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Abstract4

We develop the theory of abstract fine structural operators and5

operator-premice. We identify properties, which we require of operator-6

premice and operators, which ensure that certain basic facts about7

standard premice generalize. We define fine condensation for opera-8

tors F and show that fine condensation and iterability together ensure9

that F-mice have the fundamental fine structural properties including10

universality and solidity of the standard parameter.11

1 Introduction12

Given a set X, we write J (X) for the rud closure of X ∪ {X}. Standard13

premice are constructed using J to take steps at successor stages, adding14

extenders at certain limits. One often wants to generalize this picture, re-15

placing J with some operator F . The resulting structures are F-premice, in16

which F is used to take steps at successor stages, instead of J .17

In this paper, we will define F-premice for a fairly wide class of operators18

F with nice condensation properties, and develop their basic theory. (We19

define operator precisely in §3.) Versions of this theory have been presented20

and used by others (see particularly [12] and [10]), but there are some prob-21

lems with those presentations. Thus, we give here a (hopefully) complete22
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development of the theory. We focus on what is new, skipping the parts23

which are immediate transcriptions of the theory of standard premice. One24

of the problems just mentioned relates to the preservation of the standard25

parameter under ultrapower maps; in order to prove the latter it is important26

that we restrict to stratified structures, as one can see in the proof of 2.42.27

Another problem, discussed in 3.13, relates to the notion condenses well ;28

we introduce condenses finely as a replacement, and show that works as de-29

sired. The complications in the definition of condenses finely are motivated30

by the latter problem and other details mentioned in 3.13, as well as the31

desire to handle mouse operators, as explained in 3.41, and the condensation32

requirements in the proof of solidity, etc., as seen in 3.36.33

This paper was initially written as a component of [6], and the material34

presented here is used (rather implicitly) in that paper. In the end it seemed35

better to separate the two papers. However, there is some common ground,36

and a significant part of the theory in this paper has an analogue in [6,37

§2] (though things are simpler in the latter). In order to keep both papers38

reasonably readable, for the most part the common themes are presented in39

both papers. In some situations proofs are essentially identical, and in these40

cases we have omitted the proof from one or the other.41

We have tried to develop the theory in a manner which is as compat-42

ible as possible with the earlier presentations (though in places we have43

opted for choosing more suggestive notation and terminology over sticking44

with tradition). Partly because of this, we develop the theory of F -premice45

abstractly, dealing with operators F more general than those given by J -46

structures. This does incur the cost of increasing the complexity somewhat.47

A reasonable alternative would have been to restrict attention to operators48

given by J -structures, since all applications known to the authors are of this49

form. Also, when dealing with J -structures, one can easily formulate – and50

maybe prove – condensation properties regarding all J -initial segments of51

the model. But the most straightforward analogues for abstract F -mice ap-52

ply only to F -initial segments of the model.1 This seems to be a significant53

deficit for abstract F -mice.2 On the other hand, aside from making the work54

1That is, given a reasonably closed F-mouse M, condensation with respect to embed-
dings H → M, or H → F(M), or H → F(F(M)), etc, but not with respect to H → N
when M∈ N ∈ F(M).

2For example, strategy mice can either be defined as an instance of the general theory
here, or as J -structures. The latter approach is taken in [6], and that approach is more
convenient, as it gives us the right notation to prove strong condensation properties like [6,
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more general, the abstraction has the advantage of showing what properties55

of J -structures are most essential to the theory.56

The paper proceeds as follows. In §2 we define precursors to F -premice,57

culminating in operator premice. We analyse these structures and cover ba-58

sic fine structure and iteration theory. In §3, we introduce operators F , and59

F-premice, which will be instances of operator premice. We define fine con-60

densation for operators; this notion is integral to the paper. (We also discuss61

in 3.13 the motivation for some of the details of this definition, as this might62

not be clear.) We then prove, in 3.36, the main result of the paper – that the63

fundamental fine structural facts (such as solidity of the standard parameter)64

hold for F -iterable F -premice, given that F condenses finely. We complete65

the paper in 3.41 by sketching a proof that mouse operators condense finely.66

1.1 Conventions and Notation67

We use boldface to indicate a term being defined (though when we define68

symbols, these are in their normal font). Citations such as [6, Lemma 4.1(?)]69

are used to indicate a referent that may change in time – that is, at the time70

of writing, [6] is a preprint and its Lemma 4.1 is the intended referent.71

We work under ZF throughout the paper, indicating choice assumptions72

where we use them. Ord denotes the class of ordinals. Given a transitive set73

M , o(M) denotes Ord∩M . We write card(X) for the cardinality of X, P(X)74

for the power set of X, and for θ ∈ Ord, P(< θ) is the set of bounded subsets75

of θ and Hθ the set of sets hereditarily of size < θ. We write f : X 99K Y to76

denote a partial function.77

We identify ∈ [Ord]<ω with the strictly decreasing sequences of ordinals,78

so given p, q ∈ [Ord]<ω, p�i denotes the upper i elements of p, and p E q79

means that p = q�i for some i, and p / q iff p E q but p 6= q. The default80

ordering of [Ord]<ω is lexicographic (largest element first), with p < q if p/q.81

Given a first-order structureM = (X,A1, . . .) with universe X and pred-82

icates, constants, etc, A1, . . ., we write bMc for X. A transitive structure83

is a first-order structure with with transitive universe. We sometimes blur the84

distinction between the terms transitive and transitive structure. For exam-85

Lemma 4.1(?)]. If one defines strategy mice as an instance of the general theory here, one
would then need to define new notation to refer to arbitrary J -initial segments in order to
prove the analogue of [6, Lemma 4.1(?)]. But then one might as well have defined strategy
mice as in [6] to begin with. (In fact, this paragraph describes some of the evolution of
the present paper and [6].)
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ple, when we refer to a transitive structure as being rud closed, it means that86

its universe is rud closed. For M a transitive structure, o(M) = o(bMc).87

An arbitrary transitive set X is also considered as the transitive structure88

(X). We write trancl(X) for the transitive closure of X.89

Given a transitive structure M, we write Jα(M) for the αth step in90

Jensen’s J -hierarchy over M (for example, J1(M) is the rud closure of91

trancl({M})). We similarly use S to denote the function giving Jensen’s92

more refined S-hierarchy. And J (M) = J1(M).93

We take (standard) premice as in [11], and our definition and theory of94

strategy premice is modelled on [11],[1]. Throughout, we define most of the95

notation we use, but hopefully any unexplained terminology is either stan-96

dard or as in those papers. For discussion of generalized solidity witnesses,97

see [13].98

Our notation pertaining to iteration trees is fairly standard, but here are99

some points. Let T be a putative iteration tree. We write ≤T for the tree100

order of T and predT for the T -predecessor function. Let α + 1 < lh(T )101

and β = predT (α+ 1). Then M∗T
α+1 denotes the N EMT

β such that MT
α+1 =102

Ultn(N , E), where n = degT (α + 1) and E = ETα , and i∗Tα+1 denotes iNE , for103

this N , E. And for α + 1 ≤T γ, i∗Tα+1,γ = iTα+1,γ ◦ i∗Tα+1. Also let M∗T
0 = MT

0104

and i∗T0 = id. If lh(T ) = γ + 1 then MT
∞ = MT

γ , etc, and bT denotes [0, γ]T .105

For α < lh(T ), baseT (α) denotes the least β ≤T α such that (β, α]T does106

not drop in model or degree. (Therefore either β = 0 or β is a successor.)107

A premouse P is η-sound iff for every n < ω, if η < ρPn then P is n-108

sound, and if ρPn+1 ≤ η then letting p = pPn+1, p\η is (n+ 1)-solid for P , and109

P = HullPn+1(η ∪ p). Here Hulln+1 is defined in 2.24.110

2 The fine structural framework111

In this section, we introduce and analyse an increasingly focused sequence112

of approximations to F-premice. We first define hierarchical model, which113

describes the most basic structure of F -premice. We refine this by defin-114

ing adequate model, adding some semi-fine-structural structural requirements115

(such as acceptability). We then develop some basic facts regarding adequate116

models and their cardinal structure. From there we can define potential op-117

erator premouse (potential opm) (analogous to a potential premouse); this118

definition makes new restrictions on the information encoded by the predi-119

cates (most significantly that the predicate Ė encodes extenders analogous120
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to those of premice), and adds some pre-fine structural requirements. Using121

the latter, we can define the central fine structural concepts for potential122

opms. We then define Q-operator premouse (Q-opm) by requiring that ev-123

ery proper segment be fully sound, and show that the first-order content of124

Q-opm-hood is almost expressed by a Q-formula.3 We then define operator125

premouse (analogous to premouse). We prove various fine structural facts126

regarding operator premice, and discuss the basic iterability theory.127

In §3, we will introduce operators F , and F-premice. In an F -premouse128

M, the predicate Ė is used to encode an extender, Ṗ to encode auxiliary129

information given by F (e.g if F is an iteration strategy and T ∈ M is a130

tree according to F , then Ṗ codes a branch b of T given by F), Ṡ to encode131

the sequence of proper initial segments of M, Ẋ to encode the extensions132

of all (not just proper) segments of M, ċb to refer to the coarse base of M133

(a coarse, transitive set at the bottom of the structure), and ċp to refer to134

a coarse parameter.4 An F -premouse M is over its base A = ċb
M

. Here135

A ∈M and A is in all proper segments ofM. When we form fine structural136

cores, all elements of A∪{A} will be the relevant hulls. But in some contexts137

we will be interested in hulls which do not include all elements of A.138

We now commence with the details.139

Definition 2.1. Let Y be transitive. Then %Y : Y → rank(Y ) denotes the140

rank function. And Ŷ denotes trancl({(Y, ω, %Y )}). For M transitive, we say141

that M is rank closed iff for every Y ∈M , we have Ŷ ∈M and Ŷ <ω ∈M .142

Note that if M is rud closed and rank closed then rank(M) = Ord ∩M . a143

Definition 2.2 (Hulls). Let L = {Ḃ, ~P ,~c} be a finite first-order language,144

where Ḃ is a binary predicate, ~P =
¬
Ṗi
¶
i<m

is a tuple of unary predicates145

and ~c = 〈ċi〉i<n a tuple of constants. Let N be a first-order L-structure and146

B = ḂN , etc. Let Γ be a collection of L-formulas with “x = ċi” in Γ for each147

i < n. Let X ⊆ bNc. Then148

HullNΓ (X) =def (H,B ∩H2, P0 ∩H, . . . , Pm−1 ∩H, c0, . . . , cn−1),

where H is the set of all y ∈ bNc such that for some ϕ ∈ Γ and ~x ∈ X<ω,149

y is the unique y′ ∈ N such that N � ϕ(~x, y′). If N is transitive, then150

3As in [1], we consider two cases: type 3, and non-type 3. For example, the property
of being a non-type 3 Q-opm is expressed by a Q-formula modulo transitivity and the
Pairing Axiom.

4E is for extender, P for predicate, S for segments, eX for extensions, cb for coarse
base, cp for coarse parameter.
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C = cHullNΓ (X) denotes the L structure which is the transitive collapse of151

HullNΓ (X). (That is, bCc is the transitive collapse of H, and letting π : bCc →152

H be the uncollapse, P Ci = π−1(Pi), etc.) a153

Definition 2.3. Let L0 be the language of set theory expanded by unary154

predicate symbols Ė, Ṗ , Ṡ, Ẋ, and constant symbols ċb, ċp. Let L+
0 be L0155

expanded by constant symbols µ̇, ė. Let L−0 = L0\{Ė, Ṗ}. a156

Definition 2.4. A hierarchical model is an L0-structure157

M = (bMc ;E,P, S,X, b, p),

where ĖM = E, etc, b = ċb
M

and p = ċpM, such that for some ordinal λ > 0,158

the following hold.159

1. M is amenable, bMc is transitive, rud closed and rank closed.160

2. (Base, Parameter) b = Ŷ for some transitive Y and p ∈ J (b); we say161

thatM is over the (coarse) base b and has (coarse) parameter p.162

3. (Segments) S = 〈Sξ〉ξ<λ where S0 = b and for each ξ ∈ [1, λ), Sξ is163

a hierarchical model over b with parameter p, with ṠSξ = S�ξ. Let164

Sλ =M.165

4. (Continuity) If λ is a limit then bMc =
⋃
α<λ bSαc.166

5. (Extensions)X : bMc → λ, andX(x) is the least α such that x ∈ Sα+1.167

Let l(M) denote λ, the length of M. For α ≤ λ let M|α = Sα. A168

hierarchical model M is a successor iff l(M) is a successor ξ + 1; in this169

case let M− = M|ξ. If l(M) is a limit, let M− = M. We say that N170

is an (initial) segment of M, and write N EM, iff N = M|α for some171

α ∈ [1, λ], and say that N is a proper (initial) segment of M, and write172

N /M, iff N E M and N 6= M. (Note that M|0 = b 5 M.) We write173

EM = E, etc.5 For any transitive Y , let cbŶ = Ŷ ; so cbM|α = M|0 for all174

α. a175

5We opted to use cp instead of p to avoid conflict with notation for standard parameters.
We use cb instead of b because to avoid conflict with notation associated to strategy mice.
For better readability, we will typically use the variable A to represent cbM.
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Definition 2.5. Let M be a hierarchical model over A.176

Let p ∈ [o(M)]<ω. If M is a successor, we say that M is (1, p)-solid iff177

for each i < lh(p),178

ThMΣ1
(cbM ∪ pi ∪ {p�i}) ∈M.

