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Abstract. Within the determinacy setting, P(ω1) is regular with respect many known cardinalities and

thus there is substantial evidence to support the conjecture that P(ω1) may have globally regular cardinality.
However, there is no known information about the regularity of P(ω2). It is not known if P(ω2) is even

2-regular under any determinacy assumptions. The paper will provide the following evidence that P(ω2)

may possibly be ω1-regular: Assume AD+. If ⟨Aα : α < ω1⟩ is such that P(ω2) =
⋃

α<ω1
Aα, then there is

an α < ω1 so that ¬(|Aα| ≤ |[ω2]<ω2 |).

1. Introduction4

A cardinality is an equivalence class under the bijection relation on the class of a sets. The cardinality5

of X is denoted |X| and consists of all sets in bijection with X. Cardinalities are ordered by the injection6

comparison relation: |X| ≤ |Y | if and only if there is an injection of X into Y . A cardinal is an ordinal7

which does not inject into any smaller ordinals. Assuming the axiom of choice, every cardinality has a unique8

cardinal as a member.9

If κ is a cardinal, then the classical definition of the cofinality of κ is cof(κ) is the least cardinal δ so that10

there is an increasing function ρ : δ → κ so that sup(ρ) = κ. An equivalent definition is that it is the least11

ordinal δ so that for all γ < δ and function Φ : κ→ γ, there is an α ∈ γ so that |Φ−1[{α}]| = κ.12

In choiceless settings, cardinalities no longer have unique cardinal members since sets may not wellorder-13

able. The collection of cardinalities are also no longer wellordered by the injection comparison relation. In14

[7], the authors developed a robust notion of regularity and cofinality in the choiceless setting.15

Let X be a set and Y be a class. X is said to have Y -regular cardinality if and only if for every function16

Φ : X → Y , there is a y ∈ Y so that |Φ−1[{y}]| = |X|. A set X is said to be locally regular if and only if for17

all sets Y with |Y | < |X|, X has Y -regular cardinality. A set X is said to be globally regular if and only if18

for all sets Y such that ¬(|X| ≤ |Y |), X has Y -regular cardinality.19

Since cardinalities are not wellordered under the injection comparison relation, the natural definition of20

the cofinality of a set is formally a proper class:21

• The local cofinality of a set X is the class

lcof(X) = {Y : (∃Z)(|Z| = |Y | ∧ Z ⊆ X ∧ X does not have Y -regular cardinality)}.

• Let Surj(X) be the class of all sets onto which X surjects. The global cofinality of a set X is the
class

gcof(X) = {Y ∈ Surj(X) : X does not have Y -regular cardinality}.
Observe that if X has locally regular cardinality, then lcof(X) = |X| and if X has globally regular22

cardinality, then gcof(X) = {Y ∈ Surj(X) : |X| ≤ |Y |}.23

The following summarizes some of the results obtained by the authors in [7] concerning regularity and24

cofinality. If α is an ordinal, then lcof(α) = {X : |cof(α)| ≤ |X| ≤ |α|} and gcof(α) = {X ∈ Surj(α) :25

|cof(α)| ≤ |X|}. Thus lcof(α) = cof(α). If κ is a regular cardinal, then κ has globally regular cardinality26

and lcof(κ) = gcof(κ) = |κ|. Thus the choiceless theory of regularity and cofinality has a strong resemblance27

to the usual theory of cofinality in the choiceful framework.28
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Assuming ACR
ω and all sets of reals have the perfect set property, R has locally regular cardinality and29

lcof(R) = |R|. Under AD+, the Woodin’s perfect dichotomy ([3], [6]) implies that R has globally regular30

cardinality and gcof(R) = {X ∈ Surj(R) : X is not wellorderable}.31

E0 is the equivalence relation on ω2 defined by x E0 y if and only if there exists an m ∈ ω so that for all32

n ∈ ω, if m ≤ n < ω, then x(n) = y(n). Under AD+, the Hjorth’s dichotomy ([11]) implies that R/E0 is33

globally regular and gcof(R/E0) = {X ∈ Surj(R) : X is not linearly orderable}.34

Under ACR
ω and all subsets of R have the property of Baire and the perfect set property, |R| and |ω1| are35

incomparable cardinalities. This can be used to show that R⊔ω1 does not have 2-regular cardinalities. Thus36

gcof(R ⊔ ω1) = {X ∈ Surj(R) : |X| ≥ 2}. Under the same assumptions, R × ω1 does not have R-regular37

cardinality and does not have ω1-regular cardinality. Under AD+, the Woodin perfect set dichotomy will38

show that gcof(R× ω1) = {X ∈ Surj(R) : X is uncountable}.39

Martin showed that ω1 →∗ (ω1)ω1
<ω1

and ω2 →∗ (ω2)<ω2
<ω2

under AD. The partition properties on ω1 can40

be used to show that for all ϵ ≤ ω1, [ω1]ϵ has ω-regular cardinality. If ϵ < κ, then [ω]ϵ does not have41

ω1-regular cardinality since [ω1]ϵ =
⋃

δ<ω1
[δ]ω1 by the regularity of ω1 and since |[δ]ϵ| ≤ |R| < |[ω1]ϵ|. The42

partition relation on ω2 can be used to show that for all ϵ < ω2, [ω2]ϵ has ω1-regular cardinality. If ϵ < ω2,43

[ω2]ϵ =
⋃

δ<ω2
[δ]ϵ and hence as before, [ω2]ϵ does not have ω2-regular cardinality.44

The strong partition property ω1 →∗ (ω1)ω1
2 can be used to show that for each λ < ω1, [ω1]<ω1 has45

λ-regular cardinality. [ω1]<ω1 does not have ω1-regular cardinality since [ω1]<ω1 =
⋃

ϵ<ω1
[ω1]ϵ and |[ω1]ϵ| <46

|[ω1]<ω1 | for all ϵ < ω1.47

At the present time, the regular cardinals, R, and R/E0 are the only known locally or globally regular48

cardinalities. P(ω1) is the most natural candidate for another globally regular cardinality. The most49

important conjecture concerning regularity and cofinality is that P(ω1) has globally regular cardinality. [7]50

has amassed substantial evidence that P(ω1) should be globally regular under determinacy assumptions.51

P(ω1) is regular with respect to essentially every set (which does not already have an injective copy of P(ω1))52

for which one currently has a practical understanding: [5] showed that ω1 →∗ (ω1)ω1
2 implies that P(ω1)53

has ON-regular cardinality. One of the main results of [7] is that ω1 →∗ (ω1)ω1
<ω1

implies that P(ω1) has54

<ω1ON-regular cardinality. (It is open if the strong partition property ω1 →∗ (ω1)ω1
2 implies the very strong55

partition property ω1 →∗ (ω1)ω1
<ω1

; however, the very strong partition property on ω1 is a consequence of56

AD.). Assuming AD+, P(ω1) is regular with respect to quotient of many familiar Borel equivalence relations.57

If E is an equivalence relation with all classes countable, then P(ω1) has R/E-regular cardinality. If E is E0,58

E1, E2, a countable Borel equivalence relation, an essentially countable equivalence relation, a hyperfinite59

equivalence relation, a hypersmooth equivalence relation, or more generally a Σ1
1 equivalence relation which60

is pinned in any model of ZFC (in the sense of Zapletal [20]), then P(ω1) has R/E-regular cardinality. The61

Friedman-Stanley jump of =+ is not a pinned equivalence relation. Its quotient ωR/ =+ is in bijection with62

Pω1(R), the set of countable subsets of R. One can still show that P(ω1) has Pω1(R)-regular cardinality63

under AD+.64

As mentioned above, [ω2]<ω2 does not have ω2-regular cardinality. Intuitively, one would expect [ω2]<ω2 to65

at least have ω1-regular cardinality. Above, it was remarked that the strong partition property ω1 →∗ (ω1)ω1
266

implies [ω1]<ω1 has ω-regular cardinality. However, ω2 is a weak but non-strong partition cardinal and thus67

the argument for [ω1]<ω1 does not apply. Similarly, the intuition is that P(ω2) should be highly regular and68

perhap globally regular.69

However since ω2 is weak partition cardinal which not a strong partition cardinal, [ω2]<ω2 and P(ω2)70

seems just out of reach of the partition arguments and the Martin’s ultrapower analysis of ω2. (However,71

[ω2]<ω2 and more generally [ωn]<ω2 for 2 ≤ n < ω can still be analyzed through the ultrapowers by measures72

on ω1 as shown in [7]). Unlike P(ω1), nothing is known about the cofinality of P(ω2). For example, one73

does not know if P(ω2) even has 2-regular cardinality. The goal of this paper is to produce some evidence74

that [ω2]<ω2 and P(ω2) could have 2-regular cardinality or more generally could have ω1-regular cardinality.75

([7] has shown that [ω2]<ω2 and even [ωn]<ω2 are ω1-regular for all 2 ≤ n < ω.)76

If [ω2]<ω2 does not have ω1-regular cardinality, then one can decompose [ω2]<ω2 into an ω1-length sequence77

of disjoint sets ⟨Aα : α < ω1⟩ so that |Aα| < |[ω2]<ω2 |. Although the structure of the cardinalities below78

[ω2]<ω2 is far from understood, perhaps the largest natural cardinality of combinatorial flavor strictly below79
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[ω2]<ω2 is [ω2]ω1 . An instance of ω1-regularity for [ω2]<ω2 would be to show that [ω2]<ω2 cannot be a union80

of ω1-many sets ⟨Aα : α < ω1⟩ so that each |Aα| ≤ |[ω2]ω1 |.81

Perhaps the largest natural cardinality strictly below P(ω2) is |[ω2]<ω2 |. An instance of ω1-regularity82

for P(ω2) would be to show that P(ω2) cannot be a union of ω1-many sets ⟨Aα : α < ω1⟩ so that each83

|Aα| ≤ |[ω2]<ω2 |.84

The main results of this paper will verify these two instances of ω1-regularity:85

• (Theorem 3.18) Assume AD+. If ⟨Aα : α < ω1⟩ is such that [ω2]<ω2 =
⋃

α<ω1
Aα, then there exists86

an α < ω1 so that ¬(|Aα| ≤ |[ω2]ω1 |).87

• (Theorem 3.19) Assume AD+. If ⟨Aα : α < ω1⟩ is such that P(ω2) =
⋃

α<ω1
Aα, then there exists88

an α < ω1 so that ¬(|Aα| ≤ |[ω2]<ω|).89

Recently, the authors in [7] have fully verified under AD the conjecture that [ω2]<ω2 is ω1-regular: For any90

⟨Aα : α < ω1⟩ such that [ω2]<ω2 =
⋃

α<ω1
Aα, then there is an α < ω1 so that |Aα| = |[ω2]<ω2 |. (More91

generally, for all 2 ≤ n < ω, [ωn]<ω2 is ω1-regular.) The verification of ω1-regularity for [ω2]<ω2 (or more92

generally, [ωn]<ω2 when 2 ≤ n < ω) uses a very technical analysis of the ultrapower of ω1 by the club filter93

on ω1 where the type or length of a function into ω2 represented by a function f : ω1 → ω1 is not fixed by94

varies with f . It is still not known if P(ω2) is 2-regular.95

For each 1 ≤ n < ω, the projective ordinal δ1n is the supremum of the length of ∆1
n prewellorderings on96

R. It can be shown that for all n ∈ ω, δ12n+2 = (δ12n+1)+. δ11 = ω1 and δ12 = ω2. Also δ13 = ωω+1 and97

δ12n+2 = ωω+2. The last section will show that the results for ω1 and ω2 can be generalized to each odd98

projective ordinal δ12n+1 and the next even projective ordinal δ12n+2.99

• (Theorem 4.38) Assume AD+. Let n ∈ ω. If ⟨Aα : α < δ12n+1⟩ is such that P(δ12n+2) =
⋃

α<δ1
2n+1

Aα,100

then there is an α < δ12n+1 so that ¬(|Aα| ≤ |[δ12n+2]<δ1
2n+2 |).101

2. Cardinality of Sets of Functions on Ordinals102

Definition 2.1. If X and Y are sets, then let XY be the set of all functions from X to Y .103

If δ is a ordinal and X is a set, then let <δX =
⋃

ϵ<δ
ϵX.104

If δ and λ are ordinals and X ⊆ λ, then let [X]δ be the collection of all increasing functions f : δ → X.105

Let [X]<δ =
⋃

ϵ<δ[X]ϵ.106

If δ is a cardinals and X is a set, then let Pδ(X) = {A ∈ P(X) : |A| < δ}.107

If δ ≤ λ are ordinals, then let IB(δ, λ) = {f ∈ δλ : (∀α < δ)(sup(f ↾ α) < λ)}.108

This section collects some basic results concerning the cardinality of sets of the form [λ]δ, δλ, and [λ]<δ.109

Fact 2.2. Let δ ≤ λ be ordinals such that δ is a cardinal. Then |[λ]<δ| = |Pδ(λ)| = |<δλ|.110

Proof. Let Φ : [λ]<δ → Pδ(λ) be defined by Φ(f) = rang(f). Φ is a bijection.111

Let π : λ × λ → λ be a bijection. For f ∈ <δλ, let Gf = {π(α, β) : α ∈ dom(f) ∧ f(α) = β}. Note112

that since dom(f) ∈ δ and δ is a cardinal, |Gf | < δ. Thus Gf ∈ Pδ(λ). Define Ψ : <δλ → Pδ(λ) by113

Ψ(f) = Gf . Ψ is an injection. The previous paragraph showed there is an bijection of Pδ(λ) into [λ]<δ
114

and [λ]<δ ⊆ <δλ. Thus there is an injection Ψ : Pδ(λ) → <δλ. By the Cantor-Schröder-Bernstein theorem,115

|<δλ| = |Pδ(λ)| = |[λ]<δ|. □116

Say an ordinal λ is indecomposable if and only if for all α, β < λ, α+ β < λ and α · β < λ.117

Fact 2.3. If δ ≤ λ are ordinals and λ is indecomposable, then |IB(δ, λ)| = |[λ]δ|.118

Proof. For f ∈ IB(δ, λ), define Φ(f) ∈ [λ]δ by recursion as follows. Suppose for all β < δ, Φ(f) ↾ β has been119

defined and for all α < β, Φ(f)(α) ≤ sup(f ↾ α+1)·(α+1) < λ. Then sup(Φ(f) ↾ β) ≤ sup(f ↾ β)·β < λ since120

sup(f ↾ β) < λ and λ is indecomposable. Let Φ(f)(β) = sup(Φ(f) ↾ β) + f(β) which is less than λ since λ is121

indecomposable. Then Φ(f)(β) = sup(Φ(f) ↾ β) + f(β) ≤ sup(f ↾ β) ·β+ f(β) ≤ sup(f ↾ β+ 1) · (β+ 1) < λ122

since λ is indecomposable.123

This defines Φ : IB(δ, λ) → [λ]δ. Note that for all α < δ, f(α) is the unique ordinal γ so that Φ(f)(α) =124

sup(Φ(f) ↾ α) + γ. Thus Φ is an injection. Thus |IB(δ, λ)| ≤ |[λ]δ|. Since [λ]δ ⊆ IB(δ, λ), |[λ]δ| ≤ |IB(δ, δ)|.125

By the Cantor-Schröder-Bernstein, |[λ]δ| = |IB(δ, λ)|. □126
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Fact 2.4. Let δ ≤ λ be ordinals such that λ is indecomposable and δ ≤ cof(λ). Then |δλ| = |[λ]δ|.127

Proof. Suppose δ ≤ cof(λ). For all f ∈ δλ and α < δ, sup(f ↾ α) < λ. Thus δλ ⊆ B(δ, λ). Thus128

|δλ| = |B(δ, λ)| = |[λ]δ| by Fact 2.3. □129

Fact 2.5. Let δ ≤ λ be ordinals such that λ is indecomposable, cof(δ) = cof(λ), and δ < cof(λ)+. Then130

|δλ| = |[λ]δ|.131

Proof. Note that |δλ| = |cof(λ)λ| since |δ| = |cof(δ)|. By Fact 2.4, |cof(λ)λ| = |[λ]cof(λ)|. Thus |δλ| = |[λ]cof(λ)|.132

Thus it suffices to produce an injection of [λ]cof(λ) into [λ]δ. Let ρ : cof(λ) → δ. Since λ is indecomposable,133

δ · λ = λ. For each α < λ, let ι(α) be the least β < cof(λ) so that α ≤ ρ(β). For f ∈ [λ]cof(λ), let134

Φ(f) : δ → λ be defined by Φ(f)(α) = δ · f(ι(α)) + α. One can check that for all f ∈ [λ]cof(λ), Φ(f) ∈ [λ]δ135

and Φ : [λ]cof(λ) → [λ]δ is an injection. □136

Fact 2.6. If κ is a measurable cardinal (has a κ-complete nonprincipal ultrafilter on κ), then for all δ < κ,137

there is no injection of κ into P(δ).138

Proof. Suppose Φ : κ → P(δ) is a function. Let µ be a κ-complete nonprincipal ultrafilter on κ. For each139

α < δ and i ∈ {0, 1}, let Ai
α = {β < κ : Φ(β)(α) = i} (where elements of P(δ) are identified with elements140

of δ2). For each α < δ, let iα be the unique i ∈ {0, 1} so that Aiα
α ∈ µ. Since µ is κ-complete,

⋂
α<δ A

iα
α ∈ µ.141

Let f ∈ δ2 be defined by f(α) = iα. Since µ is nonprincipal, let α1 < α2 < δ so that α1, α2 ∈
⋂

