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Chapter 1

Introduction

This manuscript is a contribution to descriptive inner model theory, which is the area
of set theory that lies between descriptive set theory as developed in [24] and inner
model theory. The main goal of this manuscript is to advance the descriptive inner
model theoretic methods to the level of the Largest Suslin Axiom (LSA), which is a
strong determinacy axiom asserting that there is a largest Suslin cardinal and that
the largest Suslin cardinal is a member of the Solovay sequence. In more concrete
terms, our goal is twofold: Firstly develop methods for analyzing the minimal model
of LSA, and secondly, develop methods for building the minimal model of LSA under
various hypotheses such as the Proper Forcing Axiom or Large Cardinals. Since the
introduction of Steel’s recent manuscript [65], the expository paper [29] and the
introduction of [37] contain all the introductory information we need, here we will
not introduce the subject matter of this book and instead will hope that the reader
has consulted these sources.

The first problem is an instance of the problem Steel mentions on page xii of [(7]
where he writes: “The most important of the remaining open problems is whether,
assuming determinacy, there actually are mouse pairs at every appropriate level of
logical complexity”. Theorem 10.1.2 shows that the aformentioned problem has a
positive solution in the minimal model of LSA. As explained in any of the sources
cited above, the goal for doing this is to show that letting © be the least ordinal
that is not a surjective image of the reals, VEIOP as computed inside a determinacy
model is a hod premouse. The above sources explain the importance of having a hod

premouse representation of VEIOP.

The second problem amounts to advancing the Core Model Induction to the level
of LSA. Corollary 12.0.3 cconstructs the minimal model of LSA assuming PFA. More
dramatically, the paper [37], which extends the methods of this manuscript, demon-

9



10 CHAPTER 1. INTRODUCTION

strates that the Core Model Induction, in its current form, cannot be used to go much

further than LSA.

Corollary 12.0.3 also builds the minimal model of LSA directly from large car-
dinals, namely strongly compact cardinals. However, Theorem 10.3.1 shows that
LSA is weaker than a Woodin cardinal that is a limit of Woodin cardinals, and so
strong compactness seems to be much more than needed. Nevertheless, while it is
widely believed that strongly compact cardinals are consistency wise stronger than
a Woodin cardinal that is a limit of Woodin cardinals, this is not yet known. Still
we strongly believe that the methods developed in this manuscript, the methods of
[1] and the main theorem of [26] can be used to show that assuming the existence
of a Woodin cardinal that is a limit of Woodin cardinals, the minimal model of LSA
exists (cf. Definition 1.0.4).

Historically, LSA was introduced by Woodin in [70, Remark 9.28], and it features
prominently in Woodin’s Ultimate L framework (see [71, Definition 7.14] and Axiom
I and Axiom IT on page 97 of [71]'). Theorem 10.3.1 is historically the first proof of
the consistency of LSA relative to large cardinals. Cramer and Woodin established
the consistency of LSA from large cardinals in the region of I (see [5, Theorem 65]).

The technical content of the manuscript

1. The Largest Suslin Axiom

LSA is a determinacy theory whose underlying theory is Woodin’s AD". Chapter
9.1 of [70] provides a quick overview of AD", and Larson’s recent manuscript [19]
provides more details. Perhaps the most important consequence of AD™ is the fact
that assuming V = L(p(R)), the fragment of V' coded by the Suslin, co-Suslin sets
of reals is ¥ elementary in V' (see Theorem 9.7 of [70]).

We will need the following concepts to introduce LSA. A cardinal x is OD-
inaccessible if for every oo < k there is no surjection f : p(o) — & that is definable
from ordinal parameters. A set of reals A C R is k-Suslin if for some tree T on
k, A = p[T]?. A set A is Suslin if it is k-Suslin for some k; A is co-Suslin if its
complement R\ A is Suslin. A set A is Suslin, co-Suslin if both A and its complement
are Suslin. A cardinal x is a Suslin cardinal if there is a set of reals A such that A
is k-Suslin but A is not A-Suslin for any A < k. Suslin cardinals play an important

!The requirement in these axioms that there is a strong cardinal which is a limit of Woodin
cardinals is only possible if L(A4,R) E LSA.

2Given a cardinal &, we say T C Un<w w" X k™ is a tree on k if T' is closed under initial segments.
Given a tree T on k, we let [T] be the set of its branches, i.e., b € [T] if b € w* x k¥ and letting
b = (bo, b1), for each n € w, (bg [ n,b1 [ m) € T. We then let p[T] ={z € R: 3f((z, f) € [T])}.
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role in the study of models of determinacy as can be seen by just flipping through
the Cabal Seminar Volumes ([17], [11], [15], [L6]). LSA is then the following theory.

Definition 1.0.1 The Largest Suslin Axiom, abbreviated as LSA, is the conjunction
of the following statements:

1. ZF+ AD™.
2. There is a largest Suslin cardinal.

3. The largest Suslin cardinal is OD-inaccessible.

4
LSA can also be defined in terms of the Solovay sequence.
Definition 1.0.2 The Solovay sequence is a sequence (6, : a < §2) such that
1. g =sup{f: 3f : p(w) — B(f is an OD surjection)},
2. if 0, < © then 0,11 =sup{s: 3f : p(0,) — B(f is an OD surjection)},
3. for limit A < Q, 0y = sup,. 0a-
4. g = O.
4
Remark 1.0.3 LSA is then equivalent to the conjunction of the following axioms:
1. ZF + AD™.
2. For some ordinal o, © = 6,1 and 6, is the largest Suslin cardinal < ©.
4

The above equivalence can be shown using the material of Chapter 9.1 of [70].
We note that it follows from [70, Theorem 9.12] that LSA implies ~ADg.

2. The minimal model of LSA

Suppose V' is a model of LSA. Let k be the largest Suslin cardinal and suppose
A C R has Wadge rank . It then follows that L(A,R) F LSA. Keeping this fact in
mind, we make the following definition.
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Definition 1.0.4 Suppose T is a first order theory extending AD". We say that M
is a minimal model of T if

e M is transitive and M E T,
e R Ord C M, and

e for every N that is a (definable) class of M and contains all the reals and
ordinals, either N = M or N F —LSA.

_|

It follows that all minimal models of LSA have the form L(A,R). A natural question
is whether there is a unique minimal model of LSA. We will show (see the proof
of Theorem 10.3.1) that in fact there is a unique minimal model of LSA which is
naturally the minimal model of LSA. Woodin’s proof of the existence of divergent
models of AD' also shows that not all extensions of AD' have a unique minimal
model (see [7, Theorem 6.1]).

The minimal model of LSA may not actually be big. For example, if N is a
transitive model of ADT that contains the minimal model M of LSA and has a Suslin
cardinal > ©M then ©M < 0. In particular, every set of reals in M is ordinal
definable from a real in N. Motivated by this fact, we make the following definition.

Definition 1.0.5 Suppose M is a transitive model containing all the reals and or-
dinals and such that M F AD* 4+ V = L(p(R)). We say M is full if for all transitive
N such that

e M C N and
e NE “ADT +V = L(p(R))”,
©M is a member of the Solovay sequence of N. -

The following interesting problem seems central to our understanding of the mod-
els of AD* that we build from large cardinals or from other hypothesis.

Problem 1.0.6 Do large cardinals or forcing axioms such as PFA imply that there
is a full model of LSA?

In particular, whether the models of determinacy obtained as derived models of V
contain full models of LSA or not is a major open problem of the area. Here we
make the following conjecture which is motivated by Woodin’s Sealing Theorem (see

[20]). Below uB stands for the set of universally Baire sets and for a generic g,
uB, = (uB)"l9) and R, = R4,
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Conjecture 1.0.7 Suppose k is a supercompact cardinal and there is a proper class
of Woodin cardinals. Let g C Coll(w,2*") be generic. Then in L(uB,,R,), for each
¢ < © there is « such that 6, € (§,0) and 6, is the largest Suslin cardinal below

O

Thus, in the set up of the conjecture, L(uB,,R,) has full models of LSA that are
cofinal in its Wadge hierarchy. The following is what is known on Conjecture 1.0.7.
Woodin (unpublished) has shown that L(uB,,R,) £ “ADgr + O is a regular cardi-
nal”. Sandra Miiller and the first author recently showed that L(uB,, R,) can be
represented as a derived model of some iterate of V. They also found a stationary-
tower-free proof of Woodin’s Sealing Theorem. These results are unpublished. [57]
presents a stationary-tower-free proof of the derived model theorem.

The question of whether the Cramer-Woodin model of LSA from [5, Theorem
65] is a full model of LSA or not seems not only interesting but also important for
understanding the relationship between large cardinals and models of AD™.

3. The content of this manuscript

In this manuscript, we establish three kinds of results that can be stated without
mentioning the technology developed to prove them. The first set of results deals
with the minimal model of LSA. Assume V is the minimal model of LSA. Then the
following holds.

(A) (Theorem 7.2.2) HOD F GCH.
(B) (Theorem 10.2.1) The Mouse Set Conjecture holds.

The second set of results contains a single result which shows the consistency of
LSA relative to large cardinals. We will show the following.

(C) (Corollary 10.3.1) Suppose the theory ZFC + “there is a Woodin cardinal that is
a limit of Woodin cardinals” is consistent. Then so is LSA.

The third type of result establishes the existence of the minimal model of LSA assum-
ing combinatorial principles or forcing axioms. The following belongs to this group.

(D) (Corollary 12.0.3) Assume PFA. Then the minimal model of LSA exists.

The precursors of these results already exist in print. The first author demon-
strated versions of (A), (B), and (C) for the theory ADg + “© is a regular cardinal”.
The second author proved the version of (D) for the same theory. The interested
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reader may consult [30], [32] and [67]. The reason to prove such results is to demon-
strate that the underlying technical theory is robust and can be used in a wide range
of situations.

Recently the authors of [2] showed that the theory CH + “there is an w;-dense
ideal on w;” implies that the minimal model of ADgr + “© is a regular cardinal”
exists. This, along with an earlier result of Woodin, show that these two theo-
ries are equiconsistent. This solved part of Problem 12 of [70]. Whether there is
a natural hypothesis asserting the existence of an ideal on a small cardinal that is
equiconsistent with LSA is an interesting problem. In particular, letting M’ be the
minimal model of LSA, x be the largest Suslin cardinal of M’ and M = L(I',R)
where I' = {A € p(R) N M’ : w(A) < k}?, the model M|[G % H] where G x H C
Coll(wy,R) x Add(1,ws) is M-generic has not be studied at all. The model M[G * H|
where G+ H C P4, x Add(1,ws) has been investigated in [1], but not much is known
beyond [1]%.

4. The necessity of the short-tree-strategy mice
We do not know how to prove (B)-(D) using the methods of [65], and whether this
is possible or not is a very interesting question®. The main issue seems to be the ab-
sence of an analysis of the LSA stages of the Solovay sequence using the least-branch
hierarchy. The main technical concept we use to analyze such levels is the notion
of a short-tree-strategy mice, which is developed in Chapter 3. Thus, the question is
whether it is necessary to develop this theory in order to prove results like (B)-(D).

The main issue is the following. Assume AD'. Suppose f,.1 < © and 6, is
the largest Suslin cardinal below 0,,1. Then if (P, X) is the hod pair generating the
pointclass I'y = {A C R : w(A) < 0441} then letting § be the largest Woodin cardinal
of P, ((P]6)#, %) is the pair generating the pointclass o = {A C R : w(A) < 6,}.
If one’s goal is to show that assuming ADg +DC+V = L(p(R)), HOD E GCH then it
maybe possible to skip I'y and build the generator of I';. The problem with skipping
[’y and moving to I'; is exactly the fact that it is then unclear how to prove theorems
like (A)-(D). What one would have liked is some sort of hybrid method that doesn’t
skip Iy but also incorporates ideas from [(5] to avoid the theory of short-tree-strategy
mice. It seems to us that this may not be possible.

Suppose then we decide not to skip over I'g, and suppose we have succeeded in
building a generator ((P|§)#, ¥5%) for T'y. At this stage, we do not know what (P, )
must be and can only see ((P|)#,25%). Set then Q = (P|d)* and A = L. What

3w(A) is the Wadge rank of A.
1But see also [21].
°[65] does show that H £ GCH but only assuming HPC.
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we need to show next is that we can extend Q to P in such a way that the following

hold®:
1. § is the largest cardinal of P and H = Q|4,
2. for all A C§, A€ P if and only if A is ordinal definable from (Q, A),
3. PFE “0 is a Woodin cardinal”.

The main issue seems to be with proving clause 2. It is a version of MSC for A, and
the only way we know how to prove it is by building a A-mouse over Q whose derived
model contains the set {(z,y) € R? : x is ordinal definable from y and (Q, A)}. This
requires a certain level of uniformity: Q and what we build on the top of Q have to
be the same kind of objects, as otherwise the construction over Q can project across
0 violating clause 3 above.

5. Some historical remarks on the large cardinal structure of hod mice

The large cardinal structure of hod mice has been somewhat of a mystery. While
originally it seemed hod mice must have very limited large cardinal structure, nowa-
days the prevailing belief is that they in fact can have any large cardinal whatsoever’.

First we make the following definition.

Definition 1.0.8 ©,, is the theory ZF + ADg + “© is a regular cardinal”. -

Prior to [30], the theory ©,., was believed to be beyond the short extender region
and was believed to be at the complexity level of supercompact cardinals. Because
Woodin was able to force strong combinatorial statements over a model of ©,., that
would normally require large cardinals at the level of supercompact cardinals or
beyond?®, the aforementioned belief seemed to be very reasonable.

The main goal of [30], which is based on the first author’s PhD thesis, was to
analyze HOD of the minimal model of ©,.,°. While any model of determinacy has
a rich large cardinal structure below its ©'° VAOD of the minimal model of ©,., is
very simple in the following sense (see Theorem 1.0.9).

Suppose V E ADT. The Solovay pointclasses are exactly the stages of the Wadge
hierarchy where a “new” non-definable from below set appears. For « such that

6Below H[ is the set of all X € P whose hereditary cardinality is < 4.

7At least in the short-extender region.

8E.g., MM**(c) (see [70]) and CH + “there is an w;-dense ideal on wy” (see [2]).
9Prior [30], it was not know that there is a unique minimal model of ©,.,.
0F.g., © is a limit of strong partition cardinals, see [13].
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0, <O let SP, ={BCR:w(B)<6b,} Iff, <O and A C R has Wadge rank 6,
then A is not ordinal definable from any set of reals B € SP, and moreover, every set
in SP,, is ordinal definable from A and a real. Thus, in a sense, once we perceive a
set of reals of Wadge rank 6,,, we know everything about SP, ;. Putting it differently,

T : in the Wadge hierarchy, nothing of any interest happens among sets whose Wadge
rank belongs to the interval (6,,60441).

In general, t is not true. All sorts of structures: Suslin cardinals, large cardinals
with complicated partition properties etc, exist in that Wadge interval. However,
the hod mice that are below the theory ©,., cannot have regular limits of Woodin
cardinals, and moreover, the Woodin cardinals and their limits of such a hod mouse
exactly correspond to the Solovay sequence!! in the following sense.

Theorem 1.0.9 ([30] and Theorem 7.2.2) In the minimal model of ©,,, and in
fact of LSA, § is a Woodin cardinal of HOD or a limit of Woodin cardinals of HOD
if and only if 6 is a member of the Solovay sequence.

Theorem 1.0.9 implies that HOD of the minimal model of ©,., has no Woodin
cardinals in the interval (6,, 6,+1), and in this sense, 1 is true below ©,.,'%. Therefore,
to represent VgOD of the minimal model of ©,.4 as a hod mouse, we do not need to
understand exactly what happens between (6,,60,+1) in V' as none of what happens
there makes HOD look complicated in that interval®.

The world of determinacy might have been a simpler place if { was always true,
but [30] shows that the theory ©,., is much weaker than a Woodin cardinal that
is a limit of Woodin cardinals. LSA, the main topic of this manuscript, is the next
natural determinacy theory that is consistency wise stronger than ©,.4, and while
the hod mice of this manuscript do have inaccessible limit of Woodin cardinals, The-
orem 1.0.9 is still true. This once again implies that the large cardinal structure of
hod mice at the level of LSA is limited and in fact, in such hod mice

(1) there is no Woodin cardinal § and a x < § such that x is d-strong.

Moreover, prior to the current work, it was believed that  and Theorem 1.0.9 are just

"By a theorem of Woodin, each 6,41 is a Woodin cardinal of HOD. See [15].

121t is a well-known fact from inner model theory dating back to [22] that iteration strategies of
mice or hod mice acquire complexity only because of Woodin cardinals.
13This was the original motivation of the so-called “layering” used both in [30] and in this

manuscript.



17

consequences of ADT. This belief was based on various arguments due to Woodin
that showed that if § is a member of the Solovay sequence then there cannot be kK < ¢
whose Mitchell order was much bigger than 6. However, Theorem 10.3.1 shows that
LSA is weaker than a Woodin cardinal that is a limit of Woodin cardinals, and fur-
ther unpublished work of the first author showed that the large cardinal structure of
hod mice, at least in the short extender region, may not be limited. In particular,
neither + nor Theorem 1.0.9 are consequences of AD'. The first author then made
the following conjecture.

Conjecture 1.0.10 Assume ADT+V = L(p(R)). Define the sequence (1, : a < )
as follows:

1. T = 90.

2. Assuming 7, < © and setting x = ()P 5,1 is the supremum of all 3 such

that there is an ordinal definable surjection f : @, (k) — 3.1
3. For a limit ordinal £, n¢ = sup,¢ -

Then 0 is a Woodin cardinal or a limit of Woodin cardinals of HOD if and only if
0 = n, for some a.

Using the methods of [65], Steel verified Conjecture 1.0.10 assuming HPC + NLE (see
[65, Theorem 11.5.7]). More recently, the first author, using ideas from [65], con-
structed a hod mouse that has a Woodin cardinal that is a limit of Woodin cardinals.
This result confirms the belief that hod mice may have a complicated large cardinal
structure.

6. Organization.

Chapters 2-8 develop the basic theory of hod mice for ADT models up to the minimal
model of LSA; a consequence of this analysis is (A). The last four chapters focus on
applications. Chapter 11 proves that [, » holds in HOD of AD™ models up to the
minimal model of LSA for all HOD-cardinals k. Our main use of this chapter is
Chapter 12, where a proof of (D) is given. Chapter 9 develops the basic theory of
condensing sets, which is needed in constructions of hod mice in various situations.
Chapter 10 uses the material developed in the previous chapters to prove (B) and
(C). The last chapter (Chapter 12) proves (D) by constructing a hybrid version of
Ke¢. This chapter uses methods developed in the previous chapters, [37], and [67].

HRecall that g, (k) is the set of countable subsets of k.
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Chapter 2

Hybrid J-structures

The main goal of this chapter is to prepare some terminology to be used in the rest of
this manuscript. One important notion introduced in this chapter is that of the un-
dropping game (see Definition 2.10.6). We will use it to prove a comparison theorem
for hod mice (see Corollary 4.13.4). None of the results stated in this chapter are
originally due to the authors, though some of them do not appear in literature in
exactly the same form that we state here.

Throughout this book, the reader is assumed to know the basics of inner model
theory. Starting from the beginning would have added many more pages to this
book, and moreover, the basics of the theory have been developed in several places.
The reader is encouraged to review the basic fine structural terminology as presented
for example in [3], [12] or in [60].

2.1 J-structures

We say M = (|[M],Q, € ....) is a transitive structure if | M| a transitive set. If M
is just a set' then we let [M] = M?. In what follows, given a transitive set or a
structure M we set ord(M) = Ord N M. Also, given a set X, we let tre(X) be the
transitive closure of X. We also let tre® = (tre(X U {X}), €).

Recall the inductive definition of J%4 (X) (for example see [12, Definition 1.6]).

In this manuscript, we will also use the round bracket notation while [12, Definition
1.6] only introduces the square bracket notation. We give the definition below, which
uses the rud, function defined in [12, Definition 1.1].

L All mathematical objects are sets; here we just mean that M doesn’t have any extra structure
defined on it.
2Tt seems that this notation is due to Farmer Schlutzenberg.

19
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Definition 2.1.1 Suppose A = (Ao, Ay, ..., A,) is a finite sequence such that for
each i < n, A; is a partial set or class function, and suppose X is a set or a transitive
structure. Then set

(X) (

TJAX) = tre({| X, Yo, .., Vo ) if X = (| X], Yo, Y4, ..., Y,,) is a structure,
(X)
(X)

a<<

JHx) = ) Jax).

a€eOrd

_|

Recall that a transitive structure M = (M, Ay, .., Ay, €) is called amenable if for
every X € M and 1 <i<n, A;NX € M. Following [72], we say M is a J -structure
over X if M is an amenable structure, and

M= (lTA(X)],AnTA(X), By, ..., B, X, €)

where for any set M, AN M = (AgN M, ..., A, N M).

We think of B = (By, ..., Bn) as a sequence of predicates. We will usually just
need three such predicates, one for the last extender, one for the last branch and one
for the set of layers to be defined later. At most one of By and By will be non-empty.
X and its predicates (if there are any) are treated as constants. Thus, the language
of J-structures is the language of set theory augmented by infinitely many relation
symbols and infinitely many constant symbols®. As we said above, most cases that
will come up in this book will only have three predicates. X usually will itself be a
J-structure.

It is often convenient to think of A; as a partial function A; : [ M| — | M ] rather
than some larger external function. Notice that for any A, jwﬂ(X )= jfamjj“(x)(X ).

Definition 2.1.2 Suppose M = (ij;(X),fT, By, ...B,, X, €) is a J-structure with

—

A= (Ap,....,An). We say M is hierarchical if the following clauses hold:

1. M is amenable.

2. For every i <n, dom(4;) C {wp: < a}.

3We do not need infintely many such symbols but a large finite number of them.
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3. For every i < n and for every f < « such that wf € dom(4;), A;(wp) C
[T55(X)].

4. The structure (LJ@(X)J,A()(LUB), wory Ap(w)) is amenable.
_|

The intuition behind a hierarchical structure is that the objects indexed at active
stages* are amenable subsets of the model up to that stage. Often hierarchical
structures are not represented in this fashion. For example, if E is a fine extender
sequence (see [0, Definition 2.4]) then intuitively JZ is a hierarchical structures in
the above sense, but in reality one needs to use the amenable code (see [60, Lemma
2.9]) of each of the extenders in E in order to obtain a hierarchical structure. In this
book, to avoid making things even more technical than they are, we will simply let the
strategy predicates index the iterations and their branches. Thus, if A; corresponds
to the strategy predicate then according to our definition (see Definition 2.3.1) A,
will be represented as a strategy rather than a function whose domain consists of
ordinals. However, it is a simple matter to re-design our hybrid structures so that
they fit into our definition of hierarchical. In this book, all our J structures can be
easily represented as hierarchical J-structures.

Suppose now that M = (J2 (X), A, By, ...By, X, €) is a hierarchical J-structure
and wf < ord(M). We then set

Mwp = (TH5(X), AN TE(X), X, €).
and
M[wB = (LX), AN TH(X), Ao(wB), Ai(@B), -, An(wB), X, €).

Thus, M|Jord(M) = M, and M|wf is M “up to” wf and M||wf is M “up to and
including” wf. Below we will say that A;(wf) is indexed at wf.

Remark 2.1.3 Thus, M|y and M||y are defined only when v = wa for some a.

We say X is self-well-ordered if there is a wellordering of | X | in J;(X) definable
over Jo(X) using only the predicates of X as parameters. For example, if X is a
premouse then EX is allowed to be used. Unless indicated otherwise, all our J-
structures will be over self-well-ordered sets. If M is a J-structure then we let
XM be the X above. It follows that each J-structure has a canonical well-ordering

4Here we say that wf3 is an active stage of for A; if wB € dom(A4;).
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given we fix a recursive enumeration of formulas. And so in what follows, we will
assume that such an enumeration has been fixed and hence, every [J-structure, unless
otherwise indicated, has a canonical well-ordering which we will denote by <,>. We
then must have that for § < &, <mws=<mwal [M|wp].

2.2 Some fine structure

The goal of this section is to review some fine structural ideas. It is not our goal
to develop fine structure, but only import some of the standard terminology that
is developed in the literature. It is important to note that while new ideas and
concepts do appear in the definition of a short-tree-strategy mouse, no new fine
structural issues arise. All such fine structural issues have been handled elsewhere,
and so we will not dwell on them. The reader unfamiliar with fine structural issues
is advised to review some of the following sources: [3], [23], [27], [12], [13], [20], [1&],
[60], [64], [72]. Our fine structural set up will follow [27] and [12].

We say M is an acceptable J-structure if M is a J-structure and for all 7 and
for all 8 such that ord(M|0) < 7 and 7 < wpf, if p(7) N M|w(B + 1) € M|wp then
there is a surjection f: 7 — wf in M|w(B + 1)°.

Remark 2.2.1 From now on all J-structures we will consider will be assumed to
be acceptable and hierarchical. =

Suppose M is a J-structure (over a self-well-ordered set X'). We then let p; (M),
the X projectum of M, be the least p < ord(M) such that for some p € (ord(M)<¥)
and some ¥; formula ¢” the set A = {£ < p : M E ¢[¢,p]} is not in M. The X,
standard parameter of M, p;(M), is the least® p as above. The ¥;-reduct of M is
the J-structure (M||p, T) where T' codes the 3; theory of M with parameters in
p1(M)U{p1(M)}. The ¥; core of M, core; (M), is the transitive collapse of the ¥;
Skolem hull in M of

prM) U {pr (M)} U XM U {XM}

We say M is 1-sound if core; (M) = M and M is 1-solid. The definition of solidity
appears in [00, Definition 2.15] or in [12, Definition 7.5].

5<p depends on the well-ordering of X that is definable over Jy(X), and there can be many
such well-orderings. It doesn’t matter for us which of them is chosen, but one could simply take the
well-ordering that is definable via the least formula that defines a well-ordering of X over Jo(X).

6For now, we will need this concept only for M with XM self-well-ordered.

"In the language of J-structures.

8With respect to the lexicographic order on decreasing sequences of ordinals.



2.2. SOME FINE STRUCTURE 23

Definition 2.2.2 We say M is a fine structural [J-structure (f.s. J-structure)
if M = (M’ k) where M’ is a J-structure, k < w and letting (M, : i < k) be given
by

1. Mog=M"and
2. for i+ 1<k, M,y is the ¥y reduct of M,

then for all ¢ < k, M, is 1-sound. We say that (M, : i < k) is the reduct sequence
(r-sequence) of M, and set

1. po(M) = ord(M) and py(M) = 0,
2. fori <k, pir1(M) = p1(M;) and p; 1 (M) = pi(M) " p1(M,),
3. p(M) = pry1(M) and p(M) = p1(M).

We also say that M’ =4.; j(M) is the J-component of M and k =45 k(M) is the
f.s.-component of M, and set (M) = (ord(M), k). Finally, we say M is sound if
My, is 1-sound.

We also say M = (M’ w) is af.s. J-structure in case (M’ k) is a f.s. J-structure
for all £ < w. In this case, p(M) is the eventual value of ord(M;) for i < w. .

Suppose now that M = (M’ k) is a f.s. J-structure and E is an M extender
such that crit(E) < pp(M). Let (M; : i < k) be the r-sequence of M. We then
let Ult(M, E) be the f.s. J-structure whose J-component is obtained by decoding
Ulto(Myg, E). We also have a map mg : M — Ult(M, E) which is a k-embedding.
The reader can review the relevant notions by consulting [3, Chapter 2], [12, Chapter
3 and 4], [64, Definition 2.8] and [0, Section 2.5].

Suppose M = (M’ k) is a f.s. J-structure and (wa, m) < (M) (here < is the
lexicographical order). We then let M|(wa,m) = (M'|wa, m) and M||(wa, m) =
(M||wa,m). Also, we write N' < M if for some (wa,m) < I(M), N = M|(wa, m)
or N' = M||(wa, m). We will often write M|y or M||y for M'|y and M'||~.?

The next definition defines the core of a J-structure. One way of defining it is by
doing what is described after [12, Definition 7.13]. Here is an outline of essentially
that same construction.

Definition 2.2.3 Suppose M is a J-structure. We define (corex(M) : k < w),
(pe(M) 1 k < w) and (pr(M) : k < w) by induction as follows.

9Notice that our definitions do not guarantee that M|y or M||y are f.s J-structures. However,
the structures that we will eventually consider will have this property.
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1. Set coreg(M) = M.

2. If M is not 1-solid then let corex(M) for k& > 1 be undefined. Otherwise,
core; (M) is defined as above.

3. Suppose core, (M) has been defined and that N' = (corey(M), k) is a f.s. J-
structure’. Let (N : j < k) be the r-sequence of N. If N} is not 1-solid then
let core;(M) for @ > k+1 be undefined. Otherwise, letting 7 : core; (N}) — Ny
be the core map, we let corey1(M) be the decoding of core; (Nj)!!.

If corer(M) is defined for all k& < w, then let core(M) be the eventual value of
core,(M).

Suppose for some k < w, core,(M) and pi(M) have been defined. Then letting
(Nj : 7 < k) be the r-sequence of core,(M), set pri1(M) = p1(Ny) and pri1(M) =
pe(M)7p1(Ny). Let p(M) be the eventual value of the sequence (pp(M) : k < w)
and let ep(M) be the least k such that for all i > k + 1, p;(M) = pri1(M). .

Thinking of J structures as f.s. J-structures is useful in introducing iteration
trees and in the proof of convergence of K“-constructions (for example see [3]).

2.3 Layered hybrid [J-structures

We say w is a sequential structure if w = (J,(s), s, €) where s is a sequence (uq :
a <),

Definition 2.3.1 (Definition 1.1 of [30]) Given a function f, we say f is amenable
if for all w € dom(f)

1. w is a sequential structure,
2. f(w) Cord(w),
3. sup f(w) =~* and 0 € f(w),

4. whenever n < %, f(w)Nn € w.
_|

0Notice that this condition is simply part of the induction. Above, we have that (core;(M), 1)
is an f.s. J-structure.

UThe decoding process is similar to the Downward Extension of Embeddings Lemma (see [412,
Lemma 3.3]). The decoding gives a 31-map 7’ : corey1(M) — coreg(M) extending .
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We say f is a shift of an amenable function or a shifted amenable function if there
is an amenable function g with dom(g) = dom(f) and such that for all w € dom(f),

1. f(w) € Ord,
2. f(w) € [min(f(w)), min(f(w)) +~"), and
3. f(w) = {min(f(w)) +wy: 7 € g(w)}.

Notice that if f is a shift of an amenable function then it uniquely determines g. We
say that ¢ is the amenable component of f.

Jumping ahead, we remark that iteration strategies and mouse operators provide
an ample source of amenable functions. For instance, let M = Mfﬁ and let X be its
canonical iteration strategy. We define f as follows. Let first dom(f) be the set of
structures of the form w = (7,(T"%), T, €) where 7*'? is a normal iteration tree on
M of limit length and is according to 3. Next, define f(w) = b where b = X(T™).
Then f is amenable. We will refer to such an f as an amenable function given by an
iteration strategy.

The definitions that follow explain how our indexing schemes work. We first
isolate those iterations whose branches will be indexed. The reader may think of the
formula ¢ appearing in Notation 2.3.2 as the formula that defines the set of iterations
whose branches need to be indexed. However, ¢ alone does not define such iterations
as we need to add clause 2 for technical reasons. The ordinal 3 essentially identifies
the location where the branch of the iteration tree defined by ¢ should be indexed.

In general, to develop a reasonable theory of hybrid [J-structures, we need to
use indexing schemes to index branches of stacks. The reason for this is that if no
particular coherent method of indexing is used to organize such structures then one
cannot in general hope to develop a comparison theory for the resulting structures.
Indeed, if M and N are unindexed hybrid J-structures then it is possible that some
b is indexed at o in M but nothing is indexed at o in NV, causing a fatal breakdown
of the comparison argument. Nevertheless, in Section 3.8, it will be convenient to
work with unindexed hybrid J-structures (as defined in Definition 2.5.3).

Another important remark is that it might be convenient to think of the indexing
scheme as a parameter of the hybrid [J-structures, in the same way we internalize
the fine structural parameter. Thus, instead of M we could consider (M, ¢) where
¢ is the indexing scheme. However, in most cases, isolating ¢ won’t matter so much,
and so we will not take this path. We suspect that M may even recognize many

120ne could think of 7 as a sequence (7 | a: o < 1h(7)).



26 CHAPTER 2. HYBRID J-STRUCTURES

different ¢s as its own indexing scheme!?. Thus we may have two ¢-indexed M and
M’ and an indexing scheme ¢’ such that M’ is ¢'-indexed while M is not. However,
such issues will not come up in the sequel.

Notation 2.3.2 Suppose now that M = JA0AL-4n (X)) is a J-structure or an f.s.
J-structure and ¢(Z,u) is a formula in the language of J-structures such that it
implies that “u is a sequential structure”. Suppose 5 € [M]=*. Let Sét;f be the set
of pairs (f,w) such that

1. wB + wy? < ord(M),

2. MlwpB E “cf(") is not a measurable cardinal as witnessed by extenders in
Ay (see Remark 2.3.4), and

3. Mwp E ZFC + ¢[5, w].

Let nmc(«) be the statement “cf(«) is not a measurable cardinal as witnessed by the
extenders in Ay”. =

Definition 2.3.3 Suppose that (M, 3, ¢) are as in Notation 2.3.2. Suppose further
that f is a shifted amenable function with amenable component g such that dom(f) C
| M| and for all w € dom(f), min(f(w)) +v¥ < ord(M)*. We say w is weakly
(f, S, ¢)-minimal if there is § such that

1. (B,w) € Sﬁ;‘s (in particular, because M|wp E ZFC, wf = ),
2. w ¢ dom(f N [M|B)),

3. {u € [IM|B] : u <ps w and there is & < 3 such that ({,u) € S} C
dom(f N [M]B]).

We say w is (f,§, ¢)-minimal if there is § witnessing that w is weakly (f, S, ¢)-
minimal and such that w is the <,g-minimal w’ which is weakly (f, 3, ¢)-minimal
as witnessed by f.

If wis (f, 5, ¢)-minimal then we let gM/%¢ be the least 3 witnessing that w is
(f, S, ¢)-minimal. In many cases, (M, f, ¢) will be clear from context and so we will
drop it from our notation. If §= ) then we drop it from our notation. -

130f course, this can be achieved trivially; ¢ and 0 = 0A ¢ are equivalent. But there could be two
different indexing schemes ¢ and ¢’ such that ZFC or any natural extension of it, does not prove
¢ <> ¢’ yet there is M which is both ¢ indexed and ¢'-indexed.

1Recall our convention that XM is self-well-ordered.
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Remark 2.3.4 (The measurable cofinality issue) The reader unfamiliar with
strategic mice may find clause 2 of Definition 2.3.8 somewhat odd. This clause has
to do with an issue known to experts and was first discovered in earlier versions
of [41]¥5. The problem was fully treated in [50], and the discussion appears in [50),
Remark 2.47]. Without getting too much into the technical details, the issue is simply
that if M = J4/ is a J-structure such that the f predicate codes a strategy for
some N' € M, w =45 (T (T),T,€) € dom(f), k =gey cfM(Ih(T)) is a measurable
cardinal in M, f(w) is indexed at A and E € EM is an extender with crit(E) = &
then

sup(my " In(T)]) < 7p(IL(T)) while A = ord(UIt(M]| (A, 0), E)).

The issue is hiding in the fact that in most of the natural attempts to organize

strategic mice, cf*(\) = &, while in the above situation this fails in Ult(M]|(),0), E)

for WMH(’\’O)(T) =
E .

In general, there may not be a unique w which is (f, 3, ¢)-minimal. However, the
following holds.

Lemma 2.3.5 Suppose (f, s, ¢) and M are as in Definition 2.3.3. Suppose w # w’
are two (f, &, ¢)-minimal sets. Set 8 = BN/5¢ and B’ = Bﬂ’f’s’qﬁ, and suppose that
B <pf. Then g < [

Remark 2.3.6 The f of Definition 2.3.3 is designed to code an iteration strategy,
and it will be the strategy predicate of a hybrid [J-structures which indexes an
iteration strategy. The iterations that will get indexed are exactly the (f,S,¢)-
minimal ones, and Lemma 2.3.5 implies that (f, 3, ¢)-minimal w’s are well-ordered.
We will then use the function w — [, to index the branch of w at 3, + wy™. =

Remark 2.3.7 It is perhaps illuminating to figure out the least iteration tree whose
branch will be indexed by the predicate f of Definition 2.3.3. We assume 5 = ().
First we pick the least 5 such that for some T of length w, M|wp E ZFC + ¢[T].
Then we take the <,q,p-least T as above and index its branch at wf + w?. =

We are now in a position to introduce the passive hybrid J -structures.

Definition 2.3.8 (Passive Hybrid J-structures) We say M is a passive hy-
brid J-structure over a self-well-ordered set X with indexing scheme ¢(z)'¢ if
M = (M’ k) is an f.s. J-structure such that the following conditions hold.

15The authors were unable to locate the discussion involving the measurable cofinality issue in

164 is in the language of [J-structures.
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1. For some o, A C |[M'| and f C |[M/],
M, - (j(ﬁ);f(X% Aa f7 X7 6)177

2. f is a shift of an amenable function.

3. Forallw € |[M'], w € dom(f) if and only if w is (f, ¢)-minimal and 5, +w~y"* <
ord(M)'®.

4. For all w € dom(f),

(a) Bu = min(f(w)),

(b) [M|(Buw + )] = Tpytwye (Ml|wBy) and AN [M[(By +wy™)] = AN
M w7,

_|

Remark 2.3.9 Definition 2.3.8 leaves open one important question. Does it follow
that SJ* = dom(f™)? The answer is of course that none of the conditions we have
imposed on f™ guarantees that Sé"‘ = dom(fM). It could be that some w € S(;M but
it is not (f, ¢)-minimal. However, if f™ is supposed to code an iteration strategy
of some P then the fact that w € Sé\/‘ implies that w is an iteration according to X
and that we must have that w € dom(f*). What will in fact happen, in intuitive
terms, is that while w may not be in dom(f™), it will be in dom(f*) for some N
extending M. This may not be possible to arrange if for example N =4 J,(M)
projects in a way that say w is no longer in core;(N), but if M is the final model
of some reasonable fully backgrounded construction that produces hybrid premouse
then we will indeed have that Sé\" = dom(f™). This is because it can be shown that
any w € Sév‘ is (f, ¢)-minimal.

To see this in intuitive terms, suppose towards a contradiction that some w € Sé”
doesn’t belong to dom(f™). We can assume w is <j-minimal. Now, and this
depends on our choice of ¢, the indexing scheme ¢ will be ¥; and hence, it will have
the following upward absoluteness property: if for some v, M|v E ¢[w] then for all
V' > v, MV E ¢lw]. Let £ < ord(M) be such that whenever u € S and u < w
then sup(f(u)) < £. Such & will exist because, in concrete applications, ord(M) will

1"We would like to emphasize that M’ has only the displayed predicates. Also, below (M, f, ¢)
are omitted from 3, notation.

8Here f3,, is defined in Definition 2.3.3.

1t also follows that f N [M'|(Bw + )] = f N [M|Buw].
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be a Woodin cardinal of the universe. It follows that to show that w € dom(f™)
it is enough to show that there is 5 € (£, ord(M)) such that 5 M|S E ZFC. Since
ord(M) is a Woodin cardinal of the background universe, there are plenty of such

B. -

Definition 2.3.10 (Hybrid J-structures) We say M is a hybrid J-structure
over a self-well-ordered set X with indexing scheme ¢(z) if M = (M, k) is an fs.
J-structure such that

1. for some a, A C |[M’'| and f C |[M'],
M/ = (joﬁf(X%A’ f7 B? F? X7 6)207

2. (JA(X), A, f, X, €) is a passive hybrid J-structure,
3. at most one of B and F' is not empty,

4. if F # () then F is an ordered pair (w,b) such that if 8 = min(b) then setting
fr=r1u{(w,0)},
1

(a) f’is a shift of an amenable function?!,

(b) w is (f', $)-minimal with /¢ = 3 (in particular, wf = 3, see Defini-
tion 2.3.3),

() wa = +wy 2
(d) [M] = Tppur(M]|8) and AN [M'] = A | M|8].

For w € dom(f’), we say that f’'(w) is indexed at S, + wy" or that (3, + wy" is the
index of f'(w). -

Suppose M is a hybrid J-structure with an indexing scheme ¢. We will often
say that “M is indexed according to ¢” or that “M is ¢-indexed”. Notice that only
the f predicate is indexed according to ¢. In most situations that we will consider
A will be an extender sequence. Sometimes, however, we will need to consider cases
where there are two or more f predicates.

20Below (M, f, ¢) are omitted from f3,, notation.

21This implies that w is a sequential structure.

221t follows from clause 5 of Definition 2.3.3 that M’ E “cf(y) is not a measurable cardinal as
witnessed by extenders in A”.
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Remark 2.3.11 Notice that it follows from Definition 2.3.10 that the function a —
min(f(a)) is injective on dom(f). =

Hod mice are a special blend of layered hybrid J -structures introduced below.

Definition 2.3.12 (Passive layered hybrid J-structure) We say M is a pas-
sive layered hybrid [J-structure over a self-well-ordered set X with indexing
scheme ¢(x,y) if M = (M’ k) is an f.s. J-structure such that

1. for some a, A C |[M’'| and f C |[M'],
M/ - (j:})zf(X),A, f> Y> Xv G)?

2. Y C JAN(X) and dom(f) =Y C{Q: Qi M} UX,
3. for all Q € dom(f), f(Q) =4er fo is a shift of an amenable function®,
4. for allw e M" and Q € Y, w € dom(fg) if and only if

(a) wis (fg, Q, ¢)-minimal and 32 + wy?¥ < wa, and
(b) for all R € Y such that R <xy Q and for all (fgr,R,¢)-minimal u €
M'|wBE, u € dom(fr N |M'|B2])*,
5. for all Q@ € Y and for all w € dom(f(Q)),
(a) B3 = min(f(w)),
(b) MBS +wy™)] = Tsg 4o (MIIB7) and AN [M'|(BZ +wy®)] = AN
M |wBZ]%.
_|

Definition 2.3.13 (Layered hybrid J-structure) We say M is a layered hy-
brid J-structure over self-well-ordered set X with indexing scheme ¢(z,y) if
M = (M’ k) is an f.s. J-structure such that

1. for some A C [M'] and f C |[M’],
M/ = (juﬁf’ A7 f? Y7 B7 F’ X7 E)?
23Below we will drop (M, fo,¢) from the ﬁf,}/ll’fg’g’(b notation.

ZTmplying that 8% < B2.
BTt also follows that f N [ M'[(BE +7%)] = fN | M'|wBZ].




2.3. LAYERED HYBRID J-STRUCTURES 31

2. M'=(J&I A £, Y, X, €) is a passive layered hybrid J-structure over X,
3. only one of B and F' is non-empty,

4. if F # () then F is an ordered pair (Q, (w,b)) such that @ € Y, b C ord(M),
and if 8 = min(b) then setting ' = fU{(Q, (w,b))},

'(Q) is a shift of an amenable function,
b (f', Q, ¢)-minimal with BM S0 = 3

(a) f

(b) wis

(¢) a=p+wyY,
) M

)

(d '] = Tspane(M|B) and AN M| = A [M'|B],

(e) forall R € Y such that R <,y Q and for all (f%, R, ¢)-minimal u € M’|S,
u € dom(fr N [M'|3])%.

_|

Suppose M is a layered hybrid J-structure with an indexing scheme ¢. We will
often say that “M is indexed according to ¢” or that “M is ¢-indexed”.

We will often omit ¢ when discussing a particular layered hybrid J-structure. If
M is a layered hybrid J-structure then we let f* and Y™ be as in Definition 2.3.12.
We again have that for each @ € Y™, the function a — min(fM(Q)(a)) is injective
on dom(f(Q)).

Notice that hybrid [J-structures can be viewed as a special case of layered hybrid
J-structures. Because of this, in the sequel we will only establish terminology for
layered hybrid [J-structures though we might use the same terminology for hybrid
J-structures.

Typically, when discussing hybrid J-structures, X will be an iterable structure
and f will be the predicate coding its strategy.?”

As mentioned above, hod mice are a special type of layered hybrid [J-structures:
the f predicate of a hod mouse codes a strategy for its layers. When the A predicate
of a layered hybrid J-structure is a coherent sequence of extenders then the resulting
model is called a hybrid layered premouse.

Results of this manuscript are independent of particular extender-indexing schemes,
but for technical reasons we will use a mixture of Jensen indexing as developed in

26Implying that 8% < B.

27 In this case, the 7 defined in Definition 2.3.10 is the length of a tree 7 according to f. The
condition “M E cof(7y) is not measurable” in Definition 2.3.10 ensures that fine structure is preserved
under iterations.
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[3, Definition 2.4], [I1], [27], [72] and Mitchell-Steel indexing as developed in [23]
and [60, Definition 2.4]. Suppose M = J B.f (X) is a ¢-indexed layered hybrid J-
structure over a self-well-ordered set X and E is a sequence of extenders. We say n
is a cutpoint of M if there is no a € dom(EM) such that crit(EM(a)) < n < o. We

say E is a mized indexed extender sequence if the following clauses hold:

1. (j-like indexing) If k = crit(F) is a limit of Woodin cardinals of M and is a
cutpoint of M then letting N = 75 (M| (xk+)M), E is indexed at ()" where
n = sup{a € dom(EV) : crit(EV () = k).

2. (ms-indexing) All other extenders are indexed according to the ms-indexing.

The initial segment condition for E is clause 3 of [00, Definition 2.4]. There are many
papers in the literature that connect the two indexing schemes. For example, the
reader may consult [3], [9], and [16]. Our goal in this book is to present the theory
of minimal model of the Largest Suslin Axiom in as shorter space as we can, and
because of this we will avoid fine structural issue that have been well-treated in the
literature.

Definition 2.3.14 (Layered hybrid e-structure) Suppose M = ]E’f(X) is a
¢-indexed layered hybrid J-structure over a self-well-ordered set X. M is called a
¢-indexed layered hybrid potential e-structure (lhpes) if E is a mixed indexed
extender sequence. We write EM for E etc.

If M is an lhpes and E = EM(y) then we let ind™(E) = .

We say that M is a ¢-indexed layered hybrid e-structure (lhes) if M = (M’ k) is
an f.s. J-structure such that M’ is a ¢-indexed Ihpes and for every (wf, m) < I(M),
M||(wpB, m) is sound. =

Mixed indexing smoothens implementation of certain technical arguments. The
most crucial property for us is the following. Suppose E is an extender on the
extender sequence of an lhes M such that M £ “crit(E) is a cutpoint and a limit
of Woodin cardinals” (i.e. there is no F € EM such that crit(F) < crit(E) <
ind™(F)). So E has j-like indexing. Let v = sup{¢ : £ < ind™(E),¢ € dom(EM)
and crit(Ee) = crit(E)}. Then v = sup{¢ : ¢ € dom(EVHME) and crit(Ee) =
crit(E)}. The advantage of mixed indexing over other indexing schemes can be seen
in Definition 2.8.

For an lhes M with just one layer (that is, [YM| = 1), we say M is a hybrid e-
structure (hes). Next we introduce lhes that are internally closed under sharps. We

will use such a closure to introduce short tree strategy premice (see Definition 2.5.2
and Definition 3.8.17).
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Definition 2.3.15 (Closed lhes) Suppose M is an lhes and o < ord(M). Then

we say M is closed below « if for all 8 < « there is vy € dom(ﬁM) such that v < «
and crit(EM) > 5. We say M is closed if M is closed below ord(M). =

2.4 Iteration trees and stacks

Below we review iteration trees. Our notation is mostly in line with most of the
references we have quoted above in Section 2.2. The only difference is that we
incorporated the concepts of a stack of iteration trees into an iteration tree.
Suppose M is an lhes (or hes). Thus, M is an f.s. J-structure that has a
designated extender sequence EM. For a limit ordinal n, welet n—1=n.

Definition 2.4.1 We say T is a putative iteration tree on M if
T - ((Ma)a<777 (Ea>a<77—17 D7 R7 (Ban ma)aGRa T)
and the following conditions hold.

1. T is a tree order on 7.

Let 7 (a + 1) be the T-predecessor of o + 1 and (a, §)7 be the T-interval
(0, B).

2. For all a such that a +1 < n, M, is a well-founded lhes (or hes).
3. RCn—1,0€ Rand foralla« € Rand forall 5 >, T(f+1) > .
4. For all @ € R, (wfa, ma) < 1(M,).

Sot M/ — {/\/la ca ¢ RV (o€ RANwp, =ord(M,))
“ Mo||(WBa,ma) v € RAwS, < ord(M,)
5. My =M.
6. Forall a4+ 1 <7, B, € EMa.
7. for all « +1 < n, setting f =T (o + 1) and k, = crit(E,),
Mo (s yMelind™ (F) 9 My,

28Gimilarly define all other combinations of («, 3)7, like [, 8)7 and etc.
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8 foralla+1<mn,
Ma+1 = Ult( zaH(wfon k’a), Ea)

where

(a) p=T(a+1),
(b) wés < ord(My) is the largest such that (ki )Malind™e (Ea) — (i) Mplwta
(¢) ko is the largest such that (wa, ko) < I(Mf) and crit(E,) < pr, (Mj]|(wéa, ko))

9. D={a+1<n:letting B =T(a+1), (W, ka) < [(Mg)}.
Let

Mi||(wEa ko)
Wzy,a—i-l = WEaﬁ : /BH(wfaa ka) - Ma-i—l

be the ultrapower map and for a <p v < 7 let 7TZ;,Y : My — M, be the
embedding obtained by compositions.?

10. For limit A < n, D N (0, )7 is finite and letting 5 € [0, \)7 be the least such
that D N (8,\)7 = 0, M, is the direct limit of the system (/\/lmﬂ;rﬁ, cy <
Y.y, € [B,\)7) and for v € [B, ), 7TZ:A : M, — M, is the direct limit

embedding.

More precisely, j(M,) is the direct limit of (j(./\/lfy),ﬂ;fy cy < Ay €

[5,A\)7) and k(M) = k(Mp) (recall Definition 2.2.2 which defined j(M) and

If « +1 € D then we say that there is a drop at a + 1. Suppose o + 1 € D and
B=T(a+1). If wE, < ord(Mp) then we say that there is a drop in model at o+ 1
and otherwise we say there is a drop in degree. -

We set M7 = M, ET = E,, ind! = ind™*(E,), Ih(T) =7, k] = crit(E]) and
vl = v(ET)*. We will drop superscript 7 when it is clear from context.

Definition 2.4.2 We say that 7 is an iteration tree if it is a putative iteration
tree such that for every ao < 1h(7"), M7 is well-founded. =

Definition 2.4.3 Given a putative iteration 7 on M we say that T is normal if

29 Assuming these embeddings can be composed. 7TZ;,Y is defined if and only if D N (o, ~]7 = 0.
30Here v(E) is the natural length of E. See [60, Definition 2.2].
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1. R7 = {0},
2. for all @ < B < 1h(7), ind] < ind}, and

3. for all o such that o +1 < Ih(T), 8 = T(a+ 1) is the least ' such that
(1) Melinde < g,

Notation 2.4.4 Given a putative iteration tree

T = ((Ma)a<777 (Ea>a<77717 D7 R7 (ﬁay ma)aGRu T)

and ordinals v < ¢ < n, we will use the following notations:

1. 7;7 = ((Moz>a§'y7 (Ea>a<"/7 (ga)o&w Dn (O’ 7]7 RN [07 7)) (Bom ma)anRﬂ[O,’y)’ TN
(v+1)%),

2. 7?%(} = ((Ma)aeh,g]a (EOé)QE[’Y,C)a Dﬂ(’}/, C]a Rr\'h/: g)a (ﬂaa moa)aGRﬁ['y,C)v Tﬁ[’}/, <]2)

3. Other notations such as 7,, 7>, T(y,) and etc are defined in the obvious
manner.

4. Given o € R7,
in(R7 — 1)) :RT - 1
() = [PRT =@+ 1) S RT—(a+ 1) £0
Ih(7) . otherwise.
5. Given o € R7, nc] = Tjp ) where o/ = next” (o).
6. We say that U is a normal component of T if for some o € R7, U = nc.