(The language used here is L0.6)179

We say that M is soundly projecting iff for every successor N EM,180

there is p ∈ o(N )<ω such that N is (1, p)-solid and181

N = HullNΣ1
(N− ∪ {N−, p})

We say that M is acceptable iff for every successor N EM, for every182

τ ∈ o(N−), if there is some X ∈ P(A<ω × τ<ω) such that X ∈ N\N− then183

in N there is a map A<ω × τ<ω onto→ N−.184

We say thatM is an adequate model iffM an acceptable hierarchical185

model and every proper segment of M is soundly projecting.186

An adequate model-plus is an L+
0 -structureM such thatM�L0 is an187

adequate model. a188

Definition 2.6. Given a language L extending the language of set theory,189

an L-simple-Q-formula is a formula of the form190

ϕ(v0, . . . , vn−1) ⇐⇒ ∀x∃y[x ⊆ y & ψ(y, v0, . . . , vn−1)],

for some Σ1 formula ψ of L. (Here all free variables are displayed; hence, x191

is not free in ψ.)192

Let ϕpair be the Pairing Axiom. a193

It is easy to see that neither ϕpair, nor rud closure, can be expressed,194

modulo transitivity, by a simple-Q-formula.7 However:195

Lemma 2.7. There is an L0-simple-Q-formula ϕam such that for all transi-196

tive L0-structures M, M is an adequate model iff M � [ϕpair & ϕam].197

6For the most part, definability over hierarchical models M will literally be computed
over C0(M) (to be defined later), which will be an L+

0 -structure. But for successors M,
we will have C0(M) = (M, µ̇C0(M), ėC0(M)) and µ̇C0(M) = ∅ = ėC0(M). So in this case,
definability over M (using L0) will be equivalent to that over C0(M) (using L+

0 ).
7If L is a first-order language extending the language of set theory, and X,Y are rud

closed transitive L-structures such that cX = cY for each constant symbol c ∈ L, and
PX = PY for each predicate symbol P ∈ L with P 6= ∈̇, then any L0-Q-formula true in
both X,Y is also true in the “union” of X,Y .
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Proof Sketch. This is a routine calculation, which we omit. (First find an198

L0-Q-formula ϕrud such that [ϕpair & ϕrud] expresses rud closure; this uses199

the the finite basis for rud functions.)200

If M is an adequate model over A and ξ < l(M) then M has a map201

A<ω × ξ<ω onto→ M|ξ.

In fact, by the following lemma, this is true uniformly. Its proof is routine,202

using the sound-projection of proper segments of M, much like in the proof203

of the corresponding fact for L.204

Lemma 2.8. There is a Σ1 formula ϕ in L−0 , of two free variables, such that205

for all A and adequate models M over A, ϕ defines a map F : l(M)→M,206

and for ξ < l(M), letting hξ = F (ξ), we have207

hξ : A<ω × ξ<ω onto→ M|ξ

and for all α ≤ ξ, we have hα ⊆ hξ.208

Definition 2.9. Given an adequate modelM over A and ξ < l(M), let hMξ209

be the function hξ of the preceding lemma. Let hM =
⋃
ξ<l(M) h

M
ξ . a210

Remark 2.10. So hM is L−0 −ΣM1 , uniformly in adequate M, and211

hM : A<ω × l(M−)<ω
onto→ M−

(recall that if M is a limit then M− = M), and if M is a successor then212

hM ∈M.213

Definition 2.11. Let M be an adequate model over A and λ = l(M). Let214

ρ < o(M). Then ρ is an A-cardinal ofM iffM has no map A<ω×γ<ω onto→ ρ215

where γ < ρ. We let ΘM denote the least A-cardinal ofM, if such exists. We216

say that ρ is A-regular inM iffM has no map A<ω×γ<ω cof→ ρ where γ < ρ.217

We say that ρ is an ordinal-cardinal of M iff M has no map γ<ω
onto→ ρ218

where γ < ρ. We say that ρ is relevant iff ρ ≤ o(M−). a219

The next four results are proved just like [6, 2.6–2.9(?)]:220

Lemma 2.12. Let M be an adequate model over A and λ = l(M) > ξ > 0.221

Let κ be an A-cardinal of M such that κ ≤ o(M|ξ). Then rank(A) < κ ≤ ξ222

and κ = o(M|κ).223
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Lemma 2.13. There is a Σ1 formula ϕ in L−0 such that, for any A and224

adequate model M over A, we have the following.225

Suppose Θ = ΘM exists and is relevant. Then:226

1. Θ is the least α such that P(A<ω)M ⊆M|α.227

2. bM|Θc is the set of all x ∈ M such that trancl(x) is the surjective228

image of A<ω in M.229

3. Over M|Θ, ϕ(0, ·, ·) defines a function G : Θ→M|Θ such that for all230

α < Θ, we have G(α) : A<ω
onto→ M|α.231

4. Θ is A-regular in M.232

Let κ0 < κ1 be consecutive relevant A-cardinals of M. Then:233

5. κ1 is the least α such that P(A<ω × κ<ω0 )M ⊆M|α.234

6. bM|κ1c is the set of all x ∈ M such that trancl(x) is the surjective235

image of A<ω × κ<ω0 in M.236

7. Over M|κ1, ϕ(κ0, ·, ·) defines a map G : κ1 →M|κ1 such that for all237

α < κ1, we have G(α) : A<ω × κ<ω0
onto→ M|α.238

8. κ1 is A-regular in M.239

Corollary 2.14. LetM be an adequate model over A and let γ be a relevant240

A-cardinal of M. If γ is a limit of A-cardinals of M then M|γ satisfies241

Separation and Power Set. If γ is not a limit of A-cardinals of M then242

M|γ � ZF−. In particular, M|ΘM � ZF−.243

Lemma 2.15. LetM be an adequate model over A such that ΘM exists and244

is relevant. Let κ ∈ [ΘM, o(M)) be relevant. Then κ is an A-cardinal of M245

iff κ is an ordinal-cardinal of M.246

Definition 2.16. Let M be an adequate model over A and let κ < o(M).247

Then (κ+)M denotes either the least ordinal-cardinal γ ofM such that γ > κ,248

if there is such, and denotes o(M) otherwise. By 2.15, if M is a limit and249

ΘM ≤ κ, then (κ+)M is the least A-cardinal γ ofM such that γ > κ, if there250

is such, or is o(M) otherwise. This applies when EN 6= ∅ in 2.19 below. a251

Definition 2.17. Let M be an adequate model over A. Then ρM denotes252

the least ρ ∈ Ord such that ρ ≥ ω and P(A<ω × ρ<ω) ∩ J (M) 6⊆ M. a253
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Remark 2.18. We now proceed to the definition of potential operator-254

premouse. We first give some motivation for some of the finer clauses. Projec-255

tum amenability ensures that we record all essential segments of a potential256

operator-premouse N in its history SN . For example, suppose we are form-257

ing an n-maximal iteration tree and we wish to apply an extender E to some258

piece of N , but E is not N -total. Projectum amenability will ensure that259

there is someM/N such that E isM-total andM projects to crit(E). The260

property of Σ1-ordinal-generation is used in making sense of fine structure;261

it ensures for example that the 1st standard parameter p1 is well-defined.262

The stratification of N lets us establish facts regarding the preservation of263

fine structure (including the preservation of p1, assuming 1-solidity) under264

degree 0 ultrapower maps. It also ensures that HullNΣ1
(cbN ∪Y ) 41 N for any265

Y ⊆ N . And the existence of cbN -ordinal-surjections, together with strat-266

ification, will be used in proving that Σ1-ordinal-generation is propagated267

under degree 0 ultrapower maps.268

Definition 2.19. We say thatN is a potential operator-premouse (potential269

opm) iff N is an adequate model, over A, such that for every M E N ,270

1. (P -goodness) If PM 6= ∅ then M is a successor and PM ⊆M\M−.8271

2. (E-goodness) If EM 6= ∅ thenM is a limit and there is an extender F272

over M such that, letting S = SM and E = EM and κ = crit(F ):273

– F is A<ω × γ<ω-complete for all γ < κ, and274

– the premouse axioms [12, Definition 2.2.1] hold for (bMc , S, E)275

(so E is the amenable code for F , as in [11]).276

(It follows thatM has a largest cardinal δ, and δ ≤ iF (κ), and o(M) =277

(δ+)U where U = Ult(M, F ), and iF (S�(κ+)M)�o(M) = S.)278

3. If M is a successor then:279

(a) (Projectum amenability) If l(M) > 1 and ω, α < ρM
−

then280

P(A<ω × α<ω) ∩M ⊆M−.

8The requirement that PM ⊆ M\M− does not restrict the information that can be
encoded in PM, because given any X ⊆M, one can always replace it with {M−} ×X.
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(b) (A-ordinal-surjections) For every x ∈ M there is α < o(M) a281

map A<ω × α<ω onto→ x in M.282

(c) (Σ1-ordinal-generation) M = HullMΣ1
(M− ∪ {M−} ∪ o(M)).283

(d) (Stratification) There is a limit γ ∈ Ord and sequence ÝM =284 〈ÝMα

〉
α<γ

such that:285

i. ÝM is a continuous, strictly increasing sequence with M− ∈286 ÝM0 and M =
⋃
α<γ

ÝMα,287

ii. for each α < γ, ÝMα is an L0-structure such that
⌊ÝMα

⌋
is288

transitive and ÝMα = M�
⌊ÝMα

⌋
; that is, cbM̃α = A and289

cpM̃α = cpM and EM̃α = EM ∩ ÝMα, etc,290

iii. ÝM�α ∈M for every α < γ, and the function α 7→ ÝM�α, with291

domain γ, is ΣM1 ({M−}).292

a293

Remark 2.20. Let N be a potential opm over A. Suppose EN codes an294

extender F . Clearly κ = crit(F ) > ΘM > rank(A). By [12, Definition 2.2.1],295

we have (κ+)M < o(M); cf. 2.16. Note that we allow F to be of superstrong296

type (see 2.21) in accordance with [12], not [11, Definition 2.4].9297

Definition 2.21. Let M be a potential opm over A. We say that M is E-298

active iff EM 6= ∅, and P -active iff PM 6= ∅. Active means either E-active299

or P -active. E-passive means not E-active. P -passive means not P -active.300

Passive means not active. Type 0 means passive. Type 4 means P -active.301

Type 1, 2 or 3 mean E-active, with the usual numerology.302

We write FM for the extender F coded by EM (where F = ∅ if EM =303

∅). We write EM for the function with domain l(M), sending α 7→ FM|α.304

Likewise for EM+ , but with domain l(M) + 1.305

If F = FM 6= ∅, we sayM, or F , is superstrong iff iF (crit(F )) = ν(F ).306

We say that M is super-small iff M has no superstrong initial segment.307

Suppose M is a successor. A stratification of M is a sequence ÝM308

witnessing 2.19(3d) for M. For a Σ1 formula ϕ ∈ L0, we say that M is309

9The main point of permitting superstrong extenders is that it simplifies certain things.
But it complicates others. If the reader prefers, one could instead require that F not be
superstrong, but various statements throughout the paper regarding condensation would
need to be modified, along the lines of [1, Lemma 3.3].
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ϕ-stratified iff ϕ(M−, ·)M defines the set of all proper restrictions ÝM�α of310

a stratification ÝM of M.10 a311

Lemma 2.22. Let M be a successor potential opm, over A. Let ÝM =312 〈ÝMα

〉
α<γ

be a stratification of M. For α < γ let313

Hα = HullM̃α
1 (A<ω ∪ o(ÝMα)).

Then for every x ∈M there is α < γ such that x ⊆ Hα.314

Proof. Use Σ1-ordinal-generation and A-ordinal-surjections.315

Definition 2.23. Let N be a structure for a finite first-order language L.316

We say that N is pre-fine iff:317

– L is a finite and {∈̇, ċb} ⊆ L, where ∈̇ is a binary relation symbol and318

ċb is a constant symbol.319

– N is an amenable L-structure with transitive, rud closed, rank closed320

universe bNc and ∈̇N = ∈ ∩ bNc2 and ċb
N

is transitive.321

– N = HullNΣ1
(ċb
N ∪ o(N )) (note the language here is L).322

a323

Definition 2.24 (Fine structure). Let N be pre-fine for the language L.324

We sketch a description of the fine structural notions for N . For details325

refer to [1],[11]; we also adopt some simplifications explained in [4].11 Let326

A = cbN .327

We say that N is 0-sound and let ρN0 = o(N ) and pN0 = ∅ and C0(N ) =328

N and rΣN1 = Σ
C0(N )
1 (here and in what follows, definability is with respect329

to L). Let TN0 = N .330

Now let n < ω and suppose that N is n-sound (which will imply that331

N = Cn(N )) and that ω < ρNn . We write ~pNn = (pN1 , . . . , p
N
n ). Then ρ = ρNn+1332

is the least ordinal ρ ≥ ω such that for some X ⊆ A<ω × ρ<ω, X is rΣÝ
N
n+1333

but X /∈ bNc.334

10The ϕ-stratification of M need not imply that every successor N /M is ϕ-stratified.
11The simplifications involve dropping the parameters un, and replacing the use of gen-

eralized theories with pure theories. These changes are not important, and if the reader
prefers, one could redefine things more analogously to [1],[11].
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Define rΣNn+1 from T = TNn as usual12 (the definition of TNn+1 is given335

below). And pNn+1 is the least tuple p ∈ Ord<ω such that some such X is336

rΣNn+1(A ∪ ρ ∪ {p, ~pNn }).

