofinal in o(M) and cofinal in lh(T ), then b will be cofinal in T .710

These arguments give that the models produced in an L[E,Σ]-construction711

will all be Σ-mice, as long as iterates of countable elementary substructures712

are realizable back into models of the construction, in the usual manner. But713

we opted for the hierarchy for Σ-premice defined in §2 because it has stronger714

condensation properties, and without assuming any iterability.715

3 G-organization716

Let Ω be either an operator or an iteration strategy. In this section we717

implement some ideas of Grigor Sargsyan, defining g-organized Ω-premice.718

This will be useful assuming that Ω has a certain absoluteness property,719

which we first describe.720

Definition 3.1. Let a be transitive and A = â. We say that A is self-721

wellordered (swo’d) iff a = trancl(x ∪ {x,≺}) for some transitive set x,722

and wellorder ≺ of x. For swo’d A and ≺ as above, let ≺A denote the723

canonical wellorder of A determined by ≺. a724

Definition 3.2. Let ψ be a Σ0 formula in the language of set theory.22 Then725

ϕψ,min(x) denotes the formula in the free variable x asserting, over abstract726

spmsM with cbM swo’d: “Let ≺ be the canonical wellorder of the universe.727

Then x is the ≺-least limit length iteration tree T on cp according to ΣV
728

such that ΣV (T ) is undefined and ψ(T ) holds”.729

Let ϕmin = ϕ“true”,min. a730

22ψ will be used to restrict the class of iteration trees being considered; for example,
ψ(x) might say that “x is a normal tree”
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Definition 3.3. Either:731

– let Σ be an iteration strategy for a transitive structure P ∈ HC, let732

ϕ ∈ L+ and X = (Σ, ϕ), let a ∈ HC and A = â with P ∈ J1(A), or733

– let X = F be an operator over B, κ ≤ o(B) be an uncountable cardinal734

and A ∈ÍCF ∩ HC.735

We write MX,#
1 (A) for the (unique) sound, non-1-small X-pm M over736

A, such thatM is X-(0, ω1)-iterable, and if cof(ω1) > ω,M is X-(0, ω1 + 1)-737

iterable (given such an M exists).23 Let κ be an uncountable cardinal. We738

say thatMX,#
1 (A) is X-κ-naturally iterable iff M =MX,#

1 (A) exists and739

either:740

(a) cof(κ) > ω and M is X-(0, κ+ 1)-iterable, or741

(b) cof(κ) = ω and M is X-(0, κ)-iterable.742

When this holds, let ΛX,κ
M denote the unique24 X-(0, κ)-strategy for M which,743

if cof(κ) > ω, extends to an X-(0, κ+1)-strategy; also if cof(κ) > ω let ΛX,κ+1
M744

denote the unique25 X-(0, κ+ 1)-strategy for M.745

Let Σ be an iteration strategy for a transitive structure P ∈ HC, with746

recognizable domain, as witnessed by a Σ0 formula ψ (in the language of set747

theory), with ψ least such. Then ϕΣ
min denotes ϕψ,min. Let ϕ = ϕΣ

min. Then748

we abbreviate the pair (Σ, ϕ) with Σ. So a Σ-pm is a (Σ, ϕ)-pm, etc. a749

Definition 3.4. We say that (Ω, ϕ,X,A, κ) is suitable iff κ is an uncount-750

able cardinal, A = â for some transitive a ∈ HC, MX,#
1 (A) exists and is751

X-κ-naturally iterable, and either:752

– Ω = Σ is a κ-strategy with hull condensation and recognizable domain,753

for a transitive structure P ∈ HC∩J (A), ϕ ∈ L+, and X = (Σ, ϕ), or754

– Ω = X = F is a total operator over B, where B is an operator755

background with κ = o(B), CF is the (possibly swo’d) cone of B756

above a, and F condenses finely above a.757

23ZF proves uniqueness. For let M 6= N be such X-pms. Let (T ,U) be their length
ω1 comparison if cof(ω1) = ω, or length ω1 + 1 comparison otherwise. Let z ∈ R code
(M,N ) and let W = L[z, T ,U ]. Then M,N ∈ HCW and W � AC, and therefore if
cof(ω1) = ω then W �“γ is a limit cardinal”, where γ = ω1. So working in W we can
reach a contradiction as usual.

24Much as before, ZF proves uniqueness.
25Likewise.
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For suitable t = (Ω, ϕ,X,A, κ), let Ωt = Ω, etc.758

Let (Ω, A) be given. We say that (Ω, A) is suitable iff either (i) Ω is a κ-759

strategy Σ, with recognizable domain, for some transitive structure P ∈ HC760

and uncountable cardinal κ, A = â for some a ∈ HC, A is swo’d, and761

tΣ,A =def (Σ, ϕΣ
min, (Σ, ϕ

Σ
min), A, κ)

is suitable, or (ii) Ω is an operator F over B, and letting κ = o(B),762

tF ,A =def (F , 0,F , A, κ)

is suitable. a763

Lemma 3.5. Let t = (Ω, ϕ,X,A, κ) be suitable, M = MX,#
1 (A) and η =764

cof(κ). Then:765

1. ΛX,κ
M has branch condensation and hull condensation.766

2. If η = ω then M is X-(0, < ω, κ)-maximally iterable.767

3. If η > ω then M is X-(0, η, κ+ 1)-maximally iterable.26
768

Proof. These facts come from the uniqueness of ΛX,κ
M , together with the the769

condensation properties proved in this section for strategy mice, and the770

condensation properties and copying arguments of [11] in the case that X is771

an operator. Part 1 follows routinely from these items. Parts 2 and 3 are772

essentially by [10, Theorem 3.1(?)]. The latter results are literally stated and773

proved only for standard premice, but the arguments there go through using774

the properties and arguments just mentioned.775

Remark 3.6. What is behind the foregoing proof (in terms of the details776

contained in [10]), is as follows. If η = ω let Λ = ΛX,κ
M and θ = κ. If η > ω777

let Λ = ΛX,κ+1
M and θ = κ+1. An X-(0, < η, θ)-maximal strategy Ψ forM is778

computed, extending Λ (and therefore ΛX,κ
M ), and such that the restriction of779

Ψ to an X-(0, < η, κ)-maximal strategy Ψ′, lifts to ΛX,κ
M ⊆ Λ. (Stacks via Ψ780

which have a last tree T of length κ+ 1 can lift to a normal tree U of length781

> κ+ 1, in which case U cannot literally be via Λ, but for instance, U�κ+ 1782

is via Λ.)783

26We also get X-(0, η, κ+ 1)-iterability (without maximal) for the strategy case, but for
reasons covered in [11], we cannot expect the same if X is an operator.
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If T , via Ψ′, has successor length, then MT
∞ is X-(degT (∞), < η, θ)-784

maximally iterable, via the tail Ψ∗ of Ψ. Moreover, given a normal tree785

U on MT
∞ of limit length < κ, via Ψ∗, and c = Ψ∗(U), either there is a786

Q-structure for M(T ) in LXκ (M(T )), which determines c as usual, or else787

neither bT nor c drop in model or degree and iUc ◦ iT (δM) = δ(U).788

If η > ω then clearly any X-(n,< η, κ + 1)-maximal strategy extends789

to an X-(n, η, κ + 1)-maximal strategy. So part 3 follows readily from the790

above. Note also that any strategy witnessing part 2 (part 3) must extend791

ΛX,κ
M (must extend ΛX,κ+1

M ).792

Definition 3.7. In the preceding context, let Λ
X,(<η,κ)
M denote Ψ′. a793

The following absoluteness property ensures that g-organization is useful:794

Definition 3.8. Let t = (Ω, ϕ,X,A, κ) be suitable and M =MX,#
1 (A). We795

say that t determines itself on generic extensions iff there are formulas796

Φ,Ψ in L+ and some γ > δM such that M|γ � Φ and for any non-dropping797

ΛX,κ
M -iterate N of M via a countable tree T based on M|δM, any N -cardinal798

δ, any γ ∈ Ord such that N|γ � Φ & “δ is Woodin”, and any g which is set-799

generic over N|γ (with g ∈ V ), we have that R =def (N|γ)[g] is closed under800

Ω, and Ω�R is defined over R by Ψ. We say such a pair (Φ,Ψ) generically801

determines t.802

Let A ∈ HC and let Ω be either an operator or an iteration strategy.803

We say that (Ω, A) is nice iff (Ω, A) is suitable and tΩ,A determines itself on804

generic extensions. We say that (Φ,Ψ) generically determines (Ω, A) iff805

(Φ,Ψ) generically determines tΩ,A. a806

Lemma 3.9. Let N , δ, etc, be as in 3.8, except that we allow T to have any807

length < κ, and allow g to be in a set-generic extension of V . Then R is808

closed under Ω and Ω′�dom(Ω) = Ω�R where Ω′ is the interpretation of Ψ809

over R.810

Proof. We first give the proof assuming that Ω = Σ is a strategy, and then811

point out the differences for the other case. Suppose the lemma fails. Let812

x ∈ R be a counterexample to the claimed agreement between Σ,Σ′. So813

U =def x ∈ dom(Σ) ⊆ V . Let P be some forcing, and H ⊆ P be V -generic,814

such that g ∈ V [H]. Because a ∈ HC, N is wellorderable, and so by Σ1
1-815

absoluteness, we may assume P = Col(ω, o(N )). Moreover, letting z ∈ R816

code a,MU
0 ,M, we may assume that g ∈ W =def L[z, T ,U ,Σ(U)].817
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Work in W , where AC holds. Let ġ be a P-name for g. Let U̇ ∈ N |γ be818

such that U̇g = U . Fix p ∈ H forcing “ġ is Ň |γ̌-generic and ˇ̇U ġ = Ǔ”; for819

simplicity assume that p = ∅. Let α be large and let820

π : M → Lα[z, T ,U ,Σ(U)]

be elementary, with M countable and all relevant objects in rg(π). Write821

π(T̄ ) = T , etc.822

Now work in V . Note that Ū is via Σ and Ū ∈ dom(Σ) because Σ has823

hull condensation and recognizable domain. By 3.5, T̄ is via ΛX
M. For any824

H∗ which is P̄-generic over M , letting g∗ = ¯̇gH
∗
, we then have825

U̇
g∗

= Ū ∈ N |γ[g∗],

and letting Σ∗ be the interpretation of Ψ over N|γ[g∗], by 3.8 we have826

Σ(Ū) = Σ∗(Ū) ∈ N|γ[g∗]. (3.1)

So U ∈ dom(Σ′) (by the above, this is forced by P), and so Σ′(U) 6= Σ(U),827

by choice of U . By hull condensation, Σ(U) = Σ(Ū), and so by line (3.1),828

Σ(U) = Σ∗(Ū) for any H∗. So in M , P̄ forces that Σ(U) = Σ∗(Ū). Therefore829

P forces that Σ(U) = Σ′(U). Contradiction.830

Now consider the case that Ω = F is an operator. The argument is almost831

the same. The coarse condensation (a component of fine condensation) of832

F above a, and the fact that a ∈ HC, replaces the use of hull condensation833

and the recognizability of dom(Σ). Much as before, we can assume that834

P = Col(ω, Z) for some transitive Z ∈ B. Because B � DC we can form an835

appropriate countable elementary substructure M of some large enough set836

in B. We omit further detail.837

We next consider some issues pertaining to hod mice; see [5] for back-838

ground.27
839

Definition 3.10. A pointclass is smooth iff it contains all open sets and is840

closed under continuous preimage, intersections, unions and real quantifiers.841

a842

27We assume only a basic knowledge of hod mice; more than enough is covered in the
first sections of [5]. As mentioned earlier, the actual analysis of scales does not depend
particularly on the theory of hod mice, and is developed in parallel for standard mice.
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Remark 3.11. Assume that ω1 is regular and let Γ be smooth pointclass.843

Let a ∈ HC be swo’d. Let ~Σ be the join of a sequence of strategies for a844

sequence ~P of transitive structures in J (a) (possibly the sequence has length845

0 or 1). As in [5, Definition 2.26], LpΓ,~Σ(a) denotes the stack of all sound846

~Σ-premiceM over a which project to a, such that in Γ there is a ~Σ-(ω, ω1, ω1)-847

iteration strategy forM which extends to a ~Σ-(ω, ω1, ω1 +1)-strategy.28 Here848

we are demanding a full ~Σ-(ω, ω1, ω1 + 1)-strategy, not just a hod strategy.849

This is somewhat at odds with our usual practice in this paper, of dealing850

only with hod strategies for hod premice; it is done for consistency with851

[5]. Fortunately, if each strategy in ~Σ has hull condensation, we could have852

actually defined LpΓ,~Σ using hod strategies, or in fact using normal strategies,853

and gotten the same result:854

Lemma 3.12. Suppose ω1 is regular and let Γ, a, ~P , ~Σ be as in 3.11. Suppose855

that every strategy in ~Σ has hull condensation. Then LpΓ,~Σ(a) is the stack856

of all sound ~Σ-premice over a which project to a and such that there is a857

~Σ-(ω, ω1)-strategy for N in Γ which extends to a ~Σ-(ω, ω1 + 1)-strategy.858

Proof. This is by the proof of 3.5, together with [10, §3(?)] and the closure859

of Γ under real quantifiers.860

Definition 3.13. Let P be a hod premouse and R / S / P be such that861

R is a cutpoint of S and S / P(α) where α is least such that R / P(α).862

Suppose either S projects ≤ o(R), or o(R) is the largest cardinal of S. Then863

S∗(R) denotes the ∗-translation of S above R (much as in [17, §7]; so S∗(R)864

is approximately a strategy premouse over R, and in particular, o(R) is a865

strong cutpoint of S∗(R)). If o(R) is the largest cardinal of S then S∗ denotes866

S∗(R). a867

We now define Γ-fullness∗ preserving much as Γ-fullness preserving is868

defined in [5, Definition 2.27], but with a few modifications, the most sig-869

nificant of which is that we make requirements regarding dropping iterates,870

and related to this, the fact that we consider all cutpoints, not just strong871

cutpoints. (thus, because R is, by definition, a strong cutpoint of LpΓ,Σ(R),872

we must use S∗ where S is used in [5]).873

28In [5], the definition is stated in the context of AD+, so the extension to ω1 + 1 exists.

Here as elsewhere, a ~Σ-(ω, ω1, ω1 + 1)-strategy is only required to ensure wellfoundedness

of the last model of successor length trees of size ω1, not ~Σ-correctness.
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Definition 3.14. Suppose ω1 is regular and (P ,Σ) is a hod pair with P ∈ HC874

and Γ is a smooth pointclass. Then Σ is Γ-fullness∗ preserving iff the875

following two conditions hold:876

1. Let (~T ,Q) ∈ I(P ,Σ) ∩ HC and γ ≤ λQ. Then877

– for all cutpoints (not just strong) η of Q(0),878

(Q|(η+)Q(0))∗ = LpΓ(Q|η),

– if γ = α+1 then for all cutpoints η of Q(α+1) with η ≥ o(Q(α)),879

(Q|(η+)Q(α+1))∗ = LpΓ,ΣQ(α),~T (Q|η),

– and if γ is a limit then for all cutpoints η of Q(γ) with η ≥ δQγ ,880

(Q|(η+)Q(γ))∗ = LpΓ,⊕β<γΣQ(β),~T (Q|η).

2. Let (~T , T ) be a countable tree via Σ, consisting of a stack ~T followed881

by a normal tree T , such that T has successor length and bT drops.882

Let Q = MT
∞ and λ = λQ. Let γ be least such that o(Q(λ)) < lh(ETγ )883

and let U = ~T ̂ (T �(γ + 1)). (Note bU does not drop.) Let R,S be884

such that Q(λ) E R / S E Q and R is a cutpoint of S and S projects885

≤ o(R) and is o(R)-sound (so either S /Q or all generators of T are886

< o(R)). Then887

S∗(R) / LpΓ,ΣQ(λ),U (R). a

Definition 3.15. Let (P ,Σ) be a hod pair with P ∈ HC. We say that Σ888

has weak hull condensation iff for all transitive W,X satisfying ZF−, with889

W ∈ HC, and fully elementary π : W → X, if P ∈ HCW and ~T ∈ W and890

π(~T ) is a stack on P via Σ, then ~T is via Σ. a891

Definition 3.16. A premouse or hod premouse P is reasonable iff P is892

super-small, all N E P (including N = P) satisfy the conclusions of [13,893

4.11, 4.12, 4.15], and if P is a premouse then all N / P are < ω-condensing,894

and if P is a hod premouse then for all N / P , N is < ω-condensing with895

respect to embeddings π : H → N such that crit(π) ≥ δPα for all α such896

that δPα ≤ o(N ). Reasonableness is preserved by fine structural iteration, as897

super-smallness is rΣ2 and the other conditions are rΠ1.898
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A hod pair (Σ,P) is within scope iff DCR holds, P ∈ HC is reasonable,899

is below ADR+“Θ is regular”, Σ is a hod (ω, κ, κ + 1)-strategy for P , where900

κ is some regular uncountable cardinal, Σ is Γ-fullness∗ preserving for some901

smooth pointclass Γ, Σ has branch condensation, and if κ > ω1 then Σ has902

weak hull condensation. a903

Definition 3.17. Let (P ,Σ) be a hod pair. We say that Σ has factor hull904

condensation iff whenever:905

– ~T , ~U are stacks via Σ and i
~T , i

~U exist; let M = M
~T
∞ and N = M

~U
∞,906

– π :M→N is elementary and π ◦ i~T = i
~U ,907

– ~W is a stack on N via ΣN , ~U , and908

– ~V is a stack on M and π~V is a hull of ~W ,909

then ~V is via ΣM,~T . a910

Factor hull condensation trivially implies hull condensation. But the fol-911

lowing lemma is more interesting; part of its proof uses ideas similar to those912

in Sargsyan’s [5, Proposition 2.41].913

Lemma 3.18. Let (P ,Σ) be a hod pair within scope. Then Σ has factor hull914

condensation.915

Proof. By weak hull condensation, we may assume that all trees we deal with916

are countable. (If κ = ω1 then because ω1 is regular, it is easy to see that we917

may still reduce to countable trees, without using weak hull condensation.)918

Suppose the lemma fails. Let ~T , ~U ,M,N , π be a counterexample. A bad919

system is a countable system920 Å〈
~Vi, ~V∗i , ~Wi, ~W∗i , ~σi, ~σ∗i , βi

〉
i≤n

, 〈αi, πi〉i≤n+1

ã
where921

1. (~T , ~V0, . . . , ~Vn) and (~U , ~W0, . . . , ~Wn) are terminally non-dropping stacks922

on P via Σ. Let M0 = M and N0 = N and Mi+1 = M
~Vi
∞ and923

Ni+1 = M
~Wi
∞ .924

2. β0 = λM and α0 = λM + 1 and βi < αi and αi+1 ≤ i
~Vi(βi).925
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3. ~Vi is based on Mi(βi).926

4. ~Vi = (~V ′i,Vi), where Vi is a normal tree (so Vi is terminally non-dropping927

and Mi+1 = MVi
∞ ).928

5. ~V∗i = (~V ′i,V∗i ) is a stack onMi, based onMi(βi), where V∗i is a normal929

extension of Vi, Vi = V∗i �(γi + 1), where γi is the least γ such that930

o(Mi+1(α)) < lh(E
V∗i
γ ) for all α < αi+1, V∗i �[γi, lh(V∗i )) is based on931

Mi+1(αi+1), and V∗i has successor length and is terminally dropping.932

6. ~Wi = ( ~W ′i,Wi), where Wi is a normal tree.933

7. ~W∗i = ( ~W ′i,W∗i ), where W∗i is a normal extension of Wi.934

8. (~U , ~W0, . . . , ~Wi−1, ~W∗i ) is via Σ.935

9. (~T , ~V0, . . . , ~Vi−1, ~V∗i ) is not via Σ.936

10. (~T , ~V0, . . . , ~Vi−1, ~V∗i �lh((~V∗i )− 1)) is via Σ.937

11. π0 = π and πi :Mi → Ni, and πi~Vi is a hull of ~Wi, as witnessed by ~σi,938

with the final node of πi~Vi corresponding to the final node of ~Wi, and939

πi+1 is the composition of the final copy and hull embedding maps.940

12. πi~V∗i is a hull of ~W∗i , as witnessed by ~σ∗i , and ~σi ⊆ ~σ∗i , and ~W∗i has no941

proper segment W ′ such that πi~V∗i is a hull of W ′ as witnessed by ~σ∗i .942

Because of our choice of ~T , ~U , π, it is easy to see using branch conden-943

sation and weak hull condensation (the latter to give countability, and the944

former to ensure a dropping branch) that there is a bad system with n = 0.945

Using DCR, it follows that there is a bad system B for which no proper ex-946

tension is also a bad system. Let the notation above be used to describe947

B.948

Let R = Mn+1(αn+1) and % = πn+1�R and S = Nn+1(%(αn+1)), so949

% : R → S is elementary. Let η = supα<αn+1
o(R(α)). Let ηS = %(η). Let950

ΨS be the above-ηS , (ω, ω1 + 1)-strategy for S given by normally extending951

~W∗n, and continuing to use Σ. Let Ψ be the %-pullback of ΨS , for R. Let952

X = (~T , ~V0, . . . , ~Vn).953

Claim 3.19. Ψ is a ⊕α<αn+1ΣR(α),X -strategy.954
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Proof. If not then, again using weak hull and branch condensation, it is easy955

to produce a bad system properly extending B, a contradiction.956

Now let V be the tree on R which is equivalent to ~V∗n�[γn, lh(~V∗n)− 1), let957

b, c be the V-cofinal branches determined by ~V∗n and Σ respectively. So b 6= c958

and b drops. By the claim and using Σ, we may successfully compare the959

phalanxes Φ(V ̂ b) and Φ(V ̂ c), producing (padded) trees Y ,Z extending960

V ̂ b and V ̂ c respectively. Moreover, all models of Y ,Z are ⊕α<αn+1ΣR(α),X -961

hod premice. Let δ = δ(V) and λ = lh(V).962

Claim 3.20. c does not drop, and therefore αn+1 is not a limit.963

Proof. This is a standard argument, but we give it as it is not too long, and964

we need it elsewhere. Suppose c drops. It suffices to see that at for every965

α ≥ λ, [0, α]Y and [0, α]Z drops, since then standard fine structure yields966

a contradiction. Suppose this fails. Then there is α ≥ λ such that either967

E = EYα , or E = EZα , has crit(E) < δ. Let α be least such. Then [0, α′]Y and968

[0, α′]Z drop for each α′ ∈ [λ, α]. Let Qb = Q(V , b) and Qc = Q(V , c). Then969

Qb 6= Qc, so δ is Woodin in MY
α ||lh(E). So if there is any F ∈ EMYα ||lh(E)

970

such that crit(F ) < δ < lh(F ), we easily get that [0, β]Y and [0, β]Z are971

dropping for all β > α (as Woodins are cutpoints of hod premice). So972

suppose E is the least extender overlapping δ, so α = λ. Let κ = crit(E).973

Then κ is a measurable limit of Woodins and strong cutpoints of M(V). Let974

γ be least such that κ < lh(EVγ ). Then for all β < γ, lh(EVβ ) < κ. Let975

Q = M∗Y
λ+1, or Q = M∗Z

λ+1, according to whether E is used in Y or Z. Note976

that κ is a cutpoint of Q. But then Y�[γ, lh(Y)) is and Z�[γ, lh(Z)) are977

equivalent to above-κ, normal trees on Q. So if Q / MV
γ then we are done,978

and if Q = MV
γ then note that [0, γ]V drops (as our hod premice are below979

ADR+“Θ is measurable”), so again we are done.980

Claim 3.21. We have:981

– δ is Woodin in MV
c , so δ = δM

V
c

αn+1
, the largest Woodin of MV

c .982

– δ is a strong cutpoint of Qb.983

– MV
c /Qb.984

Proof. Neither Qb, nor Qc if it exists, can have overlaps of δ, since otherwise985