7. If U is a normal component of 7 then we let a7 (U) = a where « is as above.
We say U is the last normal component of T if o’ (/) = max(R”).

_|

Definition 2.4.5 We say that a putative iteration tree T is a putative stack if

1. R7 is closed,

31«

nc” stands for “normal component”.
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2. for all @ € R7, nc!, after obvious re-enumeration of its members, is a normal
iteration tree on MT||(BT m7).

We say T is a stack if T is a putative stack that is an iteration tree. -

Definition 2.4.6 Suppose P is an lhes. We say that 7 is a semi-smooth?? stack
on P if for all @ € R7,

T

1. nc! is normal®

2. MT||(wBT,mT) is a layer of M.

a

_|

Remark 2.4.7 (Semi-smooth convention) Because we will mostly work with

semi-smooth stacks on lhes, we make the convention that all stacks are semi-smooth.
_|

In the sequel, we will often say that R is a node of 7 to mean that R = M for
some « < 1h(T).

Branches of iterations.

Suppose M is an lhes and 7T is an iteration tree on M such that 1h(7) is a limit
ordinal. We say b C 1h(7) is a putative cofinal branch of 7T if b is cofinal in 1h(7)
and for every a € b, [0,a]r C b. Given a putative cofinal branch b of T, we say
b is a cofinal branch of 7 if D7 N b is finite. Given a cofinal branch b of T we
let. M be the direct limit of the directed system ((Ma)aews (T 5)a<pa,ser) Where
V¥ =b—max(D7 N b)34 We say b is a well-founded cofinal branch if it is a cofinal
branch such that MJ is well-founded. If b is a putative cofinal branch of T then we
let 7—{b} be the unique putative iteration tree U such that

1. Th(U) =1n(T) + 1,

2. TT =TY | (In(T) x 1h(T))

3. for all a < 1h(T), MY = M7 and E] = EY%,
4. DT = DY and RT = RY,

32“Smooth” is inspired by Jensen’s terminology who uses “smooth stack” for stacks that do not
allow drops in model or degree at the begining of the rounds. See [11].

33 After trivial re-organization.

34Here the direct limit is defined analogously to clause 7 of Definition 2.4.1.
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6. [0,1h(7))u =b.

We also let for a € b, Wlb = WZC—I};&{?-}) given the later embedding is defined, and if 7rOT7 b

is defined then we let m] = .

Strategies.
Given a stack 7 on M with last model N' and a stack & on N we can form 7-
followed-U stack 7 ~U. More formally, 7 U is the unique stack YW on M such that
Th(W) = 1h(T) + Ih(U), W<1h(7-) =T,

RYW = RTU{Ih(T)+a:ac RY}

and Wsiry) = U*. We may often say that 7 is a normal iteration tree if after
straightforward re-enumeration of its members it becomes a normal iteration tree.°
Suppose M is an lhes and X is a function. We say ¥ is an iteration strategy for
M if whenever T € dom(X) then T is a stack on M, Ih(7) is a limit ordinal and
(7)) is a cofinal well-founded branch of 7.
A putative iteration tree 7 on M is according to ¥ if for all limit ordinals
a <1Ih(T), T<a € dom(X) and X(T-,) = [0, a)7. We say ¥ is a k-strategy for M if

1. ¥ is an iteration strategy for M such that if 7 € dom(X) then 7 is a normal
iteration tree on M of length < &,

2. if T is a normal iteration tree on M such that h(7) < &, Ih(7) is a limit
ordinal and 7 is according to ¥ then 7 € dom(X),

3. if T € dom(X), b = 3(7T) and U is a normal finite putative iteration tree on
M{ such that Ih(T) +1h(U) < x and T U is a normal putative iteration tree
on M (after obvious re-enumeration of it) then U is an iteration tree.

Alternatively, ¥ is a k-strategy if it is a winning strategy for II in the iteration game
G(M, k). This game is defined immediately after [00, Definition 3.3]. The subscript
k that appears in this game is just k(M).

Similarly we can define (k, A)-strategy for M that acts on stacks. Here k bounds
the number of normal components and A bounds the length of the normal compo-
nents of the stacks. The relevant iteration game, G(M, k, \) appears soon after [60,

35 After obvious re-enumeration of its members.
36In this re-enumeration we must set R7 Y = {0}.
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Remark 4.3].

The common part.
Given a normal iteration tree 7 we let the common part of 7 be

m(T) = Ugem MY |ind] .

Usually in literature, for example in [60], m(7") is denoted by M(7T"). However, inner
model theorists make M tired, and so in this book we give it less weight to carry
than its usual heavy load. Following [60] we let 6(7) = ord(m(7)) = sup{ind’ : a <
Ih(7)}.

Restrictions
Terminology 2.4.8 Suppose M is an Ises and 7 is a stack on M.
1. Given n < ord(M), we say T is above 7 if for all a+1 < 1h(T), crit(E7) > .

2. We say that T is below 7 if for all a +1 < Ih(T), either n], is undefined or
indZ; < W&a(n).

3. If N < M then we say T is based on N if T is below ord(N).
_|

Definition 2.4.9 Suppose M is an lhes and NV < M is such that ord(N) is a regular
cardinal of M such that p(M) > ord(N'). Suppose further that 7 is a stack on M.
We then let | (7,N) be the portion of T that is based on N. More precisely, if

T = ((Ma)a<m (Ea)a<n—1; D, R, (Ba; Ma)acr, T).
then
VTN = (M acrts (B a1, D B (Bl il o, ).
is such that there is an order preserving map o : ' — n such that
1. foralla <o <7/, (o,d/) € T' <> (0(a),0(c)) € T,
2. foralla <7/, a € R <> o(a) € R,
3. for all o </, M, 4 M,y and B, = Ey(a),

4. for all a < 7', B, = Bo(a) and m), = my(a),
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5. for all @ +1 < 7/, o(a) is the least 8 € (sup,,0(7),n) such that indg <
Ord( ix—&—l))

6. if  +1 =17" and « is a limit ordinal then o(a) = sup,_, o(7),
7. ifa+1=n"and a = f+ 1 then o(a) = o(p) + 1,
8. for all aw < 7/, if there is 8 < n such that indﬁT < ord(M.) then a +1 < 7.
_|

Definition 2.4.10 Suppose M is an lhes and N < M is such that ord(N) is a
regular cardinal of M such that p(M) > ord(N). Suppose further that 7 is a stack
on N. We then let 1 (7, M) be the result of “applying” T to M. More precisely, if

T - ((Na)a<777 (Ea)a<'r]—17 D7 R> (Bow ma)aER7 T)
then

T (T7 M) = ((MOé)Ol<77’ (Ea)oé<77—17 D7 Ra (/6&’ ma)a€R7 T)
With Mo == M _|

Suppose for some 1 < ord(Q), n is a regular cardinal of P, p(P) > n and T is
below n. We then have that 7 | Q is the unique stack U on Q such that the copy of
U onto P via id is T .

2.5 Layered strategy e-structures

In this manuscript, we are mostly concerned with |hes whose f predicate codes a
strategy. The goal of this section is to introduce the language used to describe such
structures.

Suppose that M is an lhes. We then say that a shifted amenable function f codes
a partial strategy function for M if letting g be the amenable component of f, the
following conditions hold:

1. dom(f) C {(Ju(T),T,€): T is a stack on M without a last model}.

2. Whenever T is a stack on M such that (J,(7T), T, €) € dom(f) and whenever
U is an initial segment of T without a last model, (J,(U),U, €) € dom(f) and

g((jw(Z/I),LI, 6)) = [07 lh(u))T



40 CHAPTER 2. HYBRID J-STRUCTURES

3. For all (J,(T),T,€) € dom(f), g((J.(T),T,€)) is a cofinal branch of T.

Notice that we do not require that

(a) g((J(T), T,€)) is a well-founded branch of T,
(b) if (J,(T),T,€) € dom(f) and b = g((J,(T),T,€)) is a cofinal well-founded

branch of 7 then any reasonable finite extension of 7 {b} has well-founded models.

Conditions (a) and (b) will be part of a more restrictive notion.

When defining short tree strategy mice, we will encounter hybrid structures whose
f predicate doesn’t necessarily code a strategy but a partial strategy. We make this
notion more precise. First we make a useful definition.

Definition 2.5.1 Suppose M is an lhes. We then say that X is a semi-strategy
for M if the domain of X consists of quadruples (M, T, M1,U) such that

1. MO = M7
2. To is a normal tree on My,

3. M is either the last model of 7y or 7y doesn’t have a last model and M; =
(m(70))**", and

4. U is a stack on M, below §(75)%. 4

We can then consider amenable functions that code partial semi-iteration strate-
gies. We will abuse our terminology and will treat semi-iteration strategies as if they
were just strategies.

Suppose then a shifted amenable function f codes a partial strategy function for
M. We then let ¥/ be the partial strategy function coded by f. More precisely,
letting g be the amenable component of f,

1. dom(Xf) ={T : (J.(T), T, €) € dom(f)} and
2. for all T € dom(%7), X(T) = g(T,(T), T, €)).

3TThis is the true, w-iterable, sharp of m(7p).
38This means that all extenders used in & have lengths below the image of §(7y). Le. for each
a < 1h(7p) either [0,a)7 N D7 # or ind] < 7], (6(70)).
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We say f codes a partial strategy if ¥/ chooses cofinal and well-founded branches.
We say f codes a total A-strategy if X/(T) is defined whenever 7 € A is of limit
length and is according to . If A is clear from context then we will drop it from
our notation.

Following [30], if M is an Ihes, ' < M and X is an iteration strategy for M
then X is the strategy of N' we get by the copy construction. More precisely, X
is the id-pullback of ¥. Like in [30], if a transitive structure P has a distinguished
sequence of extenders then when discussing iterability of P we will always mean
iterability with respect to that extender sequence.

Definition 2.5.2 (Strategic e-structure, ses) Suppose P is a transitive struc-
ture, X is a self-well-ordered set such that P € X and M is a ¢-indexed hes. We say
M is a ¢-indexed strategic e-structure (ses) over X based on P if f™ codes a
partial iteration strategy for P and for any w € dom(fM) if 8 = min(f™(w)) then
M| is closed®.

We say M is based on P if M is over J,[P] and is based on P. —

In Section 3.8, we will also need unindexed ses™’.

Definition 2.5.3 (Unindexed ses) Suppose P is a transitive structure, X is a self-
well-ordered set such that P € X and M = J&/ (X) is a hybrid J-structure over
X. We say M is an unindexed strategic e-structure (unindexed ses) over X
based on P if the following clauses hold.

1. fM codes a partial iteration strategy for P such that for any w € dom(f™) if
B = min(f™(w)) then M|3 is closed*!.

2. FE is a mixed indexed extender sequence.

3. If M = (M, k)* then for every (w8, m) < (M), M||(wB,m) is sound.
We say M is based on P if M is over J,[P] and is based on P. —|

Definition 2.5.4 (Layered strategic e-structure, Ises) Suppose M is a ¢-indexed
lhes. We say M is a ¢-indexed layered strategic e-structure (lses) if for all
QeYM in M,

39Gee Definition 2.3.15. Also, recall that for such 8 we have wj3 = 3

4ONotice that in Definition 2.5.3, unindezed simply means that no indexing is specified. It is
possible that a given unindexed ses M is in fact ¢-indexed for some ¢.

41See Definition 2.3.15. Also, recall that for such 8 we have wB = 3

42Gee Definition 2.2.2.




42

CHAPTER 2. HYBRID J-STRUCTURES
1. fM(Q) codes a partial iteration strategy for Q such that for every w € dom(f*(Q)),
if 3 =min(fM(Q)(w)) then M|3 is closed, and

2. if Qp, Q1 € YM — (XM U {XM})® are such that Qy < Q; then letting, for
i € 2, ¥; be the partial iteration strategy coded by f*(Q;) and A be the
id-pullback of ¥, then A C 3y*.

_|

If Q € YM then we let £ be the partial strategy function coded by f*(Q)

and let ©M be the function with domain Y™ such that £M(Q) = ©4'. The next
definition isolates the language of Ises and ses.

Definition 2.5.5 We let L be the language of ses intended for lightface ses, where
we say M is a lightface ses if for some P, M is an ses over J,[P] based on P. Thus,
Ls augments the ordinary language for premice as introduced in [60, Definition
2.10] by adding one constant symbol P for P and a predicate symbol f for f. Lees
can be further augmented by a constant symbol for X (see Definition 2.5.2), and this
language can be used for boldface ses.

We let Lies be the language of Ises over () (those are the Ises whose X predicate

is the ()). Thus, L is the language of premice augmented by symbols {B f Y}

In some cases, it is convenient to use the symbol V to denote the universe of Ises

or ses, and also the symbol ¥ to indicate the strategy function coded by f. Moreover,
if Q € dom(f) then we will use 3¢ to denote the strategy function given by f(Q).

_|

In most applications, Ises have a very canonical indexing scheme which is origi-

nally due to Woodin. At each stage the stack whose branch is being indexed by f
is the least stack whose branch hasn’t yet been indexed. We call this the standard
indexing scheme (see Section 3.9).

Remark 2.5.6 Unless indicated otherwise, we will always tacitly assume that the
extenders used to witness the existence of large cardinals in Ises belong to the extender
sequence of the Ises. Thus, when we say “k is a measurable cardinal in M” we mean
that there is an extender E € EM such that E witnesses that s is a measurable
cardinal in M. In [51], Schlutzenberg extensively studied the problem of whether in
pure extender models all large cardinal properties are witnessed by extenders that

43Recall XM is the set or structure over which M is defined.
4 Here, we cannot demand equality as there maybe 7 € dom(Xg) such that if I is the od-copy
of T on Q1, U & dom(A).
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are indexed on the extender sequence. In particular, he showed that measurability
and Woodinness are witnessed by extenders that are on the extender sequence.

Remark 2.5.7 Suppose M is an Ises and § < ord(M). The notations M|5 and
M||B were introduced just before Remark 2.1.3. In this remark, we would like to
clarify the meaning of YMI?. It is not hard to re-formulate Definition 2.3.13 in a way
that Ises become hierarchical [J-structures (see Definition 2.1.2) with the property

that YMP = XMU{Q I M: Qe YMAord(Q) < wp}®. 2

Suppose M is an Ises and X is a (k, 0)-iteration strategy for Q for some Q € Y M.
Then it can be the case that Zg‘ C Y. When this happens we get structures relative
to X.

Definition 2.5.8 ((X, ¢)-premouse) Suppose X is a transitive self-well-ordered
structure and P € X is an ses or Ises or just a transitive self-well-ordered set. Suppose
further that ¥ is a (k, #)-iteration strategy for P and M is a ¢-indexed ses over X
based on P. Then M is called a (¥, ¢)-premouse over X based on P if SM C ¥ |
M.

Similarly, if M is a (X, ¢)-premouse over X based on P, X = (J,[P], P, €) and
Y. is a (k, f)-iteration strategy for P then M is called a (X, ¢)-premouse over X .-

We then say M is a (X, ¢)-premouse if one of the cases in Definition 2.5.8 holds.

Definition 2.5.9 ((X, ¢)-mouse) Keeping the notation of Definition 2.5.8, we say
M is a (X, ¢)-mouse if M has an w; + 1-iteration strategy A such that whenever
N is a A-iterate of M then N is a (X, ¢)-premouse. -

We warn the reader that we will often omit ¢ from our notation and say “M is
a X-mouse” instead of “M is a (X, ¢)-mouse” if ¢ is clear from the context.

2.6 Iterations of (X, ¢)-mice

Suppose X is a transitive self-well-ordered structure such as ses or Ises or just a tran-
sitive self-well-ordered set. Suppose further that ¥ is an (w;,w;)-iteration strategy
for some P € X (which is also ses or Ises or some transitive set) and ¢ is an indexing
scheme. Given two (3, ¢)-mice, we can compare them using the usual comparison
argument.

450ne could for example index every M||wB € YM at w8 + w.
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Theorem 2.6.1 (Theorem 3.11 of [60]) Suppose M and N are two countable
(3, ¢)-mice with (w1 + 1)-iteration strategies A and I' respectively. Then there are
iteration trees T and U on M and N respectively according to A and T respectively,
having last models M7 and ./\/'év such that either

1. the iteration embedding m] ,-exists and MY is an initial segment of MY, or

2. the iteration embedding Wé{n—em’sts, and ./\/l%’ is an initial segment of M.

Comparison for Ises is more involved and we do not know how to do it in general.
Below we recall our primary method of identifying the good branches of iteration
trees. Recall that the strategy for a sound mouse projecting to w is determined by
Q-structures. For T normal, let ®(7) be the phalanx of 7 (see Definition 6.6 of

[54])-

Definition 2.6.2 Suppose M is an Ises (or ses). Let 7 be a normal tree of limit
length on M and let b be a cofinal branch of 7. Then Q(b, T) is the shortest initial
segment Q of M, if one exists, such that Q projects strictly across 6(7) (i.e. p(Q) <
d(T)) or defines a function witnessing 6(7) is not a Woodin cardinal as witnessed by
the extenders on the sequence of m(7). Equivalently, Q(b, T) = M] ||w¢ such that
¢ is the largest £ with the property that M] ||w&’ E “6(T) is a Woodin cardinal”.

Next we would like to state a general result stating that branches identified by
Q-structures are unique.

Definition 2.6.3 Suppose that M is an Ises and ¥ is a strategy for M. If N is a
Y-iterate of M via T then we let ¥ 7 be the strategy of N given by Yy 7(U) =
Y(T~U). If then Q <N then we let ¥ g 7 be the id-pullback of ¥y 7. .

Definition 2.6.4 Suppose M is a ¢-indexed Ises (perhaps over some set X and
based on some P € X) and X is an iteration strategy for M. We say (M, X)) is a
layered strategy ¢-mouse (¢-Ism) pair if ¥ has hull condensation (see Definition
1.30 of [30]) and whenever N is a 3-iterate of M via T then N is a ¢-indexed Ises
and for any Q € YN — X, ¥4 C Sg 7. We say (M, ) is sound if M is sound.
Similarly we can define ¢-sm. We will say that M is a (3, ¢)-Ism or (3, ¢)-sm if
(M, %) is respectively a ¢-Ism or ¢-sm. =

Terminology 2.6.5 Suppose M is an Ises.

1. We say v is a cutpoint of M if there is no extender F € EM such that
crit(E) < v < ind™(E).
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2. We say v is a strong cutpoint of M if there is no extender £ € EM such
that crit(E) < v < ind™(E).

3. An extender E € EM overlaps & if crit(E) < x < Ih(E), and weakly over-
laps « if crit(F) < k < 1h(E).

4. ord(YM) = sup{ord(Q) : Q € YM}.
_|

Theorem 2.6.6 Suppose (M, X)) is a sound ¢-lsm pair, and suppose v < ord(M)
1s a strong cutpoint of M such that

ord(YM) <~ and p(M) < .

Then M has at most one (wy + 1)-iteration strategy A that acts on iteration trees
that are strictly above v and whenever N is a A-iterate of M then N is a ¢-indezed
Ises and XN C 2 [N

Moreover, any such strateqy A is determined by: for countable length normal
iteration trees T, A(T) is the unique cofinal wellfounded b such that the phalanx

O(T)~(6(T), 206, T))
is wy+1-iterable (as a (X, ¢)-phalanz, see Definition 2.6.9 for the meaning of Q(b, T) ).*

In some cases, however, it is enough to assume that Q(b, T) is countably iterable.
This happens, for instance, when M has no local Woodin cardinals with extenders
overlapping it. While the Ises we will consider may have initial segments that have
Woodin cardinals that are not cutpoints, no such cardinal will be Woodin in the
entire model. This simplifies our situation somewhat, and below we describe exactly
how this will be used.

Definition 2.6.7 (Definition 2.1 of [55]) Let (M, X) be a sound ¢-Ism pair and
let v < ord(M) be such that 7 = ord(Y™) < ~. Suppose T is a normal iteration
tree on M that is above v + 1; then Q(T), if exists, is the unique Q that has the
following properties.

1. Qis a (X s, ¢)-sm over m(7) based on M||7 (in particular, 6(7) is a strong
cutpoint of Q).

2. J,(Q) E “0(T) is not a Woodin cardinal”,

46The meaning of this is left to the reader, but see [54, Definition 6.7] or [3, Definition 2.22].
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3. k(Q) is the least k such that

(a) pe(Q) < 4(T) or
(b) pr(Q) = §(T) and there is r¥2-definable function f : §(7) — 0(T) wit-
nessing that 6(7) is not a Woodin cardinal as witnessed by the extenders

of m(7).
_|

Countable iterability is usually enough to guarantee there is at most one Ises with
the properties of Q(7T). If it exists, Q(7T) might identify the good branch of T, the
one any sufficiently powerful iteration strategy must choose. This is the content of
the next lemma which can be proved by analyzing the proof of Theorem 6.12 of [60].
To state it we need to introduce fatal drops.

Definition 2.6.8 (Fatal drop) Suppose M is a ¢-indexed Ises and T is an iteration
tree on M. We say T has a fatal drop if for some o < 1h(7) and 1 < ord(M7),

1. n is a cutpoint of M7 ||wéT,
2. sup{indg B <a}<n,

3. p(MII[(wel, k])) <n',

oo

TkT

o)) o

4. T4 is a normal iteration tree on M ||(wé ) that is above 7.

We then say T has a fatal drop at («,n) if the pair is the lexicographically least
satisfying the above condition. -

The following is the lemma mentioned above.

Lemma 2.6.9 Let (M,Y) be a ¢-Ism pair such that ord(Y™) is a strong cutpoint
of M* and let v < ord(M) be such that ord(Y*) < ~. Suppose T is a normal
iteration tree on M that is above v + 1 and has limit length.

1. Suppose Q(T) exists. Then there is at most one cofinal branch b of 7 such
that either Q(T) = M] or Q(T) = M]||w€ for some £ in the wellfounded
part of M.

4T¢T and k] are defined in clause 8 of Definition 2.4.1.
48The hod mice considered in the manuscript satisfy this condition.



2.6. ITERATIONS OF (X, ¢)-MICE a7

2. Suppose further no measurable cardinal of M which is > ~ is a limit of Woodin
cardinals. Suppose further that T is according to X, 7 doesn’t have a fatal
drop and if b = 3(7T) then Q(b, T)-exists. Then Q(b,7) = Q(T).

Q(T) identifies b because it determines a canonical cofinal subset of T”Q(W;b N
d(T)), for some o € b, to which we can apply Lemma 1.13 of [30] (which is an
immediate consequence of the zipper argument from [22]).

Remark 2.6.10 Suppose (M, Y) is a ¢-lsm pair and Q@ € YM — XM, Let R = M
if Q is the largest initial segment of M in Y™ and otherwise, let R be the least
member of Y™ properly extending Q. Suppose T is a tree on M which is above
ord(Q) + 1 and is based on R. Notice that in this case we can define Q(7) just as
in Definition 2.6.7 by using R instead of M. -

We end this section by introducing the O-stack. Suppose P is an lses, a,n <
ord(P) and Q < P||n. Let e, be the least ordinal § > ), if it exists, such that

3 € dom(EP), and letting E = EP(f), crit(E) € (a,n). Thus, ey is the index of
the first extender that overlaps n+1 and has a critlcal point > «. Otherwise, if there
is no such extender then set e/, = ord(P).

Let s7' o be the least ordinal 8 > 7, if it exists, such that for some R € Y* — X*
with Q@ <R letting F' be the set indexed at § in P, F is a pair of the form (R,a).
Thus, sig is the first place above 1 where a branch of some iteration tree 7 that
is based on a strictly longer layer than Q is added. If there is no such R then let

sy o = ord(P). Let ' = ()7 if (n™)” exists and otherwise let 7/ = ord(P). Set
59& = mm{ew, spa '}

Suppose M is f.s. J-structure and 1 < ord(M) is the largest cardinal of M. We

then let M|(nH)™ = M|ord(M) and M||(n*")M = M.

Definition 2.6.11 (O%-stack) Suppose P is an Ises, o, < ord(P) and Q < P||n.
We now set

OnQa_P’( )77|04nQ&

Next we define the stack ( €< Qn 0, o) according to the following recursion:
7,0
On Qa 077 Q,a
P+l _ P
2. for§+1<QnQa,(’)nQa (’) WO )0

PA P
3. for limit A < Qn 000 0000 =Uecr 0,54, and
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4. QZQ,G is the least v such that ord(OZiéa) B

7,90
If Q = P||x, then we write O], for OF 5 ; if a = 0, we also write O] for O] 5 .
P Pe _ PE - P _ P
For ¢ < Qnﬂ’l\n,a’ we let O, £ = OnPHmO with O, = Onﬂ’l\nyﬂ‘ -
2.7 Hod-like layered hybrid premice
The difference between the Ises considered here and those considered in [30] is that

here we will have Ises whose predicate codes the short tree strategy of its initial
segments. The hod mice we will consider in this paper are all layered, and we start
by introducing these objects.

If M is an Ises and & is an M-cardinal then we set EM = EM(€) and

XM ={¢: EM# 0 and crit(EM) = k}.
We also let
o™ (k) = max(sup XM, (kH)M).

Suppose M is a transitive structure and 7 is an ordinal. Then we let (n™*)™ be
the ath-cardinal successor of i in M if it exists and otherwise, we let it be ord(M).

Definition 2.7.1 (Pre-hod-like) Suppose P is an Ises. We say P is pre-hod-like
if one of the following holds:

1. (Meek) There is § such that
(a) P E “0 is a Woodin cardinal or a limit of Woodin cardinals”,
(b) ¢ is a cutpoint of P,

(c) if k < ord(P) is a limit of Woodin cardinals of P then o”(x) < 4,

(d) P E ZFC — Replacement and

(e) if 6 is a Woodin cardinal of P then P = J,__ P|(6t")”, and if § is a limit

of Woodin cardinals of P then ¢ is the largest cardinal of P.
2. (Non-meek) There is § < ord(P) such that

(a) there is k < § such that ¢ < o”(k),

49This condition follows from the other conditions, but we would like to isolate it.



2.7. HOD-LIKE LAYERED HYBRID PREMICE 49

(b) if  is the least n < § such that § < 0o”(n) then 0" (k) = and P F “k is
a limit of Woodin cardinals”,

(c) letting x < § be the least such that o” (k) = 4, p(P) € (k, ] or ord(P) is
a limit of ordinals ¢ such that p(P||(¢,w)) € (k,]>°.

(d) P is d-sound,
(e) if dom(E” N (67, ord(P)] = 0 then J,[P] E “6 is not a Woodin cardinal”.

3. (Gentle) § =4ep ord(P) is a limit of Woodin cardinals of P and P F ZFC —
Replacement.

We let 67 be the & above. -

The next definition is somewhat technical. The meaning of it is that we will wait
until we see the sharp of a layer before we will activate the strategy.

Definition 2.7.2 (Properly non-meek) Suppose P is a non-meek pre-hod-like

lses. We say P is properly non-meek if there is & € dom(E”) (€ may be o(P))
such that crit(E]) > 67 and P|¢ = J¢[P|67]. .

The next definition isolates the type of hod premice that give rise to pointclasses
satisfying the Largest Suslin Axiom.

Definition 2.7.3 (Lsa type, Figure 2.7.1) Suppose P is a pre-hod-like Ises. We
say P is of lsa type if

1. P is properly non-meek,
2. P E “5F is a Woodin cardinal”

Suppose P is a pre-hod-like lIses of Isa type. We let P, < P be the longest initial
segment P’ of P such that P’ is of Isa type, 67 = 67" and letting k = k(P’), for every
k < 87 there is no cofinal f : k — 67 that is TZf/—deﬁnable over P’5'. We then say
that P is exact if P = Pe,.

Continuing with P, let o = min(dom(EP) — 67) and set Py = P||a. We then
say that P is of #-lsa type if Py = P and J,[P] F “67 is a Woodin cardinal”.

If 3 is a strategy of P then we let X, be the strategy of P, with the property
that Yo, = (id-pullback of ¥). =

50Here, we implicitly assuming that ¢ = wf3 for some . See Remark 2.1.3.
Slex stands for “exact”.
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P

Figure 2.7.1: Lsa type Ises. Here, P is an lIsa type Ises. k is a limit of Woodin
cardinals in P, § = 67 is Woodin in P, and o” (k) = §. P|¢ is the least active level
of P above §.

In this paper we will consider hod mice that are lsa small.

Definition 2.7.4 (Lsa small) Suppose P is a pre-hod-like Ises. We say P is lsa
small if for all P-cardinals x such that o” (k) < 67 and P E “k is a limit of Woodin
cardinals”, P E “0o” (k) is not a Woodin cardinal”. -

Remark 2.7.5 From now on we tacitly assume that all Ises considered in this paper
are Isa-small. We will, from time to time, remind the reader of this. .

We can now isolate the layers of pre-hod-like Ises.

Remark 2.7.6 Before we give the definition we make the following intuitive re-
marks. Suppose P is a hod premouse, which are the objects that we eventually want
to define (see Definition 3.10.2).

1. The philosophy behind “layering” is the desire to make maximal complexity
jumps in the Wadge hierarchy. Ordinary mice and premice are designed to
reach large cardinals by using the least amount of information large cardinals
give us, namely the extenders that induce those embeddings that we use to
define the large cardinal in question. For example, to reach a measurable car-
dinal in a mouse we only use ultrafilters. However, measurability tells us much
more than just that there is a nice ultrafilter on some cardinal. For example,
if x is measurable then every II! set is k-homogenously Suslin, and in trying
to build mice with measurable cardinals we ignore this extra information. We
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justify our ignorance by claiming that our algorithms that produce mice (e.g.
fully backgrounded constructions, K¢ constructions and etc) using extenders as
oracles output structures that do inherit all the important properties of large
cardinals. That this indeed happens has been verified by Neeman for large
cardinals in the region of Woodin cardinal that is a limit of Woodin cardinals
(see [20]). However, a priori, this dream-like solution may have been wrong,
and more of the information given to us by large cardinals might have been
required to reach them in canonical structures, and perhaps the fact that we
cannot do significantly better than a Woodin cardinal that is a limit of Woodin
cardinals is a sign that only extenders won'’t do.

Hod mice have an entirely different purpose. Instead of large cardinals the aim
is to reach or rather “capture” the Wadge hierarchy inside canonical structures.
This is parallel to Shoenfield’s Absoluteness, namely that L is X3-correct. Each
layer of a hod mouse corresponds to a new level of the Wadge hierarchy. How-
ever, what the philosophy of layering claims to be possible is that we can reach
all levels of the Wadge hierarchy by simply jumping to the most significant
levels of it, and here the significant levels of the Wadge hierarchy are defined
to be the Solovay pointclass.

Definition 2.7.7 Assume ZF + AD*T. We say I' is a Solovay pointclass if
there is k such that x is a member of the Solovy sequence and I' = {A C R :

w(A) < 5} =

The strategy of each layer of a hod mouse generates a Solovay pointclass in the
sense that the named strategy has Wadge rank 6, for some a. The dream of
the “layering” philosophy is that by only generating the Solovay pointclasses
we will reach all levels of the Wadge hierarchy. Internalizing this idea would
help the reader with a knowledge of AD*" theory to understand why layers
are defined the way they are defined: every initial segment whose strategy
corresponds to a Solovay pointclass is a layer.

Of course, at this stage the idea is vague. If P is our hod mouse, ¥ is an
iteration strategy for P, Qp < Q; < P then the reader should expect that Yo,
is not more complex then X¢,, and one can easily build many situations where
in fact X, is Wadge reducible to X, but not vice a versa. However, it may
be the case that neither Qy nor Q; are layers of P. To make the idea work
we need to anticipate the initial segments of P whose strategies generate the

52See Definition 1.0.2.
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Solovay pointclasses. Below we spell out what initial segments should be layers
in the minimal model of LSA.

. The basic phenomenon that guides us in our definition of layers is the follow-

ing: Suppose (P, ) is a pair such that P is a hod mouse and ¥ is its iteration
strategy™. Let M, (P, %) be the direct limit of all countable Y-iterates of P
and mp o : P = My (P, X) be the direct limit embedding.

Key Phenomenon: For § < 67, 7p () is a member of the Solovay se-
quence if and only if § is either a cutpoint Woodin cardinal of P or a cutpoint
limit of Woodin cardinals of P.

The way we use the Key Phenomenon is as follows. Suppose we have declared
Q a layer of P.

(a) If < is a cutpoint Woodin cardinal of P or a cutpoint limit of Woodin
cardinals of P then Q is the unique layer @’ of P such that ¢ Q' _ 59

(b) If, however, §¢ = 0<(k) for some k and Q' is such that p(Q’) < §< then
To.0o(k) < T oo(k) and the strict inequality cannot be ruled out. Thus,
we declare Q' a layer as it can generate a new Solovay pointclass.

(c) Also, suppose k < 67 is a limit of cutpoint Woodin cardinals of P and
suppose that a is such that either a = ind”(E) for some E € EP with
crit(F) = k or « is a limit of such points. Notice now that for every
B <, Tp||(wsw)o0(K) < TP||(waw),00(k). This is because we must have that
TP||(wBw)oo = TUL(P,E)||(wBw)0o- Lherefore, P||(wa,w) must be a layer of

. Layers of P are those proper initial segments of P whose strategy is being

indexed on the strategy predicate of P, with the exception that P is also
considered to be a layer of itself.

. Meek layers of our hod mice were already studied in [30].

. The key new ingredient of our hod mice is the way we treat the lIsa type layers.

Given an lsa type layer Q of P, say Q is minimal in P if there is no layer
Q' < Q such that 6 = <. Given a minimal Isa type layer Q, we start indexing
the short-tree-strategy of Q into the strategy predicate, and this leads to our
notion of short-tree-strategy (sts) premouse (see Definition 3.8.17). There are

53For explanatory reasons, we are being somewhat vague.
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two possibilities here. Either (a) we reach a level Q" with the property that Q’
is an sts premouse over Q such that §< is not a Woodin cardinal definably over
Q' or (b) 67 = §<, 67 is Woodin in P and P above §€ is an sts premouse. If we
do reach such a Q' then Q' becomes a layer and we start adding the strategy
of @'. Notice that Q' itself is of Isa type.

6. The following conditions essentially characterize all proper layers of P, but
the conditions below do not spell out the actual definition and are given for
explanatory purposes.

(a) (Woodin cardinals) If n < §% is a Woodin cardinal of P then there is a
layer Q of P such that §< = 7.

(b) (Limit of Woodin cardinals) If k < 67 is a limit of Woodin cardinals of
P then Q =4.; P|(k")” is a layer of P such that 62 = x and Q is the
unique layer @' of P with 62" = k. Moreover, & is a strong cutpoint in Q
(in particular, if E € E” is such that crit(E) = & then E is total.)

(c) (Active layers) If & < 67 is a limit of Woodin cardinals and E € E” is
such that crit(E) = & then there is a layer Q of P such that 6¢ = ind” (E).

(d) (Limits of layers) If v < §” is a limit of ordinals of the form 62 where Q
is a layer of P then there is a layer of P such that 6<¢ = v.

(e) If Q is a layer of P with §¢ < 67 and Q' < O(Zd(Q) is such that p(Q') < §<
then Q' is a layer of P with 09 =59,

7. The layers of a hod-like Ises are defined in a way that all non-meek layers
are properly non-meek. There is no deep reason for doing this. The theory
can be developed without this condition, but having more room above §7 is a
convenience.

_|

Definition 2.7.8 (Layers of Ises) Suppose P is an lsa small pre-hod-like Ises. We
define the layers (Pee : € <n A& < vg) of P as follows. As part of the definition,
we will also define a sequence (J¢, teer 1 & < n A& < ve). The sequences are subject
to the following requirements:

The Condition Defining the Sequence (J¢ : £ <7)

RO : The sequence (J¢ : £ < 1) enumerates in increasing order the set consisting
of the following ordinals.
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1. Woodin cardinals of P that are < §7%%.
2. The limits of Woodin cardinals of P that are < §7.

3. Ordinals v with the property that v € dom(E”) and crit(E”(v)) < 07 is a
limit of Woodin cardinals of P.

4. Ordinals v which are limits of ordinals as in clause 3 above.

The Conditions Defining the Sequence (. : £ <)

R1 : Suppose £ < n and d¢ is a Woodin cardinal of P. Then

_ Pw 55
leo = ord((?(ssﬂ,‘ég_l) :

R2: Suppose ¢ < 7 and ¢ is a limit of Woodin cardinals of P. Then iy = J.
R3 : Suppose £ < n and J¢ is neither a Woodin cardinal of P nor a limit of Woodin
cardinals of P. Then

teo = min(dom(EP) — (5 + 1)).
The Conditions Defining the Sequence (i¢; : £ <) for £ as in R3

In R4-R5, suppose £ < n and ¢ is neither a Woodin cardinal of P nor a limit of
Woodin cardinals of P.

R4 : Suppose rud(Pliep) E “0¢ is not a Woodin cardinal”. Then ¢ is the least
ordinal 8 > 1 such that p(P||(8,w)) < d.

R5 : Suppose rud(P|ie ) F “0¢ is a Woodin cardinal”. Then ¢ ; is the largest ordinal
B > teo such that P|S E “0¢ is a Woodin cardinal”.

The Conditions Defining the Sequence (¢ : & < 1) for £ <7
R6 : Suppose d¢ is a Woodin cardinal of P or a limit of Woodin cardinals of P.

Then t¢ is defined as in R1 and R2. If d¢ is a Woodin cardinal then ve = 0. If ¢ is
a limit of Woodin cardinals then v¢ = 1 and

54Examining Definition 2.7.1, one could see that clause 2c leaves open the possibility of P having
Woodin cardinals > 6% .

53Since we do not have a Woodin limit of Woodin cardinals in our P, £ — 1 makes sense. For
&E=0,welet 6_1 =0.
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— P
le1 = Ord(05§+1,7>|55+1)-

R7 : Suppose ¢ is neither a Woodin cardinal of P nor a limit of Woodin cardinals
of P. Then iy is defined as in R3, ¢¢; is defined as in R4-R5, and the sequence
(teer = € € (1,1¢]) enumerates in increasing order the closure of the set

{a < Senr : p(Pll(ew)) < 5).
When & =1

R8 : Suppose P is meek. If §” is a Woodin cardinal then v, = 0 and ¢, = ord(P).
If 6 is a limit of Woodin cardinals then v, = 1, 1,0 = 8, and ¢, ; = ord(P).

R9 : Suppose P is non-meek and dom(E”) — (6, + 1) = @°°. Then ¢, = ord(P)
and v, = 0 (in this case, we have that P = 7, ,[P|d,]).

R10 : Suppose P is non-meek and dom(E”)—(8,+1) # 0. Then ¢, 0 = min(dom(E”)—
(0, + 1)) and one of the following conditions holds:

L. If rud(P||ty0) E “d, is not a Woodin cardinal” then (i, ¢ : € € [1,1,]) enumer-
ates in increasing order the closure of the set

{a < ord(P) : p(P|(c,w)) < 5y}

2. If rud(P||ty0) E “0, is a Woodin cardinal” but P E “§, is not a Woodin
cardinal” then ¢ is the largest ordinal § such that P|8 E “0, is a Woodin
cardinal” and the sequence (1,¢ : £ € [2,1,]) enumerates in increasing order
the closure of the set

{a < ord(P) : p(P[l(a,w)) < oy}

3. If P|E 0, is a Woodin cardinal” then ¢, = ord(P) and v, = 1.
R11: Suppose P is gentle. Then v, = 0 and ¢,9 = 0"

The Definition of (Pee : € <n,& <)
R12 : P&g/ = PH%’&/.

We say Q is a layer of P if for some { <7 and & < v,

°6If ord(P) = 4, then this condition is satisfied.
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Q = Plleee-

We say Q is a proper layer of P if Q is a layer of P and Q # P. We write Q <, P
if and only if Q is a layer of P, and we write Q <j,q P if and only if Q is a proper
layer of P. -

Remark 2.7.9 Suppose P is an active Ises such that
1. if & = ord(P) then Pla is a hod-like Ises,

2. if E = EP(a) then o”l*(crit(E)) = 671* and
3. p(P) > crit(E).

Then P itself is hod-like. It falls under clause 2c of Definition 2.7.1. Notice that «
is enumerated in the d-sequence of P. -

Next we introduce hod-like Ises. These will eventually turn into hod premice. To
do this we need to impose conditions on the layers of Ises, which are just the members
of Y” where P is an lses.

Definition 2.7.10 (Hod-like Ises) Suppose P is a pre-hod-like Ises. We say P is
hod-like if the following conditions hold.

1. {Q: Qs a proper layer of P} = (Y7 — X7).

2. For all layers Q of P such that §< is a limit of Woodin cardinals of P, ord(Q)
is a cardinal of P.

_|

Remark 2.7.11 Perhaps clause 2 of Definition 2.7.10 needs some more explanation.
According to Definition 2.7.8 if £ is such that Q = Q¢ then

ord(Q) = ord((’)gﬂpwf)

which is the longest initial segment of P whose strategy predicate codes a strategy
for Pl = Q|62. A priori there is no reason for ord(Q) to be a cardinal. Clause
3, following [30], makes this demand. It is a fullness condition that we will have to
verify every time we build a hod premouse. -

Remark 2.7 A2 Continuing with the set up of clause 2 of Definition 2.7.10, it follows
that if £ € E7 is such that crit(E) = 09 then E is total. For if E is such that
crit(E) = 62 then
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Ofo 1 ppse I Plind”(E).

But if E is not total we must also have that P|ind” (E) < P|((62)+)7. .

Remark 2.7.13 Each Ises comes with its own Y predicate and the role of Defini-
tion 2.7.8 and Definition 2.7.10 is to impose conditions that the Y predicate of a hod
like Ises must have. One important point is that conditions like R1 and R6 depend on
external factors. For example, in R6 we demand that ¢¢; = ord((’)g +1.P|5 +1) while
there can be many ordinals a € (¢, te1) with the property that P|a is hod-like, yet
none of them determine a layer. When designing P via hod pair constructions (see
Definition 4.3.3), we will need to choose i, and its choice depends on the point-
class I' that we attempt to generate via the hod pair construction. Intuitively, ¢¢ is
defined to be the ordinal height of the stack of all sound ses over P|d¢ + 1 that are
based on P|d¢, have a projectum < d¢ and have an iteration strategy in I'. -

Notation 2.7.14 Suppose P is a hod-like Ises. Let
LP ={0:3Q€Y? - XP(62 =45} U{d"}.
Let A” 4+ 1 be the order type of L”. We let (67 : a < A7) be the increasing
enumeration of L”. Also for ¢ < A7, set
PE)=u{QeY? — X7 : 65 =59

We say w = (n*, ") is a window of P if

1. n is the least n such that §% = o”(n*) and

2. there is a layer Q of P such that §* = §<.

We say w is the top window of P if §% = 7. Given a hod-like Ises P, we set
ml(P) = U(Y?)".

We say that Q is a complete layer of P if Q is a layer of P such that if Q
is non-meek then there is no layer of R of P with the property that Q <j,q R and
Rl = Ob.

If Q is a layer of P of successor type then letting ¢ be such that 62 = (5211,
Q™ =g4ey Q(§) . Thus, Q™ is the longest complete layer that is in an initial segment
of Q. —

Definition 2.7.15 (Germane Ises) Suppose M is an Ises. We say M is germane
if letting o = sup{ord(Q) : @ € YM — XM} the following conditions hold:

5Tml stands for mazximal layer.
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1. f Q e YM — XM then Q is a hod-like Ises®.

2. If Q € YM — XM and Q is meek then for all w3 € [ord(Q),ord(M)),
p(M||(wB,w)) > 69

3. a+1is a cutpoint of M.
4. If M is pre-hod-like then it is hod-like.
5. One of the following conditions holds:

(a) M is pre-hod-like.
(b) M is not pre-hod like and one of the following holds:

i. o =ord(M) and « is a limit of Woodin cardinals of M.

ii. « < ord(M), Ml|la € YM and « is a cardinal of M (see Re-
mark 2.7.16).

If M is a germane Ises then we let

M : 5.a holds
M||a  : otherwise

hl(M) :{

where a = sup{ord(Q) : @ € YM — XM} =

Remark 2.7.16 Continuing with the set up of Definition 2.7.15, suppose M is
germane but not hod-like. Clause 5.b then says that either « is a limit of Woodin

cardinals of M or M||«a is the longest hod-like initial segment of M and, moreover,
it is declared to be a layer of M, -

It is not hard to create examples of germane Ises that are not hod-like. For
example, if P is hod-like and ¥ is its strategy then Y-premie over P will be germane.
This comment is not literally true as such premice can project in ways not allowed
by Definition 2.7.15, but also such premice need to be re-organized into Ises.

Terminology 2.7.17 Suppose P is a hod-like Ises.

%8Recall that if Q € YM — XM then Y2 = {R € YM : ord(R) < ord(Q)}.

5%l stands for “hod-like”.

60See R9 and R10 of Definition 2.7.8. We demand that « be a cardinal of M because otherwise
M would be pre-hod-like and hence, hod-like.
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1. (Successor type) We say P has a successor type if P has a top window
(n,0) and 7 is not a limit of Woodin cardinals of P.

2. (Limit type) We say P has a limit type if either P doesn’t have a top
window or if (7, d) is the top window of P then 7 is a limit of Woodin cardinals

of P.

If M is germane then we say M is of successor type if hl(M) is of successor type
hod-like Ises. Otherwise we say that M is of limit type. We say M is of b-type®! if
M is of limit type and letting o = sup{ord(Q) : @ € YM — XM}« is not a limit
of Woodin cardinals of M%2. -

Next, we isolate the bottom part of b-type germane Ises. For non-meek hod-like
Ises, this is essentially the part of P that is below the largest measurable limit of
cutpoint Woodin cardinals.

Definition 2.7.18 (The bottom part of Ises) Given a limit type hod-like Ises P
we let P® = P if P doesn’t have a top window and otherwise, letting (1, ) be the
top window of P, we let

P = Pl(y)

where “b” stands for “bottom”. We say that P’ is the bottom part of P. It follows
that P’ is a hod-like meek Ises of limit type.
Similarly, if M is germane of b-type then M® = (hl(M))®. =

Definition 2.7.19 Suppose M is germane. We say M is projecting well if letting
k = k(M)5 one of the following clauses holds:

1. M is of successor type and setting § = 6"™) § is Woodin with respect to all
f: 0 — & which are 727 -definable as witnessed by the extender sequence
EMIS,

2. M is of b-type and pjy1(M) > oM’

3. M is of limit type but not of b-type and pgi1(M) > ord(hl(M)).

Otherwise we say that M projects badly. We say M projects precisely if M
projects well and if there is n such that (M, n) projects badly then letting k = k(M),
M' = (M, k + 1) projects badly. =

61«p” stands for bottom, see below.
62This means that M||a is hod-like and is of limit type.
63See Section 2.2.
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Clearly if M projects badly then there is always an initial segment M’ of M such
that ord(M’) = ord(M) and M’ projects precisely.

Remark 2.7.20 We are interested in germane M that project precisely because we
would like to apply stacks that are based on hl(M) to M without changing the stack.

For example, assume hl(M) =4 P and P is a meek hod-like Ises of limit type.
Suppose M projects badly. If now E € EPI5” then U [t(M, E) may have more layers
than Ult(P, E), and P’s strategy doesn’t act on these new layers. On the other
hand if M projects precisely then this is no longer the case as the functions used to
compute 7 (6%) and 77(67) are the same, and they all are in P.

We will use this sort of arguments later, when we need to show that if P is full,
Y is its strategy, M is germane such that hl(M) = P and M is a X-mouse over P
then M doesn’t project badly.

Notice that our comment above concerns only to germane M which are not
themselves hod-like. If M is of b-type and projects across ord(hl(M)) but it does
not project badly then M itself is hod-like.

Summarizing, if M projects precisely and 7T is a stack on hl(M) then we define
1 (T, M) just like we did in Definition 2.4.10. -

Definition 2.7.21 (Almost non-dropping stacks) Suppose M is germane of b-
type and projects precisely. Suppose further that T is a stack on M that is based
on hl(M). We say that 7 is almost non-dropping if one of the following holds:

1. There is o € R” such that 77=® exists and 7>, is above ord(M?).

2. T has a last model and 77 exists.

If 7 is almost non-dropping and the first clause holds then let a(7") witness it. If T
is almost non-dropping then we set

- T T M -7 exists
I —
<) | MP : otherwise

Suppose X is an iteration strategy for M%. We then let

IM,2)={(T,R) : T is according to X, T is based on hl(M), R is the last model
of T and 77 is defined}.
I"(M, %) = {(T,R) : T is according to ¥, T is based on hl(M), R is the last
model of 7 and 77 is defined}.

641t is worth remembering that this entails that -iterates of M have the same indexing scheme

as M.
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_|

Remark 2.7.22 Notice that if 7 is almost non-dropping then it may only have
drops in some image of the top window of P. -

Definition 2.7.23 Suppose P is an Ises and o < Ih(7). We say « is a cutpoint of
T if T>q is a stack (after trivial re-enumeration) on M7, or equivalently, if for every

B+1€e (a,Ih(T))), T(B+1) > q. -
The reader may benefit from reviewing Notation 2.4.4.
Definition 2.7.24 Suppose M is germane Ises and

T = ((Ma)a<777 (Ea)a<n—1> D7 R> (5017 ma)aeRa T)

is a stack on M that is based on P =45 hI(M). We say T is a proper stack if the
following conditions hold:

1. T is semi-smooth®.
2. R={«a: «ais a cutpoint of T}.

3. For all @ € R such that o # max(R), if nc] has a fatal drop then 7%, is a
normal stack.

4. If wB, < ord(M,) then M, ||(wBa, my) is a non-meek hod-like Ises.

5. For all a € R, if M, is of b-type® and ind, < 6™« then letting v be the least
such that

e ind, < ord(M,(7))" and
e ord(M,(v)) is a cutpoint of M,,

if Ma(7) is of successor type and next” (o) € R then 7" exists.

The following lemma summarizes the properties of proper stacks.

65This condition is already built into our definition of stack. See Remark 2.4.7. We are only
making it explicit here.

66See Notation 2.7.17.

67See Notation 2.7.14 for the definition of (3). The definition obviously carries over to germane
Ises.



62 CHAPTER 2. HYBRID J-STRUCTURES

Lemma 2.7.25 Suppose
T = ((MQ)OK?N (Ea)a<n—l> D7 R, (5&7 ma)ozERa T)

is a proper stack on a germane M. Then the following conditions hold.

1. For all a € R, if M, is of b-type and ind, < &M% then letting v be the least
such that

e ind, < ord(M,(v)) and
e ord(M,(v)) is a cutpoint of M,

then the following conditions hold:

(a) nc! is based on M(7).

(b) If My (7) is of successor type and next” (o) € R then 7" exists and nc/
is above ord(M,(y — 1))%.