Here pNn+1 is well-defined by Σ1-ordinal-generation. For any X ⊆ N , let337

HullNn+1(X) = HullNrΣn+1
(X),

and cHullNn+1(X) be its transitive collapse. Likewise let338

ThNn+1(X) = ThNrΣn+1
(X)

(this denotes the pure rΣn+1 theory, as opposed to the generalized rΣn+1339

theory of [1].13) Then we let340

C = Cn+1(N ) = cHullNn+1(A ∪ ρNn+1 ∪ ~pNn+1),

and the uncollapse map π : C → N is the associated core embedding.341

Define (n+1)-solidity and (n+1)-universality for N as usual (putting the342

parameters in A into every relevant hull). We say that N is (n + 1)-sound343

iff N is (n+ 1)-solid and C = N and π = id.344

Now suppose that N is (n+ 1)-sound and ρNn+1 > ω (so ρNn+1 > rank(A)).345

Define T = TNn+1 ⊆ N by letting t ∈ T iff for some q ∈ N and α < ρNn+1,346

t = ThNn+1(A ∪ α ∪ {q}).

a347

Definition 2.25. Let L+
0 be L0 augmented with constant symbols µ̇, ė.14

348

Let N be a potential opm.349

If N is E-active then µN =def crit(FN ), and otherwise µN =def ∅.350

If N is E-active type 2 then eN denotes the trivial completion of the351

largest non-type Z proper segment of F ; otherwise eN =def ∅.15
352

IfN is not type 3 then C0(N ) = N sq denotes the L+
0 -structure (N , µN , eN )353

(with µ̇N = µN etc).354

12θ is rΣNn+1 iff there is an rΣ1 formula ψ(t, v) ∈ L such that θ = ∃t(T (t) ∧ ψ(t, v)).
13As in [1, §2], it does not matter which we use.
14µ is for µeasurable, and e is for extender.
15In [1], the (analogue of) e is referred to by its code γM. We use e instead because this

does not depend on having (and selecting) a wellorder of M.
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If N is type 3 then define the L+
0 -structure C0(N ) = N sq essentially as355

in [1]; so356

N sq = (R,E ′, P ′, S ′, X ′; cbN , cpN , µN , eN )

where ν = ν(FN ), R = bN |νc, E ′ is the usual squashed predicate coding357

FN , P ′ = ∅, S ′ = SN ∩R and X ′ = XN ∩R.358

We define the fine structural notions forN (n-soundness, ρNn+1, HullNn+1,359

ThNn+1, etc) as those for C0(N ).16
360

The classes of (non-simple) L+
0 -Q-formulas and L+

0 -P-formulas are361

defined analogously to in [1, §§2,3] (but with Σ1 in place of the rΣ1 of [1]). a362

In the proof of the solidity, etc, of iterable opms, one must also deal with363

structures which are almost active opms, except that they may fail the ISC.364

The details are immediate modifications of the standard notions, so we leave365

them to the reader.366

Definition 2.26. Let M be a Q-opm. Let R be an L+
0 -structure (possibly367

illfounded). Let π : R → C0(M).368

We say that π is an weak 0-embedding iff π is Σ0-elementary (therefore369

R is extensional and wellfounded, so assume R is transitive) and there is370

X ⊆ R such that X is ∈-cofinal in R and π is Σ1-elementary on elements of371

X, and if M is type 1 or 2, then letting µ = µR, there is Y ⊆ R|(µ+)R ×R372

such that Y is ∈ × ∈-cofinal in R|(µ+)R × R and π is Σ1-elementary on373

elements of Y . a374

Definition 2.27. For k ≤ ω, a (near) k-embedding π :M→N between375

k-sound opms is defined analogously to [11], and a weak k-embedding is376

analogous to [8, Definition 2.1(?)].17 Recall that when k = ω, each of these377

notions are equivalent with full elementarity. (According to the standard378

convention, literally π : C0(M) → C0(N ) and the elementarity of π is with379

respect to C0(M),C0(N ).)380

We say that π : M→ N is (weakly, nearly) k-good iff π is a (weak,381

near) k-embedding and cbM = cbN and π�cbM = id. a382

16Thus, when we write, say, M = cHullNn+1(X), we will have X ⊆ C0(N ) and literally

mean that C0(M) = R where R = cHull
C0(N )
n+1 (X). So M is produced by unsquashing R.

However, if N is type 3 and n = 0 it is possible that unsquashing R produces an illfounded
structure M, in which case C0(M) has not literally been defined. In this case, we define
M to be this illfounded structure, and define C0(M) = R.

17Note that this definition of weak k-embedding diverges slightly from the definitions
given in [1] and [11].
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Definition 2.28. Let N be an ω-sound potential opm. We say that N is383

< ω-condensing iff for every k < ω, for every soundly projecting, (k + 1)-384

sound potential opm M, for every near k-embedding π :M→N such that385

ρ = ρMk+1 ≤ crit(π) and ρ < ρNk+1, we have the following. IfM|ρ is E-passive386

let Q =M, and otherwise let Q = Ult(M|ρ, FM|ρ). Then either:387

– M /Q, or388

– M− /Q, and M∈ R where R /Q is such that R− =M−.389

a390

Note that if we have M∈ R as above, then ρMω = ρM
−

ω .391

Definition 2.29. A Q-operator-premouse (Q-opm)18 is a potential operator-392

premouse M such that every N /M is ω-sound and < ω-condensing. a393

In [1], there are no condensation requirements made regarding proper394

segments of premice. We make this demand here so that we can avoid stating395

it as an explicit axiom at certain points later (and it holds for the structures396

we care about).397

Definition 2.30. An adequate model-plus is an L+
0 -structure N such398

that N �L0 is an adequate model. a399

Lemma 2.31. There are L+
0 -Q-formulas ϕ1, ϕ2, a L+

0 -P-formula ϕ3, an L+
0 -400

simple-Q-formula ϕ0,limit, and for each Σ1 formula ψ ∈ L0 there are L+
0 -401

simple-Q-formulas ϕ0,ψ, ϕ4,ψ such that for any adequate model-plus N ′:402

1. N ′ � ϕ0,limit iff N ′ = C0(N ) for some limit passive Q-opm N .403

2. N ′ � ϕ4,ψ iff N ′ = C0(N ) for some ψ-stratified P -active Q-opm N .404

3. N ′ � ϕ0,ψ iff N ′ = C0(N ) for some passive Q-opm N which is either a405

limit or is ψ-stratified.406

4. N ′ � ϕ1 (respectively, N ′ � ϕ2) iff N ′ = C0(N ) for some type 1407

(respectively, type 2 ) Q-opm N .408

18Q is for Q-formula. We will see that the first-order aspects of Q-opm-hood are ex-
pressible with Q-formulas and P-formulas.
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5. If N ′ = C0(N ) for some type 3 Q-opm N then N ′ � ϕ3. If N ′ � ϕ3 then409

EN
′

codes an extender F over N ′ such that if Ult(N ′, F ) is wellfounded410

then N ′ = C0(N ) for some type 3 Q-opm N .411

Proof. Part 1 is routine and parts 4, 5 are straightforward adaptations of their412

analogues [1, Lemma 2.5], [1, Lemma 3.3] respectively, with the added point413

that we can drop the clause “or N is of superstrong type” of [1, Lemma 3.3],414

because we allow extenders of superstrong type. Part 2 is an easy adaptation415

of part 3, using the fact that if N is P -active then PN ⊆ N\N−. So we just416

sketch the proof of part 3.417

Consider an adequate model-plus N ′ and N = N ′�L0. We leave it to418

the reader to verify that here is an L0-simple-Q-formula asserting (when419

interpreted over N ′) that everyM/N is a < ω-condensing ω-sound potential420

opm, and an L+
0 -simple-Q-formula asserting that PN = EN = µN = eN = ∅.421

It remains to see that we can assert that 2.19(3) holds for M = N (the422

assertion will include the possibility that N is a limit). For 2.19(3a), use the423

formula “∀x∃y[x ⊆ y&ϕ(y)]”, where ϕ(y) asserts “either there is s ∈ SM424

such that y ∈ s or there are S,A such that S = y ∩ SM and A = cbM and425

S has a largest element P and for each τ < o(P), if there is X ∈ y\P such426

that X ⊆ A<ω × τ<ω, then there is n < ω such that ρPn+1 ≤ τ , as witnessed427

by a satisfaction relation in y” (use the fact that N is rud closed).428

Clause 2.19(3b) is easy, and it is fairly straightforward to assert that429

either N is a limit or N is ψ-stratified, identifying candidates for N− as in430

the previous paragraph. We can therefore assert 2.19(3c) as “∀x∃y[x ⊆ y431

and there is α < γ such that y ⊆ Hα”, where γ,Hα are defined as in 2.22,432

using the stratification given by ψ.433

Lemma 2.32. The natural adaptations of [1, Lemmas 2.4, 3.2] hold.434

In fact, we can also give a version of those lemmas for weak 0-embeddings.435

Lemma 2.33. Let M be a Q-opm, let N ′ be an L+
0 -structure and let π :436

N ′ → C0(M) be a weak 0-embedding.437

For any L+
0 -Q-formula ϕ, if C0(M) � ϕ then N ′ � ϕ. If M is a type i438

Q-opm, i 6= 3, then N ′ = C0(N ) for some type i Q-opm N . 19
439

Suppose M is type 3. For any L+
0 -P-formula ϕ, if C0(M) � ϕ then440

N ′ � ϕ. If Ult(M, FM) is wellfounded then N ′ = C0(N ) for some type 3441

Q-opm N .442

19Possibly N ,M are passive and M is a successor but N a limit.
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The proof is routine, so we omit it.443

Lemma 2.34. Let M be an n-sound Q-opm over A with ω < ρMn . Let444

X ⊆ C0(M), let445

N = cHullMn+1(A ∪X ∪ ~pMn )

and let π : N →M be the uncollapse. Then:446

1. If either n > 1 or M is not type 3 or Ult(M, FM) is wellfounded then447

N is a Q-opm.448

2. If N is a Q-opm then π is nearly n-good.449

Proof. Suppose n = 0 andM is a successor. Then it suffices to see that π is450

rΣ1-elementary. Let x ∈ N , let ϕ be rΣ0 and suppose thatM � ∃yϕ(y, π(x)).451

We want to see that there is some y ∈ rg(π) such that M � ϕ(y, π(x)).452

Note that ξ ∈ rg(π), where ξ is least such that π(x) ∈ M|(ξ + 1) and453

there is y ∈ M|(ξ + 1) such that M � ϕ(y, π(x)). Suppose ξ + 1 < lh(M).454

Let ~a ∈ A<ω be such that there is ~β ∈ (ξ + 1)<ω such that M � ϕ(y, π(x))455

where y = hMξ+1(~a, ~β). Taking ~β least such, then ~β ∈ rg(π), so y ∈ rg(π), as456

required. Now suppose instead that ξ + 1 = lh(M). Let 〈Hα〉α<γ be as in457

2.22, with respect to some stratification ÝM ofM. Then α ∈ rg(π), where α458

is least such that π(x) ∈ Hα and there is y ∈ Hα such that M � ϕ(y, π(x))459

(use here that for each β < γ, ÝMβ 40 M). So as before, there is some such460

y ∈ rg(π).461

If n = 0 andM is a limit it is similar, but easier. (However, ifM is type462

3, possibly N is illfounded. This is ruled out by the hypotheses in part 1.)463

If n > 0, then the proof for standard premice adapts routinely, using464

the fact that A ⊆ rg(π) as above.20 (If M is type 3 and n > 1, there is465

(a, f) ∈ rg(π) such that ν(FM) = [a, f ]MFM , which easily gives that N is466

wellfounded.)467

Using stratifications and standard calculations, we also have:468

Lemma 2.35. Let π : N → M be nearly n-good, and A = cbN . Suppose469

that N /∈M and N = HullNn+1(A∪ ρ∪{q}), where ρ ∈ Ord and ρ ≤ crit(π).470

Then π is n-good.471

If N = Cn+1(M) and π is the core embedding, then π is n-good.472

20The fine structural setup here is a little different from that in [1], as we have dropped
the use of uMi . See [4] for calculations which deal with this difference.

17



Definition 2.36. An operator-premouse (opm) is a soundly projecting473

Q-opm. For an opm M, let qM = pM1 ∩ (o(M−), o(M)) (so if M is a limit474

then qM = ∅). a475

Definition 2.37. Let M be a k-sound opm over A and q ∈ (ρMk )<ω. We476

say that M is (k + 1, q)-solid iff for each α ∈ q, letting q′ = q\(α + 1) and477

X = A ∪ α ∪ q′ ∪ ~pMk , we have ThMk+1(X) ∈ M (recall that this is the rΣk+1478

theory, computed over C0(M)). a479

Lemma 2.38. Let M be a successor opm and l(M) = ξ + 1. Let ρ = ρM
−

ω480

and p = pM1 \ρ. Then M is ρ-sound and ρM1 ≤ ρ and either p ⊆ ξ + 1 or481

p = qM. Therefore either M is ω-sound and ρMω = ρM
−

ω , or there is k < ω482

such that M is k-sound and ρMk+1 < ρM
−

ω ≤ ρMk .483

Proof. If qM 6= ∅ then p ∩ [ρ, o(M−)] = ∅, as letting A = cbM,484

M− ∪ {M−} ⊆ HullM1 (A ∪ ρ ∪ p)

as XM is ΣM1 , and this suffices since M is soundly projecting. So suppose485

qM = ∅. Then p is the least r ∈ (ξ + 1)<ω such that486

M− ∈ H = HullM1 (A ∪ ρ ∪ r).