MV
c has a measurable limit of Woodins, which implies c drops, contradiction.986
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But if δ is not Woodin in MV
c then as before, Qb 6= Qc, so comparison gives987

a contradiction.988

So the comparison of Qb with MV
c is above δ, and succeeds, and this easily989

gives that MV
c /Qb.990

Let τ : M
~V∗n∞ → M

~W∗n∞ be the final map given by the hull embedding (by991

the minimality of ~W∗n with respect to ~σ∗n, the final model of ~V∗n does indeed992

correspond to the final model of ~W∗n). Let Q′ be the lift of Q = Qb under993

τ , and let τQ = τ�Q. Let δ′ = τQ(δ). Let X ′ = (~U , ~W0, . . . , ~Wn−1, ~W∗n).994

Let α = αn+1 − 1 (possibly α = −1) and α′ = τQ(α). Using 3.14(2), let Υ′995

be an above-δ′, ΣQ′(α′),X ′-(ω, ω1, ω1 + 1)-strategy for Q, whose restriction to996

countable trees is in Γ. Let Υ be the τ -pullback of Υ′. Like in Claim 3.19,997

we then get:998

Claim 3.22. Υ is a ΣQ(α),X -strategy, and the restriction of Υ to countable999

trees is in Γ (where Q(−1) = ∅); note Q(α) = R(α)).1000

But then Qb / LpΓ,ΣR(α),X , which with Claim 3.21, contradicts Γ-fullness∗1001

preservation for Σ, completing the proof.1002

The following lemma, related to [8, §2], is due to Steel. However, the1003

standard proof seems to have a gap (in the proof of Claim 3.25 below). A1004

correct proof of what is essentially the lemma appeared in [13, §5], but that1005

proof is somewhat buried in another context, so we give a proof here for1006

convenience. We state and prove the lemma literally only for pure L[E]-1007

constructions, but it is easy to adapt it to strategy mice and other variants.1008

Lemma 3.23 (Stationarity of L [E] constructions). Let γ be an uncountable1009

cardinal. Let P be a reasonable k-sound premouse, Ψ a (k, γ + 1)-strategy1010

for P and C = 〈Nα〉α≤γ be a fully backgrounded L[E]-construction.1011

Suppose that for each active Nα+1 = (Nα, E) there is an extender E∗ such1012

that (a) card(P) < crit(E∗), (b) F �ν(E) ⊆ E∗, (c) if P is non-tame then1013

iE∗(Ψ)�Vη ⊆ Ψ where η is the sup of all δ + 1 such that δ is Woodin in Nα.1014

Then there is ξ ≤ γ + 1 such that:1015

(1 ) for each α < ξ, we have Nα E P ′ for some Ψ-iterate P ′ of P, and1016

(2 ) if ξ ≤ γ then there is a tree T via Ψ, of successor length, Nξ = MT
∞1017

and bT does not drop in model.1018
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Proof. It suffices to prove that if (1) holds at ξ, but (2) does not, then1019

(1) holds at ξ + 1. This is easy in all cases except when ξ = α + 1 and1020

Nα+1 = (Nα, E) for some E, so suppose this is the case. Let E∗ be a1021

background extender for E and let j = iE∗ . Let T be the tree witnessing the1022

lemma’s conclusion for α. We assume that T has minimal possible length.1023

We must show that E is used in T . Let ν = ν(E) and κ = crit(E). The1024

main point is the following claim:1025

Claim 3.24. There is β < lh(j(T )) such that ν ≤ ν(ETβ ) and E�ν ⊆ ETβ .1026

Proof. As in the proof that comparison of premice terminates, we have1027

M j(T )
κ = MT

κ and κ <j(T ) j(κ) and i
j(T )
κ,j(κ) exists and1028

iTκ,j(κ)�M
T
κ = j�MT

κ . (3.2)

So let β+ 1 <T j(κ) be such that predT (β+ 1) = κ. We claim that β works.1029

For let1030

k : Ult(Nα, E)→ j(Nα)

be the factor embedding. Then crit(k) ≥ ν(E), and if E is type 2 then1031

crit(k) ≥ lh(E). So Nα, MT
κ , MT

β and M
j(T )
j(κ) agree below (κ+)Nα . So ETβ1032

measures all sets measured by E and by line (3.2) we have that E�ν ′ ⊆ ETβ �ν
′,1033

where ν ′ = min(ν, ν(ETβ )). Now if (κ+)Nα < (κ+)M
T
κ then crit(k) = (κ+)Nα ,1034

so E is type 1 and ν = (κ+)Nα , so we are done. So assume (κ+)Nα = (κ+)M
T
κ ,1035

and assume ν ′ < ν. Since also (κ+)M
T
κ ≤ ν ′, the ISC applies to E�ν ′. So1036

E�ν ′ ∈ Nα, although E�ν ′ /∈ j(Nα). So E is not type 2. So E is type 3, but1037

then lh(ETβ ) < ν, contradicting the fact that Nα||ν = j(Nα)||ν.1038

Claim 3.25. Either:1039

– E ∈ E+(M
j(T )
β ), or1040

– R =def M
j(T )
β |ν is active with extender F and E ∈ EUlt(R,F )

+ .1041

Proof. If (κ+)Nα = (κ+)M
j(T )
β this is just by the ISC. So suppose (κ+)Nα <1042

(κ+)M
j(T )
β . Then E is type 1, the normal measure derived from E is a sub-1043

measure of the normal measure derived from E
j(T )
β , and M

j(T )
β ||ν = Nα||ν.1044

Thus, we can use [13, 4.11, 4.12, 4.15] (as P is reasonable) given that if R is1045

active with a type 3 extender F then1046

Ult(R, F )||lh(E) = Nα. (3.3)
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So suppose F = FR 6= ∅. We have T �(κ+ 1) = j(T )�κ+ 1, and note that T1047

uses no extenders with index in the interval (κ, ν), as E is type 1, and j(T )1048

uses no extender with index in the interval (κ, (κ+)M
T
κ ). So MT

κ |ν = R, and1049

since Nα|ν is passive, therefore ETκ = F . But then T uses no extender with1050

index in the interval (ν, lh(E)), and line (3.3) is true.1051

Now let λ be least such that lh(E
j(T )
λ ) ≥ lh(E), and let ξ be the largest1052

limit ordinal such that ξ ≤ λ. By the following claim, we clearly have that1053

j(T )�λ+ 1 is via Ψ, which completes the proof.1054

Claim 3.26. j(T )�ξ + 1 = T �ξ + 1.1055

Proof. We have Nα EMT
∞ and j(Nα) EM j(T )

∞ . Let χ be the largest cardinal1056

of Nα and ε be the largest limit cardinal of j(Nα)||lh(E). Then ε ≤ χ1057

and Nα||(ε+)Nα = j(Nα)||(ε+)Nα (possibly (ε+)Nα < (ε+)j(Nα)) and bNαc ⊆1058

j(Nα). These things follow from < ω-condensation, considering the factor1059

embedding k. Now let δ = δ(j(T )�ξ); it follows that δ ≤ ε. So Nα|δ =1060

j(Nα)|δ, and it suffices to see that for each ξ′ ≤ ξ, we have [0, ξ′)j(T ) =1061

[0, ξ′)T . We prove this by induction on ξ′. So assume T �ξ′ = j(T )�ξ′. We1062

may assume ξ′ ≥ κ, so δ′ = δ(T �ξ′) ≥ κ also. Now if Nα �“δ′ is not Woodin”1063

then let Q / MT
ξ′ be the Q-structure for δ′. Then Q / Nα, so Q / j(Nα), so1064

Q / M
j(T )
ξ′ . Therefore [0, ξ′)T = [0, ξ′)j(T ), as required. So suppose Nα �“δ′1065

is Woodin”. Since κ ≤ δ′ < lh(E), and so by Claim 3.25, P is non-tame. So1066

by our hypothesis, j(Ψ)�Vδ′+1 ⊆ Ψ, so [0, ξ′)j(T ) = [0, ξ′)T .1067

Definition 3.27. Let (P ,Σ) be a hod pair, within scope, and κ be such that1068

Σ is a hod (ω, κ, κ + 1)-strategy. Let a ∈ HC be such that P ∈ J1(â) and â1069

is swo’d. Suppose that M = MΣ,#
1 (â) exists and is Σ-κ-naturally iterable.1070

Let N be any non-dropping ΛΣ,κ
M -iterate of M. Let δ = δN and ΣN

P = Σ�N.1071

Let χ ≤ δ + 1.1072

A (P ,Σ)-bounded hod pair construction of N, of length χ, is a1073

sequence1074

D = 〈(Cβ, Tβ, αβ,Qβ,Rβ,Mβ,Σβ)〉β<χ
with the following properties holding inside N for all β < χ:1075

– Tβ is a terminally non-dropping, successor length, normal tree on P via1076

ΣN
P , and Qβ = M

Tβ
∞ and Rβ = Qβ(β).1077

– Tα ( Tβ for α < β.1078
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– T0 is based on P(0)|δP0 .1079

– If β + 1 < χ then Tβ+1 is based on Qβ(β + 1)|δQββ+1, and is above δ
Qβ
β .1080

– If β is a limit then Tβ = T ∗β ̂ Σ(T ∗β ) where T ∗β = limα<β Tα.1081

– Σβ is the strategy for Rβ which is the tail of ΣN
P .1082

– C0 is the maximal L[E]-construction29 of N|δ.1083

– If β+1 < χ then Cβ+1 is the maximal LΣβ [E](Rβ)-construction of N|δ.1084

– If β is a limit, Cβ is the maximal LΣ∗β [E](R∗β)-construction of N|δ, where1085

Σ∗β = ⊕α<βΣα and R∗β = ⊕α<βRα.1086

– αβ < δ and Rβ = N
Cβ
αβ .1087

– For all α < α0 there is a successor length normal tree T on P , via1088

ΣN
P , based on P(0), such that N C0

α E MT
∞, and either bT drops or1089

N C0
α / MT

∞(0).1090

– If β+1 < χ then for all α < αβ+1 there is a successor length normal tree1091

T on Qβ, based on Qβ(β+ 1), above Rβ = Qβ(β), with Tβ ̂ T via ΣN
P ,1092

and such that N Cβ+1
α EMT

∞, and either bT drops or N Cβ+1
α /MT

∞(β+1).1093

– If β is a limit then for all α < αβ, eitherN Cβ
α /Rβ, or there is a successor1094

length normal tree T on Rβ, above δ
Rβ
β , with Tβ ̂ T via ΣN

P , such that1095

bT drops and N Cβ
α EMT

∞.1096

– Mβ is the least M / N such that o(M) is a successor cardinal and1097

β, αγ < o(M) for all γ ≤ β. Let ΛMβ
be the (ω,Ord,Ord)-maximal1098

strategy for Mβ, guided by Q-structures computed from ordinals and1099

ΣN
P . Then Σβ is exactly the strategy for Rβ induced by lifting to ΛMβ

.1100

We say that such a construction is successful iff χ = β + 1 < δ and1101

Rβ = Qβ (thus, the construction has produced a non-dropping normal Σ-1102

iterate Qβ = N Cβ
αβ of P). a1103

29Here and below, all background extenders are required to come from EN.
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Lemma 3.28. Adopt the hypotheses and notation of 3.27. Then there is a1104

unique successful (P ,Σ)-bounded hod pair construction D of N.1105

Moreover, let β < lh(D) and ΛV
Mβ

be the Q-structure guided (ω, κ, κ+ 1)-1106

strategy for Mβ (so ΛV
Mβ

is induced by the tail of ΛΣ,κ,κ+1
M and ΛMβ

⊆ ΛV
Mβ

).1107

Let ΣV
β be the hod (ω, κ, κ + 1)-strategy for Rβ induced by the tail of Σ (so1108

Σβ ⊆ ΣV
β ). Let ΓVβ be the hod (ω, κ, κ+ 1)-strategy for Rβ given by lifting to1109

ΛV
Mβ

. Then ΣV
β = ΓVβ .1110

Proof. This is partly proven in [5], but we cover some details not presented1111

there; it is in these details that the distinction between hod strategies and1112

full strategies is important.1113

It is easy to see that for each χ, there is at most one construction of length1114

χ. Trivially, if χ = 0, or χ is a limit and for all β < χ, there is a construction1115

of length β, then there is a construction of length χ. So suppose there is an1116

unsuccessful construction of length χ; we need to see there is a construction1117

of length χ+ 1.1118

We assume χ = β + 1, as if χ = 0 or χ is a limit it is an easy variant.1119

Let C be the maximal LΣβ [E](Rβ)-construction of N|δ. Let Ψ be the1120

above-Rβ, normal strategy for Qβ(β+ 1) given by continuing Tβ as a normal1121

tree, using Σ. An easy variant of 3.23, together with universality at δ, [17,1122

Lemma 11.1], shows that C reaches a non-dropping Ψ-iterate Rβ+1 = N C
α of1123

Qβ(β+1), for some α < δ such that for all ξ < α, N C
ξ is either a dropping such1124

iterate, or a proper segment of such an iterate. (With regard to universality,1125

we don’t need to iterate N C
δ in M, so we don’t need M to know any of its1126

own iteration strategy.) Let Tβ+1 be the corresponding tree on P .1127

So a length χ+ 1 construction will exist given that Σβ+1 agrees with the1128

hod strategy Γ for Rβ+1 given by lifting to ΛMβ+1
(where notation is as in1129

3.27). This follows from the “moreover” clause of the lemma at β+ 1, which1130

we now prove. Let U be a limit length tree via both ΓVβ+1 and ΣV
β+1 (notation1131

as in the statement of the lemma). Let b = ΓVβ+1(U) and c = ΣV
β+1(U).1132

Because Σ and ΛΣ,κ
M have hull condensation, by taking a hull here we may1133

assume everything is countable.1134

Sargsyan’s argument showing that if b does not drop then b = c (using1135

branch condensation for Σ) goes through here (cf. [5, Lemma 2.15]). So1136

assume that b drops. Then because we are dealing with hod strategies, U1137

has the form ~V ̂ V , where ~V does not drop, V is normal and V ̂ b drops.1138

Let γ < lh(V) and α be such that [0, γ]V does not drop, and letting1139
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N = MV
γ , such that α ≤ λN and for all τ < γ, we have1140

lh(EVτ ) < ε =def

⋃
ξ<α

o(N (ξ)) < lh(EVγ ),

and V�[γ, lh(V)) is based on N (α) (and is above ε). Let Ω be the above-ε,1141

hod (ω, κ, κ + 1)-strategy for N (α), given by normally extending V�γ + 1,1142

continuing to use ΓVβ+1. Let1143

X = Tβ+1 ̂ ~V ̂ (V�γ + 1)

and Σ′ = ⊕β<αΣN (β),X . Let Υ be the above-ε, hod (ω, κ, κ + 1)-strategy for1144

N (α), given by normally extending V�γ + 1, continuing to use Σ. So Υ is a1145

Σ′-strategy as (P ,Σ) is a hod pair. But Ω is also a Σ′-strategy, because Σ1146

has factor-hull condensation by 3.18.1147

Let ‹V be the tree on N (α) which is equivalent to V�[γ, lh(V)) (the latter1148

tree is on N ). Let b̃, c̃ be the branches determined by b, c. By the previous1149

paragraph we can use Ω and Υ to compare the phalanxes Φ(‹V ̂ b̃) and1150

Φ(‹V ̂ c̃). This leads to contradiction almost as in the proof of 3.18. The1151

only slight difference is in showing that Q′ has an iteration strategy in Γ1152

when c̃ does not drop, where Q′ is as in the proof of 3.18, so consider this.1153

As before, δ′ is a cutpoint of Q′. We have a normal tree Y via Σ of successor1154

length, such that Q′ E MY
∞. If bY drops then we can argue as in 3.18, so1155

suppose bY does not drop. Then Q′ / MY
∞. If δ′ is a cutpoint of MY

∞ then1156

we can use 3.14(1), so suppose otherwise. Let E ∈ EMY∞ be the extender of1157

least index overlapping δ′. So o(Q′) < lh(E). Consider the tree Z on MY
∞,1158

using only E. So Q′ / MZ
1 , and note that 3.14 applies to the stack (Y ,Z)1159

and Q′, δ′.1160

The next lemma, and much of its proof, are similar to Sargsyan’s [5,1161

Lemma 3.35].1162

Lemma 3.29. Let κ be an uncountable cardinal. Let (P ,Σ) be such that P1163

is countable and reasonable and either1164

(i) P is an n-sound premouse and Σ is the unique (n, κ)-strategy Σ′ for P1165

such that if cof(κ) > ω then Σ′ extends to an (n, κ+ 1)-strategy, or1166

(ii) (P ,Σ) is a hod pair, within scope, and Σ is a hod (ω, κ, κ+ 1)-strategy.1167
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(So in case (ii) κ is regular.) Let a ∈ HC be such that P ∈ J1(â) and â1168

is swo’d. Suppose that MΣ,#
1 (â) exists and is Σ-κ-naturally iterable. Then1169

(Σ, a) is nice.1170

Proof. Σ has hull condensation, by the uniqueness of Σ in case (i), and1171

because (P ,Σ) is within scope in case (ii). 30 It remains to see that t(Σ,a)1172

determines itself on generic extensions.1173

We describe a process by which N[g] can compute Σ�N[g] whenever N1174

is a non-dropping ΛX,κ
M -iterate of M =MΣ,#

1 (â) and g is set-generic over N.1175

The result will then be a straightforward corollary. So fix N and let δ = δN.1176

Let X be the tree on M whose last model is N.1177

Consider case (i). If cof(κ) = ω let τ = κ; otherwise let τ = κ + 1. Let1178

ΛM be the Σ-(0, < ω, τ)-maximal strategy for M given by 3.5. So N is a1179

ΛM-iterate. Let ΛN be the Σ-(0, < ω, τ)-maximal strategy for N which is the1180

tail of ΛM. Let C = 〈Nα〉α≤δ be the maximal L[E]-construction of N|δ, where1181

background extenders are required to be in EN. Note that the hypotheses of1182

3.23 hold in N with respect to P , γ = δ,Σ�N,C.1183

Now there is α < δ such that 3.23(ii) attains. For in N, δ is Woodin, and P1184

is super-small, so we can apply the universality of Nδ (see [17, Lemma 11.1]).1185

Note that α < µ where µ is the least strong of N. Let γ be a cutpoint of N1186

such that α < γ < µ, and let θ = (γ++)N. Then via copying/resurrection,1187

Nα, and therefore also P , are normally iterable in V via lifting to nowhere-1188

dropping normal trees on N, via ΛN, based on N|θ. Let ΣP be the resulting1189

strategy for P . By the uniqueness of Σ we have ΣP = Σ. Note that θ ∈1190

rg(iX ).1191

Now consider case (ii). So κ is regular. Let ΛM be the Σ-(0, κ, κ + 1)-1192

maximal strategy for M given by 3.5. Let ΛN be the Σ-(0, κ, κ+ 1)-maximal1193

strategy for N which is the tail of ΛM. Let D be the (P ,Σ)-bounded hod pair1194

construction of N. By 3.28, we have α < δ and a normal tree T via Σ with1195

last model R such that bT does not drop, D has length β + 1 and R = RD
β ,1196

and ΛV
β = ΣR,T (where ΛV

β is as in 3.28; so this is just the strategy for R1197

which lifts to ΛV
MD
β
). By hull condensation, Σ has pullback consistency, so1198

Σ = ΣP , where ΣP is the pullback of ΛV
β . Note that o(MD

β ) < µ where µ is1199

the least strong of N. Let γ be a cutpoint of N such that o(MD
β ) < γ < µ and1200

let θ = (γ++)N. And ΣP is again computed by lifting to nowhere-dropping1201

30In case (i), we use the fact here that Σ is only an (n, κ)-strategy. If κ is singular then
it seems difficult to deal with trees of length (κ+ 1).
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trees on N, based on N|θ (this time stacks of normal such trees). Again1202

θ ∈ rg(iX ).1203

We now continue with both cases. It suffices to see that ΛN�X is suffi-1204

ciently definable over N[g], where X is the class of trees T ∈ N[g] such that1205

T is based on N|θ and is nowhere-dropping. Iterating N for N|θ-based trees1206

just requires computing the correct Q-structures, which requires sufficient1207

ordinals and knowledge of Σ. But we don’t yet know that Σ“N[g] ⊆ N[g].1208

We will computed the Q-structures by reducing such trees T to trees in N.1209

Let P, Ṫ ∈ N|crit(FN) be a poset and a P-name such that P forces that Ṫ1210

is a nowhere dropping, N|θ-based tree on N, of limit length, via the strategy1211

to be described; it will follow that Ṫ g is a correct tree on N for any N-generic1212

g ⊆ P.1213

Claim 3.30. Let g be P-generic over N. Let Q = Q(Ṫ g). Then Q ∈ N[g].1214

In fact, let λ be the maximum of δ, (lh(Ṫ g)++)N[g], and (card(P)++)N.1215

Then there is a short tree V ∈ N|λ, V on N, according to ΛN, of successor1216

length, such that for some α < crit(FN), if G is Col(ω, λ) generic over N[g],1217

then in N[g][G], there is an spm Q which is a Q-structure for M(Ṫ g), and1218

a Σ1-elementary embedding π : Q → MV
∞|α. So Q is unique with these1219

properties and Q(Ṫ g) = Q ∈ N[g].1220

Proof. Suppose not and assume that P forces the failure. In N, we first form1221

a Boolean valued comparison of M(Ṫ ) with N, forming a P-name for a tree1222

U̇ on M(Ṫ ) and a tree V on N. Note that N correctly computes Q-structures1223

as far as they exist during this comparison. Consider a limit stage (V , U̇)�λ1224

of the comparison. If a condition q forces that U̇�λ is eventually only padding1225

then below q, nothing need be done for U̇ at stage λ. Now suppose q forces1226

otherwise. Suppose p ≤ q forces that here is a cofinal branch b of U̇ such1227

that Q(M(V�λ)) E M U̇
b . Then below p, we set [0, λ]U̇ = b. If p ≤ q forces1228

otherwise, then below p, we declare that U̇ is uncontinuable, and terminate1229

the comparison. (In the latter case p forces that U̇ has limit length; we deal1230

with this later.) For each stage α of the comparison, let lhα be the index of1231

any extender (forced by some p to be) used at that stage. For limit λ, let1232

M((V , U̇)�λ) be the lined up part of that stage, of height supα<λ lhα.1233

Subclaim 3.31. We have:1234

(a) V is based on N|θ;1235
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(b) if α is such that [0, α]V does not drop and P forces that M U̇
α |θ′ = MV

α |θ′,1236

where θ′ = iV0,α(θ), then the comparison terminates at stage α, and in1237

fact, P forces that M U̇
α EMV

α |θ′;1238

(c) at every limit stage λ, a Q-structure for M((V , U̇)�λ) exists;1239

(d) the comparison terminates (i.e. there is α such that P forces that either1240

U̇ is uncontinuable, or MV
α EM U̇

α , or M U̇
α EMV

α );1241

(e) there is p ∈ P forcing that if U̇ has a final model, then M U̇
∞ / M

V
∞.1242

Proof. Part (b) implies (a) and (c). Suppose (b) fails. Let α be the least1243

failure, and let p be a condition forcing this failure. Let g ⊆ P be generic1244

with p ∈ g. Let T ′ be the tree on N which uses the same extenders as does1245

T = Ṫ g, followed by ΛN(T ), and let W0 = MT ′
∞ . So bT

′
is non-dropping (as1246

T was nowhere dropping). Let U ′ be the tree on W0 using the same extenders1247

as Ug. Let W = MU ′
α . So θ′ < o(W ). We can compare (MV

α ,W ), producing1248

trees (T1, T2). The comparison begins above θ′, a cardinal of MV
α . Note that1249

by choice of θ, all extenders used in the comparison have critical point > θ′.1250