α<δ A
iα
α .142

Φ(α1) = f = Φ(α2). Thus Φ is not an injection. □143

Under AD, ω1 is a strong partition cardinal and ω2 is a weak partition cardinal. Thus ω1 and ω2 are144

measurable cardinals. More generally, δ12n+1 is a strong partition cardinal and δ12n+2 is a weak partition145

cardinal. (It is known that δ13 = ωω+1 and δ14 = ωω+2.) (See [6], [17], or [18] for more information concerning146

partition properties under AD and the associated measures.)147

If κ is a cardinal, then one says boldface GCH holds at κ if and only if there is no injection of κ+ into148

P(κ). Boldface GCH holds below κ if and only if boldface GCH holds at all δ < κ. Fact 2.6 implies the149

following result.150

Fact 2.7. Assume AD. Boldface GCH holds at ω and ω1.151

Steel ([24] and [25]) showed that if L(R) |= AD, then L(R) |= “boldface GCH holds below Θ”. Thus by152

the Moschovakis coding lemma, it is a theorem of AD that boldface GCH holds below ΘL(R). More generally,153

Woodin showed that AD+ implies the boldface GCH holds below Θ.154

Fact 2.8. Suppose λ is cardinal and λ does not inject into P(κ) for any κ < λ. Then ¬(|[λ]cof(λ)| ≤155

|
⋃

δ≤κ<λ[κ]δ|).156

Proof. Suppose there is an injection Φ : [λ]cof(λ) →
⋃

δ≤κ<λ[κ]δ. Let Φ̃ ⊆ [λ]cof(λ) × λ × λ be defined by157

(f, α, β) ∈ Φ̃ if and only if α ∈ dom(Φ(f)) and Φ(f)(α) = β. L[Φ̃] |= ZFC. In L[Φ̃], define Ψ : [λ]cof(λ) →158 ⋃
δ≤κ<λ[κ]δ by Ψ(f)(α) = β if and only if Φ̃(f, α, β). Note Ψ ∈ L[Φ̃] and L[Φ̃] |= Ψ : [λ]cof(λ) →

⋃
δ≤κ<λ[κ]δ159

is an injection. If there are δ ≤ κ < λ so that L[Φ̃] |= λ ≤ |[κ]δ|, then there is an injection of λ into160

[κ]δ ⊆ P(κ) in the real world. This contradicts the assumption that λ does not inject into P(κ) for any161

κ < λ. Thus L[Φ̃] |= |
⋃

δ≤κ<λ[κ]δ| = λ. By a theorem of ZFC, L[Φ̃] |= |[λ]cof(λ)| ≥ λ+. It is impossible that162

L[Φ̃] |= Ψ : [λ]cof(λ) →
⋃

δ≤κ<λ[κ]δ is an injection. □163

Fact 2.9. Suppose κ is a regular cardinal and there is no injection of κ into P(δ) for any δ < κ. Then164

|[κ]<κ| < |P(κ)|.165

Proof. It is clear that |[κ]<κ| ≤ |P(κ)|. Since κ is regular, [κ]<κ =
⋃

δ≤µ<κ[µ]δ. By Fact 2.8, ¬(|P(κ)| =166

|[κ]κ| ≤ |
⋃

δ≤µ<κ[µ]δ]| = [κ]<κ). □167

Since Martin showed that ω2 → (ω2)22 (and in fact, ω2 → (ω2)ϵ2 for all ϵ < ω2), ω2 is a regular cardinal.168

Fact 2.10. Assume AD. |[ω2]<ω2 | < |P(ω2)|.169

Proof. This follows from Fact 2.7 and Fact 2.9. □170
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Fact 2.11. Let δ ≤ λ be ordinals such that cof(λ) < cof(δ) and λ does not inject into P(κ) for all κ < λ.171

Then |[λ]δ| < |δλ|.172

Proof. It is clear that [λ]δ ⊆ δλ. Since cof(δ) ̸= cof(λ), [λ]δ =
⋃

κ<λ[κ]δ ⊆
⋃

µ≤κ<λ[κ]µ. Define Ψ :

[λ]cof(λ) → δλ by

Ψ(f)(α) =

{
f(α) α < cof(λ)

0 cof(λ) < α
.

Ψ is an injection. Thus if there was an injection of δλ into |[λ]δ|, then there would be an injection of [λ]cof(λ)173

into
⋃

µ≤κ<λ[κ]µ which contradicts Fact 2.8. □174

Example 2.12. Assume AD. Recall Steel showed the boldface GCH holds below ΘL(R) (and one can directly175

use the analysis of the ultrapower by the finite partition measures on ω1 to show the boldface GCH below176

ωω+1).177

(1) |[ωω]ω1 | < |ω1ωω|. This follows from Fact 2.11. The cardinality of the collection of the increasing178

sequences can be smaller than the cardinality of the collection of all sequences.179

(2) |IB(ω1, ωω)| = |[ωω + ω]ω1 | < |IB(ω1, ωω + ω)| = |ω1(ωω + ω)|. To see this: Note that [ωω + ω]ω1 =180

[ωω]ω1 ⊆
⋃

δ≤κ<ωω
[κ]δ. Thus by Fact 2.8, [ωω]ω1 does not inject into

⋃
δ≤κ<ωω

[κ]δ and thus does not181

inject into [ωω+ω]ω1 . However [ωω]ω1 ⊆ IB(ω1, ωω+ω). This shows that |[ωω+ω]ω1 | < |IB(ω1, ωω+182

ω)|. Notice that ωω + ω is not indecomposable. This shows that the indecomposability assumption183

of Fact 2.3 is necessary. Also since [ωω + ω]ω1 = [ωω]ω1 , |[ωω + ω]ω1 | = |[ωω]ω1 | = |IB(ω1, ωω)|184

by Fact 2.3. Note that ω1(ωω) ⊆ IB(ω1, ωω + ω) ⊆ ω1(ωω + ω) and |ω1(ωω + ω)| = |ω1ωω|. Thus185

|ω1(ωω + ω)| = |IB(ω1, ωω + ω)|. This shows that |[ωω + ω]ω1 | < |ω1(ωω + ω)|.186

Fact 2.13.187

• ([8]) (AD) [ω1]<ω1 does not inject into ω(ωω).188

• ([8]) (AD + DCR). [ω1]<ω1 does not inject into ωON, the class of ω-sequences of ordinals.189

• ([9]) More generally, if κ →∗ (κ)<κ
2 (κ is a weak partition cardinal), then [κ]<κ does not inject into190

λON, for all λ < κ.191

Fact 2.14. Assume AD. |[ω2]ω1 | < |[ω2]<ω2 |.192

Proof. Under AD, Martin showed that ω2 is a weak partition cardinal (that is, satisfies ω2 →∗ (ω2)<ω2
2 ).193

The result follows from the third point in Fact 2.13. □194

Example 2.15. Assume AD. Note that ¬(|[ωω]ω| ≤ |[ωω]ω1 |). This is because if there was an injection of195

[ωω]ω into [ωω]ω1 , then there would be an injection of [ωω]ω into [ωω]ω1 =
⋃

ω1≤κ<ωω
[κ]ω1 ⊆

⋃
δ≤κ<ωω

[κ]δ196

which violates Fact 2.8. Note that ¬(|[ωω]ω1 | ≤ |[ωω]ω|). This is because [ω1]<ω1 injects into [ωω]ω1 and197

[ω1]<ω1 does not inject into ωON by Fact 2.13. Since [ωω]ω1 injects into [ωω]ω1+ω, this shows that |[ωω]ω| <198

|[ωω]ω1+ω|.199

See [4] for more information concerning distinguishing sets of the form [κ]δ and δκ for varying δ ≤ κ < Θ200

under AD+.201

3. Decomposition into ω1 Many Pieces202

Definition 3.1. Fix a bijection π : ω × ω → ω. If x ∈ ωω and k ∈ ω, then let x[k] ∈ ωω be defined by203

x[k](n) = x(π(k, n)).204

If x ∈ ω2, then define Rx ⊆ ω × ω by Rx(m,n) if and only if x(π(m,n)) = 1. Let field(x) = field(Rx) =205

{m : (∃n)(Rx(m,n) ∨Rx(n,m))}.206

Let WO = {w ∈ ω2 : Rw is a wellordering}. Let ot : WO → ω1 be defined by ot(w) is the order type of207

(field(w),Rw). If α < ω1, then let WOα = {w ∈ WO : ot(w) = α}.208

Definition 3.2. Let α < ω1. For s ∈ <ωα, let Nα
s = {f ∈ ωα : s ⊆ f}. Give ωα the topology generated by209

{Nα
s : s ∈ <ωα} as a basis (which is the product of the discrete topology on α). Then ωα is homeomorphic210

to ωω with its usual topology.211
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Under AD, all subsets of ωω have the Baire property and thus well ordered unions of meager subsets of212

ωω are meager in ωω. (For the latter fact: Given a wellordered sequence of meager sets whose union is213

nonmeager, consider the horizontal and vertical section of the prewellordering induced by the sequence to214

obtain a contradiction.) Therefore under AD, for all α < ω1, all subsets of ωα have the Baire property and215

wellordered unions of meager subsets of ωα are meager in ωα.216

For α < ω1, let surjα = {f ∈ ωω1 : f [ω] = α}. For all α < ω1, surjα is comeager in ωα.217

If α < ω1, p ∈ <ωα, and φ is a formula, then let (∀∗,αp f)φ(f) be the assertion that for comeagerly many218

f ∈ Nα
p , φ(f) holds.219

Definition 3.3. For each f ∈ ωω1, let Af = {n ∈ ω : (∀m < n)(f(m) ̸= f(n))}. (Note for all f ∈ ωω1,220

f ↾ Af : Af → f [ω] is a bijection.)221

For f ∈ ωω1, let G(f) ∈ ω2 be defined by G(f)(π(m,n)) = 1 if and only if m ∈ Af , n ∈ Af , and222

f(m) < f(n). G is a simple form of the Kechris-Woodin generic coding function for ω1 which is developed223

more generally in [16].224

Fact 3.4. G : ωω1 → WO and for all α < ω1, if f ∈ surjα, then G(f) ∈ WOα.225

Proof. Note that (field(G(f)),RG(f)) = (Af ,RG(f)) is order isomorphic to (f [Af ], <) where < is the usual226

ordering on ω1. Thus G(f) does indeed belong to WO. Also if f ∈ surjα, then f [Af ] = α and thus227

G(f) ∈ WOα. □228

Definition 3.5. Let ⟨ρr : r ∈ R⟩ be some standard coding of strategies ρ : <ωω → ω on ω by reals. Let229

Ξr : R → R be the Lipschitz continuous function corresponding to the strategy ρr. (That is, for each f ∈ ωω,230

Ξr(f) ∈ ωω is defined by recursion by Ξr(f)(n) = ρr(⟨f(0),Ξr(f)(0), ..., f(n−1),Ξr(f)(n−1), f(n)⟩).) Note231

that ⟨Ξr : r ∈ R⟩ is a coding of all Lipschitz continuous function by reals.232

If A,B ∈ R, then write A ≤L B if and only if there is an r ∈ R so that A = Ξ−1
r [B]. The Wadge lemma233

under AD asserts that for all A,B ∈ P(R), A ≤L B or (R \B) ≤L A.234

Martin-Monk showed that under AD and DCR, ≤L is a wellfounded relation. For each A ∈ P(R), let235

rkL(A) ∈ ON be the rank of A in ≤L. Let Θ be the supremum of the ordinals which are surjective images236

of R. It can be shown that Θ is the length of ≤L and thus for all A ∈ P(R), rkL(A) < Θ.237

Fact 3.6. (Moschovakis coding lemma) Assume AD. Let Γ be a pointclass closed under ∃R, ∧, and continuous238

preimages. Let (P,⪯) be a prewellordering in Γ. Let κ be the length of (P,⪯) and φ : P → κ be the associated239

surjective norm. If R ⊆ P × R, then there is an S ∈ Γ with the following property.240

• S ⊆ R241

• For all α < κ, there exists a p ∈ P and x ∈ R so that φ(p) = α and R(p, x) if and only if there exists242

a p ∈ P and x ∈ R so that φ(p) = α and S(p, x).243

The following is a useful coarse consequence of the Moschovakis coding lemma.244

Fact 3.7. If κ is a surjective image of R (i.e. κ < Θ), then R surjects onto P(κ).245

Fix the following notation which will be used in the discussion that follows: Let X be a surjective image246

of R. Fix π : R → X. Let δ ≤ λ < Θ. By Fact 3.7, there is a surjection ϖ : R → P(λ). If B ⊆ R, let247

TB = {(x, f) : (∃z ∈ B)(x = π(z[0])∧f = ϖ(z[1])}. Let ⟨Aα : α < ν⟩ be such that for all α < ν, Aα ⊆ X. (In248

this section, ν will either be ω or ω1.) In the below applications, |Aα| ≤ |<δλ| or |Aα| ≤ |δλ| for all α < ν.249

Elements of <δλ or δλ can be identified as elements of P(λ× λ) or of P(λ) (after coding pairs). As an250

example, if A ⊆ X and Φ : A→ <δλ, then the graph of Φ is TB where B = {z ∈ R : Φ(π(z[0])) = ϖ(z[1])}.251

Theorem 3.8. Assume AD. Suppose X is a surjective image of R. Let δ ≤ λ be cardinals so that 1 ≤ δ < Θ252

and ω ≤ λ < Θ. Let ⟨An : n ∈ ω⟩ be a sequence so that for all n ∈ ω, An ⊆ X. Assume one of the following253

three settings.254

(1) |Aα| ≤ |<δλ| for all n ∈ ω.255

(2) |Aα| ≤ |δλ| for all n ∈ ω.256

(3) |Aα| ≤ |[λ]δ| for all n ∈ ω.257

Assume that there is a Z ∈ P(R) so that for all n ∈ ω, there exists an r ∈ R so that TΞ−1
r [Z] is a graph of258

an injection of An into <δλ in (1) (into δλ in (2) or [λ]δ in (3)). Then, respectively, the following hold.259
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(1) |
⋃

n∈ω An| ≤ |<δλ|.260

(2)
⋃

n∈ω An| ≤ |δλ|.261

(3) |
⋃

n∈ω An| ≤ |[λ]δ|.262

Proof. Assume the setting of (1) that for all n ∈ ω, |An| ≤ |<δλ|. Let R ⊆ ω×R be defined by R(n, r) if and263

only if TΞ−1
r [Z] is the graph of an injection of An into <δλ. (Recall that Ξ−1

r [Z] is the subset of R Lipchitz264

reducible to Z via the Lipschitz continuous function Ξr and TΞ−1
r [Z] was defined before the statement of265

Theorem 3.8.) By ACR
ω, there is a sequence ⟨rn : n ∈ ω⟩ so that for all n ∈ ω, R(n, rn). Thus for all n ∈ ω,266

TΞ−1
rn [Z] is the graph of an injection An into <δλ. Let Φn : An → <δλ be the injection whose graph is TΞ−1

rn [Z].267

For each x ∈
⋃

n∈ω An, let ι(x) be the least n so that x ∈ An. Since ω ≤ λ, let ς : ω × λ→ λ be a bijection.268

Define Φ :
⋃

n∈ω An → <δλ by letting Φ(x) ∈ [λ]|Φι(x)(x)| be defined by Φ(x)(γ) = ς(ι(x),Φι(x)(x)(γ)).269

Suppose x ̸= y. If ι(x) ̸= ι(y), then Φ(x) ̸= Φ(y) since ς is a bijection. If ι(x) = ι(y) with common value270

n ∈ ω, then Φn(x) ̸= Φn(y) since Φn is an injection. Then again Φ(x) ̸= Φ(y) since ς is an injection. This271

establishes that Φ is an injection.272

In the setting of (2) in which for all n ∈ ω, |An| ≤ |δλ|, the proof is essentially the same.273

In the setting of (3) in which for all n ∈ ω, |An| ≤ |[λ]δ|, observe that the bijection ς : ω × λ→ λ may be274

chosen with the property that for all n ∈ ω and α < β < λ, ς(n, α) < ς(n, β). (For instance, ς derived from275

the Gödel pairing function would have such property.) Then the resulting function Φ(x) defined as above276

would belong to [λ]δ. □277

Theorem 3.9. Assume AD. Suppose X is a surjective image of R. Let ⟨Aα : α < ω1⟩ be a sequence so that278

for all α < ω1, Aα ⊆ X. Let δ and λ be cardinals such that ω1 ≤ δ ≤ λ < Θ. Assume one of the following279

three settings.280

(1) cof(δ) ≥ ω1 and for all α < ω1, |Aα| ≤ |<δλ|.281

(2) For all α < ω1, |Aα| ≤ |δλ|.282

(3) cof(λ) ≥ ω1, and for all α < ω1, |Aα| ≤ |[λ]δ|.283

Assume that there is a Z ∈ P(R) so that for all α < ω1, there exists an r ∈ R so that TΞ−1
r [Z] is the graph284

of an injection of Aα into [λ]<δ in (1) (into δλ in (2) or into [λ]δ in (3)). Then, respectively, the following285

hold.286

(1) |
⋃

α<ω1
Aα| ≤ |<δλ|.287

(2) |
⋃

α<ω1
Aα| ≤ |δλ|.288

(3) |
⋃

α<ω1
Aα| ≤ |[λ]δ|.289

Proof. Assume the setting of (1) that for all α < ω1, |Aα| ≤ |<δλ| where cof(δ) ≥ ω1. Since |<δλ\{∅}| = |<δλ|,290

injections from Aα into <δλ \ {∅} will be considered to simplify notation.291

Let WO ⊆ R be the Π1
1 set of reals coding wellorderings and ot : WO → ω1 be the associated surjective292

norm given by the order type function. Define R ⊆ WO × R by R(w, r) if and only if TΞ−1
r [Z] is the graph293

of an injection of Aot(w) into <δλ \ {∅}. (WO, ot) is a prewellordering which belongs to the pointclass Σ1
2294

which is closed under continuous preimage, ∧, and ∃R. By the Moschovakis coding lemma (Fact 3.6), there295

is a Σ1
2 set S ⊆ R so that for all α < ω1, there is a w ∈ WOα and r ∈ R so that S(w, r). Let ≤Π1

1
∈ Π1

1 and296

≤Σ1
1
∈ Σ1

1 be the two norm relations which witness that (WO, ot) is a Π1
1-norm. Let S̃(w, r) if and only if297

w ∈ WO ∧ (∃v)(v ≤Σ1
1
w ∧w ≤Σ1

1
v ∧ S(v, r)). S̃ ∈ Σ1

2 and dom(S̃) = WO. Since Σ1
2 has the scale property,298

let Λ : WO → R be a uniformization with the property that for all w ∈ WO, S̃(w,Λ(w)). Thus for all299

w ∈ WO, R(w,Λ(w)). For all w ∈ WO, TΞ−1
Λ(w)

[Z] is the graph of an injection of Aot(w) into <δλ \ {∅}. For300

each w ∈ WO, let Φw : Aot(w) → <δλ \ {∅} be the injection whose graph is TΞ−1
Λ(w)

[Z].301

For each x ∈
⋃

α<ω1
Aα, let ι(x) be the least α < ω1 so that x ∈ Aα. Note that |<ωω1| = |ω1|. Let

σ : ω1 × <ωω1 × δ × λ→ λ be a bijection. Define

Υ(x) = {σ(ι(x), p, η, ζ) : (∃ϵ < δ)(∀∗,ι(x)p f)(ϵ = dom(ΦG(f)(x)) ∧ η < ϵ ∧ ΦG(f)(x)(η) = ζ)}.