(c) If Mg(7) is of limit type and next” () € R then 7" exists and nc’ is
above 0Ma(1)"69,

2. For all a € R, if M, is of b-type and ind,, > §Me then
(a) ncT is above dMa™ and
(b) if next” (o) € R then 7" " existsT.
Notation 2.7.26 Suppose
T = (Ma)a<n, (Ea)a<n-1, D, B, (Bas Ma)acr, T)

is a proper stack on a germane M. For a € R, we define Iayerz to be the least
complete™ layer N of M, such that ind” € A'. We also let rnc] =] (nc7, layer )7,
Often, we will represent 7 as

T = ((Ma)a<m (Ea)oz<77715 D, R, (rnca, Iayera)a€R7 (6&7 ma)7 T)

68 This condition follows from the requirement that all cutpoints of 7 are in R. Similarly the last
portion of the next clause.

69Here, e b is defined provided ncz: is on M () which may not be the case. The meaning of
this here and in the sequel is that letting U =/ (nc], M, (7)), 7* is defined.

70This condition follows from clause 2 of Definition 2.7.24.

"I This condition can be deduced from clause 3 of Definition 2.7.24.

"2See Notation 2.7.14.

73See Definition 2.4.9.
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Suppose a € R is such that M, is of b-type. We say « is of limit type if either
ind, > M« or Iayerz is of limit type. Otherwise we say that « is of successor type.

We say « is of bottom type if ind,, < oMe, =

Remark 2.7.27 (Proper-stacks Convention) In this book all stacks on hod-like
Ises are proper stacks. .

2.8 The iteration embedding 77"

Recall our convention regarding stacks (see Remark 2.7.27). In this section, we define
the embedding 77 via an inductive process. The reader may skip this section. The
one important point that will come up later is the following. Suppose a € R7 and
B < Ih(T). Then if Wzg is defined then its domain is (M,]|(wBa, M4))? Which in
general may not be the same as MY,

Assume that P is a limit type hod-like Ises which isn’t meek and suppose T is
an iteration tree on P. Again, we will not be concerned with the particular indexing
scheme that P has. In some cases, regardless of whether 7 has a last model or not,
it is possible to extract an embedding out of the iteration embeddings given by T
that acts on P°. We describe this embedding below. First we define it by assuming
that 7 is a normal iteration tree and then extend the definition to stacks. Recall
that our Ises are lsa-small (see Definition 2.7.4).

Definition 2.8.1 Suppose P is a non-meek hod-like Ises™. Suppose

T = ((Moz>a<777 (EOé)Oé<77_1’ D’ R’ (60“ ma)’ T)

T,b

is a normal iteration tree on P. We define (1,7, : @ < o' <nA(a,a') €T) by

induction maintaining that if 7., # § then

(a) if o € R then WI’S, : M% — M?®, is an elementary embedding, and
(b) if @ € R then 7TZ;’§/ D (Ma|(wWBas ma))? — M?, is an elementary embedding.

The successor case

Suppose 4+ 1 < n and we have defined (Wlﬁ, ra <o <PBA(a,) €T). Let

v =T(B+1). For v < 8+ 1 such that (y,8+ 1) € T, we define W;r”’é’ﬂ as follows.

"In particular, P # PP.
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1. If Wg:’vb, = () then set WIEH = (.

In the next three clauses we assume that 7r0 A 7& () and that ' & R.

2. Suppose crit(Eg) > ord(M?Y,). Then set « ,6l’)+1 71',3-,;)

3. Suppose crit(Fg) < ord(M?,) and §+1 € D. Then WIEH = 0.

4. Suppose crit(Ez) < ord(./\/lg’,) and §+1 ¢ D. Then 7T7B+1 = (W;F’,BH |
MY o WI’;’,.

In the next three clauses we assume that 7TOT Vb, # () and that 7 € R.

5. Suppose crit(Eg) > ord((M.||(wBy, m.))?). Then set 7TwT,Z§+1 WZ;?"

6. Suppose crit(Es) < ord((My||(wBy,m.))") and S+ 1 € D. Then WZ:’;_,'_I = 0.

7. Suppose crit(Epg) < ord((MyH(wﬁy/,mfy)) yand B+ 1 ¢ D. Then 7 6+1 =
( Ty p+1 rMb )o 'w

The limit case

Suppose next that § < n is a limit ordinal and we have defined (W;’Olj, Ta< o <
BA(a,c/) € T). Then we define W,Z—Bb for v € [0, B)7 according to the following cases:

1. If v € [0, B) 7 is such that there is 7/ € [0, )7 with the property that Wz:f, =
then 7TT =0.

2. Suppose v € [0,5)7 is such that for all ' € [0, 8)r, 7'('3—’;), is defined. Then

letting v+ 1 € b be such that T(v +1) =, 7 3—5 = 7rz—+bl 5O, Where Wz:rbl 3

is the direct limit embedding given by the directed system (/\/lb, e, g, v4+1<
§<EN(EE) € ) where c = [0, B)7.

The iteration embedding 77 °

Continuing with the 7 above, we let 77°* be defined according to the following
clauses.
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1. Suppose Ih(7) = v+ 1. Then set 77 = 0., -

In all the clauses below we assume that 1h(7) is a limit ordinal.

2. Suppose there is v < 1h(7) such that mﬁb = () and T, is a normal stack on

M.,. Then set 77" = ().

In all the clauses below we assume that if v < 1h(7) is such that 7>, is a
normal stack on M, then 7{ ’Wb =+ ().

3. Suppose there is v < 1h(7) such that 7>, is a normal stack on M., based on
M?. Then set 77 = 0.

4. Suppose there is v < lh(7) such that 7>, is a normal stack on M., above
ord(M?). Then set 7" = Wg:fyb.

5. Suppose there is a cofinal ¢ C 1h(7) such that {y < 1Ih(7) : 3V € ¢((v,7') €
T)} is a well-founded branch of 7 and for all v <+ with (v,7') € ¢?, 7Tg: ’f +

T.b Tb _ T b
To,- Then set 7”7 =7/ [ P°.

Given (a, /) € T, we say ﬂ;’olj, is defined or exists if Wlﬁ, # (). Similarly we say
77t is defined or exists if 77° # (). -

Remark 2.8.2 Suppose P is a non-meek hod-like Ises and 7 is a stack on P. For
all @ < o such that (o, ') € T, if ﬂlﬁ, exists then it is essentially the iteration

embedding. However, given how 7TZ;O/ is defined, it is possible that 7TZ;£/ exists yet

WZQ, is undefined.
In general, we have that W(Z’j, is defined if and only if for all v such that v+ 1 €
[a, ') N DT, crit(E,) > ord(M?). .

Notice that in Definition 2.8.1 we are not assuming that the stack has a last
model. The fragment of the eventual iteration embedding 77 restricted to P’ can
be seen without actually having the last branch.

2.9 Canonical singularizing sequence

The following notion will be used throughout this paper.
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Definition 2.9.1 (Canonical singularizing sequences) Suppose P is a germane
Ises of b-type that projects precisely and 7 is an almost non-dropping stack on P.
Let Q = 7#7*(P%). Then Q is a hod-like Ises. If w = (1, §) is a window of Q then we
let

s(T,w) ={a:3a €n<*If € P(a=7a""f)(a))}NJ
_|

The following is an easy lemma, which is a consequence of our assumption that
all hod-like Ises are Isa small. It traces back to the fact that if P is a hod-like Ises
and E € E” is an extender such that crit(E) = §< for some layer Q of P and
v € [crit(E),ind” (E)] then Ult(P, E) E “v is not a Woodin cardinal”.

The following definition will be used in the next few lemmas.

Definition 2.9.2 Suppose 7T is an almost non-dropping stack on (an lsa small)
germane, b-type Ises P that projects precisely, Ih(7) = a + 1 and Q = =7 *(P?)™.
Suppose ¢ is a cardinal of Q. Let ¢ < a be the least such that 77<:+1? is defined,
L+ 1 € [0,a]r and for some & € MP,,, m,114(&) = . We say & is T-critical if
¢ = crit(ET). =

Given AC X xY and x € X, weset A, = {y: (z,y) € A}.

Lemma 2.9.3 Suppose 7 is an almost non-dropping stack on (an lsa small) ger-
mane, b-type Ises P that projects precisely, Ih(7) = a+1 and Q = 77 *(P"). Suppose
¢ is T-critical. Then there is a finite sequence (7;,7;,& : ¢ < n+ 1) such that

1. (v :4 < n) is increasing and for each i < n, ; € [0, al,
2. Y41 = Ypgq = @ and §uiq =&,

3. for every i <n, v =T (v +1),

4. & is not T<,,-critical,

5. for every i < n, 7<% is defined,

6. for every i <n, & = crit(E,),

/
i

>We drop T from our notation.
"6This embedding may not be defined, but because both 77-* and 77<+1:* are defined, Titi,a |
M?,, is meaningful.
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7. for every i such that i +1 <n, &1 = Ty 414, (),

8 &= 7T~/$L+1,oc(§n)a

9. for every v < n,

M w
p<§i+1) N M’Z';H - {W;IZ;JFL»WH (g)<t) ‘g€ M»ZE+1|<§Z+) AT € [£i+1]< }

10. for every i < n + 1, for every (mg,my,...,m;) € N<“ and for every A € MZ—
such that

A - [fi]mo X [gl]ml X ... X [gl]mk
there is B € M7 (faL)M% and ¢ € [§;]<* such that

A=al (B):N([&]™ x [&]™ x .. x [&]™).
Proof. We first get a finite sequence satisfying clauses 1-8, and then show that any
such sequence also satisfies clauses 9 and 10. Because £ is T -critical, we have some
(1,&") satisfying the clauses of Definition 2.9.2. Let v = T (¢ + 1). The claim now
can be proven by induction. Assuming our claim is true for 7<, we have two cases.
Suppose first that £ is not T<,-critical. Set then n =1, vg =+, 7y =t and § = §'.
Otherwise let (vi,77,& : ¢ < m) witness the claim for the pair (¢, 7<,). Then set
n=m=+2, Yms1 =7, &m1 = & and 7, = ¢. This finishes the proof that there is
a finite sequence satisfying clauses 1-8.

We now want to show that any sequence that satisfies clauses 1-8 also satisfies
clauses 9 and 10. Let then (y;,7/,& : ¢ < n+ 1) be a sequence satisfying clauses 1-8.

T

M
P M7, [(E5) i+ are contained in

: T
9 is easy to show as the generators of T Y4

s+ Lvit
it1 = 7T32+1’A{i+1(€i)'

We now show clause 10. Fix ¢ +1 < n + 1. Without loss of generality we can
assume that clause 10 holds for all 7 <. We then want to prove it for 2 + 1. Below
we drop T from superscripts. Fix (mg, m1,...,m;) € N and A € M., such that
A C [&Gra]™ X [Gaa]™ XX [Gia] ™

We want to find a B € M. |(&)Mo and ¢ € [§;11]< such that

A =T (B)e N ([ ]™ X [Sia]™ X oo X [€i4a] ™).
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It follows from clause (9) that for some u € [£;11]<%, A = 7wy 115, (9)(u). Let p = |ul.
Notice that

g+ (&7 = p([&]™ x [&]™ x .. x [&]™).

Let then G C [§]P x [&]™ x [&]™ x ... x [&]™ be given by

(z,y) € G <y € g(x).
We thus have that
(1) for all (z,y) € [&G] x [G]™ X [&]™ x .. x [&G]™,

y€g(x) < (v,y) € 7T%W{+1(G)7

implying that
(2) for all x € [§]?,

9() = oy 111 (G D& X [E]™ X X [§] ™.

Because clause 10 holds for i, we get some H € M., |({)Mwo and s € [§]< such
that

G = oo (H)s NG X [G]™0 > [6]™ > [&] ™.
Combining the above with (2) we get that
(3) for all x € [§]?,

g(w) = (WWO,WHI(H)S)m N &)™ X [&]™ x .o x [&]™.

Applying 7,41, to the equation above and recalling that A = 7/, ,,,,(g)(u) for
some u € [§11], we get that

A= (T s (H) s )u N ([Sina]™ X [Gign]™ X oo X [§ia] ™)

Because both s,u € [§;41]<“, we now can find some B and ¢ such that

A =Ty i (B)e O ([ia]™ X [Gaa]™ X oo X [§i4a]™)

with t € [€i+1]<w‘
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Lemma 2.9.4 Suppose 7T is an almost non-dropping stack on (an Isa small) ger-
mane, b-type Ises P that projects precisely and @ = 77*(P?). Suppose € is a limit
of Woodin cardinals of Q@ and A € Q. Then the following holds.

1. Suppose A € p(€) and € is not T-critical. Then A = 77*(B); where B € P°
and t € [£]<.

2. Suppose for some (mg, mq, ..., my) € N,
ACIE™ X [ % . x [
and ¢ is T-critical. Then there is B € P® and t € [¢]<* such that
A= aTHB), 0 (€7 x [ x . x [6]7)

Proof. We drop T from superscripts. Let « be the least such that @ = M?. Notice
that because 77 is defined, 7o, | P’ makes sense and is equal to 77*. Therefore,
we will simply use 7,/ as if it is defined on all of M,. To prove our claim, we may
just as well assume, without losing generality, that o + 1 = 1h(7).

Towards a contradiction suppose our claim is false. Without loss of generality we
may assume that

(*) for every ¢ such that ¢ + 1 < 1h(7) and n’=vt is defined, for every v which
is a limit of Woodin cardinals of @' =4, 7’=-*(P?), and for every C € Q' the
following holds:

1. Suppose C € p(v) and v is a not T-critical. Then C' = 7'<*(D); where
D e Plandte [v]<v.

2. Suppose (ng,nq, ...,nx) € N<“ is such that
C Cv]™ x [v™ x ... x [v]™.
and v is T-critical. Then there is D € P’ and t € [£]<¥ such that

O = 7T<b(D), N ([p]™ % [p]™ x ... x [V]™).
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A direct limit argument then shows that @ = 4 1. Let k = crit(Ej3) and let
v = T(a). Notice that if £ < & then our claim follows from (*)77. Thus, we assume
that & > k.

Assume first that ¢ <indg.

Because ¢ is a limit of Woodin cardinals of Q and there are no Woodin cardinals of
Q in the interval (k,inds]™, we have that in fact & = k. Because r = crit(Ejs), we
have that ¢ is T-critical. Applying Lemma 2.9.3 to (§,7) we get a finite sequence
(Vi 7, & - 1 < m) satisfying the clauses of Lemma 2.9.3. In particular, & = &,41,
&n =K, Yo =1, 7, = B and v, = . Clause 10 of Lemma 2.9.3 implies that there
is B € M.,|(&5)Mo and s € [¢]<* such that

(1) A = my.0(B')s N ([E]70 X [E]™ e X [E]™).

Because & is not T<.,-critical and because & is a limit of Woodin cardinals of M.,
applying (*) to (&, T<,) we get some B” € P and s’ € [§]<* such that

(2) M40 (B")s = B'.
Putting (1) and (2) together and rearranging B” we get some B € P’ and t € [£]<¥
such that

A=aTHB)e N ([g]™ x [E]™ x ... x [¢]™).

Assume now that ¢ > indg.

Let A be the least such that m,,(\) > & Because £ is a limit of Woodin cardi-
nals of Q, we have that

(1) M, E “Xis a limit of Woodin cardinals”.

We now have some g € M., g : kK — X such that m,,(9)(s) = A where s €
inds < C €]

Suppose first that A is not 7-critical. Since A is not T -critical, applying (*) to
(A, 7<), we get some f € P’ and some ¢ € [A]* such that g = 7, (f)(¢). Therefore,
A = moo(f)(u)(s) where u = m,,(t). But because u € [£]<¥, we can find some

T<~,b T,b

"TNotice that we must have that 7 is defined as otherwise 7’ ° cannot be defined.

"8This is consequence of the fact that P is lsa small.
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f* € Pb and some u* € [(]<* such that A = 7o ,(f*)(u*). Rearranging f* we get
some B € P° and ¢ € [(]<% such that A = 7 o(B);.

Finally, suppose that X is T-critical. In this case, A is a regular cardinal of M,
and so we have two cases. Either A = k or 1, ,(\) = &£. In both cases, we have some
B" € M,|(A")M> such that A =, ,(B'); for t € [¢]<~.

We now have two cases. Suppose first that 7, ,(A\) = £. Applying (*) to (), 7<)
we get some B” € PP and some ¢’ € [A\]<* such that

B’ = 7, (B")y N ([N x [A]™0 x [A]™ x ... x [A]™*).
and so rearranging B” we get some B € P? and s € [£]<“ such that
A =moa(B)s N ([§]™ x [§]™ x .. x [§]™*).

Suppose next that 7, ,(A) > . As X is a regular cardinal of M, this is only
possible if A = k. Since & is a T-critical point we have that there is some B” € P?
and some t' € [k]<¥

B’ = 7o (B")e N ([ x [£]™0 x []™ X ... x [k]™).
Therefore, we get that
A= (mo.a(B")e N ([y,a(k)] % [0 (K] X oo X [0 (K)]™)e.
Therefore, for some B” € P’ and ¢” € [£]<¥,
A = moo(B")pr O ([€]™M0 > [E]™ x < [€]™F).

Since ¢ € (indg, 7,4 (k)), we have that £ = 7, ,(g)(u) for some u € [£]<*. Therefore,
rearranging B” we get some B € P and s € [£]<* such that A = 7y, (B)s.
O

Lemma 2.9.5 Suppose P is a germane, b-type Ises that projects precisely and T
is an almost non-dropping stack on P. Let Q@ = 77*(P"). Then for any window
w = (n,9) of Q (see Notation 2.7.14) such that Q F “0 is a Woodin cardinal”,

sup(s(7T,w)) = 9.

Proof. We drop T from superscripts. Let a* be the least such that Q@ = M°?..
To prove our claim, we may just as well assume, without losing generality, that

o +1=1n(7).
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Suppose to the contrary that w = (1,9) is a window of Q such that Q F “0 is
a Woodin cardinal” but sup(s(7,w)) < . Let then « be the least o/ such that
§ < 6Ma)" and Q|6 = My|6. As Toor | 0+ 1 =14d™ we can now assume without
loss of generality that a = o*.

We can also assume, without loss of generality, that

(*) for any B € [0,a)7, 0 & rge(ms,q)%.
This is because for any such f, letting ¢’ be such that 7s,(0’) = 0, we must have
that sup(mg .[0']) = 6%

Because ¢ has no pre-image in any Mg, it must be the case that o = 5+ 1 for
some . Let v = T (B8 + 1). We thus have that M, = Ult(M,, E3)* and that

(1) 0 & rge(m, ) and hence, § > crit(Es)®.
Furthermore, notice that
(2) o> indg
as otherwise in the case that 0 = indg we have that 0 is a successor cardinal in M,
and hence not a Woodin cardinal, or in the case that § € (crit(£p),indg) we have
that J is not a Woodin cardinal in M, as it is not a Woodin cardinal in Ult(Mpg, Eg)
and M, N p(d) = Ult(Mg, Esz) N p(9).

Notice next that (2), and more relevantly the argument used to establish (2), also
implies that
(3) n > iIldB.
It then follows that if £ is least such that 7, ,(§) > 7 then

§ = sup({m, o (f)(5) : f € M, f:crit(Eg)ll — ¢ and s € [inds]<“} N )

" Notice that while Ta,q+ May not exist, mq o« [ Mg must be defined, and so the use of 74 o+ is
justified.

80Notice that while 74, may not be defined, it nevertheless is defined on MY, and so here and
in the sequel we will ignore the fact that m3 o may not be defined.

81This is a consequence of the fact that because we are only considering lsa small hod-like Ises,
&' is not a critical point of any E € EM#.

82Notice that Ejg cannot cause a drop as we are assuming that 7T exists.

83§ = crit(Ep) is not possible because of lsa smallness.
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and therefore, it follows from (3) that
(4) 6 = sup({m,a(f)(s) : f € M., f:crit(Ep)ll — € and s € [n]<} N 6).

Notice that it follows from our choice of £ that M, F “¢ is a cutpoint limit of
Woodin cardinals”. (4) and Lemma 2.9.4 now give a contradiction®!, as we get that
sup(s(7T,w)) = 9.

Below we calculate the details in the case £ is T-critical. In this case, if f € M,
is such that f : crit(Epg)l*l — ¢ then letting F be the graph of f, we can find G € P°
and t € [¢]<¥ such that F' = 7, (G),; N [£]l¥1 x [¢]. But then for every u € [inds]<¥,
if 7, o(f)(u) is defined then it is the unique = such that

(5,2) € M,a(G)e N [my,a ()] X [my.a(8)]-

Setting then g(v) = G, we get that for every u € [indg]<¥, if 7, o(f)(u) is defined
then it is equal to o (g)(t)(u). It then follows that there is h € PP such that
for every u € [indg]<* there is v’ € [indg]<* such that if 7, ,(f)(u) is defined then
Ty a(f) (1) = moa(h) (). It then follows from (4) that sup(s(7,w)) = ¢. O

2.10 The un-dropping game

Recall our convention regarding proper stacks (see Remark 2.7.27). Before we pro-
ceed, we explain the meaning of the un-dropping game. Suppose we are comparing
the strategies of two lsa type hod-like Ises P and Q. Let X be the strategy of P and
A be the strategy of Q. Let us assume that the pointclasses generated by (P, ¥) and
(Q,A) are the same. We are then searching for R which is an iterate of P and Q
and Xz = Ag. In this comparison we might be forced to consider iteration trees 7
and U with last models M and A such that 77 and 7 don’t exist and for some
K <poa M and K <p0q N, X # Ax. We can continue the comparison by comparing
(M, 3 0) and (N, Ay) and producing (S, ®) which is a common tail of (M, X )
and (N, Ay). However, (S, ®) cannot be thought of as a last model of a successful
comparison of (P, %) and (Q, A) simply because 77 and 7 do not exist. What we
need to do is to compare (M, X)) and (N, Ay) and then somehow get back to P
and Q. This is what the un-dropping game achieves.

Definition 2.10.1 (The main drops of a stack, Figure 2.10.1) Suppose P is
a germane, b-type Ises that projects precisely and

84We apply Lemma 2.9.4 to functions f used in (4).



74 CHAPTER 2. HYBRID J-STRUCTURES

P=M, - R
ka T

Figure 2.10.1: A stack with neat drops.

T - ((Ma)a<m (Ea)a<n—l7 D7 R: (rnca7 Iayera)aERa (6047 ma)a T)

is a (proper) stack on P based on hl(P).
We say that v € R is a main drop if

1. « is of limit type and of bottom type,
2. 1h(7,) is a successor ordinal,

3. 7’ is undefined (see Definition 2.7.24),
4. w7t is defined.

We say T has a main drop if there is « € R which is a main drop.
Suppose T has main drops and let (a; : i € [1,k]) C R be the sequence of main
drops of 7 enumerated in increasing order. We then set

1. ap=0and agq =1(T) -1,

2. fori <k+1, R; = M,, and for i <k, Q; = layer, *,
3. for i <k, Ti = Tiay,ais1]

4. Try1 and Qi are undefined,

5 md" = (a;, R, T;, Qi i < k+1).

We then say that md” = (q;, Ry, T;, Qi : i < k + 1) is the md-sequence of T .

85See Notation 2.7.26.
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Next we define the un-dropping extender of a stack. This is essentially the ex-
tender given by dovetailing the embeddings 77+*. The un-dropping extender allows
us to get back to the original model, and hence it “undrops” the main drops of 7.
First notice that the following is true.

Definition 2.10.2 Suppose
e P is a germane, b-type Ises that projects precisely and
e 7 is a stack on P such that 7 has a last model and it is based on hl(P).
Let v 4+ 1 =1h(7). We say T has a one point extension if letting
T = (Ma)av; (Ea)a<v, D, R, T),
and
T = (Ma)asrs (Ba)acv; D, RU{V},T),

is a proper stack (or according to our convention Remark 2.7.27 just a stack)%.

The following can now be demonstrated by examining Definition 2.7.24 and the
definition of 77

Lemma 2.10.3 Suppose
e P is a germane, b-type Ises that projects precisely and

e 7T is a stack on P that has a one point extension and 77 is undefined.

Then 7 has a main drop and letting md” = (a;, R, T;, Qi : i < k + 1) be the
md-sequence of T, w7k exists.

We make the following convention.

Terminology 2.10.4 Suppose j : M — N is a map between two transitive sets or
classes M and N, and suppose (k, ) is such that j(k) > Aand j | kK = 1 fd. We
then say that F is the (k, A\)-extender derived from j if

E={(a,A):Acpo(xl"YNnMAaec[N<AaejA))

86See Definition 2.7.24.
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We say FE is a short extender if crit(j) = s and otherwise we say E is long. All
extenders used to build extender sequences that we consider in this book are short
extenders. In particular, when discussing fully backgrounded constructions (e.g.
Definition 4.3.3) we tacitly assume that all extenders are short. However, we may
from time to time derive an extender from a given embedding and not specify whether
it is short or long. For example, see the definition of Eg below. .

Definition 2.10.5 (The un-dropping extender of a proper stack) Suppose
e P is a germane, b-type Ises that projects precisely and
e 7 isastack on P such that 7 is based on hl(P) and T has a one point extension.

When 77 is undefined.

Let md” = (a;,Ri, T, Qi : i < k + 1) be the md-sequence of 7. For i < k + 1,
set k; = 0% and for i < k, let

ol (p(ri)® = (p(kip))

be given by

ol (A) = 7T (A) N kg

7

T _ 4T T T
Set 0/ =0 ool_;---00;.

Suppose Q <poq RE .1 is meek. We then let Eg be the (kg, 9)-extender derived
from 7. More precisely,

El ={(a, A) : a is a finite subset of §2, A € (p([ro]"))”, and a € 67 (A)}.

When 77 is defined.

Suppose Q Jpoq 7 P(PP) is a complete layer®” of 77*(P?). We then let E be
the (67", 89)-extender derived from 7. More precisely,

EL ={(a, A) : a is a finite subset of §2, A € (p([07']%))P, and a € 77*(A)}.
We then say that Eg is the Q-un-dropping extender of 7. We also say that E is
the main un-dropping extender of T if £ = Egb orif £ = ETTTvb(Pb)' =

k+1

87See Notation 2.7.14.
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When comparing hod premice we need to consider iterations in which at certain
stages [ is allowed to use the un-dropping extender of the resulting stack. The game
producing such iterations is defined below.

Definition 2.10.6 (The un-dropping iteration game) Suppose P is a germane,
b-type Ises that projects precisely. The un-dropping iteration game on P, G*(P, k, A, @),
is an iteration game satisfying the following conditions:

1. In G*(P, k, A\, @), player I and II collaborate to produce a sequence
b= <M577—67Q67EB : B < 7)
such that

(a) v <k,
(b) My =P,
c) for all B < ~, T3 is a stack on My (and is produced via the rules of
B B
g(M,By)‘aa)gg))

(d) for each 3 such that 3+1 < 1, the iteration embedding 7§ 5 : Mo — M
is defined,

(e) for each 8 such that 8+ 1 < 7, either

i. Ejsis the Q- un-dropping extender of T3 and Mgy = Ult(Mg, Ej),
or
ii. Bg=Qp =10, n’¢ exists and Mg, is the last model of T,

(f) for a limit ordinal 8 < 7, Mg is the direct limit of (M, 7. : § < ( < j)
where 7{ . : Mg — M is the iteration embedding,

(g) player I is the player that chooses extenders while playing G(Mg, A, ) to
produce 7,

(h) player I is the player that chooses to stop the run of G(Mg, A, &) by either
playing the Qg-un-dropping extender Eg or by letting Mgy, be the last
model of T (in which case 77% must be defined),

(i) player II chooses branches while playing G(Mg, A, a).

2. Player II loses a run p of G“(P, K, A, a) if one of the models appearing in p is
ill-founded.

88This is the game defined in [60, Chapter 4].
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We say X is a (k, A, a)-strategy for P if it is a strategy for Il in G*(P, k, A, &) such
that any run of G“(P, k, A, «) in which player II plays according to ¥ is not a loss
for II.

We say p = (Mg, Tz, Eg : B < ) is a generalized stack on P if it is produced
by a run of G“(P, k, A\, ) and p is not a loss for I1. Since Ih(Ez) = §9# there is no
ambiguity in omitting Qgs. -

Remark 2.10.7 Suppose P is a germane, b-type Ises that projects precisely and X
is a (k, A, a)-strategy-strategy. Suppose Q' is a X-iterate of P via p = (Mg, Tz, Ep :
B < )% such that 7P° is defined (see Definition 2.10.13) and either @ = Q' or
Q € Y9 is such that Q° = (Q')’. Then Yg,, is the (x', \, a)-strategy of Q given by
Yo,(q) =X(p"q). Here, v+ v’ = k.

Suppose next that Q' is a Y-iterate of P via p = (Mg, T35, Ez : B < ) and
Q < @' is such that at least one of the following holds:

1. 7Pt doesn’t exist?.

2. PP exists and Q < wPb(PP).

Then g, is defined like in the previous case but only for stacks produced by
G(9O, A\ ). -

Just like with ordinary strategies, it also possible to pullback (k, A, «)-strategies.
The proof of the fallowing theorem is just like the proof of the same theorem for
ordinary strategies.

Theorem 2.10.8 Suppose P and Q are germane, b-type lses which project precisely,
o: Q — P is a weak embedding® and X is a (k,\,a)-strategy. Then Q has a
(K, \, a)-iteration strategy, A, with the following property. For all generalized stack
q=(Qs,Up, Fs: 5 <) on Q, q is according to A if and only if there is a generalized
stackp = (Ps, T, Eg : <) onP and sequences (g : f <) and (15, : f < yAL <
1h(Up)) such that the following clauses hold:

1. 09 =0 and for all B <y, o : Qs — Pp is a weak embedding.

2. For all B < v, Tg = opls, i.e., Tz is obtained from Us via the og-copying
construction (see [00, Chapter 4.1]).

89Thus, Q is the last model of p.
90This means that if 3 + 1 = + then 77# is undefined.
9In the sense of [3, Fact 2.13]. See the paragraph after [3, Fact 2.13].



2.10.

THE UN-DROPPING GAME 79

For all B <7, (18, : ¢t < 1h(Ups)) is the sequence of copy maps produced during
the construction of Ts.

For each 8 < vy, Fj3 is the undropping extender of Us if and only if Eg is the
undropping extender of Tg.

For each B < 7y, Fs =0 and Qg is the last model of Ug if and only if Eg =0
and Qg 1s the last model of Up.

For each B such that B+ 1 < v and Fjs is the undropping extender of Usg,
letting v = 1h(Up), for all a € 1h(F3)<* and A € Mg, (a,A) € Fz if and only

if (t5.(a),05(A)) € Ep.

For each 8 such that B+1 < 7 and Fjz is the undropping extender of Ug, letting
Vv = lh(UQ), 0341 - Ult(Qg,Fg) — Ult(’Pg,Eﬁ) 15 such that 0'/3+1([a,f]pﬂ) =
los.0(a),05(f)] iz,

For each 8 such that B+1 < 7 and Fjz is the undropping extender of Ug, letting
v=1hUs), 0p11 = 0p,.

Notation 2.10.9 Suppose T = (M, To, Eo 1 a < 7) is a generalized stack.

1.

2.

For o < v and o/ < 1h(75), we let M7, = M.

For a < v and ¢y < t; < 1h(7g) such that o € [0,¢1)7, 7% : M7, — MT

Lo,l1 a,lo Ll
is the iteration embedding 7TL70%L1 provided it is defined.

. Suppose next that ap < ay <y and ¢ < 1h(7,,). We then let 77 @ My, —

@Q,01

T

) = Maii O Moy q, given that ma; %

M., be the iteration embedding and 720 (a1
is defined.

. We let 7" be the un-dropping extension of 7. More precisely, T"¢ is

defined assuming 7 = 3 + 1 and T3 has a one point extension®?, in which case

T“¢ is obtained by letting Es be the un-dropping extender of Tz, Mgy =
Ult(Mg, Eg) and Tg41 = 0.

. We can also define Té‘e assuming @ < R’ where R is the last model of Ts.

Here, we let E3 be the Q-un-dropping extender of 7.

92See Definition 2.10.2.
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6. Again assuming lh(7) = 5+ 1 and 7 has a one point extension, letting R
the last model of T3 and Q < R be a complete layer of R, we can define the
Q-un-dropping extender of 7 by setting:

El ={(a,A):a e [0 NA€ p(d™)NP Aa € a”(n]4(A))},
where 0¥ is defined in Definition 2.10.5. We then set

T _ T T
o —(TbO’/TOﬁ.

Alternatively, EJ is the (67", 89)-extender derived from 77", We say E7 is
the un-dropping extender of 7 if T is the Rb-un-dropping extender of 7.

7. As ordinary stacks are instances of generalized stacks, 7"¢ and 73° can also be
used for ordinary stacks.

Often, when 7 is clear from the context, we will omit it from our notation. .

The next definition introduces self-cohering iteration strategies. The idea is as
follows. Suppose P is a non-meek hod-like Ises and suppose 7 = (M, Ta, Fo : a0 < 1)
is a generalized stack on P according to some iteration strategy ». Let R be the
last model of 75. Then R’ < MY. But it is not clear that Yrs 7 = YRb T (o) -
Self-cohering strategies have this property. We will use this property in our diamond
comparison argument (see Definition 4.14).

Definition 2.10.10 Suppose T is a stack and R = M for some o < 1h(7). We
then say that R is a node of 7 and write T<g for T<o. Similarly if R' = M7 for
B > « then we can define T_g, Trr’ and T>g. Similar notation can be introduced
for generalized stacks in the obvious way. -

Definition 2.10.11 Suppose (P, ¥) is a a hod-like Ises pair (see Definition 2.10.12).
We say that ¥ is self-cohering if whenever

o T = (Mg, To, Fo: @ <n)is a generalized stack according to X,
® Qp,q <1,
o & < 1h(7,,) and & < 1h(7,,),

Ta Ta
® R <poa M¢)® =des So and R pog M¢" =gep S,
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— 93
ER7TSSO - 2R7TS51

where the equality is between the (wy,w;) portions of both strategies. .

Self-cohering is a desired property and we will have to establish that our con-
structions produce strategies that are self-cohering. However, it is more convenient
not to make it part of our definitions.

Definition 2.10.12 (Hod-like Ises pair) We say (P,X) is a hod-like Ises pair
(with an indexing scheme ¢) if

1. P is a hod-like Ises (with an indexing scheme ¢),

2. if P is non-meek then X is a (k, A, v)-strategy,

3. if P is meek or gentle then X is a (\, v)-strategy,

4. if Q is a Y-iterate of P via T and R Jpoq Q then X7 C Sp 794

We say (P, Y) is a simple hod-like Ises pair if P is a hod-like Ises , 3 is a (A, v)-
iteration strategy and clause 4 above holds.
In the context of AD™, unless otherwise specified, the strategy of a hod-like Ises
pair or a simple hod-like Ises pair is an (wy,ws,w;)-strategy or an (wy,w;)-strategy.
_|

Finally we finish this section by stating the version of Lemma 2.9.5 for generalized
stacks. Its proof is just like the proof of Lemma 2.9.5. First we generalize 77°* and
Definition 2.9.1 to generalized stacks.

Definition 2.10.13 (Almost non-dropping generalized stacks) Suppose M is
germane of b-type and projects precisely. Suppose further that

T: (Ma77?x7Eoz:a/<’7)

is a generalized stack on M that is based on hl(M). We say that 7 is almost
non-dropping if either 7 is a limit ordinal or ¥ = o + 1 and 77« exists. Assuming
T is almost non-dropping we set

b nl .~y is a limit ordinal and c is the unique branch of T
TP =
wlebonl I M o otherwise

93See Definition 2.6.3.
94This clause is asserting that the internal strategy of R agrees with $x 7.
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Suppose ¥ is a (k, A, a)-iteration strategy for M. We then let

IM,E)={(T,R) : T is according to X, T is based on hl(M), R is the last model
of T and 77 is defined}.
I"(M,X) = {(T,R) : T is according to X, T is based on hl(M), R is the last
model of 7 and 77 is defined}
I (M, %) = {(T,R) : T is according to 3, T is based on hl(M), T has a one
point extension’ and R is the last model of 7}
B(M,%) ={(T,R) : there is (T,R’) € I°?® and R is a layer of R'}.

_|

We remark that we will use 1°7¢(M, ¥) and B¢(M, ¥) even when ¥ is an iter-
ation strategy acting on stacks.

Definition 2.10.14 (Canonical singularizing sequences) Suppose P is a ger-

mane lses of b-type that projects precisely and 7 is an almost non-dropping gener-
alized stack on P. Let Q = 77*(P?). Then Q is a hod-like Ises. If w = (n,6) is a
window of Q then we let

s(T,w)={a:3a€n<*3If € P(a=7"°f)(a))} N6

Lemma 2.10.15 Suppose P is germane, b-type Ises that projects precisely and
T=WMau Ta, Bt <)

is a generalized stack P such that 77 exists. Let Q@ = 77 *(P’). Then for any
window w = (1, 9) of Q (see Notation 2.7.14) such that Q F “4 is a Woodin cardinal”,

sup(s(7T,w)) = 0.

95Tt is worth remembering that this entails that Y-iterates of M have the same indexing scheme
as M.

96See Definition 2.10.2. Here one point extension of a generalized stack T = (M, To, Eq : @ < 1)
is 7 unless 7 = B+ 1, in which case we let TP = (Ma, Ta, Ea : o < )7 (Mg, T5™).



Chapter 3

Short tree strategy mice

The main purpose of this chapter is to isolate the definition of short tree strategy
mice. As was mentioned many times before, the main problem with defining this
concept is the fact that it is possible that maximal iteration trees (which should not
have branches indexed in the strategy predicate) may core down to short iteration
trees (which must have branches indexed in the strategy predicate), thus causing
indexing issues. To solve this issue we will design an authentication procedure which
will carefully choose iteration trees and index their branches. Thus, if some iteration
tree doesn’t have a branch indexed in the strategy predicate then it is because the au-
thentication procedure hasn’t yet found an authenticated branch, and therefore, such
iteration trees cannot core down to an iteration tree whose branch is authenticated.

The following is a rough roadmap of the chapter. Section 3.1 introduces the short
tree component of an iteration strategy, while Section 3.2 introduces the short tree
strategy as an abstract object. This is an important step as the strategy predicate of
a short tree strategy mouse codes a short tree strategy in the sense of Definition 3.2.4.
The next important step is the isolation of two different kinds of iterations, those that
are universally short (see Definition 3.3.2), i.e. short with respect to any strategy, and
those that are ambiguous. As there is no ambiguity involved in determining whether
a universally short iteration trees are short or not and moreover, since universal
shortness is preserved under Mostowski collapses, we will simply add the branches
of such iterations to the strategy predicate without authenticating them first. The
branches of ambiguous iterations will be authenticated before being added to the
strategy predicate.

A key tool in the authentication procedure is the fully backgrounded construc-
tions that produce iterates of hod like Ises (see Definition 3.5.1). Such constructions
are used to find a branch of an iteration tree with the property that the branch

83
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model itself iterates to the same construction. Definition 3.6.4 and Definition 3.8.7
introduce the particular ways branches will be indexed. Our authentication proce-
dure appears as Definition 3.7.3, and Definition 3.8.9 defines indexing scheme. Then
Definition 3.8.17 introduces the short tree strategy mice and Remark 3.8.20 explains
exactly how branches get indexed. Definition 3.10.2 finally introduces the concept
of a hod premouse.

Remark 3.0.1 All the notions introduced in this chapter can be routinely carried
over to germane lIses that project precisely. Thus, when discussing germane lIses, we
will freely use the language developed in the sections of this chapter. .

3.1 The short tree component of a strategy

Suppose (P, X)) is a hod-like Ises pair or a simple hod-like Ises pair such that P is of Isa
type (see Definition 2.10.12). Since the particular indexing scheme will not matter
for what follows, we suppress the indexing scheme that the pair (P, ) has. The next
definition isolates the short tree component of 3 denoted by X5, Let k = 67" and
§ = 67. Recall that all our stacks are proper stacks (see Remark 2.7.27). The next
few concepts will be introduced for generalized stacks, and as stacks are instances of
generalized stacks, they can be used in connection with stacks.

Remark 3.1.1 The short tree component of 3 is a strategy that acts on Px'. Thus,
the short tree component does not in general produce stacks that can be applied
to P without dropping in degree. Such dropping can happen, for example, when
prp)(P) <07, .

Definition 3.1.2 Suppose (P, Y) is a hod-like Ises pair or a simple hod-like Ises pair
such that P is of Isa type. Suppose T = (Mp,Ts, Ez : B < 7) is a generalized
stack on P, according to Ye2 We say T is N-short if 7 € dom(Z.,) and letting
b = Yex(T) one of the following conditions holds:

1. 7] is undefined.
2. 7 is a limit ordinal.
3. 7y is a successor ordinal and 1h(7,_1) is a limit ordinal.

4. v is a successor ordinal, 1h(7,_;) is a successor ordinal and letting

ISee Definition 2.7.3.
2See Definition 2.7.3.
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a = max(R7-1),

] (8) > 6(T=a)-
We then say that 7 is Y-maximal if it is not X-short. -

Remark 3.1.3 Recall that according to our convention Remark 2.7.27, if T is a
stack and « is a cutpoint of 7 then o € R7. Hence, if for some a < 1h(T), T4 is
Y-maximal then a € R7. -

Notice that if 7 is Y-short then it does not follow that initial segments of T
are also Y-short. If 7 is a generalized stack or just a stack then we let 7~ be T
without its last model if it exists and 7T otherwise. The next definitions describe
exactly when a stack is according to the short tree strategy component of 3. Defini-
tion 3.1.6 introduces the domain of Y% restricted to ordinary indexable stacks and
Definition 3.1.7 introduces the domain of %%,

Definition 3.1.4 Suppose 7 is a normal iteration tree of limit length. We then let
m*(T) = (m(T))*. n

Definition 3.1.6 needs a slight modification of the concept of a tree order.

Definition 3.1.5 Suppose (¢, : 7 < v) is an increasing sequence of ordinals and for
all 7 < v such that 741 < v, I, is either the interval [¢,, ¢, 41) or the interval [t,, t,41].
We say I is right-open if I = [i;,¢,41) and otherwise we say I, is right-closed. Let
v = sup{, +1:7 < v}. We then say that U is a tree order on [[__, I, if U C /?
such that the following clauses hold.

1. U is a partial order preserving the usual order on ordinals.
2. If (o, B) € U then for some 7 < v, (o, B) € I X L.
3. For all limit ordinals A < ¢, either

(a) for some 7 < v, A = 1,41 and I, is right-open, or

(b) {a < A:(a,\) € U} is a closed unbounded subset of A.

We will freely adopt the usual notation used for ordinary tree orders. For example,
<y is the order given by U, U(a + 1) is the U-predecessor of a + 1 and [a, B]y =
{v:a<y~vy<v B}

Suppose 7' is a tree order on . We then let 7' [ [[,_, I; be the unique tree
order U on []__, I, with the property that for all 7 < v and for all («, 3) € I; x I,
(a,B) €U < (o, B) € T. =
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Definition 3.1.6 (The domain of the short tree component of a strategy I)
Suppose (P, Y) is a hod-like Ises pair or a simple hod-like Ises pair such that P is of
Isa type. We let

U= ((Ma)a<y, (Ea)a<y—1, D, R, (Ba, Ma)ackr, short, max, U) € dom(X5)
if there is a stack
T = ((Mg{)oKm (E(I)¢>(X<’I7—17 D/, Rl: ( ;7 m/a)aeRH T) € donl(zex)3

such that U is the same as T except it doesn’t have the maximal branches of T;
more precisely, the following conditions hold.

1. My =Py and T is below §7%.

2. D=D', R = R = short U max, short " max = () and max is finite.

!/
o

3. Foralla <n, E, =FE., 5, =0, and m, =m
4. For all successor a < n, M, = M.,.
5. For all limit o < 7 such that T, is ¥-short, M, = M..

6. For all limit o < n such that 7-, is ¥-maximal, letting X be the last normal
component of T-,, M, =m"(X)°.

Let v = ot.(R) and (¢, : 7 < v) be the increasing enumeration of R. If
T+ 1 = v then set

n : 1) is a limit ordinal
lr = .
i n—1 : otherwise

We say 7+1 is irrelevant if 7+1 = v and ¢, = 1, and if 7+ 1 is not irrelevant
then we say 7 is relevant. For 7 < v such that ¢, € short let I, = [t,t,41] and
otherwise set I = [ty Lr11).

T U=TITL_,1I

T<v T

3See Definition 2.7.3.

L.e., for every a < n if nga is defined then ind! < ﬂg:a (67).

5If T is Y-maximal then because of clause 1 its last normal component cannot be normally
continued implying that o € R.
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8. For every 7 < v if ¢, is defined® then ¢, € max if and only if 7 is relevant and
T<.,., is X-maximal.

If 7 and U are as above then we write i = T*¢ and say that U is the short component
of T. —|

Definition 3.1.7 (The short tree component of a strategy II) Suppose (P, )
is a hod-like Ises pair or a simple hod-like Ises pair such that P is of lsa type. We set

U = (Ny,Uy, By - a < ) € dom(X5%)

if there is a generalized stack 7 = (M, Ta, Fo 1 @ < 1) € dom(Xe) (see Defini-
tion 2.10.6) such that U is the same as T except it doesn’t have the maximal branches
of T; more precisely,

1. My = P||a,

2. for every a < n, Ny, = M, and E, = F,,

3. for every a < n, U, = T.;°,

4. there are at most finitely many « such that U, # 7T, and

5. either n is a limit ordinal or the last normal component of 7,_; has a limit
length (this condition is redundant as 7 € dom(X)).

If 7 and U are as above then we write i = T*¢ and say that U is the short component
of T. =

Conditions (3-4) in Definition 3.1.7 ensure that if the relevant stacks are of limit
length, we can take the direct limit. We will not be concerned with quasi-limits (cf.
[11]) here. The next definition defines the short tree component of X.

Definition 3.1.8 (The short tree component of a strategy) Suppose (P, ) is
a hod-like Ises pair or a simple hod-like Ises pair such that P is of Isa type and is
exact. Suppose

T =Ma,Ta, Fo v <)

is a generalized stack on P such that 7 € dom(¥e) and 7°¢ € dom(X*¢). Let
b=3(T). We then set X5“(U) = x where x is defined as follows:

6if v is limit then ¢, is not defined.
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1. If n is a successor ordinal, 7,_; has a last normal component’ and letting X
be the last normal component of 7,1, @/ is defined and 7/ (§) = 6(X) then
r=m"(X).

2. Otherwise x = b®.

_|

Thus, ¥5¢(T) either returns the value of Y (7) or m*(X) where b = X (T).
From now on, we will use this notation even when ¥ is a partial iteration strategy.

Notice the similarity with the short tree iterability for suitable mice in the context
of core model induction or in the context of HOD analysis and 5. If P is a X%-
suitable premouse and X is fullness preserving iteration strategy for P, X% is just
the short tree iterability strategy of P.

3.2 Short tree stacks and short tree strategies

In order to define the short tree strategy mice, we will need to introduce the concept of
short tree strategy that is independent of a particular strategy. We start by defining
short-tree-stacks, or just st-stacks. Recall our convention that all stacks are proper
(see Remark 2.7.27). We will not take the usual route of first defining putative st-
stacks and then defining st-stacks, and leave such matters to the reader. Our goal is
to concentrate on the important new property that st-stacks have.

Definition 3.2.1 Suppose P is a hod-like #-Isa type Ises!®. Set § = §7. We say
that 7 is an st-stack on P if

T = (Ma)a<ys (Ea)a<n-1, Dy R, (B, Ma)acr, short, max, T')
and the following conditions hold.

1. R is a closed subset of n and 0 € R.

"See Definition 2.4.4.
8For reader’s convenience we spell out the exact clauses of “Otherwise”.
(a) 7 is a limit ordinal.
(b) 7 is a successor ordinal and 7,1 doesn’t have a last normal component or 7] is undefined.

(c) mis asuccessor ordinal, 7,_; has a last normal component X, 7] is defined and 7] (§) > &(X).

9Here ¥? and fullness preservation are relative to an AD"-model.
19See Definition 2.7.3.
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. R = short U max, short N max = () and max is finite.

Let v = 0.t.(R) and (¢ : 7 < v) be the increasing enumeration of R. For
each a <, let 7, be the largest 7 < v such that . < a and set +* = ¢, . If
T+ 1 = v then set
n : 1) is a limit ordinal
lry1 = )
i n—1 :otherwise
We say 7+ 1 is irrelevant if 7+1 = v and ¢,; = 1, and if 7+ 1 is not irrelevant

then we say 7 is relevant. For 7 < v such that ¢, € short let I, = [t 1,41] and
otherwise set I = [tr,tr11). We say that (¢, : 7 < v) is the t-sequence of T

. T is a tree order on [[ _, I;.

. For all a < n, M, is a well-founded lhes (or hes).

. Forall a € R, (wfa, ma) < U(M,).
Set
w :{Ma ca @RV (a € RAwfy = ord(M,))
“ Mo||(wBa,w) o€ RAwB, < ord(M,)
. My ="P.

For all « + 1 < 5, E, € EMa.
Normality conditions hold. More precisely, the following conditions hold.

(a) For all a +1 < n, letting f = T'(a + 1) and &, = crit(E,), then g is the
least ordinal v > 7, such that

indMe o
(g Mol ) < (1),

(b) For all @ < § such that 41 < 5 and * = /%, ind™(E,) < ind™?(Ep).

. Foralla+1<mn,

Ma+1 = Ult( %H(L‘)faaka)an>

where
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(a) B =T(a+1),
(b) wé < ord(Myp) is the largest such that (k) Malind™e(Ea) — (i) Mplwta
(c) kg isthe largest such that (wéa, ko) < I(M) and crit(Ey) < pr, (Mj]|(wEa; ko))

10. D={a+1<n:letting 8 =T(a+ 1), (W, ka) < [(Mp)}.
Let

M| (@Earka)
My =T c M| [(wéa, ko) = Moy

be the ultrapower map and for o < v < 7 such that 7, = 7, and o <p v <7
let 7] : Mg — M, be the embedding obtained by compositions.!

11. Suppose A < 7 is a limit ordinal. Then the following clauses hold.

(a) Suppose A ¢ R. Then D N (1} \)r is finite and letting 8 € [}, \)r be
the least such that D N (8, \)r = 0, M, is the direct limit of the system
(Mo, 7l oy <979 € [B,N)r) and for vy € [B,A), 77, : M, = M, is
the direct limit embedding.

(b) Suppose A € short. Then sup(maxN\) < A'? and setting Ay = sup(maxn\)
and A\; = sup(D N A), M, is the direct limit of (M, Ta g : max g, Ay <
a < B3, (a, B) € short> N \?).

For each 7 < v such ¢, € short, let 77 be the re-organization of 7y, ,.,,;* as a
normal iteration tree on M,_and for each 7 < v such that ¢, € max, let 77 be

the re-organization of 7y, , .,) as a normal iteration tree on M, .

12. For each 7 < v such that ¢, € max, M, ., =m*(T7), &1 =§(T7) and
JulM,, ] E “6(T7) is a Woodin cardinal”.

13. For each 7 < v such that ¢, € short, 7 + 1 is relevant and m, , ., is defined,
WLT,LT+1(5MLT) > 5(TT)'

1 Assuming these embeddings can be composed. le is defined if and only if D N (o, ~]7 = 0.
12This is a consequence of the fact that max is finite.
Bt v =m, welet T, 1) = Tprirys)- Also, see the discussion after Definition 2.4.1.
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14. For all 7 < v such that ¢, € max, 77 is defined'*.
15. For every a < 7, if 7o is defined then ind™*(E,) < 7.4(6).
16. If 7 < v is such that ¢, is the least member of max then 7, is defined.