Suppose bU
′

drops. Then ρWn+1 < θ′, where n = degU
′
(α). Also then, bT11251

drops, whereas bT2 does not, and T1, T2 have the same last model. But the1252

last model Z of T1 has ρω(Z) ≥ θ′, contradiction. So bU
′

does not drop, and1253

so neither do bT1 , bT2 , and j = k where j = i(X ,V,T1) and k = i(X ,T
′,U ′,T2). But1254

j(θ) = θ′ and k(θ) > θ′, contradiction. This gives (b).1255

The usual proof that boolean-valued comparisons terminate gives (d).1256

So if (e) fails, then bV drops, so MV
∞ is unsound, and P forces that M U̇

∞ =1257

MV
∞. But then again the usual methods yield a contradiction.1258

Now let p be as in part (e), and let g ⊆ P be N-generic, with p ∈ g. Let1259

T = Ṫ g and U = U̇g. Let Q = Q(M(T )). Let W0,U ′ be as before, and let1260

UQ be the 0-maximal tree on Q given by U (with the same extenders and1261

branches).1262

Suppose that U has a last model R. So we have R /MV
∞ and bU does not1263

drop, and so neither do bU
′

or bUQ . Let π : M
UQ
∞ → iU

′
(Q) be the factor map.1264

Then π is a weak 0-embedding. So by 2.36, M
UQ
∞ is a Σ-premouse. Also,1265

iUQ : Q→ M
UQ
∞ is continuous at δ = δ(Ṫ g), and M

UQ
∞ has no E-active levels1266

above iUQ(δ) and iUQ(δ) is Woodin in M
UQ
∞ . It follows that M

UQ
∞ E MV

∞.1267
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Also, iUQ is Σ1-elementary. So Q, V , M
UQ
∞ and iUQ witness the truth of the1268

claim, a contradiction.31
1269

Suppose now that U is uncontinuable, so has limit length. Let b be1270

the U -cofinal branch determined by ΛN. Note that b does not drop, and1271

M(U) = MU
∞. But this leads to the same contradiction as in the previous1272

paragraph.1273

This completes the proof that N[g] computes Σ�N[g]. Now let Φ be the1274

formula “There is no largest cardinal, there is a Woodin cardinal δ, in case1275

(i) the L[E]-construction reaches a non-dropping Σ-iterate of P , and in case1276

(ii) the (P ,Σ)-bounded hod pair construction is successful at some stage1277

< δ, and every partial order P forces that the process described above always1278

succeeds”. Let Ψ be the formula defining Σ�N[g] through the above process.1279

Note that if N′ E N and N′ � Φ and g is set generic over N′, then N′[g] is1280

indeed closed under Σ, and Σ�N′[g] is defined over N′[g] by Ψ. So (Φ,Ψ)1281

generically determines t(Σ,a), as required. (We don’t actually need that the1282

Woodin of N′ is a cardinal of N.)1283

Notation 3.32. Let (Ω, A0) be nice, t0 = tΩ,A0 and κ0 = κt. Let M =1284

MΩ,#
1 (A0) and ΛM = ΛΩ,κ0

M . Let (Φ0,Ψ0) be a pair that generically deter-1285

mines (Ω, A0). Let a0 ∈ R code A0 in a canonical way.32 These objects are1286

fixed for the remainder of the paper.1287

Definition 3.33. An hpm N is M-like33 iff N is non-1-small, all proper1288

segments of N are 1-small, and ∃γ ∈ (δN , l(N )) such that N|γ � Φ0. a1289

Remark 3.34. G-organization will use an initial segment of the tree for1290

making a structure generically generic, due to Sargsyan [5]. We recall this1291

notion and define some related notation and terminology now.1292

Let N ,P be transitive structures, where P is M-like. Let Q = Col(ω,N ).1293

Let ẋN be the canonical Q-name for the real coding N determined by a Q-1294

generic filter. Let T be a normal iteration tree on P . We say that T is1295

making N generically generic iff:1296

– T �o(N ) + 1 is a linear iteration at the least measurable of P .1297

31Ostensibly M
UQ
∞ might be a strict segment of the Q-structure for MV∞|iUQ(δ), but this

is not relevant. If one chooses n < ω appropriately, and takes UQ to be n-maximal instead

of 0-maximal, then one can arrange that M
UQ
∞ is the Q-structure.

32If a0 can be chosen such that M codes a0 then we do so, and a0 is redundant.
33The “M” in “M-like” is just a symbol; it does not refer to the fixed structure M.
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– Suppose lh(T ) ≥ o(N ) + 2 and let α + 1 ∈ (o(N ), lh(T )). Let δ =1298

δ(MT
α ) and let B = B(MT

α ). Then ETα is the extender E ∈ E+(MT
α )1299

with least index such that some p ∈ Q forces “There is a B-axiom1300

induced by E which fails for ẋN”.1301

Given a putative strategy Σ for P , let T ∗ΣN denote the longest putative1302

tree T via Σ which is making N generically generic. Clearly if Σ is a normal1303

κ-strategy for a large enough κ then T =def T ∗ΣN has successor length and Q1304

forces that ẋN is generic for B(MT
∞).1305

Let T ∗N denote T ∗ΛM
N .1306

Sargsyan noticed (see [5, Definition 3.37]) that one can feed Ω into a1307

strategy mouse N indirectly, by feeding in the branches for something like1308

T ∗M, for variousM E N . The key notion of g-organized Ω-premice, to come,1309

uses this idea, and the main point of it is due to Sargsyan. We will only1310

actually use a certain initial segment T Σ
N of T ∗ΣN :1311

Definition 3.35. Let P be M-like. Then PΦ0 denotes the least P ′ /P such1312

that for some cardinal δ′ of P , P ′ � Φ0+“δ′ is Woodin”. Note that PΦ0 is a1313

strong cutpoint of P . Given a transitive structure N and a putative strategy1314

Σ for P , T Σ
N denotes the initial segment of T ∗ΣN based on PΦ0 . Let TN denote1315

T ΛM
N . a1316

To ensure the absoluteness of iterations making structures generically1317

generic, we will require our models to add branches to iteration trees suffi-1318

ciently slowly:1319

Definition 3.36. Let M be an aspm and η < o(M). Let T ∈ M be a1320

putative tree via ΣM. Then SMT denotes the least S E M such that T1321

is via ΣS . We say that T is M-reckonable above η iff for every limit1322

α ∈ [η, lh(T )) we have the following. Let ζ = supn<ω wfp(o(MT
α+n)). Then:1323

– if α + ω < lh(T ) then o(SMT �α+1) + ζ ≤ o(SMT �α+ω),1324

– if lh(T ) ≤ α + ω then o(SMT �α+1) + ζ ≤ o(M), and1325

– if lh(T ) < α+ω andM �“MT
∞ is wellfounded” then MT

∞ is wellfounded1326

(equivalently, MT
∞ �“o(SMT �α+1) + o(MT

∞) ≤ o(V )”). a1327
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Remark 3.37. Let M be an aspm such that cpM is M-like. Let N /M1328

satisfy ZF. Let T ∈ M be a putative tree via ΣM (on cpM), based on cpMΦ0
,1329

such that T is M-reckonable above o(N ). Then T is making N generically1330

generic (in V ) iff M �“T is making N generically generic”. Moreover, let1331

U ′ = T ΣM
N (as computed in V ) and U = U ′�λ where λ is largest such that1332

U�α + 1 is M-reckonable above o(N ) for all α < λ. Given α + 1 < lh(U ′)1333

let eα = EU
′

α , and given α + 1 = lh(U ′), if MU
α is illfounded then let eα = 0,1334

and otherwise let eα = 1. Then the map α 7→ (U�α+ 1, eα), with domain λ,1335

is rΠM2 (L−, {N}), uniformly inM,N .34 Further, suppose that T =def T ΣM
N1336

exists, is in M, and is M-reckonable above o(N ). Then {(T , (MT
∞)Φ0)} is1337

ΣM1 (L−, {N}), uniformly in M,N .1338

These facts use the local definability of the Col(ω,N ) forcing relation.1339

Given p ∈ Col(ω,N ), n < ω, a limit ordinal α < λ and E ∈ E(MT
α+n) such1340

that ν(E) is inaccessible in MT
α+n, the question of whether p 
“E induces an1341

extender algebra axiom not satisfied by ẋN” is computed over J hpm
ν(E)(SMT �α+1).1342

(Such an axiom has the form1343 ∨
γ<crit(E)

ϕγ ⇐⇒
∨

γ<ν(E)

ϕγ,

where for each γ < ν(E), ϕγ ∈ MT
α+n|ν(E), so the forcing relation be-1344

low p regarding the truth of ϕγ is computed over some proper segment of1345

J hpm
ν(E)(SMT �α+1).)1346

Definition 3.38. LetR be an aspm such that cpR is M-like. Let ψ ∈ L. The1347

(g, ψ)-hierarchy of M is the pair (〈Mα〉α≤γ , 〈Nα+1〉α<γ′) with γ, γ′ ∈ Ord1348

both as large as possible such that γ ≤ γ′ ≤ γ + 1 and:1349

1. Nα+1 E R for each α < γ′ and Mα E R for each α ≤ γ.1350

2. M0 =M|1 and o(Mλ) = limα<λ o(Mα) for limit λ.1351

3. For α < γ′, Nα+1 is the least N E R such that Mα /N and N � ZF.1352

4. For α < γ, Mα+1 is the least M E R such that Nα+1 /M and for1353

some S with Nα+1 E S EM we have either:1354

– S � ¬ψ, or1355

34There is a natural Σ1 formula which attempts to define this function, which computes
the correct values on the domain of the function, but might give a larger domain.
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– T ′ =def T ΣS
Nα+1

exists, is inM and isM-reckonable above o(Nα+1).1356

For N EM, we say that N is a (g, ψ)-tree activation level of M iff1357

N = Nα+1 for some α. We say that M is (g, ψ)-whole iff M = Mγ, and1358

say that M is (g, ψ)-closed iff M is (g, ψ)-whole and γ is a limit.1359

We abbreviate (g, true) with g (for example in the g-hierarchy of R, etc).1360

We abbreviate (g, “Θ exists”) with both (g,Θ) and Θ-g. a1361

Remark 3.39. LetM be an aspm such that cpM is M-like, and ψ ∈ L. Let1362

the (g, ψ)-hierarchy of M be (〈Mα〉α≤γ , 〈Nα+1〉α<γ′). Then 〈Mα〉α≤γ �M1363

is ΣM1 (L−), and 〈Nα+1〉α<γ′ �M is ∆M2 (L−), uniformly in M; this follows1364

easily from 3.37.35 Similarly, there is %ψ ∈ L such that M � %ψ iff M is1365

(g, ψ)-whole, uniformly in M.1366

Definition 3.40. Let “V is an aspm” be the natural formula ψ ∈ L such1367

that for any transitive L-structure M, M � ψ iff M is an aspm. a1368

Definition 3.41 (ϕ(g,ψ)). For ψ ∈ L, ϕ(g,ψ) denotes the L-formula of one1369

free variable T asserting (when interpreted over transitive L-structures) “V1370

is an aspm, cp is an M-like hpm, the (g, ψ)-hierachy of V has the form1371

(〈Mα〉α≤γ , 〈Nα+1〉α<γ+1)

with N =def Nγ+1/V , T is a limit length iteration tree via ΣV (on cp), based1372

on cpΦ0
, making N generically generic, T is V -reckonable above o(N ), and1373

ΣV (T ) is undefined.”1374

We have ϕg = ϕ(g,true); let ϕG = ϕ(g,Θ). a1375

The notion g-organized Ω-premouse below is a variant of Sargsyan’s re-1376

organized hybrid strategy premouse, [5, Definition 3.37]:1377

Definition 3.42. gΩ = (ΛM, ϕg) and GΩ = (ΛM, ϕG). For example, a gΩ-1378

premouse is a (ΛM, ϕg)-premouse and Lp
gΩ(x) = Lp(ΛM,ϕg)(x), etc. A g-1379

organized Ω-premouse is a gΩ-premouse. a1380

So a g-organized Ω-pm is over A for some A ∈ ÁV where M ∈ J1(A).1381

Lemma 3.43. The class of g-organized Ω-pms M such that ΨM = ∅ is very1382

condensing. For any g-organized Ω-pmM not of type 3, and any π : R →M1383

a weak 0-embedding, R is a g-organized Ω-pm.1384

35 If γ′ = α+ 1 and l(M) = γ′ + 1 then 〈Nα+1〉α<γ′ is not ΣM1 (L−) because Nγ′ � ZF.

47



Proof. These facts follow from 2.37 and 2.36 respectively.1385

As in [5, Lemma 3.38], the first consequence of g-organization is the1386

following. Because tΩ,A0 determines itself on generic extensions, g-closure1387

ensures closure under Ω:1388

Lemma 3.44. Let M be a g-closed g-organized Ω-pm. Then M is closed1389

under Ω. In fact, for any set generic extension M[g] of M, with g ∈ V 36,1390

M[g] is closed under Ω and Ω�M[g] is L−-definable over M[g], uniformly1391

in M, g.1392

Proof sketch. We show that M is closed under Ω; the generalization to1393

generic extensions of M and the definability of Ω is similar. We assume1394

that Ω is an operator; the strategy case is similar.1395

Let z ∈ bMc ∩ dom(Ω); we want to see that Ω(z) ∈ bMc. Let t =1396

ThΩ(z)
ω (z); it suffices to see that t ∈ M. Let N ,N ′ /M be tree activation1397

levels of M with z ∈ N / N ′. Then T =def TN ∈ N ′. Let M∗ = MT
Φ0

and1398

Q = Col(ω,N ). Then in N ′, Q forces that ẋN is extender algebra generic1399

over M∗. So by 3.9, for w ∈ z<ω and any formula ϕ, ϕ(w) ∈ t iff in N ′, Q1400

forces that M̌∗[ẋN ] �“There is y such that Ψ0(ž, y) and y � ϕ(w̌)”.1401

The analysis of scales in Lp
gΩ(R) runs into some problems (see footnotes1402

49 and 68). So we will analyze scales in a slightly different hierarchy, which1403

we now describe.1404

Definition 3.45. Fix a natural coding of elements of HC by reals. Let1405

Υ ⊆ HC. Given a set Υ ⊆ HC, Υcd denotes the set of codes for elements of1406

Υ in this coding.37 We say that Υ is self-scaled iff there are scales on Υcd
1407

and R\Υcd which are analytical in Υcd (i.e. Σ1
n(Υcd) for some n < ω). a1408

Definition 3.46. An aspmM is suitably based iff cpM ∈ HCM is M-like,1409

cbM = x̂ where x = (HCM,Υ) for some Υ ⊆ HCM such that M �“Υ is1410

self-scaled”, and ΨM = ∅. Abusing terminology, we say that M is over Υ1411

and write ΥM = Υ. LetM be a suitably based aspm over Υ. Let ~≤M, ~≤′M1412

denote what are, in M, the least analytical-in-Υcd scales on Υcd,R\Υcd. If1413

36Without the assumption that g ∈ V , it seems that the domain of Ω�M[g] might not
be definable over M[g].

37Note that for any J -structure M such that HCM ∈ M, the decoding function (for
the above codes), restricted to RM, is definable over HCM, so (Υ ∩HCM)cd = Υcd ∩M.
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there is some N E M which is admissible, then working in M (or N ) let1414

UM, U ′M denote the trees of these scales, respectively.1415

A Θ-g-spm is a suitably based ϕG-indexed spm.1416

A Θ-g-organized Ω-premouse is a Θ-g-spm which is a (ΛM, ϕG)-pm.1417

a1418

In our application to core model induction, we will be most interested in1419

the cases that either ΥM = ∅ or ΥM = Ω�HCM.1420

Definition 3.47. Let “V is a Θ-g-spm” be the natural formula ψ ∈ L such1421

that for all transitive L-structures M, M � ψ iff M is a Θ-g-spm. a1422

Definition 3.48. Let M be an aspm and let P / J hpm(P) EM with P a1423

strong cutpoint ofM. ThenM↓P denotes the aspmM′ defined by induction1424

on M as follows: bM′c = bMc, cbM′ = P̂ , cpM
′

= cpM, ΨM
′

= ΣP ,1425

PM
′

= PM, EM
′

= EM, l(P) + l(M′) = l(M) and N↓P /M′ for all N1426

such that P /N /M (this determines ~PM
′
). a1427

Lemma 3.49. Let M be an hpm. Then the following are equivalent: (i)1428

M is a Θ-g-organized Ω-pm; (ii) M �“V is a Θ-g-spm” and cpM = M1429

and ΣMϕG
⊆ ΛM; (iii) M is a suitably based aspm and cpM = M and for all1430

N EM:1431

– if P / J hpm(P) E N and P � ZF− and every R such that P E R /N1432

has ΘR = o(P) (possibly R = P; therefore P is a strong cutpoint of1433

N ) then N↓P is a g-organized Ω-pm, and1434

– if there are arbitrarily large R / N satisfying “Θ does not exist” then1435

N is passive.1436

Lemma 3.50. The class of Θ-g-organized Ω-premice is very condensing.1437

Proof. By 2.37.1438

Corollary 3.51. Let M be an n-sound Θ-g-organized Ω-premouse and let1439

π : N →M be a weak n-embedding. If M is n-maximally iterable then so is1440

N .1441

Remark 3.52. It seems that one might try to define strategy premice over1442

non-wellordered sets A by feeding in branches bx for multiple trees Tx simul-1443

taneously, thus avoiding the need to select a single tree T . However, we do1444
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not see how to arrange this in such a manner that the branch predicate B is1445

always amenable. For example, suppose A = R, and N|η is given, and we1446

have identified, for each x ∈ R, a tree Tx ∈ N|η, and now we want to feed1447

in bx = Σ(Tx), simultaneously. Let’s say we have arranged that λ = lh(Tx)1448

is independent of x. Then we can easily knit together the predicates used to1449

define B(N|η, Tx, bx), as x ranges over R. Let M be the resulting structure1450

and let B = BM. For B to be amenable, for each α < λ, we must have that1451

the function Bα is in M, where Bα(x) = bx ∩ α. But it seems that even B21452

could contain non-trivial information, and maybe B2 /∈ M; note that essen-1453

tially, B2 ⊆ R. Maybe one could first add the sets Bα (amenably). But even1454

if one achieved this, it seems that the first problem described in 2.47 would1455

be an obstacle to proving that the resulting hierarchy has nice condensation.1456

4 HM, the local HODMa0
1457

Lemma 4.1. Let M be a Θ-g-organized Ω-pm such that M � “Θ exists”.1458

Let θ = ΘM. Let n0 ≤ ω be such that M is n0-sound and ρMn0
≥ θ. Let1459

γ0 = l(M). Assume that for all (ξ, k) <lex (γ0, n0), M|ξ is countably GΩ-1460

(k, ω1 + 1)-iterable. Assume DCRM. Then (i)1461

M|θ 4Σ1(L−) M

and (ii) for any (ξ, k) <lex (γ0, n0) with θ ≤ ξ, and any a ∈M|θ,1462

cHull
M|ξ
n+1(RM ∪ {a}) /M|θ.

Proof. (i) from (ii): Let ϕ ∈ L− be Σ1 and a ∈M|θ. SupposeM � ϕ(a). We1463

must show thatM|θ � ϕ(a). Let ξ < γ0 be least such thatM|(ξ+1) � ϕ(a).1464

We need to see that ξ < θ. Assume θ ≤ ξ. Fix n < ω and an rΣn+1 formula1465

ψ ∈ L such that M|ξ � ψ(a), and for any hpm N and a′ ∈ N , if N � ψ(a′)1466

then J hpm(N ) � ϕ(a′). Let1467

H = cHull
M|ξ
n+1(RM ∪ {a}).

Then a ∈ H and J1(H) � ϕ(a). But by (ii), H /M|θ, a contradiction.1468

(ii): For η < θ, let Hη = cHull
M|ξ
n+1(RM ∪ η), and πη : Hη →M|ξ be the1469

uncollapse. Note that crit(πη) exists iff Hη �“Θ exists”, and crit(πη) = ΘHη1470

when they exist. Let θη = ΘHη (where ΘHη = o(Hη) if Hη �“Θ does not1471
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exist”). Then Hη ∈ M|θ and θη < θ, since ρ
M|ξ
n+1 6= ω. We say η is a1472

generator iff η = θη. The generators are club in θ. Let H′η be the least1473

H /M|θ such that η ≤ o(H) and ρHω = ω. Now cHull
M|ξ
n+1(RM ∪ {a}) = Hη1474

for some generator η. So the following claim finishes the proof:1475

Claim 4.2. Let η < θ be a generator. Then:1476

– Hη E H′η /M|θ.1477

– If η is the least generator then ρ
Hη
n+1 = ω and p

Hη
n+1 = ∅.1478

– If ζ < η is the largest generator < η, then ρ
Hη
n+1 = ω and p

Hη
n+1 = {ζ}.1479

– If η is a limit of generators then ρ
Hη
n+1 = η and p

Hη
n+1 = ∅.1480

Proof. The proof is by induction on η.1481

Suppose η is the least generator. Clearly cbHη = cbM and ωM1 < η and1482

Hη = cHull
Hη
n+1(RM), which gives that ρ

Hη
n+1 = ω and p

Hη
n+1 = ∅ and Hη is1483

a fully sound Θ-g-organized Ω-pm. So by DCRM , countable iterability and1484

3.51, we have Hη /M|θ, and Hη = H′η since η = ΘHη .1485

Now suppose ζ is the largest generator < η. Then1486

η ⊆ Y =def Hull
M|ξ
n+1(RM ∪ {ζ}),

so ρ
Hη
n+1 = ω and p

Hη
n+1 ≤ {ζ}. But H′ζ ∈ Y , so H′ζ ⊆ Y and Hζ ∈ Y .1487

Therefore p
Hη
n+1 = {ζ} and Hη is (n + 1)-solid, and (n + 1)-sound, so fully1488

sound. The rest is as in the previous case; again we get H′η = Hη.1489

Suppose η is a limit of generators. The rΣn+1 facts aboutHη follow readily1490

by induction. Since ρ
Hη
n+1 = η = ΘHη and Hη is (n+1)-sound, and Hη cannot1491

have extenders overlapping η, comparison gives Hη E H′η, as required.1492

Definition 4.3. Let M be a Θ-g-organized Ω-pm satisfying “Θ exists” and1493

θ = ΘM. Let1494

T̃M =def Th
M|θ
Σ1(L−)(θ ∪ {a0}).