Observe that Υ(x) ∈ P(λ).302
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Fix x ∈
⋃

α<ω1
Aα. Let Kx = {p ∈ <ωι(x) : (∃η, ζ)(σ(ι(x), p, η, ζ) ∈ Υ(x)}. If p ∈ Kx, then there303

is a unique ϵ < δ so that (∀∗,ι(x)p f)(dom(ΦG(f)(x)) = ϵ). To see this, suppose ϵ, ϵ̂ < δ are such that304

(∀∗,ι(x)p f)(dom(ΦG(f)(x)) = ϵ) and (∀∗,ι(x)p f)(dom(ΦG(f)(x)) = ϵ̂). Let A0 = {f ∈ N
ι(x)
p : dom(ΦG(f)(x)) =305

ϵ} and A1 = {f ∈ N
ι(x)
p : dom(ΦG(f)(x)) = ϵ̂}. A0 and A1 are comeager subsets of N

ι(x)
p . Thus A0∩A1 ̸= ∅.306

Let h ∈ A0 ∩ A1. Then ϵ = dom(ΦG(h)(x)) = ϵ̂. Let ϵxp be this unique ϵ associated to x and p. Let307

Ux,p = {η < ϵxp : (∃ζ)(σ(ι(x), p, η, ζ) ∈ Υ(x)}. Note that |Ux,p| ≤ |ϵxp |. If η ∈ Ux,p, there is a unique ζ such308

that σ(ι(x), p, η, ζ) ∈ Υ(x). To see this, suppose ζ1, ζ2 so that σ(ι(x), p, η, ζ1), σ(ι(x), p, η, ζ2) ∈ Υ(x). Then309

B0 = {f ∈ N
ι(x)
p : ΦG(f)(x)(η) = ζ1} and B1 = {f ∈ N

ι(x)
p : ΦG(f)(x)(η) = ζ2} are comeager in N

ι(x)
p .310

B0 ∩ B1 is comeager in N
ι(x)
p . Let h ∈ B0 ∩ B1. Then ζ1 = ΦG(h)(x)(η) = ζ2. Let ζxp,η be this unique ζ.311

Thus Υ(x) = {σ(ι(x), p, η, ζxp,η) : p ∈ Kx ∧ η ∈ Ux,p}. Thus |Υ(x)| ≤ |
⋃

p∈Kx
Ux,p| ≤ sup{|ϵxp | : p ∈ Kx} < δ312

since |Kx| ≤ |<ωι(x)| = ω because ι(x) < ω1 and cof(δ) > ω. Thus Υ(x) has cardinality less than δ and313

hence Υ(x) ∈ Pδ(λ). It has been shown that Υ :
⋃

α<ω1
Aα → Pδ(λ).314

Next, one will show that for all x ∈
⋃

α<ω1
Aα, Υ(x) ̸= ∅. Let α = ι(x). Let E1 : surjα → δ be defined315

by E1(f) = dom(ΦG(f)(x)). Since wellordered unions of meager subsets of ωα is a meager subset of ωα and316

surjα is a comeager subset of ωα, there is some ϵ < δ so that E−1
1 [{ϵ}] is nonmeager. Let E2 : E−1

1 [{ϵ}] → λ317

be defined by E2(f) = ΦG(f)(x)(0). Again since E−1
1 [{ϵ}] is nonmeager and wellordered unions of meager318

sets are meager, there is some ζ < λ so that E−1
2 [{ζ}] is nonmeager. By the Baire property, there is a319

p ∈ <ωα so that E−1
2 [{ζ}] is comeager in Nα

p . Then σ(α, p, 0, ζ) ∈ Υ(x). Υ(x) ̸= ∅.320

Next, to show Υ is an injection. Suppose x ̸= y. First, suppose ι(x) ̸= ι(y). Above, it was shown321

that Υ(x) ̸= ∅. Let σ(ι(x), p, η, ζ) ∈ Υ(x). Since σ is an injection and all elements of Υ(y) take the form322

σ(ι(y), p̂, η̂, ζ̂), Υ(x) ̸= Υ(y). Next, suppose that ι(x) = ι(y) and denote this common ordinal by α. Let323

D = {f ∈ surjα : dom(ΦG(f)(x)) ̸= dom(ΦG(f)(y))}. First suppose D is nonmeager. Consider ϖ : D → δ× δ324

by ϖ(f) = (dom(ΦG(f)(x)),dom(ΦG(f)(y))). Since a wellordered union of meager sets is meager and D325

is not meager, there is some ϵ1, ϵ2 < δ so that ϖ−1[{(ϵ1, ϵ2)}] is nonmeager. Without loss of generality,326

suppose ϵ1 < ϵ2. Define ς : ϖ−1[{(ϵ1, ϵ2)}] → λ by ς(f) = ΦG(f)(y)(ϵ1). Since ϖ−1[{(ϵ1, ϵ2)}] is nonmeager327

and wellordered union of meager sets is meager, there is a ζ ∈ λ so that ς−1[{ζ}] is nonmeager. By the328

Baire property, let p ∈ <ωα be such that ς−1[{ζ}] is comeager in Nα
p . Then σ(α, p, ϵ1, ζ) ∈ Υ(y). However,329

σ(α, p, ϵ1, ζ) /∈ Υ(x) since (∀∗,αp f)(dom(ΦG(f)(x)) = ϵ1). In this case, Υ(x) ̸= Υ(y). Finally, suppose ωα \D330

is comeager. Let Σ : ωα \D → δ be defined by Σ(f) = dom(ΦG(f)(x)) = dom(ΦG(f)(y)). Since ωα \D is331

comeager, there is some ϵ < δ so that Σ−1[{ϵ}] is nonmeager. Note that since ΦG(f) is an injection for all332

f ∈ surj(α), ΦG(f)(x) ̸= ΦG(f)(y). Define Π : Σ−1[{ϵ}] → ϵ be defined by Π(f) is the least η < ϵ so that333

ΦG(f)(x)(η) ̸= ΦG(f)(y)(η). Since Σ−1[{ϵ}] is nonmeager, there is an η < ϵ so that Π−1[{η}] is nonmeager.334

Let Γ : Π−1[{η}] → λ × λ be defined by Γ(f) = (ΦG(f)(x)(η),ΦG(f)(y)(η)). Since Π−1[{η}] is nonmeager,335

there are ζ1, ζ2 ∈ λ with ζ1 ̸= ζ2 so that Γ−1[{(ζ1, ζ2)}] is nonmeager. Since all subsets of ωα have the336

Baire property, there is a p ∈ <ωα so that Γ−1[{(ζ1, ζ2)}]is comeager in Nα
p . Then σ(α, p, η, ζ1) ∈ Υ(x) and337

σ(α, p, η, ζ1) /∈ Υ(y). Thus Υ(x) ̸= Υ(y). It has been shown that Υ :
⋃

α<ω1
Aα → Pδ(λ) is an injection.338

Fact 2.2 shows |<δλ| = |Pδ(λ)|.339

Next assume the setting of (2). The following will sketch the necessary modifications. By the same
argument as above, for each w ∈ WO, there is an injection Φw : Aot(w) → δλ. Let

Kx = {(p, η) : p ∈ <ωι(x) ∧ η < δ ∧ (∃ζ < λ)(∀∗,ι(x)p f)(ΦG(f)(x)(η) = ζ)}

For each (p, η) ∈ Kx, by the argument provided above, there is a unique ζ so that (∀∗,ι(x)p f)(ΦG(f)(x)(η) = ζ).
Thus for each (p, η) ∈ Kx, let ζxp,η be this unique ζ. Note that Kx ⊆ <ωι(x) × δ ⊆ <ωω1 × δ. Let

τ : <ωω1 × δ → δ be a bijection. Let µ : ω1 × λ→ λ be a bijection. Define Υ : X → δλ by

Υ(x)(α) =

{
µ(ι(x), 0) τ−1(α) /∈ Kx

µ(ι(x), ζxp,η) τ−1(α) ∈ Kx ∧ τ−1(α) = (p, η)
.

Finally, one will to show Υ is an injection. Suppose x, y ∈
⋃

α<ω1
Aα and x ̸= y. If ι(x) ̸= ι(y), then340

Υ(x) ̸= Υ(y) since µ is a bijection. Now suppose ι(x) = ι(y) and let α denote this common ordinal.341

For all f ∈ surjα, ΦG(f)(x) ̸= ΦG(f)(y). Let Σ : surjα → δ be defined by Σ(f) is the least η < δ so342
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that ΦG(f)(x)(η) ̸= ΦG(f)(y)(η). Since surjα is comeager in ωα and wellordered unions of meager sets343

are meager, there is an η < δ so that Σ−1[{η}] is nonmeager. Let Π : Σ−1[{η}] → λ × λ be defined by344

Π(f) = (ΦG(f)(x)(η),ΦG(f)(y)(η)). Since Σ−1[{η}] is nonmeager, there is some ζ1, ζ2 < λ so that ζ1 ̸= ζ2345

and Π−1[{(ζ1, ζ2)}] is nonmeager. By the Baire property, let p ∈ <ωα so that Π−1[{(ζ1, ζ2)}] is comeager in346

Nα
p . Let β = τ(p, η). Then Υ(x)(β) = µ(α, ζ1) ̸= µ(α, ζ2) = Υ(y)(β). Thus Υ(x) ̸= Υ(y). It has been shown347

that Υ is an injection.348

Assume the setting of (3). Let Kx, ζxp,η, and τ : <ωω1 × δ → δ be defined as in (2). The bijection349

µ : ω1×λ→ λ can be chosen with the property that for all ν < ω1 and γ < λ, sup{µ(ν, β) : β < γ} < λ. Let350

Υ be defined as above in (2). For x ∈ X, γ < δ, and p ∈ <ωι(x), let P x
γ,p = {η ∈ δ : τ(p, η) < γ∧τ(p, η) ∈ Kx}.351

For each p ∈ <ωι(x), let F x
p,γ = {ζxp,η : η ∈ P x

γ,p}. The claim is that F x
p,γ is bounded below λ. To see this,352

suppose F x
p,γ is not bounded below λ. For each η ∈ P x

γ,p, let Y x
p,γ,η = {f ∈ N

ι(x)
p : ΦG(f)(x)(η) = ζxp,η}.353

Each Y x
p,γ,η is comeager in N

ι(x)
p . Since wellordered intersection of comeager subsets of N

ι(x)
p is comeager354

in N
ι(x)
p ,

⋂
η∈Px

γ,p
Y x
p,γ,η is comeager in N

ι(x)
p and is in particular nonempty. Let f ∈

⋂
η∈Px

γ,p
Y x
p,γ,η. Then355

sup(ΦG(f)(x) ↾ γ) ≥ sup{ζxp,η : η ∈ P x
γ,p} = sup(F x

p,γ) = λ. Then since γ < δ, ΦG(f)(x)(γ) ≥ λ and hence356

ΦG(f)(x) /∈ [λ]δ. Contradiction. Thus for all p ∈ <ωι(x), sup(F x
p,γ) < λ. Since cof(λ) > ω and |<ωι(x)| = ω,357

sup{sup(F x
p,γ) : p ∈ <ωι(x)} < λ. Note that sup(Υ(x) ↾ γ) ≤ sup{µ(ι(x), ζ) : ζ ∈

⋃
p∈<ωι(x) F

x
p,γ} ≤358

sup{µ(ι(x), ζ) : ζ < sup{sup(F x
p,γ) : p ∈ <ωι(x)}} < λ (by the property of chosen bijection µ). This shows359

that Υ :
⋃

α<ω1
Aα → IB(δ, λ). Υ is an injection by the same argument as in (2). The result now follows360

from Fact 2.3. □361

Theorem 3.10. Assume AD, DCR, and cof(Θ) > ω1. Let X be a surjective image of R. Let ⟨Aα : α < ω1⟩362

be a sequence so that for all α < ω1, Aα ⊆ X. Let δ and λ be cardinals so that ω1 ≤ δ ≤ λ < Θ. Assume363

one of the following three settings.364

(1) cof(δ) ≥ ω1 and for all α < ω1, |Aα| ≤ |<δλ|.365

(2) For all α < ω1, |Aα| ≤ |δλ|.366

(3) cof(λ) ≥ ω1 and for all α < ω1, |Aα| ≤ |[λ]δ|.367

Then, respectively, the following hold.368

(1) |
⋃

α<ω1
Aα| ≤ |<δλ|.369

(2) |
⋃

α<ω1
Aα| ≤ |δλ|.370

(3) |
⋃

α<ω1
Aα| ≤ |[λ]δ|.371

Proof. For each α < ω1, let βα be the least β so that there is some B ∈ P(R) with rkL(B) = β and TB is372

the graph of an injection of Aα into <δλ. Since cof(Θ) > ω1, sup{βα : α < ω1} < Θ. Let Z ∈ P(R) so that373

rkL(Z) = sup{βα : α < ω1}. The result now follows from Theorem 3.9. □374

Theorem 3.11. Assume AD, DCR, and cof(Θ) > ω. Suppose X is a surjective image of R. Let 1 ≤ δ < Θ375

and ω ≤ λ < Θ. Let ⟨An : n ∈ ω⟩ be a sequence so that for all n ∈ ω, Aα ⊆ X. Assume one of the following376

three settings.377

(1) |Aα| ≤ |<δλ| for all n ∈ ω.378

(2) |Aα| ≤ |δλ| for all n ∈ ω.379

(3) |Aα| ≤ |[λ]δ| for all n ∈ ω380

Then, respectively, the following hold.381

(1) |
⋃

n∈ω An| ≤ |<δλ|.382

(2) |
⋃

n∈ω An| ≤ |δλ|.383

(3) |
⋃

n∈ω An| ≤ |[λ]δ|.384

Proof. The argument is similar to the proof of Theorem 3.10 using Theorem 3.8. □385

Woodin defined an extension of AD called AD+ which includes (1) DCR, (2) all sets of reals are ∞-Borel,386

and (3) ordinal determinacy (For every λ < Θ, continuous function π : ωλ→ R, and A ⊆ R, the game on λ387

with payoff π−1[A] is determined). It is open whether AD and AD+ are equivalent. Basic information about388

aspects of AD+ can be found in [3], [6], [19], and [17].389
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Fact 3.12. (Woodin) Suppose AD+ and V = L(P(R)). Then either ADR holds or there is a set of ordinals390

J so that V = L(J,R).391

Fact 3.13. If AD+, ¬ADR, and V = L(P(R)), then Θ is regular.392

Proof. By Fact 3.12, there is a set of ordinals J so that V = L(J,R). All sets in L(J,R) are ordinal definable
from J and an r ∈ R. For each r ∈ R and α < Θ, if there is an OD{J,r} surjection ϖ : R → α, then let
ϖα,r : R → α be the least such surjection according to the canonical wellordering of OD{J,r}. For each
α < Θ, let πα : R → α be defined by

πα(x) =

{
ϖx[0](x[1]) if there is an OD{J,x[0]} surjection of R onto α

0 otherwise.

πα is a surjection. This define the sequence ⟨πα : α < Θ⟩ so that πα : R → α is a surjection for each α < Θ.393

Now suppose cof(Θ) < Θ. Let τ : R → cof(Θ) be a surjection. Define σ : R → Θ by σ(x) = πτ(x[0])(x
[1]). σ394

is a surjection onto Θ which is impossible. □395

Let 1 ≤ n < ω and A ⊆ Rn (again R refers to ωω). A is Suslin if and only if there is an ordinal λ and a396

tree T ⊆ ωn × λ so that A = {(x1, ..., xn) ∈ Rn : (∃f ∈ ωλ)((x1, ..., xn, f) ∈ [T ]}. A ⊆ Rn is coSuslin if and397

only if Rn \A is Suslin.398

Fact 3.14. (Woodin) Assume AD+ and ADR. All sets of reals are Suslin.399

A transitive set M is said to be Suslin and coSuslin if and only if there is a surjection π : R → M so
that the equivalence relation Eπ ⊆ R × R on R and the relation Fπ ⊆ R × R defined below are Suslin and
coSuslin:

x Eπ y ⇔ π(x) = π(y) and (x, y) ∈ Fπ ⇔ π(x) ∈ π(y).