17. If 79 < 7 are such that ¢, € max, ¢, € max and [t;y41,tr,) N max = () then
(provided 75 + 1 < 1) Tipyi1ur, 18 defined and for every a € [tros1y bryt1), if

Ty i1.a 18 defined then indM~(E,) < 7rLT0+17a((5M‘To+1).

18. If 7 < v is such that ¢, is the largest member of max then for every « € [1,,7)
if 7, o is defined then ind™*(E,) < 7, o (™).

We say T is (an ordinary) normal st-stack if R7 = {0} and (8], m{]) = (M]).
We adopt our proper stacks convention, Remark 2.7.27, and in particular demand
that all cutpoints of 7 are in R7. =

Remark 3.2.2 77? can also be defined for st-stacks. See Definition 2.8.1. -

Remark 3.2.3 (Proper st-stack convention) We again make the convention that
st-stacks are proper stacks. Adopting the definition of proper stack to st-stacks is a
straightforward matter which we leave to the reader. -

We will use superscript 7 to denote the objects introduced in Definition 3.2.1
(e.g. max” or J). Also, we write 1h(7) for the ordinal .

It is now straightforward to define the concept of generalized st-stacks on P
following the definition of Definition 2.10.6. These have the form (Mg, 7, Es : B <
7v) where 75 is an st-stack on Mg and Ej is the un-dropping extender. We leave the
details of the definition to the reader. Next we define st-strategy and leave it to the
reader to define generalized st-strategies.

Definition 3.2.4 (St-strategy) Suppose P is a hod-like #-Isa type Ises’®. We say
that A is an st-strategy for P if A is a function with the following properties.

1. If x € dom(A) then x is an st-stack on P such that if
T =def T - ((Ma)a<na (Ea)a<n—17 D7 R, (ﬂa)aeRa short, makx, T)

then 7 is a limit ordinal.

14Gee Definition 2.8.1.
15Gee Definition 2.7.3.
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2. If T € dom(A),
T - ((Ma)a<177 (Ea)a<77—17 D> Ra (6a)a€R; ShOft, max, T)

and A(T) = = then T {z} is an st-stack on P. More precisely the following
conditions hold.

(a) If 0.t.(R) is a limit ordinal then letting av € R be such that maxU D C a,
x is the direct limit of (Mg, 75~ : 8 <7, (8,7) € (R — a)?).
(b) If 74+ 1 = o0.t.(R) then x is either a branch of 7, or z = m™ (7,

Lt

)16,
3. If T € dom(A) then T is according to A, i.e., for every limit ordinal ' < 7,
Ty € dom(A) and T,y = 7"~ {x} where z = A(T.,).

_|

We say that 7 is a (k,\)-st-stack on P if T is an st-stack on P such that
0.t.(RT) < k and for every 7 < o.t.(R”), Ih(7T7) < A. As we said above, we could
define the concept of putative st-stack similarly to Definition 2.4.1. As doing this is

straightforward, we leave it to the reader. Putative essentially means that all models
in the stack except possibly the last one are well-founded.

Definition 3.2.5 Suppose P is a hod-like Isa type ¢-indexed Ises. We say A is a
(K, \)-st-strategy for P if the following clauses hold.

1. A is an st-strategy.
2. If T is a putative (k, A)-st-stack that is according to A then T is a (k, \)-stack.
3. If T is a (k, A)-st-stack that is according to A such that

(a) 1h(7) is a limit ordinal and
(b) if 0.t.(RT) =7+ 1 then Ih(T7) + 1 < A,

then 7 € dom(A).

As we said above, we can then define generalized (k, A, v)-st-strategy which acts
on generalized st-stacks. The definition of this notion is rather straightforward.

Suppose now P and A are as in Definition 3.2.5. We let b(A) be the set of all
T € dom(A) such that 7 has a last normal component of limit length and A(7) is

16See Definition 3.1.4.
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a cofinal wellfounded branch of 7. Let m(A) = dom(A) — b(A). We call m(A) the
model component of A. Given U € dom(A) such that the last component of U has a
limit length, we let

MY AU =b

ANU) =
MAU) {A(U) : otherwise.

If A is an st-strategy for P and T is a stack on P according to A with last model N/
then we let Ay 7 be the short tree strategy of N induced by A, i.e., for every U on
N, Ay 7(U) = A(TU). Here T™U is an st-stack defined in a natural way so that
the normal components of 7 and U are the normal components of 7 U. =

Remark 3.2.6 In many situations, it is expected that finding (k, A)-st-strategies
must be easy. For example, whenever T is normal iteration tree of length w such
that J,(m™ (7)) E “6(T) is a Woodin”, we can set A(7) = m™ (7). Thus, instead
of working hard to define the correct branch, we declare success by setting A(7) =
m™* (7). However, we will be interested in st-strategies that have certain fullness
preservation properties. For instance, suppose M is just a suitable mouse in the
sense of L(R). If we now demand that A must have the property that whenever
T € dom(A) is such that Q(7) exists then A(7) must be a branch b with the property
that Q(b,T) = Q(T) then A would be a rather complex object. We will have that
A(T) is a model only in the case when 7 is a maximal iteration tree. In this case, A
is in fact a “short tree iterability strategy” in the sense of L(IR). Such strategies are
difficult to construct, and in our current situation, we will be interested in a notion

of fullness preservation with respect to a much more complicated pointclass than
(53)1®), .

3.3 Hull and branch condensation for short tree
strategy

The goal of this section is to introduce hull condensation for st-strategies. Hull
condensation for iteration strategies was introduced in Definition 1.31 of [30]. It is
an important property that is used to show that when doing hod pair constructions
no discrepancies arise due to the coring down process. Thus if T is according to a
strategy with hull condensation and U is a hull of T (cf. Definition 3.3.4) then it is
according to the strategy.

The difference between strategies and st-strategies is that st-strategies have a
model component, and this difference causes some complications when trying to



94 CHAPTER 3. SHORT TREE STRATEGY MICE

outright generalize hull condensation: such a direct generalization leads to a very
strong property. Our definition is based on our indexing scheme Definition 3.6.4.
In short tree strategy mice, we only index branches of a certain kinds of iterations,
and we need to apply hull condensation to these types of iterations. We start by
introducing these iterations.

First we define the wuniversally short normal trees which are essentially those
normal iteration trees that are short with respect to any iteration strategy.

Definition 3.3.1 We say that 7 is a normal stack on M if letting
T= ((Ma)a<m (Eoc)oc<n—1; D, R, (Ba; Ma)acr; T),
for all & <1, By = ord(M,), ma = k(M,) and setting
U = ((Ma)a<n: (Ea)a<n-1, D, T),
U is a normal iteration tree!”. Given an st-stack
T = ((Ma)a<ys (Ea)a<n—1, D, R, (BasMa)acr, short, max, T'),
we say 7T is a normal stack if

1. max = () and letting
Z/{ - ((Ma)a<777 (Eoz)a<?7717 D7 T)>

U is a normal iteration tree, or

2. |max| = 1 and letting o be the unique element of max, next! = 1h(7) and
U= ((Ma)a<n—1> (Eoz)a<n—17 Da T)a

U is a normal iteration tree.

_|

Definition 3.3.2 (Universally short stacks) Suppose P is a hod-like #-lsa type
Ises and 7 is a normal stack on P (see Definition 3.3.1) such that 1h(7) is a limit
ordinal. We say

T = ((Ma)oz<77a (Ea)a<n—17 D> Ra (50[7 ma)aeR; T)7

1"Recall our general convention that all cutpoints of a stack a W belong to R".
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is universally short (uvs) if one of the following holds:

1. 77t is undefined.

Suppose next 77° is defined and let a < 1h(7) be the least such that g,
is defined and M? = 77%(P?). Tt then follows that T3, is a stack on M, that
is above ord(M?)18.

2. R is cofinal in 1h(7).
3. T has a fatal drop (see Definition 2.6.8).
4. For some B € R— (a+1), DN (a, B]7 # 0.

5. For some 3 € R — (a + 1) and some 7 € (65", 0M7), T is a normal stack on
M that is below 7.

6. There is @ < m(7)# such that Q F “6(T) is a Woodin cardinal” and 7,(Q) E
“6(T) isn’t a Woodin cardinal”.

If 7 is not uvs then we say that 7 is non-universally short (nuvs). =

Definition 3.3.3 (Indexable stack) Suppose P is a hod-like #-lIsa type Ises'®. We
say that an st-stack?’

T - ((Ma>a<'r]7 (Ea)a<n—17 -D7 R7 (BOH ma)aERy Short’ max, T)
is an indexable stack on P if one of the following clauses hold:

1. max = () and there is o € R such that 77<e? is defined and T, is based on
et (PY),

2. |max| = 1, T is a normal stack?’ and if « is the unique element of max then
7 o is defined and next” (a) = Ih(7)*.

Below and elsewhere we will use the notation 7 = (Py, To, P1,T1) to denote
indexable stacks. Here 7y = T<, where « is either as in clause 1 or 2 and 771 = T>,.
We will say that the indexable stack is ordinary if max” = (. -

18The condition that 7, is defined follows from the equality St = xT:b(Ph).
19Gee Definition 2.7.3.
20See Definition 3.2.1.
21See Definition 3.3.1.

221t, follows that T is above m] (6P"). See also Notation 2.4.4.



96 CHAPTER 3. SHORT TREE STRATEGY MICE

The iterations that we will index in short tree strategy mice are finite st-stacks
of length 2. We define hull condensation for such stacks.

Definition 3.3.4 (Hull of a stack) Suppose M and M’ are hod-like Ises and T
and T are stacks on M and M’ respectively. Set

T = ((Ma)a<na (Eoc)a<n—17 D7 R7 (Bon ma)aERa T)
T = (M)a<n, (Eg)a<n-1, D' B, (B, )acrr, T').

Let (15 1 B < ot.(R)) and (¢ : v < o.t.(R)) be the t-sequences of T and T’
respectively (see Definition 3.2.1). Let iqg = w4 and i, ; = WZ'B provided the

aforementioned embeddings exist.
We say (M’,;T") is a hull of (M, T) if there is a tuple

(07 (Ta)a<lh(T’))
such that the following clauses hold.

1. o :1h(7T") — Ih(T) is an injective map that preserves the tree order and is such
that o[R'] C R and ¢(0) = 0.

2. For all a, 8 such that a+ 8 < 1h(T"), o(a+ B) = o(a) + o(5).

3. For every 8 < 0.t.(R'), 0(tly1) = to(g)s1-

4. For every a < Ih(T"), 7o : ML, =5, Mooy and Ey) = To(EL).

5. For all o < f <IW(T"), [, Bl N D' =0 < [o(),0(B)]7 N D = 0.

6. For every o < 8 < Ih(77), if sup(R' N (v + 1)) = sup(R' N ) then
7o TTh(EL) +1 =75 [ Th(EL) + 1.

7. For every a < 8 < 1h(T”) such that o <7+ 8 and (o, 8]7# N R’ = (),

75 0 la,g = lo(a) () © Ta-
8. For every o +1 < Ih(7"), if = T'(a+ 1) then o(f) = T (0(a) + 1) and

7-04—&-1([&7 f]E&) = [Ta(a)v Tﬂ(f)]ch(a)'
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Figure 3.3.1: Hull of a stack of length 2. (M,U, My, W) is a hull of (M, T, M5, S).

We say (0, (Ta)a<im(7r)) Witnesses that (M’, T') is a hull of (M, T).
If M = M’ then we say that (M,77) is a hull of (M, T) if there is a tuple
(0, (Ta)a<in(rr)) witnessing that (M, T”) is a hull of (M, T) and such that 7y = id.
Both in the case M = M’ and M # M’ it is not ambiguous to simply say that
7" is a hull of T to mean that (M’,T") is a hull of (M, T), and so we will use this

terminology?. -

Definition 3.3.5 (Hull of an indexable stack) (See Figure 3.3.1.) Suppose M
is a hod-like #-lsa type Ises and

u = (M,U,Ml,W)
t= (M7T7M278>

are two indexable stacks. We say (M, u) is a hull of (M, 1) if either

1. both uw and ¢ are ordinary (see Definition 3.3.3) and (M, u) is a hull of (M, 1)
(in the sense of Definition 3.3.4) or

2. both u and ¢ are not ordinary, and there are two tuples (0, (70)a<im@)) and
(o}, (7)) a<mon)) such that the following holds.
(a) (0° (72)a<m@)) witnesses that (M,U) is a hull of (M, T).

(b) (¢!, (Ta)a<mw)) Witnesses that (My, W) is a hull of (M, S).

(c) 78 | (M) oqtht =7Tb,

23Notice that in the case M = M’, we must have that o = id.
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To finally define hull condensation for short tree strategy, we need to introduce
a few more definitions. Suppose (P, X) such that P is a hod-like #-lsa type Ises and
¥ is a st-strategy for P. First we introduce two sorts of iterates of (P,X), I°(P,X)
and I(P,X).

Notation 3.3.6 Suppose P is a hod-like #-lsa type Ises** and X is a st-strategy?® for
P. We let max(P, X) be the set of ¥-maximal iterations. More precisely, max (P, X)
consists of pairs (7, Q) such that 7 € m(X) and Q = m™ (7). =

In the following definition, we recycle the notations used in Definition 2.7.21. The
difference here is that X is the short-tree strategy.

Definition 3.3.7 (I°(P,X) and I(P, X)) Suppose (P,Y) is a pair such that P
is a hod-like #-lsa type Ises and ¥ is an st-strategy for P. We then let

I'(P, %) = {(T,Q) : T is according to %, Q is the last model of 7 and 77 exists},

I(P,Y) = {(T, Q) : either (T, Q) € max(P,X) or for some 3 € max(T), 7'z5

exists}.

Notation 3.3.8 We let HC be the set of all hereditarily countable sets. In Defini-
tion 4.1.1, we fix a coding of elements of HC by reals. This coding then induces a
coding of elements of U, c,p(HC") by sets of reals. Let Code be the coding function
introduced in Definition 4.1.1. Thus for A C HC", Code(A) is the set of reals that
codes A. -

Definition 3.3.9 Suppose (P, Y) is a pair such that P is a hod-like #-Isa type Ises
and X is an st-strategy for P. We then let

B(P,Y) = {(T,Q) : IR((T.R) € I"(P,£) A Q Kpoa RV},
and
TY(P,%) = {ACR:3(T,Q) € B(P,T)(A <, Code(So.7))}-
]
Definition 3.3.10 (Hull condensation) Suppose P is a hod-like #-lsa type Ises

and ¥ is a st-strategy for P. We say ¥ has hull condensation if the following
clauses hold.

24See Definition 2.7.3.
25See Definition 3.2.5.



3.3. HULL AND BRANCH CONDENSATION FOR SHORT TREE STRATEGY99
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Figure 3.3.2: Branch condensation for short tree strategies. Notations are as in
Definition 3.3.11. In the above, 7% = 7 o 7% o 7.

1. For all (T, Q) € B(P,X), ¥o 7 has hull condensation, and

2. Whenever (7,9Q) € I(P,X), u = (Q,U,Q1,W) and t = (Q, T, Qs, W) are
two indexable stacks on Q such that ¢ is according to ¥g 7 and (Q, u) is a hull
of (Q,t) then w is according to ¥g 7.

_|

Next we introduce branch condensation for short tree strategies. We will need
this notion in the definition of hod mice (see Definition 3.10.2).

Definition 3.3.11 (Branch condensation for st-strategies) (See Figure 3.3.2.)
Suppose (P, %) is such that P is a hod-like #-lsa type Ises and X is a st-strategy
for P. We say ¥ has branch condensation if whenever (7, Q,U, R, 7,S,c,«, ) is
such that

L (T,9Q), (U, R) € I°(P,Y),
2. a < A®" and §R@+D is a Woodin cardinal of R,

3. & is a normal iteration tree of limit length according to Yzs,, that is based on
R(a+ 1) and is above 6%,

4. cis a branch of 8 such that 7¢ exists, and
5 7: MS — Q(B) and 77 = 7o 7§ o TP

then ¢ = ZRJ,[(S) .
26See Notation 2.7.14 for the definition of R(7).
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3.4 St-type pairs

Suppose P is a hod-like #-lsa type Ises®” and suppose A is an st-strategy for P.
We would like to introduce the notion of short tree premice and in particular, A-
premice. The main technical problem is that we do not have a reasonable notion of
condensation for st-strategies. In particular, if A = X% for some strategy X, then it
may well be that there is a ¥-maximal iteration tree 7 on P such there is a Y-short
hull U of T.

The above scenario is the main difficulty with defining short tree strategy mice.
We have to find a particular indexing of short tree strategies, or rather carefully skip
over “bad trees”, in a way that when 7 above is “cored down” to U above then our
indexing is still preserved. In particular, the branch of 7 cannot be added too early.
The idea is to wait until the branch of 7 or rather its correct Q-structure is certified.
Before we define short tree hybrids, however, we have to make a few definitions that
will be useful to us in the future.

We will only consider st-strategies A with the property that whenever 7 €
dom(A) is uvs then A(T) is a branch.

Definition 3.4.1 (Faithful short tree strategy) Suppose P is a hod-like #-lsa

type Ises and A is a (k, A, )-st-strategy for P. We say A is a faithful (k, A, n)-st-
strategy if whenever 7" € dom(A) is uvs, 7 € b(A). .

Definition 3.4.2 (St-type pair) We say (P, A) is a hod-like st-type pair if
1. P is a hod-like #-lsa type Ises,
2. A is a faithful (wq,wy, wy)-st-strategy,
3. if @ is a A-iterate of P via T and R € Y'< then X% C Agp 725
4. A has hull condensation?.

Similarly we can define simple hod-like st type pairs by demanding that A is a
faithful (w,ws)-strategy and that clause 3 above holds. -

#7See Definition 2.7.3.
Z8This clause asserts that the internal strategy of R agrees with Ag 7.
29Gee Definition 3.3.10.
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3.5 (P,X)-hod pair construction

Suppose that (P,3) is a hod-like st-type pair. Below we describe a fully back-
grounded construction that, if successful, constructs a Y-iterate of P. To learn more
about such backgrounded constructions the reader may consult [23, Chapter 11| and
also various papers of Schlutzenberg and Schindler-Steel-Zeman that deal with cer-
tain fine structural issues present in [23] (for example, [00, Chapter 2.2, Definition
2.4] and the discussion after it, and also [18] and [11]). We say a (k, \)-extender E
coheres X if P e V,, VA, CUI(V,E) and mg(X) [ Vi =2 | V).

In this manuscript, our goal is to deal with novel issues arising from the theory
of short tree strategy mice, such as developing an indexing scheme for short tree
strategies, proving a comparison theorem for Isa small hod pairs and obtain core
model induction applications at the level of LSA, to list a few. We don not have
space to also carefully develop the theory of fully backgrounded constructions, but
all issues that arise have been handled in literature. For example, to deal with issues
arising from our mixing indexing we refer the reader to Schlutzenberg’s [16] and
to deal with issues regarding inheriting large cardinals we refer the reader to [23,
Chapters 9-12] and to [15].

Unlike in [3] and [23], and other similar places in literature where the convergence
of the backgrounded constructions is established, here we will not be concerned with
iterability issues of the backgrounded constructions and just simply assume that such
constructions converge provided the background universe is iterable. Our assumption
is justified by the results of [23, Chapter 12]. The consequence of our assumption is
that in clause (3) below we simply take the core rather than the dropdown sequence.
See Definition 2.2.3 for the definition of core.

Definition 3.5.1 ((P, X)-coherent fully backgrounded constructions) Suppose
Kk is an inaccessible cardinal and (P, X) is a hod-like st-type pair such that ¥ is a
(K, K, k)-st-strategy. Then for n < k, we say (M., Ny : v <), (Fy, v <n),(T,:

v < n)) is the output of the (P, X)-coherent fully backgrounded construction

of Vj if the following holds.

1. My =0.

2. M, is a hod-like Ises such that there is a tree 7.*" on P according to X such
that either

(a) 7, has a last model M such that if & = ord(M,,) then M., | = M|E or

30Notice that if there is such a 7T, then it is unique.
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(b) M, =m(T;).

3. Suppose v < 7 is such that either 7, has a last model or 7, € b(X). Let M be

the last model of 75 if it exists and otherwise, setting b = 3(7,), let M = ./\/le”

Let & = ord(M,) and suppose M., = jf’f . Then the following statements
hold.

(a) If M, =M then v =n.
(b) If M, is active and M., # M||{ then v = 7.

(c) If M, is active and M, = M|[¢ then N 11 = T [M,] and M, =
core(N,).

(d) Suppose M., is passive and M. < M. Suppose there is no pair (F*, F)
and an ordinal ¢ < & such that F* € V, is an extender over V' that coheres
¥, F is an extender over M., Vei, C Ult(V, F*) and

F=FPn(de x g8
such that (L7§E7f, € E, f, F) is a hod-like Ises®'. Then N, = Ju(M,) and
M 41 = core(N,).
(e) Again suppose M., is passive and M., <M but there is a pair (F™*, F') and
an ordinal { satisfying the above conditions. Then if F' € EM then we let
N, = (Jf’f, €, E, f,F) and M., = core(N,).

(f) Again suppose M, is passive, M. < M and that M||{ is an active J-
structure such that its last predicate codes a set A that is not an extender.
Let then NV, = (M., A, €)** and M. ;1 = core(N,).

4. Suppose v < 7 is such that 7, is of limit length and 7, ¢ b(X). Then v = 7.

_|

Remark 3.5.2 Notice that the constructions introduced in Definition 3.5.1 can be
carried out even when Y is a partial strategy. Thus, for example, we may say that
MGy Ny vy <), (Fy -y <n), (T, : v <n)) is the output of the (P, X)-coherent
fully backgrounded construction of N” the meaning of which should be self-evident

31Here F is the amenable code of F, see the discussion after [60, Lemma 2.9].
32Here we mean that A is being indexed in the strategy predicate of N,.
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with one wrinkle. It may be that for some v <7, ¥(7,) is undefined. In this case,
we have that v = n and we stop the construction.

If the background universe has a distinguished extender sequence then we tac-
itly assume that the extenders appearing in the (P, X)-coherent fully background
construction come from this distinguished extender sequence. -

3.6 A short tree strategy indexing scheme

Our goal here is to introduce the notion of a short tree strategy premouse (sts pre-
mouse). As we mentioned in the previous section, the difficulty with doing this lies
in the fact that maximal trees might “core down” to short trees and thus, creating
indexing issues. The idea behind the solution presented here is to add a branch for
a tree as soon as we see a certificate of shortness, which in our case will be a O-
structure. As the O-structures that we will be looking for are themselves sts premice,
this inevitably leads to an induction.

Technically speaking M in Definition 3.6.2 should not be ses (see Definition 2.5.2)
as fV doesn’t quite code an iteration strategy. Its domain consists of indexable
stacks (see Definition 3.3.3). But recall the abuse of terminology proposed after
Definition 2.5.1. Also, recall the definition of m™(7") = m(7)# (see Definition 3.1.4).

The language of unindexed ses® includes constant symbols for E, f, X and P.
We denote these symbols by E, f, X and P. Also, we let < be the symbol denoting
the constructibility order and 3 be the partial strategy coded by f . < and ¥ are not
symbols in the language but they can be easily defined from the other symbols.

Definition 3.6.1 (¢*-formula) We let ¢*(z) be the conjunction of the following
statements in the language of ses.

1. z is a sequential structure of the form (7, (t),, €) where t = (Po, To, P1, T1) is
an indexable stack on P,

2. t is according to 3 where ¥ is the partial strategy coded by f , and
3. cf(1h(7p)) and cf(1h(7;)) are not measurable cardinals.

4. there is (v,§) such that letting (M4, Ny vy <), (F, 1y <n), W, : v <n))
be the output of the (P, X)-coherent fully backgrounded construction of the
universe ** in which extenders used have critical points > 1% W, = Tj.

33See Definition 2.5.3.
34See Remark 3.5.2.
35See Definition 3.5.1.
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_|

Definition 3.6.2 (Unambiguous ses) Suppose M is an unindexed ses®® over some
self-well-ordered set X based on a hod-like #-Isa type Ises P. We say M is unam-
biguous if M is closed®” and whenever w is a sequential structure of the form
(Ju(t),t, €) where t = (Py, To, P1,T1) € M is an indexable stack according to XM
and such that

1. ME ¢*[w] and
2. either

(a) 71 =0 and M E “Ty is a uvs®® of limit length” or
(b) 71 is a nonempty stack of limit length

then t € dom(X™M). We say M is ambiguous if it is not unambiguous. —

Notice that ambiguity is a first order property of unindexed ses. The next defi-
nition introduces an indexing scheme that we will use to define short tree premice.
The indexing scheme only defines the strategy on certain carefully chosen stacks. It
turns out that this much information is enough to extend the strategy to all stacks
(see Chapter 6).

Remark 3.6.3 The reader may find the following remark helpful. Definition 3.3.2
introduced the uvs stacks, which are stacks that are short with respect to all rea-
sonable strategies. Definition 3.6.2 introduces unambiguous ses, which are the ses
whose internal strategy predicate is total on all indexable uvs stacks that satisfy the
formula ¢* (see Definition 3.6.1). Negating this, we have that if N is ambiguous ses
then in AV there is a uvs T of limit length that is according to the internal strategy
of N yet no branch of T is indexed in the strategy predicate of N. -

Definition 3.6.4 (v-sts indexing scheme) Suppose ¢(z) and ¢(x,y) are two for-
mulas in the language of ses. We say ¢ is a ¢-sts indexing scheme if ¢(w) is the
conjunction of the following clauses:

1. For all ordinals ~ there is &€ > ~ such that £(¢) is defined®.

36See Definition 2.5.3.

37See Definition 2.3.15.

38See Definition 3.3.2.

39i.e. the universe is closed in the sense of Definition 2.3.15.
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2. Y is a partial faithful st-strategy such that m(¥) = .

3. " (w).
4. Either

(a) The universe is ambiguous and w is the <-least sequential structure w’
witnessing ambiguity of the universe.

Or

(b) The universe is unambiguous and w is the <-least sequential structure
w' of the form (J,(t),t, €) with the property that t = (Pg, To, P1, T1) is
an indexable stack on P, ¢*(w') holds, 3(7p) is undefined and there is a
unique cofinal well-founded branch b of Ty such that ¥ (7g, ) holds.

_|

Remark 3.6.5 The reader may find it useful to compare Definition 3.6.4 with Def-
inition 2.3.3, Definition 2.3.8 and Definition 2.3.10. The model over which we intend
to evaluate ¢ in Definition 3.6.4 corresponds to M|wf in Definition 2.3.3. More
precisely, if ¢ is as in Definition 3.6.4 and w is a sequential structure, then to decide
whether we need to index a branch of w or not we need to look for  such that
M|wpB E ¢lw].

The meaning of clause 4b is that v is the certification of b as the correct branch,
but Definition 3.6.4 doesn’t say anything about a particular certification procedure
that we will use. The exact certification method is presented in Definition 3.8.9. -

Notice that ¢ is uniquely determined by 1. The next definition uses ideas from
Definition 2.3.3 and Definition 2.3.8, and it may be useful to review those definitions
(in particular clause 4a of Definition 2.3.8).

Definition 3.6.6 (Sts ¥-premouse) Suppose X is a self-well-ordered set, P € X
is a hod-like #-Isa type Ises and ¢ (x, y) is a formula in the language of unindexed ses.
Let ¢ be the 1-sts indexing scheme. Then M is an sts 1)-premouse over X based on
P if M is a ¢-indexed ses over X based on P and if w € dom(f*) is such that clause
4b of Definition 3.6.4 applies to w =g4ef (Ju(t),t, €) where t =41 (Po, To, P1, T1) then
letting 3 = min(f™(w)),

4ONotice that clause 4 below guarantees that Y is really a partial strategy rather than an st-
strategy. We emphasize the fact that ¥ is an st-strategy to point out the fact that there is no
iteration according to ¥ that is 3-maximal.
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JMw) ={B+wy:yeb}

where b € M| is the unique branch of 7y such that M|S E ¥[T, b]. .

If Y(z,y) = “0 = 17 then we say M has a trivial indexing scheme and also say
that M is a trivial sts premouse. Notice that in a trivial sts premouse indexable
nuvs stacks do not have branches indexed in the strategy predicate.

O-structures are sts y-premouse

Suppose P is an #-Isa type hod like Ises and 7 is a normal nuvs tree on P. Suppose b
is a well-founded branch of 7 such that Q(b, T') exists. Does it follow that Q(b, T) is
an sts ¥-premouse in some reasonable sense? The following lemma gives the answer
we need.

Definition 3.6.7 Suppose P is a hod-like #-Isa type Ises and ¢ (z,y) is a formula
in the language of unindexed ses. We say P is uniformly i-organized if for each
#-1sa type layer Q of P such that Q° = P’ and 62 < %, if v is the largest such that
Pllv E “62 is a Woodin cardinal” then P||v is an sts 1-premouse over Q. -

Lemma 3.6.8 Suppose P is a uniformly 1-organized hod-like #-lsa type Ises. Sup-
pose T is a normal iteration tree on P. Suppose o < Ih(7) and R <joq ./\/laT is such
that letting (Peer : € < m,& < 1) be the layers of M7, for some &€ <7, R = Pey
and P ; is defined either according to condition R5 of Definition 2.7.8 or clause 2 of
R10 of Definition 2.7.8*'. Then P is an sts 1)-premouse over R.

Proof. We prove the claim by induction. Suppose first « = 4+ 1 and the claim is
true for § (i.e. the claim is true for all ¢ < $ and hod initial segments of MZ) In
this case, we have that M7 = UIt(N, E]) where v = T(«) and N' < M7 is the

appropriate initial segment of M,YT If now 6% < M2 then the claim follows from

elementarity of 7T,?; ,, restricted to strict initial segments of N.

Assume then that 6% = M2, If N E “6V is not a Woodin cardinal” then once

again elementarity implies the claim (as P € rge(n] ,)). Assume then N = “5Nis

a Woodin cardinal”. In this case, we have that Pey = Ult(N, E]) and N is an sts
-premouse over N|7 where 7 = min(EN — V).

Set now Q =gcr Py, £ = Eg and j = ﬂ;’:a. Let f be the strategy predicate
of Q and suppose that Q is not an sts -premouse over R. Notice that because

41 This simply means that R is a #-Isa type layer of M7 .
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J is Yi-elementary, we must have that for every w( < ord(Q), Ql||w( is an sts -
premouse over K. This is because otherwise A/ would satisfy that there is some
w(' 4+ w < ord(N) such that Nw(" + w E “N||w(’ is not an sts 1-premouse”.

Thus, it is enough to show that if Q is active and its last predicate is a pair (7,b) €
f then (7,b) conforms the rules of sts i-premice. Set then w = (J,(T), T, €) and
v =min(f(w)). Let v/ = j7'(v) and 7" = 77(T). Because j | N|v/ is fully elemen-
tary, we have that

(1) 7" is chosen in N[/ according to clause 4a of Definition 3.6.4 if and only if
T is chosen in Q|v according to clause 4a of Definition 3.6.4.

(2) 7" is chosen in M|/ according to clause 4b of Definition 3.6.4 if and only if 7 is
chosen in Q|v according to clause 4b of Definition 3.6.4.

Thus, to finish, we need to verify that letting b* = j7![b] and ¥ be the closure
of b* in T’ then

(*) b is as in clause 4b of Definition 3.6.4 if and only if b is as in clause 4b of
Definition 3.6.4.

(*) is straightforward because if ¥ is as in clause 4b then b = j(V/), and if b is
as in clause 4b then b’ = j~1(b)*2.

The case when « is a limit ordinal is very similar, and we leave it to the reader.
OJ

3.7 Authentic indexable stacks

Suppose (P, 3) is a hod-like limit type pair. Suppose T is a tree on P according to 3
such that 77 exists and m* (7)) E “0(T) is a Woodin cardinal” (see Definition 3.1.4).
When defining short tree strategy mice, we will be faced with the following question.
How can we guess the correct branches of iteration trees that are on m*(7) and are
according to Xy,+(7),77 In this section, we present an authentication process that
allows us to guess the correct branches of such iterations.

The main technical object used in our authentication process is s(7,w) intro-
duced in Definition 2.9.1. In the light of [61], we could use strong hull condensation

42The equivalence follows from the fact that because cf¥ (Ih(77)) is not a measurable cardinal in
N, j ' 1h(T") is cofinal in 1h(7).



108 CHAPTER 3. SHORT TREE STRATEGY MICE
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Figure 3.7.1: (7, X) authenticates R. The objects &, U etc. are as in 3.7.3.

instead of s(7,w), similar to the way optimal Suslin representations are obtained in
[63, Chapter 2]. We, however, do not know if the core model induction applications
of this book could be done using the ideas of [63].

We start by recalling s(7,w) (and slightly modifying it). Suppose P is a non-
meek hod-like Ises and 7 is a stack on P such that 77 exists. Let & = n7%(P?),
w = (n,6) be a window?® of § and X C P’. We then set

s(T, X,w) ={a:3Ja en<3f € X(a=7"*(f)(a))}N§
When X = PP then we just write s(T,w).

Definition 3.7.1 Suppose P is a hod-like limit type Ises and X C P’. We then
say that X is useful if whenever 7 is a stack on P such that 77 is defined, ¢ is a
Woodin cardinal of 8 =45 77 *(P?) and w is a window of S such that §* = § then
s(T, X, w) is cofinal in 0. .

Recall that Lemma 2.9.5 shows that X = P? is useful.

Notation 3.7.2 Here and elsewhere in the manuscript , given a collection of for-
mulas T, by cHull(Y) we mean the transitive collapse of X where a € X if and
only if there is a formula ¢ € I" and s € Y<“ such that a € M is the unique b with
the property that M E ¢[b, s]. If I contains all formulas then we omit it from the
notation. If I' is the set of all ¥,, formulas then we just write cHullM(Y). If " is the
set of all formulas then we just write cHullM(Y). —

Definition 3.7.3 (Authentic hod-like Ises) (see Figure 3.7.1) Suppose (P, %) is
a hod-like st-type pair, 7 is a normal iteration tree on P according to ¥ such that

43See Definition 2.7.14.
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77t exists and X C PP is useful. Let S = 77 *(P?) and suppose R is a hod-like Ises.
We say (T, X) authenticates R if there is a normal iteration tree i on R such that
the following clauses hold.

1. U has a last model W such that 7 is defined and W <4 S.

2. If v < Ih(Y) is a limit ordinal such that S E “6(U | v) is a Woodin cardinal”**,
letting w be the unique window of S such that §(U | v) = 0¥ and setting
b= [0,7)y, for some T € b,

s(T, X, w) C rge(n¥,).
3. If R is of limit type then
WP = cHullS (T2[X]U &)
and if o : Wb — S? is the uncollapse map then
o~ rTX]] € rge(n?).

We say R is (P, X, X)-authentic if there is 7 on P according to ¥ such that (7, X)
authenticates R. We also say that R is (P, X, X, T )-authentic.

Notice that there is only one iteration tree ¢ with the above properties. We then
say that U is the (7, X)-authentication tree on R. When X = P° we simply omit it
from terminology. n

Clearly the tree U in Definition 3.7.3 is a tree built via a comparison process
in which § doesn’t move. A typical R that we would like to authenticate will be
an iterate of P. If ¥ has nice properties, such as strong branch condensation (see
Definition 4.9.2) then clauses 2 and 3 of Definition 3.7.3 hold for the iterates of P.
Next, we would like to define authentic iterations.

Definition 3.7.4 (Authentic iterations) Suppose (P, ) is a hod-like st-type pair,
T is a normal tree on P according to ¥ such that 77 exists and X C PP is useful. Let
S = 77*(PP). Suppose R is an Ises and X is a stack on R. We say (7, X) authenti-
cates (R, X) if (T, X) authenticates R and, letting U be the (7, X)-authentication
tree on R and W be the last model of U, X is according to 7-pullback of 3y 7.

44This condition then implies that for some window w = (1, 4), S F “§ is a Woodin cardinal” and
m(U [ v) =S8|. See Definition 2.7.8.
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Again we omit X when X = P’. We say (R, X) is a (P, X, X)-authenticated
iteration if there is a tree 7 on P according to 3 such that (7, X) authenticates
(R,X). We also say that (R,X) is (P,X, X, T)-authentic. When X = P° we
simply omit it from our terminology. .

Next we define authentic indexable stacks. These are stacks that will be important
in our definition of short tree strategy mice (see Definition 3.8.9). It maybe helpful
to review the notation introduced in Notation 2.4.4.

Definition 3.7.5 (Authentic indexable stacks) Suppose (P, Y) is a hod-like st-
type pair, X C P’ is useful and R is a hod-like #-lsa type Ises. Suppose

t=(Ro, U, R, W)

is an indexable stack on R = Ry. We say t is (P, X, X)-authenticated if the
following conditions hold.

1. Suppose a € RY is such that 7¥<e? exists. Then for all
o € (RY — (a+1))U{lh(Ud)}
such that K =g Uja o is based on 8 =4 M?, (S, K) is (P, X, X)-authenticated

iteration.

Usc b

2. Suppose o € R is such that exists. Then for all

o € (R — (a+ 1)) U {Ih(U)}

such that K =g Upaa is above ord(S) where & =g¢ M? | the following
conditions hold.

(a) Suppose K doesn’t have any fatal drops*®. Then for any limit a < 1h(K), if
b is the branch of IC | a then Q(b, K [ «) exists and is (P, X, X )-authentic.

(b) Suppose K has a fatal drop at («,n). Let @ = MX||wer. Then (Q,Ksg)
is a (P, X, X)-authenticated iteration.

3. (RY, W) is a (P, %, X)-authenticated iteration.
When X = PP we simply omit it from our terminology. -

It is of course desirable that (P, %, X)-authenticated stacks are according to X.
In the next section, we will use our authentication idea to define certified stacks.

45See Definition 2.6.8.
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3.8 Short-tree-strategy mice

We now have developed enough terminology and tools to define sts premice. We use
the following notation below. Suppose M is a transitive model of some fragment of
set theory and A is a limit of Woodin cardinals. Let g C Coll(w, < \) be M-generic.
For a < A, let g, = gN Coll(w, < o). We let D(M, A, g) stand for the derived model
of M at X computed using g. More precisely, letting R* = (J,_, RMlsel D(M, A, g)
is defined in M(R*) by letting

1. T be the set of A such that for some a@ < A and some B € M|g,] such that
M/ga] E “B is < A-universally Baire”, A is the interpretation of B in M (R*)*.

2. D(M,\,g) = L(,R*).

Woodin’s derived model theorem says that D(M, A, g) E AD™ (see [59]). We will use
this theorem throughout this book.

Before we introduce the notion of short tree strategy premouse, we take a moment
to describe the intuition behind the definition. Suppose P is a hod-like #-lsa type
Ises and T is a normal nuvs tree on P. We would like to find the correct Q-structure
for 7. We first attempt to find this Q-structure among ses that have the trivial
indexing scheme g, i.e., no indexable nuvs stack has an indexed branch. However,
there may never be such an ses that can be used as Q-structure. Assume then that
this is the case. We then immediately encounter two problems.

The first problem has to do with determining the exact stage of the constructibil-
ity order where we must stop looking for a Q-structure among the ses that have the
trivial indexing scheme. We will do this as soon as we reach a sufficiently closed
stage. To know that we have reached such a level, we need to address the second
problem.

The second problem is to describe the next type of gadgets that can be used as
Q-structures. A natural choice is the collection of ses over m(7) in which all nuvs
trees have Q-structures with the trivial indexing scheme. This is our second indexing
scheme. Let us call it ¢/;. One wrinkle is that we need a certification method for
the O-structures that are used in a 1;-sts premouse. This is done by using the ideas
from Definition 3.7.5.

The way we put the two ideas together is as follows. We first search for a Q-
structure among ses with the trivial indexing scheme )y. If we reach a level M,

46The meaning of this is the following. For each M-cardinal 3 € (a, \), let (T, S5) € M[gnN
Coll(w, < )] be S-absolutely complementing trees such that p[Ts] = B. We then have that
A = Ugox(p[Ts))ME). Tt is customary to set T = Hom*. See [59]
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that has a 1p-sts Q; € M that can be used as a Q-structure then we stop and
see if M certifies Q; (see Definition 3.8.9). If yes, then we declare success. If no,
then we continue with the trivial indexing. This naturally leads to an induction,
in which we define more and more complex indexing schemes which themselves are
indexed by ordinals. One issue is that the most straightforward approach to the
problem of defining the indexing schemes involves extending the language of ses to
have names for ordinals, and this creates several unpleasant issues. Instead, we
will first introduce ses whose indexing scheme may not be first order definable, the
externally-¢-ses. Afterwards, it will be straightforward to verify that being a short-
tree-strategy premouse is in fact first order.

Another issue is to show that if there is a O-structure for some tree 7 then we will
indeed reach this O-structure inside our short-tree-strategy mice. For this, we will
use an appropriate notion of fullness. Finally, the reader may find Remark 3.8.20
useful. What follows is parallel to Section 2.3. The reader may want to review
Definition 2.1.1, Definition 2.3.1, Notation 2.3.2, Definition 2.3.3, Definition 2.3.8,
Definition 2.3.10, Definition 2.3.14 and Definition 2.5.3.

Externally-indexed hes

The main difference between Definition 3.8.1 and Definition 2.3.2 is clause 4
bellow.

structure, P € X and ® is a set of triples (z,y, z) such that if (z,y, z) € ® then x is
a sequential structure. Let S]/;f‘q) be the set of pairs (4, w) such that

1. wf 4wy < ord(M),

2. MJwp E “cf(y"*) is not a measurable cardinal as witnessed by extenders in
AO7>477 and

3. M|wp E ZFC, and
4. (w,M|wp, P) € .
_|

Definition 3.8.2 Suppose that (M, P, ®) are as in Notation 3.8.1. Suppose further
that f is a shifted amenable function with amenable component g such that dom(f) C

47See Remark 2.3.4.
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| M| and for all w € dom(f), min(f(w)) + 7% < ord(M)*. We say w is weakly
(f, P, ®)-minimal if there is S such that

L (B,w) € Sﬁffp (in particular, because M|wf F ZFC, wf = ),
2. w ¢ dom(f N [M]B]),

3. {u € [M|B] : v <pp w and there is £ < 3 such that ({,u) € Sﬁjl@} C
dom(f N [M]B]).

We say w is (f, P, ®)-minimal if there is § witnessing that w is weakly (f, P, ®)-
minimal and such that w is the <, g-minimal w’" which is weakly (f, P, ®)-minimal
as witnessed by f.

If wis (f, P, ®)-minimal then we let fMF5P® be the least 8 witnessing that w is
(f, P, ®)-minimal. In many cases, (M, f, P, ®) will be clear from context and so we
will drop it from our notation. .

We are now in a position to introduce the ezternally-®-indexed passive hybrid
J -structures, or just e®-indexed passive hybrid [J-structures.

Definition 3.8.3 (e®-indexed Passive Hybrid J-structures) We say M is an
ed-indexed passive hybrid J-structure over a self-well-ordered set X based on
Pif M = (M k) is an f.s. J-structure such that the following conditions hold.

1. For some a, A C |[M'| and f C |[M/],
M = (THX),A [, X, €)®,

2. f is a shift of an amenable function.
3. For all w € |[M’|, w € dom(f) if and only if w is (f, P, ®)-minimal.
4. For all w € dom(f),

(a) B, = min(f(w)) and B, + wy* < ord(M)>,

(b) [M[(Bw +wy*)] = Tputenw (M[|wBu) and AN [M[(By +wy™)] = AN
| M |wfy |7t

48Recall our convention that XM is self-well-ordered.

49We would like to emphasize that M’ has only the displayed predicates. Also, below (M’, f, ®)
are omitted from (3, notation.

50Here B, is defined in Definition 3.8.2.

°11t also follows that f N [M'[(Bw +7%)] = f N [M'|Bw].
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_|

Definition 3.8.4 (e®-indexed Hybrid J-structures) We say M is an ed-indexed
hybrid J-structure over a self-well-ordered set X based on P if M = (M, k) is
an f.s. J-structure such that

1. for some a, A C |[M’'| and f C |[M'],
M = (TJA(X), A, f,B, F, X, €)%,

2. (JAN(X), A, f, X, €) is an ed-indexed passive hybrid J-structure,
3. at most one of B and F' is not empty,

4. if F # () then F is an ordered pair (w,b) such that if § = min(b) then setting
J=ru{(wb)},
3

(a) f’is a shift of an amenable function®,

(b) w is (f, P,®)-minimal with gM/"%® = 3 (in particular, w3 = S, see
Definition 3.8.2),

(c) wa =B+ wy® >

(d) IM'] = Tprwnw(M]|B) and AN [M'] = AN [M]5].

For w € dom(f’), we say that f'(w) is indexed at S, + wy" or that 3, + wy" is the
index of f'(w). —

Definition 3.8.5 (e®-indexed Strategic e-structure, e® — ses) Suppose P is
a transitive structure, X is a self-well-ordered set such that P € X and M =
JEI(X) is an e®-indexed hybrid J-structure over X based on P. We say M is
an eP-indexed strategic e-structure (e®-ses) over X based on P if the following
clauses hold.

1. fM codes a partial iteration strategy for P such that for any w € dom(f™) if
B = min(fM(w)) then M|3 is closed®.

52Below (M, f, P, ®) are omitted from 3, notation.

53This implies that w is a sequential structure.

541t follows from clause 5 of Definition 3.8.2 that M’ E “cf(v) is not a measurable cardinal as
witnessed by extenders in A”.

55See Definition 2.3.15. Also, recall that for such 8 we have wj3 = 3
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2. E is a mixed indexed extender sequence.
3. If M = (M, k)°® then for every (wf,m) < (M), M||(wB,m) is sound.

We say M is based on P if M is over J,[P] and is based on P. —

External V-sts indexing scheme

The reader may want to review Definition 2.5.3.

Definition 3.8.6 (eW-sts indexing scheme) Suppose ¢ and ¥ are two sets. We
say ® is an external V-sts indexing scheme (or just an eW-sts indexing scheme)
if for all triples (w, N, P), (w,N,P) € ® if and only if the following clauses hold.

1. X is a self-well-ordered set, P € X is a hod-like #-lsa type Ises and w € N.
2. N is an unindexed ses over X based on P.

3. N is closed®”.

4. N'E “S7 is a partial faithful st-strategy with m(XV) = (758,

5. N E ZFC + ¢*(w)™.

6. Either

(a) N is ambiguous and w is the <,r-least sequential structure witnessing the
ambiguity of N.
Or

(b) N is unambiguous and w is the <jr-least sequential structure w’ € N of
the form w' = (J,(t),t, €) where t = (P, To, P1, T1) such that N E ¢*[w/'],
¢ is an indexable nuvs such that 3(7) is undefined and there is a cofinal
well-founded branch b of 7o such that b € N and (7o, N,b) € V.

56See Definition 2.2.2.

57See Definition 2.3.15.

58This comment was made before as well, but we remind the reader. Notice that clause 4 below
guarantees that ¥V is really a partial strategy rather than st-strategy. We emphasize the fact
that ¥V is an st-strategy to point out the fact that there is no iteration according to ¥V that is
YN _maximal.

59Gee Definition 3.6.1.
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Definition 3.8.7 (Sts W-premouse) Suppose X is a self-well-ordered set, P € X
is a hod-like #-lsa type Ises and ¥ is a set. Let ® be the eV-sts indexing scheme.
Then M is an sts U-premouse over X based on P if M is a e®-ses over X based
on P and if w € dom(f™) is such that clause 6.b of Definition 3.8.6 applies to
w =gy (Ju(t),t, €) where t =g4e (Po, To, P1, T1) then letting 8 = min(fM(w)),

fMw)={B+wy:yeb}

where b € M| is the unique branch of 7y such that (7o, M|3,b) € V. -

Notice that in Definition 3.8.6, ® is uniquely determined by ¥. We now by
induction define a sequence of sets (Vs : f € Ord) and for 5 € Ord, we let &5 be
the e s-sts indexing scheme. To start we let ¥y = (). Thus, if M is an e®; — ses
then M does not have branches for nuvs stacks. We will use the following concept.

Definition 3.8.8 (Terminal tree) Suppose X is a self-well-ordered set, P € X is
a hod-like #-lsa type Ises, N is an ses over X based on P. Given 7 € N on P, we
say T is N-terminal if 7 is nuvs, 7 is according to ¥V and T ¢ dom(%V). .

Definition 3.8.9 (Sts indexing scheme) Let ¥, = () and suppose (¥¢ : { < )
have been defined. For { < « let ®¢ be the eW,-sts indexing scheme (see Defini-
tion 3.8.6). We let ¥, be the set of triples (7, M,b) such that M is an ses over
X based on P and (T,b) is the M-lexicographically least® pair such that 7 is a
normal iteration tree on P, T is M-terminal, and b is a cofinal branch through 7T
such that for some pair (7, &) € ord(M) X « the following clauses hold:

1. M|y is unambiguous® and M|y E ZFC + “there are infinitely many Woodin
cardinals > 0(7)”.

2. M|y E “Ih(T) is not of measurable cofinality”.
3. be M|y and M|y E “bis a well-founded branch”.

4. My E “Q(b, T) exists” and Q(b, T) is an e®¢ — ses over m™ (7 )%.

60T his is just the order defined by: first order the first coordinate by <, the canonical well-order
of M, then order the second coordinate by <.

61See Definition 3.6.2.

62This last statement about Q(b, T) may not be first order over M|y.
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5. Letting (J; : i < w) be the first w Woodin cardinals of M|y that are strictly
greater than 0(7), the following holds in M|y: Q(b,T) is < Ord-iterable
above 0(7) via a strategy A such that letting A\ = sup,_,, d;, for every generic
g C Coll(w, < A), A has an extension AT € D(M|y, A, g) such that

(a) D(M, A, g) E “AT is an w;-iteration strategy” and

(b) whenever R € D(M|v, A, g) is a AT-iterate of Q(b, T) above 6(7) and
t € R is an indexable stack on m*(7) according to X%,

M|y[g] E “t is (P, 2M)-authenticated” .

The lexicographically least pair (v, &) satisfying the above conditions is called the
least (M, U, )-shortness witness for (7,b). We also say that (v, &, b) is an M-minimal
shortness witness for 7. We also say that 7 has an M-shortness witness.

We say M is a potential sts premous if M is an sts ¥ ,-premouse for some «. -

Notice that because we minimized b, M has at most one M-shortness witness
for 7. The next lemma can now be established via an induction on ordinals.

Lemma 3.8.10 Suppose M is a transitive model of ZFC and R € M. Then

1. For every oo < ord(R), M F “R is an sts V,-premouse” if and only if R is an
sts ¥ ,-premouse.

2. For every a < ord(M), M E “R is an e®, —ses” if and only if R is an e®, —ses.

3. For every a < ord(R), Definition 3.8.6 and Definition 3.8.9 define the sequences
(VsNM:p<a)and (PgNM: [ <a)in M.

Proof. The claim is obvious for &« = 0. In this case, ¥y = (), and since clause 6b
of Definition 3.8.6 is not applicable, the statement “(w, N, P) € ®y” is a first order
(over N) property of A/. Thus, the three clauses above follow.

Suppose now that for some a < ord(M), the three clauses have been verified for
all B < a. We want to verify it for a.

We start with clause 3 of Lemma 3.8.10. Notice that all clauses of Definition 3.8.9
except the second half of clause 4 are internal properties of M, where M is as in
Definition 3.8.9. But our induction hypothesis implies that for every & < a, being
e®Ps — ses is absolute between M and V, implying that the second half of clause 4
of Definition 3.8.9 is absolute between M and V' (notice that in Definition 3.8.9 the
branch b is in M). This means that V¥ = ¥, N M.