Let WM = Jθ[T̃M] and TM = (WM, T̃M). We say that a set of ordinals A1495

is ODMa0
iff A ∈ M and there is ξ < l(M) such that A is definable from a01496

and ordinal parameters over M|ξ.38 a1497

38Note that this provides much more expressive power than ODbMca0 .
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Remark 4.4. WithM as above, note that M, UM, U
′M ∈ WM (for M, this1498

uses the parameter a0) and ΣM|θ ∈ J (WM). Let P<θ denote the bounded1499

subsets of θ. By 4.1, if the hypotheses of 4.1 hold, then1500

T̃M = ThMΣ1(L−)(θ ∪ {a0})

and P<θ ∩ODMa0
= P<θ ∩WM.1501

Definition 4.5. A Θ-g-organized Ω-pm is relevant iff M �“Θ exists” and1502

∃N /M[ΘM < o(N ) and N � ZF]. a1503

Definition 4.6. Adopt the hypotheses of 4.1, and suppose M is relevant.1504

We define a g-organized Ω-pm H =def HM over ‘TM, with o(H) = o(M),1505

much as in [18]. (We show in 4.8 that H is indeed a g-organized Ω-pm. It is1506

natural to consider HM as a locally defined HODMa0
.)1507

Let θ = ΘM. Set cbH = ‘TM, cpH = M and ΨH = ΣM|θ. For α ≥ 11508

define the predicates of H|α by restricting those of M|θ + α, setting (i)1509

PH|α = PM|θ+α and (ii) EH|α = EM|θ+α ∩H|α. a1510

Continue with the notation above. Note that P ∈ H|2, where P is the1511

Vopenka algebra defined over M|θ as in [18]. Let ζ > θ be least such that1512

M|ζ � ZF. Note that M|α is passive for all α ≤ ζ, because M|θ is (g,Θ)-1513

whole. For α ≥ ζ we have θ+α = α, and to see thatH is indeed a g-organized1514

Ω-pm we will need to consider how M|α = M|(θ + α) relates to H|α. We1515

will observe that for α ≥ ζ, H|α is a g-organized Ω-pm,M|α is a symmetric1516

submodel of a generic extension of H|α (via P), ΣH|α = ΣM|α, that M|α1517

is a (g,Θ)-activation level of M iff H|α is a g-activation level of H, and1518

TM|α�γ = TH|α�γ for enough γ that condition (i) above will be appropriate.1519

We will also need to see that the fine structures of H|α andM|α correspond1520

appropriately. The fine structural correspondence is mostly as in [18], so we1521

omit most of the details, but give a summary.1522

Definition 4.7. Adopt the hypotheses of 4.6 and the notation above. For1523

α ≥ ζ and I = H|α we define the L-structure1524

Hα(RM) = I(RM) = (J ~PH

α (‘TM ∪ HCM), ~P I ,‘TM, EI , P I ;M,ΣM|θ). a

Truth in I(RM) can be reduced to truth in I via forcing with P. And1525

I(RM) determinesM|α: ifM|θ ∈ Hζ(RM) then EI+ determines EM|α+ �[θ, α]1526

by the local definability of the forcing; because M, U, U ′ ∈ H|1 and by induc-1527

tion applied to relevant initial segments ofM|θ, we do haveM|θ ∈ Hζ(RM).1528

The main facts, which generalize [18, 3.9], are summarized as follows:1529
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Lemma 4.8. Under the hypotheses of 4.6 and with ζ as above, we have:1530

(1 ) For relevant N E M, N||o(N ) is Σ1(L−) over HN (RM), and N is1531

Σ1(L) over HN (RM), uniformly in N .1532

(2 ) H is an n0-sound g-organized Ω-pm (over ‘TM, with ΨH = ΣM|θ), θ is1533

a cardinal of H, and ζ is least such that H|ζ � ZF.1534

(3 ) For all (β, k) ≤lex (l(M), n0) with ζ ≤ β, we have ρk(H|β) = ρk(M|β)1535

and pk(H|β) = pk(M|β)\{θ}.1536

(4 ) For all β ∈ [ζ, l(M)], for any p ∈ P, Hβ(RM) is a symmetric inner1537

model of a P-forcing extension of H|β.1538

(5 ) For all β ∈ [ζ, l(M)], M|β is determined by Hβ(RM) as described1539

above.1540

(6 ) Let β ∈ [θ, l(M)]. Then M|β is (g,Θ)-whole iff either β = θ, or β > ζ1541

and H|β is g-whole. Similarly, M|β is a (g,Θ)-activation level of M1542

iff H|β is a g-activation level of H.1543

Proof sketch. For most of the details, see the proof of [18, 3.9]. We just give1544

enough of a sketch to describe the new features.1545

As usual, (1) will follow from the proof, and by induction, we may assume1546

that (1) holds for N EM|θ. This implies M|θ ∈ Hζ(RM), unless there is1547

no relevant ξ < θ (a fact regarding which TM informs us). In the latter case,1548

M|θ = J hpm
θ (cbM;M, ∅). But UM ∈ WM, so ΥM, cbM ∈ Hζ(RM), which1549

suffices.1550

Let η ∈ [ζ, l(M)]. We say thatM|η,H|η are fine structurally related1551

iff (3), (4) and (5) hold for β ≤ η. We say that M|η, H|η are g-related iff1552

(6) holds for β ≤ η. We say thatM|η,H|η are related iff they are both fine1553

structurally related and g-related.1554

Claim 4.9. For η ∈ [ζ, l(M)], H|η is a g-organized Ω-pm over ‘TM, and the1555

models M|η,H|η are related, and uniformly so in η.1556

Proof. By induction on η; the uniformity follows from the proof. LetM0/M1557

be (g,Θ)-whole, with θ ≤ β0 =def l(M0), and suppose that if θ < β0 then1558

the claim holds for all η ∈ [ζ, β0]. (By (g,Θ)-wholeness, either β0 = θ or1559

ζ < β0.) For simplicity, suppose that (∗) there is a (g,Θ)-whole M1 EM1560

such that M0 /M1. Let M1 be least such and β1 = l(M1). We will prove1561
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the claim for η ∈ (β0, β1]. The fact that M1 and HM1 are fine structurally1562

related is proved as in [18, 3.9] (this is actually easier than in [18], as we have1563

PH|η = PM|η and EH|η = ∅ = EM|η for all η ∈ (β0, β1]). It remains to see1564

that they are g-related. For this we need to see that1565

– α is least such that α > β0 and H|α � ZF, and1566

– T =def TH|α = U =def UM|α.1567

The former is straightforward, using forcing as in [18, 3.9]. So H|α is the1568

next g-activation level of H, beyond H|β0 if β0 > θ, or at all if β0 = θ. We1569

now prove by induction on γ that T �γ + 1 = U�γ + 1 for all γ + 1 ≤ ε =1570

max(lh(T ), lh(U)). But then T = U as required.1571

We have T �α + 1 = U�α + 1 (this part is linear iteration). So let γ ≥ α1572

and suppose that T �γ + 1 = U�γ + 1 and γ + 1 < ε; we just need to see1573

that ETγ = EUγ (and in particular, both are defined). Let ξ be the largest1574

limit ordinal such that ξ ≤ γ. Let S = SMU�ξ+1. Let δ = l(S) + o(MU
γ ). So1575

δ ≤ l(M1).1576

Suppose that ETγ 6= ∅. Let p ∈ Col(ω,H|α) be such that p forces,1577

over39 H|δ, that ETγ induces an axiom which fails for ẋH|α. Now in M|δ,1578

Q =def Col(ω,M|α) factors naturally as Q0 × Q where Q0 = Col(ω,H|α).1579

Let Ġ0, Ġ1 be the resulting Q-names for the factor generics (so under the1580

factoring just mentioned, Ġ0 × Ġ1 corresponds to Ġ, the standard Q-name1581

for the Q-generic). Let ẋ0,M|α and ẋ1,M|α be the Q-names for the generic1582

reals determined by Ġ0 and Ġ1. Let p′ ∈ Col(ω,M|α) force that p ∈ Ġ0.1583

we have that p′ forces that ETγ induces an axiom which fails for ẋ0,M|α. But1584

assuming we have used the natural definitions, ẋ0,M|α is arithmetic in ẋM|α,1585

and so it is easy to see that p′ forces that ETγ induces an axiom which fails1586

for ẋM|α, as required.1587

The case that EUγ 6= ∅ is similar, but we need to use the fact that M|δ1588

can be realized as a symmetric submodel of a P-generic extension of H|δ. (It1589

doesn’t suffice that this holds for M|α and H|α, since the forcing relation1590

which demonstrates the fact that EUγ induces a bad axiom need not be in1591

M|α.) We omit further detail.1592

If (∗) fails then it is almost the same. However, suppose there is a (g,Θ)-1593

activation levelEM beyondM0. Then it can be that T 6= U , where T ,U are1594

as before. However, the preceding argument still shows that T �γ+1 = U�γ+11595

for enough ordinals γ that the proof goes through.1596

39This forcing is absolute, but the point is that the relevant forcing relation is in H|δ.
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The remaining details (in particular the fact that EHα(RM) determines1597

EM|α) are as in [18]. This completes the sketch of the proof of the lemma.1598

The next theorem relates the iterability of H and M. The proof of 4.101599

uses 4.8 and is just like that in [18, 3.18].1600

Theorem 4.10. Assume the hypotheses of 4.6. Let γ ∈ Ord. Then HM is1601

(countably) (n0, γ)-iterable iff M is (countably) above-ΘM (n0, γ)-iterable.1602

Remark 4.11. Constructions having the flavor of 4.6, as well as their in-1603

verses, are referred to as S-constructions. In the sequel, we will also need1604

S-construction, performed mostly as in 4.6, for example, in the following con-1605

text. LetM be a g-organized Ω-pm. Let N /M be a g-whole strong cutpoint1606

of M. Let g ⊆ Col(ω,N ) be M-generic. Then M[g] can be reorganized as1607

a g-organized Ω-pm M[g]∗ over x̂ where x = (N , g), with ΨM[g]∗ = ΣN .1608

Moreover, the fine structure and iterability of M[g]∗ corresponds to the fine1609

structure and iterability of M above η, in a manner similar to 4.8 and 4.10.1610

We leave the precise formulation and proofs of these facts to the reader.1611

Assume DCR and suppose that κ0 ≥ Θ (see 3.32). Using similar ar-1612

guments, we also get that M =def Lp
gΩ(R) and N =def Lp

GΩ(R) and1613

P =def Lp
GΩ(HC,Ω�HC) have the same P(R) (we have Ω�HC ∈ M ∩ N1614

by 3.44 and 3.49). Moreover, if Q = LpΩ(R) is well-defined and Ω has a1615

property along the lines of relativizes well (see [15, Definition 1.3.21(?)])1616

then the same holds of Q. In fact, M, N , P (and Q) have literally the1617

same extender sequences and for all α such that M|α is E-active, there1618

is a straightforward translation between M|α, N|α, P|α (and Q|α). (To1619

see that Q|α computes the others, note that the P -predicates of the others1620

are determined by Q-structures for trees T , where the Q-structures are in1621

LΩ(M(T )).)1622

5 Scales1623

We now begin the main project of the paper: the analysis of scales in Θ-g-1624

organized Ω-premice.40 In our application to the core model induction, the1625

40Let M be an hpm. When we say that M �“rΣn has the scale property”, recall
that rΣn uses the language L+ and rΣn formulas are interpreted over C0(M), so the
statement literally means that C0(M) �“rΣn has the scale property”. Moreover, since
it is a statement satisfied by C0(M), it is interpreted with respect to sequences of reals
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analysis proceeds from optimal determinacy hypotheses; cf. [19].41
1626

5.1 Scales on ΣM1 sets for passive M1627

Theorem 5.1. Let M be a passive Θ-g-organized Ω-pm satisfying AD. As-1628

sume DCRM. Suppose that every proper segment of M is countably GΩ-1629

(ω, ω1 + 1)-iterable. Then M �“rΣ1(a0) has the scale property”.1630

Proof. By DCRM , 3.50 and 3.51 we may assume that M is countable. For1631

simplicity we assume that l(M) is a limit ordinal; for the contrary case make1632

the usual modifications using the S-hierarchy as in 5.9 below. For this proof1633

we abbreviate RM with R, and likewise interpret HC and terms like real,1634

analytical, etc, over M.1635

Let Φ ∈ L− be Σ1. For x ∈ R, let A(x) ⇔M � Φ(x). We will define a1636

ΣM1 (a0)-scale on A. For x ∈ R and 1 ≤ β < l(M) let Aβ(x)⇔M|β � Φ(x).1637

Then A =
⋃
β<l(M) A

β. We will construct a closed game representation x 7→1638

Gβ
x for Aβ, with Gβ

x continuously associated to x. For u a partial play of Gβ
x,1639

let Gβ
x,u be the game in which the players continue the play of Gβ

x from u.1640

Let Aβk be the set of pairs (x, u) such that M �“u is a partial play of Gβ
x1641

of length k, and player I has a winning quasi-strategy in Gβ
x,u”.42 We will1642

eventually show that Aβk ∈M and the map (β, k) 7→ Aβk is ΣM1 (a0).43
1643

The foregoing yields a ΣM1 (a0) scale essentially as in [16]. However, let1644

us mention two small differences.1645

Firstly, there will be certain moves in Gβ
x which are, in the sense of M,1646

prewellordering equivalence classes of reals. In the scale computation, these1647

are simply treated in the same manner that ordinals are treated in [16]. Let1648

〈xn〉n<ω ∈M. Likewise when we say thatM �“rΣn(R) has the scale property”, and here
any parameters in RM are allowed; for rΣn, any parameters in C0(M) are allowed, as
usual.

41Let Σ be the unique iteration strategy forM]
1. Suppose Lp

GΣ(R) � AD+ +MC. Then

in fact Lp
GΣ(R) ∩ P(R) = Lp(R) ∩ P(R). This is because in L(Lp

GΣ(R)), L(P(R)) �

AD+ + Θ = θ0 + MC and hence by [6], in L(Lp
GΣ(R)), P(R) ⊆ Lp(R). Therefore,

even though the hierarchies Lp(R) and Lp
GΣ(R) are different, as far as sets of reals are

concerned, we don’t lose any information by analyzing the scales pattern in Lp
GΣ(R)

instead of that in Lp(R).
42Note that we require the winning quasi-strategy to be in M, unlike in Steel’s argu-

ments.
43Because we required that the winning quasi-strategy be in M, we already know that

Aβk is definable over M, but this does not particularly help us prove that Aβk ∈M.
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us set up some notation for these moves. Let Υ = ΥM and ~≤ = 〈≤n〉n<ω =def1649

~≤M (see 3.46). For n < ω let en be the set of ≤n-equivalence classes of reals.1650

Let e =
⋃
n<ω en. Let W be the tree of the scale in the codes in e; so W is a1651

tree on ω × e and p[W ] = Υcd (in M). Let W ′ be likewise for R\Υ. (If M1652

has an admissible initial segment then we could just use UM, U ′M instead of1653

W,W ′.) Then {(Υ,Υcd,W,W ′)} is ∆M1 .1654

Now secondly, because the payoff is closed for player I, if M �“Σ is1655

a winning quasi-strategy for player I for Gβ
x,u”, then V satisfies the same.1656

However, M might not have a winning quasi-strategy for player I for Gβ
x,u,1657

although V does. But this does not cause problems for the computation of a1658

ΣM1 (a0) scale. For the fact that each Aβk ∈ M ensures that Aβk is related to1659

Aβk+1 in essentially the usual manner. That is, Aβk is either of the form ∃RAβk+1,1660

or ∃α < β[Aβk+1], or ∃n ≤ k∃X ∈ en[Aβk+1], or ∀RAβk+1. Because the relevant1661

computations propagating norms are made inside M – where, in particular,1662

≤n and ≤′n are wellfounded – this is enough for the scale computation.1663

Before defining Gβ
x we give an outline. Player II will play reals. Player1664

I will (attempt to) build a countable, iterable, passive, Θ-g-organized Ω-pm1665

P over Υ ∩ P , containing all reals played by player II, such that P � Φ(x),1666

but for all γ < l(P), P|γ � ¬Φ(x). To ensure that player I indeed plays an1667

iterable Θ-g-organized Ω-pm, he must simultaneously build a (cofinal) very1668

weak 0-embedding π : P →M|γ for some γ ≤ β 44. To ensure that P is over1669

Υ∩P , he must also build various branches through W and W ′. (Here we will1670

be interested in the case that those branches appear in generic extensions of1671

M, which will ensure that really prove that a given real of M is in the set1672

it is claimed to be in.)1673

We now proceed to the details. Player I will describe his model using the1674

language1675

L∗ =def L ∪ {ẋi | i < ω} ∪ {Υ̇}.

Here ẋi and Υ̇ are constants; ẋi will denote the ith real played in the game.
Fix recursive maps

m,n : {σ | σ is an L∗-formula} → {2n | 2 ≤ n < ω}

which are one-to-one, have disjoint recursive ranges, and are such that when-1676

ever ẋi occurs in σ, then i < min(m(σ), n(σ)).1677

44One could have instead used an approach more like that used in [18].
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Fix a Σ1(L−) formula σ0(v0, v1, v2) that defines over each M|γ, a map1678

hγ : γ<ω × R onto→ M|γ.

Let T be the following L∗ theory:

(1) Extensionality

(2) “V is a Θ-g-spm”

(3)i ẋi ∈ R
(4) Φ(ẋ2) & ¬∃N / V [N � Φ(ẋ2)]

(5) ∀u, v, y, z [σ0(u, v, y) ∧ σ0(u, v, z) =⇒ y = z]

(6)ϕ [∃vϕ(v)] =⇒ ∃v∃F ∈ l(V )<ω
î
ϕ(v) ∧ σ0(F, ẋm(ϕ), v)

ó
(7)ϕ ∃v [ϕ(v) ∧ v ∈ R] =⇒ ϕ(ẋn(ϕ))

(8) ċb = x̂ where x = (HC, Υ̇)

(9) ċp is an hpm over the transitive set coded by ẋ0

A run of the game Gβ
x has ω rounds. In round n, player I first plays1679

in, x2n, ηn,Λn where in ∈ {0, 1}, x2n ∈ R, η0 ≤ β and ηn+1 < o(M|η0), and1680

Λn ∈ (W ∪W ′)n; player II plays then x2n+1 ∈ R.1681

The payoff for player I is mostly analogous to that in [18]. Conditions (f)1682

and (g) are new, and they ensure that for each i < ω, if player I asserts, for1683

example, that “ẋi ∈ Υ̇cd” then 〈Λn,i〉n∈(i,ω) is an infinite branch through W1684

witnessing that xi ∈ Υcd.1685

If u = 〈(ik, x2k, ηk, x2k+1) | k < n〉 is a partial play of Gβ
x, let

T ∗(u) = {(¬)iσ | σ is an L∗-sentence ∧ n(σ) < n ∧ i = in(σ)},

where (¬)0σ = σ and (¬)1σ = ¬σ. If p is a full run of Gβ
x, let T ∗(p) be the1686

union of all T ∗(p�n), for n < ω. We write “ιvϕ(v)” for “the unique v such1687

that ϕ(v)”. For σ = ((a0, b0), . . . , (an−1, bn−1)) let p0[σ] = (a0, . . . , an−1) and1688

p1[σ] = (b0, . . . , bn−1).1689

A run p = 〈(ik, x2k, ηk,Λk, x2k+1) | k < ω〉 of Gβ
x is a win for player I iff1690

(a) T ∗(p) is a consistent extension of T ,1691

(b) x0 = a0 and x2 = x,1692

(c) for all i,m, n < ω, “ẋi(n) = m” ∈ T ∗(p) iff xi(n) = m,1693
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(d) if ϕ and ψ are L∗-formulae with one free variable and1694

“ιvϕ(v) ∈ Ord & ιvψ(v) ∈ Ord” ∈ T ∗(p),

then “ιvϕ(v) ≤ ιvψ(v)”∈ T ∗(p) iff ηn(ϕ) ≤ ηn(ψ),1695

(e) if σ0, . . . , σn−1 are L∗-formulas with one free variable and1696

“ιvσk(v) ∈ Ord” ∈ T ∗(p)

for all k < n, then for any rΣ1-formula θ(v0, . . . , vn−1, v),1697

θ(ιvσ0(v), . . . , ιvσn−1(v), ẋ0) ∈ T ∗(p)

if and only if1698

M|η0 � θ(ηn(σ0), . . . , ηn(σn−1), a0),

(f) for all i < m ≤ n < ω, Λm,i E Λn,i and p0[Λn,i] = xi�n,1699

(g) for all i < m < ω, if “ẋi ∈ Υ̇cd” ∈ T ∗(p) then Λm,i ∈ W , and otherwise1700

Λm,i ∈ W ′.1701

Because of the payoff conditions, we could have added a sentence like “ċp1702

is M-like” to T (or any other sentences satisfied by all initial segments of1703

M), without any significant effect.1704

We next define the notion of honesty and show that the only winning1705

strategy for player I is to be honest. A partial play1706

u = 〈(ik, x2k, ηk,Λk, x2k+1) | k < n〉

is (β, x)-honest iff M|β � Φ(x) and if n > 0 then letting η be least such1707

that M|η � Φ(x), we have:1708

(i) x0 = a0 and if n > 1 then x2 = x.1709

(ii) Let Iu be any interpretation of L∗ in which ẋIui = xi for 0 < i < 2n and1710

Υ̇Iu = Υ. Then (M|η, Iu) � T ∗(u).1711

(iii) Let 〈σi〉i<m enumerate all formulas σ ∈ L∗ of one free variable such that1712

n(σ) < n and (M|η, Iu) � “ιvσ(v) ∈ Ord”. For k < m, let δk ∈ M|η1713

be such that (M|η, Iu) � σk(δk). Then in M, Col(ω,R) forces the1714

existence of a partial embedding1715

π :M|η 99KM|η0

such that o(M|η)∪{a0} ⊆ dom(π), π(δk) = ηn(σk) for each k < m, and1716

π is rΣ1-elementary on its domain.1717
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(iv) For each i < m < n, Λm,i E Λn−1,i and xi�m = p0[Λm,i], and if xi ∈ Υcd
1718

(if xi /∈ Υcd) then there is f ∈ M ∩ [Wxi ] (f ∈ M ∩ [W ′
xi

]) such that1719

f�m = p1[Λm,i]”.1720

Let Qβ
k(x, u) iff u is a (β, x)-honest position of length k.1721

The following two claims complete our proof of Theorem 5.1. Their proofs1722

are similar to those of [18, Claims 4.2, 4.3].1723

Claim 5.2. Qβ
k ∈M for all β, k, and the map (β, k) 7→ Qβ

k is ΣM1 (a0).1724

Proof Sketch. For condition (iv), observe that there is k < ω such that every1725

infinite branch b ∈ M through W or W ′, is in fact in Sk((HC,Υ,M)). For1726

let b = (x, f) ∈ M be a branch through, say, W . Because W is the tree of1727

~≤, by ACω,R in M (where AD holds), there is 〈xn〉n<ω ∈ M such that for1728

each n, xm�n = x�n and xm ≤i xn ≤i xm for each i < n ≤ m. But 〈xn〉n<ω1729

determines b, and gives the observation.1730

Regarding the other conditions, the proof is mostly like that of [18, Claim1731

4.2], but we modify some details and give a complete proof of some points only1732

hinted at in [18]. Let γ = o(M|β), A = Th
M|β
1 (γ ∪ {a0}) and A′ = γ ∪ {A}.1733

Let λ ∈ Ord be least such that Jλ(A′) is admissible. The “embedding game”1734

G (see [18, Claim 4.2]) is definable from A and is fully analysed in Jα(A′) for1735

some α < λ. Now we claim that for each α < λ,1736

tα = Th
Jα(A′)
1 (A′) ∈M.