Note that M is in bijection with R/Eπ. Let F̃π ⊆ R/Eπ × R/Eπ be defined by ([x]Eπ , [y]Eπ ) ∈ F̃π if and400

only if (x, y) ∈ Fπ. Then (M,∈) is ∈-isomorphic to (R/Eπ, F̃π). In other words, M is Suslin and CoSuslin401

if it has a natural coding on R which is Suslin and coSuslin.402

Let S be the union of the collection of all transitive set which are Suslin and coSuslin. (S,∈) is a403

∈-structure. In general, one says a set X is Suslin and coSuslin if and only if X ∈ S.404

Woodin showed that AD+ implies the following reflection property.405

Fact 3.15. (Woodin; [22]) (Σ1-reflection into Suslin and coSuslin) Assume AD+ and V = L(P(R)). S ≺Σ1
406

(V,∈). (That is, S is a Σ1-elementary substructure of the universe V .)407

Theorem 3.16. Assume AD+. Let X be a surjective image of R. Let ⟨Aα : α < ω1⟩ be a sequence so that408

for all α < ω1, Aα ⊆ X. Let δ and λ be cardinals so that ω1 ≤ δ ≤ λ < Θ. Assume one of the following409

three settings.410

(1) cof(δ) ≥ ω1 and for all α < ω1, |Aα| ≤ |<δλ|.411

(2) For all α < ω1, |Aα| ≤ |δλ|.412

(3) cof(λ) ≥ ω1 and for all α < ω1, |Aα| ≤ |[λ]δ|.413

Then, respectively, the following hold.414

(1) |
⋃

α<ω1
Aα| ≤ |<δλ|.415

(2) |
⋃

α<ω1
Aα| ≤ |δλ|.416

(3)
⋃

α<ω1
Aα| ≤ |[λ]δ|.417

Proof. Consider the setting of (1). Let ς : R → X be a surjection. Define an equivalence relation E on R by418

x E y if and only if ς(x) = ς(y). Note that X is in bijection with R/E. For each α < ω1, let Kα = ς−1[Aα]419

and Eα = E ↾ Kα. Then Kα/Eα ⊆ R/E and Aα is in bijection with Kα/Eα. Injections of Aα into <δλ420

induce injections of Kα/Eα into <δλ. Let π : R → R/E be defined by π(x) = [x]E . Let ϖ : R → P(λ)421

be a surjection given by Fact 3.7. Then injections between Kα/Eα and [λ]<δ can be coded by sets of reals422

through the coding B 7→ TB described above. This shows that X and ⟨Aα : α < ω1⟩ with the property423

stated in setting (1) are in bijection with objects R/E and ⟨Kα/Eα : α < ω1⟩ with the properties in setting424

(1) which belong to L(P(R)). It suffices to prove the theorem in L(P(R)).425
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With this discussion in mind, one will now assume AD+, V = L(P(R)), and that X and ⟨Aα : α < ω1⟩426

belong to L(P(R)) with the properties stated in (1). If cof(Θ) > ω1, then the result follows from Theorem427

3.10. Suppose cof(Θ) ≤ ω1. Thus Θ is singular and hence ADR holds by Fact 3.13. Assume for the sake of428

contradiction that there is a set X and a sequence ⟨Aα : α < ω1⟩ satisfying (1) and ¬(|
⋃

α<ω1
Aα| ≤ |<δλ|).429

Let Y =
⋃

α<ω1
Aα and thus ¬(|Y | ≤ |<δλ|). Since all sets of reals are Suslin and coSuslin by Fact 3.14 since430

AD+ and ADR holds, the sets Y , δ, and λ are Suslin and coSuslin and hence belong to S.431

Let ψ be the following sentence with δ, λ, and Y as a parameter: δ ≤ λ < Θ̇ and there exists a sequence432

⟨Ãα : α < ω1⟩ so that Y =
⋃

α<ω1
Ãα and for all α < ω1, |Aα| ≤ |<δλ|. (Θ̇ is an abbreviation for the ordinal433

defined as the supremum of the ordinals which are surjective images of R.) Let T be some sufficiently strong434

finite fragment of ZF. Let φ be the following Σ1-sentence with Y , δ, λ, and R as parameters: There exists435

a transitive set M |= T + AD so that R ⊆ M and M |= ψ. Let ⪯ be a prewellordering of length λ whose436

associated norm was used to define the surjectionϖ : R → P(λ) which appears in the coding described before437

Theorem 3.8. Since L(P(R)) |= “T, AD, and ψ” and using reflection on the hierarchy ⟨Lα(P(R)) : α < ON⟩,438

there is an ordinal α ≥ Θ such that Lα(P(R)) |= “T, AD, and ψ”. Thus L(P(R)) |= φ as witnessed by439

Lα(P(R)). By Σ1-reflection into Suslin and coSuslin (Fact 3.15), S |= φ. Let M ∈ S be a transitive set440

containing R so that M |= ψ. Let ⟨Ãα : α < ω1⟩ with Y =
⋃

α<ω1
Ãα witness the existential quantifier in ψ.441

Since for each α < ω1, M |= |Ãα| ≤ |<δλ|, R ⊆M , satisfies AD, and has the prewellordering ⪯ used to code442

injections of subsets of Y into <δλ, there is some B ∈ P(R)∩M so that TB codes the graph of an injection443

of Ãα into <δλ. Since M ∈ S implies M is a surjective image of R, sup{rkL(B) : B ∈ P(R)∩M} < ΘV . In444

the real world, let Z ∈ P(R) be such that rkL(Z) ≥ sup{rkL(B) : B ∈ P(R)∩M}. Note that for all α < ω1,445

there is an r ∈ R so that TΞ−1
r [Z] codes the graph of an injection of Ãα into [λ]<δ. Applying Theorem 3.9 in446

the real world to ⟨Ãα : α < ω1⟩, one has that |Y | = |
⋃

α<ω1
Ãα| ≤ |<δλ|. This contradicts the assumption447

that ¬(|Y | ≤ |<δλ|). □448

Theorem 3.17. Assume AD+. Suppose X is a surjective image of R. Let 1 ≤ δ < Θ and ω ≤ λ < Θ. Let449

⟨An : n ∈ ω⟩ be a sequence so that for all n ∈ ω, Aα ⊆ X. Assume one of the following three settings.450

(1) |Aα| ≤ |<δλ| for all n ∈ ω.451

(2) |Aα| ≤ |δλ| for all n ∈ ω.452

(3) |Aα| ≤ |[λ]δ| for all n ∈ ω453

Then, respectively, the following hold.454

(1) |
⋃

n∈ω An| ≤ |<δλ|.455

(2) |
⋃

n∈ω An| ≤ |δλ|.456

(3) |
⋃

n∈ω An| ≤ |[λ]δ|.457

Proof. The proof follows the template of the proof of Theorem 3.16 using Theorem 3.8. □458

Theorem 3.18. Assume AD+ (or AD, DCR, and cof(Θ) > ω1). If ⟨Aα : α < ω1⟩ is a sequence such that459 ⋃
α<ω1

Aα = [ω2]<ω2 , then there is an α < ω1 so that ¬(|Aα| ≤ |[ω2]ω1 |).460

Proof. Suppose ⟨Aα : α < ω1⟩ is a sequence such that [ω2]<ω2 =
⋃

α<ω1
Aα. Suppose for the sake of461

contradiction that for all α < ω1, |Aα| ≤ |[ω2]ω1 |. By Theorem 3.16, |[ω2]<ω2 | ≤ |[ω2]ω1 | which violates Fact462

2.14. □463

Theorem 3.18 is regarded as partial evidence that [ω2]<ω2 is ω1-regular which means for any ⟨Aα : α < ω1⟩464

such that
⋃

α<ω1
Aα = [ω2]<ω2 , there is an α < ω1 so that |Aα| = |[ω2]<ω2 |. This conjecture has recently465

been solved by the author. [7] showed that under AD, [ω2]<ω2 has ω1-regular cardinality. However, it is still466

not known if P(ω2) is ω1-regular or even 2-regular. The following is some evidence.467

Theorem 3.19. Assume AD+ (or AD, DCR, and cof(Θ) > ω1). If ⟨Aα : α < ω1⟩ is a sequence such that468 ⋃
α<ω1

Aα = P(ω2), then there is an α < ω1 so that ¬(|Aα| ≤ |[ω2]<ω2 |).469

Proof. Suppose ⟨Aα : α < ω1⟩ is a sequence such that P(ω2) =
⋃

α<ω1
Aα. Suppose for the sake of470

contradiction that for all α < ω1, |Aα| ≤ |[ω2]<ω2 |. By Theorem 3.16, |P(ω2)| ≤ |[ω2]<ω2 | which violates471

Fact 2.10. □472
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Since under AD, ω3 is singular with cof(ω3) = ω2, Fact 2.9 cannot be used to show [ω3]<ω3 or even [ω3]ω2473

have smaller cardinality than P(ω3). However [4] shows that |[ω3]ω2 | < |[ω3]<ω3 | ≤ |P(ω3)| under AD+ by474

the following result.475

Fact 3.20. ([4]) Assume AD+.476

(1) (ABCD Conjecture) Let α, β, γ, and δ be cardinals such that ω ≤ α ≤ β < Θ and ω ≤ γ ≤ δ < Θ.477

|αβ| ≤ |γδ| if and only if α ≤ γ and β ≤ δ.478

(2) If κ < Θ is a cardinal and ϵ < κ, then |ϵκ| < |<κκ|.479

It is still open if |[ω3]<ω3 | < |P(ω3)|. The following result implies that if one decomposes [ω3]<ω3 or480

P(ω3) into ω1-many pieces ⟨Aα : α < ω1⟩. Then at least one piece Aα does not inject into [ω3]ω2 .481

Theorem 3.21. Assume AD+ (or AD, DCR, and cof(Θ) > ω1).482

(1) If ω1 ≤ κ < Θ is a regular cardinal and ⟨Aα : α < ω1⟩ is a sequence such that
⋃

α<ω1
Aα = P(κ),483

then there is an α < ω1 so that ¬(|Aα| ≤ |[κ]<κ|).484

(2) If ω1 ≤ ϵ < κ < Θ and ⟨Aα : α < ω1⟩ is a sequence such that
⋃

α<ω1
Aα = <κκ, then there is an485

α < ω1 so that ¬(|Aα| ≤ |ϵκ|).486

(3) If ω1 ≤ ϵ < κ < Θ and ⟨Aα : α < ω1⟩ is a sequence such that
⋃

α<ω1
Aα = P(κ), then there is an487

α < ω1 so that ¬(|Aα| ≤ |ϵκ|).488

Proof. (1) If |Aα| ≤ |[κ]<κ| = |<κκ|, then |P(κ)| = |<κκ| by Theorem 3.16. Since AD+ implies boldface489

GCH below Θ, this would contradict Fact 2.9.490

(2) If |Aα| ≤ |ϵκ|, then |<κκ| = |ϵκ| by Theorem 3.16. This would contradict Fact 3.20.491

The proof of (3) is similar. □492

4. Decomposition into a Suslin Cardinal Many Pieces493

This section will consider a decomposition of sets into κ many pieces where κ is a Suslin cardinal. Kechris494

and Woodin ([16]) developed a more general generic coding function on Suslin cardinals (or more generally495

reliable ordinals). In the previous section, the wellordered additivity of the meager ideal had a prominent496

role in many arguments. For κ > ω, there is no clear analog of this for ωκ and its generic coding function.497

However, if S ⊆ κ is a countable set, then ωS is homeomorphic to R and thus under AD, the meager ideal on498

ωS (with its usual topology) will satisfy the full wellordered additivity. The idea will be to do an argument499

similar to the previous section for each countable S ⊆ κ and then take an ultrapower by a supercompact500

measure on Pω1
(κ), the set of all countable subsets of κ. One will need to impose conditions regarding501

the ultrapower maps of the supercompact measure to successfully generalize these arguments. However, one502

will still be able establish the analog of the main result of the previous section (concerning decomposition of503

P(ω2) = P(δ12) into ω1 = δ11 many pieces) for decomposition of P(ωω+2) = P(δ14) into ωω+1 = δ13 many504

pieces.505

Definition 4.1. An ordinal λ is reliable if and only if there is a scale φ⃗ = ⟨φn : n ∈ ω⟩ on a set W ⊆ R506

such that the following holds.507

(1) For all n ∈ ω, φn : W → λ and φ0 : W → λ is a surjection.508

(2) The relation S0(x, y) defined by x, y ∈W ∧φ0(x) ≤ φ0(y) and S1(x, y) defined by x, y ∈W ∧φ0(x) <509

φ0(y) are Suslin subsets of R2.510

φ⃗ with the above property will be called the reliability witness for λ.511

If σ ⊆ λ is countable and ξ ∈ σ, then σ is said to be ξ-honest (relative to φ⃗) if and only if there is a512

w ∈ W so that φ0(w) = ξ and for all n ∈ ω, φn(ξ) ∈ σ. Such a w ∈ W will be called a ξ-honest witness for513

σ (relative to φ⃗). A countable σ ⊆ λ is honest (relative to φ⃗) if and only if for all ξ ∈ σ, σ is ξ-honest.514

Fact 4.2. Suppose λ is a reliable ordinal with reliability witness φ⃗ which is a scale on a set W ⊆ R. For515

each ξ < λ, there is a countable set σ so that σ is ξ-honest relative to φ⃗.516

Proof. Let w ∈W so that φ0(w) = ξ which is possible since φ0 : W → λ is surjective. Let σ = {φn(w) : n ∈517

ω}. σ is ξ-honest with w as its ξ-honest witness. □518
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It is generally not possible to uniformly associate ξ to a countable ξ-honest set (relative to a reliability519

witness). However if λ is a reliable ordinal of uncountable cofinality, then one can at least uniformly associate520

an ordinal less than λ which is ξ-honest which will be sufficient for applications here.521

Fact 4.3. Suppose λ is a reliable ordinal with reliability witness φ⃗ and cof(λ) > ω. For each ξ < λ, there is522

a ξ′ < λ so that for all γ with ξ′ ≤ γ < λ, γ is ξ-honest relative to φ⃗.523

Proof. By Fact 4.2, there is a countable σ̄ ⊆ λ which is ξ-honest. ξ′ = sup(σ) < λ since cof(λ) > ω. Suppose524

γ is such that ξ′ ≤ γ < κ. Since σ̄ ⊆ γ, γ is ξ-honest. □525

Definition 4.4. Let X be a set. Let Pω1
(X) = {σ ∈ P(X) : |σ| ≤ ω} (which is the set of countable526

subsets of X). Let ν be an ultrafilter on Pω1
(X). ν is a fine ultrafilter on Pω1

(X) if and only if for527

each x ∈ X, Ax = {σ ∈ Pω1
(X) : x ∈ σ} ∈ ν. ν is a normal ultrafilter on Pω1

(X) if and only if for528

every Φ : Pω1
(X) → Pω1

(X) such that {σ ∈ Pω1
(X) : ∅ ̸= Φ(σ) ⊆ σ} ∈ ν, there is an x ∈ X so that529

{σ ∈ Pω1(X) : x ∈ Φ(σ)} ∈ ν. ν is a supercompact measure on X if and only if ν is a countably complete,530

fine, and normal measure on Pω1(X).531

Fact 4.5. (Harrington-Kechris; [10]) Assume AD. If κ less than or equal to a Suslin cardinal, then there is532

a supercompact measure on Pω1
(κ).533

(Woodin; [26]) Assume AD. If κ is less than or equal to a Suslin cardinal, then the supercompact measure534

on Pω1
(κ) is unique.535

Fact 4.6. Assume AD. Suppose φ⃗ is a sequence of norms on W ⊆ R which is a reliability witness for λ. Let536

ν be a countably complete and fine measure on Pω1(λ). Let ξ < λ. Then {σ ∈ Pω1(λ) : σ is ξ-honest} ∈ ν.537

Proof. Pick any w ∈ W so that φ0(w) = ξ (which is possible since φ0 surjects onto λ). By fineness of ν,538

An = {σ ∈ Pω1(λ) : φn(w) ∈ σ} ∈ ν. By countably compleness of ν,
⋂

n∈ω An ∈ ν. Since ν is a filter,539 ⋂
n∈ω An ⊆ {σ ∈ Pω1(λ) : σ is ξ-honest} ∈ ν. □540

Fact 4.7. Assume AD. Suppose φ⃗ is a sequence of norms on W ⊆ R is a reliability witness for λ. Let ν be541

a supercompact measure on Pω1
(λ). Then A = {σ ∈ Pω1

(λ) : σ is honest} ∈ ν.542

Proof. Suppose A /∈ ν. Let Ã = Pω1
(λ) \ A. Since ν is an ultrafilter, Ã ∈ ν. Let Φ : Pω1

(λ) → Pω1
(λ)543

be defined by Φ(σ) = {ξ ∈ σ : σ is not ξ-honest}. Note that for all σ ∈ Ã, ∅ ≠ Φ(σ) ⊆ σ. So Ã ⊆ {σ ∈544

Pω1
(λ) : ∅ ̸= Φ(σ) ⊆ σ} and therefore {σ ∈ Pω1

(λ) : ∅ ̸= Φ(σ) ⊆ σ} ∈ ν. By normality, there is a545

η ∈ λ so that B = {σ ∈ Pω1
(λ) : η ∈ Φ(σ)} ∈ ν. Pick a w ∈ W so that φ0(w) = η. For each n ∈ ω,546

Cn = {σ ∈ Pω1(λ) : φn(w) ∈ σ} ∈ ν by fineness. Then C =
⋂

n∈ω Cn ∈ ν by countably completeness. Then547

D = B ∩ C ∈ ν. Pick any σ ∈ D. w is a η-honest witness for σ since for all n ∈ ω, φn(w) ∈ σ. Thus σ is548