Next, fix (w, N, P) € M. Notice that if (w, N, P) € ® then

63The witness for t being (P, ZMI7)-authenticated is in M|y
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1. if clause 6a of Definition 3.8.6 applies then (w, N, P) € ®, and

2. if clause 6b of Definition 3.8.6 applies then (7o, N, b) € UM where (7y,b) are
as in clause 6b (and in particular, b € N).

The first statement above holds as all clauses of Definition 3.8.6 except 6b are internal
properties of A/ and as such are absolute between M and V. Notice next that
because we already have that WM = W, N M, the second statement above implies
that (75, NV,b) € ¥, and hence, (w, N, P) € ®,. Thus, ®¥ = &, N M.

The proof of the remaining clauses are very similar, and can be easily established
by examining Definition 3.8.7. U

Corollary 3.8.11 Suppose M is a transitive model of ZFC and o < ord(M). Then
MFE “M is an e®, — ses” if and only if M is an e®, — ses. Also, M F “M is an sts
U,-premouse” if and only if M is an sts ¥,-premouse, a < ord(M) and M € M.

Definition 3.8.12 Suppose M is a potential sts premouse. We say « is the short-
ness degree of M if « is the least for which M is a e®, — ses. We let sd(M) be
the shortness degree of M. -

The shortness degree of a potential sts premouse

Suppose M is a potential sts. We now describe a well-founded tree U(M) whose
rank bounds sd(M). The nodes in U(M) consist of finite sequences of the form
(20, 1, ..., T,) such that the following conditions hold:

1. For each i < n, x; = (t;,b;, M;) where t; = (M;,T;) is an indexable stack
on M;, 7; is a normal tree on M;, b; is a branch of 7; and for i + 1 < n,
M = Q(bi, Ty).

2. My =M.
3. For each i < n, t; € dom(XMi)5 and b; = SMi(T;).
4. For each i <n, J,[m™(7T;)] E “0(7;) is a Woodin cardinal”.

Notice that if (xg,...,z,) € U(M) then for each i < n, M;;; € M,%. Therefore,
U (M) is well-founded. If p € U(M) then we use superscript p to denote the objects
that appear in p. For example ME, 2z or T*. Given a well-founded tree S we let
rank(S) be its rank.

641 particular, t; € M;.
65Notice that because 6(7;) is a Woodin cardinal, ¢; is an nuvs and therefore, b;, M;;1 € M.
See clause 3 of Definition 3.8.9.
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Lemma 3.8.13 sd(M) = rank(U(M)).

Proof. The proof is by induction on sd(M). Suppose sd(M) = 0. In this case,
U(M) = 0 and hence, its rank is also 0. On the other hand, if U(M) = 0 then
clearly M’s strategy predicate does not index any branch for an nuvs indexable
stack, and therefore, sd(M) = 0. For 8 an ordinal, let I(3) be the conjunction of
the following two statements.

(1) For all M’, if sd(M’) = B then rank(U(M'")) =
(2) For all M, if rank(U(M’)) = B then sd(M’)

B.
B.
We want to prove that for all 8, I(f) is true. Assume then that for some o > 1, for

all 5 < «, I(f) holds. We want to prove I(«), which amounts to proving that the
following two statements hold.

(A) For any M such that sd(M) = «, rank(U(M)) = a.
(B) For any M such that rank(U(M)) = «, sd(M) = a.

We now prove (A). Fix M such that sd(M) = a. We want to see that rank(U(M)) =
«. Suppose first that p = (zg, ..., z,,) € U(M). Then we have that

(*) UML) ={q:p"qe UM)}

We now show that the rank of U(M) is at least as big as a. To see this, it is
enough to show that for each f < sd(M) there is a node p = (xy, ..., z,) € U(M)
such that letting M, 11 = Q(02, TP), sd(M,41) > B. (*) then will imply that in fact
B < rank(U(M)). But because § < sd(M), we must have a pair (P,7T) € M such
that 7 € dom(XM) and if b = SM(T) and t = (P, T) then (¢,b, M) € U(M) and
sd(Q(b, T)) > 5. It then follows that p = (t,b, M) is as dessired.

We now show that rank(U(M)) < «. Indeed, let p = (z9) € U(M) and set
My = Q(bh, TY). Because sd(M) = a, it follows that sd(M;) < a. Therefore, it
follows from (*) and V3 < al(B) that rank(U(M;)) < a. As this is true for any
node of U(M) of length 1, we have that rank(U(M)) < a.

The proof of (B) is very similar. Indeed, if M is such that rank(U(M)) = « then
(A) implies that sd(M) > «. Suppose then sd(M) > «. We then claim that there
is p € U(M) such that p has length n 4+ 1 and sd(MnH) «. Suppose otherwise.
Thus the following is true:

(**) whenever p € U(M) is of length n+ 1, either sd(M? ;) > o or sd(M} ;) < a.
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We now inductively define (p; : i < w) such that for all i < w,
L. p; € UM),
2. piy1 extends p;,
3. p; has length 7 + 1,
4. sd(MPy) > o

Let pg € U(M) be of length 1 and such that sd(M}°) > «. There is indeed such
a po as all Q-structures used in M would have shortness degree < a implying that
sd(M) < a. (**) now implies that in fact sd(M?T°) > «. Repeating this construction
w times produces our desired sequence. It now follows that U (M) is not well-founded,
which is a contradiction and hence, (B) holds. O

Lemma 3.8.14 Suppose M is a transitive model of ZFC, M € M and M is a
potential sts premouse. Then M F “M is potential sts premouse”.

Proof. It follows from Lemma 3.8.11 that it is enough to establish that sd(M) € M.
But this follows from the fact that U(M) € M (and hence, rank(U(M)) € M) and
sd(M) = rank(U(M)). O

Authenticated potential sts premouse

Definition 3.8.15 Suppose M is an unindexed ses over X based on P and Q@ € M
is a potential sts premouse over some #-lsa type hod-like Ises S. We say Q is M-
authenticated if the following clauses hold:

1. M has at least w many Woodin cardinals > ord(Q).

2. Letting (0; : ¢ < w) be the first w Woodin cardinals of M that are strictly
greater than ord(Q), the following holds in M: Q is < Ord-iterable above ¢°
via a strategy A such that letting A = sup,_,, d;, for every generic g C Coll(w, <
A), A has an extension AT € D(M, ), g) such that

(a) D(M, A, g) E “AT is an w;-iteration strategy” and

(b) whenever R € D(M, ), g) is a AT-iterate of Q above §° and t € R is an
indexable stack on m*(7") according to X%,
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Mlg] E “t is (P, LM)-authenticated” .

Being M-authenticated is a first order property of M, and so we write M E “Q is
authenticated” for the statement Q is M-authenticated. -

The definition of short tree strategy premouse

Let Up(x,y) be the formula in the language of unindexed ses expressing the state-
ment that “x is an ordinal and y is the universe up to wa”. Thus, Uy(x,y) defines
the function v — M|w~y over any ses M.

Definition 3.8.16 We let stsp(x, y) be the formula in the language of ses expressing
the following: there is an ordinal 7 such that letting M be such that Uy(y, M), the
following clauses hold:

1. M F ZFC.

2. xis a normal iteration tree of limit length and y is a cofinal well-founded branch
of x.

3. M F “Q(y, ) exists and is an authenticated potential sts premouse”.

4. For any well founded branch 3’ of  and an ordinal 4/, letting M’ be such that
U, M), if
(&) y 7y,
(b) M'E ZFC, and
(c) M'E “Q(V,T) exists and is an authenticated potential sts premouse”,

then letting Q = Q(y,z) and Q" = Q(v/, ), either (v, sd(Q)) <jex (7, 5d(Q'))
or (7,sd(Q)) = (v/,sd(Q")) and b <, V.

_|

Definition 3.8.17 (Sts-indexed ses, Sts mouse) Suppose X is a self-well-ordered
set and P € X is a hod-like #-lsa type Ises. Let sts be the stsy-sts indexing scheme®”.
We say M is an sts premouse over X based on P if M is an sts-indexed ses over
X based on P. If additionally M is w; + 1-iterable the we say that M is an sts
mouse.® =

66The witness for ¢ being (P, 2™)-authenticated is in M
67See Definition 3.6.4.
68Here implicit in this is the demand that iterates of P according to the strategy are sts premice.



122 CHAPTER 3. SHORT TREE STRATEGY MICE

The following is an easy lemma.

Lemma 3.8.18 Suppose M is a transitive set and M € M. Then M is an sts
premouse if and only if M F “M is an sts premosue”.

The following is a corollary to Lemma 3.6.8. It implies that the certified O-
structures themselves are sts premice.

Lemma 3.8.19 Suppose P is a uniformly® sts-organized #-Isa type hod like Ises.
Suppose T is a normal nuvs tree on P and b is well-founded branch of T such that
Q(b, T) exists. Then Q(b, T) is an sts premouse based on m™(T).

Remark 3.8.20 (On how branches get indexed) The first key point is that M|~y
in Definition 3.8.9 is not the analogue of M|S in Definition 2.3.3. The analogue of

M| in the sense of Definition 2.3.3 is M itself. Recall that the indexing scheme is

not ¥, but rather ®,, and so the relevant definitions for determining the analogue

of M|p in the sense of Definition 2.3.3 are Definition 3.8.16 and Definition 3.8.17.

Definition 2.3.10 introduced layered hybrid J-structures, and a key aspect of
that definition is the indexing of branches. The indexing scheme ¢ (in the sense of
Definition 2.3.10) is only picking the iteration trees that we would like to index, where
the branches are indexed is then uniquely determined by the procedure described in
Definition 2.3.10. Definition 3.8.16 and Definition 3.8.17 are relevant definitions, and
explain what the ¢ in Definition 2.3.10 should be.

The reader may wonder why we have concentrated so much on nuvs iterations.
The point is that clause 4b of Definition 3.6.4 requires that we add the branches of
uvs iterations, and these branches are not branches that we intend to certify. These
branches are told to the model by consulting an outside strategy. It is only the
branches of nuvs iterations, the ones that appear in clause 4b of Definition 3.6.4, are
being certified. The schemes introduced in Definition 3.8.9 determine our certification
procedures. =

Definition 3.8.21 (A-sts premouse) Suppose X is a self-well-ordered set, P € X
is a hod-like #-lsa type Ises, A is an st-strategy for P and M is an sts premouse
over X based on P. Then we say M is a A-sts premouse over X based on P if
M CA M. 4

Definition 3.8.22 (A-sts mouse) Suppose X is a self-well-ordered set, P € X is
a hod-like #-Isa type Ises, A is an st-strategy for P and M is a A-sts premouse over

69See Definition 3.6.7.
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X based on P. Then we say M is a A-sts mouse over X based on P if M has an
wy + l-iteration strategy ¥ such that whenever N is a Y-iterate of M via X, M is a
A-sts premouse over X based on P.

We say M is a A-sts (pre)mouse over P if M is a A-sts (pre)mouse over J,[P)]
based on P. -

3.9 The hod premouse indexing scheme

The goal of this short section is to introduce the hod premouse indexing scheme (hp
indexing scheme). This scheme combines the standard indexing scheme with the
sts indexing scheme The standard indexing scheme which is used in [30] is due to
Woodin. According to this scheme we must pick the least iteration whose branch has
not yet been indexed in the strategy predicate and index the branch of this iteration
in the strategy predicate. Below we give a formal definition of the hp indexing
scheme.

The reader may find it helpful to review Definition 2.3.3 and Definition 2.5.5.
In particular, the reader should keep in mind that the intended universes where
indexing schemes are evaluated are the models of the form M|w/ of Notation 2.3.2.
Thus, these universes themselves are not hod like Ises (see Definition 2.7.10). But
each such M|wp has a its own predicate Y *“? which is what we will use below to
describe the hp-indexing scheme. Perhaps reviewing Remark 2.5.7 may clarify some
of the questions that the reader might have.

Definition 3.9.1 We say that Ises M is strategy-ready if letting ¢« = ord(YM),
wt + w? < ord(M). -

Definition 3.9.2 (Hod premouse indexing scheme, hp indexing scheme) We
say ¢(z,y) is the hod premouse indexing scheme (hp indexing scheme) if ¢ is
the conjunction of the following clauses.

1. The universe is closed (see Definition 2.3.15).

2. The universe is strategy-ready (see Definition 3.9.1).
3.z =UYV.

4. If z is 1sa like then

(a) V is an sts premouse over V|t + w based on z (see Definition 3.8.17),
(b) sts[y).
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5. If = is not Isa like then y is the <j-least sequential structure of the form
(T, (TY), TY, €) where TV is a stack on z that is according to ¥, and doesn’t
have a last model.

We let hp denote the hp-indexing scheme. -

Remark 3.9.3 The determination of the Y predicate of the models appearing in
the hod pair constructions (see Definition 4.3.3) is an important step in such con-
structions. =

The next definition isolates the standard indexing scheme. It is defined in the
language of ses which has a constant symbol for a structure whose strategy is indexed
on the sequence of ses. We let P be this constant.

Definition 3.9.4 We say ¢(y) is the standard indexing scheme (sis-indexing
scheme) if ¢ expresses the following statement: y is then <;-least sequential structure
of the form (J7,(TY),TY,€) where T¥ is a stack on P that is according to 3 and
1h(77Y) is a limit ordinal. We let sis denote the sis indexing scheme. .

Remark 3.9.5 Woodin’s method of feeding the branch information into the model
(as described in clause 4 of Definition 3.9.2) is easy to comprehend and allows us to
develop the basic theory of hod mice in this manuscript; however, it does not seem
to allow for the proof of [ to generalize easily. An alternative method to feeding
in branch information that does allow for the [J proof to generalize is to use the
$B-operator (see [50]). This method is summarized in Section 11.1; we also describe
where the [J proof seems to break down if Woodin’s method was used. Nevertheless,
a hod mouse constructed using Woodin’s method constructs the same sets as the one
using the B-operator (given that everything else is the same). Woodin’s method is
used from now on to the end of Chapter 10 because of its simplicity. -

3.10 Hod mice

The main goal of this section is to introduce Isa small hod premice. The reader might
find it helpful to review Section 2.7. In particular, we will use Definition 2.6.11,
Definition 2.7.1, Definition 2.7.2, Definition 2.7.3, Definition 2.7.8, Definition 2.7.10,
Notation 2.7.14, and Terminology 2.7.17. Also recall our convention introduced in
Remark 2.7.5. According to this convention all our hod-like Ises are lsa small.

We start by isolating the types of points in Y” where P is hod-like Ises.

Notation 3.10.1 (Meek and Isa points) Suppose P is a hod-like Ises.
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1. meek(P) ={Q € Y?” : Q is meek™}.
2. Isa(P) = {Q € YP : Q is of #-lsa type™'}.
3. ml(P)=Y"™.
4

Definition 2.7.1 and Definition 2.7.10 do most of the job that we need to do to
define hod premice. Essentially what is missing from Definition 2.7.10 is the exact
nature of premice at Isa layers. In the next definition, we will not repeat what has
already been introduced in Definition 2.7.1 and Definition 2.7.10.

Definition 3.10.2 (Hod premouse) Suppose P is a (Isa small) hod-like Ises™. Let
(Peer: € <mAE <) be the sequence of layers of P and (¢, teer : € <nAE < )
be the sequence of ordinal parameters associated with it (see Definition 2.7.8). We
say P is an Isa small hod premouse or just a hod premouse if P is hp-indexed™
hod-like Ises that has the following properties:

1. Suppose v is a cutpoint of P. Then the following holds.

a) If P is meek and v < 67 then P F “OF  has an Ord-strategy (sts strate
v gy gy
respectively) acting on iteration trees that are above™ v”.

(b) If P is non-meek and v < §” then P|6” E “O}, has a 0"-strategy acting
on trees that are above v”.

2. If P is of successor type™, € +1 =n and Q = P, then for any n € (6<,67),
P E “Plnt is (Ord, Ord)-iterable for stacks that are above ord(Q)”.

3. If P is of lsa type and n € (ord(P?),d") then P|67 F “Pln* is (Ord, Ord)-
iterable for stacks that are above ord(P?)”

Next we define hod pairs.

"See Definition 2.7.1.

"1See Definition 2.7.3.

"2This object was introduced in Definition 2.7.14.
"3See Definition 2.7.1 and Definition 2.7.10.
"See Definition 3.9.2.

"See Terminology 2.4.8.

"6See Terminology 2.7.17
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Definition 3.10.3 (Hod pairs) We say (P, X) is a (simple) hod pair if (P, ) is a
(simple) hod-like Ises pair’”, P is a hod premouse and ¥ has hull condensation.

Next we introduce the collection of sets generated by hod pairs.

Definition 3.10.4 (I'(P, X) and B(P, X)) Suppose (P,X) is a hod pair of limit
type. We then let

B(P,%)={(T,Q): IR((T,R) € I(P,%) A Q Jjog R")}, and
T(P,%) = {ACR:3(T,Q) € B(P,%)(A <, Code(Sg 1)}

_|

Definition 3.10.5 (Pre-sts hod pairs) We say (P,3) is a pre-sts hod pair if
(P,Y) is a hod-like st-type pair’™® and X is a (k, \, v)-st-strategy for P with hull
condensation.

We say (P, X) is a simple pre-sts hod pair if (P,Y) is a hod-like st-type pair
and X is a (A, v)-st-strategy for P with hull condensation. —

To define sts hod pairs, we will make use of the notation introduced in Defini-
tion 3.3.9. Recall that in Definition 3.3.9, we introduced I'’(P,¥) but not I'(P, ).
We will define I'(P, 3) for sts hod pairs in Section 8.1.

Suppose now that X is a self-well-ordered set, (P, X)) is a pre-sts pair such that
P € X and Q is a Y-sts mouse over X based on P. Let A be the strategy of Q. We
then let I'(Q, A) be the collection of all sets of reals A such that for some A-iterate
R of Q, there is (T,S) € B(P,X®) such that A <, Xs 7.

Definition 3.10.6 (Sts hod pairs) Wesay (P, X) is an sts hod pair if (P, Y) is a
pre-sts pair such that whenever (7, R, 7) is such that letting (Ree : € <nAE < 1)
be the sequence of layers of R and (J¢,teer @ € < nAE < vg) be the sequence of
ordinal parameters associated with it (see Definition 2.7.8),

1. (T,R) € I(P,%)™ and
2. Rro € lsa(R) and §, < 6%,

then R, has an iteration strategy ® € I'’(P, X)) witnessing that R, ; is a YR, 0,7-StS
mouse based on R, and such that T'(R,;,®) C [*(P, ).
Similarly we can define simple sts hod pairs. .

"7See Definition 2.10.12.

"8See Definition 3.4.2.

"See Definition 3.3.7.

80Thus, all the iterates of R, via ® are above ord(R; ) = tr 0.
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Definition 3.10.7 We say (P, X) is an allowable pair if it is one of the hod pairs
introduced above. More precisely, one of the following holds:

1 is a hod pair.

3

(P, YD)

2. (P,%) is a simple hod pair.
. (P,X) is an sts hod pair.
. (P,%)

4

is a simple sts hod pair.

In the context of AD™, unless otherwise specified, the strategy component of any of
the above pairs will always be (wy, wy,w;) or (wy,w) strategy or st-strategies. -

Definition 3.10.6 imposes conditions on sts hod pairs that may seem unnatural.
However, these conditions are needed to prove that sts hod pairs behave nicely. These
clauses will be used in Chapter 6.
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Chapter 4

A comparison theory of hod mice

This section is devoted to proving a comparison theorem for hod pairs. We will have
two comparison theorems, Corollary 4.13.3 and Corollary 4.14.4. Corollary 4.13.3 is
useful in determinacy context while Corollary 4.14.4 is useful in Core Model Induction
applications. The following is a key hypothesis used in many of the theorems of this
chapter.

Definition 4.0.1 We let NsesS stand for the statement “there is no w;-iterable ses
with a superstrong cardinal”. .

4.1 Backgrounds and Suslin capturing

The goal of this section is to introduce backgrounds and the concept of Suslin, co-
Suslin capturing. We will use these notions to build hod pairs with desired properties,
such as fullness preservation and branch condensation. Before we do this, we fix a
coding of hereditarily countable sets by reals. We will use this coding throughout
this book.

Definition 4.1.1 Given a real z € R, we let £, = {(m,n) : z(2m3") = 1}. We
let x € Code if m, =45 (w, E;) is a well-founded model satisfying the Axiom of
Extensionality. If x € Code then we let 7, : m, — M, be the transitive collapse of
m, and let ¢, = m,(0) = {m.(m) : (2™) = 1}. We then say that x codes c,. .

Recall that HC is the set of hereditarily countable sets (see Definition 3.3.8).
Given n € w and A C HC" we let Code(A) = {x € Code : ¢, € A}. Notice that

Code : Upewp(HC") — p(R)

129
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is an injective function.
Definition 4.1.2 Let (p; : ¢ < w) be the sequence of prime numbers. Let
merge : R=¥ — R
be given by merge(q) = y if letting ¢ = (¥;)i<n,
¥ = {yﬂ’(ﬁ) =
0 : otherwise.

_|

Notation 4.1.3 If M is a transitive set and o < ord(M) then we let M| = VM.
_|

Definition 4.1.4 (Background) We say
M = (M, 5, G)
is a background if
1. M E ZFC+ “0 is a Woodin cardinal”,

2.G: 6 — VM is a partial function such that for each o € dom(é), for some
(K, \), M E “G(a) is a (k, \)-extender such that M|\ C Ult(M,G(a)) and X

is inaccessible”,
3. M E “G witnesses that ¢ is a Woodin cardinal”!,
We say
M = (M,5,G, %)

is an internally iterable background if in addition to the three clauses above, the
following clauses hold:

1. ¥ € M and M E “¥ is a winning strategy for I in the version of the iteration
game G(M, 5,6 + 1) in which player I is required to choose extenders whose
(natural) lengths are inaccessible cardinals in the model they are chosen from
and are also below the image of §”.

Te., ME« for every A C ¢ there is x such that for every A <4 there is a o with the property
that letting £ = G(«), crit(E) = &, Ih(E) > X and AN1h(F) = mg(A) N1h(E).
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2. X has hull condensation,
3. dom(X) C J,(VHM).

We say M = (M, 6, G, Y)) is an externally iterable background if (M, 9, é)
is a background and ¥ is a winning strategy for I1 in the version of G(M,w,w;)
mention in clause 1 above. We say M = (M, 4, G, Y)) is an iterable background if
it is either internally or externally iterable background.

We say that an externally iterable background (M, 6, G , %) is self-knowledgable
if (M,5,G,% | J,(M|8)) is an internally iterable background.

Suppose (M, J, G, Y)) is a background and N is a Y-iterate of M. Let i : M — N
be the iteration embedding. We set

—

My = (N,i(9),1(G), XnN).

In most cases considered in this book, >x won’t depend on the iteration producing
N. 4

Suppose M = (M, 9, é, Y)) is an externally iterable background and A C R. We
review the standard capturing notions (for example see [60] or [58] and references
presented in those papers). We say M Suslin captures A at an M-cardinal 7 if there is
a tree T' € M such that whenever N is a >-iterate of M with ¢ : M — N the iteration
embedding and whenever g is < i(n)-generic over N, (p[i(T)])V9 = AN N[g]. We
say M Suslin, co-Suslin captures A at 7 if it Suslin captures both A and A€ at . We
say M Suslin captures A if M Suslin captures A at (67)™, and similarly M Suslin,
co-Suslin captures A if M Suslin, co-Suslin captures A at (6+)M.

Finally we recall the notion of self-capturing background (Definition 2.24 of [30]).

Definition 4.1.5 Suppose M = (M, 4, G, Y)) is a self-knowledgable, externally it-
erable background. We say M is self-capturing if ¥ is positional®> and for every
M-inaccessible cardinal A < § there is a name X € MM guch that for any
M-generic g C Coll(w, M|X), (Mlg], 9, G, ) Suslin, co-Suslin captures Code(Xyy»)
at (67)M as witnessed by X, = (T, 5). .

Theorem 4.1.12 is the main method for producing self-capturing backgrounds.

Le. whenever N is a ¥-iterate of M via X, Xy v is independent of X. See [30, Definition 2.35].
3Here we abuse the notation a bit. In reality we should use ¥’ which is the portion of ¥ that
acts on stacks above \ + 1.
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4.1.1 Capturing pointclasses

We recall the definition of a good pointclass (see [58, Definition 9.12]). Unlike [58,
Definition 9.12] we include scale property into the definition of good pointclass.

Definition 4.1.6 We say [" is a good pointclass if I' is closed under recursive sub-
stitutions, is closed under quantification over w, is closed under existential quantifi-
cation over R, is w-parametrized* and has the scale property. -

Suppose I' is a good pointclass. For x € R, we let Cr(z) be the largest countable
['(x)-set of reals. For transitive a € HC® and surjection g : w — a, we let a, be the
real coding (a, €) via g. More precisely,

1: k=273"and g(m) € g(n
ay(k) =1 o and glm) € 90
0: otherwise.

Clearly M,, = (a,€). If b C a, then we let b, = {m : g(m) € b}. We then let
Cr(a) = {b C a: for comeager many g : w — a, b, € Cr(ay)}.
Continuing with I'; we say P is a I'-Woodin if there is a P-cardinal §p such that

1. P is countable,

2. P =Cr(Cr(Vh)),

3. PFE “p is the only Woodin cardinal” and

4. for every n < dp, Cr(V,) E “n is not a Woodin cardinal”.
We say (P,¥) is a I'-Woodin pair if

1. ¥ is an wy-iteration strategy for P and

2. for every U-iterate Q of P, @Q is a I'~-Woodin®.

Woodin, assuming AD", showed that if I' is a good pointclass not closed under V¥
then there are I'~-Woodin pairs (see [58, Theorem 10.3]). To learn more on Woodin’s
work one may consult [33].

Suppose I' is a good pointclass and (P, V) is a I'-Woodin pair. Let Ly be the
extension of the language of set theory obtained by adding one predicate symbol ¥

4This means that there is U C w x R such that U € T and {ACR: A€ T} ={U.:e € w}.

SHC is the set of hereditarily countable sets.

6P is a coarse structure, there is no notion of dropping for iterations of P, so P-to-Q embedding
always exists.
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and one constant symbol e. The intended interpretation of W is Code(V). e wlll
denote a real number. Given u € R, we define 7, (¥, u) to be the set of (¢, Z) such
that ¢ is a ¥,-formula in Lg, £ € R™ where m is the number of free variables of ¢
and

(HC, Code(V), u, €) F ¢[z].

We let T) (V) =T (¥, 0).

Next we code T)(¥,u) by a set of reals as follows. First let Gy be the set of
natural numbers that are Godel numbers for Lg-formulae. We say y € R is U-
appropriate if y(0) is a Godel number of an Ly formula. If y is W-appropriate then
we let ¢, be the formula that y(0) codes and [, be the number of free variables of ¢,.
Let (p; : @ < w) be the sequence of prime numbers in increasing order. For i <[, let
y; € R be such that for all k € w, y;(k) = y(p¥™). If y is U-appropriate then we say
y is neat if for all &’ such that &’ # 0 and k' & {pF : i <, ANk € w}, y(K') = 0. Let
then T, (W, u) be the set of W-appropriate neat y € R such that

(0, merge(y; : 1 < 1)) € T,(V,w).

Again, set T,,(V) = T,,(¥,0).

Suppose z € R, ¢ is an Ly-formula with [+ 1 free variables and (z; : 2 <i <) €
R™. Let yo € R be such that y,(0) is the Gédel number of ¢ and for i > 0, yo(i) = 0.
Let y; = z and for 2 < i <[, y; = z;. Set a(¢p,z,7) = merge((y; : ¢ < 1)). Notice
that (¢, z,Z) is uniquely determined by a(¢, z, ¥). In fact, the function (¢, z, Z) —
a(¢, z, T) is a I1Y injection.

Assuming AD, if A C R then w(A) is its Wadge rank, and if I" is a pointclass
then w(I') = sup{w(A): A e I'}.

Notation 4.1.7 Suppose I' is a pointclass closed under continous preimages and
A CR. We say A is a least upper bound for I'if ' = {B C R : w(B) < w(A)}. Set
then lub(T") = {A C R : A is a least upper bound for T'}. .

Definition 4.1.8 Suppose I' is any pointclass closed under the continuous preim-
ages. We say that the tuple (M, (P, ¥),I"*, A) Suslin, co-Suslin captures I' if the
following conditions hold:

1. A€ lub(l),
2. T is the least good pointclass such that I' C Arp-.

3. (P,V) is a I'"*~-Woodin pair.
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4. (P,dp,¥) Suslin, co-Suslin captures A.
5. M is a self-capturing background.

6. M Suslin, co-Suslin captures the sequence (7,,(¥) : n < w).

_|

Notation 4.1.9 Suppose I' is a pointclass closed under the continuous preimages,
C= M, (P,¥),I"*, A) Suslin, co-Suslin captures I and M = (M, 4, G,%). If N is a
Y-iterate of M then we set Cy = (My, (P, V), ", A). =

The following is an important yet straightforward lemma that we will use through-
out this book.

Terminology 4.1.10 Below and throughout this book we say that “g is < n-
generic” to mean that the poset for which ¢ is generic has size < 7. Similarly
we say that “g is < n generic” to mean that the poset for which ¢ is generic has size
<n. -

Lemma 4.1.11 (Correctness of backgrounds) Suppose (M, (P, ¥),T*, A) Suslin,
co-Suslin captures I and set Ml = (M, 6, G, Y)). Suppose z € RNM. Let (S,,,U, :n <
w) € M be the sequence of trees on w x (67)M such that (S, U,) Suslin, co-Suslin
captures T,,(¥). Let g be < d-generic over M. Then for any real u € M|g],

(HCMI, Code(W) N Mg], u, €) < (HC, Code(¥), u, €).

Proof. 1t is enough to verify that if ¢ is a formula, m + 1 is the number of its
free variables and Z € R™ N M|g] then if (HC, Code(¥), €) E Jve[v, ] then there is
v € M[g]NR such that (HC, Code(¥), €) E ¢[v, Z]. Let n be such that ¢ is 3,,. Then
there is v such that a(¢,v, Z) € T, (V).

Working in Mg], let S" = {(s,h) € S, : s(0) is the Gédel number of ¢}, and let
S be the tree on w x § whose branches are pairs (y/, f) € R x §* with the property
that if y = a(¢,y, Z) then (y, f) € [9].

We now have that whenever h is any Coll(w,d)-generic extension of MIg], in
M]gl[h], p[S] is the set of 3 € RMWI such that if y = a(¢,y/, ) then y € p[S].
Because S, Suslin captures 7},(¥) we have that (p[S])*19 # (7. Notice next that if

"This follows from genericity iterations. One can iterate M|g] via ¥ to obtain i : M[g] — N
such that (p[i(S)])™ # 0. For example if v is generic over N for the extender algebra at i(5) then

v € (pli(S))™.
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v € p[S] N M|g] then (HC, Code(V), €) E ¢[v, 7]. O

Self-capturing backgrounds are very useful for building hod pairs and proving
comparison. The following theorem of Woodin shows that under AD™, self-capturing
backgrounds are abundant. [33] has an outline of the proof of Theorem 4.1.12.

Theorem 4.1.12 (Woodin, Theorem 10.3 of [58]) Assume AD". Suppose T' is
a good pointclass and there is a good pointclass T'* such that T' C Arp«. Suppose (N, W)
is I*-Woodin which Suslin, co-Suslin captures some A € lub(I'). There is then a
function F defined on R such that for a Turing cone of x, F(x) = (N}, My, 0., 2,)
15 such that

1. N e Ll[ZL‘],

3. M, is a W-mouse over z: in fact, M, = M} (x)|r, where r, is the least
inaccessible cardinal of MY (x) that is > 6,,

4. N} E %0, is the only Woodin cardinal”,
5. X, is the unique iteration strateqy of M.,

6. N} = L(My,\) where A =%, | dom(A) and

dom(A) = {T € M, : T is a normal iteration tree on My, 1h(T) is a limit
ordinal and T is below 0},

7. setting G = {(a, EN? (a)) : N* E “Ih(EN: () is an inaccessible cardinal <
6.} and M, = (N}, 6,,G,%,), (M,, (N, W), T* A) Suslin, co-Suslin captures
s,

4.1.2 The meaning of Lp', HP! and Mice"

The reader may find it helpful to review Definition 3.9.4 and Definition 3.10.7. Recall
that we say X is self-well-ordered if there is a wellordering of | X | in J;(X) definable
over Jo(X).

8Hence, (N}, 6., G, ¥.) is a self-capturing background.
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Definition 4.1.13 (The Lp function) Suppose I' is a pointclass and (P, X) is an
allowable pair® such that Code(X) € I'. Suppose X is a self-well-ordered set such
that P € X.

1. If ¥ is an iteration strategy then Lp"*(X) is the stack of all sound (X, sis)-
mice M over X based on P! such that p(M) = ord(tre(X))' and M has a
strategy in I'.

2. If ¥ is a st-strategy Lp""*(X) is the stack of all sound ¥-sts mice M over X
based on P such that p(M) = ord(tre(X)) and M has a strategy in T2,

We set Lp">(P) = Lp"*(J.[P]). B

Below if U is an iteration strategy or an st-strategy then we let My be the
structure that W is iterating.

Notation 4.1.14 Suppose I' is a pointclass. Following Section 2.5 of [30] we let

Hp" = {(P,%) : (P, %) is an allowable pair such that Code(X) € I'}
Mice' = {(a, %, M) : a € HC A a is a self-well-ordered A (My, %) € Hp' A My €
a A M <QLp"(a) A p(M) = ord(tre(a))}

and given (P, %) € Hp',

Micet. = {(a, M) : a € HC A @ is a self-well-ordered AP € a A M <
Lp"*(a) A p(M) = ord(tre(a))}

When I' = p(R), we omit it from our notation.

Suppose A C R with w(I") < w(A). We say o € R is an A-code if ¢(0) is a Godel
number for some formula ¢, and if B is the set of reals definable over (HC, A, 0, €)
via '3 then B € rge(Code). We then let C, = Code '(B) and ACode be the set of
A-codes.

Given a set A C R with w(I') < w(A), we let Code(Hp", A) be the set of o €
ACode such that C, € Hp'. If ¢ € Code(Hp", A) then we let (P,,%,) be the pair
determined by o.

9See Definition 3.10.7.

10Gee Definition 2.5.2, Definition 2.5.8 and Definition 3.9.4.

1 Qur fine structural notation was introduced in Definition 2.2.3.

12From here on, “Lp” means “g-organized Lp” as defined in [50] unless explicitly stated otherwise.
We will occasionally remind the reader of this convention. The reason we need to use g-organization

is so that S-constructions go through.
e, u€ B+ (HC, A, 0,€) F ¢ul.



4.1. BACKGROUNDS AND SUSLIN CAPTURING 137

Given a set A C R with w(T") < w(A), we let Code(Mice", A) be the set of (¢, o)
such that og € ACode, 0; € ACode and C,, = Micegao.

Given a set A C R with w(I') < w(A), we let Ar be the set of triples (og, 01, 02)
such that

1. For each 7 < 3, 0; € ACode,
2. 09 € HP',
3. Cy, = (a, 24y, M) € Mice",
4. C,, is the unique wy-iteration strategy of M.
4

The following is an easy consequence of Lemma 4.1.11. It follows from the fact
that each of

Code(A)r, Code(Hp", A) and Code(Mice", A).
is definable over (HC, Code(V), €), where (P, ¥) is as below.

Corollary 4.1.15 Suppose M = (M, 4, G, Y) and (M, (P, ¥),T*, A) Suslin, co-Suslin
captures I'. Then M Suslin, co-Suslin captures

Code(A)rp, Code(Hp", A) and Code(Mice', A).

4.1.3 Internalizing HP"

Suppose next that I' is a pointclass and (M, (P, V), ['*, A) Suslin, co-Suslin captures
I'. In Section 4.3, we will describe the I'-hod pair construction of Ml that produces
hod pairs. When describing this construction, we will use the following concepts and
simple observations.

Definition 4.1.16 Suppose M is a transitive model of ZFC, X € M and ¢ is a
formula. We say (X, ¢) is (M, n)-generically absolute if for some 6 > 7 such that
X e VM forall Y < (VM,X,n €) such that Y € M and M F “Y is countable”,
letting Ny be the transitive collapse of Y and 7y : Y — Ny be the collapse map,
whenever g € M is < m(n)-generic over Ny and x € Ny[g] N R,

Nylg] F ¢lmy (X),a] & M & ¢[X, 2],
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Definition 4.1.17 Suppose M is a transitive model of ZFC, X € M and ¢ is a
formula. We say (X, ¢) is (M,n, a)-generically absolute if a < n and whenever
g € Coll(w, M|a) is M-generic, ((X,g),®) is (M|g],n)-generically absolute.

The following theorem can be proven by using the Tree Production Lemma (see
[59, Lemma 4.1]).

Lemma 4.1.18 Suppose M is a transitive model of ZFC and (X, ¢) is (M,n)-
generically absolute. There is then a pair (7,5) € ODY such that (T,5) is
< p-absolutely complementing and whenever g is < n-generic

(p[T])M) = {2 : Mg] F ¢[X, 2]}

Definition 4.1.19 Suppose I' is a pointclass, (M, (P, ¥),I"*, A) Suslin, co-Suslin
captures I', M = (M, §, G, %) and (X, ¢) is (M, §, «)-generically absolute.
We then write

M E (X, ¢) € Hp"

to mean that the following holds.

Whenever g C Coll(w, M|a) is M-generic, there is a real ¢ € M[g]NCode(Hp", A)
such that letting 7 be the formula coded by ¢(0), whenever h is < d-generic over
Mlg], in Mg][hl],

{z € R: ¢[(X, g),2]} = {a: (HCY, A1 Mg][h], 0, €) & 7le,]}.
where ¢, is the set coded by . -

The following lemma is a straightforward consequence of genericity iterations.

Lemma 4.1.20 Suppose I" is a pointclass, (M, (P, ¥),I'*, A) Suslin, co-Suslin cap-
tures I', Ml = (M, 9, G, %), (X, ) is (M, d, a)-generically absolute and M F (X, ¢) €
Hp'. Suppose g € Coll(w, M|a) is M-generic and oy, 0, € M|[g] N Code(Hp', A) are
two reals witnessing that M F (X, ¢) € Hp'. Then (P,,, L0y) = (Poy, Xy )-

The following now is not hard to show. It follows from Lemma 4.1.11, which
implies that

(HCMUI 4 A Mg][h], 0, €) < (HC, A, 0, €),

and also from Lemma 4.1.18.
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Lemma 4.1.21 Suppose I" is a pointclass, (M, (P, ¥),I'*, A) Suslin, co-Suslin cap-
tures I', M = (M, 9, Cj,Z) and (X, ¢) is (M, d, «)-generically absolute. Suppose
further that g C Coll(w, M|a) is M-generic, ¢ € M[g]N Code(Hp", A) witnesses that
M E (X, ¢) € Hp' and 7 is the formula coded by o(0). Set u € C' if and only if

there is an iteration ¢ : M — N according to 3 such that crit(i) > « and for some
Nlgl]-generic h C Coll(w,i(d)), u € N|g|[h] and Nlg|[h] E T[c.].

Then Code '(C) = (P,,%,) € HP" and C is Suslin, co-Suslin captured by
(Mg}, 8,%).

4.2 Fully backgrounded constructions relative to
short tree strategy

Suppose (M, 9, G, ¥)) is an iterable background and P € V{7 is a #-lsa type hod
premouse ( see Definition 2.7.3). Suppose A € M is a (d,0,0) st-strategy for P and
X € VM is a transitive self-well-ordered set such that P € X. We can then define the
model J E’A(X ) exactly like in the case A is an iteration strategy. The construction
will ensure that the model J &4 (X) is an sts premouse over X based on P. Here is
the precise definition.

Recall that if (M, : a < §) is a sequence of J-structures and ¢ is a limit ordinal
then M = limq_,¢ M, is the J-structure with the property that for each 3 such that
jﬁM is defined, there is v < £ such that for all a € (v,§), J3"* = jBM.

Suppose (M, 9, G, ¥)) is an internally or externally iterable background, A C V#
and E € VM is an extender. Then we say E coheres or reflects A if v(E) is an
inaccessible cardinal of M, VV]‘(JE) CUlt(M, E) and AﬂVV]‘é) =7mg(A) OV%E). Recall
that an Ises M is reliable if for all k, core,(M) exists and (corex(M), k) is wy + 1-
iterable (see Definition 2.2.3 and [23, Chapter 11]). Finally recall our notation | M |
denoting the universe of M. This notation was introduced in Section 2.1. Finally
recall that sts premice are sts-indexed (see Definition 3.8.16 and Definition 3.8.17).

As was stated many times, in this book we are mostly concerned with new issues
that arise from dealing with sts mice. Reproving all the well-established facts will
add 1000s of more pages to this book without adding any new ideas. In particular,
our exposition of the fully backgrounded constructions heavily relies on [23] and [17,
Chapter 5]. The later proves the uniqueness of the next extender in full generality.
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Definition 4.2.1 Suppose (M, 6,G) is a background and (P,A) € M is an sts hod
pairt?, A is (4,6, 6) st-strategy for P and X € Vi is a transitive self-well-ordered set
such that P € X. Suppose further that A has hull condensation. Then

Le((PvA)aX) = (M’Y7N’Y7Ff;~_7F’Wb’y e S 5)

is the output of the fully backgrounded construction of (M, d, é) relative to
A done over X using the coherence condition if the following conditions hold.

1. My = J,(X), and for all v < 0, each of M, and N, is either undefined or is
a A-sts premouse’®.

2. If for some £ < 1, N is defined but is not a reliable sts premouse over X based
on P then all other objects with index > ¢ are undefined.

3. Suppose for some & < 0, for all v < &, both M., and N, are defined. Then
Mey1, Neqi, FE, Fe and be are determined as follows.

(a) Suppoie M = (Ju%f, e, F, f) is a passive ses'® and there is an extender
F* € G, an extender F' over Mg, and an ordinal v < wa such that
i v <v(F*),
ii. F=FnN([v]*x|[M¢]), and
iii. setting
New = (JES €, B, f,F)
where F is the amenable code of F'7, clause 2 fails for & + 1.

Then My, = core(Ney1)'®, F = G(€) where ¢ is the least such that

—

F* = ((&) has the above properties, Fg = F N ([v]Y x [M¢]|) where v is
chosen so that the above clauses hold and b = 0.

(b) Suppose M, = (jﬁ,;f, e, F, f) is a passive ses, @ = 4+ and there is t =
(Po, T, P1,U) € [ M¢|lwB] Ndom(A) such that setting w = (J,(t),t, €),
w is (f,sts)-minimal as witnessed by ' and v = Ih(t). Set b = A(t) and

141n particular, A has hull condensation. An easy Skolem hull and a realizability argument implies
that if F is a countably complete total extender in M then mg(A) = A [ Ult(M, E).

15See Definition 3.8.21.

161 e., with no last predicate

1"For the definition of the “amenable code” see the last paragraph on page 14 of [60].

18Recall that core(M) is the core of M.

19Gee Definition 2.3.3. In particular, this means that we have to index the branch of ¢ at wa.
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'/\/’f+1:<\7E7f+ Euﬁvf76)

wph+wy?

where b C wf + w is defined by wf +wr € b <> v € b. Assuming clause
2 fails for £ + 1, Mgy = core(Ney1), F" = Fe = 0 and be = b.

Important Anomaly: Suppose t is nuvs and suppose e € M¢|wf is
such that M¢|wp E stso(t, €)?°. If e # b then N¢,; is not an sts premouse
over X based on P, and so clause 2 holds.

(c) If Mg doesn’t satisfy clause 2a or 2b then set Nepy = Jo,[Me

]. Assuming
clause 2 fails for £ + 1, M¢yy = core(Ney1), F” = Fe = be = 0.

4. Suppose £ < § is a limit ordinal and for all v < £, both M., and N, are defined.
Then M, and N are determined as follows?!. Set NV¢ = lim,—¢M,. Assuming
clause 2 fails for £, Mg = core(Ng).

9. M5:N§ and F5+:F§=b5:®.

We say that Le((P,A), X) is successful if for all £ < § clause 2 above fails. Given

Kk < d, we can also define Le((P, A), X)>, by requiring that in clause 3.a, crit(F) > &.
We will use the following terminology. We say Q is an AN-model of Le((P, A), X) >,

if for some v < 0, @ = N,,. Similarly we define M-model and other such expressions.

We say Q is the last model of Le((P,A), X)s, if Q@ =N, .

The fully backgrounded constructions of both [23] and [17, Chapter 5] do not
use the coherence condition. In most cases considered in this book, we also do not

need the coherence condition. The following theorem is essentially a corollary to |
Chapter 12].

Y

Theorem 4.2.2 Suppose (M, 5,G,Y) is an iterable background and (P,A) € M is
an sts hod pair, A is (8,0,0) st-strategy for P and X € VM is a transitive self-well-
ordered set such that P € X. Then for any k < 6, Le((P,A), X)>y is not successful
if and only if for some & < 0, the Anomaly stated in clause 3.b of Definition /.2.1
holds.

Remark 4.2.3 Assuming that (P,A) is a pair with the property that P is an
Ises and A is an iteration strategy for P with hull condensation, we could define

20See Definition 3.8.16. This means that e is the branch of ¢ we must choose.
21 Fe, be will be defined at the next stage of the induction as in clause 2.
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Le((P,A), X)>, just like above except in clause 3.b we require ¢ to be a stack
on P according to A, b = A(t) and w be (f,sis)-minimal (see Definition 3.9.4).
Le((P,A), X)>, can be defined for various types of strategies; in particular, it can
be defined for w;-strategies and for (ws,ws)-strategies. We also let Le be the con-
struction relative the (). Thus, the models of Le are simply ordinary premice. We
leave the details of the above mentioned constructions to the reader who may want
to consult [30, Definition 2.3]. =

The important comment in clause 3.b is a non-trivial matter. Recall that accord-
ing to our sts indexing scheme (see Definition 3.8.9), the branch we have to index at
stage £ in clause 3.b is e not b. However, if e # b then the resulting structure cannot
be a A-sts mouse. Thus, if e # b then we have to halt the construction. When A has
nice properties such as strong branch condensation (see Definition 4.9.2) then such
anomaly will never arise. See Remark 4.12.6 for an in-depth discussion of this issue.

4.3 Hod pair constructions

In this section we introduce the I'-hod pair constructions. The goal of such a con-
struction is to produce a hod pair (P, X) such that w(Code(X)) > w(T") but for any
hod initial segment Q <P, w(Code(Xg)) < w(T') (or equivalently (Q, ¥o) € Hp").

The reader may benefit from reviewing the concept of fully backgrounded con-
structions as presented in [23, Chapter 11 and Chapter 12]. Such constructions
inherit a strategy from the background model®? via the procedure described in [23,
Chapter 12]. Other forms of such constructions also have appeared in [16] and [15].

Suppose I' is a good pointclass and M = (M, 0, é, ¥)) is a background Suslin,
co-Suslin capturing I' (see Definition 4.1.8). We will work with M and I", but we will
omit both from our notations.

All concepts introduced here depend on M. For instance, E below should really
be EM. Also, all fully backgrounded constructions that we will use are fully back-
grounded constructions in the sense of VM| and if M is equipped with a distinguished
extender sequence then we tacitly assume that all the backgounded constructions use
extenders from this particular extender sequence.

The reader may find it helpful to review Definition 2.7.8, Definition 2.7.14, Ter-
minology 2.7.17, Definition 2.7.18 and Definition 3.10.7. We start by introducing
those hod premice that can be used as layers in the I'-hod pair construction.

22The model where the construction is being done.
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Definition 4.3.1 (CBL:) We say that an allowable pair (R, A) can be I'-layered or
is just I' — cbl if one of the following conditions hold:

1. R is a hod premouse of successor type and R = Lp, "= (R|6%).

2. R is a properly non-meek? hod premouse of limit type and letting x = 0%,
RY = Lp" =I5 (RY|k).

3. R is a gentle hod premouse such that if @ € Y® then (Q, Ag) is T’ — cbl.

_|

Recall that an Ises M over () set has a predicate, Y™, whose members are the layers
of the Ises (see Definition 2.3.13). Thus, below, when describing M.,, we must also
simultaneously define Y M.

®., below will be the iteration strategy induced by X essentially via the resurrec-
tion procedure describe in [23, Chapter 12]. The procedure described in [23, Chapter
12] only induces (wy,ws )-iteration strategies, but it is not hard to modify it to obtain
an (wq,ws,w;)-strategy (see Definition 2.10.6). We will give an outline of how to do
this after Definition 4.3.3.

Terminology 4.3.2 Suppose M is an Ises and a < ord(M). We say that a stack T
on M is below « if for every v < Ih(7) such that [0,7)7 N D7 =0, indz <, (a).
Similarly we define the meaning of “below a” for generalized stacks.

Suppose M is an Ises and Q@ I M. We say X is a strategy of M based on Q if
whenever 7T is according to X, 7 is below ord(Q). »

As was mentioned before, our exposition of the fully backgrounded constructions
heavily relies on [23] and [17, Chapter 5] . As was mentioned before, the later
reference proves the uniqueness of the next extender in full generality.

Definition 4.3.3 Suppose I is a pointclass, C = (M, (P, ), [*, A) Suslin, co-Suslin
captures I' and M = (M, §, G, %). Then

hpC = (M'Y’N'Y7Y"/7q)’77Ff\j_7F’yybfy 2y S 5)

is the output of the I-hod pair construction (I' — hpc) of M if the following
conditions hold (the construction is over ().

23See Definition 2.7.2.
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. My =T, and for all v < 4, each of M, and N, is either undefined or is an

hp-indexed Ises (see Definition 3.9.2).
For all v < 4, if M., is defined then Y, = Y™~ (see Definition 2.3.13).

For all v < ¢, if M, is defined then ®, is the strategy defined in Defini-
tion 4.3.8%%.

. For all v <4, if NV, is defined and either

a) M. is not a reliable hp-indexed lses®® or
( ) v %

b) N, is a reliable hp-indexed Ises but for some Q € Y™ such that Q is meek
v
or gentle?® and for some n < w, p,(N,) < 49,

then all remaining objects with index > ~ are undefined.

For all v < n for which clause 4 (the above statement) fails, 7, : core(N,) — N,
is the uncollapse map.

Suppose for some & < 0, for all v < £, both M., N, are defined. Then Mg,
Nei1, Yeqr, @eypr, Fe, Fre and b are deteremined as follows.

(a) Suppose M = (jf;;f, €, E, f,Ye, €) is a passive hp-indexed Ises®”, there
is an extender H* € G an extender H over Mg, and an ordinal v < wa
such that v < Ih(H*) and setting

H=H"N (V] x [Me]), and Neyy = (JES €, E, f,Ye, H, €)

wa )

where H is the amenable code of H, clause 4.a fails for {+1. Then letting
¢ € dom(G) be the least such that H* =45 G(¢) has the above properties,

Ney1 = (TES € B, f,Ye, H, €)

wa )

where H is the amenable code of H?. Assuming clause 4 fails for & + 1,
the remaining objects are defined as follows.

24This strategy is induced by ¥ essentially via the resurrection procedure of [23, Chapter 12].

ZRecall clause 2 of Definition 2.5.4. To verify that N, is Ises, we need to verify that clause 2 of
Definition 2.5.4 holds.

26See Definition 2.7.1.

2"I.e., with no last predicate.