This suffices. For if N is any structure with A′ ⊆ N and satisfying “V =1737

L[A′], I see a full analysis of G but no proper segment of me does”, then N is1738

wellfounded and so N = Jα(A′) for some α (since otherwise the wellfounded1739

part of N is admissible, contradicting the minimality of N). Therefore M1740

can identify the theory of the unique such N , allowing the rest of the proof1741

of [18, Claim 4.2] to go through.1742

So we show that tα ∈ M. Let ≤ be a prewellorder of RM of length1743

≥ γ, with ≤ in M. Say that a structure N (possibly illfounded) is good1744

iff N extends A′ and N �“V = L[A′]” and N = HullN1 (A′) and ThN1 (A′) is1745

(Σ1
1(≤))M (in the codes given by ≤). We claim that for every α < λ, Jα(A′)1746

is good (and therefore tα ∈ M). All requirements are clear other than the1747

fact that tα is (Σ1
1(≤))M.1748

Now if there is any illfounded good N , then the wellfounded part of N is1749

admissible, and therefore Jα(A′) / N for each α < λ, which easily gives the1750

claim. So suppose all good structures are wellfounded.1751
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We claim that there is a largest good structure. For suppose not. Let S1752

be the set of all Σ1 theories of good structures. Clearly S ∈ M. Now for1753

each N ∈ S let tN = ThN1 (A′). Let t =
⋃
S. Then t ∈ M, and t = ThN1 (A′)1754

for N = Jξ(A′), for some ordinal ξ. Moreover, N = HullN1 (A′). But then by1755

the coding lemma applied in M, N is good, contradiction.1756

So let N be the largest good structure. Let N = Jξ(A′) and N ′ =1757

Jξ+1(A′). We claim that N 41 N ′, and therefore that N is admissible,1758

completing the proof. So suppose otherwise. We claim that N ′ is good,1759

for a contradiction. Clearly N ′ = HullN
′

1 (A′), so we just need to see that1760

t′ = ThN
′

1 (A′) is (Σ1
1(≤))M. By the coding lemma, it suffices to see that1761

t′ ∈ M. Now t′ is recursively equivalent to ⊕n<ωTn where Tn = ThNn (A′).1762

But each of these theories are in M since T1 = tN ∈ M. Therefore, by1763

the coding lemma, each Tn is (Σ1
1(≤))M. Let T be the set of parameters1764

x ∈ R coding (relative to (Σ1
1(≤))M) one of the theories Tn, for some n < ω.1765

Then T ∈ M because in fact, T is (Σ1
10(≤))M. Therefore ⊕n<ωTn ∈ M, as1766

required.1767

Because G is fully analysed inside M, the existence of the embedding in1768

condition (iii) of (β, x)-honesty is actually absolute between MCol(ω,R) and1769

V Col(ω,R).1770

Claim 5.3. Aβk = Qβ
k .1771

Proof Sketch. Let u ∈ Qβ
k . Then as in [18] there is Σ ∈ MCol(ω,R) which is a1772

winning quasi-strategy for player I in Gβ
x,u. For every α < l(M) and n < ω,1773

the Σ0 forcing relation for Sn(M|α) is in M. (Note here that for x ∈ HC,1774

the Σ0 forcing relation restricted to elements of trancl(x) is essentially in HC,1775

as it is trivial on conditions p /∈ trancl(x).) Let Σ̃ ∈ M and p ∈ Col(ω,R)1776

be such that in M, p 
“Σ̃ is a winning quasi-strategy”. Let Σ′ be the set1777

of all partial plays v extending u such that for some q ≤ p, in M, q 
“v is1778

according to Σ̃”. Then Σ′ ∈ M, and it is easy to see that Σ′ is a winning1779

quasi-strategy, so u ∈ Aβk as required.1780

Now consider the converse. Let (u, x) ∈ Aβk and let Σ ∈M be a winning1781

quasi-strategy witnessing this. Let G be (M,Col(ω,RM))-generic (recall we1782

have reduced to the case thatM is countable). As in the proof of [18, Claim1783

4.3], but working inM[G] (where we have Σ), let let N be a model produced1784

by playing Gβ
x,u according to Σ and having player II play out all reals in RM.1785

Let π′ : N 99KM|η0 be the partial embedding, with dom(π) = o(N )∪{a0},1786

provided by payoff condition (e); so π′ is Σ1-elementary on its domain. Now1787
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cpN is an hpm over A0 (as a0 = ẋ0
N ). Using π′ and since ċp ∈ L, it easily1788

follows that cpN = M, and that π extends uniquely to very weak 0-embedding1789

π : N 99K M|η0 which is Σ1-elementary on its domain. It follows that N1790

is a Θ-g-spm with RN = RM, and in fact, N is a Θ-g-organized Ω-pm over1791

some Υ′, by 3.50.1792

Actually, Υ′ = Υ. This is because because player I built witnessing1793

branches through W,W ′, and because if x ∈ RM and M[G] �“x ∈ p[W ]”,1794

for example, thenM �“x ∈ p[W ]”. The latter is because the relevant forcing1795

relations are in M, and so, if p 
“b ∈ [Wx]” then M can compute the left-1796

most branch b′ ∈ [Wx] such that for all n < ω, there is some q ≤ p forcing1797

“b�n = b′�n”. Similar considerations also give condition (iv) of (β, x)-honesty1798

(the relevant branches are in M, not just M[G]).1799

Now N � Φ(x) but no N ′ /N satisfies Φ(x), so l(N ) = α + 1 for some1800

α, and N|α projects to ω. But N|α is GΩ-(ω, ω1 + 1)-iterable, by 4.10 and1801

using π as in [18, Claim 4.3]. The rest is as in [18].1802

This completes our sketch of the proof.1803

Remark 5.4. In the circumstances of the preceding theorem, if M has no1804

admissible proper segment, then there is an alternate scale construction.1805

We include this also, as it yields some extra information. It is related to1806

Moschovakis’ construction of inductive scales on inductive sets.1807

Let Q ⊆ R × R<ω. We say that Q is open iff (v, ~w ̂ (x)) ∈ Q for all1808

(v, ~w) ∈ Q and x ∈ R. We say that Q is a basic payoff iff Q is open, and1809

definable over (HC,ΥM,M).1810

Let Q be a basic payoff. For α ≤ ω · l(M) let Q<α =
⋃
β<αQβ, where1811

Q0 = Q and for 1 ≤ α < ω · l(M) and ~w ∈ R<ω,1812

(v, ~w) ∈ Qα ⇐⇒ qRx[(v, ~w ̂ (x)) ∈ Q<α],

where if lh(~w) is even then qR = ∀R, and otherwise qR = ∃R. Let v ∈ Q′α iff1813

(v, ∅) ∈ Qα, and likewise Q′<α. Let v ∈ R. The game GQv is that where players1814

I and II alternate playing reals x0, x1, . . . (player I moving first), and player1815

II wins iff there is n < ω such that (v, (x0, . . . , xn−1)) ∈ Q. For ~w ∈ R<ω,1816

let GQv,~w be the game like GQv , except that we interpret ~w as the first lh(~w)1817

moves. Clearly if (v, ~w) ∈ Qα then II has a winning quasi-strategy GQv,~w.1818

We say P ⊆ R is INDM iff P = Q′<ω·l(M) for some basic payoff Q.1819

Claim 5.5. P(R) ∩ ΣM1 = INDM.1820
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Proof Sketch. The fact that INDM ⊆ P(R)∩ΣM1 is routine. We now sketch1821

a proof that ΣM1 ⊆ INDM. Fix a Σ1(L−)-formula Φ. We define a basic1822

payoff Q, implicitly, by directly defining the corresponding games GQv . In1823

the definition of the game, some moves are specified as integers (or formulas,1824

etc), but we take all moves to literally be reals. In some places, one player1825

will play several items consecutively, or in a block, but for convenience, we1826

also assume that literally the other player plays a dummy real between each1827

consecutive pair of such items.45 At certain points, given d < ω, we will have1828

a delay of length d, which is just a string of d alternating moves, whose1829

values will be ignored.46 We refer to player II as “player ∃” and player I as1830

“player ∀”. In GQv , player ∃ attempts to prove that M � Φ(v), roughly by1831

describing a strictly descending sequence 〈Mn+1〉n<N of (putative) proper1832

segments of M and making claims about formulas they satisfy.47 Player1833

∀ keeps player ∃ honest, by playing reals for which player ∃ must furnish1834

witnesses to his assertions. For α ∈ [1, lh(M)], we will get v ∈ Q′<ωα iff1835

M|α � Φ(v), thereby proving the claim.1836

GQv will be broken into rounds, each of which consists of a finite sequence1837

of real moves. Suppose we have a partial play p consisting of n complete1838

rounds, after which neither player has already won the game. Then p will1839

determine a Σ1(L−)-formula ϕn = ϕn(p) and ~wn = ~wn(p) ∈ R<ω, where1840

ϕ0 = Φ and ~w0 = (v). Player ∃ will have claimed that M � ϕn(~wn).1841

Let ϕ 7→ 〈ϕm〉m<ω be the natural recursive function sending Σ1(L−) for-1842

mulas ϕ to sequences 〈ϕm〉m<ω with ϕm ∈ L−, such that for all α < l(M)1843

and ~x ∈ R<ω, we have M|(α + 1) � ϕ(~x) iff there is m < ω such that either1844

α > 0 and M|α � ϕm(~x), or α = 0 and (HC,ΥM,M) � ϕm(~x).1845

Round n proceeds as follows. Player ∃ first plays a code (m,ψ, z) for a1846

witness to the claim that M � ϕn(~wn), where m < ω and ψ ∈ Σ1(L−) ∪ {∅}1847

and z ∈ R, claiming that N � ϕnm(~wn) where:1848

– if ψ = ∅ then N = (HC,ΥM,M), and1849

45We supress these dummy reals from the definition of the game as we ignore their
values. Their point is that they allow us to use the notation GQv,~x even when ~x is a partial
play stopping in the middle of some block of items played consecutively by a single player.

46These moves help calibrate the length of inductive computations of winning quasi-
strategies, as explained later.

47In what follows, the (putative) model Mn+1 is described in round n and is denoted
N in our discussion. If player ∃ plays according to a winning strategy of simple enough
complexity then the models Mn+1 exist and Mn+1 /Mn, where M0 =M.

63



– if ψ 6= ∅ then there is N ′ /M satisfying ∀Rx[ψ(x, z)], and N is the1850

least such N ′.1851

Next, player ∀ can either dispute or accept the existence of N , where she1852

must accept if ψ = ∅.1853

Suppose ∀ disputes. Then ∀ plays x ∈ R, then d < ω, which is followed1854

by a delay of length d; neither player has yet won. Set ~wn+1 = (x, z) and1855

ϕn+1 = ψ.1856

Now suppose ∀ accepts and ψ 6= ∅. Let1857

∀X0∃X1 . . . ∀X2k∃X2k+1[ϕ∗( · , X0, . . . , X2k+1)]

be the prenex normal form of ϕnm( · ), with ϕ∗ ∈ Σ1(L−) (here “ · ” represents1858

free variables), and then pass in the natural way from (k, ϕ∗, ψ) to a Σ1(L−)1859

formula ϕ̃ such that if M � ∀Rxψ(x, z), then letting N E M be least1860

satisfying ∀Rxψ(x, z), we have1861

N � ϕnm(~wn) ⇐⇒ N � %(~wn, z) ⇐⇒ M � %(~wn, z)

where %( · ) is the formula1862

∀Rx0∃Rx1 . . . ∀Rx2k∃Rx2k+1[ϕ̃( · , x0, . . . , x2k+1)].

Then ∀ plays x0 ∈ R, ∃ plays x1 ∈ R, etc, producing ~x = (x0, . . . , x2k+1).1863

Then ∀ plays d < ω, which is followed by a delay of length d. This completes1864

the round; neither player has yet won. Set ~wn+1 = (~wn, z, ~x) and ϕn+1 = ϕ̃.1865

Finally suppose that ψ = ∅, so ∀ accepts. Pass in the natural way from1866

ϕnm to a Σ1(L−) formula ϕ∗ such that (HC,ΥM,M) � ϕnm(~wn) iff1867

(HC,ΥM,M) � ∀Rx0∃Rx1 . . . ∀Rx2k∃Rx2k+1[ϕ∗(~wn, x0, . . . , x2k+1)].

Then ~x = (x0, . . . , x2k+1) is played out in the obvious manner. This finishes1868

the game; ∃ wins iff (HC,ΥM,M) � ϕ∗(~wn, ~x).1869

This completes the description of round n. We declare ∃ the winner iff he1870

wins at some finite stage (in the situation of the previous paragraph). This1871

completes the definition of GQv , and hence the implicit definition of Q.1872

Subclaim 5.6. Let p be a partial play of GQv consisting of n full rounds,1873

after which neither player has yet won. Let ϕn = ϕn(p) and ~wn = ~wn(p). Let1874

α ∈ [1, l(M)]. Then:1875

64



– (v, p) ∈ Q<ωα iff M|α � ϕn(~wn).1876

– Let w = (m,ψ, z) be a valid move for player ∃ in GQv , following p, and1877

p′ = p ̂ w. Then (v, p′) ∈ Q<ωα iff either:1878

– ψ = ∅ and (HC,ΥM,M) � ϕnm(~wn), or1879

– ψ 6= ∅ and there is N /M|α satisfying ∀Rxψ(x, z), and the least1880

such N satisfies ϕnm(~wn).1881

Proof. This is a straightforward induction on α, which we omit.48
1882

Applying the first conclusion of the subclaim to the case that α = l(M)1883

and p = ∅ (so n = 0), we have proved the claim.1884

Because of the preceding claim, we just need to prove the next one:1885

Claim 5.7. M �“Every INDM set has a ΣM1 (a0) scale”.1886

Proof. This is a standard calculation, but here is a sketch. Fix a basic payoff1887

Q. We define a scale on Q<ω·l(M) which is ΣM1 (a0).1888

Using the periodicity theorems and determinacy, over (HC,ΥM,M) we1889

can define from the parameter a0 a very good scale ~≤0
on Q. (Use (a0,M)1890

to determine the code a′0 for M relative to a0, and from a′0, define a scale on1891

the set C of all codes for M, and on R\C. Then produce scales on Boolean1892

combinations of ΥM, C and projective sets first by reducing to the case of1893

disjoint unions of intersections of ΥM, R\ΥM, C, R\C and projective sets.)1894

Now propagate ~≤0
to scales on Q<β, for β ≤ ω · l(M), in the usual1895

manner. (For limit β, ~≤<β =
⋃
γ<β

~≤<γ. For each β, ≤<β0 is the prewellorder1896

of the norm on Q<β given by x 7→ γ where γ is least such that x ∈ Qγ. For1897

successor β, the remaining norms are given by propagating ~≤<β−1
using the1898

periodicity theorems, interleaving integer norms in the usual way to yield a1899

very good scale.) The propagation process is ΣM1 , so the scale is ΣM1 (a0).1900

48Let us just illustrate how delays help to calibrate the ranks of winning strategies for
∃. Let p′ be as above, and adopt the notation there. Suppose thatM|α � ∀Rxψ(x, z), and
M|α is least such. Let p∗ = p′ ̂ “dispute”. Since the putative N does not exist (from the
perspective of M|α) we want to know that p∗ /∈ Q<ωα. For x ∈ R and d < ω let βx,d be
the least β such that p∗ ̂ (x, d) ∈ Qβ , if such β exists. Then βx,d does exist, and β < ωα,
sinceM|α � ψ(x, z). Moreover, for each γ < α, there is x such that p∗ ̂ (0, x) /∈ Q<ωγ (by
the minimality ofM|α). But supx,d βx,d is a limit because the arbitrary d < ω is followed
by a delay of length d (after which the next round starts), so supd,x βd,x = ωα.
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We now proceed to a variant of 5.1 we will need, in whichM is P -active1901

but satisfies “Θ does not exist”. (Because M is a Θ-g-spm, this can only1902

happen if l(M) = α + 1 for some α where M|α �“Θ exists”.)1903

Definition 5.8. Let R = C0(M) whereM is an hpm over A. Let β < l(R)1904

and n < ω and H = S ~PRωβ+n(A) be such that1905

cpR,ΨR, µR, eR ∈ H.

Define the L+-structure1906

R o (β, n) = (H, ~P ,A;E,P ; cpR,ΨR, µR, eR),

where ~P = ~PR ∩H, E = ER ∩H and P = PR ∩H. a1907

Note that bR|βc = bR o (β, 0)c and ~PR|β = ~PRo(β,0), but the E and P1908

predicates of R|β and R o (β, 0) can differ.1909

Theorem 5.9. Let M be a countably iterable Θ-g-organized Ω-pm satis-1910

fying AD. Assume DCRM. Suppose l(M) = β0 + 1, and if β0 > 0 then1911

M|β0 64rΣ1(L−,R) M. Then M �“rΣM1 (R) has the scale property”.1912

Proof. By 5.1 we may assume that M is P -active. The proof is given by1913

modifying that of 5.1 as follows. We again work with HC = HCM. We1914

assume for simplicity that ΥM = ∅; otherwise make adaptations as in 5.1.1915

We have M− E M0 =def M|β0. Let o(M0) = o(M−) + λ0 and b0 =1916

bM ∩ λ0 and bM = b0 ∪ (λ0 + b1). (So b1 ⊆ ω. Note that b0 ∈ M0.) Let1917

z0 ∈ R, d < ω, k0 ∈ [1, ω), %0 ∈ L, ψ0 ∈ Σ1(L−), Ψ0 ∈ L be such that:1918

– z0 ≥T a0; a0 is computed by the dth Turing machine Φz0
d with oracle z0,1919

– M � ψ0(z0) and M0 � Ψ0(z0)&¬ψ0(z0), and for all hpms N , if z ∈ N1920

and N � Ψ0(z) then J hpm(N ) � ψ0(z),1921

– M0 = HullM0
k0

(R) and M0 � b0 = ιb%0(z0, b),1922

– %0,Ψ0 are rΣk0 formulas.1923

Let Φ ∈ L be Σ1. For x ∈ R, let A(x) ⇐⇒ M � Φ(x). We will show1924

that M �“There is a ΣM1 (z0)-scale on A”. For x ∈ R and k ∈ [k0, ω) let1925

Ak(x)⇔M o (β0, k) � Φ(x).
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Then A =
⋃
k≥k0

Ak. We will a construct closed game representation x 7→ Gk
x1926

for Ak, and define Akl , much as before; player I will essentially be attempting1927

to build a structure R � Φ(x) and corresponding toMo (β0, k). Literally, he1928

will not build the full R but just a countably iterable Θ-g-organized Ω-pm1929

N corresponding toM0, with N satisfying a formula which will ensure that1930

an R as above is given by extending N .1931

We proceed to the details. Let L∗,m, n, σ0 be as before. Let (k, c) 7→ Φk,c1932

be the natural (and recursive) function with domain [k0, ω)× 2<ω such that1933

Φk,c ∈ L is a formula with the following property. Let N be any ω-sound1934

Θ-g-spm such that N �“Θ exists” and T =def T NϕG
is defined. Let λ = o(Ñ )1935

where Ñ is the largest ϕG-whole initial segment of N . Let y, z ∈ RN and1936

b ∈ N ∩P(< o(N )) and suppose N � b = ιb′%0(z, b′). Let1937

~P = ~PN ̂ (EN , PN ),
1938

b∗ = (λ+ b) ∪ (o(N ) + c),
1939

P = ({T } × b∗) ∩ S ~Pk (N ),

and R be the L-structure1940

R = (S ~Pk (N ), ~P ,AN ; ∅, P, cpN ,ΨN ).

Then R � Φ(x) iff N � Φk,c(x, z).1941

For k ≥ k0 and c ∈ 2<ω let T ′k,c be the theory given by modifying the1942

theory T of 5.1 by replacing formulas (4) and (9) respectively with (4’) and1943

(9’) below, and adding (10’):1944

(4′) Φk,c(ẋ2, ẋ0) & Ψ0(ẋ0) & ¬ψ0(ẋ0)

(9′) ċp is an hpm over the transitive set coded by Φẋ0
d

(10′) Υ̇ = ∅ & V is ω-sound & V = HullVk0
(R)

In round n of Gk
x, player I first plays in, x2n, ηn where in ∈ {0, 1}, x2n ∈ R,1945

ηn < o(M0); player II plays then x2n+1 ∈ R. Define T ∗(u), etc, as before.1946

Let s < ω be such that for any transitive structure N , o(S(N )) = o(N ) + s.1947

The payoff for player I is given by modifying that of 5.1 as follows. Drop1948

conditions (f) and (g), replace condition (a) with1949

(a’) T ∗(p) is a consistent extension of T ′k,c, where c = b1 ∩ s · k,1950
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modify conditions (b), (e) by replacing “a0”, “rΣ1” and “M|η0” respectively1951

with “z0”, “rΣk0+5” and “M0”, and retain the remaining conditions unmod-1952

ified.1953

We say that a partial play u of Gk
x is (k, x)-honest iff M o (β0, k) �1954

Φ(x) and if n > 0 then the modifications of properties (i)–(iii) of (β, x)-1955

honesty of 5.1 hold, given by replacing “a0”, “M|η”, “M|η0”, “Υ” and “rΣ1”1956

respectively with “z0”, “M0”, “M0”, “∅” and “rΣk0+5”. Let Qk
l (x, u) iff u is1957

a (k, x)-honest position of length l.1958

Claim 5.10. Qk
l ∈M and the map (k, l) 7→ Qk

l is ΣM1 (z0).1959

Proof. As before, using that b1 is ΣM1 ({β0}) to compute c = b1 ∩ s · k.1960

Claim 5.11. Akl = Qk
l .1961

Proof. Qk
l ⊆ Akl as before. For the converse, let N and π : N 99K M0 be1962

produced as before. We get N =M0 because N is sound, ρNω = ω and N �1963

Ψ(z0)&¬ψ(z0), andN is sufficiently iterable above ΘN asN = HullNk0
(R) and1964

if N is relevant then π induces a near k0-embedding HN → HM0 . Therefore1965

b0 is the unique b′ ∈ N such that N � %0(b′, z0). Since N � Φk,c(x, z0) where1966

c = b1 ∩ k · s, it follows that M o (β0, k) � Φ(x).1967

This completes the proof.1968

5.2 Σ1 gaps1969

Definition 5.12. Let 4−R abbreviate 4rΣ1(L−,R). Let M be an hpm with1970

HCM ∈M|1. Let α ≤ β ≤ l(M). The interval [α, β] is a Σ1 gap of M iff:1971

– M|α 4−R M|β,1972

– ∀α′ ∈ [1, α), M|α′ 64−R M|α, and ∀β′ ∈ (β, l(M)], M|β 64−R M|β′,1973

– if β = l(M) then M′ =def J hpm(M) is an hpm (i.e. M is ω-sound1974

and < ω-condensing), HCM
′
= HCM and M 64−R M′. a1975

Definition 5.13. Let 0 < n < ω. LetM be an hpm with HCM ∈M|1 and1976

b ∈ C0(M). The rΣn type realized by b over M is1977

rΣMn,b =def {ϕ(v) ∈ L+ | ϕ is either rΣn or rΠn and C0(M) � ϕ(b)}.
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Let [α, β] be a Σ1 gap ofM. The gap is admissible iffM|α is admissible.1978

The gap is strong iff it is admissible and letting n < ω be least such that1979

ρM|βn = ω, every rΣn type realized over M|β is realized over M|γ for some1980

γ < β. The gap is weak iff it is admissible but not strong. a1981

There are no new scales inside the Σ1 gaps in which we are interested.1982

The proof of the following theorems are routine generalizations of the corre-1983

sponding proofs in [16].1984

Theorem 5.14 (Kechris-Solovay). Let M be a Θ-g-organized Ω-pm satis-1985

fying AD. Assume DCRM and that M is countably (0, ω1 + 1)-iterable. Let1986

[α, β] be a Σ1 gap of M. Then:1987

1. There is a Π
M|α
1 subset of RM × RM not uniformized in M|β.1988

2. Let α ≤ γ < β and 1 ≤ n < ω, and either let Γ = rΠM|γn or suppose1989

(α, 1) <lex (γ, n) and let Γ = rΣM|γn . Then M �“Γ does not have the1990

scale property”.1991

A relation witnesing 5.14(1) is (RM)2\CM|α where CM|α(x, y) iff x, y ∈1992

RM and there is γ < α such that y is definable overM|γ from parameters in1993

Ord ∪ {x}. The same relation witnesses that there is no new scale definable1994

over the end of a strong gap:1995

Theorem 5.15 (Martin). Let M, [α, β] be as in 5.14. Suppose that β <1996

l(M) and [α, β] is a strong gap of M. Then:1997

1. There is a Π
M|α
1 subset of RM × RM not uniformized in M|β + 1.1998

2. Let n < ω, and either let Γ = rΠM|βn or suppose (α, 1) <lex (β, n) and1999

let Γ = rΣM|βn . Then M �“Γ does not have the scale property”.2000

Remark 5.16. The only case remaining in the analysis of scales in Lp
GΩ(R,Υ),2001

where Υ is self-scaled, is at the end of a weak gap. For let M be a Θ-g-2002

organized Ω-pm and let [α, β] be a gap ofM. Suppose [α, β] is inadmissible.2003

Then α = β and M|α �“Θ does not exist”. Note then M �“rΣ
M|α
1 has2004

the scale property”, by 5.1 and 5.9.49 Combined with the argument in [16],2005

49 It is important here that our structure is Θ-g-organized, as opposed to g-organized,
since g-organized structures can satisfy “Θ does not exist”, be of limit length, and be
P -active. We do not see how to generalize the proof of 5.9 to deal with this case.
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this ensures that J (M|α) �“Every set of reals has a scale”, assuming that2006

RJ (M|α) = RM and J (M|α) � AD. The ends of strong gaps have just been2007

dealt with, so we are left with weak gaps. We deal with weak gaps in three2008

cases, as described in the introduction.2009

5.3 Scales at the end of a weak gap from strong deter-2010

minacy2011

The first scale construction for weak gaps proceeds from a strong determinacy2012

assumption. It is most useful for weak gaps [α, β] of Lp
GΩ(R,Υ) where2013

Ω�HC /∈ Lp
GΩ(R,Υ)|α.2014

Theorem 5.17. Let R be a Θ-g-organized Ω-pm satisfying AD. Assume2015

DCRM and that R is countably GΩ-(0, ω1 + 1)-iterable. Let [α, β] be a weak2016

gap of R with β < l(R). Let n + 1 < ω be least such that ρ
R|β
n+1 = ω. Then2017

R � “rΣ
R|β
n+1 has the scale property”.2018

Proof Sketch. The proof is almost that of [18, Theorem 4.16], so we only2019

sketch it. However, our approach is a little different from that used in [18].50
2020

For simplicity, we assume that ΥR = ∅ and n = 0 and β is a limit ordinal.2021

(If ΥR 6= ∅ make changes as in the proof of 5.1.) Let M = R|β.2022

Let p = pM1 and let w1 ∈ RM be such that w1 ≥T a0 and the solidity2023

witness(es) W for p is in HullM1 (p, w1) and Σ =def rΣM1,(p,w1) is a non-reflecting2024

type. LetMo
γ denoteMo(γ, 0).51. We now define a sequence 〈βi, Yi, ψi, ξi〉i<ω2025

by recursion on i, as follows:2026

β0 = least γ > µM such that max(p) < o(Mo
γ),

Yi = Hull
Mo

βi
ω (RM ∪ {p}),

ψi = least ψ ∈ Σ such that Mo
βi
� ¬ψ((p, w1)),

and then if M is either E-passive or E-active type 3, let ξi = 0 and2027

βi+1 = least γ such that Mo
γ � ψi((p, w1)),

50This is because the authors do not see, in the proof of [18, Claim 4.18], and in the
notation of that proof, why N =M, because it is not clear that N is sound. Our approach
gets around this problem, and also simplifies the proof, because it eliminates the need for
the “bounding integers” mk and nk played by player I in the game Gix of [18].