η-honest. However, η ∈ Φ(σ) means that σ is not η-honest. Contradiction. □549

Recall the notation x[n] from Definition 3.1 for x ∈ R and n ∈ ω.550

Fact 4.8. (Kechris-Woodin; [16] Lemma 1.1, [13] Theorem 6.1) Assume AD. Let λ be a reliable ordinal with551

φ⃗ be a sequence of norms on a set W ⊆ R being a reliability witness. Then there is a Lipschitz continuous552

function G : ωλ→ R so that the following holds.553

(1) For all n ∈ ω and f ∈ ωλ, G(f)[n] ∈W and φ0(G(f)[n]) ≤ f(n).554

(2) For all n ∈ ω and f ∈ ωλ, if f [ω] is f(n)-honest, then φ0(G(f)[n]) = f(n).555

Thus if f [ω] is honest, then for all n ∈ ω, φ0(G(f)[n]) = f(n). For each n ∈ ω, let Gn : ωλ→W be defined556

by Gn(f) = G(f)[n].557

A function G with the above property is called a generic coding function for λ relative to the reliability558

witness φ⃗.559

Theorem 4.9 will only need the concept of ξ-honest for a particular ordinal ξ < λ and will never need560

full honesty. Thus one will only directly use Fact 4.6 concerning fine and countably complete measures on561

Pω1(λ) rather than Fact 4.7 which involves supercompact measures on Pω1(λ). However, it is convenient to562

use the uniqueness of the supercompact measure (Fact 4.5) to uniformly find long sequences of supercompact563

measures on various ordinals. Theorem 4.9 will just need codes for f(0) rather than all of f so the function564
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G0 : ωλ → W will be used directly rather than G. The full generic coding function will be used later to565

analyze the ultrapower of the supercompact measure.566

Again, use the notation defined before Theorem 3.8: Suppose π : R → X. Let δ ≤ λ < Θ and ϖ : R →567

P(λ). If B ⊆ R, let TB = {(x, f) : (∃z ∈ B)(x = π(z[0]) ∧ f = ϖ(z[1]))}. If A ⊆ X and Φ : A → <δλ, then568

there is some B ∈ P(R) so that the graph of Φ is TB .569

Theorem 4.9. Assume AD. Let X be a surjective image of R. Let κ be a reliable cardinal. Let κ ≤ δ ≤ λ < Θ570

be a cardinals with cof(δ) > ω. For each α ≤ κ, let να be the unique supercompact measure on Pω1(α).571

Suppose one of the two cases occurs.572

(1) jνκ
(δ) = δ and jνκ

(λ) = λ.573

(2) For all α < κ, jνα(δ) = δ and jνα(λ) = λ.574

Let ⟨Aα : α < κ⟩ be a sequence so that there exists a Z ∈ P(R) with the property that for all α ∈ κ, Aα ⊆ X,575

|Aα| ≤ |<δλ|, and there is an r ∈ R so that TΞ−1
r [Z] is the graph of an injection of Aα into <δλ. Then576

|
⋃

α<κAα| ≤ |<δλ|.577

Proof. Let φ⃗ = ⟨φn : n ∈ ω⟩ be a scale on W ⊆ R which serves as a reliability witness for κ. If case (1)578

holds, for each α < κ, let ξ(α) = κ. If case (2) holds, let ξ(α) be the least ξ which is α-honest relative to φ⃗.579

Regardless of the case, jνξ(α)
(δ) = δ and jξ(α)(λ) = λ for all α < κ.580

Define R ⊆W ×R by R(w, r) if and only if TΞ−1
r [Z] is the graph of an injection of Aφ0(w) into <δλ \ {∅}.581

Let Γ be a scaled pointclass containing the Suslin relations W and S0 (from Definition 4.1 for φ0) and closed582

under ∃R and ∧. By applying the Moschovakis coding lemma to R, φ0, and Γ, there is a relation R̄ ⊆W ×R583

so that R̄ ⊆ R, R̄ ∈ Γ, and for all α < κ, there is a w ∈ W with φ0(w) = α and r ∈ R so that R̄(w, r).584

Let R̃ ⊆ W × R be defined by R̃(w, r) if and only if w ∈ W ∧ (∃v)(S0(v, w) ∧ S0(w, v) ∧ R̄(v, r)). R̃ ∈ Γ585

and dom(R̃) = W . Since Γ is a scaled pointclass, let Λ : W → R be a uniformization with the property that586

for all w ∈ W , R̃(w,Λ(w)). Thus for all w ∈ W , R(w,Λ(w)). For all w ∈ W , TΞ−1
Λ(w)

[Z] is the graph of an587

injection of Aφ0(w) into <δλ \ {∅}. For each w ∈ W , let Φw : Aφ0(w) → <δλ \ {∅} be the injection whose588

graph is TΞ−1
Λ(w)

[Z].589

For each x ∈
⋃

α<κAα, let ι(x) be the least α < κ so that x ∈ Aα. Let τ : <ωκ× δ×λ→ λ be a bijection.
If σ is a countable set and p ∈ <ωσ, then let Nσ

p = {f ∈ ωσ : p ⊆ f}. ωσ is given the product of the discrete
topology on σ which equivalently is generated by {Nσ

p : p ∈ <ωσ} as a basis. For any countable σ, ωσ is
homeomorphic to ωω and has the Baire property for its topology. For p ∈ <ωσ and φ a formula, (∀∗,σp f)φ(f)
abbreviates {f ∈ Nσ

p : φ(f)} is comeager in Nσ
p . For all x ∈

⋃
α<κAα and σ ∈ Pω1

(ξ(ι(x))) with ι(x) ∈ σ,
let

Υx(σ) = {τ(p, η, ζ) : p ∈ <ωσ ∧ (∃ϵ < δ)(∀∗,σ⟨ι(x)⟩ˆpf)(ϵ = dom(ΦG0(f)(x)) ∧ η < ϵ ∧ ΦG0(f)(x)(η) = ζ)}.

Since τ maps into λ, one has that Υx(σ) ∈ P(λ). Thus for each x ∈
⋃

α∈κAα, Υx : Pω1
(ξ(ι(x))) →590

P(λ). Note that the hypothesis that
∏

σ∈Pω1
(ξ(ι(x))) λ/νξ(ι(x)) = jνξ(ι(x))

(λ) = λ implicitly implies that this591

ultrapower is wellfounded. Define Υ(x) to be the set of all ordinals γ such that there exist (equivalently,592

for all) functions f : Pω1
(ξ(ι(x))) → ON with [f ]νξ(ι(x))

= γ, {σ ∈ Pω1
(ξ(ι(x))) : f(σ) ∈ Υx(σ)} ∈ νξ(ι(x)).593

(Although this ultrapower does not satisfy  Loś’ Theorem, Υ is intuitively defined by Υ(x) = [Υx]νξ(ι(x))
.)594

Claim 1: For all x ∈
⋃

α<κAα, Υ(x) ⊆ λ.595

To see Claim 1: Suppose γ ∈ Υ(x) and f : Pω1(ξ(ι(x))) → ON with [f ]νξ(ι(x))
= γ. Thus {σ ∈596

Pω1
(ξ(ι(x))) : f(σ) ∈ Υx(σ) ⊆ P(λ)} ∈ νξ(ι(x)). Thus [f ]νξ(ι(x))

< jνξ(ι(x))
(λ) = λ. Thus γ < λ. This shows597

γ ∈ λ. Claim 1 has been established.598

Claim 2: For all x ∈
⋃

α<κAα, Υ(x) ̸= ∅.599

To see Claim 2: Since ξ(ι(x)) is an ι(x)-honest ordinal, A = {σ ∈ Pω1(ξ(ι(x))) : σ is ι(x)-honest} ∈600

νξ(ι(x)). Pick any σ ∈ A. Let surjι(x)σ = {f ∈ ωσ : f [ω] = σ∧f(0) = ι(x)} which is a comeager subset ofNσ
⟨ι(x)⟩.601

For all f ∈ surjι(x)σ , f [ω] = σ is ι(x)-honest or equivalently f(0)-honest. By Fact 4.8, φ0(G0(f)) = ι(x) and602

therefore, ΦG0(f) : Aι(x) → <δλ. For all ϵ < δ, let Bϵ = {f ∈ surjι(x)σ : dom(ΦG0(f)(x)) = ϵ}. One has that603

surjι(x)σ =
⋃

ϵ<δ Bϵ. Since wellordered union of meager sets is meager and surjι(x)σ is a comeager subset of604

Nσ
⟨ι(x)⟩, there is some ϵ̄ so that Bϵ̄ is nonmeager. (Note that ϵ̄ > 0 since ΦG0(f) : Aι(x) → <δλ \ {∅}.) For605
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each ζ < λ, let Cζ = {f ∈ Bϵ̄ : ΦG0(f)(x)(0) = ζ}. Bϵ̄ =
⋃

ζ<λ Cζ . Again since wellordered union of meager606

subsets of ωσ are meager and Bϵ̄ is nonmeager, there is ζ̄ so that Cζ̄ is nonmeager. Since ωσ has the Baire607

property, there is a p̄ ∈ <ωσ so that Bϵ̄ is comeager in Nσ
⟨ι(x)⟩ˆp. Then τ(p̄, 0, ζ̄) ∈ Υx(σ). This shows that608

for all σ ∈ A, Υx(σ) ̸= ∅. Let h : A → λ be defined by h(σ) = min(Υx(σ)). Then [h]νξ(ι(x))
∈ Υ(x). This609

establishes Claim 2.610

Claim 3: For all x ∈
⋃

α<κAα and σ ∈ Pω1(ξ(ι(x))), |Υx(σ)| < δ.611

To see Claim 3: Let B = {p ∈ <ωσ : (∃ϵ)(∀∗,σ⟨ι(x)⟩ˆpf)(ϵ = dom(ΦG0(f)(x)))}. For each p ∈ B, there is a612

unique ϵp < δ so that (∀∗,σ⟨ι(x)⟩ˆpf)(ϵp = dom(ΦG0(f))). Thus ϵp surjects onto Kσ
p = {τ(p, η, ζ) : τ(p, η, ζ) ∈613

Υx(σ)} since if τ(p, η, ζ) ∈ Kσ
p , then η < ϵp and ζ is uniquely determined from p and η. Hence |Kσ

p | ≤ |ϵp| < δ.614

Since B ⊆ <ωσ is countable, Υx(σ) =
⋃

p∈B K
σ
p , and cof(δ) > ω, one has that |Υx(σ)| < δ.615

Claim 4: For all x ∈
⋃

α<κAα, |Υ(x)| < δ and thus Υ(x) ∈ Pδ(λ).616

To see Claim 4: Suppose γ ∈ Υ(x) and [f ]νξ(ι(x))
= γ. For each σ ∈ Pω1

(ξ(ι(x))), let hf (σ) be the617

ordertype of f(σ) in Υx(σ). By Claim 3, hf : Pω1
(ξ(ι(x))) → δ. Let Σx(γ) = [hf ]νξ(ι(x))

and note618

that Σx(γ) is independent of the choice of representative f . Let gx : Pω1
(ξ(ι(x))) → δ be defined by619

gx(σ) = ot(Υx(σ)). Note that gx(σ) < δ by Claim 3. Thus Σx(γ) = [hf ]νξ(ι(x))
< [gx]νξ(ι(x))

< jνξ(ι(x))
(δ) = δ.620

Thus Σx : Υ(x) → [gx]νξ(ι(x))
where [gx]νξ(ι(x))

< δ. Now suppose γ0 < γ1 and γ0, γ1 ∈ Υ(x). Let f0 and f1621

be such that [f0]νξ(ι(x))
= γ0 and [f1]νξ(ι(x))

= γ1. Thus {σ ∈ Pω1
(ξ(ι(x))) : f0(σ) < f1(σ)} ∈ νξ(ι(x)). Thus622

Σx(γ0) = [hf0 ]νξ(ι(x))
< [hf1 ]νξ(ι(x))

= Σx(γ1). Thus Σx : Υ(x) → [gx]νξι(x)
is an order-preserving map. Thus623

|Υ(x)| < δ and hence Υ(x) ∈ Pδ(λ). This shows Claim 4.624

Define χ :
⋃

α<κAα → κ× Pδ(λ) by χ(x) = (ι(x),Υ(x)).625

Claim 5: χ :
⋃

α<κAα → κ× Pδ(λ) is an injection.626

To see Claim 5: Suppose x0, x1 ∈
⋃

α<κAα and x0 ̸= x1. First suppose ι(x0) ̸= ι(x1). Then χ(x0) =627

(ι(x0),Υ(x0)) ̸= (ι(x1),Υ(x1)) = χ(x1). Now assume ι(x0) = ι(x1) and let α be this common ordinal.628

Let A = {σ ∈ Pω1(ξ(α)) : σ is α-honest} and note that A ∈ νξ(α). Let A0 be the set of σ ∈ A so that629

Eα
σ = {f ∈ surjασ : dom(ΦG0(f)(x0)) = dom(ΦG0(f)(x1))} is nonmeager in ωσ. Let A1 = surjασ \ A0. Since630

A = A0 ∪ A1 and A ∈ νξ(α), exactly one of A0 ∈ νξ(α) or A1 ∈ νξ(α). Suppose A0 ∈ νξ(α). Fix σ ∈ A0 so631

Eα
σ is nonmeager. Let Fσ

ϵ = {f ∈ Eα
σ : dom(ΦG0(f)(x0)) = ϵ = dom(ΦG0(f)(x1))}. Since Eα

σ =
⋃

ϵ<δ F
α
σ632

and Eα
σ is nonmeager in ωσ, let ϵ̄σ < δ be the least ϵ so that Fσ

ϵ is nonmeager. Since for all f ∈ Fσ
ϵ̄σ ,633

ΦG0(f) : Aα → <δλ is an injection, ΦG0(f)(x0) ̸= ΦG0(f)(x1). For each η < ϵ̄σ, let Hσ
η be the set of f ∈ Fσ

ϵ̄σ634

so that η is least η′ so that ΦG0(f)(x0)(η′) ̸= ΦG0(f)(x1)(η′). Since Fσ
ϵ̄σ =

⋃
η<ϵ̄σ

Hσ
η , let η̄σ be the least η635

so that Hσ
η is nonmeager. For each pair (ζ0, ζ1) of distinct ordinals in λ, let Kσ

ζ0,ζ1
be the set of f ∈ Hσ

η̄σ
636

so that ΦG0(f)(x0)(η̄σ) = ζ0 and ΦG0(f)(x1)(η̄σ) = ζ1. Since Hσ
η̄σ

=
⋃
{Kσ

ζ0,ζ1
: ζ0, ζ ∈ λ ∧ ζ0 ̸= ζ1}, let637

(ζ̄σ0 , ζ̄
σ
1 ) be least pair (ζ0, ζ1) so that Kσ

ζ0,ζ1
is nonmeager. Since ωσ has the Baire property, let p̄σ be the638

least p ∈ <ωσ (under a uniformly defined wellordering of <ωσ) so that Kσ
ζ̄σ
0 ,ζ̄σ

1
is comeager in Nσ

p . Then639

τ(p̄σ, η̄σ, ζ̄
σ
0 ) ∈ Υx0(σ) but τ(p̄σ, η̄σ, ζ̄

σ
0 ) /∈ Υx1(σ). Let h(σ) = τ(p̄σ, η̄σ, ζ̄

σ
0 ). Then h(σ) ∈ Υx0(σ) but640

h(σ) /∈ Υx1(σ) for all σ ∈ A0. Then [h]νξ(α)
∈ Υ(x0) but [h]νξ(α)

/∈ Υ(x1). So Υ(x0) ̸= Υ(x1). Hence641

χ(x0) = (α,Υ(x0)) ̸= (α,Υ(x1)) = χ(x1). Now suppose A1 ∈ νξ(α). Let σ ∈ A1. Then Eα
σ is meager in ωσ.642

Let Iασ = surjασ \Eα
σ which is comeager in ωσ. For each pair of ϵ0 ̸= ϵ1 less than δ, let Jσ

ϵ0,ϵ1 be the set of f ∈ Iασ643

so that dom(ΦG0(f)(x0)) = ϵ0 and dom(ΦG0(f)(x1)) = ϵ1. Then Iασ =
⋃
{Jσ

ϵ0,ϵ1 : ϵ0, ϵ1 < δ ∧ ϵ0 ̸= ϵ1}. Let644

(ϵ̄σ0 , ϵ̄
σ
1 ) be the least pair (ϵ0, ϵ1) with ϵ0 ̸= ϵ1 so that Jσ

ϵ0,ϵ1 is nonmeager. Without loss of generality, suppose645

ϵ̄σ0 < ϵ̄σ1 . For each ζ < λ, let Qσ
ζ = {f ∈ Jσ

ϵ̄σ0 ,ϵ̄
σ
1

: ΦG0(f)(x1)(ϵ̄0) = ζ}. Jσ
ϵ̄σ0 ,ϵ̄

σ
1

=
⋃

ζ<λQ
σ
ζ . Let ζ̄σ be least ζ so646

that Qσ
ζ is nonmeager. Since ωσ has the Baire property, let p̄σ be the least p ∈ <ωσ so that Qσ

ζ̄σ
is comeager in647

Nσ
p . Let h(σ) = τ(p̄σ, ϵ̄

σ
0 , ζ̄σ). For all σ ∈ A1, h(σ) ∈ Υx1(σ) however h(σ) /∈ Υx0(σ). Thus [h]νξ(α)