28Here H is what is determined by H*. For the definition of the “amenable code” see the last
paragraph on page 14 of [60].
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(b)

i. Mgyq = core(Neiq)?,
ii. Fg = H* and F¢y = H,
iii. be = 0 and
. Yepr = ﬂ-g-:l(Y%)
Suppose M, = (jE’f e, E, f,Ye, €) is a passive hp-indexed Ises, Mg is

wao

strategy-ready®, o = 3 + v and there is t € | M¢|wf] such that setting
w = (T,(t),t,€), wis (f, hp)-minimal as witnessed by 3! and v = lh(¢).
Set b = P¢(t) and

. . ~
-/\Q"Jrl = <‘7°JEB7'{‘WV’ EaEa f?Y’&ba E)

where b C wf + w is defined by wf + wv € b < v € b. Assuming clause
4 fails for £ 4 1, the remaining objects are defined as follows.
1. Mgy = core(Neqr),
ii. Fe=FS =0,
iii. be = b and
V. Yepr = mey (Ye):

Important Anomaly: Suppose UY; is #-Isa type®® and ¢ is nuvs. Sup-
pose e € M¢|wf is such that M¢|wfB E stso(t,€). If e # b then Ney is
not an sts premouse over J,,(UY¢) based on UYe, and so the construction
must stop.

If M, doesn’t satisfy clause 2a or 2b then set Mgy = J,[M¢] (this
presupposes that YVer1 = Ye). Assuming clause 4 fails for £ + 1, the
remaining objects are defined as follows.

1. M£+1 = core(./\/’5+1)34,
i Fe = F =0,
iii. be =0,

and Y¢y is defined as follows.

2Recall that core(M) is the core of M.

30See Definition 3.9.1.

31See Definition 2.3.3. In particular, this means that we have to index the branch of ¢ at wa.
32See Definition 2.7.3.

33See Definition 3.8.16. This means that e is the branch of ¢+ we must choose.

34Recall that core(M) is the core of M.
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i If M E “(Me, @) is T-cbl +(X¢, ¢¢) € Hp' "% then Yeyy = 7! (Ye) U
{reri(Me)}.

ii. If M E “(Mg, ®¢) is T-cbl +(X¢, ¢¢) € Hp'” then all remaining ob-
jects with index > ¢ are undefined.

iii. If both 5.c.A and 5.c.B fail then Y = Wf_jl(Yg)

6. Suppose £ < ¢ is a limit ordinal and for all v < &, both M., and N, are defined.
Then M, and N are determined as follows®®. Set N¢ = limy—eM,. Assuming
clause 4 fails for £ 4 1, the remaining objects are defined as follows.

(a) Mg = core(Ng) and
(b) Y = g (¥Ae)7.

7. Ms = N; and Ys, @5, F5, Fs, and bs are undefined.
Let
hpe = (Mo, N3, Y, @y, FF B by 1y < 6)

be the output of the I' — hpc of M. We say that the I' — hpc of M is successful if
clause 4 fails for all v < 0. We say that the I' — hpc of M reaches its goal if the
I' — hpc of M is successful and for some & < ¢, clause 5.c.ii holds.

For each v < 9, we let CID;r be the extension of @, defined in Section 4.3.1. We
then set

hpct = (M, N,,Y,, ®F, FF F, b, 1y < 0).

Notice that hpc € M while hpct & M.
Also, given £ < 9 and a < §, we set

hpc [ (f,a) = (M'yaN'va'ya(I)'y TM’C%FJ,Fme iy < 5)
and finally we let

hpc™ = (M, N, Y, FF, F) by oy <6)

35(X¢, ¢p¢) is defined in Definition 4.3.13. The meaning of M F (X¢, ¢¢) € Hp' is essentially that
M E (Mg, ®¢) € Hp'.

36The rest of the objects will be defined at the next stage of the induction as in clause 4.

37TF; and bg are defined at step & + 1.



4.3. HOD PAIR CONSTRUCTIONS 147

We will often use (C,I") as a subscript to emphasize the dependence on (C,I'). Thus,
we will write hpcc 1 and etc. Also, to emphasize the dependence on C, we may also
say that I' — hpc of C is successful or reaches its goal.

We say that Q is an N-model of hpc if for some v < §, Q@ = N;. We define other
such expressions (e.g. M-model and etc) in a similar fashion. We say W is the last
model of hpc if Q = N,, the last defined A-model of hpc. -

Remark 4.3.4 Section 4.1.3 defines the meaning of M F (X¢, ¢¢) € Hp', which
in reality formalizes M F (Mg, ®¢) € Hp' . Using very similar ideas, one can also
easily formalize the meaning of M F “(Mg, ®¢) is I'-cbl”. Such a formalism will
refer to some set Z¢ and a formula 1¢. The definition of these will be similar to the
definitions of X and ¢, (see Definition 4.3.13). We leave the details to the reader.
_|

Remark 4.3.5 Notice that each M, and N, are germane (see Definition 2.7.15),
and so we can use the concepts introduced in Section 2.10. -

4.3.1 The construction of CID;r

We are continuing with the objects defined in Section 4.3 and in particular, in Def-
inition 4.3.3. Recall that ®F must be an (w;,w;,w)-iteration strategy. Its (wy,w:)
component can be defined using the procedure of [23, Chapter 12]. Also @ is the
strategy of M., that is based on UY*~. Thus, to deﬁne CI>+ we may Just as well
assume that UYMW is a limit type hod premouse, as this is when an (wy,wq,w;)-
iteration strategy is used. As the process is a straightforward adaptation of [23,
Chapter 12], we will only give a short outline.

The procedure of [23, Chapter 12] gives an (ws,w;)-strategy @, for M,. Set
Pt =M, and P = UYM+. Suppose N is a S-iterate of M via X and i: M — N is
the iteration embedding. Recall that we had

hpcer = (M, N, Y, @, FF E by oy <6)

and our background is M = (M,8,G,%). Suppose o < lh(X) and g < T (0).
We then let Ry 5 be the S-th N-model of 7§, (hpccr), and also we let @ 5 be the
(w1, wq)- 1terat10n strategy of R 5 induced by Y. We let ®N be the strategy of
i(P*) induced by Xy.

Given N as above and a stack 7 on i(P") that is based on i(P) and is according
to ®V, we let T be the resurrection of T. The reader may wish to review properties
H1-H7 on page 113-115 of [23], which outline the construction of 7. Below we
outline the description of ®¥ and leave ®V to the reader. Assuming
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T = ((M(l)0t<7]’ (Ea)oé<77—17 D7 R7 (6{% ma)aGRv T)38
and

T = ((rMa)a<ns (TEa)acn—1, 7D, 7R, (1Bay 7Ma)acrr, rT)>

there are sequences & = (0, : @ < 1) and ¥/ = (v, : a < n) satisfying the following
conditions:

1.
2.
3.

rD=0,T=rT and R =rR.

For each a <1, vo < 7l (7) and 04 : Mo — Ry, is a weak embedding™.
If [0,0)7 N D = 0 then v, = 77 (v) and Ry, = w7 (P).

For each a < ' such that (o, )NR =10, 0, | indz =0y | indz,.

For each a < o such that oTa/ and 7], is defined, 7.7, 0 04 = 0o 0 ] .

Moreover, (o, : @ < 1) and (v, : @ < n) are uniquely determined via the
procedure described on pages 113-115 of [23].

We then say that (&, ) are the 7T -sequences.

Definition 4.3.6 Suppose now that p = (Ps, Ts, Es : B < 7) is a generalized
stack on P* that is based on P. We say p is correct if there is a stack ¢ =
((Qa)a<n, (Fa)a<y-1,D, R, (Bas Ma)ack, @) according to ¥ and a sequence of embed-
dings (o : f < 7) such that the following conditions hold:

1.
2.
3.

1 = Ypylh(Ts) and 1 =aes B <slh(Tp).

For all 3 <7, 05 : Pg — 7, (P") is a weak embedding.

oo = id.

For all 8 <, n3 € R.

For all 8 <, qusmss) = 7(0573).

For all 8 < v such that S+ 1 < v and Ej is an un-dropping extender?!, letting
(a) md” = (a;, Ri, W;,S; 1 i <k + 1) be the main drops of 73,

38Recall that our stacks are proper, see Definition 2.7.27.

39Here we only use (wi,w;)-portion of Ay.

40For example, see the discussion after Fact 2.13 of [3].

41The case when 778 is defined is easier and very similar, and we leave it to the reader.
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)
)
. T3 ogT3 - . . .
d) m: ./\/lg — M& is the map obtained via the copying process,
)
)

the embedding
0p+1 1 Pgp1 — Wg,nﬂﬂ(PJr)
is given by
opr1(me,(f)(a)) =m0 o, (05(F)) (ne(m(a)))

The definition of 041 works because we have that (a, A) € Ejz if and only if n¢ o
m(a) € mh .., (05(A)).

YR RS
Notice that both ¢ and the embeddings ¢ = (03 : 8 < ) are uniquely determined.
We then set ¢ = res(p) and ¢ = emb(p). .

The following is an easy lemma. It uses the objects introduced above.

Lemma 4.3.7 031 [ (Pas1|lh(Ep)) = ng om | (Ppr1|lh(Ep)).

It is now straightforward to show, using the resurrection process of [23, Chapter
12], that if p is a correct generalized stack on P based on P of limit length then
there is a unique branch b of p such that p~{b} is also correct. We then let ®7 be
the unique (wy,ws,ws)-strategy of P with the property that p is according to @j
if and only if p is a correct generalized stack on P* based on P. Notice finally that
the definition of @ can be done locally inside M.

Definition 4.3.8 If UYM is not of #-lIsa type then &, = ®F | M|(6+)". If Uy M-
is of #-lsa type then ®, = (®F)* [ M|(5T)M. .

The following lemma summarizes Definition 4.3.6.

Lemma 4.3.9 Suppose I is a pointclass, C = (M, (P, ¥),T™*, A) Suslin, co-Suslin
captures I' and M = (M, §,G, X). Set

42See Definition 2.10.5.
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hpcé“’F = (M, N, Y, @F FF F) by oy < 0).
Suppose 7 < ¢ is such that Y, is defined. Set P = UY,, and suppose M, is of b-type.
Suppose T is a generalized stack according to CIDI; with last model Q. There is then
a Y-iterate N of M such that letting ¢ : M — N be the iteration embedding and
hPCéN,F = (R, 85, 2y, \P;ra E;F7EW:CW ty <i(9)),

there is v < i(y) and a weak embedding o : Q@ — S, such that the following holds.

1. If 77 is defined then v =i(y) and con” =i | P.

2. If 77 is defined then i(P’) = 8% and oo 770 =4 | P°.

3. ®§ 7 is the o-pullback of ;.

We remark that a similar result holds for all v. We now have the following lemma
connecting different strategies to each other.

Lemma 4.3.10 Suppose I is a pointclass, C = (M, (P, ¥),I™*, A) Suslin, co-Suslin
captures I' and M = (M, §,G, ¥). Set

hpcé_,r = (M'Y’N’Y’YW(I);rﬂFij’wb’y Y S 5)

Suppose o < 8 < § are such that N, and Np are defined. Let Q € ), be a meek
hod premouse. Set U? = &' | P = M, and define U as follows:

e If p(N3) < 09 then let n be the largest such that for every £ < §<, any TEQ/B—
definable f : k — 09 is in Q and let ¥! be the strategy of Py =4y core,(Np)
defined via the resurrection procedure described above.

o If p(Nj3) > 69 then let U' be the strategy of Py =4 s core(N3) defined via the
resurrection procedure described above.

Then \IIOQ = \Iflg

The proof of the lemma is straightforward. Let 7 be such that M., = Q and let
¢ =sup{lh(F") : © < ~}. Observe now that because we assume that Q is meek, if 7
is a stack on Q then the id-copy of T onto Py and onto P; is simply To =acrT (T, Po)
and 71 =q4esT (T, P1) respectively, and these stacks use exactly the same extenders
as 7. Therefore the resurrection procedure resurrects both 75 and 77 to stacks based
on M|(. Hence both \IJOQ and \Illg are determined by Xy c.

Lastly we state the following consequence of Lemma 4.3.7.
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Definition 4.3.11 Suppose (P, Y) is a hod pair or an sts pair. We say ¥ is weakly
self-cohering if the following clauses hold:

1. Whenever 7T is a generalized stack on P according to 3 with last model & and
Q is a complete layer of S” such that 74° is defined®, Xg 7 = Xg 7.

2. Whenever T is a generalized stack on P according to ¥ with last model S and
such that 7 has a one point extension*!, Q <,q S is of limit type, and U is
a stack on Q according to ¥g 7 such that ¢ has a one point extension then
letting F be the un-dropping extender of U, Ult(S, E) is well-founded.

Suppose next that (P,X) is a simple hod pair or an sts hod pair. Then we say
that ¥ is weakly self cohering if the following clauses hold:

1. Whenever T is a stack on P according to ¥ with last model S and Q is a
complete layer of S® such that T5¢ is defined, the last model of 73° is well-
founded.

2. Whenever T is a stack on P according to ¥ with last model S and such that
T has a one point extension, @ <j,q S° is of limit type, and U is a stack on Q
according to Y g 7 such that U/ has a one point extension then letting F be the
un-dropping extender of U, Ult(S, F) is well-founded.

The following now is an easy consequence of Lemma 4.3.7.

Lemma 4.3.12 Suppose I is a pointclass, C = (M, (P, ¥),I™*, A) Suslin, co-Suslin
captures I' and M = (M, §,G, X). Set

hpcé_,r = (M’Y’N’Y’YW@'JyrﬂFij’yab'y Ly S 5)

Suppose v < ¢ is such that Y, is defined. Set P = UY,, and suppose M, is of b-type.
Then (®.,)p is weakly self-cohering.

43See Notation 2.10.9.
44Gee Definition 2.10.2.
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4.3.2 The definition of (X, ¢,).

Notice that the map 7 + res(7") can be defined without any reference to any strategy
for P or M. In this view, res(7) may not have well-founded models. Moreover, the
construction of res(7) only depends on hpc | v + 1.

Definition 4.3.13 Let &, < ¢ be the least inaccessible cardinal of M such that
hpc™ [ v+ 1 € MIE,.

Let X, € MCOU@MI&) witness that M is self-capturing for M|&, (see Definition 4.1.5)
and set

Xy = (X% M, hpe | (v +1,&,), M|E,).
Let ¥ (z,y, z,w) be a formula such that

¢[M7> hpc [ (v + 1757)7M‘57]

expresses all the clauses of Definition 4.3.3 except the portion of clause 5.c that
defines Yeiq1. Let ¢ (u, v, w) be the conjunction of the following formulas.

1. w = (Y,g) such that Y = (Z,Q,h, f,N), Z is Coll(w, N)-name and g C
Coll(w, N) is a filter,

2. (@ h, f,N),

3. w is a stack on @), and

4. letting Z, = (U, W), res(w) € p[U].

4.4 On backgrounded constructions
The following sequence of lemmas will be used in the proof of Theorem 4.5.6.
Definition 4.4.1 We say (M, 4, G, Y., P) has the property (x) if

e (M,5,G) is a background®,

45See Definition 4.1.4.
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e Y € Misa(d,6)-iteration or d-iteration strategy for P with hull condensation®s,

or (P,X) is an sts hod pair and X is a (4,0, 0) st-strategy.
o Le(X, Ju[P]) M6 is successtul.
We say that (M, 0, G,x, P) has the property (x+) if in addition to the above clauses

M E “¥is a (67,07)-iteration strategy, 0'-iteration strategy or (67,07,d7) st-
strategy”. If Q@ C M then we let ©¢ = X | (Q|). =

Lemma 4.4.2 Assume (M, 8, G, ¥, P) has the property (x). Set P = J,[P]. Sup-
pose A < § is such that P € M|\ and N is the last model of Le(XM, P)(Mo6).
Suppose F* € @ is such that

1. Ih(F*) = n is an inaccessible cardinal of M,
2. (N[ = Nn.
Set k = crit(F™*) and let F” be the (k,n) extender derived from
s [N N = e (N).

Then for any p € [(k*), ) such that p is the natural length of F' | p, letting F be
the trivial completion of F’ | p, one of the following conditions hold:

1. Ih(F) € dom(EV) and F = EN(Ih(F)) or
2. Ih(F) & dom(EVN), p is a limit ordinal > (k*)V, p is a generator of F, p €
dom(EN) and letting E = EN(p), F = w5 ?(ENP)(In(F)).

Suppose (M, 8, G) is a background. We write (M, G) E “ reflects A” to mean
that x reflects A using extenders in G*7. Working in M, let (AM : i < w) be defined
by the following induction:

1. A} C § is the set of < §-strong cardinals » such that (M, é) E “k reflects G.

2. AM, C § is the set of < d-strong cardinals x such that (M, G) E “x reflects
AM>

46The exact nature of P is irrelevant.
47L.e., the set of x such that for every A\ < § there is F € G such that Tp(é) IA=G A
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Clearly, AM depends on both § and G, but in all of the lemmas below (6, G) is clear
from the context. Sometimes, when (4, ) is not clear from the context, we will write

AZM’(S’G. We have the following straightforward lemma.
Lemma 4.4.3 Suppose (M, 4, é) is a background. Then the following holds in M.

1. Suppose A C 5 and ko < Ky < 6 are such that (M,G) E “x; reflects (4, G)”
and (M\/ﬁ, | k) E “rg reflects (AN k1, G | k1), Then (M, G) E “kq reflects
(A,G)".

2. For each i <w, if A € A}, or is a limit point of A}, then A is a limit point of
AM.

3. For all i < w and for every A\, which is a member or a limit point of AM,
AM O\ = AMPER

4. For all i € w, AM, C AM.

5. K € NicwAM if and only if for each i € w, (M,G) E “x reflects AM”. Hence,
miEwAzj'w 7é @

6. If (M,G) E “k < 0 reflects (4; : i € w)” then k € Ny, AM.

Lemma 4.4.4 Assume (M, 0, G, ¥, P) has the property (x). Set P = J,[P]. Sup-

pose A < 4 is such that P € M|\, N7 is the last model of Le(X¥, P)(M2G) and

N = LN, Let H = {E € EN : N'F “v(E) is inaccessible” }. Then
r\|i<wAA£\/I = mi<w/4;\[7H~

Proof. We will use A for Aﬁfﬁ. It is enough to show that i < w, AM, C AN C AM.
Notice first that

(1) in M, if k € AYY — (A + 1) and Q is an N-model of Le(ZM,P)(M";’é) such
that Q@ € M| then Q is an N-model of Le(XM, P)(Mr.Gix),

(1) then easily implies that

48§ is a Woodin cardinal of A" and all bounded subsets of § in A are in A//. The first claim can
be shown by the results of [23, Chapter 11], and the second follows from the fact that § is a regular
cardinal, which allows us to take Skolem hulls of M that are transitive below 4.
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(2) if & € A)" — (A + 1) then Nx is the last model of Le(ZM, P)(MAGIR49 anq
the xth A-model of Le(XM | P)(M2.6G),

AN C AY follows from the fact that the backgrounding extenders used in
Le(2M, P)(M4G)

are all total M-extenders.

Suppose now that x € AM. We want to see that k € A). Let ny < m be
two members of A} such that x < ny. Let F* € G be an extender such that
T (AN +1 =AY Ay + 1 and 7p-(G) 11 = G | my. (2) then implies that

(3) m+ (N)[m = N

Indeed, it follows from (2) that g« (N)|n; is the last model of

(Le(SUUME") | P)_ Y UUME) mmmes (G)lm)

and since Ult(M, F*)|nyy = M]|n;, we have that 7p«(N)|n; is the last model of
Le(xM, P)Mlmm.Gim) which according to (2) is just A|n;.

Let now F be the (k,n;) extender derived from 7+ | N. Since 79 is a regular
cardinal of A/ and hence, 1y & dom(EN ), it follows from Lemma 4.4.2 that the trivial
completion of F | 1y is on EN. As ny was arbitrary, we have that § = sup{lh(F) :
E € EN Acrit(E) = k}, implying that « € A

Assume now that A%H C AN C AM We want to see that

(a) AN C AM

n+l = n+1

(b) AM, C AN,

First suppose k € Aﬁf 1. To show that k € AM |, we need to show that in M,
k reflects AM . Let n € AY be a limit point of AY. Let E € H be a (k,n)-extender
that reflects AV, Thus, 7p(AN)Nn = AN Ny, Let E* € G be the resurrection of E.
We then have that £ = E*N (n<* x ') and an embedding o : Ult(N, E) — 7g«(N)
such that crit(c) > 7. Because AY C AM we have that

49This is a mild abuse of our notation as x may not be a Woodin cardinal of M. But Le
construction do not depend on the Woodinness of §.

50By this we mean an extender whose natural length is . As 7 is a regular cardinal of A, there
are no (k, n)-extenders on the sequence of N.
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(5) ATE" (N) C AT[{lt(M,E*)
(6) (AN Ny = o (AN ) = A7 N o) € ATHORED,

Since o[AN Nn] = AN N, it follows that
(7) T (AM) N7 is cofinal in 7.

It then follows that 7j(AM) N7 = A, N7 (see Lemma 4.4.3). Thus, k € AY .
Finally suppose that x € A ,. We want to see that x € Aﬁl\/ﬂ. Let ny < m1 be
two members of AM | such that ny is a limit of A2, and k < ny. Let F* be such
that mp< (AN )Nm +1 =AM Nn + 1. Like in the n = 0 case, we have that if F” is
the (k,n)-extender derived from mp- [ N and F is the trivial completion of F” | ng
then F € EN. Let now o : Ult(N, F) — mp-(N) be the canonical factor map. We
have that crit(c) > 7. We also have that AM  Nn C AV Nn,. Arguing as above,
we get that, in A, F reflects AV O

Lemma 4.4.5 Assume (M, 6, G, Y, P) has the property (). Set P = J,[P]. Sup-
pose A < § is such that P € M|\, N is the last model of Le(xM P)(M3G) and
N = LoaonN']. Suppose F* € G is such that

1. Ih(F*) =ne AM,
2. mp=(N)|n = Nn.

Set k = crit(F*) and let F” be the (k,n)-extender derived from 7p [ N : N —
7p-(N). Let F be the trivial completion of F' | . Then F € EV.

Proof. Let f € AM — (n+1) and let H € G be an extender such that crit(H) = 7,
Ih(H) > 7/, and T (AY) N (n +1) = AY Ny’ + 1. We have that
(1) N/ is the last model of both
(Le(SM, P)o, )M Gin') and (Le(SUHMH) | p)_ UM H)n' 0 Gln'),
(2) ma(N)ln" = Nl
It follows from Lemma 4.4.2 that all initial segments of F' are on the sequence

of N or an ultrapower away. Thus, in Ult(M, H), we have that all initial seg-
ments of 7y (F) are on the extender sequence of 7y (N') or an ultrapower away. As
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F | n=my(F) | n, we have that in Ult(M, H), the trivial completion of F' [ 7
is on the sequence of g (N). But the trivial completion of F' |  both in M and
in Ult(M, H) is F, as it only depends on mpy,(N|(x)") which is computed the
same way in both models. Thus, F' is on the extender sequence of 7y (N'). Since
mr(N)|(nH)™ N = M| (™), we have that F is on the extender sequence of A'. [J

Definition 4.4.6 Suppose (M, 9, é) is a background. Let K™ consist of all exten-
ders E € GG such that

e (E) € Nic,AM and is a limit point of N, AM,
o E reflects (AM 11 < w).

We say S is the fully backgrounded A-core of (M, 4, é) if § is the last model of
Le ™ K™ We let LeCoreg[’é’G) be the fully backgrounded A-core of (M,6,G). -

>\
Clearly (M, 0, I?M) is a background.

Lemma 4.4.7 Assume (M, 4, G, 3, P) has the property (x). Set P = Ju[P]. Sup-
pose A < ¢ is such that P € M|\, R’ is the last model of Le(EM,P)(M’5’G) and

>X
R = Loan[R']. Then LeCore™%%) is the last model of Leg’&KR) where K7® is
computed relative to HR = {E € ER : R E “v(E) is an inaccessible cardinal”}.

Proof. 1t is enough to show that if Q is an M-model of both Leg[’é’KM) and Leg’(s’KR)

then the N -models of Le(M"S’KM) and Leg’(s’KR) constructed immediately after Q

>\ .
coincide. Assume then the A-model of Leg\[’&’K ) constructed immediately after Q

is @'. The only non-trivial case is when Q' is obtained by adding an extender to ﬁQ.
Thus, assume Q' = (Q, F'). We need to see that (Q, F) is the N-model of LeWSE™)

>\
constructed immediately after Q. Let F™* be the background extender of F'. It follows

that

V(F) < v(F*) and F* € KM,

v(F*) € NAM and is a limit point of M;, AM,

F* reflects (AM 1 i < w).
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Set 7 = lh(F™) and let F’ be the (k,n)-extender derived from 7p- | R. Let E be the
trivial completion of F’|5. It follows from Lemma 4.4.5 that in fact £ € ER and it
also follows from Lemma 4.4.4 that E € K®. Since F = F* N (v(F)< x |Q]), we
have that @ C R and in R, F is a background certificate of F. It then follows from
the uniqueness of the next extender (see [23, Chapter 9] and [17, Theorem 5.1]°!)

that in fact that @’ is the N-model of Leg’(s’Kﬁ) constructed immediately after Q.

cR
Conversely, suppose the N-model of Leg’d’K ) constructed immediately after Q

is (Q, F') and let F* € KR be the background extender of F. We then have that
o V(F) <v(F),

o v(F*) € Ni«, AR and is a limit point of N, AF

o F* reflects (AR : i < w).

It then follows from Lemma 4.4.4 that letting /™" be the background extender of
F* and E = F*Ih(F*), E € K™ and E backgrounds F. It then follows from the
uniqueness of the next extender (see the above references) that (Q, F') is indeed the

N-model of Le(XM, P)(M’ﬁ’é) constructed immediately after Q. O

>A

Corollary 4.4.8 Suppose (M, 6, é) is a background and A < 4. Then for any (P, %)
such that (M, 6, G, 3, P) has the propertyﬁ(*) and J,[P] € M|\, letting R be the

last model of Le(XM, P)g";’c), LeCoreg\I’J’G) is a definable class of R.

4.5 On the existence of thick sets

[30, Chapter 5.1] develops a methodology for proving branch condensation and var-
ious uniqueness results for iteration strategies. The basic idea, due to Jensen®® and
Steel®®, is that the stack over a fully backgrounded construction has covering prop-
erties. However, both [30] and our current exposition needs, in addition, that thick
sets exist. While [30] uses their existence, it seems that [30] does not establish their
existence. In this section, we take a moment to fill this gap.

51This reference contains the proof of non-existence of mixed bicephali, completing [23, Chapter
9].
52 Jensen developed similar ideas for the K¢ constructions, see [12].
53The first author learnt about the main idea behind [30, Chapter 5.1] from Steel sometime
between 2004-2006. To the author’s best knowledge [30, Chapter 5.1] is the first written account of
this material.
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First we import one important definition from [30, Chapter 5.1]. Recall that if
M is a transitive set then we let M|a be VM.

Definition 4.5.1 Suppose k is a regular cardinal, ¥ is a x*-iteration strategy™
and M is a Y-premouse (possibly over some set X) such that M C H,. We let
stack(M, ¥) be the union of all sound countably iterable Y-premice S such that
M <S8 and p(S) = k.

If the stack is computed inside an inner model M then to emphasize the depen-
dence on M, we will write stack™ (M, ). =

Definition 4.5.2 Suppose k is a regular cardinal, ¥ is a x'-iteration strategy and
M is a ¥-premouse such that M C H,. We say M is x-fat if K = ord(M) and
letting M’ = stack(M, %), cf(ord(M’)) > k. To emphasize the dependence on ¥,
we say that M is (k, X)-fat.

We say M has thick sets (or x-thick sets or (k,X)-thick sets) if M is k-fat
and M’ =4.r stack(M, X) has a (k, k + 1)-iteration strategy A (as a X-premouse)
such that whenever X is a stack on M’ according to A such that X is below &, 7%
exists and 7 (k) = K,

1. 7% (M) = stack(7¥ (M), X), and

2. for some club C' C k, whenever 7 € C'is a non-measurable inaccessible cardinal,
¥ [ord(M’)] contains a 7-club.

If A is as above then we say that (M, A) has thick sets. -

The following lemma is due to Steel. Its proof can be found in [30, Lemma 5.2].
Below H) is the set of hereditarily size < \ sets.

Lemma 4.5.3 Assume NsesS and suppose (M, 4, G, ¥, P) has the property (x+)%.
Let A < § and M be the last model of (Le(X™, J,[P])sx)MP. Then M E “M is
d-fat”.

Definition 4.5.4 Suppose M is a X-premouse and x is a cardinal such that M C
H,. We say M is (k,Y)-universal if M has a (k, k + 1)-iteration strategy A (as a
Y-mouse) such that for all (M, ®, Q,T) with the property that

e N C H, is a X-premouse,

54The nature of the structure that ¥ is a strategy of is not important.
55See Definition 4.4.1.
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e ¥ is a k + l-iteration strategy for A (as a Y-premouse),
e X is an iteration of M according to A such that 7% is defined and 7% (k) = &,
e O is the last model of X,

(Q, Ag.x) wins the coiteration with (N, ®). More precisely, if (7,U) are the normal
stacks on @ and N respectively that are produced according to the ordinary com-
parison procedure by using Ag x on the Q side and ® on the A side, then letting Q'
and N’ be the last models of T and U respectively, N < Q.

If A is as above then we say that (M, A) is (k, ¥)-universal. .

The following simple lemma will be used in the proof of Theorem 4.5.6.

Lemma 4.5.5 Suppose A < § are cardinals, ¢ is a regular cardinal, M C 0, E € V),
is an (possible long) M-extender and N = Ult(M, E)°®. Then the following holds:

1. Suppose £ € (X, 0) and cf” (k) > A. Then sup(ng[k]) = Te(k).
2. If kK € (A, ) is an inaccessible cardinal then 7g(k) = k.

3. Suppose k > A is an inaccessible cardinal and n € (k,d) is a measurable
cardinal of N such that cf(n) < n. Then there is ¥ > & such that M E “n’ is
a measurable cardinal” and cf(n') < 7'

Proof. As clause 1 and 2 are straightforward, we only prove clause 3. Let f € M
be such that for some a € h(E)<“, n = 7g(f)(a). Let (f; : i < k) € M and
(a; : i < k) C Ih(E)<¥ be such that (mg(f;)(a;) : i < k) is increasing and cofinal
in 7g(f)(a). Let 7 < X be the least such that mg(r) > 1h(E) and set h;(s) =
sup{fi(t) : t € 7Y A fi(t) < f(s)}. We then have that (mg(h;)(a) : i < k) is
cofinal in 7g(f)(a). It follows that for E, measure one many s, (h;(s) : i < k) is
cofinal in f(s), as otherwise if h(s) = sup{hi(s) +1 : i < k} then we would have
mr(h)(a) < mr(f)(a) and for each i, mg(h;)(a) < mg(h)(a). Fix one such s with the
property that f(s) > x and f(s) is a measurable cardinal of M (E,-measure one
many s have this property). Because (h;(s) : i < k) is cofinal in f(s), we have that
cf(f(s)) < f(s). Hence, ' = f(s) is as desired. O

Theorem 4.5.6 is the main theorem on thick sets that we will use throughout this
book.

56This is the ultrapower that is constructed using functions in M.
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Theorem 4.5.6 Assume NsesS. Suppose
(M,5,G,P,%, P, PT, QAN ,E,R,®)
has the following properties:

1. (M,5,G) is a background.

IS

A<, Pe M|Xis a poset and g C P is M-generic.

Co

. (P, X) and (Q, A) are allowable pairs with the property that

(a) P e M|\ and (M,5,G, S, P) has the property (x+),
(b) Q € M|\[g| is a successor type and M[g| E “A is a (0F,07)-strategy”.

J. P is the last model of Le(P, %), Tu[P) ™ and P+ = Lowon [P)-

>A

O

. E € M|Ng] is a P -extender such that
(a) Pi =agep Ult(P, E) is well-founded,
(b) N =4y N | P € P,

(c) letting H = {E' € EPt : crit(E') > wg(ord(P)) and P}, £ “v(E') is an
inaccessible cardinal’}, (775,(5,?[,/&’, Q) has the property (*),

.
(d) letting Le((Q, Ag-), T[Q)TF ™ = (Q,, @, FF Fy 1, : v < ),
i. forally <6, p(Q,) >4,
ii. R = Q.

6. & € Mg] is a (6,0 + 1)-iteration strategy of R.

Suppose that ®o- = ANg-. Then for every stack X according to ® such that lh(X) < §
and © exists, letting Ry be the last model of X,

1. (Ry, ®r, x) has (6, Arx(g-) x)-thick sets, and
2. (consequently) (Ry, Pr, x) is (0, Ayx(g-y x)-universal’.

Furthermore, in M|[g], ®g is the unique (9,9 + 1)-strategy Vo of Q such that for
some S and a (0,9 + 1)-iteration strategy V of S,

5TUniversality follows from the existence of thick sets, for example see the proof of [30, Lemma
5.4].
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1. Q =802 and 62 is a reqular cardinal of S,
2. Ug =V,
3. WQ— - AQ—’

4. for every stack X according to W such that Ih(X) < § and 7% exists, letting Sy
be the last model of X, (S1, Vs, x) has (8, Arx(g-) x)-thick sets.

Proof. The proofs of all of the claims made above are essentially contained in [30].
We first prove the statements made before the “furthermore” clause. The following
is the first important step. Set Ay = Azxo-) x-

Sublemma 4.5.7 In M|g], R, is (9, Ax)-fat.

Proof. Towards a contradiction assume not. Let (Z, : a < §) be a continuous
chain of submodels of Hs+[g] of size < 0 such that for a club of «, letting N, be the
transitive collapse of Z, and 7, : N, — Z,, be the inverse of the collapse, a = crit(7,)
and p(a)® C N,. Such a sequence can be constructed following the construction
given in the proof of [30, Lemma 5.2].

Let W = LeCore(>P)\+’5’H) where H consists of those extenders of E7* whose natu-
ral length is an inaccessible cardinal of P*. It follows from Lemma 4.4.7 that 7x(WV)
is a class of R and therefore, Wy =4y 7% (m(W)) is a class of R,. Hence, for a
club of a < ¢ the following conditions are true:

(1) E € Z,, 7" omg(a) = a, crit(1,) = a and p(a)V* C N,.

If v is as in (1) then we in fact have that p(a)” C N,. However, as in the proof of
[30, Lemma 5.2], we can find an extender F* € G such that for some v, the trivial
completion of F*N(v<¥x |[W]) is on E"Y and witnesses that crit(F) is a superstrong
cardinal in W, contradicting NsesS. U

Set R{ = stack(Ry, Ax) and let X+ =1 (X, R{). Applying the proof of [30, Lemma
5.3] we get the following.

Sublemma 4.5.8 Suppose Y is an iteration of R according to ® such that 7 is
defined and 7% (§) = 4. Then all models of Y* =41 (Y, R") are well-founded and
if S is the last model of Y™ then S = stack(S|d, @ x~vy(0-) x~y).
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We now have that (R, P, x) is (J, Ag- )-universal (e.g. see the proof of [30, Lemma
5.4]). Next we show that (R, g, x) has (J, Ax)-thick sets. Let U be a stack on Ry
according to ®x, x and let UT =1 (U, R*). We are assuming that 7" (§) = 6°® and
want to show that

(a) for some club C' C 4, whenever £ € (' is a non-measurable inaccessible car-
dinal, 7" [ord(R])] contains a -club.

Set 0 = (7" [ 6+ 1) o(@* [ d+1)o(ng | d+1)and v = ord(R;]). Notice
that since ¢(0) = ¢, we have a club C' C ¢ such that for each o € C, o[a] C a. Let
A" < ¢ be such that max(A,ord(P)) < N and X € M|N[g]. We want to show that
C' — (N + 1) witnesses (a). Suppose then x € (X, 0) is an inaccessible cardinal of M
which is not measurable in M and k € C. It then follows that (k) = k. Indeed, be-
cause E, X € M|\ [g] we have that 7% (7g(x)) = x. Notice now that because  is not
measurable in M, k is not measurable in P+ and therefore, in P}, and consequently
in R and R;. Hence, it follows from 7[x] C  that 7¥(k) = k.

Suppose now that o € [§, ) and cf™ (o) = k. We claim that sup(7¥[a]) = 7¥(

a).
The claim is clear if CfRT(CO = K. Suppose then that 7 =g CfRT(a) > k. Notice
that we have that cf™ () = x. We claim that

(b) n is not a measurable cardinal of R;.

Assume 7 is measurable in R;. Then it follows from Lemma 4.5.5 that there is ' > &
such that 7/ is a measurable cardinal of R and c¢f™ (/) < 7. Because 1/’ is measurable
in R, 7 is a measurable cardinal of P}. Since cf™ (i) < #/, Lemma 4.5.5 implies
that there is a measurable cardinal 7 of P* such that n” > & and cf (") < 7.
But each measurable cardinal of Pt that is > & is a measurable cardinal of M]g],
contradiction! Thus, (b) holds.

Since 7 is not a measurable cardinal of Ry we get that sup(7" [5]) = 7. Hence,
sup(n" [a]) = 7" (). It then follows that 74" [] is a s-club.

Next, we prove that in M|[g|, g is the unique (§,6 + 1)-strategy ¥, of Q such
that for some S and a (4,9 + 1)-iteration strategy ¥ of S,

1. @ =8]|62 and € is a regular cardinal of S,
2. Uo = Wy,
3. Uo- = Ao,

%8We in fact should also assume that U is above 7% (ord(Q™)) but this is irrelevant to the proof.
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4. for every stack X according to ¥ such that 1h(X) < ¢ and 7% exists, letting
S1 be the last model of X', (81, Vs, x) has (6, Ayx(o-) x)-thick sets.

Fix then (S, ¥) that satisfies clause 1, 3, and 4 above. We have that (R, ®) also
satisfies those clauses. It is then enough to show that Wy = ®5. Assume not.
Let U be a stack on Q such that ®o(U) # Vo(Uh). Let Rt = stack(R,Ag-),
St = stack(S,Ag-), Uy =T (U,R") and Uy =1 (U,ST). Because Pg- = Vo, we
have some o < lh(U) such that ¥, is defined and Us, is a normal stack on MY
and is above ord(nf,(Q7)). Let then Xy = (Up)<a, X1 = (U1)<q and Y = Usq. Set
Rl = Mfo) 51 = Miﬁ) yo :T (y,R1> and yl :T (y,Sl) Flnally set (I)Q(Z/{) = bg
and \I’Q(U) = bl.

We claim that Q(by,U) doesn’t exist. Towards a contradiction assume it does
exist. Assume first that Q(by,U) doesn’t exist. It follows that §()’) is not a limit
of Woodin cardinals of m()’), and therefore, Q(by,U) is a Ay (o) u.,-mouse over
m(Y), and since M} is universal, Q(by, i) < My**. Thus, we must have that both
Q(bo,U) and Q(by,U) exist. A similar argument shows that & cannot have a fatal
drop, implying that Q(bo, ) and Q(b1,U) are Ay (o)., -mice over m(Y). Hence,
Q(bo,U) = Q(by,U) implying that by = by, contradiction. Hence, Q(by, ) doesn’t
exist. A symmetric argument shows that Q(by,U) also does not exist.

We thus have that for i € 2, 7r27' is defined. Let Ry = M%O and Sy = Mg’;. Both
R, and Sy are Ang{a(gf),uga‘mice' We can then find W such that

(1) W is a ®r, - qpo)-iterate of Ry and the iteration embedding jo : Ry — W
exists and has the property that jo(d) = §, and

(2) W is a WUg, 5, )-iterate of Sy and the iteration embedding j; : So — W exists
and has the property that j;(0) = .

Because of our assumption on thick sets, we have a club Cy C ¢ and a club C; C 9
such that for every k € Cy N C; that is an inaccessible cardinal of M but not a
measurable cardinal of M,

(3) joo W%O [ord(R4)] and j; o ﬂgil [ord(Sy)] contain a k-club.

(3) then implies that

(4) (joo W%O [ord(R4)]) N (jr © 73 [ord(S1)]) contains a k-club.

59More precisely, setting S’ = ./\/lg}ll, (8" Vs i vy) 18 (0, Ay (0-) ., )-universal.
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Let then D C ((jo o 7Tb °lord(R4)]) N (1 © 7Tb1 'lord(S1)]) be a k-club and set Dy =
(joo W%O) D] and Dy = (j; 0 7T2)1) '[D]. Let now Qg = 7f{,(Q). Notice that Y is a
normal stack on Qq that is above ord(Qy) and below §2°. We now have that

) 090 = sup(Hull™ (Do U Qg) N §<0),
) 690 = sup(Hull®'(D; U Qy) N §<0),
) 8()) = sup(Hull™ (m*[Do] U Qy) N 3(I)),
) 0(Y) = sup(Hull&(ﬂgi1 [D1] U Qy) Né(Y)).

(5)-(8) are consequences of universality. For example, (5) can be shown as follows.
Suppose 620 > sup(Hull®'(DyU Qy )N§<0) and set v = sup(Hull®* (DyU Qy ) N§<0).
Let R’ = cHull®(Dy U ) and let 7 : R’ — Ry be the inverse of the transitive
collapse. Then because 7(Q;) = Q,, we have that R’ is a AQ 4., -mouse as wit-
nessed by ® = (7-pullback of ®g, x,). Moreover, it follows from [ , Lemma 5.4]
that R = stack(R'|0, Ag-,,_ ) and (R',®’) is (6, Ag- . )-universal. But because
R’ E “yis a Woodin cardmal” and R; F “y is not a Woodln cardinal”, we have a
contradiction.

(5)-(8) easﬂy imply that rge(m;) ") N rge( yl) is cofinal in §()). Hence, because
7Tb0 [ 69 = 7T I 69 and 7T2}1 i 590 = 7T I 690, we have that by = b;. O

The next few chapters are essentially applications of Theorem 4.5.6.

4.6 Fullness preservation

Throughout this section we assume ADT. Below, we use R* to denote the *-
translation of R (cf. [10] or [58, Remark 12.7].). Suppose 7 is a cutpoint cardinal of a
hod premouse R. The *-translation is used to translate R|(n*)® into an Ises over R|7.
More precisely, [(R|(n7)%)*] = [R|(n")®| but n is a strong cutpoint of (R|(n*)?)*.
If in fact 7 is already a strong cutpoint of R then (R|(nT)®)* = R|(n")*. Thus, as
far as grasping the main ideas are concerned, the reader will lose little by treating
all cutpoint cardinals as strong cutpoint cardinals.

Definition 4.6.1 We say I is projectively closed if whenever A is a set of reals
such that for some B € I', A is first order definable over (HC, B, €) (with parameters),
Ael. -
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Definition 4.6.2 (I'-Fullness preservation) Suppose (P,3) is a hod pair or an
sts hod pair® such that P € HC and I is a projectively closed pointclass. We say
is I-fullness preserving if the following holds for all (7, Q) € I(P,X).

1. For all meek® layers R of Q such that R is of successor type®?, letting S =
R~93, for all n € (ord(8S),ord(R)) if n is a cutpoint cardinal of R then

(R|(n*)®)* = Lp™s7 (R]5).
2. For all meek® layers R of Q such that R is of limit type,
R = Lp ri®.7(R|0R).

3. If P is of #-Isa type then LpF’ESfT(Q) F “0< is a Woodin cardinal”%.

If only conditions 1 and 2 hold then we say that ¥ is almost I'-fullness preserving.
We say that > is lower-level I'-fullness preserving if the above clauses hold for
R poa Q%°.

Suppose (P,3) is a hod pair such that P is gentle. Then we say that ¥ is
I'-fullness preserving if for every Q € Y7, ¥4 is [-fullness preserving.

If T is a Solovay pointclass then we will omit it from the terminology. -

Theorem 4.6.3 (Fullness preservation of induced strategies) Assume AD™.
Suppose T is a pointclass such that for some o with 0, < ©, ' ={A CR: w(A) <
0.}, C= (M, (P, V), I'*, A) Suslin, co-Suslin captures I' and Ml = (M, 0,G,%). Set

hpcé,F = <M’Y7N’Y7Y’Y7(I)j7F»¢—7F’yab’y Ly < (5)

Suppose 3 < 6, P € Yz and M E “(P,(®g)p) € HP' 7. Then (®5)p is almost
I'-fullness preserving.
Moreover, assuming that

o P is of #-lsa type,

60Recall that if (P,X) is an sts hod pair then P = (P|67)#. See Definition 3.10.5.

61See Definition 2.7.1.

62Gee Definition 2.7.17.

63This is the longest proper layer of R. See Notation 2.7.14.

64See Definition 2.7.1.

65Here, if 3 is a short tree strategy then %%¢¢ = ¥.

66We will use this version of fullness preservation when studying anomalous hod pairs (see Sec-
tion 5.4). For now, the reader may ignore it. The concept will became important in Theorem 10.1.4.
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o letting U = (95)5°, L™ (P) E “67 is a Woodin cardinal” and

o Le((P,(25°)p), Ju[P]) does not break down because of the anomaly stated in
clause 3.b of Definition 4.2.1,

W 4s I'-fullness preserving. Also, the above clauses hold for & as in the definition of
Yei1 that appears in clause 5.c.ii of Definition 4.3.5.

Proof. Below we will use the universality clause of Theorem 4.5.6. Towards a con-
tradiction, assume A =g.¢ (q);)p is not I'-fullness preserving. We have that A is
the id-pullback of ®£°7. Tt follows by absoluteness® that there is a counterexample
in M[g] where g C Coll(w,v) is M-generic and v < §. All the clauses of I'-fullness
preservation are very similar and follow from the universality of background construc-
tions. Below we derive a contradiction from the failure of clause 2 of Definition 4.6.2
and leave the rest to the reader. We also leave the “moreover” clause to the reader
as it is very similar to the other cases. We can then further assume that P is of limit
type as otherwise we would just be re-proving [30, Lemma 5.7].

Fix (T,Q) € I(P,A)% and fix R which is as in clause 2 of Definition 4.6.2 (so R
is a meek layer of Q of limit type, implying that R = R?). Let x = 6. We need to
see that

R = Lp " ®RInT (R]k).

Using Lemma 4.3.9, we can find a Y-iterate N of M such that letting i : M — N be
the iteration embedding and

hped,r = (8., Sy, Z,, U EX E ¢, 0y <1i(6)),
there is a v < i(d) and a weak embedding o : @ — i(P) such that
(1) oorn” =i | P,
(2) Ag.r is the o-pullback of (V7 )i,
3)i(P) e Z, .
Suppose first that M < R is such that R|x < M. We need to see that

(a) M as a Ag|.7-premouse has an ws-iteration strategy in I'.

67See Definition 2.6.3.
8See Lemma 4.1.11 and Corollary 4.1.15. Here we use the fact that M k= (P, (®5)p) € HP'.
69Tt is irrelevant whether T is an ordinary stack or a generalized stack.
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Clearly (2) and (3) above easily imply (a)™.

Fix now M < Lp""*®I=7 (R |k) such that p(M) = k. We want to see that
(b) M I R.

We let 7 = 77, 7 = 67, ¢ = sup{lh(F;) : v < B}, G ={F e G : cit(F) >
max((, )} and N be the last model of

(Le((P|7, Apjr), P?)sc) Mish5C)

Notice that because of our choice of I' (see the footnote above), the fact that (P, A)
is a I — cbl and the (0, Ap|;)-universality of N,

(4) P = N|(F)V.
Notice next that if E is the (7, 5Qb)—extender derived from 77 then
(5) Mlg] E “Ult(N, E) is o-iterable”.

This is because o : Q@ — i(P) can be extended to o™ : Ult(N, E) — i(N).
Let then 7t = 7, H = {E € EV*W.E) . crit(E) > 62 and v(FE) is an inaccessible
cardinal of Ult(N, E)}, and N* be the last model of

(Le((RIk, Agj7), R|r))VHN E10H

It then follows from (d, Agj.7)-universality of N* that M < N*. Therefore,
M € Ult(N, E), and since R = UIL(N, E)|(s7)*WNE) | M € R. Since M is w;-
iterable, it follows that M < R. O

The proof actually gives more.

Definition 4.6.4 (Strongly I'-fullness preserving) Suppose (P,X) is a hod pair
or an sts hod pair and I' is a pointclass. We say ¥ is strongly I'-fullness preserving
if 32 is [-fullness preserving and whenever

1. T is a stack according to X with last model § such that if P is of limit type
then 77t exists and otherwise 77 exists, and

"OTn fact this also follows from our choice of I' as since Code(Ag|x,7) € T, any Ag|, 7-mouse M
such that p(M) = & has an iteration strategy in I".
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2. R is such that there are elementary embedding (o, 7) with the property that

(a) if P is of limit type then 0 : P* = R, 7: R — S® and 77 ¥ = 70 0, and
(b) if P is of successor type then 0 : P - R, 7: R = S and 77 =700,

then the 7-pullback strategy of ¥gw - if 2(a) holds and of X7 if 2(b) holds is I
fullness preserving. Following Definition 4.6.2 we can also define the meaning of
strongly almost ['-fullness preserving as well as the meaning of strongly low-
level I'-fullness preserving. -

The following is then a corollary to the proof of Theorem 4.6.3 and we leave it to
the reader.

Theorem 4.6.5 (Strong fullness preservation of induced strategies) Assume
AD™ and suppose T' is a pointclass such that for some o with 0, < ©, T' = {A C

R : w(A) < 0.}, C = (M, (P,V), ' A) Suslin, co-Suslin captures I' and M =

(M,5,G,Y). Set

hpclp = (Mo, NS, Y, @5, FF F, by oy < 6).

Suppose < 6 and P € Yz. Then (@g)p is almost I'-fullness preserving.
Moreover, assuming that

o P is of #-lsa type,
o letting U = (®5)5°, Lp"Y(P) E “6% is a Woodin cardinal” and

o for every ¢ < & the Le((P,(®¥°)p), Ju[P])>¢ does not break down because of
the anomaly stated in clause 3.b of Definition 4.2.17,

U s I'-fullness preserving.

The following is an easy yet useful consequence of strong fullness preservation.

Lemma 4.6.6 Assume AD' and suppose I is a pointclass. Suppose further that
(P,X) is a hod pair or an sts hod pair such that ¥ is strongly I'-fullness preserving.
Let 7 be a stack on P according to ¥ with last model S such that if P is of limit
type then 77 exists and otherwise 77 exists. Suppose (R, o, 7) is such that

1. if P is of limit type then o : P* - R, 7: R — S® and 77* = 7 0 5, and

"IWe only need this condition for ¢ = sup{lh(F*), : v < g}.
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2. if P is of successor type then o : P - R, 7: R - Sand 7/ =7oo0.
Let E be such that
1. if P is of limit type then E is the (573b, d®)-extender derived from o, and
2. if P is of successor type then E is the (67, d%)-extender derived from o
Then R = Ult(P, E). In particular, R = {7g(f)(a): f € P and a € (6%)<*}.

Proof. Let k : Ult(P,E) — R be the factor map, i.e., k(7(f)(a)) = o(f)(a). Then
if P is of limit type then 77° = 7 o0k o g and if P is of successor type then

77 = 70komg Notice that crit(k) > 6%. It now follows from strong I'-fullness
Tok

preservation of ¥ that ¥5°7, the 7o k-pullback of ¥s 7, is I'-fullness preserving. But
because k | 6% = id, we have that for every R’ € Y,

(EFr = (S5 v

It then follows that R = Ult(P, E). O

4.7 Tracking disagreements

Here we introduce terminology that we will use to track the disagreements between
strategies. The reader may wish to review Notation 2.7.14, Definition 3.10.7 and
Terminology 2.7.17.