Moreover, M is (1, p)-solid. For M = H by sound-projection and since487

qM = ∅. Therefore p ≤ r. But letting α ∈ r and r′ = r\(α + 1) and488

H ′ = HullM1 (A ∪ α ∪ r′),

we have M− /∈ H ′, so H ′ ⊆M−, because XM is ΣM1 . This suffices.489

Lemma 2.39. Let N be a successor operator-premouse and let π :M→N .490

Suppose that either (i) π is Σ1-elementary and qN = ∅, or (ii) π is Σ2-491

elementary and qN ∈ rg(π). Then M is an operator-premouse of the same492

type as N , and π(qM) = qN .493

Proof. By 2.31,M is a Q-opm and we may assume that N− ∈ rg(π), soM is494

a successor and π(M−) = N−, andM is ψ-stratified where N is ψ-stratified.495

In part (i) the ψ-stratification givesM = HullM1 (M− ∪ {M−}). In part (ii)496

use generalized solidity witnesses.497
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However, if π is just Σ1-elementary and pN1 6= ∅,M might not be soundly498

projecting, even if pN1 ∈ rg(π). Such embeddings arise when we take Σ1 hulls,499

like in the proof of 1-solidity.500

Let X be transitive. Then X# determines naturally an opm M over X̂501

of length 1, so U = Ult0(M, FX#
) is also a Q-opm over X̂ of length 1, but U502

is not an opm.21 So opm-hood is not expressible with Q-formulas. However,503

given a successor opm N , we will only form ultrapowers of N with extenders504

E such that crit(E) < o(N−), and under these circumstances, opm-hood is505

preserved. In fact, we will only form ultrapowers and fine structural hulls506

under further fine structural assumptions:507

Definition 2.40. Let k ≤ ω. An opm M is k-relevant iff M is k-sound,508

and either M is a limit or k = ω or ρMk+1 < ρM
−

ω .509

A Q-opmM which is not an opm (soM is a successor) is k-relevant iff510

k = 0 and ρM1 < ρM
−

ω . a511

For the development of the basic fine structure theory of opms, one only512

need to iterate k-relevant opms (and phalanxes of such structures, and bi-513

cephali and pseudo-premice); see 2.43. For instance, the following lemma514

follows from 2.38:515

Lemma 2.41. Let k < ω and M be a k-sound operator-premouse which is516

not k-relevant. Then M is (k + 1)-sound.517

In the following lemma we establish the preservation of fine structure518

under degree k ultrapowers, for k-relevant opms. The proof involves a key519

use of stratification.520

Lemma 2.42. Let M be a k-relevant opm and E an extender over M,521

weakly amenable to M, with crit(E) < ρMk , and crit(E) < ρM
−

ω if M is a522

successor. Let N = Ultk(M, E) and j = iME,k be the ultrapower embedding.523

Suppose N is wellfounded. Then:524

1. N is a k-relevant opm of the same type as M.525

2. N is a successor iff M is. If M is a successor then j(l(M)) = l(N )526

and if M is ψ-stratified then N is ψ-stratified.527

3. j is k-good.528

21U is not soundly projecting.
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4. For any q ∈ (ρMk )<ω, ifM is (k+1, q)-solid then N is (k+1, j(q))-solid.529

5. ρNk+1 ≤ sup j“ρMk+1.530

6. If E is close to M and M is (k + 1)-solid then ρNk+1 = sup j“ρMk+1 and531

pNk+1 = j(pMk+1) and N is (k + 1)-solid.532

Proof. The fact that N is a Q-opm of the same type as M is by 2.31. Part533

3 is standard and part 2 follows easily. We now verify that N is soundly534

projecting; we may assume that M,N are successors. If k > 0, use elemen-535

tarity and stratification. Suppose k = 0. Let ρ = ρM
−

ω and q = j(qM). The536

fact that N is (1, q)-solid follows by an easy adaptation of the usual proof537

of preservation of the standard parameter, using stratification (where in the538

usual proof, one uses the natural stratification of the J -hierarchy). So it539

suffices to see that N = HullN1 (N− ∪ {N−, q}). But this holds because M540

is an opm and541

N = HullN1 (rg(j) ∪ νE)

and νE ⊆ N−, the latter because crit(E) ≤ o(N−) (in fact, crit(E) < ρN
−

ω ).542

Parts 4–6: If k > 0 the proof for standard premice works (see, for example,543

[1, Lemmas 4.5, 4.6], and if κ < ρMk+1, see the calculations in [1, Claim544

5 of Theorem 6.2] and [5, §2(?), (p, ρ)-preservation]. If k = 0, again use545

stratification to adapt the usual proof. (In the case that l(M) is a limit,M546

is of course “stratified” by its proper segments.)547

By part 5, it follows that N is k-relevant, completing part 1.548

Definition 2.43. Iteration trees T on opms are as for standard premice,549

except that for all α + 1 ≤ lh(T ), MT
α is an opm, and if α + 1 < lh(T ) then550

ETα ∈ E+(MT
α ). Putative iteration trees T on opms are likewise, except551

that if T has successor length then no demand is made on the nature of MT
∞;552

in particular, it might be illfounded (but if lh(T ) = λ+ 1 for a limit λ then553

it is still required that [0, λ)T be T �λ-cofinal).554

Let k < ω and let M be a k-sound opm. The iteration game GM(k, θ) is555

defined completely analogously to the game Gk(M, θ) of [11, §3.1], forming556

a (putative) iteration tree as above, except for the following difference: Let557

T be the putative tree being produced. For β + 1 < α + 1, we replace the558

requirement (on player I) that lh(ETβ ) < lh(ETα ) with the requirement that559

lh(ETβ ) ≤ lh(ETα ). The rest is like in [11].560
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A (putative) iteration tree on M is k-maximal iff it is a partial play561

of GM(k,∞). A (k, θ)-iteration strategy for M is a winning strategy for562

player II in GM(k, θ).563

The iteration game GM(k, α, θ) is defined by analogy with the game564

Gk(M, α, θ) of [11, §4.1], except that each round consists of a run of GQ(q, θ)565

for some Q, q.22 The iteration game G = GMmax(k, α, θ) is defined likewise,566

except that we do not allow player I to drop in model or degree at the be-567

ginnings of rounds. That is, (i) round 0 of G is a run of GM(k, θ), and (ii)568

letting 0 < γ < α and ~T = 〈Tβ〉β<γ be the sequence of trees played in rounds569

< γ and N = M
~T
∞ and n = deg

~T (∞), round γ of G is a run of GN (n, θ).570

A (putative) iteration tree is k-stack-maximal iff it is a partial play of571

GMmax(k,∞,∞). A (k, α, θ)-maximal iteration strategy forM is a winning572

strategy for player II in GMmax(k, α, θ), and a (k, α, θ)-iteration strategy is573

likewise for GM(k, α, θ).574

Now (k, θ)-iterability, (k, α, θ)-maximal iterability, etc, are defined575

by the existence of the appropriate winning strategy. a576

Remark 2.44. The requirement, in GM(k, θ), that lh(ETβ ) ≤ lh(ETα ) for577

β < α, is weaker than requiring that lh(ETβ ) < lh(ETα ), because opms may578

have superstrong extenders. For example, we might have that ET0 is type 2579

and ET1 is superstrong with crit(ET1 ) the largest cardinal of MT
0 |lh(ET0 ), in580

which caseMT
2 is active but o(MT

2 ) = lh(ET1 ), and therefore we might have581

lh(ET2 ) = lh(ET1 ).582

The preceding example is essentially general. It is easy to show that if T583

is k-maximal and α < β < lh(T ) then either lh(ETα ) < o(MT
β ) and lh(ETα ) is584

a cardinal of MT
β , or β = α+1 and lh(ETα ) = o(MT

α+1) and ETα is superstrong585

and MT
α+1 is type 2. Therefore if α+1 < β+1 < lh(T ) then ν(ETα ) < ν(ETβ ),586

and if α + 1 ≤ β < lh(T ) then ETα �ν(ETα ) is not an initial segment of any587

extender on E+(MT
β ).588

The comparison algorithm needs to be modified slightly. Suppose we589

are comparing modelsM,N , via padded k-maximal trees T ,U , respectively,590

22Recall that for γ < α, after the first γ rounds have been played, both players having
met their commitments so far, we have a γ-sequence ~T of iteration trees, with wellfounded

final model M
~T
∞ (formed by direct limit if γ is a limit); it follows that this model is an

n-sound operator-premouse where n = deg
~T (∞). At the beginning of round γ, player I

chooses some (Q, q) E (M~T
∞, n), and round γ is a run of GQ(q, θ). If round γ is won by

player II and the run produces a tree of length θ, then the run of GM(k, α, θ) is won by
player II.
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and we have produced T �α + 1 and U�α + 1. Let γ be least such that591

MT
α |γ 6= MU

α |γ. If only one of these models is active, then we use that592

active extender next. Suppose both are active. If one active extender is type593

3 and one is type 2, then we use only the type 3 extender next. Otherwise594

we use both extenders next. With this modification, and with the remarks595

in the preceding paragraph, the usual proof that comparison succeeds goes596

through.597

Lemma 2.45. LetM be a k-relevant opm and T a successor length k-stack-598

maximal tree on M. Then MT
∞ is a degT (∞)-relevant opm.599

Proof. Given the result for k-maximal trees T , the generalization to k-stack-600

maximal is routine. But for k-maximal T , the result follows from 2.42, by a601

straightforward induction on lh(T ).602

In 2.45, it is important that T is k-stack-maximal; the lemma can fail for603

trees produced by GM(k, α, θ).604

3 F-mice for operators F605

We will be interested in opms M in which the successor steps are taken by606

some operator F ; that is, in which N = F(N−) for each successor N EM.607

We call such an M an F-premouse. A key example that motivates the608

central definitions is that of mouse operators. One can also use the operator609

framework to define (iteration) strategy mice, although a different approach610

is taken in [6] (to give a more refined hierarchy).611

Definition 3.1. We say that X is swo’d (self-wellordered) iff X = x ∪612

{x,<} for some transitive set x, and wellorder < of x. In this situation, <X613

denotes the wellorder of X extending <, and with last two elements x,<.614

Clearly there are uniform methods of passing from an explicitly swo’d X to615

a wellorder of A = X̂. Fix such a method, and for such X,A, let <A denote616

the resulting wellorder of A. a617

Definition 3.2. We say that a set or class B is an operator background618

iff (i) B is transitive, rudimentarily closed and ω ∈ B, (ii) for all x ∈ B and619

all y, f , if f : x<ω → trancl(y) is a surjection then y ∈ B, and (iii) B � DC.620

(So o(B) = rank(B) is a cardinal; if ω < κ ≤ Ord then Hκ is an operator621
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background, and under ZFC these are the only operator backgrounds.) By622

(iii), every element of B has a countable elementary substructure.623

Let B be an operator background. A set C is a cone of B iff there is624

a ∈ B such that C is the set of all x ∈ B such that a ∈ J1(x̂). With a, C625

as such, we say C is the cone above a. If b ∈ J1(a) we say C is above b.626

A set D is a swo’d cone of B iff D = C ∩ S, for some cone C of B, and627

where S is the class of explicitly swo’d sets. Here D is (the swo’d cone)628

above a iff C is (the cone) above a. A cone is a cone of B for some operator629

background B. Likewise for swo’d cone. a630

Definition 3.3. An operatic argument is a set X such that either X = Ŷ631

for some transitive Y , or X is an ω-sound opm. Given C ⊆ B, let632

çC = {Ŷ ‖ Y ∈ C & Y is transitive}.

An operatic domain over B is a set D = çC ∪ P ⊆ B, where C is a633

possibly swo’d cone of B, and P is some class of < ω-condensing ω-sound634

opms, each over some A ∈ çC. (We do not make any closure requirements on635

P .) Write CD = C and PD = P . Note that çC ∩ P = ∅.636

An operatic domain is an operatic domain over some B. a637

Definition 3.4. Let B be an operator background. An operator over B638

with domain D is a function F : D → B such that (i) D is an operatic639

domain over B; (ii) for all X ∈ D, M = F(X) is a successor opm with640

M− = X (so if X ∈ëCD then l(M) = 1 and cbM = X). Write CF = CD
641

and PF = PD. a642

Remark 3.5. The argument X to an operator should be thought of as643

having one of two possible types. It is a coarse object if X ∈ êCF ; it is an644

opm if X ∈ PF . Some natural operators F have the property that, given645

N ∈ PF (so N̂ ∈ CF), F(N̂ ) is inter-computable with F(N ). But operators646

producing strategy mice do not have this property.647

The simplest operator is essentially J :648

Definition 3.6. Let p ∈ V . Let Cp be the class of all x such that p ∈649

J1(x̂). Let Pp be the class of all < ω-condensing ω-sound opms R over some650

Y ∈ éCp, with cpR = p. Then J op
p denotes the operator over V with domain651

D = éCp ∪ Pp, where for x ∈ D, J op
p (x) is the passive successor opmM with652
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universe J1(x) and M− = x and cpM = p.23 (So if x ∈ éCp then l(M) = 1653

and cbM = x.) Let J op = J op
∅ . a654

Definition 3.7 (F -premouse). For F an operator, an F-premouse (F-655

pm) is an opm M such that N = F(N−) for every successor N EM. a656

Let M be an F -premouse, where F is an operator over B. Note that657

cbM ∈ êCF , asM|1 = F(M|0) andM|0 = cbM = x̂ for some x, and x̂ /∈ PF .658

Note also that o(M) ≤ o(B).659

We now define F -iterability for F -premice M. The main point is that660

the iteration strategy should produce F -premice. One needs to be a little661

careful, however, because the background B for F might only be a set. To662

simplify things, we restrict our attention to the case that M∈ B.663

Definition 3.8. Let F be an operator over B. Let M be an opm and let664

T be a putative iteration tree on M. We say that T is a putative F-665

iteration tree iff MT
α is an F -premouse for all α + 1 < lh(T ). We say666

that T is a well-putative F-iteration tree iff T is an iteration tree and667

a putative F -iteration tree (i.e. a putative F -iteration tree whose models668

are all wellfounded). We say that T is an F-iteration tree iff MT
α is an669

F -premouse for all α + 1 ≤ lh(T ). We may drop the “F -” when it is clear670

from context.671

Let k < ω and let M ∈ B be a k-sound F -premouse. Let θ ≤ o(B) +672

1. The iteration game GF ,M(k, θ) has the rules of GM(k, θ), except for the673

following difference. Let T be the putative tree being produced. For α+ 1 ≤674

θ, if both players meet their requirements at all stages < α, then, in stage α,675

player II must first ensure that T �α + 1 is a well-putative F -iteration tree,676

and if α + 1 < o(B), that T �α + 1 is an F -iteration tree. (Given this, if677

α + 1 < θ, player I then selects ETα .)24
678

Let λ, α ≤ o(B), and suppose that either o(B) is regular or λ < o(B).679

Let θ ≤ λ+1. The iteration game GF ,M(k, α, θ) is defined just as GM(k, α, θ),680

23It is easy to see that M is indeed an opm, so J op
p is an operator.

24 Thus, if we reach stage o(B), then after selecting a branch, player II wins iff MTo(B)

is wellfounded. We cannot in general expect MTo(B) to be an F-premouse in this situation.