51In [18], this is denoted M||γ.
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and otherwise (M is E-active type 1 or 2), let52
2028

ξi = sup(Yi ∩ ((µM)+)M),

βi+1 = least γ such that Mo
γ � ψi((p, w1)) and

EM ∩Mo
γ measures all sets in M|ξi.

Claim 5.18.
⋃
i<ω Yi = C0(M). In particular, l(C0(M)) = limi<ω βi.2029

Proof. Let N be the transitive collapse of
⋃
i<ω Yi and let π : N → ⋃

i<ω Yi be2030

the uncollapse map. Let βω = supi<ω βi. Note thatMo
βω
� Σ and H ⊆ rg(π)2031

where H = HullM1 ({p, w1}), βi ∈ H, π is Σ1-elementary on π−1“H, and2032

the latter is ∈-cofinal in N .53 In particular, π is a weak 0-embedding. So2033

essentially by 3.50, N is a Θ-g-organized Ω-pm, and clearly HCN = HCM.2034

Let π(p∗) = p. It is easy to see that N = HullN1 (RN ∪{p∗}). But π−1(W )2035

is a generalized solidity witness for p∗.54 So N is (1, p∗)-solid. Therefore N2036

is 1-sound and pN1 = p∗. Since trees on N can be lifted to trees onM via π,2037

N is countably GΩ-(0, ω1 + 1)–iterable. Since N is also minimal realizing Σ,2038

therefore N =M.2039

The fact that π = id now follows as usual, using the fact that p∗ = p.2040

Using notation mostly as in the proof of [18, Theorem 4.16], we define2041

the game Gk
x mostly as there, with some modifications. Player I describes his2042

model using the language L∗ = L+∪{ẋi, β̇i,Ṁi}i<ω∪{Ġ, ṗ, Ẇ}; the symbols2043

in L∗\L+ are constants. Let B0 be defined from L∗ as in [18].55 Let S0 be2044

the set of sentences ϕ ∈ B0 such that i ∈ {1, 2} whenever ẋi appears in ϕ,2045

and (C0(M), I) � ϕ where I is the assignment2046

(ẋ1, ẋ2, Ġ, ṗ, Ẇ ,
¨
β̇i,Ṁi

∂
i<ω

)I = (w1, w2, p, p,W,
¨
βi,Mo

βi

∂
i<ω

).

A run of Gk
x has the form

I T0, s0, η0 T1, s1, η1 · · ·
II s1 s3 · · ·

52Recall that E is the M-amenable predicate coding the active extender of M.
53So ThM1 ({β0, β1, . . .}) is recorded in Σ; it would not have made any difference to add

the parameter βi to Yi+1.
54This only uses the Σ0-elementarity of π. Actually W ∈ H, so π is even Σ1-elementary

on π−1(W ). But we would in general need Σ2-elementarity to infer already that π−1(W )
is the standard solidity witness for p∗.

55That is, in the manner that B0 is defined from the L of [18]. The symbols L and L∗
have had their roles interchanged from [18].
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where Ti, si are as in [18] and ηi ∈ o(M) . The winning conditions for2047

player I are the winning conditions (1)–(6)56 of [18] verbatim (other than a2048

small notational difference), and (k, x)-honesty is as in [18] except that we2049

drop condition (iv) from there. Define Akl (strategic) and Qk
l (honest) in the2050

obvious manner (the analogue of Akl was denoted P k
l in [18]).2051

Claim 5.19. Akl = Qk
l .2052

Proof Sketch. Consider the proof that every strategic position is honest. We2053

use notation mostly as in the proof of [18, Claim 4.19], with a couple of2054

changes. Let N be the reduct of A to an L+-structure. Let Ni be (the2055

L+-structure) ṀA
i . Because A � S0, Ni = N oβ∗i and N is the “union” of the2056

Ni. Let p∗ = ṗA = G∗. As in the proof of [18, Claim 4.19] we get that N is a2057

countably GΩ-(0, ω1 + 1)-iterable Θ-g-organized Ω-pm which is minimal for2058

realizing Σ. Clearly ΥN = ∅ = ΥM. Also, N is sound with ρN1 = RN and2059

pN1 = p∗. For let H = HullN1 (RN ∪ p∗). Then because A � S0, we have:2060

– Ni ∈ H for each i (it follows that H = bNc),2061

– W ∗ is a generalized solidity witness for p∗ (so N =M and p∗ = p),2062

– W ∗ = W , β∗i = βi and Ni =Mo
βi

for all i.2063

Claim 5.20. Qk
l ∈M for all k, l, and the map (k, l) 7→ Qk

l is rΣM1 (p, w1, w2).2064

Proof sketch. The proof is the same as that of [18, Claim 4.20] (except that2065

condition (iv) of [18] is not involved, so the use of the Coding Lemma regard-2066

ing this condition is avoided). In the computation of the definability of (v)2067

we still use the Coding Lemma; it is here that we use our assumption that2068

J1(M) � AD (beyond that M � AD).2069

The remaining details are as in [18].2070

5.4 Scales at the end of a weak gap from optimal de-2071

terminacy2072

As described in [19], typically in the core model induction, one does not have2073

the stronger determinacy hypothesis at the stage required to apply 5.17. So2074

56We have no need for the integer moves mk, nor any version of condition (8) used in
[18].
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we need generalizations of [18, Theorem 4.17] and [19, Theorem 0.1], which2075

are the second and third cases of our scale constructions for weak gaps,2076

respectively.2077

Definition 5.21. LetM be a Θ-g-organized Ω-pm. We sayM is subtle iff2078

M �“Θ exists” and either M is P -active or there is an M-total E ∈ EM+ .2079

We say M is self-analysed iff for every subtle N E M there is P E M2080

such that N / P and P is admissible. We say M is self-coded iff for every2081

subtle N EM there is P /M such that N E P and ρPω = ω. a2082

Note that if M �“Θ does not exist” or M has no active segment above2083

ΘM then M is self-coded.2084

Theorem 5.22. Let M be a Θ-g-organized Ω-pm satisfying AD. Assume2085

DCRM and that every proper segment of M is countably GΩ-(ω, ω1 + 1)-2086

iterable. Suppose that M ends a weak gap of M, and M is either self-2087

analysed or self-coded. Let n < ω be least such that ρMn+1 = ω. Then2088

M �“rΣMn+1 has the scale property”.2089

Proof Sketch. The proof is similar to that of 5.17, but we use the fact thatM2090

is either self-analysed or self-coded to reduce the reliance on determinacy.57
2091

Suppose first that M is passive. We assume for simplicity that ΥM = ∅,2092

l(M) is a limit and n = 0. We define most things, including Yk and Bk,2093

as in the proof of 5.17. Fix x ∈ R and i < ω; we want to define the game2094

Gi
x. Let m : B0 × B0 → ω and n : B0 → ω be recursive and injective with2095

disjoint ranges, and such that for all ϕ, ψ ∈ B0, ϕ, ψ have support m(ϕ, ψ)2096

and ϕ has support n(ϕ) and if ϕ 6= ψ then m(ϕ, ϕ) < m(ϕ, ψ). A run of Gi
x2097

consists of the same types of objects as in the proof of 5.17, except that we2098

also require that ηk ∈ Yk. The rules of Gi
x are (1)–(5) as stated in [18], along2099

with rule (6) below, which requires player I to play a wellfounded model,2100

and rule (7) below, which requires player I to build, for each subtle initial2101

segment P of his model, a partial embedding P → R for some R E M,2102

which is elementary on ordinal parameters (but these embeddings need not2103

agree with one another):2104

(6) if ϕ, ψ ∈ B0 each have one free variable and2105

“ιvϕ(v) ∈ Ord & ιvψ(v) ∈ Ord” ∈ T ∗,
57Of course determinacy is still required in the, supressed, norm propagation part of the

argument.
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then “ιvϕ(v) ≤ ιvψ(v)”∈ T ∗ iff ηn(ϕ) ≤ ηn(ψ),2106

(7) if ψ, σ0, . . . , σj−1 ∈ B0 each have one free variable and k < ω and2107

“ιvψ(v) < l(Ṁk) & Ṁk|(ιvψ(v)) is subtle” ∈ T ∗

and for all i < j,2108

“ιvσi(v) ∈ o(Ṁk|(ιvψ(v)))” ∈ T ∗

then ηm(ψ,ψ) < l(Mk) and for any L-formula θ(v0, . . . , vj−1, u),2109

“Ṁk|(ιvψ(v)) � θ(ιvσ0(v), . . . , ιvσj−1(v), ẋ1)” ∈ T ∗

if and only if2110

M|ηm(ψ,ψ) � θ(ηm(ψ,σ0), . . . , ηm(ψ,σj−1), w1).

We omit most of the remaining details, including the precise formula-2111

tion of x-honesty (of a position in Gi
x). The analysis of commitments made2112

pertaining to rule (6) are dealt with as in [16]. Consider rule (7). If M is2113

self-analysed then the analogue of condition (v) of x-honest from [18] can2114

be computed in some admissible proper segment of M (without the Cod-2115

ing Lemma). Suppose M is self-coded but not self-analysed. Then there is2116

R /M such that ρRω = ω and every subtle initial segment ofM is a segment2117

of R. One can therefore use the Coding Lemma as in the proof of Claim 5.22118

to compute the analogue of condition (v) overR. In rule (7) we have required2119

elementarity with respect to w1 (and ordinals) just to ensure elementarity2120

with respect to a0 (and ordinals).2121

This completes a sketch of the proof in the passive case. Now suppose2122

that M is active. The scale construction in this case combines elements2123

of 5.9 and 5.17, and we just outline what is new. Since M is not subtle,2124

M �“Θ does not exist” andM is P -active, so becauseM is Θ-g-organized,2125

l(M) = β0 + 1 for some β0 > 0, and M|β0 �“Θ exists” and ρM|β0
ω = ω.2126

Therefore n = 0. Let T = T M. Assume ΥM = ∅, and also that lh(T M) > ω;2127

the case that lh(T ) = ω is simpler, partly because then T is linear, as M2128

is Θ-g-organized. Let M0 = M|β0. Note that M0, β0 ∈ HullM1 (∅). Let2129

k0 ∈ [1, ω) be such that M0 = HullM0
k0

(R). Let λM0 be the limit ordinal2130

such that lh(T M) = λM0 + ω. Let bM0 = bM ∩ λM0 . Let p, w1,Σ be as usual,2131
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except with the added requirement that bM0 ∈ HullM0
k0

({w1}). In Gi
x, player2132

I is required to build a Θ-g-spm N with w1 ∈ RN and with p∗ ∈ N such2133

that rΣN1,(p∗,w1) = Σ and N o (β∗0 , i) � Φ(x), where l(N ) = β∗0 + 1, and letting2134

N0 = N|β∗0 , is also required to build a partial embedding π : N0 99K M0,2135

with domain o(N0) ∪ {w1}, such that π is Σk0+5-elementary on its domain.2136

We leave to the reader the precise formulation of Gi
x, and of honesty.2137

Because player I is only required to embed N0 99K M0, and ρM0
k0

=2138

ω, the Coding Lemma argument shows that honesty is sufficiently simply2139

computable. The fact that “strategic (for player I) implies honest” is as2140

follows. Let N and π : N0 99KM0 be produced by a generic run against a2141

winning strategy for player I, as usual. Then N =M. For we have N0 /M2142

as usual. Since rΣN1,(p∗,w1) = Σ, it therefore suffices to see that bN = ΛM(T N ).2143

We claim that π induces a hull embedding (T N ̂ bN ) → (T M ̂ bM),2144

which suffices. For clearly π induces a hull embedding T N → T M. Let2145

λN0 , b
N
0 be defined over N , analogously to λM0 , bM0 over M. Let %0 be an2146

rΣk0 formula such that bM0 = (ιb%0(b, w1))M. Since rΣN1,(p∗,w1) = Σ, then2147

bN0 = (ιb%0(b, w1))N . But let cM = bM ∩ [λM0 , lh(T M)) and cN likewise for2148

N . Then cM = cN because of how they are determined by Σ. The claim2149

easily follows.2150

We now proceed to the generalization of [19, Theorem 0.1], the final2151

scale construction of the paper. While it uses only the weaker determinacy2152

assumption, it requires a mouse capturing hypothesis, as in [19].2153

Definition 5.23. Suppose V is an hpm and HC exists. Let Γ be a pointclass2154

of the form rΣ
V |α
1 ∩P(R) for some α < l(V ). In this setting, for x ∈ R, we2155

write CΓ(x) for the set of all y ∈ R such that for some ordinal γ < ω1, y (as2156

a subset of ω) is ∆Γ({γ, x}). Let x ∈ HC be such that x is transitive and2157

f : ω
onto→ x. Then cf ∈ R denotes the code for (x,∈) determined by f . And2158

CΓ(x) denotes the set of all y ∈ P(x) such that for all f : ω
onto→ x we have2159

f−1(y) ∈ CΓ(cf ). a2160

Lemma 5.24. Let P be a Θ-g-organized Ω-pm satisfying AD. Let Q / P be2161

such that Q is passive and admissible. Work in P. Let Γ be the pointclass2162

rΣQ1 ∩P(R). Let x ∈ HC with x transitive and infinite. Then for all y ∈ HC,2163

the following are equivalent:2164

(1 ) y ∈ CΓ(x),2165
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(2 ) there is R / Q such that y is definable over R from parameters in2166

Ord ∪ x ∪ {x},2167

(3 ) for comeager many bijections f : ω → x, f−1(y) ∈ CΓ(cf ).2168

Proof. The proof is mostly like that of [1, Theorem 3.4(?)]; we just mention2169

a couple of points. For x ∈ R, the equivalence of (1) and (2) follows because2170

Q � AD + KP. Now consider the proof that (3) implies (2). If P satisfies2171

(3), then we may take the witnessing comeager set C to be a countable2172

intersection of dense sets, and then C ∈ Q. So by KP there is R/Q such that2173

for every f ∈ C, f−1(y) is definable over R from parameters in Ord ∪ {cf}.2174

As in [1], there is then some α < ωP1 and n < ω and injection σ : n→ x such2175

that for comeager many bijections f : ω → x extending σ, f−1(y) is the αth
2176

real which is definable over R from parameters in Ord∪ {cf}, in the natural2177

ordering. Letting δ = l(R), this defines y over Q|(δ + 2) from parameters in2178

{δ, x} ∪ rg(σ).2179

Definition 5.25. Let P ,Q,Γ, x be as in 5.24. Suppose that M ∈ J (x̂)2180

and Ω∗ ∈ Q where Ω∗ = Ω�HCP . Work in P . Then LpΓ,gΩ∗(x) denotes2181

(Lp
gΩ∗(x))Q.58 Similarly for LpΓ,gΩ∗

+ (x). We say that super-small Γ-gΩ∗-2182

mouse capturing holds on a cone iff there is z ∈ R such that for all2183

transitive x ∈ HC, if M, z ∈ J (x̂) then LpΓ,gΩ∗(x) is super-small and2184

CΓ(x) = LpΓ,gΩ∗(x) ∩P(x). a

Theorem 5.26. Let M be a fully sound, Θ-g-organized Ω-pm satisfying2185

AD. Suppose [α0, l(M)] is a weak gap of M and that M is countably gΩ-2186

(n, ω1 + 1)-iterable where n < ω is least such that ρMn+1 = ω. Assume DCRM2187

and RJ (M) = RM and J (M) � DCR.59 Suppose that Ω∗ ∈ M|α0 where2188

Ω∗ = Ω�HCM. In M, let Γ be the pointclass rΣ
M|α0

1 ∩ P(R), and assume2189

that super-small Γ-gΩ∗-mouse capturing holds on a cone. Then M �“rΣMn+12190

has the scale property”.2191

58SoQ �“N is gΩ∗-(ω, ω1+1)-iterable” for allN /LpΓ,gΩ∗(x). Note here thatQ �“P(ω1)
exists” because Q � AD.

59J (M) provides a universe in which we can execute certain arguments in the proof of
[19, Theorem 0.1] without introducing new reals. The authors believe that [19, Theorem
0.1] should also have adopted a hypothesis along these lines. Indeed, its proof seems to
proceed under the implicit assumption that RM = RV .

76



Proof. We follow the proof of [19], making some modifications. By DCRM2192

we may assume that M is countable. By 5.22 we may assume that M �“Θ2193

exists” and there is some ξ+1 ∈ (ΘM, l(M)) such thatM|ξ � ZF. Therefore2194

P(R) ∩M ∈M|ξ and M|ξ � ZF + AD. We work mostly inside J (M), and2195

so we write R = RM, HC = HCM, etc. We have Ω∗ ∈ M|α0. Let z0 ∈ R be2196

in the mouse capturing cone, with z0 ≥T (a0, t) where t codes ThM
1 relative to2197

a0, and such that {Ω∗} is rΣ
M|α0

1 (z0). For this proof, except where context2198

dictates otherwise, premouse abbreviates g-organized Ω∗-pm over (N , x)2199

for some x ≥T z0 and transitive structure N with M ∈ J (N , x); likewise all2200

related terminology (such as iteration tree, iterability, Lp, etc).2201

Because [α0, l(M)] is a Σ1 gap of M, for (N , x) as above we have (with2202

terminology as just described above)2203

LpΓ(N , x) = Lp(N , x)M|α0 = Lp(N , x)M.