∈ Υ(x1)648

and [h]νξ(α)
/∈ Υ(x0). So Υ(x0) ̸= Υ(x1). Therefore, χ(x0) = (α,Υ(x0)) ̸= (α,Υ(x1)) = χ(x1). Claim 5 has649

been established.650

Since |Pδ(λ)| = |<δλ| by Fact 2.2 and |Pδ(λ)| = |κ × Pδ(λ)|, one has that there is an injection of651 ⋃
α<κAα into <δλ. □652

Theorem 4.10. Assume AD and DCR. Suppose X is a surjective image of R. Let κ be a reliable cardinal.653

Assume cof(Θ) > κ. Let δ and λ be cardinals such that κ ≤ δ ≤ λ < Θ and cof(δ) > ω. For each α ≤ κ, let654

να be the unique supercompact measure on Pω1
(α). Suppose one of the two cases occurs.655
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(1) jνκ(δ) = δ and jνκ(λ) = λ.656

(2) For all α < κ, jνα(δ) = δ and jνα(λ) = λ.657

Let ⟨Aα : α < κ⟩ be a sequence so that for all α ∈ κ, Aα ⊆ X, and |Aα| ≤ |<δλ|. Then |
⋃

α<κAα| ≤ |<δλ|.658

Proof. The proof follows from Theorem 4.9 in a manner similar to how Theorem 3.10 follows from Theorem659

3.9. □660

Theorem 4.11. Assume AD+. Suppose X is a surjective image of R. Let κ be a reliable cardinal which661

is below a Suslin cardinal. Let κ ≤ δ ≤ λ < Θ be cardinals with cof(δ) > ω. For each α ≤ κ, let να be the662

unique supercompact measure on Pω1
(α). Suppose one of the cases occurs.663

(1) jνκ
(δ) = δ and jνκ

(λ) = λ.664

(2) For all α < κ, jνα
(δ) = δ and jνα

(λ) = λ.665

Let ⟨Aα : α < κ⟩ be a sequence so that for all α ∈ κ, Aα ⊆ X, and |Aα| ≤ |<δλ|. Then |
⋃

α<κAα| ≤ |<δλ|.666

Proof. This result follows from Theorem 4.9 and Theorem 4.10 as in the proof of Theorem 3.16. □667

It is implicit in the assumption that jνα
(λ) = λ that the ultrapower

∏
Pω1

(α) λ/να is wellfounded. This668

is addressed in Fact 4.21. Then next few results will work toward showing jνα
(δ14) = δ14 which is due669

to Becker [1] Theorem 4.2. One will need an explicit characterization of the supercompact measure on670

Pω1
(κ) when κ is a reliable ordinal. Various constructions of a supercompact measure on Pω1

(κ) can be671

found in Solovay [21], Harrrington-Kechris [10], and Becker [1]. By Woodin’s result [26] concerning the672

uniqueness of the supercompact measure on Pω1(κ), they all define the same measure. Here, one will use673

a construction of the supercompact measure from generic codings presented in [13]. However, one uses the674

“ordinal determinacy” clause of AD+ to get the necessary determinacy of certain games with moves on the675

ordinal. Many results below have AD+ as a hypothesis but had previously been proved under AD using the676

determinacy of certain real games given by [10] Harrington-Kechris. The generic coding methods seems more677

suitable for generalization as Becker-Jackson [2] and Jackson [12] showed certain cardinals (for instance the678

projective ordinals δ1n) have higher degree of supercompactness (i.e. are δ21-supercompact).679

Fact 4.12. Let κ be an ordinal, ν be a supercompact measure on Pω1(κ), and f : <ωκ → κ be a function.680

Then {σ ∈ Pω1
(κ) : f [<ωσ] ⊆ σ} ∈ ν.681

Proof. Let A = {σ ∈ Pω1(κ) : f [<ωσ] ⊆ σ}. For the sake of contradiction, suppose A /∈ ν. Let Ã =682

Pω1
(κ) \A and note that Ã ∈ ν since ν is an ultrafilter. Fix a wellordering ≺ of <ωκ. If σ ∈ Ã, then there683

is a p ∈ <ωκ so that f(p) /∈ σ. Let pσ be the least such p according to ≺. By the countably additivity of684

ν, there is an n̄ so that B = {σ ∈ Ã : |pσ| = n} ∈ ν. If n̄ = 0, then pσ = ∅ for all σ ∈ B. By fineness,685

C = {σ ∈ B : f(∅) ∈ σ} ∈ ν. For all σ ∈ C, f(pσ) = f(∅) ∈ σ which contradicts the definition of pσ.686

Now suppose n̄ > 0. For each k < n̄, let Φk : B → Pω1(κ) be defined by Φk(σ) = {pσ(k)}. For all k < n̄,687

{σ ∈ B : ∅ ≠ Φk(σ) ⊆ σ} ∈ ν. By normality, there is an αk ∈ κ so that Dk = {σ ∈ B : αk ∈ Φk(σ)} ∈ ν. Let688

p̄ ∈ n̄κ be defined by p̄(k) = αk. Thus E = {σ ∈ B : pσ = p̄} =
⋂

k<n̄Dk ∈ ν by the countably completeness689

of ν. By fineness, F = {σ ∈ D : f(p̄) ∈ σ} ∈ ν. For all σ ∈ F , f(pσ) = f(p̄) ∈ σ which contradicts the690

definition of pσ. This completes the proof. □691

Definition 4.13. Formally a strategy on κ is a function ρ : <ωκ→ κ. If ρ0 and ρ1 are two strategies, then692

ρ0 ∗ ρ1 ∈ ωκ is defined by recursion as follows: If n is even, then (ρ0 ∗ ρ1)(n) = ρ0(ρ0 ∗ ρ1 ↾ n). If n is odd,693

then (ρ0 ∗ ρ1)(n) = ρ1(ρ0 ∗ ρ1 ↾ n). If f ∈ ωκ, then let ρ1f be the strategy defined by ρ1f (2n) = f(n) and694

ρ1f (2n+ 1) = 0 for all n ∈ ω. If f ∈ ωκ, then let ρ2f be the strategy defined by ρ2f (2n) = 0 and ρ2f (2n+ 1) =695

f(n). If f ∈ ωκ, let feven ∈ ωκ and fodd ∈ ωκ be defined by feven(n) = f(2n) and fodd(n) = f(2n+ 1). If ρ696

is a strategy, then let Ξ1
ρ,Ξ

2
ρ : ωκ→ ωκ be defined by Ξ1

ρ(f) = (ρ ∗ ρ2f )even and Ξ2
ρ(f) = (ρ1f ∗ ρ)odd.697

Fix a bijection πκ,2 : κ→ κ× κ. Let πκ,2
0 , πκ,2

1 : κ→ κ be defined by πκ,2
0 (α) = β and πκ,2

1 (α) = γ where698

πκ,2(α) = (β, γ). If ρ is a strategy on κ, let χκ
ρ = πκ,2

0 ◦ ρ and τκρ = πκ,2
1 ◦ ρ.699

Definition 4.14. Let κ be a reliable ordinal with reliability witness φ⃗ which is a scale on W ⊆ R. Let700

ρ : <ωκ→ κ be a strategy on κ. Let Kρ be the set of σ ∈ Pω1(κ) so that σ is honest relative to the reliability701

witness φ⃗ and ρ[<ωσ] ⊆ σ.702
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Fact 4.15. Let κ be a reliable ordinal with reliability witness φ⃗ which is a scale on W ⊆ R. Let ρ : <ωκ→ κ703

be a strategy on κ. Then Kρ ∈ νκ.704

Proof. This follows from Fact 4.7 and Fact 4.12. □705

Generic coding can be used to define the unique supercompact measure on Pω1(κ) when κ is a reliable706

ordinal. The game will be provided next and used to show that sets of the form Kρ for strategies ρ on κ707

form a basis for the supercompact measure on Pω1
(κ).708

Fact 4.16. Assume AD+. Let κ be a reliable ordinal with reliability witness φ⃗ which is a scale on W ⊆ R.709

Let νκ be the unique supercompact measure on Pω1
(κ). Let A ⊆ Pω1

(κ). A ∈ νκ if and only if there is a710

strategy ρ : <ωκ→ κ so that Kρ ⊆ A.711

Proof. Fix A ⊆ Pω1
(κ). Define the game GA on κ as following.

GA

I α0 α2 α4 ...

II α1 α3 α5 ...
f

Player 1 and 2 alternate playing ordinals from κ. Player 1 plays the ordinals α2n and Player 2 plays the712

ordinals α2n+1 for all n ∈ ω. Player 1 wins GA if and only if {φ0(Gn(f)) : n ∈ ω} ∈ A. Let ν∗κ be the713

set of all A ⊆ Pω1
(κ) so that Player 1 has a winning strategy in GA. Let B ⊆ ωω be B = {r ∈ ωω :714

(∀n)(r[n] ∈ W ) ∧ {φ0(r[n]) : n ∈ ω} ∈ A}. The payoff set for GA is G−1[B]. Since G : ωκ → ωω is715

continuous, the “ordinal determinacy” clause of AD+ implies that GA is determined. It can be shown that716

ν∗κ is a supercompact measure on Pω1
(κ). (Thus one can define the unique supercompact measure νκ on717

Pω1(κ) to be ν∗κ.)718

If there is strategy ρ on κ so that Kρ ⊆ A, then A ∈ νκ since Kρ ∈ νκ by Fact 4.15. Now suppose719

A ∈ νκ = ν∗κ. Let ρ be a Player 1 winning strategy in GA. Let σ ∈ Kρ which means that σ is honest and720

ρ[<ωσ] ⊆ σ. Let g : ω → σ be a surjection. Let f = ρ ∗ ρ2g be the run of player 1 playing the terms of g721

against Player 1 using ρ. Since ρ[<ωσ] ⊆ σ and g[ω] = σ, one has that f [ω] = σ. Since f [ω] = σ is honest, by722

the properties of the generic coding function (Fact 4.8), φ0(Gn(f)) = f(n). Thus {φ0(Gn(f)) : n ∈ ω} = σ.723

Since ρ is a Player 1 winning strategy, σ = {φ0(Gn(f)) : n ∈ ω} ∈ A. Since σ ∈ Kρ was arbitrary,724

Kρ ⊆ A. □725

Fact 4.17. Suppose κ be an ordinal, λ < κ, and ν is a supercompact measure on κ. Let Π : Pω1(κ) →726

Pω1(λ) be defined by Π(σ) = σ ∩ λ. Then the Rudin-Keisler pushforward µ = Π∗ν defined by A ∈ µ if and727

only if Π−1[A] ∈ ν is a supercompact measure on Pω1
(λ).728

Proof. It is straightforward to see that µ is an ultrafilter and countably complete. Suppose α ∈ λ. Let729

A = {τ ∈ Pω1
(λ) : α ∈ τ}. By the fineness of ν, B = {σ ∈ Pω1

(κ) : α ∈ κ} ∈ ν. Note that B = Π−1[A].730

By definition A ∈ µ. Thus µ is fine. Let Φ : Pω1(λ) → Pω1(λ) be such that C = {τ ∈ Pω1(λ) : ∅ ≠ Φ(τ) ⊆731

τ} ∈ µ. Define Ψ : Pω1(κ) → Pω1(κ) by Ψ(σ) = Φ(σ ∩ λ) and note that Ψ actually maps into Pω1(λ).732

Let D = {σ ∈ Pω1
(κ) : ∅ ≠ Ψ(σ ∩ λ) ⊆ σ}. Note that D = Π−1[C]. Thus D ∈ ν since C ∈ µ = Π∗ν. By733

the normality of ν, there is an α ∈ κ so that E = {σ ∈ Pω1
(κ) : α ∈ Ψ(σ)} ∈ ν. Note that α ∈ λ. Let734

F = {τ ∈ Pω1
(λ) : α ∈ Φ(τ)}. Note that E = Π−1[F ] and hence F ∈ µ. This shows that µ is normal. □735

Using the proof of Fact 4.17, one can provide an explicit characterization of the supercompact measure on736

Pω1
(λ) when λ less than or equal to a Suslin cardinal using the generic coding on a reliable ordinal greater737

than or equal to λ.738

Fact 4.18. Assume AD+. Let λ be less than or equal to a Suslin cardinal and let κ be any reliable cardinal739

greater than or equal to λ. Let φ⃗ be a reliability witness for κ. For any strategy ρ on κ, let Kλ
ρ = {σ ∩ λ :740

σ ∈ Kρ}. For any A ⊆ Pω1
(λ), A ∈ νλ if and only if there is a strategy ρ on κ so that Kλ

ρ ⊆ A.741

Proof. Let Π : Pω1(κ) → Pω1(λ) be defined by Π(σ) = σ ∩ λ. By Fact 4.17 and the uniqueness of the742

supercompact measure on Pω1(λ), one has that νλ = Π∗νκ. Suppose A ∈ νλ. Then Π−1[A] ∈ νκ. By Fact743

4.16, there is a strategy ρ on κ so that Kρ ⊆ Π−1[A]. Thus Kλ
ρ = {σ ∩ λ : σ ∈ Kρ} = {Π(σ) : σ ∈ Kρ} ⊆ A.744
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Now suppose there is a strategy ρ so that Kλ
ρ ⊆ A. Since Π−1[Kλ

ρ ] ⊇ Kρ, , Π−1[Kλ
ρ ] ∈ νκ. So Kλ

ρ ∈ νλ.745

Thus A ∈ νλ. □746

The following is straightforward.747

Fact 4.19. Suppose κ is an ordinal, |κ| ≤ λ < κ+, and ν is a supercompact measure on Pω1
(κ). Let748

π : κ → λ be a bijection. Let Π : Pω1
(κ) → Pω1

(λ) be defined by Π(σ) = π[σ]. Then the Rudin-Keisler749

pushforward µ = Π∗ν defined by A ∈ µ if and only if Π−1[A] ∈ ν is a supercompact measure on Pω1(λ).750

Fact 4.20. Assume AD and DCR. For any κ less than or equal to a Suslin cardinal, let νκ denote the unique751

supercompact measure on Pω1
(κ). If λ < κ+, then νλ is Rudin-Keisler reducible to νκ.752

Proof. If λ < κ, then Fact 4.17 defines a supercompact measure on Pω1
(λ) which is Rudin-Keisler reducible753

to νκ. By Woodin uniqueness of the supercompact measure on Pω1
(λ), this measure must be νλ. Similarly,754

if κ ≤ λ < κ+, then Fact 4.19 defines a supercompact measure on Pω1(λ) which is Rudin-Keiser below νκ.755

Again by uniqueness, this must be νλ. □756

Using this explicit characterization of the supercompact measure, it will be shown next that the ultrapower757

ordinals below Θ by the supercompact measure on Pω1
(κ) when κ is below a Suslin cardinal is wellfounded758

under AD+.759

Fact 4.21. Assume AD+. Let κ less than or equal to a Suslin cardinal. Let νκ be the unique supercompact760

measure on Pω1
(κ). Let (νκ)L(P(R)) be the unique supercompact measure on Pω1

(κ) in L(P(R)). Let761

λ < Θ. Then νκ = (νκ)L(P(R)),
∏

Pω1
(κ) λ/νκ =

(∏
Pω1

(κ) λ/νκ

)L(P(R))
, and

∏
Pω1

(κ) λ/νκ is wellfounded.762

Proof. Since κ and λ are less than Θ, there are surjections π0 : R → κ and π1 : R → λ. Thus π2 : R → Pω1(κ)763

defined by π2(r) = {π0(r[n]) : n ∈ ω} is a surjection. For each A ⊆ R, let CA = {π2(r) : r ∈ A}. For764

any X ⊆ Pω1(κ), there is an A ∈ P(R) so that CA = X. Let π3 : R → Pω1(κ) × λ be defined by765

π3(r) = (π2(r[0]), π1(r[1])). π3 is a surjection. For any A ∈ P(R), let DA = {π3(r) : r ∈ A}. Thus for any766

f : Pω1
(κ) → λ, there is an A ∈ P(R) so that DA is the graph of f . The prewellorderings corresponding767

to π0 and π1 are subsets of R. Thus L(P(R)) can recover CA and DA from A ∈ P(R). This shows that768

Pω1
(κ) = (Pω1

(κ))L(P(R)) and
∏

Pω1
(κ) λ =

(∏
Pω1

(κ) λ
)L(P(R))

.769

Note that since κ is less than or equal to a Suslin cardinal in the real world, κ is still less than or equal770

to a Suslin cardinal in L(P(R)). Since the Suslin cardinals are unbounded below the supremum of the771

Suslin cardinals, there is a reliable ordinal (even a Suslin cardinal) κ̄ ≥ κ. Since κ̄ is a reliable ordinal, fix a772

reliability witness φ⃗ on W ⊆ R. Since φ⃗ = ⟨φn : n ∈ ω⟩ is a scale, φ⃗ ∈ L(P(R)). For any strategy ρ on κ, let773

Kρ be the set of σ ∈ Pω(κ̄) such that ρ[<ωσ] ⊆ σ and σ is honest relative to φ⃗. Let Kκ
ρ = {σ ∩ κ : σ ∈ Kρ}.774

By Fact 4.18, A ∈ νκ if and only if there is a strategy τ on κ̄ so that Kκ
τ ⊆ A. Strategies on κ̄ are essentially775

subsets of κ̄. By using the Moschovakis coding lemma applied in L(P(R)) using a surjection of R onto κ̄ in776

L(P(R)) (for instance φ0), one can show that the real world and L(P(R)) have the same set of strategies on777

κ̄. Note also that for any strategy ρ on κ̄, Kκ
ρ = (Kκ

ρ )L(P(R)) since the notion of honesty is absolute. Using778

the explicit definition of νκ (having sets of the form Kκ
ρ as a basis) applied in the real world or L(P(R)),779

one has that νκ = (νκ)L(P(R)). This with the previous observation that
∏

Pω1
(κ) λ =

(∏
Pω1

(κ) λ
)L(P(R))

780

implies that
∏

Pω1
(κ) λ/νκ =

(∏
Pω1

(κ) λ/νκ

)L(P(R))
.781

Since AD+ holds in the real world, L(P(R)) |= AD+. By the above,
∏

Pω1 (κ)
λ/νκ is wellfounded

if and only if
(∏

Pω1
(κ) λ/νκ

)L(P(R))
is wellfounded. So work inside L(P(R)) and assume for the sake of

contradiction that there is some κ less than or equal to a Suslin cardinal and ordinal λ < Θ so that
∏

Pω1
(κ) λ/

νκ is illfounded. For each α ≤ Θ, let Wα be the set of reals of Wadge rank less than α. Let φ be the sentence
“there exist ordinals α and β so that Lα(Wβ) |= (∃κ, λ)(κ is less than or equal to a Suslin cardinal ∧ λ <
Θ∧

∏
Pω1 (κ)

λ/νκ is illfounded)”. By the reflection theorem and since P(R) = WΘ, there is some α so that

Lα(WΘ) |= (∃κ, λ)(κ is less than or equal to a Suslin cardinal ∧ λ < Θ∧
∏

Pω1 (κ)
λ/νκ is illfounded). Thus
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L(P(R)) |= φ with witnesses α as above and β = Θ. By the Σ1-reflection into Suslin-coSuslin (Fact 3.15),
S ≺Σ1 L(P(R)). There exists α < S and β ∈ S so that

Lα(Wβ) |= (∃κ, λ)(κ is less than or equal to a Suslin cardinal ∧ λ < Θ ∧
∏

Pω1 (κ)

λ/νκ is illfounded).