For example, suppose that B = HC and θ = ω1 +1 and lh(T ) = ω1 +1. Then MTω1
cannot

be an F-premouse, since all F-premice have height ≤ ω1. But in applications such as
comparison, we only need to know that MTω1

is wellfounded. So we still decide the game
in favour of player II in this situation.
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with the differences that (i) the rounds are runs of GF ,Q(q, θ) for some Q, q,25
681

and (ii) if α is a limit and neither player breaks any rule, and ~T is the682

sequence of trees played, then player II wins iff M
~T
∞ is defined (that is, the683

trees eventually do not drop on their main branches, etc), wellfounded, and if684

α < o(B) then M
~T
∞ is an F -premouse.26 Likewise, GF ,Mmax (k, α, θ) is analogous685

to GMmax(k, α, θ).686

An F-(k, θ)-iteration strategy for M is a winning strategy for player687

II in GF ,M(k, θ), an F-(k, α, θ)-maximal iteration strategy forM is like-688

wise for GF ,Mmax (k, α, θ), and an F-(k, α, θ)-iteration strategy is likewise for689

GF ,M(k, α, θ).690

Now F-(k, θ)-iterability, etc, are defined in the obvious manner. a691

In order to prove that F -premice built by background constructions are692

F -iterable, we will need to know that F has good condensation properties.693

Definition 3.9. Let π :M→ N be an embedding and b be transitive. We694

say that π is above b iff b ∪ {b} ⊆ dom(π) and π�b ∪ {b} = id. a695

Definition 3.10. Let F be an operator over B and p ∈ B be transitive.696

We say that F condenses coarsely above p (or F has almost coarse697

condensation above p) iff for every successor F -pm N , every set-generic698

extension V [G] of V and allM, π ∈ V [G], ifM− ∈ V and π :M→N is fully699

elementary and above p, thenM is an F -pm (so in particular,M− ∈ dom(F)700

and M = F(M−) ∈ V ).701

We say that F almost condenses coarsely above b iff the preceding702

holds for G = ∅. a703

Definition 3.11. An operator F over B is total iff PF includes all < ω-704

condensing ω-sound F -pms in B. a705

Lemma 3.12. Let F be a total operator which almost condenses coarsely706

above some p ∈ HC. Then F condenses coarsely above p.707

25By some straightforward calculations using the restrictions on α, θ, one can see that
for any γ < α, if neither player has lost the game after the first γ rounds, and ~T �γ is

the sequence of trees played thus far, then M
~T �γ
∞ ∈ B and M

~T �γ
∞ is an F-premouse, so

GF,Q(q, θ) is defined for the relevant (Q, q). This uses the rule that if one of the rounds
produces a tree of length θ, then the game terminates.

26It follows that if λ = o(B) then M
~T
∞|o(B) is an F-premouse.
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Proof Sketch. Suppose the lemma fails and let P be a poset, and G ⊆ P708

be V -generic, such that in V [G] there is a counterexample π : M → N .709

We may easily assume that M− is an F -pm, and therefore that M− ∈710

dom(F). So M 6= F(M−). By Σ1
1-absoluteness, we may assume that P =711

Col(ω,F(M−) ∪ N ). Therefore there is a transitive, rud closed set X ∈ B,712

where F is over B, such that P ∈ X and X �“It is forced by P that there713

is an M and a fully elementary π :M→ N , with M 6= F(M−).” Because714

B � DC, we can take a countable elementary hull of X, such that letting715

σ : X̄ → X be the uncollapse, rg(σ) includes all relevant objects and all716

points in p ∪ {p} ⊆ rg(σ). But we can find generics for X̄, and because F717

almost condenses coarsely above p, this easily leads to contradiction.718

Remark 3.13. We soon proceed toward the central notion of condenses719

finely, a refinement of condenses coarsely. This notion is based on that of720

condenses well, [12, 2.1.10] (condenses well also appeared in the original721

version of [10], in the same form). We have modified the latter notion in722

several respects, for multiple reasons. Before beginning we motivate two of723

the main changes.724

Regarding the first, we can demonstrate a concrete problem with con-725

denses well, at least when it is used in concert with other definitions in [12].726

The following discussion uses the definitions and notation of [12, §2], with-727

out further explanation here; the terminology differs from this paper. (The728

remainder of this remark is for motivation only; nothing in it is needed later.)729

Let K be the function x 7→ J2(x). Clearly K is a mouse operator (see730

[12, 2.1.7]). Let F = FK (see [12, 2.1.8]). Then we claim that F does not731

condense well (contrary to [12, 2.1.12]). We verify this.732

Clearly regular premiceM whose ordinals are closed under “+ω” can be733

arranged as models M̃ with parameter ∅ (see [12, 2.1.1]), such that for each734

α < l(M̃), M̃|α + 1 = F (M̃|α).735

Now letM be a premouse such that for some κ < o(M), κ is measurable736

in M, via some measure on E = EM, and M �“λ = κ+κ exists”, ρMω = λ,737

and M = J1(M0) where M0 = J E
λ . Let M∗ = J (M̃0), arranged as a738

model with parameter ∅ extending M̃0. We have ρMω = λ = ρ(M0) and739

M̃0 ∈M∗ ∈ F (M̃0) and l(M∗) = λ+ 1 and (M∗)− = M̃0 (see [12, 2.1.3]).740

(We can’t say M∗ = M̃, because M̃ is not defined.)741

Let E ∈ E be M-total with crit(E) = κ. Let N = Ult0(M, E) and742

π = iE. Then ρN1 = supπ“λ < π(λ). Let N0 = π(M0) and N ∗ = J1(Ñ0),743

arranged as a model with parameter ∅ extending Ñ0. Then ρ1(N ∗) < π(λ) =744
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ρ(Ñ0), and therefore N ∗ = F (Ñ0). But π : M∗ → N ∗ is a 0-embedding745

(and π(M̃0) = Ñ0). Since M∗ 6= F (M̃0), F does not condense well (see746

[12, 2.1.10(1)]). (Note also that by using Ult1(M, E) in place of Ult0(M, E),747

we would get that π is both a 0-embedding and Σ2-elementary, so even this748

hypothesis is consistent with having M∗ 6= F (M̃0).)749

However, as pointed out by Steel, the preceding example is somewhat750

unnatural, because we could have taken a degree ω ultrapower. (Note thatM751

is not 0-relevant. The example motivates our focus on forming k-ultrapowers752

of k-relevant opms.) So here is a second example, and one in which the753

embedding is the kind that can arise in the proof of solidity of the standard754

parameter – certainly in this context we would want to make use of condenses755

well. We claim there are (consistently) mice M, containing large cardinals,756

and ρ, α ∈ OrdM such that:757

– M = J (N ) where N =M|(ρ+)M,758

– M is 1-sound,759

– ρM1 = ρ < α < (ρ+)M,760

– pM1 = {(ρ+)M, α}, and761

– letting H = cHullM1 (α ∪ {(ρ+)M}), we have ρHω = α.762

(In fact, this happens in L, excluding the large cardinal assumption.) Given763

such M, note that α = (ρ+)H and H = J (M||α). Then H is a 1-solidity764

witness for M, and the 0-embedding π : H → M is the one that would be765

used in the proof of the 1-solidity ofM. Moreover, with F as before, “M =766

J (N ) = F (N )” (since M projects below OrdN ) but “H 6= F (M||α) =767

J (J (M||α))”. So we again have a failure of condenses well, and one which768

is arising in the context of the proof of solidity. (Of course, in the example769

we are already assuming 1-solidity, but the example seems to indicate that770

we cannot really expect to use condenses well in the proof of solidity for771

F -mice.)772

Now let us verify that such anM exists. Let P be any mouse (with large773

cardinals) and ρ a cardinal of P such that (ρ++)P < OrdP . Let γ = (ρ+)P+1.774

For α < (ρ+)P let775

Hα = cHull
P|γ
1 (α ∪ {(ρ+)P}).
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Because ρP|γω = (ρ+)P , it is easy to find α with ρ < α < (ρ+)P and such that776

the uncollapse map Hα → P|γ is fully elementary, and so ρω(Hα) = α =777

(ρ+)Hα . Fix such an α. Let H = Hα and778

M = cHull
P|γ
1 (ρ ∪ {(ρ+)P , α}).

We claim that M, ρ, α are as required. For M ∈ P , which easily gives that779

ρM1 = ρ. Clearly M = J (N ) where N =M|(ρ+)M. The 1-solidity witness780

associated to (ρ+)M is781

cHullM1 ((ρ+)M),

which is just M|(ρ+)M, as M|(ρ+)M 41 M, as M|(ρ+)M � ZF−. And the782

1-solidity witness associated to α is783

cHullM1 (α ∪ {(ρ+)M}),

which is just H = J (P||α) ∈M. All of the required properties follow.784

The preceding examples seem to extend to any (first-order) mouse oper-785

ator K such that J (x) ∈ K(x) for all x.786

To get around the problem just described, we will need to weaken the787

conclusion of condenses well, as will be seen.788

The second change is not based on a definite problem, but on a suspicion.789

It relates to, in the notation used in clause (2) of [12, 2.1.10], the embedding790

σ : F (P0)→M. In at least the basic situations in which one would want to791

use this clause (or its analogue in condenses finely), σ actually arises from792

something like an iteration map. But in condenses well, no hypothesis along793

these lines regarding σ is made. It seems that this could be a deficit, as it794

might be that F (P0) is lower than M in the mouse order (if one can make795

sense of this); we might have F (P0) /M. Thus, it seems that in proving an796

operator condenses well, one might struggle to make use of the existence of797

σ. So, in condenses finely, we make stronger demands on σ.798

A third change is that we do not require that π ◦ σ ∈ V (with π, σ as in799

[12, 2.1.10]). This is explained toward the end of 3.32.800

Motivation for the remaining details will be provided by how they arise801

later, in our proof of the fundamental fine structural properties for F -mice802

for operators F which condense finely, and in our proof that mouse operators803

condense finely. We now return to our terminology and notation. Before we804

can define condenses finely, we need to set up some terminology in order to805

describe the demands on σ.806
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The notion of (zMk+1, ζ
M
k+1) below is a direct adaptation from [7, Definition807

2.16(?)]. The facts proved there about this notion generalize readily to the808

present setting.809

Definition 3.14. Let M be a k-sound opm. Let D be the class of pairs810

(z, ζ) ∈ [Ord]<ω × Ord such that ζ ≤ min(z). For x ∈ [Ord]<ω let fx be the811

decreasing enumeration of x. For x = (z, ζ) ∈ D let fx = fz ̂ 〈ζ〉. Order D812

by x <∗ y iff fx <lex fy. Then (zMk+1, ζ
M
k+1) denotes the <∗-least (z, ζ) ∈ D813

such that814

ThMk+1(cbM ∪ z ∪ ζ) /∈M.

The (k + 1)-solid-core of M is815

Sk+1(M) = cHullMk+1(cbM ∪ zMk+1 ∪ ζMk+1),

and the (k + 1)-solid-core map σMk+1 is the uncollapse map. a816

If M is (k + 1)-solid then Sk+1(M) = Ck+1(M) and σMk+1 is the core817

map. But we will need to consider the (k + 1)-solid-core more generally, in818

the proof of (k + 1)-solidity.819

Definition 3.15. Let k ≤ ω, let L,M be k-sound opms and σ : L → M.820

We say that σ is k-tight iff there is λ ∈ Ord and a sequence 〈Lα〉α≤λ of opms821

such that L = L0 andM = Lλ and there is a sequence 〈Eα〉α<λ of extenders822

such that each Eα is weakly amenable to Lα, with crit(Eα) > cbL,823

Lα+1 = Ultk(Lα, Eα),

and for limit η,824

Lη = dirlimα<β<η(Lα,Lβ; jαβ)

where jαβ : Lα → Lβ is the resulting ultrapower map, and σ = j0λ. a825

Definition 3.16. Let k ≤ ω andM,N be k-sound opms and p be transitive.826

We say that π : M → N is a k-factor above p iff π is a weak k-827

embedding above p, and if k < ω then there is a k-tight σ : L → M such828

that829

π ◦ σ ◦ σLk+1 : Sk+1(L)→ N
is a near k-embedding, σ is above p, and L is k-relevant.830

For an operator F , a k-factor is F-rooted iff either k = ω or we can take831

L to be an F -premouse.832

A k-factor is good iff A =def cb
M = cbN and π is above A. a833
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An ω-factor above p is just an ω-embedding (i.e. fully elementary between834