Definition 4.7.1 (Low level disagreement between strategies) Suppose (P, X)
and (P, A) are two allowable pairs. We say that there is a low level disagreement
between > and A if one of the following conditions holds:

1. P is of successor type and YXp- # Ap-.
2. P is gentle and for some complete proper layer Q of P, ¥g # Ag.

3. P is of limit type, P is meek and there is (7, Q) € B(P,X) N B(P,A) such
that EQ,T 75 AQJ‘.

4. P is of limit type, (P,X) and (P, A) are hod pairs or sts hod pairs and there
is (75, 1) € (P, %) and (T, Py) € I(P, A) such that

(a) Q=gey P} =P,
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(b) 774% = 7724 and
(c) Yo7 # Ao

5. P is of limit type, (P,X) and (P,A) are simple hod pairs or simple sts hod
pairs and there is (77, 731) and (7z,P2) such that

(a) (T, P1) € IF(P, %)™,

(b) (T2, P2) € I7%(P, A),

(c) Q=der Pl =P,

(d) the Q-un-dropping extenders of 7; and 7T are the same,
() o7 # Ao

If clause 4 or 5 holds then we say that (77,7, 72, P2) is a low level disagreement
between ¥ and A. Suppose next that P is of limit type. We say (71, Py, T, Po, Q) is
a minimal low level disagreement if,

1. (T1,Py, Tz, Ps) is a low level disagreement between ¥ and A,
2. Q is of successor type and Q < PV = P},

3. Yo-71i = Mo ;)

Yon # Mo

-

_|

Next we show that the existence of a disagreement translates into the existence of
a minimal low level disagreement. The reader may wish to review Definition 2.10.10,
Definition 2.10.1, Notation 2.10.9, Remark 2.10.7 and Definition 3.10.7.

Lemma 4.7.2 (Disagreement implies low level disagreement) Suppose T' is
a projectively closed pointclass, and (P, %) and (P, A) are allowable pairs such that
both ¥ and A are almost I'-fullness preserving. Suppose that one of the following
conditions holds:

1. P is of limit type but not of Isa type, and ¥ # A.

2. (P,%) and (P, A) are sts pairs or simple sts pairs, X # A and both ¥ and A
are fullness preserving.

"See Definition 2.10.2 and Definition 2.10.13. We mainly use this to conclude that the un-
dropping extender exists.
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3. (P,%) is a (simple) sts pair, (P, A) is a (simple) hod pair, ¥ # A and both ¥
and A are fullness preserving.

4. P is of Isa type, J,[P] E “67 is not a Woodin cardinal” and ¥ # A.

Then there is a low level disagreement between > and A.

Proof. We give the proof from clause 2, which is the hardest, and leave the rest to
the reader. The proof from clause 1 is easier and is similar to [30, Proposition 2.41]).
We also assume that (P, %) and (P, A) are sts pairs (as apposed to simple sts pairs).

Thus, we assume that (P, ) and (P, A) are sts hod pairs and ¥ # A. We then
have that P = (P|67)#. Assume there is no low level disagreement between ¥ and
A and let T = (Sy, Vo, Eo : @ < 1) be any disagreement between ¥ and A. Because
X(T) # A(T) we must have that

)n=~r+1,Y,#0, E, =0 and 1h(Y,) is a limit ordinal.
Set U = Y,. For £ < Ih(U) we let M¢ = MY,
Sublemma 4.7.3 The following holds.

L. If @ € R" is such that 7§, is defined then X e = Ay .

2. U does not have a main drop”.

3. RY has a largest element and if o = max(RY) then Us,, is above ord(M?).

Proof. Clause 1 is an immediate consequence of our assumption that there are no
low level disagreements between ¥ and A. To see that U does not have a main drop,
suppose that it does and let

mdu = (O{Z',RZ’,W“R; i1 S k + 1)

be the md-sequence of U. It follows that (U)sa, is based on R} < RY and therefore,
YRt Tory 7 ARG T - Lot T' = (8L Vg, B¢ - € < i) be such that
SR sk

L for £ <7, §; = & and Ef = E,

2. for § <, Ve =Dk,

73See Definition 2.10.1.
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3. y; = U<p where 3 is the least such that M = RI{M.

Then (77, R%) is a low level disagreement between ¥ and A.

To see that clause 3 holds, notice that if RY doesn’t have a maximal element
then U has a unique branch which must be chosen by both 3 and A. Suppose now
that o = max(RY). Recall our convention on proper stacks (see Remark 2.7.27).
Thus, every cutpoint of U belongs to RY. Therefore, as a = max(RY) and as every
cutpoint of U belongs to RY, we have the following four possibilities.

1. Us, is above ord(M?).

2. Us, is above 0M& but below ord(M?).
3. Us, is below 0Ma,

4. Ih(Usq) = 2 and crit(ES2*) = M2,

If 1 holds then there is nothing to prove. Clearly 4 fails as i/ has a limit length.
We now show that neither 2 nor 3 can hold. Assume 2 holds. Because both X
and A are I'-fullness preserving, X(7) = A(T).
Assume now that 3 holds. Let 7' = (S;, Vi, E¢ : £ < 1) be such that

L. for £ <v, §; = S and Ef = E,

2. for § <, Vg =Dk,

3. YV = U<p where f3 is the least such that M} = M},
Then (77, M}) constitutes a low level disagreement between ¥ and A. O
Let ap = max(RY) and X = Us,,. Set P; = m™(X).
Sublemma 4.7.4 There are ordinary stacks™ 7; and 75 on MZO such that

L. (T<au)”Ti is according to ¥ and (T<pw )™ T2 is according to A,

2. T and 75 use the same extenders,

3. both 770 and 772* exist and 77° = 772,

" Notice that it follows that 7¥<# is defined.
"5Notice that it follows that 7¥<# is defined.
76 As apposed to generalized stacks.
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4 (Ters)™Ti € b(Z) and (Teau) ™ Ts € b(A), L, B((Tengr) 7o) and A((Tener) ™ 7T5)

are branches rather than models,

5. 71 and 75 have last normal components X; and A%,
6. letting b = X((Tepu) " T1) and ¢ = A((Tepw) ~Tz), Qb X1) # Q(c, Xp)™.

Proof. Towards a contradiction, suppose not. As 7T is a disagreement between X
and A, we have that T ¢ b(X) N b(A) as otherwise we could just take 73 = X = 7.
Notice that since 7 is a disagreement between ¥ and A, T & m(X) N m(A), as
otherwise ¥(7) = P; = A(T). Assume without loss of generality that T € m()
and 7 € b(A). Then letting ¢ = A(T), Q(c, X) exists. Let 31 be the (wq,w;)-portion
of Xp, 7 and Ay be the (wy,ws)-portion of (Agiex)7)ex -

It follows from I' fullness preservation that ¥, # Aj*. Indeed, if 3 = Af™ then
Q(c, T) is a X1-sts mouse over P; with an iteration strategy in I'™. Hence, T € b(2)
and X(7) = b.

Notice now that there is no low level disagreement between ¥; and A’ since
if (71, Py, T2, Po) is a low level disagreement between Y; and Af then letting E
be the P} = Pi-un-dropping extender of 7y and 75, T~ T, {Ult(S,, E), E} and
T-T,{UIlt(S,, E), E} induce a low level disagreement between ¥ and A.

Let U; be a disagreement between 3; and A$°. Arguing as we have argued for T,
we get that 71 is defined. Let R, be the least node of U; such that RS = n“1:°(P?h).
It then follows that ({4;)>x, is a stack on R; that is above ord(R}). Let X; be the last
normal component of (U )>g,. It follows from I'-fullness preservation that &} doesn’t
have a fatal drop and m*(X}) E “5(A)) is a Woodin cardinal”. Set Py = m™(A&}).
We now claim that

Claim. U, € b(AS).

Proof. Assume that U; € m(A5°). Because U, is a disagreement between ¥; and
As, we must have that U; € b(X1). Let U* € dom(A;) be such that (U*)* = U,
It then follows that both (7 ~U;) and A(T~{c}~U*) are branches, and therefore,
letting by = X1(Uy) and ¢; = A (U*)®, we must have that Q(by, X)) = Q(cy, X)).

""Because 7; and T3 use the same extenders, we have that m*(X;) = m™ (Xy).

"Here and below, if ¥ is an st-strategy then W*'¢ = W. Also, if for example 7 € m(X) then
Yp,. 7 is an (wy,ws,ws)-st-strategy. The definition of Ve, appeared in Definition 2.7.3.

"Recall that our sts indexing scheme indexes branches of (w1, wi )-iterations and not generalized
stacks.

80See Definition 3.1.6.

81Recall that A; is a strategy.
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Indeed, if Q(by, Xy) # Q(c1, X)) then letting 7, = XU, and Ty = X~ {c}"U*®, T,
and 73 are as desired. It follows that

(2) by = 1.

We now have that because U; € m(A5), letting 3 be the largest member of max*:,

(3) 7Y, is defined and W%’;l((SMZl) =67,

Because U; € b(X;), we must have that

(4) either Wg{}bl is undefined or Wg’}bl (5/\4;‘1) > 672,

But because of (2)

(5) 74}, is undefined if and only if 74, is undefined, and if 7%} is defined then
() = alf, (M),

as the calculation of both depends on the functions in M%’l ]5Mlﬂll. Clearly (2), (3),
(4) and (5) contradict each other. O

Since U, is a disagreement, we have that U; € m(3;). Let then ¢; = A'(Uy).
Notice that

(6) Q(c1, A1) exists and if U* € dom(A;) is such that (U*)* = U; then either 7% is
undefined or 74" (671) > §72.

We now continue in the above manner by letting

Yo = (B1)pu and Ao = ((A1)Q(er, 1) 05~ fer} )ex-

Notice that I-fullness preservation once again implies that ¥y # AS'“. By repeating
in the above manner we obtain sequences (U : i € [l,w)), (A; : i € [l,w)) and
(¢; 11 € [1,w)) such that the following conditions are satisfied:

1. Uf =U* where U* is as in (6).

2. For each i < w, U} is according to A; and ¢; = A;(U).

82Tn this iteration, player I starts a new round of the iteration after player IT plays c. At the
begining of this round, player I drops to Q(c, X )ex-
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3. For each i < w, U has a last normal component X; and Q(¢;, &;) exists.

4. For each i < w, Ai+1 = ((Ai)Q(ci,Xi),L{{“A{ci}>eX7

5. For each i € w, letting d;11 = §(AX;), either ng* is undefined or W?’(él) > 0it1.

Concatenating the Us we get U according to A; without a well-founded branch. [J

Let 7; and 75 be as in Sublemma 4.7.4. Set U; = (TSMgO)“Tl, Uy = (TSM%O)“E
b = X(U,) and ¢ = A(Uy). Let A} and X, be the last normal components of Ty
and T5. It follows that m™(X;) = m™(A%), both Q(b, X1) and Q(c, Xy) exist and
Q(ba Xl) 7é Q(Ca XZ)

Let P, = m*(X). Notice that it follows from our smallness assumption on hod
mice, namely that hod mice do not have Isa hod initial segments, that 672 is a strong
cutpoint of both Q(b, A1) and Q(c, &>). We then have that Q(b, A1) is a X5, -sts
mouse over Py, Q(c, Ay) is a A5, -sts mouse over Py, and the comparison of Q(b, ;)
and Q(c, Xy) does not halt (as otherwise we would have Q(b, X;) = Q(c, X»)). Set
v=20"2, My = Q(b, X)) and M; = Q(c, Xy). We now have that

(7) Mo & My, My 2 Mo, Mollv = M|y, My and M, are v-sound and project
to v, and v is a strong cutpoint of both M, and M.
(8) My is a X<, -sts mouse over Py and M is a A5, -sts mouse over Ps.

(9) The comparison of My and M; cannot halt.

(9) holds as otherwise its failure implies that either My < M; or M; 9 M,,
both of which are impossible (because of (7)).

It follows that the comparison of M, and M encounters disagreements involving
strategies, as otherwise the usual comparison argument would imply that the com-
parison halts. Let ¥y and ¥, be the canonical strategies of My and M/ respectively.
Thus, ¥, witnesses that M is a E%;ul—sts mouse, and V¥, witnesses that M is a
AF¢,,,-sts mouse.

We can then find Wy-iterate g of My and Wi-iterate Ky of M; such that I
and KC; are produced via the usual extender comparison procedure (this implies that
both iterations are above v) and for some a,

(10) Kola = Kila, Kolla # Ki||ev, a & dom(EX?) U dom(EX).

Notice that it follows from our indexing scheme (see Definition 3.6.4) that there must

be a branch indexed at « in both Ky and ;. Let then t = (P, W, P3, W) € Kol
be such that its branch is indexed at « in both Iy and IC;.
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We now have to analyze exactly what kind of stack ¢ is. Recall that our indexing
scheme is so that we add branches for two kinds of stacks that we now list.

Case 1. W is a Ky|a-terminal tree® and W' is undefined.
Case 2. W is defined and is a stack on (Ps3)°.

We can immediately rule out case 1 above: K|la = N« and the branch of W just
depends on K|a®'. On the other hand, case 2, just like in the proof of Lemma 4.7.3,
leads to a low level disagreement between > and A, which is contrary to our as-
sumption. This contradiction implies that the comparison of My and M; does not
encounter strategy disagreement implying that (7) is false. This contradiction also
completes our proof of Lemma 4.7.2. U

Lemma 4.7.5 (Minimal low level disagreement) Suppose I is a pointclass pro-
jectively closed pointclass, and (P, >) and (P, A) are allowable pairs such that both X
and A are almost I'-fullness preserving. Suppose that one of the following conditions
holds:

1. P is of limit type but not of Isa type, and ¥ # A.

2. (P,X) and (P, A) are sts pairs or simple sts pairs, ¥ # A and both ¥ and A
are fullness preserving and are weakly self-cohering.

3. (P,%) is a (simple) sts pair, (P, A) is a (simple) hod pair, ¥ # A and both ¥
and A are fullness preserving and are weakly self-cohering.

4. P is of Isa type, J,[P] E “6” is not a Woodin cardinal” and X # A.

Then there is a minimal low level disagreement between Y and A.

Proof. Again we give the proof from clause 2. Assume there is no minimal low level
disagreement between ¥ and A. It follows from Lemma 4.7.1 that there is a low level
disagreement between X and A. Let (71, Py) € I°(P, ) and (U, Ry) € I°(P,A) be a
low level disagreement. Set Q@ = P?(= RY). We thus have that o # Agyy. Notice
that if Y50 77 = Agjsey, then I-fullness preservation implies that Yo7 = Agyy, .
Thus, there is 8 < A< such that®®

83See Definition 3.8.8.
84See Definition 3.8.9.
85See Notation 2.7.14.
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* Yo 7 Mo
e ord(Q(p)) is a cutpoint of Q.

Let 31 be the least such ordinal and set Q; = Q(/1). If Q; is of successor type then
by minimality of 5; we get that (77,U;, Q1) is a minimal low level disagreement.
Thus, we have that Q; is limit type. The minimality of 8; then implies that

(1) Q; is non-meek,
(2) 29?77-1 - AQI{’M186.

Applying Lemma 4.7.1, we get (73, Po,Us, Ro) that constitute a low level disagree-
ment between Yo, 7; and Ag, 1. Let 5 be the least 5 such that

o P2(8) = Ra(B),

hd 2732(5)77’1’“7’2 7é ARz(ﬂ),Ul’-\U27
e ord(Py(p)) is a cardinal of both Py and R,.
Thus,

(3) Pa(B2) < Py.
Set Qs = Py(5). We claim that

Claim. Qs is not of successor type.
Proof. To see this, suppose that Qy is of successor type. Let T = (Mg, Xy, Fy -
a <n)and Uy = (No,Va,Go : @ < n). We have that M,, F,, N, and G, are
undefined. Let X = X775 and JV = V,"Us. In forming X, we let player I start a
new round on P; by dropping to Q;. The same happens in ) as well. Let then F;,
be the Qy-un-dropping extender of X and G, be the Qs-un-dropping extender of Y
and set X' = X~ {Ult(M,, F,), F,} and V' = Y {Ult(N,,G,),G,}. Notice that
F, = G, as 77" = 7% and the Qy-un-dropping extenders of 7 and U, are the
same. Because X and A are weakly self-cohering, we have that ¥, »» = X, » and
Ao,y = Ag, y. Thus, Xg, x» # Ao,y and hence, (X, Y, Qy) is a minimal low level
disagreement. O

Continuing in this fashion we can now produce a sequence (P;, T;, Q; : i € [2,w))
such that the following conditions hold.

86Notice that these are ordinary strategies not generalized strategies. The reason is that Xp: for
P’ aP? is an ordinary strategy
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1. For all i € [2,w), Q; hoa P?.
2. Q; is non-meek.
3. 7, is a stack on Q; such that 77" exists and P;,; is the last model of ;.

Clearly, the concatenation of 7;’s is an iteration according to Xp, » without a well-
founded branch. U

Next we introduce several definitions that will be useful in the sequel.

Definition 4.7.6 (Comparison stack) Suppose (P,X) and (Q,A) are two hod
pairs or sts hod pairs. Then we say (7T, R,U,S) are comparison stacks for

(P, %), (2, 0))
with last models (R,S) if (T,R) € I[(P,%), (U,S) € [(Q,A), and either
1. SeY® and ¥s7 = Asy.
2. ReYS and YrT = Aru.
4

Definition 4.7.7 (Agreement up to the top) Suppose P and Q are two hod
premice of limit type. Then we say P and Q agree up to the top if P* = QP
Suppose further that ¥ and A are such that (P,¥) and (Q, A) are two hod pairs or
sts hod pairs. Then we say (P,X) and (Q, A) agree up to the top if P and Q agree
up to the top and Xps = Ags. -

Definition 4.7.8 (Extender and strategy disagreement) Given two hod pre-
mice P and Q such that P # Q, we let 3(P, Q) be the least ordinal v such that
Ply = Q|y but P|ly # Q||y. We say P and Q have an extender disagreement if
B(P,Q) € dom(ER) U dom(ﬁg). We say P and Q have a strategy disagreement if
B(P, Q) & dom(ER) U dom(E?). In this case, we let

Rp.o = UYPIBPQ (= yy Ab(P.Q)

Thus, both P and Q have a branch indexed at S(P, Q) for some 7 on Rpo. We
say Rp o is the disagreement layer of P and Q. -

Definition 4.7.9 (Extender comparison) Suppose that (P,%) and (Q,A) are
two allowable pairs which agree up to the top. Then we say (7,R,U,S) are the
trees of the extender comparison of (P,X) and (Q, A) if
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1. T is according to 3 and R is its last model,
2. U is according to A and S is its last model, and

3. T and U are obtained by using the usual extender comparison process (i.e., by
removing the least extender disagreements) for comparing the top windows of
P and Q until a strategy disagreement appears.

_|

It follows that if in Definition 4.7.9, R # S then R and S have a strategy
disagreement.

4.8 Self-cohering

Here our goal is to show that the strategies appearing in hod pair constructions are
self-cohering®”.

Theorem 4.8.1 Assume ADT. Suppose I' is a pointclass such that for some a with
0, <O, T'={ACR:w(A) <0,}, C= (M, (P,W),I"* A) Suslin, co-Suslin captures
I'and M = (M, §,G, %), Set

hpelr = (Mo, N, Y, @F, FF by y <6).

Suppose f < 6, P € Yz and and M = “(P,(®s)p) € HP'. Then (®F)p is self-

cohering.

Proof. Set ¥ = (®)p. The hardest case is when P is non-meek and ¥ is generalized
strategy. Suppose

o T = (Mg, Ta, Fo: a < n) is a generalized stack according to 3,
® (o, <1,

o & < 1h(7,,) and & < 1h(7,,), and

o R ot M = 4oy So and R g M{™ =4 S1.

By absoluteness, we can find such a 7 in M|[g] where g C Coll(w, () is M-generic
and (o < 0. We want to see that

87See Definition 2.10.11.
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— 88
ER7TSSO - 2R7TS51

Assume then that ¥z 7. s # YrTo s,- Again, the hard case is when R is of limit
type, and so we assume this.

It follows from Lemma 4.7.5 that there is a minimal low level disagreement
(U, Ro,Un, Ry, Q) between X 75 and Yr 7. . We thus have that

e Q is of successor type,
® X9 (Tesy) U 7 20,(T<s,)~th and

® X0 (Tesy) U = B0~ (Tes,)~Us-
Let Xy = ((Tag)<s,) Uo and Xy = ((Tay)<s,) Ui Let Hy and H; be the Q-un-
dropping extenders of &y and X,*. Finally, let for i € 2, ¥y = (Mg, T, F{ : & <
a; + 1) be the generalized stack that has the following properties:

e For a < ay, Mé = M.

° Fora<ai,7;:7;ianng:F§. )

o Tl =X, M., =Ult(M,,  H;)and F. = H,.

Let for i € 2, E; be the (67, 7¥(67"))-extender derived from 7. Because X is a
weakly self-cohering”, we have that

e Q is of successor type,

® Yoy, # Yoy and
® Yo-y, = 2o~ -

Set & = 07" and (; = sup{lh(F) : v < B}. Set ¢ = max((¢)M, (G)M). Let
now N be the last model of

(Le((Pk, Spiw), Tus[P?]) 5 ) MAC)

88See Definition 2.6.3.
89See Definition 2.10.5.
90Gee Lemma 4.3.12.
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We have that NV|(kT)V = P*1. We then set for i € 2, N; = Ult(N, E;). Because
for ¢ € 2, Y, is an iteration of P according to the strategy induced by X*, we have
a Y*-iterate M; of M such that letting j; : M — M; be the iteration embedding the
following clauses hold:

(1) For each i € 2, there is an M-model M, of hpch' and an elementary embedding
o, Q— M,.

(2) For each i € 2, M; <joq Ji(P)%2.

(3) For each i € 2, there is an M-model M’ of hpct with index < j;() such that
M, € YMi and Yoy, is the o;-pullback of ®;, where ®; is the strategy of M., induced
by 33,

(4) For each i € 2, o; extends to o}t : N; — ji;(N) and j; = 0 o 7p,.

For each i € 2, let A} be the strategy of j;(N) induced by X}, and let A; be
the o;"-pullback of A}.

Lemma 4.8.2 For each i € 2, (A;)g = Xg,y,.

Proof. 1t is enough to show that (®;)a, = (A*)aq,. This follows easily from the fact
that §:% is a regular cardinal both in M/ and in j;(N)). Because of this, both
(®i)m, and (A%)u, are the strategy of M; induced by X3, = where 7; is the least
such that M; is constructed inside M;|;. O

We now let for i € 2, W; be the last model of
(Le((Q, (M) @) Tul Q) s, () V05D

where N = Lo [N;] and K; = {K € EVi : y(K) is an inaccessible cardinal of N;}.
Let €; be the strategy of W; induced by A;. We once again have that (2;)o = (A;)o.
Applying the “furthermore” clause of Theorem 4.5.6 to ((€29)g, Q) and ((21)g, Q),
we get that (Qg)g = (1)o. However, since (A;)g = Yoy, and (2;)g = (A;)g, we
have that (£0)g # (€21)g. This contradiction completes the proof of Theorem 4.8.1.

O

91See Theorem 4.6.3, which implies that P is full.

92This follows from the fact that we are not allowed to project across 6.

93Recall that because (U, Q) is a minimal disagreement, Q is of successor type. Thus, in fact
§Mi is a Woodin cardinal of j;(N;) and M.
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4.9 Branch condensation

In this subsection we prove that the hod pair constructions produce strategies with
branch condensation and in fact more. In order, however, to prove that hod pair
constructions converge, we will need to establish the solidity and universality of the
standard parameter of the models appearing in such constructions. Establishing such
fine structural facts wasn’t an issue in [30] as the fine structure for hod mice consid-
ered in that paper was a routine generalization of the fine structure theory developed
in [23]. Here the matter is somewhat more complicated as the fine structure of non-
meek hod mice cannot be viewed as a routine generalization of the fine structure
of [23]. Nevertheless, the matter isn’t too complicated as a simple generalization of
branch condensation, strong branch condensation, allows us to reduce our case to the
one in [23]. In this subsection, we will establish that hod pair constructions produce
strategies with strong branch condensation. The next definition will use concepts
from Notation 2.7.14, Definition 2.10.2, Definition 2.10.13 and Definition 3.10.7.

Definition 4.9.1 Suppose P is a non-gentle hod premouse.
Suppose next that either

e P is of successor type or
e P is of Isa type and J,[P] E “6” is a Woodin cardinal”.

Suppose 0 : R — Q is an elementary embedding. We say that there is a total
(Q,R,0)-b-condensation diagram on P if there is (7, 7) such that

e m:P — Qis an elementary embedding,
e 7:P — R is an elementary embedding,
e T=0o0T,

We then say that (7, 7) supports a total (Q, R, 0)-b-condensation diagram on P.

Suppose next that P is of limit type and o : R — Q is an elementary embedding.
We say there is a bottom-type (Q, R, o)-b-condensation diagram on P if there
is ((m, @), (7,R'),0’) such that

o 7:P" = Qis an elementary embedding,
e 7:P" = R'is an elementary embedding,

e ¢/ : R — @ is an elementary embedding,
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e T=c'orT,

and either
e Q and R are of successor type, @ <jnoq @, R Jjog R and ¢’ [ R = o, or
e Q and R are of of limit type, Q° <pog @', R? <poa R and o’ | RP =0 | RP.

We then say that ((7, @), (7, R’), 0’) supports a bottom-type (Q, R, ¢)-b-condensation
diagram on P. We say that ((w, @), (7,R'),0’) supports a strict bottom-type
(Q, R, 0)-b-condensation diagram on P if in clause 6, Q° <j,q Q'

Suppose now that P is as above and (P,3) is an allowable pair. We then say
that there is a (P, X)-supported (Q, R, o)-b-condensation diagram on P if there
is (T, Q") € I°P*(P, ¥) such that one of the following clauses holds:

1. e (P,Y)is a hod pair,

P is either of successor type or of Isa type and such that J,[P] E “67 is
a Woodin cardinal”,

o O =0,
e (7,Q) € I(P,Y%), and

e there is 7 : P — R such that (77, 7)-supports a total (Q,R,o)-b-
condensation diagram on P.

2. e Pis of limit type™
e O is a complete layer of Q" and

e letting

B Egb : Q is of limit type
Eg : @ is of successor type,

there are 7 : P* = R’ and ¢’ : R — Q' =4 7p(P’) such that ((7p |
P9, (r,R'),d’) supports a bottom type (Q, R, ¢)-b-condensation dia-
gram on P,

e (The sts conditions)” if (P,X) is an sts hod pair or a simple sts hod
pair then Q # Q* provided one of the following holds:

T

— 7’ exists.

94This clause also works for simple hod pairs and simple sts hod pairs.
95We need this conditions in order to make sense of o-pullback of g 7.



4.9. BRANCH CONDENSATION 185

— 77 doesn’t exist but letting 7 = (Pq, Xa, Go : @ < ) and v be the
largest element of maxf{ , m¥8)>7 exists.

_|

Definition 4.9.2 (Strong branch condensation) Suppose (P, ¥) is an allowable
pair and P is not gentle. We say > has strong branch condensation with low-
level-agreements if

1. ¥ has branch condensation”,

2. whenever

e (7,9),(U,R) € IP(P,X),

o 7m:RY— QPissuch that 77 = 7 o 7Y,

e X is a stack on R? according to Ygsy,

e cis a branch of X' such that ¥ is defined and there is o : M7 — Q° with
the property that @ = o o ¥

c=SUX).

3. whenever (Q,R,0), (T, Q*) € I°?*(P,%) and (W, R) € B%?¢(P,X)UI(P, %)
are such that

e there is a (P, X)-supported (Q,R,o)-b-condensation diagram on P as
witnessed by (7, Q") and

e letting A be the o-pullback of ¥g 7, there is no low level disagreement
between ¥y and A,

then one of the following holds:

(a) If
e P is of Isa type, (P,X) is a hod pair and J,[P] F “07 is a Woodin
cardinal”,
e (7,Q") supports a bottom-type (Q, R, o)-b-condensation diagram
((71—7 Q/)7 (7—7 R/>7 UI)
on P and

9See [30, Definition 2.14]. If ¥ is an st-strategy then we apply [30, Definition 2.14] to stacks T

and U such that max” = max! = (.
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e 77 is defined,
then R is of Isa type and (Xg )% = A5
(b) In all other cases, Xz = A.

We say X has strong branch condensation if A = Y%,y holds without the
requirement that there is no low level disagreement between A and Xz . -

Remark 4.9.3 The proof of Theorem 4.9.5 only establishes clause 3 of strong branch
condensation, but the proof can be easily modified to show clause 1 and 2 as well. -

The following is an easily provable lemma, which establishes the equivalence
between strong branch condensation and strong branch condensation with low-level-
agreements. The reader may wish to review Definition 4.3.11.

Lemma 4.9.4 Suppose (P,Y) is a hod pair or an sts hod pair, ¥ is weakly self-
cohering and T is a projectively closed pointclass. Suppose that

e Y has strong branch condensation with low-level-agreements,
e > is [-strongly fullness preserving,
e if P is of successor type then Yp- has strong branch condensation.

Then (P, ¥) has strong branch condensation.

Proof. Suppose that (Q,R,o) is such that there is a (P, X)-supported (Q,R,0)-
b-condensation diagram on P as witnessed by (7,Q*). Let A be the o-pullback
of ¥o 7. Fix a pair (W,R) € B%?(P,%X) U [¢(P,¥). Our goal is to argue that
Yrw = A. Towards a contradiction assume that Xz, # A. Thus, we must have
that there is a lower level disagreement between % )y and A.

Suppose first that P is of successor type. Because there is a lower level disagree-
ment between ¥ )y and A, we must have that Yz~ ), # Ag-. However, it is not
hard to see that there is a (P~, ¥p-)-supported (Q~,R~,0 | R~ )-b-condensation
diagram on P~ as witnessed by (} (7,P7),Q ). Because ¢ | R~ -pullback of
Yo (1,p-) is just Agx- and because ¥p- has strong branch condensation, we have
that Yg- = Ag-

We now assume that P is of limit type. Since all the cases are very similar, we
will examine two representative cases, namely:

(A) P is of Isa type, J,[P] F “07 is a Woodin cardinal”, (P,¥) is a hod pair
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and there is a total (P, X)-supported (Q, R, 0)-b-condensation diagram on P as wit-
nessed by (7, Q").
(B) (P, %) is an sts hod pair and Q is of limit type.

We start with (A). In this case, Q* = Q and 7/ exists. Let 7 : P — R be such
that 77 = o o7. Let then Wy, Ry, Wy, R}, R2) be a minimal low level disagreement
between (R, A) and (R, Xxw). Thus,

e (since (R,A) and (R,Xx)) are hod pairs), we have that W, and W, are
generalized stacks.

e R, is of successor type,
* Mgy =Ygy wwy and

hd AR27W1 7é ERz,W“W{~

Let 71 = oW, and let Q; be the last model of 7;. Let oy : Ry — Qi be the copy
map and set Qs = 01(R2). Notice that both Ry and Qs are of successor type.

Let T = (Pa, Xay Go : a < 1) and let U = T T, where we construct this by
setting P, = Q and &, 1 = 7;. Thus, U« [ n = 7. Combining 7 and 7; this way is
a legal way of producing a generalized stack because 77 is defined””. Let then

e E be the Qy-un-dropping extender U and Q' = 7y (P?),

e F' be the Ry-un-dropping extender of Wy,

o F={(a,4): (ar(4) € F},

e 0y : R — Q be the map given by oy([a, f]r) = [o1(a), f]E-

It follows that

(A1) (a,X) € F ¢ (01(a),X) € E, and hence o9 is an elementary embedding,

and
(A2> 09 rRQZUl rRQ and TE [Pb:O'QOﬂ'F [Pb

Therefore, (771, Q1) and ((7g | P (25)%), (7 | P°, (RS)), 09) support a bottom-
type (Qz, Ra,01 | Ro)-b-condensation diagram on P. Therefore, since ARZ;,W1 =
ER;WAM (i.e. there is no low level disagreement between Ar,yw, = Yz, w~w:) and

97If (P, ) was a simple hod pair then at this step we would let 7~ 7; be a stack.
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AR, w, is the og-pullback of Yo, 7~7, A, w, = Xr, w-w, contradiction!

We now work assuming (B). Most of what we say below is very similar to the above
with only minor differences. In this case we have that clause 2 of Definition 4.9.1
holds. Thus,

e Q is a complete layer of Q*,
e Q is of limit type and

e letting F = Egb, there are 7: P* — R’ and 0’ : R' — Q' =45 mp(P?) such that
(mg T P°, Q),(r,R"),0’) supports a bottom type (Q,R,o)-b-condensation
diagram on P.

Set m = 7 | P°. Let then Wy, R, W;, R}, R2) be a minimal low level disagreement
between (R,A) and (R,Xrw). Let 71 = oW, and let Q; be the last model of 7.
Let 01 : Ry — Q1 be the copy map and let Q; = 01(R3). Notice that both R, and
Q, are of successor type.

We now define U as follows. If 77 is defined then we let i/ = T~ T; be as in (A).
Assume then 77 is not defined. In this case, T = (P4, Xa, Go 1 a < ), QF is the
last model of X3 and 7% is not defined. Let then U be the same as T except that
the fth stack used in U is X5 T;*.

Just like in case (A), we have that if E’ is the Qs-un-dropping extender of
U, I’ is the Ry-un-dropping extender of Wy, F' = {(a, A) : (a,7(A)) € F'} and
oy : Tp(P?) — 7 (PP) is the map given by o9([a, flr) = [01(a), f]E then

(B1) (a,X) € F < (01(a),X) € E', and hence o5 is an elementary embedding,

and
(BZ) 09 [”R,2:0'1 rRQ aIldﬂ'E/ erZUQOWF [”Pb

Here the situation may seem somewhat more complicated as W; is on R and not
on R'. But since R® <,q R, F' is an R’-extender. Moreover, since 7; = oW, and
o' | R =0 | R?, we have that for each A € p(67") NP,

0a(0™ (r(A))) = o7 (m(A))*.

We then once again, just like in (A), have that

98Thus, we have that for some v € RY 71 Q* = Mff‘;ﬂ and (wﬁf’;ﬂ,mf‘?ﬂ) = (ord(Q),w).

99Here, o is defined in Definition 2.10.5 and Notation 2.10.9.



4.9. BRANCH CONDENSATION 189

(T™T1, Q1) and ((wpr | PP, (PP)), (mp | PP, mp(PP)), 09)
support a bottom-type (Qa, R2,01 | Ra)-b-condensation diagram on P, and which
implies, just like in (A), that Az, w, = Xr, w-wr. O
Theorem 4.9.5 Assume AD™ + NsesS. Suppose
e for some ag such that 0,, < O, ' = {ACR:w(A) < b},
e C= (M, (P,W),I'*, A) Suslin, co-Suslin captures T,

o M= (M,5,G,%%),

hpc = (M, N, Y., @, FF Fy by oy < 0) s the output of the T' — hpc of M,

& < O is such that (Mg,@é“) is a hod pair, Mg is not gentle and M F
(Me, ®¢) € Hp'.

Then @g has strong branch condensation.
Also if € < & is such that (Mg, (®F)*) is an sts pair and M & (Mg, Pg€) € Hp"

then (@Z)Stc has strong branch condensation.

Proof. The proof of the second half of the theorem is similar to the first and so we will
prove the first and leave the second to the reader. The proof of the branch conden-
sation is very similar to the proof of the second half of strong branch condensation,
and so we give the proof of the second half of strong branch condensation.

Towards a contradiction, suppose that for some £, Mg is a hod premouse and
<I>gr, doesn’t have strong branch condensation, and let £ be the least such £'. Because
of Lemma 4.9.4, it is enough to show that CI>2r has strong branch condensation with
low-level-agreements.

Just like in the proof of fullness preservation (see Theorem 4.6.3), if (IDZ does not
have strong branch condensation then for some (y < 0 the witness can be found in
some M([g] where g C Coll(w, () is M-generic. Let ¢; = {sup(F.") : v < £} and set
¢ = max((¢g)™, (¢)M).

Let P = Mg and ¥ = (132. The difficult case is when P is non-meek, and so we
assume this. We start working in M[g]. What we need to show is that whenever

e (Q,R,0) is such that there is a (P, X)-supported (Q,R,o)-b-condensation
diagram on P as witnessed by (7, Q*), and
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e W,R) € B%(P,X) U I%?(P,Y) is such that letting A be the o-pullback of
Yo7, there is no low level disagreement between Yx )y and A,

then ER,W =A.

Fix then (Q,R,0) € M]|([g] such that there is a (P, X)-supported (Q,R,o)-
b-condensation diagram on P as witnessed by (7, Q*) € M|([g] and let W, R) €
BoPe(P, X)UI%¢(P, X)) be such that (W, R) € M|([g] and letting A be the o-pullback
of Yo,

(1) there is no low level disagreement between ¥z )y and A but Xgyy # A.
It follows from Lemma 4.7.5 that

(2) either R is of successor type or R is of Isa type and J,[R] F “0% is a Woodin
cardinal”.

T

Case 1: 77 is defined, and for some 7, (77, 7) supports a total (Q, R, o)-b-condensation

diagram on P.

We thus have that 7: P — R and 77 = g o 7. Let then

s Yp- P is of successor type
~ | Zste : otherwise

D P : P is of successor type
0 (P|6%)# : otherwise

D P : P is of successor type
! (P[67)#  : otherwise

A= Ar- P is of successor type
Ast¢  : otherwise.

Let PT be the last model of
(Le((P}, %), Tu[Pyl)sc) Mlslach100,

100Gee Definition 4.5.1. Here we are assuming that if P is of Isa type then the above construction
doesn’t break down because of the anomaly stated in clause 3.b of Definition 4.2.1. In the sequel,
we will prove that such constructions indeed converge. See Theorem 4.12.1.



4.9. BRANCH CONDENSATION 191

Define Q] and R/ the same way P; is defined. We then let E'Q,l and Z’R,l be defined
the same way ¥’ is defined but relative to Yo 7 and Xg . It follows from (2) that

A= %5,

Let

e [ be the (67, 0%)-extender derived from 7,

e F be the (67, 59)-extender derived from 77 and

e H be the (67, 6%)-extender derived from 7"V10%.
We let

RY = Uli(P*, E), Q@ = UIt(P*, F) and St = Ult(P*, H).
We also have ot : RT™ — Q% such that
mh =otorp and ot | R =o0.

More precisely, ot (z) = 75 (f)(c(a)) where f € P, a € (R)<“ and z = 75 (f)(a).

Notice now that both @ and St have strategies induced by X* via the resur-
rection procedure of [23, Chapter 12] that we have outlined in Lemma 4.3.9. Let ¥*
and ® be these strategies. We then have that ¥g = Yo 7 and & = Xg . Let now
U be the o-pullback of ¥*. Applying the “furthermore” clause of Theorem 4.5.6 to
(R*,¥) and (ST, @), we conclude that U = Og.

Case 2: There is 7 : P — R’ such that (1, R') € M|([g] and letting
e F be the QP-un-dropping extender of 7 if Q is of limit type and
e [ be the Q-un-dropping extender otherwise,

there is a 0’ : R' — Q' =4y mp(PP) such that ((7r | P°, Q'),(r,R’),0’) supports a
(Q, R, 0)-b-condensation diagram on P.

This case is very similar. Notice that (2) implies that X3, = A* assuming the
hypothesis of clause 2 of Definition 4.9.2 holds (as there are no low level disagree-
ments between Y% 1y and A). Thus, we assume that the hypothesis of clause 2 is not
applicable. Notice now that the sts conditions!'’? and the fact that Q has to be a

1011y the case that (W, R) € B¢, we let H be the R-un-dropping extender of W and continue
as below.
102Gee Definition 4.9.1.
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complete layer of Q* imply that @ and R are not of Isa type. (2) then implies that
Q and R must be of successor type!®®. It then follows that Q <jq mr(P?).
Let now P’ be the last model of

(Le((P®, Sps ), T [PY]) s ) MIs18:6).
Let

e E be the (67,67 )-extender derived from 7, and

H be the R-un-dropping extender of W.

!
Y

Rl = Ult(,]),, E) and o — 7T7E)

Q, =Ul(P',F) and oy : Ry — Q; is the canonical factor map, and

S, =Ult(P',H) and k = 7}, .

We then define R and ST as follows. Let R be the last model of
(Le((R™, Ag-), Ju[R])se) Ferecrn RIS

where H' = {K € E® : y(K) is inaccessible in Ry}
Let ST be the last model of

(Le((R™, Xr-w), T [R])s) Loraan S1].8.H)

where H” = {K € ES' : y(K) is inaccessible in Sy }.

Notice that because ¥z- 1y = Ag- we have that both R and ST are ¥r- y,-mice
over R. Once again, in M[g]|, both R™ and S have (9,0 + 1)-iteration strategies
® and ¥ such that Ax = & and Xr)y = VUx. It then again follows from the
“furthermore” clause of Theorem 4.5.6 that & = V. O

103Gee Lemma 4.7.2.
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4.10 Positional and commuting

In this section, our goal is to show that strong branch condensation implies com-
muting. Recall [30, Definition 2.35]: if M is a transitive model of a fragment of ZFC
and Y is an iteration strategy for M then we say X is positional if whenever (@) is a

Y-iterate of M via W and (T, R), (U, R) € 1(Q,Xow), Zew~T = Lrw~u- Recall
that commuting means that in the above scenario, 77 = 7"V. If the above only
holds for @ = M, then we say that ¥ is weakly positional (and weakly commuting
respectively). Using the usual proof of the Dodd-Jensen lemma, we get that (weakly)

positional implies (weakly) commuting.

Remark 4.10.1 In the previous section, we only studied branch condensation for
non-gentle hod premice. This is because if (P, Y) is a hod pair and P is gentle then
Y is essentially @g., ,»2X0. Thus, we can say that ¥ has strong branch condensation
if for every complete layer Q <,,q4 P, Yo has strong branch condensation. We will
state our theorems for hod pairs or sts hod pairs, but the proofs will be given for
pairs (P, X) such that P is non-gentle. .

Proposition 4.10.2 Suppose (P,X) is an allowable pair, T is a projectively closed
pointclass and Y2 has strong branch condensation and is strongly I'-fullness preserving.
Then ¥ is positional. Moreover, if ¥ is an iteration strateqy then it is also commuting.

Proof. We just prove weak positionality and hence weak commuting. The proof of
the general case is only notationally more complicated.

Suppose (7,9Q), (U, Q) € I(P,X). We want to see that X¥g 1 = Xgy. Towards
a contradiction, suppose not. Suppose first that P is of limit type and if it is
of the Isa type then 3% # X%, Let then ((71,R1),(72,R2), R3) a a minimal
lower level disagreement'® between Yo7 and Ygz. We can then apply strong
branch condensation to (Rs, R3,id). Notice that (T~ 71, Q) supports a (R3, R, id)-
b-condensation diagram on P as witnessed by ((7, R), (7, R), id) where letting E be
the Rs-un-dropping extender of T~7;, R = 7(P?) and 7 = 7 | P°.

Next suppose that P is of successor type or of Isa type but Z‘gffr = ESQtfu. It then
follows that (77,77) supports a total (Q, Q, id)-b-condensation-diagram on P. It
then again follows that ¥ g 7 = Yo y. O

The proof actually gives more.

Proposition 4.10.3 Suppose (P, %) is an allowable pair, I' is a projectively closed
pointclass and ¥ has strong branch condensation and is strongly I'-fullness preserving.

104Gee Lemma 4.7.5.
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Suppose that (T, Q) € BP(P,L)UI%(P,X) and (U, Q) € BP(P,X)UIP(P,X).
Then ZQJ’ = EQJ,{.

Definition 4.10.4 Suppose (P, X) is an allowable pair and I is a projectively closed
pointclass. Suppose further that > has strong branch condensation and is strongly
[-fullness preserving. Given Q € p[I°P¢(P,X)] U p[BP¢(P,%)]'%, we let Yo = Yo7
where 7T is such that (7, Q) € I°?¢(P, %) U B*¢(P,¥). .

We need commuting not only for iteration strategies but also for short tree strate-
gies.

Definition 4.10.5 Suppose (P, X)) is an sts hod pair. We say ¥ is weakly commut-
ing if whenever (7,Q) € I°(P,%) and (U, R) € I°(P,X) are such that R <j,q Q°
and R? = cHull?" (zT*[P?] U 6%"), then letting

o k' Hull?" (zTP[P?) U6R") — R’ be the transitive collapse and

o k=4 K ont: Pl = Rb

k= ntb,
In the above situation we say that k is the collapse of 77*[P’]. We say (P,X)
is commuting if whenever (7, Q) € IP¢(P, %), Xg is weakly commuting. =

It is not known to us if strong branch condensation and I'-fullness preservation
for sts pairs implies commuting. Nevertheless, hod pair constructions produce sts
pairs that are commuting (also see Proposition 4.15.1).

Theorem 4.10.6 Assume ADT + NsesS. Suppose
o for some ag such that 0,, < O, ' = {ACR:w(A) < b},
o C= (M, (P,W), ', A) Suslin, co-Suslin captures T,

o M= (M,5,G, %%,

hpc = (M, N, Y,, @, FF Fy by oy < 0) s the output of the T' — hpc of M,

& < 0 is such that (/\/lg,fbg) is a hod pair, Mg is not gentle and M F
(Mé,@g) S HpF.

105p[A] is the projection of A. In general, the coordinate onto which we are projecting will be
clear from the context.
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Suppose £ < & is such that (Mg, (®F)*) is an sts pair and M E (M, ) € Hp'.
Then ()¢ is commuting.

Proof. The proof is very similar to the proofs we have already given. Set (P,X%) =
(M, ((IDZ)“C). We prove that ¥ is weakly commuting as the general case is only
notationally more complicated. Towards a contradiction assume > is not weakly
commuting. There is then some ¢y such that for some g C Coll(w,(p), M[g] has a
witness to the fact that ¥ is not weakly commuting. Let ¢ = sup{lh(F)) : ¢ < }.
Let ¢ = max((¢)M, (¢GHM) and G = {H € G : crit(H) > ¢}.

Fix then (7,Q) € I°(P,X) and (U, R) € I°(P, %) such that

* R’ <poa Q°,
o Rb = cHull?" (zT*[PY] U 6R") and
o (T,QU,R) e Mg].

Let k : P — R’ be the collapse of 77 *[P’]. We want to see that k = 7.

Let P’ be the last model of (Le((P?, Spb), T )s¢)M95C) and P+ = stack(P’, Sps ).
Next let Ey be the (67,67 )-extender derived from k and E; be the (67, 6%")-
extender derived from 7. We need to show that

(a) T, | P° = mp, | PO
Notice that we have that
(1) 7g, | 67 =ng, [ 67"

This is because k | 67" = a7t | 67" so if wg, | 67" # 7, | 07, we have that
for some S <, P, S is a complete layer of P and ¥s is not commuting. But since
Y5 has strong branch condensation and is fullness preserving'’®, Proposition 4.10.2
implies that ¥s is commuting.

Let then Ny = Ult(P*, Ey) and N7 = Ult(P*, Ey). Notice that it follows from
Theorem 4.9.5 that

(2) both Ny and N are Yze-mice over R,
(3) for i € 2, N; = stack(N;|9, Xrs),

106See Theorem 4.9.5 and Theorem 4.6.3.
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(4) both Ny and N; have (4,6 + 1)-strategies as Ygo-mice!"7.

Let then M be a common iterate of Ny and N; (via these strategies). Let jo :
Ny — M and j; : Ny — M. We then have some « such that

* Jo(me, (k) = j1(7m (K)),
o for i €2, crit(j;) > 67", and
e rge(jo o mg,) Nrge(j) o g, ) contains a k-club C1%.

Let Dy = (jo o mg,) " t[C] and Dy = (j; o wp, ) }[C] and set D = Dy N Dy. Tt follows
from universality of P+, Ny and V] that

(5) PP C Hull?" (D UP"), and for i € 2, R® C HullNi(np, [D)).

Suppose now that A € PPN p(67") and fix s € D<*, t € [6”']<* and a term ¢ such
that A = ¢”"[s,]. We then have that 7p,(A) = ¢No(7g, (s), 75, (t)). Tt follows that
jo(mg, (A)) € rge(jiomp, ). Let B € PPNp(67") be such that jo(rg, (A)) = ji(7g (B)).
Because crit(j;) > 6%, we have that 7z, (A) = 75, (B). But (1) now implies that
A = B. Therefore, mg,(A) = g, (A). O

It follows from Proposition 4.10.2 that iterates of (P, ¥) can be successfully com-
pared with one another. To prove it we simply compare (Q, ¥ o) with (R,YXz) by
using least-extender-disagreement comparison.

Corollary 4.10.7 Suppose (P,X) is an allowable pair, I' is a projectively closed
pointclass and Y has strong branch condensation and is strongly I'-fullness pre-
serving. Suppose (7,Q) € [(P,X) and (U, R) € I°°¢(P,X). Then there is
(T1, Q1) € I7°(Q,%0) and (Uy,R1) € IP°(R,Xr) such that 7; and U, are nor-
mal stacks and the following holds:

1. Suppose (P, Y) is a hod pair or a simple hod pair. Then one of the following
holds:

(a) Q1 hod Rl, 7TT1 exists and (ZRI)Ql = Egl.
(b) Ri Dpoa Q1, 7 exists and (Lo, )r, = Lr,-

107These strategies act on iterations below d.
108See Theorem 4.5.6.
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Moreover, if in addition (7, Q) € I(P, %) and (U, R) € I(P, %), then Q; =R,
and both 77 and 7" are defined.

2. Suppose (P,) is an sts hod pair or a simple sts hod pair. Then one of the
following holds:

(a) Q1 Dhod R1 and (Xr,)o, = g,
(b) R1 Dpoa @1 and (Xg,)r, = LR, -

Moreover, if in addition (7, Q) € I(P,X) and (U, R) € I(P,X), then Q; = R;.

Consequently, if ¥ is commuting then 77 716 = g4 Ub,

In clause 2 of Corollary 4.10.7, the conclusion Q; = R; is a consequence of I'-fullness
preservation and our minimality assumption. If, for example, Q1 <j,q R1 then there
is a Xg,-sts W <Ry such that

e WE “§9 is a Woodin cardinal” |
o J,IW]E “9 is not a Woodin cardinal”, and
e W has a strategy in I'.

It then follows that W < Q;, contradiction.
The following is a corollary of Corollary 4.13.3 and Theorem 4.10.6.

Proposition 4.10.8 Suppose (P,X) is a hod pair or an sts hod pair, T is a pro-
jectwely closed pointclass and 3 has strong branch condensation and is strongly I'-
fullness preserving. Then for some (T, Q) € I(P,X), Yo7 is commuting.

The next lemma will be used in the proof of Theorem 6.1.4.
Lemma 4.10.9 Suppose
e (P,Y) is an allowable pair and P is non-meek,

e ['is a projectively closed pointclass,

) has strong branch condensation and is strongly I'-fullness preserving,

if (P, %) is an sts hod pair or a simple sts hod pair then ¥ is commuting,

(T,Q) € I°’*(P, %), (U,R) € I°°*(P, %) and (W, S) € I(R,Xr) are such that
W is based on R® and S <04 Q.
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Then S = cHull? (xT*[P?] U §%).

Proof. The proof is an easy corollary of commuting. Let W+ =1 (W, R) and let
ST be the last model of W*. Notice that (§7)® = S. Let M be a common iterate
of (Q,%g) and (ST, Xs+) via respectively X and Y, which we can find because of
Corollary 4.10.7. We have that

(1) S = cHull™ (7¥?[S]) and Q" = cHull™’ (x**[QV)).
It follows from Proposition 4.10.3 and commuting that

(2) T " Xb — WU“(W*)Ay,b and 71Xt f 5S = qYb f §5S109.