Likewise for LpΓ
+(N , x).2204

Remark 5.27. Let N be a g-whole premouse and N /Q E LpΓ
+(N ) with Q2205

projecting toN . ThenQ translates to someQ′/LpΓ(N ), where o(Q′) = o(Q)2206

and Q′ projects to ω, as follows. There is a slight wrinkle in the translation,2207

because we must have ΨQ
′
= ∅ as ΨLpΓ(N ) = ∅, whereas possibly ΣN 6= ∅. We2208

have bQ′c = bQc and cbQ
′

= N̂ . There is α > 0 such that l(N ) + α ≤ l(Q)2209

and for β > α, Q|(l(N ) + β) and Q′|β have the same active predicates, and2210

for β ∈ [1, α], R =def Q|(l(N ) + β) and R′ =def Q′|β are both E-passive,2211

and if R is P -active then T R is linear, and if R′ is P -active then T R′ is2212

linear. These are linear iterations at the least measurable of M. Because2213

the iterations are linear, the corresponding predicates are trivial, so we can2214

trivially translate between them.60 It can be that Q = LpΓ
+(N ), but in2215

this case Q is not sound, whereas Q′ is sound (recall cbQ
′

= N̂ ), whereas2216

cbQ = cbN ).2217

60R and R′ can have different predicates, because the definition of spm requires that a
particular tree can only have a cofinal branch added at at most one segment of the spm.
We must have ΣQ

′|1 = ∅ by definition, but possibly ΣN 6= ∅, in which case there can be
conflict between R,R′ over which tree should have a branch added. But it is easy to see
that if Q is large enough then Q has a g-closed segment R such that R′ is also g-closed,
and beyond which no disagreements arise. (If N0 is the least ZF level of Q such that
N /N0, and if T is non-linear and via ΣN , then T is not making N0 generically generic,
as its linear initial segment is too short. So R,R′ never disagree over non-linear trees.)
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Definition 5.28. Let 1 ≤ k ≤ ω. A countable premouse N over A is2218

k-suitable iff there is a strictly increasing sequence 〈δi〉i<k such that2219

(a) For all δ ∈ (rank(A), o(N )), we have N �“δ is Woodin” if and only if2220

δ = δi for some i < k.2221

(b) If k = ω then o(N ) = supi<ω δi, and if k < ω then o(N ) = supi<ω(δ+i
k−1)N .2222

(c) If N|η is a strong cutpoint of N then N|(η+)N = LpΓ
+(N|η).2223

(d) Let ξ ∈ (rank(A), o(N )) be such that N �“ξ is not Woodin”. Then2224

CΓ(N|ξ) �“ξ is not Woodin”.2225

We write δNi = δi and δN−1 = 0. a2226

Let N be k-suitable over A and let ξ ∈ (rank(A), o(N )) be a limit ordinal2227

such that N �“ξ isn’t Woodin”. Let Q /N be the Q-structure for ξ. Let α2228

be such that ξ = o(N|α). Suppose that N|α / Q. Then α = ξ and N|ξ is2229

g-closed. In particular, N|ξ is g-whole, so LpΓ
+(N|ξ) translates to an initial2230

segment of LpΓ(N|ξ). Assume that N is reasonably iterable. If ξ is a strong2231

cutpoint of Q, our mouse capturing hypothesis combined with (d) therefore2232

gives that Q / LpΓ
+(N|ξ). Moreover, note that if ξ is a cardinal of N then2233

N|ξ is a strong cutpoint of Q, since N has only finitely many Woodins. On2234

the other hand, if ξ is not a (strong) cutpoint of Q, then one can show that2235

Q /∈ LpΓ
+(N|ξ), but Q is coded over LpΓ

+(N|ξ) (here LpΓ
+(N|ξ) translates to2236

a proper segment of LpΓ(N|ξ)).61
2237

Definition 5.29 (Γ-guided). Let P be k-suitable and T ∈ HC be a normal2238

iteration tree on P . We say T is Q-guided iff for each limit λ < lh(T ),2239

Q = Q(T �λ, [0, λ]T ) exists and Φ(T �λ) ̂ (Q, δ(T )) is (ω, ω1 + 1)-iterable.2240

61Suppose ξ is not a cutpoint of Q. Then by definition Q 6 LpΓ
+(N|ξ). Let E ∈ EQ+

be least overlapping ξ and κ = crit(E). Since κ is a limit of Woodins in Q, κ is not a
cardinal of N . Let P /N be least such that Q E P and ρPω ≤ κ, and let n < ω be such
that ρPn+1 ≤ κ < ρPn . We claim that LpΓ

+(N|ξ) = U where U = Ultn(P, E) (and note that
U �“ξ is Woodin”, but Q is computable from U , as Q E P and P = Cn+1(U)). For ξ is
a strong cutpoint of U , and U is ξ-sound but not fully sound. So it suffices to see that
there is an above-κ, (n, ω1)-iteration strategy for P inM|α0. Let R/N be least such that
Q E R and ρRω < κ (so P E R). Note that κ is a limit of strong cutpoints of R and of
Woodins of R. Let γ ∈ (ρRω , κ) be a strong cutpoint of R, and let η be the least Woodin
of R above γ. Then η is a strong cutpoint of R. Since CΓ(N|η) �“η is not Woodin”, and
by our mouse capturing hypothesis, therefore R / LpΓ

+(N|η). In particular, there is an
above-η iteration strategy for R in M|α0, which yields the desired strategy.
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We say that T is Γ-guided iff it is Q-guided, as witnessed by iteration2241

strategies in M|α0. a2242

Remark 5.30. Let P be k-suitable. For a normal tree T on P of limit length2243

there is at most one T -cofinal branch b such that T ̂ b is Q-guided. (Let2244

b0, b1 be distinct such branches; we can successfully compare the phalanxes2245

Φ(T ̂ b0) and Φ(T ̂ b1). Standard fine structure and the fact that P has2246

at most ω-many Woodins then leads to contradiction.) Therefore if T ̂ b is2247

normal, via an (ω, ω1 + 1)-iteration strategy for P , is based on [δPi−1, δ
P
i ) and2248

Q(T , b) exists, then T ̂ b is Q-guided.2249

Definition 5.31. Let N be a g-whole premouse. We write QΓ
t (N ) for the2250

unique Q E LpΓ
+(N ) such that Q is a Q-structure for N , if such exists.62

2251

Let k ≤ ω, P be k-suitable and T a normal, limit length, Γ-guided tree2252

on P . We say that T is short iff QΓ
t (M(T )) exists; otherwise that T is2253

maximal. a2254

Definition 5.32. Let P be k-suitable. Let T be an iteration tree on P . We2255

say that T is suitability strict iff for every α < lh(T ):2256

(1) If [0, α]T does not drop then MT
α is k-suitable.2257

(2) If [0, α]T drops and there are trees U ,V such that T �α + 1 = U ̂ V ,2258

where U has last model R, bU does not drop, and there is i ∈ [0, k) such2259

that V is based on [δRi−1, (δ
+ω
i )R), then no QEMT

α is (i+ 1)-suitable.2260

Let Σ be a (partial) iteration strategy for P . We say that Σ is suitability2261

strict iff every tree T via Σ is suitability strict. a2262

Definition 5.33. Let P be k-suitable. We say that P is short tree iterable2263

iff for every normal Γ-guided tree T on P , we have:2264

(1) T is suitability strict.2265

(2) If T has limit length and is short then there is b such that T ̂ b is a2266

Γ-guided tree.2267

(3) If T has successor length then every one-step putative normal extension2268

of T is an iteration tree.2269

62The “t” is for tame. While Q might not be tame, o(N ) is a strong cutpoint of Q.
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Let P be short tree iterable. The short tree strategy Ψsh
P for P is the2270

partial iteration strategy Ψ for P , such that Ψ(T ) = b iff T is normal and2271

short and T ̂ b is Γ-guided. (By 5.30 this specifies Ψsh
P uniquely.) a2272

Lemma 5.34. Let N be k-suitable.2273

(1 ) The function N 7→ Ψsh
N , where N is short-tree iterable, is in M; in2274

fact, Ψsh
N is Γ({N , z0})-definable, uniformly in N .63

2275

(2 ) Suppose there is a suitability strict normal (ω, ω1 + 1)-strategy Σ for2276

N . Then N is short tree iterable and Ψsh
N ⊆ Σ. Moreover, for any T2277

via Σ, T is via Ψsh
N iff for every limit λ < lh(T ), Q(T , b) exists where2278

b = [0, λ)T .2279

Proof. Part (1) follows from the admissibility of M|α0.2280

Consider (2). Let T on N be normal, of limit length, via both Σ and2281

Ψsh
N . Let b = Σ(T ). It suffices to show that (a) if Q(T , b) exists then T is2282

short, and (b) if T is short then b = Ψsh
N (T ). (Note that if Q(T , b) does not2283

exist then MT
b is k-suitable so T is maximal.)2284

Consider (a); suppose Q = Q(T , b) exists. If b does not drop then MT
b is2285

suitable and δ 6= δi(M
T
b ) for any i < k. So CΓ(M(T )) �“δ is not Woodin”,2286

so our mouse capturing hypothesis implies that T is short. So suppose that2287

b drops. We can’t have CΓ(M(T )) ⊆ Q, by suitability strictness. If δ is2288

a cutpoint of Q (and so a strong cutpoint) we can then compare Q with2289

LpΓ
+(M(T )); since the comparison is above δ, we get that Q E LpΓ

+(M(T )),2290

so T is short. So suppose δ is not a cutpoint of Q. Let E ∈ E+(Q) be least2291

such that κ = crit(E) < δ and let T ′ be the normal tree given by T ̂ 〈b, E〉.2292

Then MT ′
∞ �“κ is a limit of Woodins”, so bT

′
drops and CΓ(M(T )) 6⊆ MT ′

∞2293

(by suitability strictness). Also MT ′
∞ �“δ is Woodin” and δ is a cutpoint of2294

MT ′
∞ . So MT ′

∞ = QΓ
t (M(T )) exists, so T is short.2295

Consider (b). Since T is short, Q = Q(T , b) exists. We claim that T ̂ b2296

is Γ-guided, which suffices. For it’s easy to reduce to the case that δ is not2297

a cutpoint of Q. Let T ′ be as above, let λ = lh(T ) and α = predT
′
(λ + 1).2298

Let M∗T ′
λ+1 = MT

α |γ. Then MT
α |γ �“κ is a limit of cutpoints”. It follows that2299

T �[α, lh(T )) can be considered an above-κ, normal tree on MT
α |γ, and the2300

iterability of the phalanx Φ(T ) ̂ (Q, δ) reduces to the above-κ iterability2301

of MT
α |γ, which reduces to the above-δ iterability of MT ′

∞ (because of the2302

existence of iT
′

α,λ+1). But MT ′
∞ E LpΓ

+(M(T )), so we are done.2303

63But it seems that we might have Ψsh
N /∈M|α0.
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Definition 5.35. Let A ∈ P(R)∩M. We define the phrase T respects A as2304

in [19], except that we also require that T be suitability strict (and making2305

any obvious adaptations to our setting). We define N is normally A-2306

iterable as in [19], except that we also require that N be short tree iterable.2307

Using these definitions, we then define (almost, locally) A-iterable as in2308

[19]. a2309

Lemma 5.36. The analogue of [19, Lemma 1.9.1] holds.2310

Proof. This is mostly an immediate generalization. The proof in [19] can be2311

run inside J (M) (in fact, insideM, sinceM � DCR). Use suitability strict-2312

ness to see that, for example, in the comparison of R|0 with N|0 (notation2313

as in [19]), no tree drops on its main branch.2314

Remark 5.37. We make a further observation on the comparison above. Let2315

(T ,U) be the Γ-guided portion of the comparison of, for example, (R|0,N|0).2316

Let λ < lh(T ,U) be a limit; suppose T �λ is cofinally non-padded. So Q =2317

Q(T �λ, [0, λ]T ) exists. Then in fact, δ(T �λ) is a strong cutpoint of Q. For2318

otherwise, by the proof of 5.34, [0, λ]T drops in a manner which cannot be2319

undone; i.e., for all α ≥ λ, [0, α]T drops, a contradiction. Similar remarks2320

pertain to genericity iterations on k-suitable models.2321

Lemma 5.38. Let A ∈ M ∩ P(R). Then for a cone of s ∈ R there is an2322

ω-suitable, A-iterable premouse over (M, s).2323

Proof. The following account is based on the sketch given in [19, 1.12.1].64
2324

We give full detail here, since the proof is rather involved and the possibility2325

of non-tame mice was not covered explicitly in [19], and moreover, comparing2326

our proof with the remarks in [19, Footnote 12], we will not manage to es-2327

tablish the full Dodd-Jensen property for the iteration strategy we construct,2328

but we will verify a version of said property which suffices for our purposes.2329

64We are using g-organized mice as our mice over reals. The authors believe that, had
we used a hierarchy Z of mice over reals more closely related to Θ-g-organized mice, then
the proof in [2, §7(?)] could be adapted to work in the present context. (One needs to
define Z such that Θ-g-organized mice can be realized as derived models of Z-mice, in a
reasonably level-by-level manner.) Such a proof would have the advantage of providing
some extra information. However, one would need to define and use the relevant Prikry
forcing, so it seems to be more work overall, and our approach also has the advantage that
it is less dependent on the precise hierarchy of mice over reals that is used. One might
alternatively start out like [2, §7(?)], but instead of using Prikry forcing, finish more like
in our present proof.
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Say that a set of reals constituting a counterexample to the theorem is2330

Γ-bad. Suppose there is a Γ-bad set. For other pointclasses Γ̄ we define2331

Γ̄-bad analogously.2332

Let ζ0 < α0 and ψΩ ∈ Σ1(L−) be such that Ω∗ is definable over M|ζ02333

from z0 and M|(ζ0 + 1) � ψΩ(z0) but M|ζ0 � ¬ψΩ(z0). Recall there is2334

ξ + 1 ∈ (θ, l(M)) such that M|ξ � ZF. So by 4.1 there are ᾱ, ξ̄, β̄, Γ̄, A such2335

that:2336

– ζ0 < ᾱ < ξ̄ < β̄ < α0,2337

– M|ᾱ 4R
1 M|β̄ but M|α′ 64R

1 M|ᾱ for all α′ < ᾱ,2338

– ΘM|β̄ < ξ̄,2339

– Γ̄ = rΣ
M|ᾱ
1 and A ∈ P(R)M|ξ̄ and M|ξ̄ � ZF+“A is Γ̄-bad”.2340

As M|ξ̄ � ZF, A really is Γ̄-bad. We may assume that β̄ is least such that2341

there are ᾱ, ξ̄ as above (relative to the fixed ζ0). Then β̄ = ξ̄ + 1, ρ
M|β̄
1 = R,2342

p
M|β̄
1 = {ξ̄} and [ᾱ, β̄] is a weak gap of M (the type rΣ

M|β̄
1,({ξ̄},z0)

does not2343

reflect, using the choice of ζ0, z0). We will show that A is not Γ̄-bad, a2344

contradiction.2345

Let 〈Ai〉i<ω be a self-justifying system at the end of the gap [ᾱ, β̄], with2346

A0 = A. By AD, in M|ξ̄ there is a cone of reals s such that there is no2347

ω-suitable, A-iterable premouse over (M, s). Let z1 ≥T z0 be a base for this2348

cone such that for every i < ω there is ζ < ΘM|β̄ such that Ai is definable2349

over M|ζ from z1, and a scale on Th
M|ᾱ
rΠ1

(R) is definable over M|β̄ from z1.2350

We write Lp for LpΓ̄. Recalling that z0 codes M, it follows that2351

CΓ̄(M, z1) = CΓ̄(z1) ( CΓ(z1) = CΓ(M, z1).

So Lp(M, z1)/LpΓ(M, z1) and both are super-small, by our mouse capturing2352

hypothesis. Let P/LpΓ(M, z1) be least such that ρPω = ω and P 6 Lp(M, z1).2353

Let ΣP be the (ω, ω1+1)-strategy for P . So ΣP ∈ (M|α0)\(M|ᾱ). Let z2 ∈ R2354

code P , with z2 ≥T z1.2355

We say that a pointclass Λ is lovely iff Λ = rΣN1 (z2) ∩ P(R) for some2356

passive N /M|α0. Let 〈Γi〉i∈[0,9] be lovely pointclasses such that Γ̄ ⊆ ∆Γ92357

and (ΣP�HC)cd is ∆Γ9 and for each i ∈ [1, 9], Γi ⊆ ∆Γi−1
. Working in M|ξ,2358

let T0 be the tree of a scale for a universal Γ0 set. By Woodin [23] applied in2359

M|ξ (where ZF + AD holds) there is z3 ∈ R such that z2 ≤T z3 and2360

H∗ =def HOD
Lξ[T0,z3]
T0,z2

� “∆0 is Woodin”,
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where ∆0 = ω
Lξ[T0,z3]
2 .2361

Let Ti, Ui ∈ H∗ be trees projecting respectively to a universal Γi set and2362

its complement. Let ∆i be least such that V H∗
∆i

is Γi-Woodin. Let λ < ξ be2363

large and such that (V H∗
λ ,∆9) is a coarse premouse. Let2364

πH : (H,∆)→ (V H∗

λ ,∆9)

be elementary, with H ∈ HCH∗ , πH ∈ H∗, and z2, Ti, Ui ∈ rg(π) for each2365

i ≤ 9 (let U0 = ∅). Let πH(THi , U
H
i ) = (Ti, Ui). Then by arguments in [1]2366

(using M|ξ as a background ZF + AD model):2367

Fact 5.39. In M|α0 there is a unique (ω1, ω1 + 1)-iteration strategy ΛH for2368

(H,∆) such that for each countable successor length tree T via ΛH , letting2369

j = iT and J = MT
∞, then2370

p[j(TH8 )] ⊆ p[T8] & p[j(UH
8 )] ⊆ p[U8].

Moreover, the restriction of ΛH to HCH∗ is the unique πH-realization strategy2371

in H∗. Further, for i ≥ 1, J �“j(THi ), j(UH
i ) are Col(ω, j(∆))-absolutely2372

complementing”. Moreover,2373

CH =def CΓ̄�V
H

∆ ∈ H & j(CH) = CΓ̄�V
J
j(∆);

2374

ΩH =def Ω∗�V H
∆ ∈ H & j(ΩH) = Ω∗�V J

j(∆).

Let C = 〈Nα〉α≤∆ be the maximal L
gΩH [E, (M, z1)]-construction as com-2375

puted in H (see 2.46). For every α ≤ ∆ and n < ω, the (n, ω1, ω1+1)-strategy2376

for Cn(Nα) given by resurrection and lifting to ΛH , is a gΩ∗-strategy; this is2377

by and 5.39, 3.43 and properties of the resurrection/lifting maps. So by 2.45,2378

this construction does indeed have length ∆ + 1.2379

Claim 5.40. There is γ < ∆ and k < ω such that ρ
Nγ
k+1 = ω and Cω(Nγ) is2380

not (k, ω1 + 1)-iterable in M|ᾱ.2381

Proof. It suffices to see that C reaches P . We have z2,P ∈ HCH , and by the2382

definability of ΣP�HC, letting ΣH
P = ΣP�V H

∆ , we have ΣH
P ∈ H, and ΣH

P is2383

moved correctly by ΛH�HC. It follows that the background extenders used in2384

C all cohere ΣH
P , and so we can apply 3.23 (the stationarity of C with respect2385

to P). So we just need to rule out the possibility that for some normal tree2386

T on P via ΣP , with last model P ′, N∆ E P ′. But because (ΣP�HC)cd and2387

(Ω∗)cd are ∆Γ9 and N∆ is definable over (V H
∆ ,ΩH), we have T ∈ CΓ9(V H

∆ ).2388

But CΓ9(V H
∆ ) �“∆ is Woodin”, so by the universality of N∆ (see [17, Lemma2389

11.1]), T /∈ CΓ9(V H
δ ), contradiction.2390
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We will now look at the least stage where the construction produces a2391

fine structurally nice mouse which is not iterable in M|ᾱ. This move, and2392

its relation to producing a mouse with ω Woodins and a suitability strict2393

iteration strategy, is related to, and motivated by, an argument shown to the2394

first author by Steel, in a similar situation, though a different context.2395

Given a k-sound premouse N ∈ HC and ζ ∈ o(N ), we say that N is2396

(Γ̄, k, ζ)-iterable iff there is an above-ζ, (k, ω1 + 1)-iteration strategy for N2397

inM|ᾱ. We say that N is (Γ̄, ζ)-iterable iff N is (Γ̄,m, ζ)-iterable, where m2398

is defined in the next paragraph.2399

By the previous claim, we may let (γ,m, η′) ∈ Ord3 be lex-least such2400

that, letting S = Cm(Nγ), S|η′ is a g-whole cutpoint of S and2401

R′ =def cHullSm+1(η′ ∪ pSm+1)

is η′-sound and not (Γ̄,m, η′)-iterable. Let π′ : R′ → S be the uncollapse. (It2402

follows that π′(pR
′

m+1\η′) = pSm+1\η′. We allow η′ < ρSm+1, so we do need to2403

assume η′-soundness explicitly.) It seems that η′ could be measurable in R′,2404

which is slightly inconvenient. So we first replace R′ with a slightly larger2405

hull R, and replace η′ with a strong cutpoint η of R.2406

Given a premouse N and η < o(N ), we say that η is N -finely measur-2407

able iff η = crit(E) for some N -total measure E such that either E ∈ EN+ ,2408

or E ∈ EUlt(N ,F )
+ for some F ∈ EN+ .2409

We claim that η′ < min(ρR
′

m , ρ
S
m) and η′ is not measurable in H, nor2410

S-finely measurable. For ρR
′

m is the least ρ such that either ρ /∈ dom(π′)2411

or π′(ρ) ≥ ρSm, by elementarity. We have η′ < ρR
′

m (as otherwise R′ is not2412

(Γ̄,m − 1, η′)-iterable, which implies that Cm−1(Nγ) is not (Γ̄,m − 1, ρNγm )-2413

iterable, contradicting the minimality of m), so also η′ < ρSm. Since η′ < ρSm,2414

if η′ is S-finely measurable then η′ is measurable in H. But if H �“µ is a2415

normal measure on η′” and j : H → Ult(H,µ) is the ultrapower map, then2416

R′ = cHull
j(S)
m+1(η′ ∪ pj(S)

m+1),

which contradicts the minimality of j(η′) in Ult(H,µ). (The minimality can2417

be computed correctly in H and its ΛH-iterates by 5.39.)2418

Now let η = ((η′)+)S . We claim that η < ρSm and S|η is a g-whole strong2419

cutpoint of S and2420

R =def cHullSm+1(η ∪ pSm+1)

is η-sound and not (Γ̄,m, η)-iterable. (Therefore η = ((η′)+)R is also a strong2421

cutpoint of R.) For suppose η = ρSm. Then π′(η′) = η′ because otherwise we2422
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contradict the minimality of m, as above. So ρR
′

m = ((η′)+)R
′

and η′ is not2423

R′-finely measurable. But then any above-η′ tree on R′ immediately drops2424

either in model or to degree ≤ m − 1, which contradicts the minimality of2425

(γ,m). In particular, η = ((η′)+)S < o(S), so S|η is g-whole, and since η′ is2426

not S-finely measurable, η is a strong cutpoint of S. Clearly R is η-sound. If2427

π′(η′) > η′ then η ≤ π′(η′) < ρSm, which easily gives that R is not (Γ̄,m, η)-2428

iterable. If π′(η′) = η′ then η′ is not R′-finely measurable, which implies that2429

R′ is not (Γ̄,m, ((η′)+)R
′
)-iterable, so R is not (Γ̄,m, η)-iterable.2430

Let π0 : R → S be the uncollapse embedding. Let ΣR be the above-η,2431

(m,ω1, ω1 + 1)-strategy for R given by resurrection and lifting to ΛH , taking2432

π0 as the base lifting map. Let T be onR via ΣR and λ < lh(T ), and let U be2433

the lifted tree on H. Write Cλ = iU0,λ(C). Let n = degT (λ). Let (γTλ ,STλ , πTλ )2434

be the (γ′,S ′, π′) produced by lifting/resurrection such that γ′ ≤ iU0,λ(γ) and2435

S ′ = Cn(NCλ
γ′ ) and π′ : MT

λ → S ′ is the lifting map. (In particular, πTλ is a2436

weak n-embedding, and γTλ = iU0,λ(γ) iff [0, λ]T does not drop in model. Here2437

if [0, λ]T does not drop in model, the codomain of πλ is iU0,λ(S), not iU0,λ(R).)2438

Let T be an above-η normal tree on R, of countable limit length. Let2439

b be a T -cofinal branch. Let Qb = Q(T , b). Then k(T , b) denotes ω if2440

Qb /MT
b , and denotes degT (λ) otherwise. And ΦQ(T , b) denotes the phalanx2441

Φ(T ) ̂ (Qb, k), where k = k(T , b). (In the phalanx notation, k denotes the2442

base degree corresponding to Qb.) We say that b is Γ̄-verified for T iff2443

ΦQ(T , b) is normally (ω1 + 1)-iterable in M|ᾱ.2444

Claim 5.41. Let T be normal on R via ΣR, of length λ + 1 for some limit2445

λ < ω1. Suppose that P =def ΦQ(T �λ, b) is not normally (ω1 + 1)-iterable in2446

M|ᾱ. Let Mλ = MT
λ , b = bT , Q = Q(T �λ, b), k = k(T �λ, b), δ = δ(T �λ)2447

and MT = M(T �λ). Then either:2448

(i) δ is a strong cutpoint of Q = Mλ, b does not drop in model or degree2449

and Q||(δ+)Q = Lp+(MT ); or2450

(ii) δ is not a cutpoint of Q, and letting E ∈ EQ+ be such that crit(E) < δ <2451

lh(E), with lh(E) minimal, and letting T + be the normal tree T ̂ 〈E〉,2452

then bT
+

does not drop in model or degree, and Q||lh(E) = Lp+(MT ).2453

Proof. Let (γλ,Sλ, πλ) = (γTλ ,STλ , πTλ ). Suppose δ is a cutpoint (hence strong2454

cutpoint) ofQ. Because δ is a cutpoint, the difficulty in iterating P gives that2455

Q is not (Γ̄, k, δ)-iterable. Because δ is a strong cutpoint and by standard2456

fine structure, Q E LpΓ
+(MT ).2457
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We leave the proof that Q = Mλ to the reader; assume this. We show2458

that b does not drop in model or degree; suppose otherwise. We have2459

Q = HullQk+1(δ ∪ pQk+1).

and (γλ, k) <lex (iU0,λ(γ),m) and pSλk+1 = πλ(p
Q
k+1) and (by the commutativity2460

between the copy and iteration maps after the last drop) and2461

rg(πλ) ⊆ R∗ =def HullSλk+1(πλ(δ) ∪ pSλk+1).