ω-sound opms) above p. If k < ω, then both σ and σLk+1, and therefore also835

σ ◦ σLk+1, are k-good. Any near k-embedding π : M → N between opms is836

a k-factor, and if M is an F -pm, then π is F -rooted (if k < ω, use L =M837

and σ = id).838

Definition 3.17. Let C be a successor opm andM a successor Q-opm with839

C− = M−. We say that C is a universal hull of M iff there is an above840

C−, 0-good embedding π : C → M and for every x ∈ M, ThM1 (M− ∪ {x})841

is rΣÝ
C
1 (after replacing x with a constant symbol). a842

Definition 3.18. Let F be an operator over B and b ∈ B be transitive.843

We say that F condenses finely above b (or F has fine condensation844

above b) iff (i) F condenses coarsely above b; and (ii) Let A, Ā,N ,L ∈ V845

and let M, ϕ, σ ∈ V [G] where G is set-generic over V . Suppose that:846

– b ∈ J1(Ā) ∩ J1(A),847

– M is a Q-opm over Ā, L is an opm over Ā, and N is an opm over A,848

each of successor length,849

– L,M−,N are F -premice,850

– ϕ :M→N .851

Then:852

– If M is an opm and k < ω and either853

– ϕ is k-good, or854

– V [G] �“ϕ is a k-factor above b, as witnessed by (L, σ)” andM is855

k-relevant,856

then either M∈ F(M−) or M = F(M−).857

– If ρM1 ≤ o(M−) and ϕ is 0-good, then there is a universal hull H ofM858

such that either H ∈ F(M−) or H = F(M−).859

We say F almost condenses finely above b iff F almost condenses860

coarsely above b and condition (ii) above holds for G = ∅. a861
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As we will see later, there are natural examples of operators which con-862

dense finely, but do not condense well. We next observe that in certain key863

circumstances, we can actually conclude that M = F(M−).864

Lemma 3.19. Let k,M, G,N , etc, be as in 3.18. Suppose that either M =865

Ck+1(N ) or M is k-relevant. Then M /∈ F(M−), and if k = 0 then there is866

no universal hull of M in F(M−).867

Proof. Suppose otherwise. Then by projectum amenability for F(M−), M868

is not k-relevant. So M = Ck+1(N ) /∈ N ; let ϕ :M→ N be the core map.869

By 2.35, ϕ is k-good, so ϕ(M−) = N−. ClearlyM 6= N , so letting ρ = ρNk+1,870

we have ρ < ρNk , and by 2.41, N is k-relevant. So ρ < ρN
−

ω and ρ ≤ crit(ϕ).871

We have ϕ(ρM
−

ω ) = ρN
−

ω , so ρ ≤ ρM
−

ω . Since ϕ is k-good, ρ < ρMk . Since872

M is not k-relevant, therefore ρ = ρM
−

ω = crit(ϕ). So because N− is < ω-873

condensing and ρ is a cardinal of N−, we have M− /N−, so F(M−) /N−,874

so eitherM∈ N , or k = 0 and there is a universal hull H ofM in N , both875

of which contradict the fact that M = Ck+1(N ).876

So under the circumstances of the lemma above, ifM is an opm, fine con-877

densation gives the stronger conclusion thatM = F(M−). But we will need878

to apply fine condensation more generally, such as in the proof of solidity.879

Definition 3.20. We say that (F , b, A) (or (F , b, A,B)) is an (almost)880

fine ground iff F an operator which (almost) condenses finely above b and881

A ∈êCF and b ∈ J1(A) (and B ∈êCF and b ∈ J1(B)). a882

Analogously to 3.12:883

Lemma 3.21. Let F be a total operator which almost condenses finely above884

some p ∈ HC. Then F condenses finely above p.885

We now show how fine condensation for F ensures that the copying con-886

struction proceeds smoothly for relevant F -premice.887

Definition 3.22. Let M be an opm. If M is not type 3 then M↑ =def M.888

If M is type 3 and κ = µM then889

M↑ =def Ult(M|(κ+)M, FM).

For π :M→N , a Σ0-elementary embedding between opms of the same890

type, we define π↑ : M↑ → N ↑ as follows. If M is not type 3 then π↑ = π.891

If M is type 3 then π↑ is the embedding induced by π.892
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Let M,N be opms. We write N E↑ M iff either N EM or N /M↑.893

We write N /↑M iff either N /M or N /M↑. Let j, k ≤ ω be such thatM894

is j-sound and N is k-sound. We write895

(N , k) E (M, j)

iff either [N =M and k ≤ j] or N /M. We write896

(N , k) E↑ (M, j)

iff either (N , k) E (M, j) or N /M↑. a897

The copying process is complicated by squashing of type 3 structures, as898

explained in [11] and [8]. In order to reduce these complications, we will899

consider a trivial reordering of the tree order of lifted trees.900

Definition 3.23. Let T be a k-maximal iteration tree. An insert set for901

T is a set I ⊆ lh(T ) be such that for all α ∈ I, we have α + 1 < lh(T ) and902

MT
α is type 3 and ETα = F (MT

α ). Given such an I, the I-reordering <T ,I903

of <T is the iteration tree order defined as follows. Let β + 1 < lh(T ) and904

γ = predT (β+ 1). Then predT ,I(β+ 1) = γ unless β+ 1 ∈ DT and γ = α+ 1905

for some α ∈ I and crit(ETβ ) < j(κ), where j = iETα and κ = crit(ETα ), in906

which case predT ,I(β+1) = α. For limits β < lh(T ), we set [γ, β)T ,I = [γ, β)T907

for all sufficiently large γ <T β. a908

So if α = predT ,I(β + 1) 6= predT (β + 1), then M∗T
β+1 /M

T
α+1|j(κ) (for j, κ909

as above) so M∗T
β+1 /

↑MT
α , but possibly M∗T

β+1 6MT
α .910

Definition 3.24. Let T be a k-maximal tree on an opm M, let I be an911

insert set for T , let N E M and α < lh(T ). Let 〈β1, . . . , βn〉 enumerate912

DT ∩ (0, α]T ,I . Let β0 = 0, let γi = predT ,I(βi+1) for i < n, and let γn = α.913

Let πi = i∗Tβi,γi , where i∗T0,γ0 = iT0,γ0 . Let N0 = N and Ni+1 = π↑i (Ni) if914

Ni ∈ dom(π↑i ), let Ni+1 = MT
γi

if M∗T
βi

= Ni, and Ni+1 is undefined otherwise915

(in the latter case, Nj is undefined for all j > i).916

We say that [0, α]T ,I drops below the image of N iffNn+1 is undefined.917

If [0, α]T ,I does not drop below the image ofN , we define MT ,I
N ,α = N ′ = Nn+1;918

and919

iT ,IN ,0,α : N → N ′

as follows. If N ′ = MT
α then920

iT ,IN ,0,α =def i
∗T
βn,α ◦ π

↑
n−1 ◦ π

↑
n−2 ◦ . . . ◦ π

↑
0�C0(N ),
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and if N ′ /↑MT
α then921

iT ,N0,α =def π
↑
n ◦ π

↑
n−1 ◦ . . . ◦ π

↑
0�C0(N ).

Also for ξ <T ,I α, define iT ,IN ,ξ,α : MT ,I
N ,ξ → MT ,I

N ,α to be the natural map j922

such that j ◦ iT ,IN ,0,ξ = iT ,IN ,0,α (so j is given by composing restrictions of σ↑ for923

iteration maps σ of T along segments of [ξ, α]T ,I). a924

We now state the basic facts about the copying construction for F -925

premice. We begin with a simple lemma regarding type 3 F -premice.926

Lemma 3.25. Let (F , b, Ā, A) be an almost fine ground. Let N be a type927

3 F-pm over A, such that N ↑ is an F-pm. Let π : R → C0(N ) be a weak928

0-embedding. Then R = C0(M) for some F-pm M.929

Proof. Because π is a weak 0-embedding, E = ER is an extender over R.930

So we can define R↑ and π↑ : R↑ → N ↑ as in 3.22. By almost coarse931

condensation, R↑ is an F -pm, which yields the desired conclusion.932

Of course, in the preceding lemma we only actually needed almost coarse933

condensation. Below, the indexing function ι need not be the identity, be-934

cause of the possibility of ν-high copy embeddings; see [8].935

Lemma 3.26. Let (F , b, Ā, A) be an almost fine ground. Let j ≤ ω and936

let Q be a j-sound F-premouse over A. Let (N , k) E (Q, j). Let M be a937

k-relevant F-pm over Ā and π :M→N an F-rooted k-factor above b.938

Let ΣQ be an F-(j, ω1 +1)-strategy for Q. Then there is an F-(k, ω1 +1)-939

strategy ΣM for M such that trees T via ΣM lift to trees U via ΣQ. In940

fact, there is an insert set I for U and ι : lh(T ) → lh(U) such that for each941

α < lh(T ), letting α′ = ι(α), there is NUα E
↑ MU

α′ such that942

(NUα , degT (α)) E↑ (MU
α′ , degU(α′)),

and there is an F-rooted degT (α)-factor above b943

πα : MT
α → NUα ,

and if π is good then πα is good. Moreover, [0, α]T ∩ DT model-drops iff944

[0, α′]U ,I drops below the image of N . If [0, α]T ∩ DT does not model-drop945

then NUα = MU ,I
N ,α′ and946

πα ◦ iT0,α = iU ,IN ,0,α′ ◦ π. (3.1)
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If either [0, α]T model-drops or [(N , k) = (Q, j) and π is a near j-embedding ]947

then NUα = MU
α′ and degT (α) = degU(α′) and πα is a near degT (α)-embedding.948

The previous paragraph also holds with “(j, ω1, ω1+1)-maximal” replacing949

“(j, ω1 + 1)” and “(k, ω1, ω1 + 1)-maximal” replacing “(k, ω1 + 1)”.950

Proof. We just sketch the proof, for the k-maximal case. It is mostly the951

standard copying construction, augmented with propagation of near embed-952

dings (see [3]), and the standard extra details dealing with type 3 premice953

(see [11] and [8]). We put α′ ∈ I iff either (i) ETα = F (MT
α ) and NUα 5MU ,I

α′954

(so NUα /
↑MU ,I

α′ ) or (ii) ETα 6= F (MT
α ) and π↑α(lh(ETα )) > o(MU ,I

α′ ). It follows955

that if α′ ∈ I then MU
α′ is type 3 and [0, α]T does not drop in model; the956

latter is by arguments in [8]. When α′ ∈ I, we set EUα′ = F (MU
α′), and then957

define EUα′+1 by copying ETα with πα (and then (α+1)′ = α′+2). We omit the958

remaining, standard, details regarding the correspondence of tree structures959

and definition of ι, NUα , πα.960

Now the main thing is to observe that for each α, πα is an F -rooted961

degT (α)-factor (above b; for the rest of the proof we omit that phrase). For962

given this, fine condensation, together with 3.25, gives that MT
α is an F -963

pm. (If MT
α might be type 3 (i.e. NUα is type 3), then 3.25 applies, because964

(NUα )↑ is an F -pm, because we can extend U�(α′ + 1) to a tree U ′, setting965

EU
′

α′ = F (NUα ).) Fix (L0, σ0) witnessing the fact that π is a (good) F -rooted966

k-factor above b.967

Suppose that [0, α]T does not drop in model. Then it is routine that968

[0, α′]U ,I does not drop below the image ofN , πα is a weak degT (α)-embedding969

and line (3.1) holds. If degT (α) = k then it follows that (L0, σ) witnesses the970

fact that πα is a (good) F -rooted k-factor above b, where σ = iT0,α◦σ0, because971

iU ,IN ,0,α′ and π ◦ σ0 are both near k-embeddings, and πα ◦ iT0,α = iU ,IN ,0,α′ ◦ π.972

Suppose further that [0, α]T drops in degree and let n = degT (α). Then973

letting L = Cn+1(MT
α ) and σ : L → MT

α be the core embedding, (L, σ)974

witnesses the fact that πα is a (good) F -rooted n-factor above b (we have975

Sk+1(L) = L and σLk+1 = id). The fact that L is n-relevant is verified976

as follows. There is β + 1 ≤T α such that L = M∗T
β+1 and σ = i∗Tβ+1,α.977

Suppose that L is a successor. Then letting ξ = predT (β + 1), we have978

lh(ETξ ) ≤ o(L−). So letting κ = crit(σ), ETβ measures only P(κ) ∩ L−. But979

since L− / M∗T
β+1, therefore κ < ρL

−
ω . But ρLn+1 ≤ κ, which suffices. The fact980

that πα ◦ σ is a near n-embedding is because πα ◦ σ = iU ,IN ,ξ′,α′ ◦ πξ and πξ is a981

weak (n+ 1)-embedding, and iU ,IN ,ξ′,α′ a near n-embedding.982
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Now suppose that [0, α]T drops in model. It is straightforward to see that983

[0, α′]U ,I drops below the image of N and that NUα = MU
α′ . The fact that πα is984

an F -rooted degT (α)-factor is almost the same as in the dropping degree case985

above. The fact that πα is in fact a near degT (α)-embedding and degT (α) =986

degU(α′) follows from an examination of the proof that near embeddings are987

propagated by the copying construction in [3]; similar arguments are given988

in [8].989

We next consider constructions building F -mice.990

Definition 3.27. Let N be an F -pm and k ≤ ω. Then N is F-k-fine iff991

for each j ≤ k:992

– Cj(N ) is a j-solid F -pm,993

– if j < k then Cj(N ) is (j + 1)-universal,994

– if k = ω then Cω(N ) is < ω-condensing.995

a996

Definition 3.28. Let F be an operator over B. Let A ∈êCF and χ ≤ o(B)+997

1. An LF [E, A]-construction (of length χ) is a sequence C = 〈Nα〉α<χ998

such that for all α < χ:999

– N0 = F(A) and Nα is an F -pm over A.1000

– If α is a limit then Nα = lim infβ<αNβ.1001

– If α+ 1 < χ then either (i) Nα+1 is E-active and Nα+1||o(Nα+1) = Nα,1002

or (ii) Nα is F -ω-fine and Nα+1 = F(Cω(Nα)).1003

We say that C is F -tenable iff N ↑ is an F -pm for each α < χ. a1004

We will now explain how condensation for F leads to the F -iterability1005

of substructures R of F -pms built by background construction. The basic1006

engine behind this is the realizability of iterates of R back into models of the1007

construction.1008

Definition 3.29. Let (F , b, Ā, A) be an almost fine ground C = 〈Nα〉α≤λ be1009

an LF [E, A]-construction. Let k ≤ ω and suppose that Nλ is F -k-fine. Let1010

R be a k-sound F -pm over Ā and π : R → Ck(Nλ) be a weak k-embedding.1011

Let T be a putative F -iteration tree on R, with degT (0) = k. We say that1012

T is (π,C)-realizable above b iff for every α < lh(T ), letting β = baseT (α)1013

and m = degT (α), there are ζ, τ such that:1014
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– (ζ,m) ≤lex (λ, k),1015

– if [0, α]T does not drop in model or degree then ζ = λ and τ = π,1016

– if [0, α]T drops in model or degree then τ : M∗T
β → Cm(Nζ) is a near1017

m-embedding above b,1018

– if M∗T
β is not type 3 then there is a weak m-embedding ϕ : MT

α →1019

Cm(Nζ) such that ϕ ◦ i∗Tβ,α = τ .1020

– if M∗T
β is type 3 then there is a weak m-embedding ϕ : S → Cm(Nζ)1021

such that ϕ ◦ i∗Tβ,α = τ , where S is “(MT
α )sq”.27

1022

We say that T is weakly (π,C)-realizable iff in some set-generic exten-1023

sion V [G], either T is (π,C)-realizable, or there is a limit λ ≤ lh(T ) and a1024