Since α, β < Θ, Lα(Wβ) is a surjective image of R. Working in L(P(R)) |= DCR, one can find ⟨fn : n ∈ ω⟩782

so that fn ∈ Lα(Wβ), fn : Pω1
(κ) → λ, and Lα(Wβ) |= [fn+1]νκ

< [fn]νκ
for each n ∈ ω. For each n ∈ ω,783

Lα(Wβ) |= An = {σ ∈ Pω1
(κ) : fn+1(σ) < fn(σ)} ∈ νκ. Note Lα(Wβ) |= κ is less than or equal to a Suslin784

cardinal. Thus Lα(Wβ) has a reliable ordinal κ̄ ≥ κ. Pick a reliability witness φ⃗ for κ̄ in Lα(Wβ) and note785

that it is a reliability witness for κ̄ in L(P(R)). For any strategy ρ on κ̄, define Kκ
ρ relative to this reliability786

witness φ⃗. By applying the explicit definition of the supercompact measure on κ within Lα(Wβ), for each787

n ∈ ω, there is a strategy ρ on κ̄ so that Kκ
ρ ⊆ An. Again since there is surjection of R onto Lα(Wβ) in788

L(P(R)), one can use ACR
ω in L(P(R)) to find a sequence ⟨ρn : n ∈ ω⟩ so that for each n ∈ ω, ρn ∈ Lα(Wβ)789

is a strategy on κ̄, and Kκ
ρn

⊆ An. Note for all n ∈ ω, Kκ
ρn

∈ νκ. Since L(P(R)) |= νκ is countably compete,790 ⋂
n∈ωK

κ
ρn

̸= ∅. Let σ ∈
⋂

n∈ωK
κ
ρn

⊆
⋂

n∈ω An. Then in L(P(R)), ⟨fn(σ) : n ∈ ω⟩ is an infinite descending791

sequence of ordinals below λ. Contradiction. □792

Fact 4.22. (Almost everywhere honest-enumeration uniformization) Assume AD+. Let κ be a reliable ordinal793

with reliability witness φ⃗ which is a scale on a set W ⊆ R. Let R ⊆ Pω1
(κ) × ωω be such that dom(R) =794

Pω1
(κ). There is a strategy ρ on κ with the following properties.795

(1) For all s ∈ <ωκ with |s| odd, τκρ (s) ∈ ω.796

(2) For all f ∈ ωκ such that f [ω] ∈ Kχκ
ρ
, R(f [ω],Ξ2

τκ
ρ

(f)).797

Proof. Consider the game HR on κ defined as follows.

HR

I α0 α2 α4 ...

II β1

πκ,2(α1, x0)

β3

πκ,2(α3, x1)

β5

πκ,2(α5, x2)

...

g f, x

Player 1 and Player 2 alternate playing ordinals from κ. Player 1 plays α2n and Player 2 plays β2n+1 as798

in the picture above for each n ∈ ω. Practically, one should regard Player 2 as playing a pair α2n+1 ∈ κ799

and xn ∈ ω such that πκ,2(α2n+1, xn) = β2n+1. Let g = ⟨α0, β1, α2, β3, ...⟩. Let f = ⟨αn : n ∈ ω⟩ and800

x = ⟨xn : n ∈ ω⟩. Player 2 wins if and only if the conjunction of the following holds.801

• For all n ∈ ω, xn ∈ ω.802

• R({φ0(Gn(f)) : n ∈ ω}, x).803

This game is determined by AD+.804

The claim is that Player 2 has a winning strategy in HR. For the sake of contradiction, suppose ρ is a805

strategy for Player 1 in HR. Let σ ∈ Pω1
(κ) have the following two properties.806

(1) σ is honest relative to the reliability witness φ⃗.807

(2) ρ(∅) ∈ σ. For all k ∈ ω, γ0, ..., γ2k+1 ∈ σ, n0, ..., nk ∈ ω,

ρ(⟨γ0, πκ,2(γ1, n0), γ2, π
κ,2(γ3, n1), ..., πκ,2(γ2k+1, nk)⟩) ∈ σ.

Let x ∈ ωω be such that R(σ, x). Let h : ω → σ be a surjection onto σ. Let h̃ : ω → κ be defined by808

h̃(n) = πκ,2(h(n), x(n)). Consider the run of HR where Player 1 uses ρ and player 2 uses ρ2
h̃
. Let g = ρ ∗ ρ2

h̃
.809

Let f(2n) = g(2n) and f(2n + 1) = πκ,2
0 (g(2n + 1)) = h(n). By (2), for all n ∈ ω, f(2n) ∈ σ. Since for all810

n ∈ ω, f(2n+ 1) = h(n) and h : ω → σ is a surjection, f [ω] = σ. By (1), f [ω] is honest. By the properties811

of the generic coding function G (Fact 4.8), φ0(Gn(f)) = f(n). Thus σ = {φ0(Gn(f)) : n ∈ ω}. Note that812

x(n) = πκ,2
1 (g(2n + 1)) and R(σ, x). This shows that Player 2 has won this run of HR which contradicts ρ813

being a winning strategy for Player 1.814

Thus by the determinacy of HR, Player 2 has a winning strategy ρ̄. By the first condition for Player815

2 winning, condition (1) must hold for ρ̄. Now suppose h ∈ Pω1(κ) is such that h[ω] ∈ Kχκ
ρ
. Consider816
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the run of HR where Player 1 plays by ρ1h and Player 2 plays by ρ̄. Let g = ρ1h ∗ ρ̄. Let f : ω → κ817

be defined by f(2n) = g(2n) and f(2n + 1) = πκ,2
0 (g(2n + 1)). By the hypothesis that h[ω] ∈ Kχκ

ρ̄
,818

f(2n + 1) = πκ,0(g(2n + 1)) ∈ h[ω]. Thus f [ω] = {f(n) : n ∈ ω} = h[ω] which is an honest set by the819

hypothesis that h[ω] ∈ Kχκ
ρ̄
. By the properties of the generic coding function, φ0(Gn(f)) = f(n). Thus820

h[ω] = {φ0(Gn(f)) : n ∈ ω}. Let x ∈ ωω be defined by x(n) = πκ,2
1 (g(2n + 1)). Since ρ̄ is a Player 2821

winning strategy, R({φ0(Gn(f)) : n ∈ ω}, x) holds or equivalently R(h[ω], x). Since x = Ξ2
τκ
ρ̄

(h), one has822

that R(h[ω],Ξ2
τκ
ρ̄

(h)). This completes the proof. □823

In the following, one will focus on the supercompact measure on Pω1
(ωω). One will develop first a coding824

of strategies on ωω. The following objects will be fixed for the rest of the discussion concerning ωω.825

Definition 4.23. Fix a Π1
2 set W and a ∆1

3 scale φ⃗ on W of length ωω which witnesses the reliability of826

ωω. (This can be obtained by applying the scale property for Π1
3 on some complete Π1

2 set. More explicity,827

one can let W = {x♯ : x ∈ R} and let φ⃗ be a modification of the sharp scale so that φ0 : W → ωω is a828

surjection.) Let ≺n denote the prewellordering on W induced by φn : W → ωω. Note that ≺n∈ ∆1
3 for all829

n ∈ ω. Fix a bijection πωω,<ω : ωω → <ω(ωω). Fix U ⊆ R× R× R which is universal for Σ1
3 subsets of R2.830

Let scode be the set of x ∈ R so that the following holds.831

(1) For all s ∈ <ωωω, there exist y, v ∈ R such that y ∈W , πωω,<ω(φ0(y)) = s, and U(x, y, v).832

(2) For all y, z ∈ W , for all v, w ∈ R, if φ0(y) = φ0(z), U(x, y, v), and U(x, z, w), then v, w ∈ W and833

φ0(v) = φ0(w).834

For any x ∈ scode, s ∈ <ω(ωω), and α ∈ ωω, let ρx(s) = α if and only if there is a y ∈ W and v ∈ W so835

that πωω,<ω(φ0(y)) = s, φ0(v) = α, and U(x, y, v). By the two properties of x ∈ scode, ρx is a well-defined836

function from <ω(ωω) into ωω (that is, ρx is a strategy on ωω).837

Let scode∗ be the set of x ∈ R so that the following holds.838

(a) x ∈ scode.839

(b) For all s ∈ <ω(ωω) so that |s| is odd, for all v ∈ R, if U(x, y, v), then πωω,2
1 (φ0(v)) ∈ ω.840

Note that if x ∈ scode∗, then Ξ2
τκ
ρ

: ωκ→ ωω.841

Fact 4.24. For all strategies ρ : <ω(ωω) → ωω, there is an x ∈ scode so that ρ = ρx.842

Proof. Define R ⊆ W ×W by R(y, v) if and only if ρ(πωω,<ω(φ0(y))) = φ0(v). Applying the Moschovakis843

coding lemma to the pointclass Σ1
3 with the prewellordering φ0, there is an S ⊆ R with S ∈ Σ1

3 so that for844

all β ∈ ωω, there exists a y ∈ W with φ0(y) = β and v ∈ R so that S(y, v). Since πωω,<ω : ωω → <ω(ωω)845

is a bijection, this can be expressed also as: for all s ∈ <ω(ωω), there exist y ∈ W and v ∈ R so that846

πωω,<ω(φ0(y)) = s, S(y, v). Since U ⊆ R× R× R is universal for Σ1
3 subsets of R2, there is some x ∈ R so847

that Ux = S. By the previous observation and the fact that Ux = S ⊆ R, one has properties (1) and (2) of848

Definition 4.23 and that ρx = ρ. □849

One will need to make several complexity computations in order to use the Kunen-Martin theorem to850

bound the ultrapower jνωω
. The closure of ∆1

4, Σ1
4, and Π1

4 under ωω-length unions will be helpful in making851

several complexity computations. This result, due to Harrington and Kechris, has analogs for other scaled852

pointclasses. For the results here, one can make even better complexity calculations using the Kechris-Martin853

theorem ([14] Corollary 1.6) to show Σ1
3 and Π1

3 are closed under ωω-length unions and intersections. Jackson854

has extended the Kechris-Martin theorem throughout the projective hierarchy using the description theory855

([13] Section 4.4). However, these arguments are not known to generalize much further.856

Fact 4.25. (Harrington-Kechris; [10] Corollary 2.2) Assume AD. For all n ∈ ω, for all κ < δ1n, Π1
n+1,857

Σ1
n+1, and ∆1

n+1 are closed under κ-length union. In particular, Π1
4, Σ

1
4, and ∆1

4 are closed under ωω-length858

unions.859

Proof. The last statement follows from the first using n = 3 and the fact that δ13 = ωω+1. □860

Fact 4.26. (Martin, Moschovakis; [15] Theorem 8.4) Assume AD. For all n ∈ ω, ∆1
2n+1 is closed under861

κ-length unions and intersections for all κ < δ12n+1. In particular, ∆1
3 is closed under ωω-length unions and862

intersections.863
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Fact 4.27. Assume AD. scode and scode∗ are ∆1
4.864

Proof. For each s ∈ <ω(ωω), let As be the set x ∈ R so that there exist y, v ∈ R so that y ∈ W , φ0(y) =865

(πωω,<ω)−1(s), and U(x, y, v). Note that As is Σ1
3 since W is Π1

2, φ0 is a ∆1
3-norm, and U is Σ1

3. In particular,866

As is ∆1
4. Let A =

⋂
{As : s ∈ <ω(ωω)} which is ∆1

4 since ∆1
4 is closed under ωω-length intersection by Fact867

4.25. (A is actually Σ1
3 since Σ1

3 is closed under ωω-length intersections by the Kechris-Martin theorem.)868

Note that A is the set of x ∈ R which satisfies Definition 4.23 property (1). Let B be the set of x which869

satisfies Definition 4.23 property (2). Since W ∈ Π1
2, U ∈ Σ1

3, and φ0 is a ∆1
3 norm, one has that B is Π1

3.870

Since scode = A ∩B, scode ∈ ∆1
4.871

Let X = {α ∈ ωω : πωω,2
1 (α) ∈ ω}. For each α ∈ X and s ∈ <ω(ωω) with |s| odd, let Cα,s be the set872

of x so that for all y, v ∈ R, if v ∈ W , φ0(y) = (πωω,<ω)−1(s), and U(x, y, v), then φ0(v) = α. Note that873

Cα,s is Π1
3. Let C =

⋂
{
⋃
{Cα,s : α ∈ X} : s ∈ <ω(ωω) ∧ |s| is odd}. Since ∆1

4 is closed under ωω-length874

intersections and unions, C ∈ ∆1
4. Since scode∗ = scode ∩ C, scode∗ is ∆1

4. □875

Lemma 4.28. Assume AD.876

(1) Let String ⊆ ω × R × R be defined by String(n, r, y) if and only if y ∈ W , for all m < n, r[m] ∈877

W , and πωω,<ω(φ0(y)) = ⟨φ0(r[0]), ..., φ0(r[n−1])⟩ (that is, πωω,<ω(φ0(y)) is the length n-string878

⟨φ0(r[0]), ..., φ0(r[n−1])⟩). String is ∆1
3.879

(2) Let IntPart ⊆ R× ω be defined by IntPart(v, n) if and only if v ∈W and πωω,2
1 (φ0(v)) = n. IntPart ∈880

∆1
3.881

(3) Let ONPart ⊆ R × R be defined by ONPart(v, w) if and only if v ∈ W and πωω,2
0 (φ0(v)) = φ0(w).882

ONPart ∈ ∆1
3.883

(4) There is a ∆1
3 relation NormCompare ⊆ ω × ω × R × R so that for all m,n ∈ ω and v, w ∈ R,884

NormCompare(m,n, v, w) if and only if v, w ∈W and φm(v) = φn(w) (where φ⃗ = ⟨φn : n ∈ ω⟩ come885

from the fixed reliability witness).886

(5) There is a Σ1
3 set Honest ⊆ R so that Honest(r) if and only if for all n ∈ ω, r[n] ∈W and {φ0(r[n]) :887

n ∈ ω} is honest relative to the reliability witness φ⃗.888

(6) There is a Σ1
3 relation RunΣ1

3
⊆ R×R and a Π1

3 relation RunΠ1
3
so that if x ∈ scode, then RunΣ1

3
(x, r)889

if and only if RunΠ1
3
(x, r) if and only if ⟨φ0(r[n]) : n ∈ ω⟩ is a run according to ρx used as a strategy890

for Player 2.891

(7) There is a Σ1
3 relation ClosedΣ1

3
⊆ R× R and Π1

3 relation ClosedΠ1
3
⊆ R× R with the property that892

whenever x ∈ scode, ClosedΣ1
3
(x, r) if and only if ClosedΠ1

3
(x, r) if and only if for all n ∈ ω, r[n] ∈W893

and for all for all s ∈ <ω({φ0(r[n]) : n ∈ ω}), ρx(s) ∈ {φ0(r[n]) : n ∈ ω}.894

(8) There is a Σ1
3 relation fClosedΣ1

3
⊆ R × R and Π1

3 relation fClosureΠ1
3
⊆ R × R with the property895

that whenever x ∈ scode, fClosedΣ1
3
(x, r) if and only if fClosedΠ1

3
(x, r) if and only if for all n ∈ ω,896

r[n] ∈W and for all s ∈ <ω({φ0(r[n]) : n ∈ ω}), χωω
ρx

(s) ∈ {φ0(r[n]) : n ∈ ω}.897

Proof.898

(1) For each s ∈ <ω(ωω), let As be the set of (|s|, r, y) such that y ∈W , φ0(y) = (πωω,<ω)−1(s), and for899

all m < n, r[m] ∈ W and φ0(r[m]) = s(m). Note that As ∈ ∆1
3 and String =

⋃
{As : s ∈ <ω(ωω)}.900

String ∈ ∆1
3 since ∆1

3 is closed under ωω-length unions by Fact 4.26.901

(2) For each α ∈ ωω and n ∈ ω, let Vα,n = {(v, n) : v ∈ W ∧ φ0(v) = (πωω,2)−1((α, n))}. Since φ0 is902

a ∆1
3-norm, Vα,n ∈ ∆1

3. Then IntPart =
⋃
{Vα,n : α ∈ ωω ∧ n ∈ ω} which is ∆1

3 since ∆1
3 is closed903

under ωω-length unions.904

(3) For each α, β < ωω, let (v, w) ∈ Aα,β if and only if φ0(v) = πωω,2(α, β) and β = φ0(w). Aα,β is ∆1
3.905