Let R′ be the transitive collapse of R∗ and let σ : Q → R′ be the obvious2462

map, a weak k-embedding with σ(δ) = πλ(δ). So σ lifts above-δ trees on Q to2463

above-πλ(δ) trees on R′. Therefore R′ is not (Γ̄, k, πλ(δ))-iterable. But R′ is2464

πλ(δ)-sound, as there are generalized (k+ 1)-solidity witnesses for (Sλ, pSλk+1)2465

in rg(πλ) (by commutativity as before). This contradicts the minimality of2466

(iU0,λ(γ),m) in MU
λ .2467

So bT does not drop. One can show Q||(δ+)Q E Lp+(MT ) much as above.2468

But Q 5 Lp+(MT ), as Q is not (Γ̄, k, δ)-iterable. So Q||(δ+)Q = Lp+(MT ),2469

as required.2470

Now suppose δ is not a cutpoint of Q. Suppose that bT
+

drops in model2471

or degree. Since δ is a strong cutpoint of MT +

∞ , then as before, by choice of2472

(γ,m), MT +

∞ is (Γ̄, j, δ)-iterable, where j = degT
+

(MT +

∞ ). Therefore, letting2473

κ = crit(E) and ξ = λ + 1, M∗T +

ξ is (Γ̄, j, κ)-iterable (we can copy trees2474

using iE). But κ is a cutpoint of M∗T +

ξ . So T + = (T �χ + 1) ̂ T ′, where2475

χ = predT (ξ) and T ′ is an above-κ, j-maximal tree on M∗T +

ξ . Thus, the2476

iterability of P can be reduced to the above-κ iterability of M∗T +

ξ . Therefore2477

P is iterable in M|ᾱ, a contradiction. So bT
+

does not drop. We then get2478

Q||lh(E) = Lp+(MT ) by the arguments just given.2479

Claim 5.42. Let T be a normal tree on R, via ΣR, of countable limit length.2480

Then there is at most one branch Γ̄-verified for T . However, the following2481

partial strategy Ψ is not an above-η, (m,ω1)-strategy for R: Given T , let2482

Ψ(T ) be the unique branch which is Γ̄-verified for T .2483

Proof. Uniqueness follows from the usual comparison and fine structural ar-2484

guments, using the η-soundness of R. If existence holds then by uniqueness2485

and because M|ᾱ is admissible, R is (Γ̄, η)-iterable, contradiction.2486
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Definition 5.43. We define the term Γ̄-k-suitable analogously to k-suitable2487

(cf. 5.28), but with Γ̄ replacing Γ. We likewise define Γ̄-A-iterable and Γ̄-2488

suitability strict. Let R be Γ̄-ω-suitable with z1 ∈ R. Then σRi denotes2489

the Col(ω, δRi )-term capturing Ai over R (see [1]). Let Q be a structure and2490

π : Q → P . We say that π is an ~A-embedding iff π is Σ1-elementary and2491

σRi ∈ rg(π) for all i < ω. a2492

Claim 5.44. (i) S has infinitely many Woodins δ such that η < δ < ρSm.2493

Let δω be the supremum of the first ω-many and let N be the translation of2494

S|δω to a g-organized spm over ‘S|η (translated as in 5.27). Then (ii) N is2495

Γ̄-ω-suitable.2496

Proof. We will construct a Γ̄-ω-suitable premouse which is an initial segment2497

of a ΣR-iterate of R. This is by applying Claim 5.42 and an obvious general-2498

ization thereof, in tandem with Claim 5.41, up to ω many times. So let T0 on2499

R0 = R be via ΣR (so above δ−1 =def η), witnessing the failure of “existence”2500

in 5.42, with T0 of minimal length. Let δ0 = δ(T0). Let b = ΣR(T0). So 5.412501

applies to ΦQ(T0, b). Use notation as there, so T = T0 ̂ b and δ = δ0.2502

Suppose first that 5.41(ii) holds. Let κ = crit(E). Since E overlaps δ2503

and bT
+

does not drop in model or degree, κ is a limit of Woodins of MT +

∞ ,2504

and η < κ < δ < ρm(MT +

∞ ) (recall we arranged that η is a strong cutpoint of2505

R). And MT +

∞ is not (Γ̄, δ)-iterable. Now let δ∗ω be the supremum of the first2506

ω-many Woodins of MT +

∞ above η. Let ζ be least such that δ∗ω < lh(ETζ ).2507

So MT +

∞ |δ∗ω = MT
ζ |δ∗ω. Note δ∗ω is a strong cutpoint of MT

ζ and ζ ∈ bT +
, so2508

[0, ζ]T does not drop in model or degree. Therefore MT
ζ is not (Γ̄, δ∗ω)-iterable.2509

Now let U be the lifted tree, via ΛH , on H. Then η < πTζ (δ∗ω) < ρm(STζ )2510

and πTζ (δ∗ω) is the sup of the first ω Woodins of Sζ above η, and Sζ is not2511

(Γ̄, πTζ (δ∗ω))-iterable. By the elementarity of iU0,ζ , this gives (i).2512

We now verify condition (c) of Γ̄-ω-suitability. Let κ ≥ η be a cutpoint2513

of S|δω with η ≤ κ. Let Cκ be the κ-core of S. We claim that (∗) Cκ is not2514

(Γ̄, κ)-iterable. For let ξ ∈ bT be least such that πξ(lh(ETξ )) > iU0,ξ(κ). Let κ̄2515

be the least such that πξ(κ̄) ≥ iU0,ξ(κ). Then ν(ETα ) ≤ κ̄ for all α + 1 ≤T ξ,2516

and κ̄ is a cutpoint of MT
ξ (as κ is a cutpoint of S). Therefore MT

ξ is not2517

(Γ̄, κ̄)-iterable, and2518

rg(πξ) ⊆ Hull
Sξ
m+1(iU0,ξ(κ) ∪ pSξm+1),

so iU0,ξ(Cκ) is not (Γ̄, iU0,ξ(κ))-iterable, giving (∗).2519
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Now let S|κ be a g-whole strong cutpoint of S|δω. By the choice of γ, we2520

have S|(κ+)S E Lp+(S|κ). But letting Cκ+1 be the (κ+ 1)-core of S, by (∗),2521

we have Lp+(S|κ) / Cκ+1. Condition (c) follows.2522

We now verify condition (d). Let η ≤ ξ < δω with S �“ξ is not Woodin”;2523

we must show that CΓ̄(S|ξ) �“ξ is not Woodin”. We may assume that S|ξ2524

is g-whole, and by (c), that ξ is not a strong cutpoint of S. Let F ∈ ES be2525

least such that µ = crit(F ) ≤ ξ < lh(F ). Note that µ is a limit of strong2526

cutpoints of S|ξ. So if µ = ξ then S|ξ is the Q-structure for ξ, so we are2527

done. So suppose µ < ξ. We may assume that S||lh(F ) �“ξ is Woodin”,2528

because otherwise there is Q/S||lh(F ) such that Q is a Q-structure for ξ and2529

ξ is a strong cutpoint of Q, and so Q / Lp+(S|ξ) (by choice of γ). Therefore2530

µ is not a cardinal of S. Let Q / S be least such that lh(F ) ≤ o(Q) and2531

ρQω < µ. Then Q collapses ξ. Let ζ ∈ [ρQω , µ) be a g-whole strong cutpoint of2532

Q. Then Q / Lp+(S|ζ), so Q ∈ CΓ̄(S|ζ), which suffices. This completes the2533

proof that S|δω is Γ̄-ω-suitable in this case.2534

Now suppose that conclusion (a) of Claim 5.41 holds. Let T +
0 = T0 ̂ b2535

and let R1 = M
T +

0∞ . Then bT
+
0 does not drop in model or degree. And δ02536

is a strong cutpoint of R1, R1 is δ0-sound, projects < δ0, and is not (Γ̄, δ0)-2537

iterable. So the obvious modification of Claim 5.42 applies to R1 above δ0.2538

Pick T1 onR1, above δ0, like before. Again apply Claim 5.41. If its conclusion2539

(b) holds proceed as before, and otherwise let R1 = M
T +

1∞ and pick T2 on R1,2540

etc.2541

If the above process produces Rn and Tn for all n < ω, then we get (i)2542

much as before, and note that, letting δn be the nth Woodin of S above η,2543

then S is not (Γ̄, δn)-iterable. Part (ii) follows much like before.2544

Claim 5.45. Let P be Γ̄-ω-suitable and let π : Q → P be an ~A-embedding.2545

Then (i) Q is Γ̄-ω-suitable and for each i < ω, (ii) π(σQi ) = σPi , and (iii)2546

rg(π) is cofinal in δPi .2547

Proof. Parts (i) and (ii) are by condensation of term relations for self-justifying-2548

systems; see [1]. Consider (iii). If rg(π) ∩ δPi is bounded in δPi , then we may2549

assume that crit(π) = δQi , by taking the appropriate hull (cf. the first part2550

of the proof of [19, Lemma 1.16.2]). But then Q|δQi = P|δQi , and P|δQi is2551

not Γ̄-Woodin, but Q �“δQi is Woodin”, so Q is not Γ̄-ω-suitable, contradic-2552

tion.2553
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Definition 5.46. Let T = 〈Tα〉α≤γ be a stack of normal iteration trees. We2554

say that T is relevant iff for every α < γ, bTα does not drop. (Here we allow2555

Tγ to be trivial, and it might drop.) (Recall from 2.39 that a hod iteration2556

strategy acts on relevant trees.) a2557

From now on we fix N as defined in Claim 5.44. Let ΣN be the hod-2558

(ω, ω1, ω1 + 1) strategy for N given by resurrection and lifting to ΛH . The2559

next claim follows from 5.39.2560

Claim 5.47. For any successor length tree U on H via ΛH , iU(N) is Γ̄-ω-2561

suitable and iU�N : N → iU(N ) is an ~A-embedding.2562

Claim 5.48. ΣN is Γ̄-suitability strict. Moreover, let T be via ΣN , of suc-2563

cessor length, such that bT does not drop. Then iT is an ~A-embedding.2564

Proof. Let T be via ΣN , of successor length. If bT does not drop, then the2565

lemma’s conclusions regarding MT
∞ and iT follow from 5.45 and 5.47.2566

Suppose bT drops and that i < ω is as in 5.32(2), but some R EMT
∞ is Γ̄-2567

(i+1)-suitable. For simplicity assume that T consists of just one normal tree2568

and that T has minimal possible length. It follows that for every extender E2569

used in T , ν(E) < δ = δRi . Let n = degT (bT ). Then ρn+1(MT
∞) < o(R) and2570

MT
∞ is δ-sound. So let Q EMT

∞ be least such that R E Q and ρQω ≤ δ. So2571

Q|(δ+)Q = R|(δ+)R = LpΓ̄
+(R|δ),

Q �“δ is Woodin”, Q is δ-sound and δ is a strong cutpoint of Q. So letting2572

j < ω be such that ρQj+1 ≤ δ < ρQj , Q is not (Γ̄, j, δ)-iterable. Let U be2573

the ΛH-tree on H given by lifting T . Suppose for simplicity that Q = MT
∞.2574

Because of the drop, ST∞ is (Γ̄, j, πT∞(δ))-iterable, so Q = MT
∞ is (Γ̄, j, δ)-2575

iterable, contradiction. If Q / MT
∞ it is similar.65

2576

Definition 5.49. Let Q be Γ̄-ω-suitable. Let Σ be a hod-(ω, ω1, ω1 + 1)-2577

strategy for Q. We say that (T ,P) is a Σ-pair iff T is a countable tree on2578

Q via Σ, with last model P . We say that a Σ-pair (T ,P) is non-dropping2579

iff bT does not drop. We say that Σ is ~A-good iff for every non-dropping2580

Σ-pair (T ,P), P is Γ̄-ω-suitable and iT is an ~A-embedding. If (T ,P) is a2581

non-dropping Σ-pair, we write ΣTP for the (T ,P)-tail of Σ (that is, ΣTP is the2582

hod-(ω, ω1, ω1 + 1) iteration strategy Λ for P where Λ(U) = Σ(T ,U)). a2583

65Suppose MT∞ is active type 3 and ν(E(MT∞)) < o(Q) < o(MT∞). Let E∗ ∈ MU∞ be a
background extender for ST∞ and lift Q to a model in Ult(MU∞, E

∗).
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The following claim is immediate:2584

Claim 5.50. Let Σ be a hod-(ω, ω1, ω1 + 1)-iteration strategy for Q. Let2585

(T , P ) be a non-dropping Σ-pair. If Σ is suitability strict then ΣTP is suit-2586

ability strict. If Σ is ~A-good then ΣTP is ~A-good.2587

Claim 5.51. Let Q be Γ̄-ω-suitable. Then there is at most one suitability2588

strict ~A-good hod-(ω, ω1, ω1 + 1) iteration strategy for Q.2589

Proof. Let Σ,Λ be two such strategies, and let T be of limit length, via Σ,Λ,2590

such that b = Σ(T ) 6= Λ(T ) = c. We may assume that T is normal. We2591

can compare the phalanx Φ(T ) ̂ b with the phalanx Φ(T ) ̂ c, forming trees2592

U ,V , using Σ,Λ, respectively. The comparison is successful. By suitability2593

strictness, we have MU
∞ = P = MV

∞. By standard fine structure, bU and bV2594

do not drop and MU
∞ �“δ(T ) is Woodin”. In particular, δ(T ) = δPk for some2595

k < ω. Because Σ,Λ are ~A-strategies and by 5.45, therefore rg(iU)∩ rg(iV) is2596

unbounded in δPk . But then rg(iTb )∩ rg(iTc ) is unbounded in δPk , so b = c.2597

We are now in a position to establish a version of Dodd-Jensen.2598

Claim 5.52. Let Σ be an ~A-good, suitability strict strategy for Q. Let (T ,P)2599

be a non-dropping Σ-pair.2600

(1 ) Let π : R → P be an ~A-embedding. Then the π-pullback Λ of ΣTP is2601

~A-good and suitability strict. Therefore if R = Q then Λ = Σ.2602

(2 ) Let π : Q → P be an ~A-embedding. Then for all α < o(Q), iT (α) ≤2603

π(α).2604

Proof. The first clause of (1) is proven like 5.48. This together with 5.512605

yields the second clause. For (2), the standard Dodd-Jensen proof works;2606

the copying does not break down by (1).2607

One can now deduce that N is Γ̄-A-iterable, because 5.50 and 5.52 apply2608

to N and ΣN , which is enough Dodd-Jensen for ΣN to apply the proof of2609

[14, Theorem 4.6]. Recall that N is over ‘S|η. Let g ⊆ Col(ω,S|η) be N -2610

generic. Let x ∈ R ∩ (N|1)[g] code (N|η, g). Then we can reorganize N [x]2611

as a premouse N ∗ over (M, x), and N ∗ is Γ̄-ω-suitable and Γ̄-A-iterable;2612

these facts all follow by S-construction (for g-organized spms; cf. 4.11). But2613

x ≥T z1, contradicting the choice of z1. This completes the proof of 5.38.2614
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Now for simplicity assume n = 0 and β = l(M) is a limit ordinal; we2615

allow that ΥM 6= ∅. Let p, w1,W,Σ, 〈βi, Yi, ψi〉i<ω be as in the proof of 5.17.2616

Claim 5.18 holds. Let z = w1, G = p, Υ = ΥM, U = UM and U ′ = U ′M.2617

Define the language2618

L∗ = L ∪ {β̇i,Ṁi}i<ω ∪ {Ġ, ṗ, Ẇ , ż, Υ̇, U̇ , U̇ ′};

each symbol in L∗\L is a constant symbol. Relative to these definitions, let2619

B0, 〈Bi
0〉i<ω and ~S = 〈Si〉i<ω be as in [19].66 The analogue of [19, Corollary2620

1.14] holds (the proof should be executed in J (M), where we have 〈Si〉i<ω,2621

and where DCR holds – this allows us to “intersect all the cones” without2622

introducing new reals, and also the resulting iterate N is in J (M), hence2623

in M). Regarding [19, Lemma 1.15.1], the overall proof is executed in V ,2624

where M is countable, and so we may take M̄ =M, and we need not take2625

any countable substructure of V . The proper segments of the iteration are2626

all in M. Also see [9] for details on the process of interleaving comparison2627

with genericity iteration.67 Consider the analogue of [19, Lemma 1.16.2]:2628

Lemma 5.53. Let N be ω-suitable and ~S-iterable. Let π : Q → N be Σ1-2629

elementary with τNi,j ∈ rg(π) for all i, j < ω. Then there is some m < ω such2630

that for all n ≥ m, rg(π) is cofinal in δNn .2631

Proof. The proof mostly follows that of [19, 1.16.2]. But consider the proof of2632

its Claim; we adopt the same notation. Within that proof, consider the proof2633

that M∗ = M̄. We prove this, as things are different. As M is countable2634

we have M̄ = M and R̄ = RM. Let Υ∗, U∗, etc, be Υ̇M
∗
, U̇M

∗
, etc. Let2635

Υ = ΥM and Υ− = ΥM
−

, etc. We have ρ :M− →M and ψ∗ : H∗ → H−.2636

First note that Υ∗ = Υ, for ρ ◦ ψ∗ yields order-preserving maps U∗ → U2637

and U ′∗ → U ′. Therefore cbM
∗

= cbM. So essentially as in the proof of 5.17,2638

M∗ is a 1-sound hpm over cbM with ρM
∗

1 = ω and pM
∗

1 = p.2639

By 3.43, as ρ∗ ◦ ψ∗ : H∗ → H is Σ1-elementary, we have that H∗ is a2640

(0, ω1 + 1)-iterable g-organized Ω-pm over TM
∗
; likewise for HM∗|η for every2641

η such that M∗|η is relevant. So M∗ is a (0, ω1 + 1)-iterable Θ-g-organized2642

Ω-pm over ΥM. So we can compare M∗ with M. Because they are both2643

1-sound and minimal for realizing Σ, M∗ =M.2644

66As before, we use the symbol L∗ where [19] uses L, and vice versa.
67The issue is as follows. Let T be one of the trees involved in the comparison. Let

α < lh(T ); it might be that [0, α]T drops. But then the usual procedure for choosing the
least extender on E+(MTα ) producing a bad extender algebra axiom need not make sense,
because in fact, the relevant extender algebra is not even in MTα .
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We modify the statement of [19, Lemma 1.20.1] as follows: Let Q be ω-2645

suitable, j-sound and j-realizable. We claim that with respect to trees above2646

δQj−1, Q is short tree iterable, and the conclusions of [19, Lemma 1.20.1] hold,2647

except with (a)(ii) replaced by “Q-to-P drops”, and (b)(ii) replaced by “b2648

drops and T ̂ b is Γ-guided”. Let us argue that Q is short tree iterable above2649

δQj−1. Assume j = 0 for simplicity. First note that whenever π : Q → N2650

is a 0-realization, the π-pullback (Ψsh
N )π of Ψsh

N is suitability strict. To see2651

this argue like in the proof of 5.48. Then, as in the proof of 5.34, it follows2652

that (Ψsh
N )π is precisely the short tree strategy for Q. This suffices. Now2653

consider the uniqueness of the branch b described in [19, Lemma 1.20.1(b)],2654

as modified above. Given two such branches b, c, we compare the phalanxes2655

Φ(T ̂ b),Φ(T ̂ c), producing trees U ,V . If T is short then note that both2656

T ̂ b and T ̂ c are Γ-guided, so b = c. If T is maximal then b, c cannot2657

drop; rule out the possibility that, for example, MU
∞ / MV

∞ and bV drops, by2658

using suitability strictness.2659

Let Σ,Q, (F ,≺∗),Q∞ be defined as in [19, §2]. Then Σ, (F ,≺∗) ∈ J (M)2660

and the analogue of [19, Lemma 2.1.2] holds, but we mention some points.2661

It seems possible that Q∞ be illfounded because o(J (M)) = o(M)+ω. But2662

J (M) �“Q∞ is wellfounded in the codes”. Standard arguments therefore2663

show that Q∞|δQ∞0 is wellfounded (in fact that δQ∞0 ≤ ΘM).68 The latter is2664

enough for the scale construction to go through. The rest of the argument is2665

essentially as in [19]. This completes the proof.2666

5.5 Scales analysis within core model induction2667

We finish by explaining how we use the scale existence theorems in applica-2668

tion to the core model induction. Assume DCR.2669

Suppose that Υ =def (Ω�HC) × {z} is self-scaled for some z ∈ R, with2670

z ≥T a0. Then using the scales existence theorems 5.1, 5.22, 5.26 together2671

with 5.16, we get the scales analysis for Lp
GΩ(R,Υ) from optimal determinacy2672

and super-small mouse capturing hypotheses (that is, through any initial2673

segment of Lp
GΩ(R,Υ) for which these hypotheses hold).2674

We have dealt with Lp
GΩ(R,Ω�HC, z) instead of Lp

GΩ(R) because we2675

seem to need extra assumptions to obtain the scales analysis from optimal2676

68Recall that at the start of the proof we reduced to the case thatM �“Θ exists”. This
reduction relied on M being Θ-g-organized. This seems to be a key point at which there
is a problem with the scales analysis for g-organized mice.
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assumptions in the latter. We now discuss what we need for this. In ap-2677

plication, if there are no divergent AD pointclasses, Ω will in fact be very2678

nice:2679

Definition 5.54. Let Γ be a boldface pointclass and X ⊆ R. We say that2680

Γ is an AD-pointclass iff AD holds with respect to all sets in Γ. We say2681

that Γ, X are Wadge compatible iff A,X are Wadge compatible for every2682

A ∈ Γ.2683

We say that Ω is very nice iff Υ =def (Ω�HC)×{z} is self-scaled for some2684

z ∈ R, J (HC,Υ) � AD, and Υcd is Wadge compatible with every boldface2685

AD-pointclass. a2686

Remark 5.55. Suppose Ω is very nice and let Υ be as above. We want to2687

see that the scales analysis in Lp
GΩ(R) proceeds from optimal determinacy2688

assumptions. Let N /Lp
GΩ(R) be such that N � AD and N ends a gap [α, β]2689

of Lp
GΩ(R), such that [α, β] is not strong. Suppose that if [α, β] is weak and2690

Ω�HC ∈ N|α then super-small mouse capturing for Γ = Σ
N|α
1 holds on a2691

cone. We claim that one of the scale existence theorems 5.1, 5.17, or 5.262692

applies.2693

For by 5.16 and the mouse capturing hypothesis, we may assume that the2694

gap is admissible, and so weak, and that Ω�HC /∈ N|α, so Υcd /∈ N|α. We2695

claim that then J (N ) � AD, so 5.17 applies. If every set of reals in J (N )2696

is Wadge below Υcd, this is because J (HC,Υ) � AD. So suppose otherwise.2697

Let P E N be least such that there is Z ∈ J (P) such that Z 6≤W Υcd. If2698

P / N then J1(P) � AD, so by the Wadge compatibility given by 5.54, we2699

have Ω�HC ∈ J (P), so α ≤ l(P). We claim that Ω�HC /∈ N|β. Because2700

Ω is very nice and by 5.14, this is clear if Th
N|α
rΠ1
≤W Υcd or Th

N|α
rΣ1
≤W Υcd

2701

(as very niceness would otherwise yield scales on these sets). Otherwise, by2702

Wadge compatibility, Υcd <W Th
N|α
rΣ1

. But then because N|α is admissible,2703

Υcd ∈ N|α, contradiction. So P = N . Since N ends a weak gap, there are2704

sets Xi ∈ P(R) ∩ N such that P(R) ∩ J (N ) is exactly the sets which are2705

projective in ⊕i<ωXi. It follows that P(R) ∩ J (N ) ⊆ P(R) ∩ J (HC,Υ), so2706

J (N ) � AD (and so Υ ∈ J (N )).2707
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