(T �λ)-cofinal branch b such that (T �λ) ̂ b is (π,C)-realizable. a1025

Definition 3.30. A putative F-(k, θ)-iteration strategy for a k-sound1026

F -pm N is a function Σ such that for every k-maximal F -tree T on N , with1027

T via Σ and lh(T ) < θ a limit, Σ(T ) is a T -cofinal branch. a1028

Lemma 3.31. Let (F , b, Ā, A) be an almost fine ground. Let C = 〈Nα〉α<χ1029

be a tenable LF [E, A]-construction. Let λ < χ and k ≤ ω be such that Nλ1030

is F-k-fine, and let S = Ck(Nλ). Let R be a k-relevant F-pm over Ā. Let1031

π : R → S be an F-rooted k-factor above b. Let Σ be either:1032

– a putative F-(k, ω1 + 1)-iteration strategy for R, or1033

– a putative F-(k, ω1, ω1 + 1)-maximal iteration strategy for R.1034

Suppose that every putative F-tree via Σ is (π,C)-realizable above b. Then1035

Σ is an F-(k, ω1 + 1), or F-(k, ω1, ω1 + 1)-maximal, iteration strategy.1036

Proof. The argument is almost that used for 3.26, using the maps provided1037

by (π,C)-realizability in place of copy maps. The tenability of C is used to1038

see that 3.25 applies where needed.1039

27(MTα )sq might not make literal sense, if say MTα is not wellfounded. By “(MTα )sq” we
mean that either α = ξ + 1 and S = Ultm((M∗Tα )sq, ETξ ) (formed without unsquashing),

or α is a limit and S is the direct limit of the structures (MTξ )sq for ξ ∈ [β, α)T , under
the iteration maps.
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In practice, we will take R and π : R → S to be fully elementary, which1040

will give that π is an F -rooted k-factor. The above proof does not work with1041

(k, ω1, ω1 + 1)-maximal replaced by (k, ω1, ω1 + 1).1042

Remark 3.32. We digress to mention a key application of the extra strength1043

that condenses finely has compared to almost condenses finely ; this essen-1044

tially comes from [9]. Adopt the assumptions and notation of the first para-1045

graph of 3.31. Assume further that (F , b, Ā, A) is a fine ground (not just1046

almost), B = V and F is total. For an F -premouse M, say that M is1047

F-full iff there is no α ∈ Ord such that Fα(M) projects < o(M).28 Assume1048

also that there is no F -full M such that o(M) is Woodin in FOrd(M). Let1049

κ be a cardinal. Suppose that every k-maximal putative F -tree T on R1050

of length ≤ κ is weakly (π,C)-realizable. Then R is F -(k, κ + 1)-iterable,1051

via the strategy guided by Q-structures of the form Fα(M(T )) for some1052

α ∈ Ord.29 This follows by a straightforward adaptation of the proof for1053

standard premice (cf. [9]). In the argument one needs to apply condenses1054

finely to embeddings ϕ, σ when ϕ ◦ σ /∈ V . We can only expect ϕ ◦ σ ∈ V if1055

the realized branch does not drop in model or degree (indeed, in the latter1056

case, ϕ ◦ σ = π), or if all relevant objects are countable.1057

From now on we will only deal with almost condenses finely.1058

We use the following variant of the weak Dodd Jensen property of [2],1059

extended to deal partially with good k-factors, analogously to how weak1060

k-embeddings are dealt with in [8, §4.2].1061

Definition 3.33. Let k ≤ ω and M be a countable k-relevant opm.1062

A k-factor π :M→N is simple iff it is witnessed by (L, σ) = (M, id).1063

An iteration tree is relevant iff it has countable, successor length. We1064

say that (T ,Q, π) is (M, k)-simple iff T is a relevant (k,∞,∞)-maximal1065

tree, Q EMT
∞ and π :M→Q is a good simple k-factor.30

1066

Let Σ be an iteration strategy forM. Let ~α = 〈αn〉n<ω enumerate o(M).1067

We say that Σ has the k-simple Dodd-Jensen (DJ) property for ~α iff1068

28Here Fα(M) is the unique F-pm N such that M E N and l(N ) = l(M) + α and
N|β is E-passive for every β ∈ (l(M), l(N )].

29 It might be that the Q-structure satisfies “δ(T ) is not Woodin”, but in this case,
α = β + 1 for some β and Fβ(M(T )) satisfies “δ(T ) is Woodin”.

30 So Q is k-sound; the (k,∞,∞)-maximality of T then implies that if Q = MT∞ then
degT (∞) ≥ k. So we do not need to explicitly stipulate that degT (∞) ≥ k, unlike in [8].
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for all (M, k)-simple (T ,Q, π) with T via Σ, we have Q = MT
∞ and bT does1069

not drop in model (or degree), and if π is also nearly k-good, then1070

iT �o(M) ≤~αlex π�o(M)

(that is, either iT �o(M) = π�o(M), or iT (αn) < π(αn) where n < ω is least1071

such that iT (αn) 6= π(αn)). a1072

Note that in the context above, if iT �o(M) = π�o(M), then iT = π,1073

because iT , π are both nearly 0-good, and M = HullM1 (cbM ∪ o(M)).1074

Lemma 3.34. Assume DCR. Let (F , b, A) be an almost fine ground with1075

A ∈ HC. Let M be a countable, F-(k, ω1, ω1 + 1)-maximally iterable k-1076

relevant F-pm. Let ~α = 〈αn〉n<ω enumerate o(M). Then there is an F-1077

(k, ω1, ω1 + 1)-maximal strategy for M with the k-simple DJ property for1078

~α.1079

Proof Sketch. The proof is mostly like the usual one (see [2]), with adapta-1080

tions much as in [8, Lemma 4.6(?)]. Let Σ be an F -(k, ω1, ω1 + 1)-maximal1081

strategy forM. Given a relevant tree T via Σ, P = MT
∞ and m = degT (∞),1082

let ΣTP be the (m,ω1, ω1 + 1)-maximal tail of Σ for P . If (T ,Q, π) is also1083

(M, k)-simple, let ΣT ,Q,πM be the (k, ω1, ω1 +1)-maximal strategy forM given1084

by π-pullback (as in 3.26).1085

Note that (T ,M, id) is (M, k)-simple where T is trivial on M. Let1086

(T0,Q0, π0) be (M, k)-simple, with T0 via Σ, and P0 = MT0
∞ , such that for1087

any (M, k)-simple (T ,Q, π) via ΣT0P0
, we have that bT does not drop in model1088

or degree, if Q0 = P0 then Q = MT
∞, and if Q0 /P0 then (iT )↑(Q0) E Q (see1089

3.22). (The existence of T0, etc, follows from DCR.)1090

Let Σ1 = ΣT0,Q0,π0
M . Working as in the standard proof (see [2]), let T11091

be a relevant tree via Σ1, with bT1 not dropping in model or degree, and let1092

π1 :M→ P1 = MT1
∞ be nearly k-good, such that for all relevant trees T via1093

ΣT1P1
, if bT does not drop in model or degree, then for any near k-embedding1094

π :M→MT
∞, we have iT ◦ π1 ≤~αlex π.1095

Let Σ2 = (Σ1)T1,P1,π1
M . Then Σ2 is as desired; cf. [8]. (Use the propagation1096

of near embeddings after drops in model given by 3.26, as in [8].)1097

Definition 3.35. Let M be a k-sound opm and let q = pMk+1. For i <1098

lh(pMk+1), H = Wk+1,i(M) denotes the corresponding solidity witness1099

H = cHullMk+1(qi ∪ {q�i} ∪ ~pMk ),

and ςk+1,i(M) denotes the uncollapse map H →M. a1100
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We can now state the central result of the paper – the fundamental fine1101

structural facts for F -premice. The definitions F-pseudo-premouse and1102

F-bicephalus, and the F-iterability of such structures, are the obvious1103

ones. Likewise the definition of F-iterability for phalanxes of F -pms.1104

Theorem 3.36. Let (F , b, A) be an almost fine ground with b ∈ HC. Then:1105

1. For k < ω, every k-sound, F-(k, ω1, ω1 + 1)-maximally iterable F-1106

premouse over A is F-(k + 1)-fine.1107

2. Every ω-sound, F-(ω, ω1, ω1 + 1)-maximally iterable F-premouse over1108

A is < ω-condensing.1109

3. Every F-(0, ω1, ω1 + 1)-maximally iterable F-pseudo-premouse over A1110

is an F-premouse.1111

4. There is no F-(0, ω1, ω1 + 1)-maximally iterable F-bicephalus over A.1112

Proof Sketch. We sketch enough of the proof of parts 1 and 2, focusing on the1113

new aspects, that by combining these sketches with the full proofs of these1114

facts for standard premice, one obtains a complete proof. So one should have1115

those proofs in mind (see [1], [11], [8]). Part 3 involves similar modifications1116

to the standard proof, and part 4 is an immediate transcription. We begin1117

with part 1.1118

Let M be a k-sound, F -(k, ω1, ω1 + 1)-maximally iterable F -premouse.1119

We may assume that ρMk+1 < ρMk , and by 2.41, thatM is k-relevant. We may1120

assume that M is countable (otherwise we can replace M with a countable1121

elementary substructure, because F almost condenses coarsely above b ∈ HC1122

and B � DC).1123

Let Σ0 be an F -(k, ω1, ω1 + 1)-maximal iteration strategy for M. We1124

would like to use 3.34, but that lemma assumes DCR. But we may assume1125

DCR. For we can pass to W = LF ,Σ0 [x], where x ∈ R codes M.31 (The1126

hypotheses of the theorem hold in W regarding b, A,M,FW ,ΣW
0 , (and BW ),1127

where BW ,FW ,ΣW
0 are the natural restrictions of B,F ,Σ0.)1128

Now using 3.34, let Σ be an F -(k, ω1 + 1) iteration strategy for M with1129

the k-simple DJ property for some enumeration of o(M). We assume that1130

M is a successor, since the contrary case is simpler and closer to the standard1131

proof.1132

31We don’t care about the fine structure of W , so it doesn’t matter exactly how we feed
in F ,Σ0.
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We first establish (k+1)-universality and that C = Ck+1(M) is an F -pm.1133

Let π : C → M be the core map. We may assume that M is k-relevant,1134

because otherwise C =M and π = id.1135

First suppose k = 0, and consider 1-universality. Because π is 0-good1136

and by 2.33, C is a Q-opm, C is a successor and π(C−) = M−. By fine1137

condensation and 3.19, H = F(C−) is a universal hull of C, as witnessed1138

by σ : H → C. Also, C is 0-relevant. For otherwise, by the proof of 3.19,1139

H ∈M, but then C ∈ M, a contradiction. So1140

ρ =def ρ
M
1 = ρC1 < ρC

−

ω ,

and since H− = C−, therefore C||(ρ+)C = H||(ρ+)H. So it suffices to see that1141

M||(ρ+)M = H||(ρ+)H.1142

Let ρ = ρM1 . The phalanx P = ((M, < ρ),H) is F -((0, 0), ω1 + 1)-1143

maximally iterable.32 Moreover, we get an F -((0, 0), ω1+1)-iteration strategy1144

for P given by lifting to k-maximal trees on M via Σ. This is proved as1145

usual, using π◦σ to lift H toM, and using calculations as in 3.26 to see that1146

the strategy is indeed an F -strategy. Since our strategies are F -strategies,1147

we can therefore compare P with M. The analysis of the comparison is1148

mostly routine, using the k-simple DJ property. (Here all copy embeddings1149

are near embeddings, so we only actually need the weak DJ property.) The1150

only, small, difference is when bT is above H without drop and MT
∞ E MU

∞.1151

Because H is a universal hull of C = C1(M), this implies that bU does not1152

drop and MT
∞ = MU

∞; now deduce that M||(ρ+)M = H||(ρ+)H as usual,1153

completing the proof.1154

We now show that C = H, and therefore that C is an F -pm. Because1155

H is a universal hull of C and C is 0-relevant, we have ρH1 = ρ < ρH
−

ω (as1156

H− = C−) and pC1 ≤ σ(pH1 ). But H is (1, qH)-solid, so C is (1, σ(qH))-solid1157

(using stratification), so σ(qH) E pC1 . And since σ is above C−, it follows that1158

σ(pH1 ) = pC1 . But by 1-universality, π(pC1) = pM1 , so C = HullC1(A∪ ρ∪ pC1), so1159

H = C and σ = id, completing the proof.1160

Now suppose k > 0. Then C = Ck+1(M) is an opm by 2.39, and is k-1161

relevant as ρCk+1 < ρCk ≤ ρC
−
ω . So by fine condensation and 3.19, C = F(C−)1162

is an F -pm. The rest is a simplification of the argument for k = 0.1163

32A (k0, k1, . . . , k)-maximal tree on a phalanx ((M0, ρ0), (M1, ρ1), . . . ,H), is one formed
according to the usual rules for k-maximal trees, except that an extender E with ρi−1 ≤
crit(E) < ρi (where ρ−1 = 0) is applied to Mi, at degree ki.
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Now consider (k + 1)-solidity. Let q = pMk+1 and i < lh(q) and W =1164

Wk+1,i(M) and π = ςk+1,i. We have1165

ρWk+1 ≤ µ =def crit(π) = qi.