ONPart =
⋃
{Aα,β : α, β < ωω} which is ∆1

3 since ∆1
3 is closed under ωω-length unions.906

(4) Let m,n ∈ ω and α < ωω. If α is greater than or equal to the rank of either φm or φn, then let907

Am,n,α = ∅. If α less than the rank of both φm and φn, then let Am,n,α = {(m,n, v, w) : φm(v) =908

α ∧ φn(w) = α}. Am,n,α is ∆1
3 since all the norms in φ⃗ are ∆1

3 norms. Then NormCompare =909 ⋃
{Am,n,α : m,n ∈ ω ∧ α < ωω} which is ∆1

3 since ∆1
3 is closed under ωω-length unions.910

(5) Note that r ∈ Honest if and only if for all n ∈ ω, there exists w ∈ W so that φ0(w) = φ0(r[n]) and911

for all k ∈ ω, there exists j ∈ ω such that NormCompare(0, k, r[j], w). Since NormCompare is ∆1
3,912

Honest is Σ1
3.913
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(6) Let RunΣ1
3
(x, r) if and only if for all n ∈ ω, r[n] ∈W and there exist y, v ∈ R so that String(2n+1, r, y),914

U(x, y, v), and φ0(v) = φ0(r[2n+1]). RunΣ1
3

is Σ1
3 and if x ∈ scode, then RunΣ1

3
(x, r) has the intended915

meaning stated above.916

Let RunΠ1
3
(x, r) if and only if for all n ∈ ω, r[n] ∈ W and for all y, v ∈ R, if String(2n + 1, r, y)917

and U(x, y, v), then φ0(v) = φ0(r[2n+1]). RunΠ1
3

is Π1
3 and if x ∈ scode, then RunΠ1

3
(x, r) has the918

intended meaning.919

(7) This is a similar and simpler than the argument shown next for (8).920

(8) Define fClosedΠ1
3
(x, r) if and only if the conjunction of the following holds.921

• For all n ∈ ω, r[n] ∈W .922

• For all n ∈ ω, for all t, y, v, v0 ∈ R, if the conjunction of the following holds:923

– For all k < n, there exists i ∈ ω, φ0(t[k]) = φ0(r[i])924

– String(n, t, y).925

– U(x, y, v)926

– ONPart(v, v0).927

then there exists a j ∈ ω, φ0(v0) = φ0(r[j]).928

Note that fClosedΠ1
3
∈ Π1

3.929

Define fClosedΣ1
3
(x, r) if and only if the conjunction of the following holds.930

• For all n ∈ ω, r[n] ∈W .931

• For all n ∈ ω and function ℓ : n→ ω, there exist j ∈ ω and t, y, v, v0 ∈ R so that the conjunction932

of the following holds.933

– For all k < n, t[k] = r[ℓ(k)].934

– String(n, t, y).935

– U(x, y, v)936

– ONPart(v, v0).937

– φ0(v0) = φ0(r[j]).938

Note that fClosedΣ1
3

is Σ1
3.939

If x ∈ scode, then fClosedΣ1
3

and fClosedΠ1
3

have the intended meanings.940

□941

Fact 4.29. Assume AD. Suppose x ∈ scode∗. Let A be the set of f ∈ ω(ωω) so that f [ω] ∈ Kχωω
ρx

. Then942

Ξ2
τωω
ρx

[A] is Σ1
3 (note that since x ∈ scode∗, Ξ2

τωω
ρx

[A] is a set of reals).943

Proof. Observe that u ∈ Ξ2
τωω
ρx

[A] if and only if there exist r, t ∈ R so that the conjunction of the following944

holds945

• fClosedΣ1
3
(x, r)946

• Honest(r).947

• For all n ∈ ω, t[2n] = r[n].948

• RunΣ1
3
(x, t).949

• For all n ∈ ω, IntPart(t[2n+1], u(n)).950

The above expression is Σ1
3 and it works because x ∈ scode∗ (and note that scode∗ ⊆ scode). □951

Fact 4.30. (Steel; [23], [13] Theorem 2.28) Assume AD and DCR. If κ < Θ is a limit ordinal, then there is952

a surjective norm ψ : P → κ which is δ-Suslin bounded for all δ < cof(κ), which means that for all A ⊆ P953

that are δ-Suslin, sup(φ[A]) < κ.954

Fact 4.31. Assume AD+. Let κ < Θ with cof(κ) > ωω. Let Φ : Pω1
(ωω) → κ. Then there is an A ∈ νωω

955

so that sup(Φ[A]) < κ.956

Proof. Fix κ < Θ with cof(κ) > ωω. By Fact 4.30, let ψ : P → κ be a surjective ωω-Suslin bounded957

prewellordering. Fix Φ : Pω1(ωω) → κ. Let R ⊆ Pω1(ωω) × R be defined by R(σ, p) if and only if958

Φ(σ) = ψ(p). Applying Fact 4.22, there is a strategy ρ so that the following holds:959

(1) For all odd length s ∈ <ω(ωω), τωω
ρ (s) ∈ ω.960

(2) For all f ∈ ω(ωω) so that f [ω] ∈ Kχωω
ρ

,R(f [ω],Ξ2
τωω
ρ

(f)).961
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By Fact 4.24, there is an x ∈ scode so that ρx = ρ. Moreover, x ∈ scode∗ by condition (1) above. Let B962

be the set of f ∈ ω(ωω) so that f [ω] ∈ Kχωω
ρx

. By condition (2), for any f ∈ B, R(f [ω],Ξ2
τωω
ρx

(f)) and thus963

Ξ2
τωω
ρx

(f) ∈ P by the definition of R. Thus Ξ2
τωω
ρx

[B] ⊆ P and Ξ2
τωω
ρx

[B] is Σ1
3 (and hence ωω-Suslin) by Fact964

4.29. Since ψ is a ωω-Suslin bounded norm, there is a δ < κ so that ψ[Ξ2
ρx,1[B]] ⊆ δ. Kχωω

ρx
∈ νωω

by Fact965

4.15. Let σ ∈ Kχωω
ρx

. Let f : ω → σ be any surjection and thus f [ω] = σ. Note that f ∈ B. Therefore by (2),966

R(σ,Ξ2
τωω
ρx

(f)). This means Φ(σ) = ψ(Ξ2
τωω
ρx

(f)). Since ψ(Ξ2
τωω
ρx

(f)) ∈ Ξ2
τωω
ρx

[B], one has that ψ(Ξ2
τωω
ρx

(f)) < δ.967

So Φ(σ) < δ. This shows that sup(Φ[Kχωω
ρx

]) ≤ δ < κ. □968

Definition 4.32. Let scode+ consists of those x ∈ R so that the following hold.969

(1) x ∈ scode∗.970

(2) For all f ∈ ω(ωω) so that f [ω] ∈ Kχωω
ρx

, Ξ2
τωω
ρx

(f) ∈W (where recall W is the underlying set of norms971

that form the reliability witness φ⃗).972

(3) For all f0, f1 ∈ ω(ωω) so that f0[ω], f1[ω] ∈ Kχωω
ρx

and f0[ω] = f1[ω], then φ0(Ξ2
τωω
ρx

(f0)) = φ0(Ξ2
τωω
ρx

(f1)).973

If x ∈ scode+, then let Φx : Kχωω
ρx

→ ωω be defined by Φx(σ) = φ0(Ξ2
τωω
ρx

(f)) for any f : ω → σ which is a974

surjection. The conditions of the definition of scode+ imply that Φx is a well-defined function independent975

of the choice of f which surjects onto σ.976

Fact 4.33. Assume AD+. For any Φ : Pω1
(ωω) → ωω, there is an x ∈ scode+ so that [Φ]νωω

= [Φx]νωω
.977

Proof. This was shown in the proof of Fact 4.31. (Replace the ψ : P → κ of the proof of Fact 4.31 with978

φ0 : W → ωω.) (Moreover, if one inspects the payoff set for Player 2 in the game HR for the relevant relation979

R from Fact 4.31, one can even strengthen Definition 4.32 condition (2) to say that for all f ∈ ω(ωω),980

Ξ2
τωω
ρx

(f) ∈W .) □981

Fact 4.34. Assume AD. scode+ is ∆1
4.982

Proof. Note that x ∈ scode+ if and only if the conjunction of the following hold.983

• x ∈ scode∗.984

• For all r, t, u ∈ R, if the conjunction of the following hold:985

– Honest(r).986

– fClosedΣ1
3
(x, r).987

– For all n ∈ ω, t[2n] = r[n].988

– For all n ∈ ω, IntPart(t[2n+1], u(n))989

– RunΣ1
3
(x, t),990

then u ∈W .991

• For all r0, t0, u0, r1, t1, u1 ∈ R, if the conjunction of the following hold:992

– Honest(r0) and Honest(r1).993

– fClosedΣ1
3
(x, r0). fClosedΣ1

3
(x, r1).994

– For all n ∈ ω, (t0)[2n] = (r0)[n] and (t1)[2n] = (r1)[n].995

– For all n ∈ ω, IntPart((t0)[2n+1], u0(n)) and IntPart((t0)[2n+1], u0(n)).996

– RunΣ1
3
(x, t0) and RunΣ1

3
(x, t1),997

– For all m ∈ ω, there exists n ∈ ω so that φ0((r0)[m]) = φ0((r1)[n]). For all m ∈ ω, there exists998

n ∈ ω so that φ0((r1)[m]) = φ0((r0)[n]).999

then φ0(u0) = φ0(u1).1000

The first point is ∆1
4 since scode∗ ∈ ∆1

4. The second and third points are Π1
3. The entire expression is1001

∆1
4. □1002

Fact 4.35. (Kunen-Martin Theorem) Assume ACR
ω. Every κ-Suslin wellfounded relation on R has length1003

less than κ+.1004

Fact 4.36. (Becker; [1] Theorem 4.2) Assume AD+. Let α < δ13 = ωω+1 and να be the unique supercompact1005

measure on Pω1
(α). Then jνα

(δ14) = jνα
(ωω+2) = δ14 = ωω+2.1006
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Proof. Note that these ultrapowers are wellfounded by Fact 4.21. For all α < δ13 = ωω+1, να is Rudin-Keisler1007

reducible to νωω by Fact 4.20 and therefore jνα(δ14) ≤ jνωω
(δ14). Thus it suffices to show that jνωω

(δ14) = δ14.1008

The representatives of ordinals below jνωω
(δ14) are functions of the form Φ : Pω1(ωω) → δ14. Since δ141009

is regular, Fact 4.31 implies that Φ is νωω -almost equal to a function which is strictly bounded below δ14.1010

Thus jνωω
(δ14) = sup{jνωω

(β) : β < δ14}. To prove the theorem, it suffices to show that jνωω
(β) < δ14 for all1011

β < δ14.1012

Let β < δ14 = ωω+2. Since δ13 = ωω+1, let ψβ : δ13 → β be a surjection. For each Φ : Pω1
(ωω) → δ13, let1013

Φ̃ : Pω1(ωω) → β be defined by Φ̃(σ) = ψ(Φ(σ)). For every Υ : Pω1(ωω) → β, there is a Φ : Pω1(ωω) → δ131014

so that Φ̃ = Υ. Thus Ψ : jνωω
(δ13) → jνωω

(β) defined by Ψ([Φ]νωω
) = [Φ̃]νωω

for any Φ : Pω1(ωω) → δ13 is a1015

well-defined surjection. Since δ14 is a cardinal, it suffices to show that jνωω
(δ13) < δ14.1016

Since δ13 is regular, Fact 4.31 again implies jνωω
(δ13) = sup{jνωω

(γ) : γ < δ13}. Since δ14 is regular, it1017

suffices to show that jνωω
(γ) < δ14 for all γ < δ13. Since δ13 = ωω+1, the same argument from the previous1018

paragraph shows that jνωω
(ωω) surjects onto jνωω

(γ) for all γ < δ13. Finally, it has been shown that to prove1019

the theorem it suffices to show jνωω
(ωω) < δ14.1020

Define a relation compare ⊆ R×R as follows: compare(x, y) if and only there exists a z ∈ R such that the1021

conjunction of the following hold.1022

(1) x, y ∈ scode+ and z ∈ scode.1023

(2) For all r, t0, t1, u0, u1 ∈ R, if the conjunction of the following hold:1024

• Honest(r).1025

• ClosedΣ1
3
(z, r), fClosedΣ1

3
(x, r), and fClosedΣ1

3
(y, r).1026

• For all n ∈ ω, (t0)[2n] = (t1)[2n] = r[n].1027

• For all n ∈ ω, IntPart((t0)[2n+1], u0(n)) and IntPart((t1)[2n+1], u1(n)).1028

• RunΣ1
3
(x, t0) and RunΣ1

3
(y, t1).1029

then φ0(u0) < φ0(u1).1030

Observe that (1) is ∆1
4 and (2) is Π1

3. Thus compare is Σ1
4.1031

Claim 1: compare(x, y) if and only if x, y ∈ scode+ and [Φx]νωω
< [Φy]νωω

.1032

To see Claim: (⇒) Let z witness the existential quantifier in compare(x, y). Note Kχωω
ρx

∩Kχωω
ρy

∩Kρz ∈ νωω .1033

Let σ ∈ Kχωω
ρx

∩Kχωω
ρy

∩Kρz
. By definition, this means that σ is honest and closed under χωω

ρx
, χωω

ρx
, and ρz.1034

Let f : ω → σ be any surjection. Let gx = ρ1f ∗ ρx and gy = ρ1f ∗ ρy. Let r, t0, t1 be such that for all n ∈ ω,1035

φ0(r[n]) = f(n), r[n] = (t0)[2n], r[n] = (t1)[2n], φ0((t0)[n]) = gx(n), and φ0((t1)[n]) = gy(n). For all n ∈ ω,1036

let u0(n) = πωω,2
1 (φ0((t0)[2n+1])) and u1(n) = πωω,2

1 (φ0((t1)[2n+1])). r, t0, t1, u0, u1 satisfy the hypothesis1037

of the conditional in statement (2). Thus φ0(u0) < φ0(u1). Since u0 = Ξ2
τωω
ρx

(f) and u1 = Ξ2
τωω
ρy

(f), one has1038

that Φx(σ) = φ0(u0) < φ0(u1) = Φy(σ) by definition. Since σ ∈ Kχωω
ρx

∩Kχωω
ρy

∩Kρz
∈ νωω

was arbitrary,1039

this shows that [Φx]νωω
< [Φy]νωω

.1040

(⇐) Suppose [Φx]νωω
< [Φy]νωω

. The set A = {σ ∈ Pω1
(ωω) : Φx(σ) < Φy(σ)} ∈ νωω

. By Fact 4.16,1041

there is a strategy ρ so that Kρ ⊆ A. By Fact 4.24, there is a z ∈ scode so that ρz = ρ. By much of the1042

same argument as before, z witnesses the existential to show that compare(x, y) holds. This establishes the1043

claim.1044

Define an equivalence relation ∼ on scode+ by x ∼ y if and only if [Φx]νωω
= [Φy]νωω

. Let H = scode+/1045

∼ be the set of equivalence classes of ∼. For X,Y ∈ H, define X < Y if and only if for any x ∈ X1046

and y ∈ Y , [Φx]νωω
< [Φy]νωω

. Observe that (H,<) order embeds into jνωω
(ωω) by the well-defined map1047

Λ(X) = [Φx]νωω
for any x ∈ X. This shows that (H,<) is a wellordering. Hence by using the claim,1048

compare is a wellfounded relation whose length corresponds to the ordertype of (H,<). By Fact 4.33, every1049

Φ : Pω1
(ωω) → (ωω) has an x ∈ scode+ so that [Φ]νωω

= [Φx]νωω
. This shows that the ordertype of (H,<)1050

is exactly jνωω
(ωω). Hence the length of compare is exactly jνωω

(ωω). Since compare is a wellfounded Σ1
41051

and hence δ13 = ωω+1 Suslin relation, the Kunen-Martin theorem states that the length of compare is less1052

than (δ13)+ = (ωω+1)+ = ωω+2 = δ14. Thus jνωω
(ωω) < δ14. This completes the proof. □1053

Theorem 4.37. Assume AD+. Let ⟨Aα : α < δ13⟩ be such that
⋃

α<δ1
3
Aα = P(δ14). Then there is an α < δ131054

so that ¬(|Aα| ≤ |<δ1
4δ14|).1055
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Proof. Suppose P(δ14) =
⋃

α<δ1
3
Aα and |Aα| ≤ |<δ1

4δ14| for all α < δ13. δ13 is a Suslin cardinal and hence1056

reliable. By Fact 4.36, the hypothesis of Theorem 4.11 holds. Thus |P(δ14)| = |
⋃

α<δ1
3
Aα| ≤ |<δ1

4δ14|. δ141057

is a weak partition cardinal and hence a measurable cardinal. Thus δ14 does not inject into P(γ) for any1058

γ < δ14. So |<δ1
4δ14| < |P(δ14)| by Fact 2.9. Contradiction. □1059

This argument can be generalized to the suitable analog at higher projective ordinals.1060

Theorem 4.38. Assume AD+. Let n ∈ ω. Let ⟨Aα : α < δ12n+1⟩ be such that
⋃

α<δ1
2n+1

Aα = P(δ12n+2).1061

Then there is an α < δ12n+1 so that ¬(|Aα| ≤ |<δ1
2n+2δ12n+2|).1062
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