By 2.35 we may assume that π is k-good, soW is a k-sound successor Q-opm1166

and π(W−) = M−. By 2.38 we may assume that µ < ρM
−

ω , so µ ≤ ρW
−

ω .1167

Suppose µ = ρW
−

ω . Then since M− is < ω-condensing, F(W−) ∈ M−. But1168

by the fine condensation of F , W is computable from F(W−), so W ∈ M,1169

as required. So we may assume that µ < ρW
−

ω , so W is k-relevant, so W /∈1170

F(W−) and if k = 0 then W has no universal hull in F(W−).1171

If k = 0, let H = F(W−); by fine condensation, H is an F -pm, and is1172

a universal hull of W . If k > 0 then W is an opm, so by fine condensation,1173

W = F(W−) is an F -pm. If k > 0, let H =W .1174

Let us assume that µ is not a cardinal of M, since the contrary case is1175

easier. So µ = (κ+)H = (κ+)W for some M-cardinal κ. Let R /M be least1176

such that µ ≤ o(R) and ρRω = κ. Let P = ((M, < κ), (R, < µ),H). Then1177

P is (k, r, k)-maximally iterable, where r is least such that ρRr+1 = κ, by1178

lifting to k-maximal trees V on M (possibly r = −1, i.e. R is active type1179

3 with µ = o(R)). Let I ⊆ lh(V) be the resulting insert set. Let (T ,U) be1180

the successful comparison of (P,M). The analysis of the comparison is now1181

routine except in the case that either (i) k = 0 and bT is above H without1182

drop and MT
∞ EMU

∞, or (ii) bT is above R and does not model-drop, bU does1183

not drop in model or degree and MT
∞ = Q = MU

∞. (As in [8], when we are1184

not in case (ii), the final copy map π∞ is a near degT (∞)-embedding.)1185

We deal with case (i) much as in the proof of 1-universality. LetH′ = MT
∞.1186

Suppose that bU does not drop and H′ = MU
∞. As usual, we have that1187

ρ ≤ crit(iU). So letting t = ThM1 (A ∪ ρ ∪ pM1 ), t is ΣÜ
H′
1 , so is ΣÜ

H
1 , so is ΣÜ

W
1 ,1188

a contradiction as usual. So either bU drops or H′ / MU
∞. But then as usual,1189

H ∈M, so W ∈M, so we are done.1190

Now consider case (ii), under which r ≥ 0. So k ≤ l =def degT (∞), and1191

the final copy map π∞ : MT
∞ → MV,I

R,∞ is a weak l-embedding. If k < l1192

then π∞ is near k, which contradicts k-simple DJ (in fact weak DJ). So1193

suppose k = l. If k = r then fairly standard arguments (such as in [8]) give1194

a contradiction, so suppose k < r. Then1195

π∞ ◦ iU :M→MV,I
R,∞

is a good simple k-factor, as witnessed by L =M and σ = id; indeed,1196

π∞ ◦ iU ◦ σMk+1 : Sk+1(M)→MV,I
R,∞
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is nearly k-good, which is proved just as in [8], which also implies that π∞◦iU1197

is weakly k-good, because σMk+1 is k-good. Since R /M, this contradicts k-1198

simple DJ. (This is the only place we need k-simple DJ beyond weak DJ.)1199

Now consider part 2. Let k < ω and let H be a (k + 1)-sound potential1200

opm which is soundly projecting. Let π : H → M be nearly k-good, with1201

ρ = ρHk+1 < ρMk+1. Then H is in fact an opm. Let us assume that H,M1202

are both successors, so π(H−) =M−. By fine condensation of F , H− is an1203

F -pm, and either H ∈ F(H−) or H = F(H−). If H is not k-relevant then1204

the result follows from the fact that M− is < ω-condensing and H− is an1205

F -pm. So assume H is k-relevant, so H = F(H−).1206

Now use weak DJ (at degree ω) and the usual phalanx comparison argu-1207

ment to reach the desired conclusion. Say P = ((M, < ρ),H) is the phalanx.1208

Then P is F -((ω, k), ω1 + 1)-iterable, lifting to F -(ω, ω)-maximal trees V on1209

M. (It could be that M is not k-relevant. So we want to keep the degrees1210

of nodes of V at ω where possible, to ensure that each MV
α is an F -pm.)1211

Suppose T is non-trivial. Because k < ω, if MT
∞ is above H without drop1212

in model or degree, π∞ need only be a weak k-embedding. But in this case,1213

MT
∞ is not ω-sound, which implies MU

∞ / MT
∞, which contradicts weak DJ.1214

The rest is routine.1215

We next describe mouse operators, using op-J -structures :1216

Definition 3.37 (op-J -structure). Let α ∈ Ord\{0}, let Y be an operatic1217

argument, let1218

D = Lim ∩ [o(Y ) + ω, o(Y ) + ωα)

and let ~P = 〈Pβ〉β∈D be given.1219

We define J ~P
β (Y ) for β ∈ [1, α], if possible, by recursion on β, as follows.1220

We set J ~P
1 (Y ) = J (Y ) and take unions at limit β. For β + 1 ∈ [2, α], let1221

R = J ~P
β (Y ) and suppose that P =def Po(R) ⊆ R and is amenable to R. In1222

this case we define1223

J ~P
β+1(Y ) = J (R, ~P �R,P ).

Note then that by induction, ~P �R ⊆ R and ~P �R is amenable to R.1224

Let LJ be the language with binary relation symbol ∈̇, predicate symbols1225

~̇P and Ṗ , and constant symbol ċb.1226

Let Y be an operatic argument. An op-J -structure over Y is an1227

amenable LJ -structure1228

M = (J ~P
α (Y ),∈M, ~P , P, Y ),
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where α ∈ Ord\{0} and ~P =
〈
~Pγ
〉
γ∈D

with domain D defined as above,1229

bMc = J ~P
α (Y ) is defined, ~̇PM = ~P , ṖM = P , ċb

M
= Y .1230

Let M be an op-J -structure, and adopt the notation above. Let l(M)1231

denote α. For β ∈ [1, α] and R = J ~P
β (Y ) and γ = o(R), let1232

M|Jβ = (R,∈R, ~P �R,Pγ, Y ).

We write N EJ M, and say that N is a J -initial segment of M, iff1233

N = M|Jβ for some β. Clearly if N EJ M then N is an op-J -structure1234

over Y . We write N /JM, and say that N is a J -proper segment ofM,1235

iff N EJ M but N 6=M.1236

Let M be an op-J -structure. Note that M is pre-fine. We define the1237

fine-structural notions for M using 2.24. a1238

From now on we omit “∈” from our notation for op-J -structures.1239

Definition 3.38 (Pre-operator). Let B be an operator background. A pre-1240

operator over B is a function G : D → B, with D an operatic domain1241

over B, such that for each Y ∈ D, G(Y ) is an op-J -structure M over Y1242

such that (i) every N EM is ω-sound, and (ii) for some n < ω, ρMn+1 = ω.1243

Let CG = CD and PG = PD. a1244

Definition 3.39 (Operator FG). Let G be a pre-operator over B, with1245

domain D. We define a corresponding operator F = FG, also with domain1246

D, as follows.1247

Let X ∈ëCD and N = G(X) = (bNc , ~PN , PN , X). Let n < ω be such1248

that ρNn+1 = ω and o(X) < σ =def ρ
N
n . If n = 0 then let M = N . If n > 01249

then let Q = N|Jσ and let M be the op-J -structure1250

M = (bQc , ~PN �σ, T,X),

where T ⊆ bQc codes1251

ThNn (bQc ∪ ~pNn )

in some uniform fashion, amenably to bQc, such as with mastercodes.33 Note1252

that in either case, M = (bMc , ~PM, PM, X) is an ω-sound op-J -structure1253

over X and ρM1 = ω.1254

33For concreteness, we take T to be the set of pairs (α, t′) such that for some t,
(~pMn , α, t) ∈ TMn , and t′ results from t by replacing ~pMn with R (the latter is not a
parameter of the theory t, so we can unambiguously use it as a constant symbol).
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Define F(X) as the hierarchical model K over X, of length 1 (so SK = ∅),1255

with bKc = bMc, EK = ∅ = cpK,34 and1256

PK = {X} ×
(
~PM ⊕ PM

)
.

(We use {X} × · · · to ensure that PK ⊆ K\K−.)1257

Now let R ∈ PD; we define F(R). Let A = cbR and ρ = ρRω . Let1258

P = G(R). Let N E P be largest such that for all α < ρ, we have1259

P(A<ω × α<ω)N = P(A<ω × α<ω)R.

Let n < ω be such that ρNn+1 = ω and o(R) < ρNn . Now define M from1260

(N , n) as in the definition of F(X) for X ∈ëCD, but with cbM = R. Much1261

as there,M = (bMc , ~PM, PM,R) is an ω-sound op-J -structure over R and1262

ρM1 = ω.1263

Now set F(R) to be the unique hierarchical model K of length l(R) + 11264

with bKc = bMc, R /K (so SK = SR ̂ 〈R〉), EK = ∅, and1265

PK = {R} ×
(
~PM ⊕ PM

)
.

This completes the definition. a1266

With notation as above, let R ∈ D. Note that F(R) easily codes G(R),1267

unless R ∈ PD and N / P where N ,P are as in the definition of F(R).1268

FG is indeed an operator:1269

Lemma 3.40. Let G be a pre-operator over B with domain D. Then FG is1270

an operator over B. Moreover, for any FG-premouse M of length α+ω, for1271

all sufficiently large n < ω, FG(M|(α + n)) does not project early.1272

Proof Sketch. We first show that FG is an operator. Let F = FG and X ∈1273

D = dom(F). We must verify that M = F(X) is an opm. This follows1274

from (i) the choice of bF(X)c (i.e. the choice of N E G(X) in the definition1275

of F(X), which gives, for example, projectum amenability for F(X)), (ii)1276

if X ∈ PD then X is an ω-sound opm (acceptability follows from this and1277

projectum amenability), (iii) standard properties of J -structures (e.g. for1278

34A natural generalization of this definition would set cpK to be some fixed non-empty
object. For example, if one uses operators to define strategy mice, one might set cpK to
be the structure that the iteration strategy is for.
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stratification), and (iv) with P as in the definition F(X), the fact that P is1279

ω-sound and ρP1 = ω (for sound projection).1280

Now let M be an F -premouse of limit length α + ω. Then for all m,1281

ρM|(α+m+1)
ω ≤ ρM|(α+m)

ω ,

becauseM|(α+m+ 1) is soundly projecting andM|(α+m) is ω-sound. So1282

if n < ω is such that ρM|(α+n)
ω is as small as possible, n works.1283

So any limit length FG-premouseM is “closed under G” in the sense that1284

for ∈-cofinally many X ∈M, we have G(X) ∈M.1285

We finish by illustrating how things work for mouse operators. The details1286

involved provide some further motivation for the definition of fine condensa-1287

tion.1288

Example 3.41. Let ϕ ∈ L0. Let B be an operator background. Suppose1289

that for every transitive structure x ∈ B there isM/Lp(x) such thatM � ϕ,1290

and let Mx be the least such. Let G : B 99K B be the pre-operator where1291

for x ∈ B a transitive structure, G(x̂) is the op-J -structure over x̂ naturally1292

coding Mx, and for x ∈ B a < ω-condensing ω-sound opm, G(x) is the1293

op-J -structure over x naturally coding Mx.1294

The mouse operator Fϕ determined by ϕ is FGϕ . A straightforward1295

argument shows that Fϕ almost condenses finely. We describe some of it, to1296

illustrate how it relates to fine condensation. Let F = Fϕ and let N be a1297

successor F -pm. Let M be a successor Q-opm with ρM1 ≤ o(M−) and let1298

π :M→ N be a 0-embedding, so π(M−) = N−. Here M might not be an1299

opm. Let N ∗/Lp(N−) be the premouse over N− coded by N . (So N ∗ has no1300

proper segment satisfying ϕ, and either N ∗ � ϕ or N ∗ projects < ρN
−

ω .) Let1301

n < ω be such that ρN
∗

n+1 ≤ o(N−) < ρN
∗

n . Then there is an n-sound premouse1302

M∗ over M− and an n-embedding π∗ : M∗ → N ∗ with π ⊆ π∗. Because1303

ρM1 ≤ o(M−), ρM
∗

n+1 ≤ o(M−). So if M∗ is sound, then M∗ / Lp(M−), and1304

it is easy to see thatM∗ EM′, whereM′ is the premouse coded by F(M−).1305

Suppose soundness fails, and let H∗ = Cn+1(M∗). Then H∗ EM′, and the1306

nth master code H of H∗ is a universal hull of M, and either H ∈ F(M−)1307

or H = F(M−), as required. Note that we made significant use of the fact1308

that ρM1 ≤ o(M−).1309

45



References1310

[1] William J. Mitchell and John R. Steel. Fine structure and iteration1311

trees, volume 3 of Lecture Notes in Logic. Springer-Verlag, Berlin, 1994.1312

[2] Itay Neeman and John Steel. A weak Dodd-Jensen lemma. Journal of1313

Symbolic Logic, 64(3):1285–1294, 1999.1314

[3] E. Schimmerling and J. R. Steel. Fine structure for tame inner models.1315

The Journal of Symbolic Logic, 61(2):621–639, 1996.1316

[4] F. Schlutzenberg. Analysis of admissible gaps in L(R). In preparation.1317

[5] F. Schlutzenberg. Fine structure from normal iterability. In preparation.1318

[6] F. Schlutzenberg and N. Trang. Scales in hybrid mice over R. Sub-1319

mitted. Available at https://sites.google.com/site/schlutzenberg/home-1320

1/research/papers-and-preprints.1321

[7] Farmer Schlutzenberg. The definability of E in self-iterable mice. Sub-1322

mitted. Available at https://sites.google.com/site/schlutzenberg/home-1323

1/research/papers-and-preprints.1324

[8] Farmer Schlutzenberg. Reconstructing copying and condensation. Sub-1325

mitted. Available at https://sites.google.com/site/schlutzenberg/home-1326

1/research/papers-and-preprints.1327

[9] J. R. Steel. The core model iterability problem, volume 8 of Lecture Notes1328

in Logic. Springer-Verlag, Berlin, 1996.1329

[10] J. R. Steel and R. D. Schindler. The core model induction; available at1330

Schindler’s website.1331

[11] John R Steel. An outline of inner model theory. Handbook of set theory,1332

pages 1595–1684, 2010.1333

[12] Trevor Miles Wilson. Contributions to Descriptive Inner Model Theory.1334

PhD thesis, University of California, 2012. Available at author’s website.1335

[13] Martin Zeman. Inner models and large cardinals, volume 5 of de Gruyter1336

Series in Logic and its Applications. Walter de Gruyter & Co., Berlin,1337

2002.1338

46


	Introduction
	Conventions and Notation

	The fine structural framework
	F-mice for operators F