It follows from (1), (2) and the fact that 3 is strongly I'-fullness preserving that
(3) S = cHullM" (xT~ X[PY) U n¥0[59)).

Therefore, S = cHull? (7T [P U 6%). O

4.11 Solidity and condensation

The main contributions of this section are Theorem 4.11.7 and Theorem 4.11.8 that
can be used to show that fully backgrounded hod pair constructions are successful,
which amounts to showing that clause 4 of Definition 4.3.3 never occurs. We start
with the following version of Lemma 4.11.5 for phalanxes that is used in the proof
of solidity and universality. We omit the actual proofs of Theorem 4.11.7 and The-
orem 4.11.8 as, in the light of Lemma 4.11.6, the proofs of solidity and universality
are trivial generalizations of the usual proofs of these facts (see [60, Chapter 5]).

Remark 4.11.1 This section is devoted to showing that hod pair constructions of
a background (M, 4, é) converge. We thus think of the hod pairs that appear in the
statement of lemmas and propositions of this section as hod pairs constructed by hod
pair constructions, and since we would like to show that hod pair constructions are
successful, which amounts to showing that clause 4 of Definition 4.3.3 never occurs,
the pairs we consider here are models appearing in the intermediate stages of hod
pair constructions. This, in particular, means that first of all, we must deal with hod

109This equality holds as we have (£g)s = (Zs+)s-
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pairs (as opposed to sts hod pairs) and also the hod premouse is non-meek and not
of Isa type, which is a consequence of our minimality assumption. The reason that
it is enough to consider non-meek hod premice is that clause 4 of Definition 4.3.3
for meek or gentle type hod premice is not new, and the usual proofs of solidity and
condensation can be used. -

Definition 4.11.2 (Certified phalanxes) Suppose (P,X) is a hod pair such that
P is non-meek and R is a hod premouse. Let 7,( be such that 7 : R — P is a
Y1-embedding, and ¢ < crit(m). We say (P, R,() is a (m, P, ¥)-certified phalanx if
¢ > o(P%). We also say (P, R,() is a (P, X)-certified phalanx witnessed by 7. =

Continuing with the set up of Definition 4.11.2, we let 7+ : (P, R,() — (P, P, () be
given by (id, ), and also, we let ¥™" be the 7+-pullback of ¥.

Lemma 4.11.3 (No strategy disagreement) Suppose (P, ) is a hod pair such
that P is non-meek, 3 has strong branch condensation and ¥ is strongly I'-fullness
preserving for some pointclass T" that is projectively closed. Suppose (P, R, () is a
(P, %) certified phalanx as witnessed by 7 : R — P. Let A = >, Then no strategy
disagreement appears in the comparison of P and (P, R, () where X is used on the
P side and A is used on the (P, R, () side.

Proof. Towards a contradiction suppose not. It follows from the proof of Lemma 4.7.2
that we can find a minimal low level disagreement ((7,Q), (U,S), W) between %
and A. Let then F = EY%, be the W-un-dropping extender of «. We have that
W <poq Ult(P, E). Let now X = 77U, P; be the last model of X, 0 : § — P; be
the copy map and F' be the o(W)-un-dropping extender of X. Let ¢’ : Ult(P, E) —
Ult(P, F) be given by o'([a, flg) = [0(a), flE-

We now have that (X, P;) and ((mp | PP, Ult(P, F)®), (ng | P°,Ult(P, E)"), o)
support a (c(W), W, o | W)-b-condensation diagram on P. Because o | W pullback
of Xoow),x is Ay, it follows from strong branch condensation that Xy, 7 = Ayyyy.
[

Definition 4.11.4 (Certified pairs) Suppose (P, ) is a hod pair and R is a hod
premouse such that both P and R are of limit type. Suppose that there is 7 such that
7 : P® — R is elementary. We say the pair (7, R) is (P, X)-certified by (o, T, Q, Q')
if

1. (T,Q) € I(P,Y), @ <jpq Q@ and 0 : R — Q' is ¥j-elemnetary,
2. (@) = Hull?(xT[PY) U §(@)"), and
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3. letting k : P* — (Q')® be the collapse of 77 [P*], k = (o | R?) o 7.

We say (R, A) is a (P, X)-certified hod pair if for every (U, S) € I(R,A), there is w
and (0,7, Q, Q') such that (7, S) is (P, X)-certified by (¢, 7T, Q, Q') and

Agvy = (o-pullback of Yo 7).

_|
Lemma 4.11.5 Suppose (P, %) is a hod pair such that P is non-lsa type non-meek
hod premouse, I is a projectively closed pointclass and ¥ has strong branch conden-
sation and is strongly I-fullness preserving. Suppose (T,R) € I°(P, %) is such
that for some A, (R, A) is (P, X)-certified and there is a Yg-elementary embedding
7P — R such that (7 | P*,R) is (P, X)-certified by (o,U, Q, Q). Then 77 exists
and 77 < 7.

Proof. To implement the usual proof of the Dodd-Jensen property (see [60, Chapter
4.2]), we need to know that

(a) X is the m-pullback of A.

Because (R, A) is (P, X)-certified, (a) easily follows from strong branch condensation
of 3. O

Lemma 4.11.6 (Dodd-Jensen for certified phalanxes) Suppose I is a projec-
tively closed pointclass and (P, X)) is a hod pair such that ¥ has strong branch con-
densation and is strongly I'-fullness preserving. Suppose that (P, R, () is a (P, X)-
certified phalanx as witnessed by 7 : R — P. Suppose that

e 7 is a stack on (P, R, () according to ©™" with last model Q,
e U is a stack on P according to X with last model S, and
e the last branch of 7 is on P and either

1. Q <poa S and w7 exists or

2. S <poa Q and 7 exists.

Then Q@ = S and 77 = 7¥.

10T hus, 77+ exists, see Definition 2.7.21.
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Proof. Let T* = #*T. Let Q* be the last model of 7* and let ¢ : @ — Q* come
from the copying construction. Suppose first that Q <, S and 77 exists. Notice
next that 77 -pullback of (Xg-)? is ¥. Hence, applying the ordinary proof of the
Dodd-Jensen property we get that S = Q, 7 exists and 7 < 77,

Suppose now S <p,q Q and 7 exists. Notice that 7 induces an embedding
™ (P,R,¢) = (S,8,7Y(¢)) such that 7* | P = 7 and 7* | R = 7 o w. Notice
that

(1) &7 = (7*-pullback of Xg).
Applying Lemma 4.11.5 to the embedding (o [ ) o 7 and (T*, Q*), we get

(2) 0(S) = Q*, 77" exists and 77 < 7o 7M.

(2) now implies that S = Q. Since 77 = o o7/, we have that 7’ exists and

77 < Y. Putting the two arguments together we see that 7 = 77 O

It is clear that it follows from Lemma 4.11.6 and from Lemma 4.11.3 that the
usual proofs of condensation, universality and solidity go through for hod mice. We
state the results without proofs (see [60, Chapter 5] for the usual proofs of these
results. )

Theorem 4.11.7 (Solidity and universality) Suppose I' is a projectively closed
pointclass, k < w and (P,X) is a hod pair such that

1. P is k-sound non-meek hod premouse,
2. P is not of Isa type and p(P) > o(P®), and
3. X is strongly T'-fullness preserving and has strong branch condensation.

Let r be the k + 1st standard parameter of (P,ux(P)); then r is k + 1-solid and
k 4+ 1-universal over (P, ug(P)).

Theorem 4.11.8 (Condensation) Suppose I' is a projectively closed pointclass
and (P,X) is a hod pair such that

1. P is non-meek hod premouse,
2. P is not of lsa type and p(P) > o(P®), and

3. X 1s strongly U'-fullness preserving and has strong branch condensation.



202 CHAPTER 4. A COMPARISON THEORY OF HOD MICE

Suppose (P, R,() is a (P,X) certified phalanz as witnessed by m: R — P such that
¢ = crit(m) = p®. Then either

1. R ﬁhod P or
2. there is an extender E on the sequence of P such that lh(E) = pi and R <04

Ult(P, E).

4.12 Backgrounded constructions relative to st-
strategies

In this section, we show that if (P, ) is an sts pair constructed by a hod pair con-
struction then if the fully backgrounded construction relative to 3 breaks down then
it does so because it reaches an sts mouse that destroys the Woodiness of 6”. The
reader may find it helpful to review Definition 3.7.3, Definition 3.7.4, Definition 3.7.5,
clause 5 of Definition 3.8.9 and Definition 3.8.16.
Theorem 4.12.1 Assume AD'. Suppose

e for some a such that 6, < ©, ' ={A CR:w(A) < 0,},

o C= (M, (P,W),I'* A) Suslin, co-Suslin captures I' and

o M= (M,5,G,%%),

hpc = (M, N,,Y,, @, FF F, by 0y < 0) s the oulput of the ' — hpc of M,
o & <6 is such that (Mg, ®¢) is an sts pair and M E (Mg, ®¢) € Hp".

Set (Mg, @f) = (P, %) and let ¢ > sup{lh(F) : v < &} Let

(Le((P, 1), Tu[P])>)™ = (Py, P, XT, X5, by 1y < ).

Suppose there is & such that the anomaly stated in clause 3.b of Definition 4.2.1
occurs at &. Then Pg, E “67 is not a Woodin cardinal”.

Consequently, if LpF’EStC(P) E “67 is a Woodin cardinal” then the anomaly stated
in clause 3.b of Definition 4.2.1 does not occur.
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Proof. Suppose that P, F “67 is a Woodin cardinal”. Set & = (Pg)ex''!. We
assume that £ is the least such that our claim fails for (M, @:{) Suppose S =

( 5{7 € E, f), 0= Po+vand t = (P,T) € [S|lwB| Ndom(X) is such that setting
w = (T,(t),t,€), wis (f,sts)-minimal as witnessed by 5y''?, T is P|wBp-terminal''?
and vy = 1h(t). Set b=3(T), p=1(T.,S), Pr = m™*(T) and
My : Q(b,p) doesn’t exist
1 Q(b,p) : otherwise.
Notice that if J,[S] F “67 is not a Woodin cardinal” then Q(b, p) is defined.
We then have that
. L
Poir = (T o € B 1:D)
where b C wfy+wo is defined by wBy +wv € b <+ v € b. Since we are assuming that
the anomaly occurs, we have that there is e € S|wfy such that S|w/y F stso(t,e)'*

and e # b. Let ® be the strategy of S induced by ¥*!*5. Notice that because 67 is a
cutpoint in §, ® extends .

Sublemma 4.12.2 Whenever S’ is a ®-iterate of S via a stack that is above 67, S’
is a Y5“-sts premouse over P. Thus, any two ®-iterates of S can be compared to
each other.

Similarly if U is a generalized stack on & according to ® such that U/ is based on
P and has a last normal component''® U/, d = X(U), S’ = MY and m*U') € Y
is #-lsa like then whenever 8" is a ®g 1~ (qy-iterate of S’ via a stack that is above
o(U'), 8" is a B3¢ 1) -Sts premouse over m*(U').

Proof. This follows from hull condensation of ¥. We do the proof for stacks, and the
more general proof is only notationally more complicated. Suppose U is a stack on
S according to ® with last model S’. Let U* be the resurrection of & onto M and
let M* be the last model of U/*!7. Set

H1Gee Definition 2.7.3.

H2Gee Definition 2.3.3. In particular, this means that we have to index the branch of t at way.

113G8ee Definition 3.8.8.

114Gee Definition 3.8.16. This means that e is the branch of ¢ we must choose.

15Notice that P is constructed in M|¢ and S above §7 is constructed using extenders with critical
points > (. It follows that X* indeed induces a strategy ® for S via the ordinary resurrection
procedure of [23, Chapter 12]. See also Section 4.3.1.

116See Notation 2.4.4.

117Gee [23, Chapter 12] and also Section 4.3.1.
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0 ((Le((P,2%), Tu[P)>)M) = (Re, RY, ZF, Zror i 7 < ).

We then have some ¢ < 7" (&) and 0 : &' — R,. Let s = (P, X, Py, X1) be an
indexable stack such that s € dom(X%) N dom(X**¢). We want to see that

yste(s) = B5'(s).

Let d = ¥ (s). Notice next that s~ {d} is hull of o(s) " {o(d)} and that o(s)~{o(d)}
is according to X''®. But X has hull condensation (see [30, Lemma 2.9]), implying
that X(s) = d.

The second part of the claim is very similar. This time, letting U* be the resur-
rection of U, we have o : &' — Q, where

7 (hpe) = (9., Q, Z,, Q,, H  Hyye, o 0 < 7°(5))

is the output of the I' — hpc of the last model of &* and ¢ < 74" (£). But now we
repeat the same argument as before noting that X5 w18 the short-tree component
of the o-pullback of Q. O

We now have that Q(e, T) exists and it is an sts premouse over m™ (7). Set
Q = Q(e, T). Notice that because w is (f, sts)-minimal, we must have that for some
To < o, p(S]|T0) < 6(T) and S||7y F stso(, €). Let 7 witnesses that S|m F stso(t, €).
Set 8" = S||70.

Using Lemma 4.1.12, we can find a self-capturing background (Mo, &y, Go, x5)
which Suslin, co-Suslin captures Code(X*) and

(HCMo Code(X*), €) <*" (HC, Code(X*), €)

where <Z means elementarity with respect to parameters in Z.

Let A be the supremum of the first w-Woodin cardinals of &'|wr. Let h C
Coll(w, RMo) be generic and let S” be an RMo-genericity iterate of S’ via ®s. Thus,
we have a stack U € My[h] on &’ such that the following holds in My[h]:

1 h(U) = w4+ 1,

2. 8" is the last model of U,

18Get s’ = o(s)"{o(d)}. We have that P|6” is constructed inside M|¢ while the construction
producing S and 8" uses extender with critical points > ¢. It follows that U* is above ( + 1 while
¥ is determined by the pair (M|¢, 35, .) = (M*[¢, (33,+) mic)- Thus, (0*(®¢))" = X. Notice also
that it follows from the elementarity of 7" that R, is indeed a X5%-sts as the first time this breaks

down is at 7 (&). Thus, any indexable stack that has been indexed in R, is according to X%
H19Gee Definition 3.1.4.
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3. for every a < w{wo, U<, € My,
4. D4 =,
5. 7(\) = wil,

6. for some S”-generic k C Coll(w, < wi’®), RMo is the set of symmetric reals of
S"[k].

We let N = D(S”, wi k)'?°. We now have a strategy A € N for Q and some v with
the property that

1. N E “A is an w;-iteration strategy” and

2. whenever R € N is a A-iterate of Q above §(7) and s € R is an indexable
stack on P; = m™*(T) according to I,

S"[k] E “sis (P, 25" ")-authenticated” 2!,

Notice that N € M;'* implying that A € M,. Moreover, because Code(A) is
projective in Code(X*), we have that Code(A) is d-universally Baire in My. Thus, A

also acts on length wi™ iterations.

Sublemma 4.12.3 There is a A-iterate Q* of Q and a ®g, j-iterate S* of S; such
that §* = Q*|ord(S*) and Q*||ord(S*) is not a Ziﬁi(T)’T-sts premouse over m* (7))
(implying that Q*|ord(S*) # Q*||ord(S™)).

Proof. Our goal now is to compare §; with Q. We use &g, , for §; and A for Q.
Assume for a moment that the comparison is successful. If §; = Q(b, p) then we in
fact have that Q(b,p) = Q and since Q@ = Q(e,T), we get that b = e, which is a
contradiction. Hence, §; = M} and Q(b, p) doesn’t exits (and hence 7} is defined).
In this case, we must have that &; loses the comparison and if (§*, Q*) are the last
models of the comparison then S* < Q*!%%. Because the S;-side loses we have that
the iteration embedding jo : S; — S* is defined. Let then j = joom : S — S*.

120This is the derived model of S as computed by k. See Section 3.8. We need to work inside
My to guarantee that S” € V.

121Gee Definition 3.8.9.

122This follows from the fact that p(S’) < 6(7) and from Sublemma 4.12.2. See [53, Proposition
3.0.1].

123Equality is not possible because S* is not a Q-structure for 7.
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We now argue that Q* is as desired. To show this we only need to show that
Q*||ord(S*) is not a X< (7,75t premouse over m™ (7). Notice that our sts-indexing
scheme is so that if W is an sts premouse properly extending S* and o* = ord(S*)
then (j(7), j(e)) has to be indexed in W at a*. Thus, (j(7),j(e)) must be indexed at
a* in Q*. Assume then that (j(7), j(e)) is according to X3¢ - . Because 7 {e} is
a hull of T{b}~j(T)"{j(e)} as witnessed by j, it follows from hull condensation'?!
of 3 that e = 3(T), contradiction.

Thus, we must have that the comparison between &; and Q does not terminate.
But then Sublemma 4.12.2 implies that this can only happen because the compari-
son of &7 and Q produces an iterate Q" of Q which is not a E%fvfr-sts over P;. Let
then &* be the corresponding iterate of S;. We thus have some ¢ < ord(S*) such that

(1) ¢ ¢ dom(ES") ndom(E2") and S*[c = Q*|¢ but S*||c # Q7.

Let t; = (P1,T1,P;, T]) € dom(X9) Ndom(X°") be such that ¥57(¢;) # X< ().
Assume first that 7/ is defined. In this case we have that 771 is defined and T
is based on (P])’. We then have that ((P})’,7/) is (P, X5"¥)-authenticated itera-
tion'?>. Suppose ) authenticates ((P;)?, 7). Set R = (P;)’ and let W be the last
model of V. Notice that 7 7] is according to X% and moreover, R = 77 T1:(P?),

It follows that thereis 7 : P* — R and o : R — W’ such that m° = gomr and 0T/
is according to (X5)yys 125, Tt follows from Sublemma 4.12.2 that (35), 5 C
Syoy. Applying Theorem 4.9.5 to (Y, WP, R, R,0) and T~ Ty, we get that 77 is
according to g 7~7;. Hence, we must have that 7, = (.

We thus have that ¢; = (Py, 71). If 77 is uvs'?” then by arguing as above we once
again prove that 77 is according to Xp, 7. Assume then that 77 is nuvs. It follows that
m™(7;) is a #-lsa type hod premouse. In this case, our sts scheme guarantees that
there are branches ¢; € S* and ¢, € Q* such that (71, ¢;) is indexed at ¢ in §* and
(71, c2) is indexed at ¢ in Q*. But because $*|c = Q*|¢, we must have that ¢; = ¢, as
what branch is indexed at ¢ in either of the models depends solely on §*|c = Q*|¢ and
not on any external factors. We thus have that S*||c = Q*||¢ contradicting (1). This
contradiction implies that in fact the comparison between S and Q is successful. [

Let then O* and 8* be as in the sublemma above. Because Q* wins the coiteration
we have that the iteration embedding jo : S; — S§* exists. jy is according to ®g, .

124Gee [30, Lemma 2.9)].

125Tn fact, an authentication exists in S”[k]. See Definition 3.7.3.
126Recall that 7% is the strategy predicate of X.

127See Definition 3.3.2.
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As we have argued in the proof of the sublemma, we must also have that 7} exists.
Set then j = joom,. As in the proof of the sublemma, the pair (j(7),j(e)) must be
indexed in Q* at ord(S*).

It then follows that setting 71 = j(7), e1 = j(e) and Q1 =45 (J(Q(e,T)))ex =
(Q(e1, T1))ex' 28, Q1 is (P, 25" ")-authenticated. This means that we can find a nor-
mal stack Y on P with last model W and an ordinal ¢ such that for some normal
stack X on Qj,

(2) X is based on Py =45 m™*(j(T)),
(3) W||v is the last model of X and 7 is defined'??,
(4) WI|e is a X357 -sts over Wy where Wy =gep (W|[1) 4.

(4) follows from the fact that 8" is a X5“-sts premouse over P (see Sublemma 4.12.2).
We claim that

(5) X is according to X3¢ 7.

(5) follows from Sublemma 4.12.4. Assuming (5) we finish the argument. Let

b XO :\L (X77D2)
e p =1 (71,51),
e by =X(p~{b} "),

* S, = i’l’\{b}/\m’

o X' :T (Xo,SQ).

Arguing just like for (b, S;) we have that Q(by, p~{b} "p1) does not exist and Wflﬁ{b}ﬁpl
is defined. It follows from (5) that X is according to ®s, , where ¢ = p~{b} " p7 {b1}.
Let S be the last model of A”. Because 7" is defined and because J,[W||] E “6(Xp)
is not a Woodin cardinal”, we have that there is a normal ®g, ,~-iterate Sy of Ss
and a normal Yy, y-iterate W’ of W||¢ such that Sy <W' and the iteration embed-
ding k : & — Sy exists. Because W' is a Y-iterate of P, we have that (k(7), k(e)),
which according to our sts indexing scheme must be indexed in W', is according to 3.
It then follows that 7 {e} is a hull of T{b} T {b1} X5 k(T) " {k(e)} implying
that b = 3.

128Gee Definition 2.7.3.
129Gee Definition 3.7.3. Clause 1 applies to our current situation.
130Notice that W||i-to-W' iteration is above &(Xp).
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This completes the proof of the theorem assuming (5). Sublemma 4.12.4 implies
(5). To simplify the matter, the symbols used in the statement of Sublemma 4.12.4,
with the exception of (P, ), do not have the same meaning as the same symbols in
the proof given above.

Sublemma 4.12.4 Suppose
e X is a generalized stack on P according to 3%¢,

e X has a last normal component X’ with the property that R = m™(X’) is a
#-like Isa type hod premouse,

e 7 is a stack on P according to 3¢ that authenticates R.

Let S be the last model of 7 and let U be a normal stack on R witnessing that T
authenticates R'*". Then U is according to X3¢

Proof. The proof uses ideas from Lemma 2.10.15, Theorem 4.6.5, Theorem 4.9.5. We
will use Lemma 2.10.15 and Theorem 4.6.5 to conclude that ¢/ picks the branches
according to ¥%% in successor windows. Because the proofs are very similar to the
proofs already given in the above mentioned theorems, we will sketch the arguments.
stc

Set 7+ 1 = 1h(U). Suppose a < 7 is a limit ordinal and U, is according to X3%.
We want to see that

(a) [0, @)y = S5t (Uea)-

Let 8" <poa S be the longest such that 8" < m(U.,) and either S’ is a layer of
S or a limit of layers of S. There are two essential cases.

Case 1: &' <jpq S° is a complete layer'®? of SP.

Let S” be the least layer of S’ such that &’ «S” and 6% is a Woodin cardinal
of Sb. If now d(U-,) < 05" then (a) follows from fullness preservation of ¥'%3. Sup-
pose then that §(U.,) = 6" then letting w be the window of S such that §% = §5",
we need to see that

131Gee Definition 3.7.3.

132Gee Definition 2.7.14.

133Notice that Theorem 4.9.5 implies that s/ 7 = Ys x~y. This is because we can apply
Theorem 4.9.5 to Q =45 S’, E = (the (6Pb,(59)—extender derived from 77°%), R =45 S’ and
0 =def id.
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(b) if b = X (U-,) then s(T,w) C rge(r<).

(b) is a consequence of the second clause of strong branch condensation'!. Let
[ be the least such that S’ < Mu Set N' = ./\/l“ Notice that both § and « are on
the main branch of ¢/ implying that both 7r and ¥ , are defined. Let 7 = 7'['6 - N?
and o = 7Y [ (MY)". Let ¢ = [0, a)y and Set NY% i (U[Ba N?). We can now apply
clause 2 of strong branch condensation to (m,o,U<z, N, T,S, Y, c).

Case 2: S’ <j0q S’ is not a complete layer'3® of S.

Let ¢ = [0,a)y. In this case, we have that Q(c,U.,) exists and Q(c,U.,) I S.
The dificult case is when Q(c,U.,) is an sts premouse over m*(U.,), and so we

assume it. We then have that Q(c,U<a) is a 3¢ ;,_ | 7-sts premouse over m™ (Ucq).

It then follows from Proposition 4.10.2 that in fact Y+ .),7 = 2m+(u<a),/vﬁu<a136

The last remaining case is when S® <I' S’ and this case is very similar to Case 2
above. 0J

This finishes the proof of Theorem 4.12.1. O

We finish this section by recording some consequences of the proof given above.
Suppose (P, Y) is an sts hod pair. There is one potential problem with our defi-
nition of short tree strategy indexing scheme'®”. Suppose M is an unambiguous'®
Y-sts premouse and 7 is an nuvs'®® stack on P. Suppose (v, &,b) is an M-minimal
shortness witness for 7" and let Q@ = Q(b,T). It is not clear that Q is a X, +(7) 7-sts
premouse. More precisely, it is not clear that ©<¢ C Ymt(m),r | Q. However, the
proof of Theorem 4.12.1 shows that in many situations it is indeed the case that

(A) Q a X+ (1), 7-sts premouse, and
(B) X(7) =0b.

134See Definition 4.9.2.

135See Definition 2.7.14.

136Notice that we used Theorem 4.12.1 in the proof of Theorem 4.9.5, namely in the proof of Case
1. However, we use Proposition 4.10.2 for low level strategies or for the short-tree-component of
our strategy, while Case 1 of Theorem 4.9.5 deals with the full Isa type hod premice.

137See Definition 3.6.4.

138Gee Definition 3.6.2.

139Gee Definition 3.3.2.
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As the proofs are very similar to the proofs already given in the proof of Theo-
rem 4.12.1, we will simply state our results.

Proposition 4.12.5 Suppose (P,%) is an sts hod pair and I' is a projectively closed
pointclass. Suppose that X has strong branch condensation and is strongly almost
I'-fullness preserving. Then the following holds:

1. Suppose t = (P, T,P1,Th) is (P, X)-authenticated indexable stack'*®. Then t is
according to 3.

2. Suppose M is a X-sts premouse over some set X and based on P, T € M
is an nuvs'*! stack on P, (v,£,0) is an M-shortness witness for T'*? and
Q=0Q(b,T). Then Q is a X+ (1) 7-5ts premouse over m™* (T).

3. Suppose M is an hp-indezed germane lses such that hi(M) = P and J,[M] E
“67 is a Woodin cardinal”. Suppose further that A is an w;+1-iteration strateqy
for M such that Ap = % and suppose (T,b) € M is such that

e 7 is an nuvs,

e for some 8 and v such that wf + wy < ord(M), setting t = (P,T) and
w = (T,(t),t,€), w is (f,sts)-minimal as witnessed by 3'*,

o v=1h(T),
o be Mlwp and M|wp E stso(T,b)'* .
Then 3(T) =b.

4. Suppose ¥ is strongly I'-fullness preserving and M is an hp-indexed germane
Ises such that hi(M) = P and J,[M] E “67 is a Woodin cardinal”. Suppose
further that A is an wy-iteration strategy for M that acts on iterations above
6" and suppose (T,b) € M is such that

o if A* is the wy fragment of A then Code(A*) € T,

e 7 is an nuvs,

140Gee Definition 3.7.5.

141G6e Definition 3.3.2.

142Gee Definition 3.8.9.

143Tn particular, M can be viewed as a Y-sts premouse over P.

144Gee Definition 2.3.3. In particular, this means that we have to index the branch of ¢ at w(B+7).
145Gee Definition 3.8.16. This means that e is the branch of ¢ we must choose.

146Tn particular, M can be viewed as a Y-sts premouse over P.
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o for some B and 7y such that wf + wy < ord(M), setting t = (P,T) and
w = (T,(t),t,€), w is (f,sts)-minimal as witnessed by B47,

o v=1Ih(T),
o be Mlwf and M|wp E stso(T, b)*** .

Then X(T) =b.

The proof of clause 1 of Proposition 4.12.5 is contained in the proof of Sub-
lemma 4.12.4. Clause 2 easily follows from Clause 1 and the relevant definitions.
The hypothesis of Clause 3 is exactly what we have at the begining of the proof of
Theorem 4.12.1 (e.g. see Sublemma 4.12.2). Clause 4 follows from the fact that X
is strongly I'-fullness preserving. As in the proof of Theorem 4.12.1 we have that
A* induces a strategy for Q(b, 7). Thus, if ® is this strategy then Code(®) € T.
Therefore, by strong I'-fullness preservation, %(7) = 5.

Remark 4.12.6 (On hod pair constructions) Suppose (P, ) is an sts hod pair
and I' is a projectively closed pointclass. Suppose that 3 has strong branch conden-
sation and is strongly almost I'-fullness preserving. Recall Definition 4.2.1, which
introduces fully backgrounded constructions relative to . In particular, recall the
Important Anomaly in clause 3.b of Definition 4.2.1. It follows from the clause 4
of Proposition 4.12.5 that, in the terminology of clause 3.b of Definition 4.2.1, as
long as M, has an w;-iteration strategy (as a X-sts premouse over P) the Important
Anomaly cannot occur. -

4.13 The normal-tree comparison theory

As in Theorem 2.2.2 of [30], under AD™ and in several other contexts, we can prove a
comparison theorem where comparison is achieved via normal trees. In this section
we state a comparison theorem for hod pairs that can be applied inside models of
AD™ and also, inside models satisfying sufficiently rich extensions of ZFC, like hod
mice themselves. Such comparison arguments, among other things, are useful in core
model induction arguments and in the analysis of HOD of models of AD™.

We start with some general definitions and facts. One warning is that our exposi-
tion differs from the one in [30] mainly because we would like to set up our arguments
here in a more general setting than the ones stated in [30]. The notation <,q was
introduced in Definition 2.7.8.

147See Definition 2.3.3. In particular, this means that we have to index the branch of t at w(5+7).
148Gee Definition 3.8.16. This means that e is the branch of ¢ we must choose.
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Definition 4.13.1 (Comparison) Suppose (P,) and (Q,A) are two hod pairs.
Then we say that comparison holds for (P, ) and (Q, A) if there are (7, R) and
(U, S) such that

1. T is a stack on P according to ¥ with last model R,

2. U is a stack on Q according to A with last model S,

and one of the following holds:

3. (Q,A) wins: More precisely the following clauses hold:

(a) R <poa S,

(b) ARM = XR,T,

(c) 77 is defined,

(d) If P is meek or gentle then 7 is defined,

(e) If 73 is non meek then letting o < Ih(i/) be the least such that P* < MY,

U is defined.
4. (P,%) wins: More precisely the following clauses hold:

(a) S <hoa R,
(

)

b) Asu =Ys,)

(c) 7 is defined,

()

(e) If Q is non meek then letting v < 1h(7) be the least such that Q° < M7,
7, is defined.

If Q is meek or gentle then 77 is defined,

If clause 1 holds then we say that (Q,A) wins the comparison, and otherwise we
say that (P, ) wins. We say normal comparison for (P, X) and (Q, A) holds if we
can take 7 and U to be normal.

Similarly we define the meaning of “comparison holds for (P,X) and (Q, A)”
in the case (P,X) or (Q, A) are allowable pairs. For example, if (P, ) is a hod pair
and (Q,A) is an sts hod pair then we say that comparison holds for (P,Y) and
(Q, A) if there are (7, R) and (U, S) such that in the case (P, ¥) wins, X§5 = Asy.
_{
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As in [30], we can prove comparison for pairs whose corresponding strategies
are fullness preserving. Here we show that the fully backgrounded constructions are
universal in the sense that they win the comparison with hod pairs that they capture.
To establish this fact, we will use the strategy absorption argument. The strategy
absorption argument was first presented in [30] (see the proof of Theorem 2.28 of
[30]) and it builds on unpublished ideas of Steel. Because we will use the strategy
absorption argument several times in this paper and in the next proof, it is important
to understand how it works. The general form of the argument is as follows. We
have a hod pair (P, A) captured by some background (M, 4, G, Y)). There is also an
iteration tree 7 on P according to A with last model @ and R <, Q such that R
is constructed via some hod pair construction of M. It is additionally required that
the background extenders used to build R cohere A'?. The goal of the argument is
to show that the strategy R inherits from the background universe is the same as
Az 7. In many cases, this can be done by appealing to branch condensation and the
existence of minimal disagreements. Here is how a typical argument works.

Let ® be the iteration strategy of R induced by the background strategy. Fix
U on R that is according to both Ag 7 and ® but Ag 7(U) # ®(U). Let U* be the
stack on M obtained by resurrection process. Thus, U* = U (see Section 4.3.1) .
Let b = ®(U*). We then have that 74 (T) is according to A (this is where we use
coherence). Then branch condensation is applied to the equality

' (T) T

T =corffor

where 0 : MY — 74" (R) is the canonical factor map that the resurrection process
gives (in particular, 7¥" | R = conlf). The reader may wish to review Section 4.3.1.
Recall that strong branch condensation and I'-fullness preservation implies positional
(see Proposition 4.10.2).

Theorem 4.13.2 (Universality of backgrounded construction) Assume ADT.
Suppose that

e ' is a pointclass,
e (P,A) is an allowable pair,
o k(P) =ep(P)™",

49However, the fact that Code(A) is Suslin, co-Suslin captured by (M, §, é,E) implies that all
extenders in G cohere A.

150Recall that P is f.s J-structure. To define ep(P) we ignore its fine-structural component k(P)
and treat P as just a J-structure. See Definition 2.2.3.
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o A is I'-fullness preserving and has strong branch condensation'!,

o C= (M, (P,W),I'*, A) Suslin, co-Suslin captures both I" and Code(A), and
e M= (M,5,G.Y).
e NsesS.
Let
hPCJcr,F = (Mvanavaé;erJ»wav 1y <6)

be the output of ' —hpc of Ml with the property that each F.\ coheres A | M'?. Then
there is v < 0 such that the following holds.

1. If (P, A) is not an sts hod pair then v < § and there is a normal stack X such
that (X, M) € I(P,A) and ®F = A, .

2. If (P, A) is an sts hod pair then there is a normal stack X such that letting

M, <6
N — v
{/\/lﬁé iy =0,

(X,N) € I(P,A) and ®F = Ay

3. For every § < ~, there is a A-iterate R of P wvia a normal stack T such that
Mp QR and if S € Yy then (PF)s = As.

4. For every B < 7, there is a A-iterate R of P wvia a normal stack T such that
Ne < R.

Proof. As in the proof of Lemma 2.10 of [30], in the comparison of P with the models
of hpcc 1 no extender disagreement appears on hpcc - side. Many of the details of the
argument have appeared in [50, Lemma 3.21], and because of this we only concentrate
on the new aspects of the proof. We then assume that P is non-meek.

We first show that clause 3 holds and then show that clause 1 and 2 hold. Clause
4 is similar to clause 3. To prove clause 3, we only verify that

151We could instead assume just the first two clauses of strong branch condensation and also that
A is self-cohering. However, our proof will use self-cohering in an indirect way. Strategies with
strong branch condensation are positional and therefore, self-cohering. The reader may wish to
review Definition 2.10.11, Definition 4.9.2, Theorem 4.9.5 and Proposition 4.10.2.

152This actually follows from the fact that Code(A) is Suslin, co-Suslin captured.
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(1) for every 8 < 0, if (T,R,S) are such that 7 is a normal stack on P accord-
ing to X, R is the last model of 7, Mg <R and S € Y3 then ((IDZQ)S = As.

The proof of (1) is the portion of the proof that goes beyond [30, Theorem 2.28]
and [50, Lemma 3.21], and so we prove (1).

Because A is self-cohering (see Definition 2.10.11) we can in fact assume that
(2) for every a + 1 < 1h(T), S g M.

For simplicity, we prove (CD;;)S = Ag for ordinary stacks as opposed to general-
ized stacks. The more general proof is only notationally more complex. The reader
may wish to review Section 4.3.1 and Lemma 4.3.9.

Towards a contradiction, we assume that (1) fails. Let (8,S,7T,R) witness the
failure of (1) such that g is the least possible and (2) holds. We assume that
S € YR NYj is the least layer for which (1) fails. Let ® = ®F and Q = Mp.

Case 1: S is of successor type.

Then we get a contradiction using branch condensation of A. Let U be a stack
on § such that it is according to both &5 and As but ®(U) # As(U). Let b = O(U)
and ¢ = As(U). Let U* = rid153. Then because extenders used to construct Q cohere
A, we have that 7" (T) is according to A. Let N be the last model of U*.

Claim. 7% exists.

Proof. The claim is a consequence of I'-fullness preservation and the fact that ®s- =
As-. Towards a contradiction assume that 7/ is undefined. Because ®s- = As- and
because ®(U) # As(U), we must have some ¢ € RY such that 7§/, is defined and Us,
is above M. Moreover, because ®(U) # As(U), RY must have a maximal element.
Let then ¢ = max(RY) and set X = Us,.

Suppose now that 7 is not defined. T-fullness preservation implies that X does
not have fatal drop, and so §(X) is a strong cutpoint in both Q(b,U) and Q(c,U).
Hence I'-fullness preservation implies that b = ¢. Contradiction.

Thus, 7 is defined. It then follows from I-fullness preservation that Q(b, X) <

153This is the resurrection of Y. See Section 4.3.1.
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MY . Therefore, b = ¢, which is a contradiction. 0

Let then U™ =1 (R,U)"™ be the unique stack on R whose tree structure and
extenders are exactly those of U. Let R* be the last model of 4*. We then have
o:R* — 7 (R) such that, assuming 77 is defined,

74 (T) U+ T

™ =ocom, om’.

Notice next that it follows from (2) and the fact that S is of successor type that 77
is defined. Branch condensation of A and the displayed equality implies that b = ¢

Case 2. § is of limit type.

Then by appealing to Lemma 4.7.5, we can fix some ((U;, S1), (Usz, S2), S3) that con-
stitutes a minimal low level disagreement between ® and As. Let U] = rly, N be
the last model of Uf and o : &§ — Q be elementary such that Q is an M-model
appearing in the I' — hpc of N. We then have that letting 7* = 71 (T, for some &,
Qd MZ Let @' = 0(S3). Notice next that

(3) (T*, Q) supports a bottom type (Q',Ss, 0 [ Ss)-b-condensation diagram on P.
Let ®* be the strategy of Q' induced by X . We then have that
(4) ®s,21, = (o-pullback of ®*) and Ao = P*.

Ao = @* follows from the fact that Q' < Q and also from the fact that 5 is the least
satisfying (1). Thus, the strong branch condensation of A implies that As, = ®s, 14, -

Next, we need to verify that clause 1 and 2 hold for some v < §. Set N' = Ms.
Assume first that (P, A) is not an sts hod pair. This means that A is an iteration
strategy. Assume then clause 1 fails. It follows that we have a normal stack X on P
such that 1h(X) = ¢ and m(X) = N. Let b = A(X). Let o < Ih(X) be least such
that 0 € rge(ﬁo“‘; »)- Because the entire construction takes place in M and because &
is regular, we have that letting 1 be such that 6 = 7 (1), n must be a measurable
cardinal of M.

Notice that M? is germane'® and because X may drop in model, M may not
be hod-like. Let R < N be the longest such that

154Gee Definition 2.4.10.
155Gee Definition 2.7.15.
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e ReY¥V,

e R is meek or gentle,
e R I MF and

o X <.

We now break into cases. Let o/ < a be the least such that R < Mf,

Suppose first that R is of successor type. We must then have R’ € YM% such
that (R')™ = R. But now X, is based on R’ and is above 6%. Because in this case
R’ out-iterates N, this contradicts our assumption that NsesS 156,

Suppose then R is gentle. In this case, we must have R’ such that R’ is meek of
limit type, 6% = 6% and R’ € YMI or R = M, If 6% < 1 then we get that X,
is based on R’ and is above 6™ + 1, and once again this leads to a contradiction.

Suppose now that 6% = 7. Let now x > n be such that it reflects

e X, and
 hpcep = (M, N, Yo, @y B F by 1y <6).

Let &€ = oV (k)7 and C+1 € b be such that X(¢+1) = k. Let E € G be an extender
such that crit(F) = &, Ih(E) > € and it reflects the above sets. It follows that

% € b and crit(my,) = &,
EY agrees with E,
X

(5)
(6)
(7) w5 . is defined and 7%= (%) = &,
(8)
(9)

«

It follows from (6), (8) and (9) that EY < EV as E can serve as a background
certificate for it. Clearly this is a contradiction.

Finally suppose R is of limit type. In this case we have that §% < 7. We also
have R’ € YM& such that either R’ is of successor type and (R')~ = R or R’ is
of limit type and (R’)” = §®. The first case leads to a contradiction via a similar

156 This is a consequence of the ordinary universality of the background constructions. If a mouse
outiterates a fully backgrounded construction then it generates a mouse with a superstrong. See
[30, Lemma 2.13].

157Notice that ¢ < § as otherwise § would be a Woodin cardinal of M;* and since it is also a
measurable cardinal, we would get a contradiction to our minimality assumption on hod mice.
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argument as the one given above. Let then R’ be a complete layer of M2, (see
Notation 2.7.14) such that (R/)® = R. It follows that X, is based on R', Xs. is
above 8™ and also, that N'* = R’. This case once again leads to a contradiction
because assuming NsesS universality implies that R’ cannot out-iterate N .

The case that (P, A) is an sts hod pair is very similar. In this case, we note that
X must be A-maximal as otherwise A(X) is a branch and all of the above arguments
can be repeated. If X is A-maximal then A(X) = N#, which is one of the possibilities
in clause 2. U

As a corollary to Theorem 4.13.2 we get that comparison holds.
Corollary 4.13.3 Assume AD™ and suppose
e ['is a pointclass,

e (P,Y)and (Q, A) are two allowable pairs such that both ¥ and A are I'-fullness
preserving and have strong branch condensation,

o k(P) =-ep(P) and k(P) = ep(Q),
e there is a good pointclass I such that I' U {Code(A), Code(X)} C Ap.

Then the normal comparison holds for (P, %) and (Q, A).

Proof. Using Theorem 4.1.12 we can find C = (M, (P, ¥),T™*, A) which Suslin, co-
Suslin captures I, Code(A) and Code(X). Let

hpel = (Mo, NS, Y, @F, B F by 1y < 0)

be the output of I' — hpc of M with the property that each Fj coheres both ¥ | M
and A | M.

It follows from Theorem 4.13.2 that there are 5,7 < ¢ and normal stacks 7 and
U such that

L. (T, Mp) € I(P,%¥) and & = Y, and
2. (U M,) € I(Q,A), DF = Ap,.

If 5 = 7 then clearly the normal comparison for (P, ) and (Q, A) holds. Suppose
then B < 7. Then there is (U, Q') such that

e U’ is a normal stack on Q according to A,
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e Q' is the last model of U’, and
[} Mﬁ ﬁhod Ql and (I)g = AMB‘

Let a < 1h(U’) be the least such that Mz < MY Set X =U~, and S = M and
R = M. In order to show that (7, R) and (X, S) witnesses that comparison holds
for (P,¥) and (Q, A), we need to show that [0,a)y N DY = (). However, to obtain
this condition we may need to change X.

First observe that if P is meek or gentle then indeed [0, )y N DY = 0. We give
the argument in the case P is of successor type and as the rest is similar, we leave
the rest to the reader. Since P is of successor type, we have that §% is a cardinal
of M. Notice that « is the least o/ such that MJ|6® = R|§®. This follows from
[-fullness preservation, which implies that if MJY|6% = S| then R < M, Thus,
« must be a limit ordinal. Suppose then [0, a)» N DY # (). Tt follows that p(S) < §%.
But hod premice do not project across layers of successor type (or rather meek or
gentle type)'s.

Suppose then that P is non-meek. Let ¢ be the least such that M:*|ord(R?) = R.
It follows from the argument above that [0,¢)xy N DY = (). Moreover, X, is above
ord(RY). Set = 67",

Suppose now that there is £ € ES such that crit(E) = & and ind®(E) > ord(R).
Let X’ be the continuation of X’ obtained by using F at stage «. Notice that £ must
be applied to M¥. As X, doesn’t have drop on its main branch, we have that X’ also
doesn’t have a drop on its main branch and moreover, (7, R) and (X', Ult(M%X, E))
witness that comparison holds for (P, ) and (Q, A). O

Using reflection, we can eliminate the extra assumptions on I" and the two strate-
gies.

Corollary 4.13.4 (Comparison) Assume AD" and suppose I' is a pointclass. Sup-
pose further that (P, %) and (Q, A) are two hod pairs such that

e both ¥ and A are I'-fullness preserving and have branch condensation,
* k(P) = ep(P) and k(P) = ep(Q),

Then the normal comparison hold for (P, %) and (Q, A).

Proof. Suppose not. Applying Y2-reflection, we can find I'* and two hod pairs
(P1,%1) and (Qy,A;) such that T* U {Code(X;), Code(A;)} € A? and the claim of

158Gee Definition 2.7.1.
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the corollary fails for (I'*, (Py, %), (Q1,A1)). We then apply Corollary 4.13.3. We
use Theorem 4.1.12 to get a C = (M, (P, V), '*, A) that Suslin, co-Suslin captures I',
Code(A) and Code(X). O

Remark 4.13.5 In most situations, our allowable pairs (P, X) will have the property
that k(P) = ep(P). Thus, we make a convention that unless otherwise specified, all
allowable pairs have the property that k(P) = ep(P). When it is necessary we will
remind the reader of this.

However, Theorem 4.13.2 can also be proven in the case that k(P) < ep(P).
In this case, what we get is that letting k = k(P), (X, (corex(N,), k)) € I(P,X).
Similar results can also be proven for germane Ises. -

4.14 Diamond comparison

Our goal here is to provide another comparison argument, diamond comparison,
that doesn’t rely on branch condensation as heavily as our other argument (see
Corollary 4.13.4). The new comparison argument follows the same line of thought
as the proof of a similar comparison argument from [30] (see Theorem 2.47 of [30]).

Asin [30], the diamond comparison argument can be used to show that AD* +LSA
is consistent relative to a Woodin cardinal that is a limit of Woodin cardinals. This
will appear as Theorem 10.3.1. In [30], a similar argument gave the consistency of
ADgr + “© is a regular cardinal” relative to a Woodin cardinal that is a limit of
Woodin cardinals.

Following the proof of Theorem 2.47 of [30], we first define a bad block and a bad
sequence and show that there cannot be such a bad sequence of length w;. We then
show that the failure of comparison produces such bad sequences of length w.

4.14.1 Bad sequences

For the purposes of this subsection, we make a definition of a bad block and a bad
sequence. In later subsections, we will redefine these names for different objects.
Below and elsewhere, if T is a stack of successor length then we let 7~ be 7., where

a+1=1n(T).

Definition 4.14.1 (Bad block) Suppose (P,3) and (Q, A) are two hod pairs such
that both P and Q are of limit type and are not gentle. Then

B = (((Ps, Q1,50 ) i < 4), (Tr, Uy - i < 3), (¢, d))
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is a bad block on ((P, %), (Q,A)) if the following holds:

1.
2.
3.

10.
11.
12.

(P(),Eo) = (P,E) and (Qo,Ao) = (Q,A)
To is a stack according to ¥y on P.
Uy is a stack according to Ag on Q.

Let To = (Mg, T4, Eg : B <v) and Uy = (N, U;, Fg : B < v). Then T, and
U are undefined, P, = M, and Q; = N,,.

There is K such that I <jeq P1, K <poq @1, K is of successor type, X7 # Acu
and Z]Q% = EIC,Z/{U-

. T1 and U, are stacks on P; and Q; respectively with last models Py and Qs

such that 771 and 7 are defined, 771 (K) = n*1(K) and setting K' = 771 (K),

— 159
2;@33«71 = AIC’,L{OAZA .

71 and U, have a last normal component of successor length whose predecessor
is a limit ordinal'® and 7;” = U .

ce=3p, 1 (T77), d = Ag, uo (U )0

Y1 =3p, 15 B2 = Xpy 707 M = By 1, and Aoy = Yo,

(T2, P3) € I(Pa, Xg) N I%(P2, ) and (Us, Q3) € 1(Qa, Ag) N IP(Qs, Ag),
Y3 = (32)py, 7 and Az = (A2) oy

P3 = Q5 and (I3)pp = (As)gp-

We set T2 = T, T, Tz and UP = Uy U Us. We say TP is the stack on the top of
B and UP is the stack in the bottom of B. -

Next we show that there cannot be a bad sequence of length w.

Lemma 4.14.2 (No bad sequences, ZF 4+ DC) Suppose (P,X) and (Q,A) are
two hod pairs of limit type such that P and Q are countable, and both > and A are
(w1, wr,wr )-strategies. There is then no bad sequence, i.e., a sequence (Bg : f < wy)
satisfying the following conditions:

159Because of Theorem 4.13.4 we can take 7; and U; to be normal trees. We will always use the
diamond comparison argument in situations where Theorem 4.13.4 applies to low level strategies.
160Recall that in Definition 4.7.6, we required that comparison stacks have a last model.

61 Thus, Py = MJ' and Qp = M .
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1. For allﬁ < whq, Bg = (((Pgﬂ', Qﬂﬂ', 2571‘,/\5’1‘) 1< 4), (77371‘71/1571' 1< 3), (Cﬁ, dﬁ))
2. For all B < wy, Bp is a bad block on ((Ps0, Xs0), (Qs.0, Aso))-
3. Forall § <wi, Pgr10=Pss and Qpi10 = Qp3.

4. For B < a < wy, let mg4 1 Pgo — Pao be the composition of the embeddings
on the “top” and 03,4 : Q0 —+ Qa0 be the composition of the embeddings on
the “bottom”. Then for all limit A < wy, Py is the direct limit of (P,, map :
a < 8 < \). Similarly, for all limit A < wy, Q) is the direct limit of (Qq, 00 p :
a < ff < A) under the maps og 4.

5. For all limit ordinals A < wy, 73/‘{70 = Qlj\jo.

6. For all 8 < wy, Xgo = 2]73[370’@Kﬁ7—137 and Agy = ZQ&O’@KWBW.

Proof. Towards a contradiction, suppose B = (Bg : B < wy) is a bad sequence.
Let P,, be the direct limit of (Pag, Taps : @ < f < wy) and Q,, be the direct limit
of (Qa0,00p : @ < B < w). Let N = L((P,%),(Q,A),B,R), ¢ = O and X
be a countable submodel of N|(¢*)Y such that letting 7 : M — N|(¢T)Y be the
uncollapse map, B € rge(7). Let kK = wM and notice that for every 8 < k,

5 =def ((Pgi, Qgi) 11 <4),(Tp,i,Up; 1 <3),(cp,dg)) €M

and Bj is countable in M. It then follows that 7 (P,,) = Peoand 771(Qy,) = Qso-
Let

75 : Pgo — P., and o5 : Qzo — Q.

be the direct limit embeddings.
Standard arguments show that for all z € P, N Q.. 0,

Te(z) = 7(x) = 0.(x).

Notice that P2, = Q0 (see clause 5 of our hypothesis). Set § = §P%o and let
¢ = w7=0 and 1 = 70, We now have that

(1) 732,0 = Qg,o and T, fpg,o =0y | Qﬁ,o .

Let

e C witness clause 5 of Definition 4.14.1 for B,,
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T, T,
e p=m." and ¢ =7m,"",

o i:P.o— P, and j: Q.o — Q,, be the iteration embeddings along the top
and bottom of B.

Notice that because

(Zre)k- = (Aep)x-,

we have that
(2)iop K- =joq K.
Next it follows from Lemma 2.10.15 that

(3) 0% =sup{o(f)(a): f € Peo A f:d = dANa€ (K)¥w}
(4) 0 =sup{w(f)(a): f € Quo A f: 0 = dNa€ (K)¥w}

Because

IC, —def p(’C) = Q<IC) and (ZH,2>’C/ = (AI{,Q)IC/7

we have that
B)i | K'=5TK.
Let then

s={¢(f)a): fE€PoNf:d—=>dNae (K)w}
t={v(f)(a): f€QuoNf:d—=dNae (K )}

(1) and (2) then imply that
(6) i opls] = joqlt].

(5) and (6) now imply that
(7) pls] = q[t].

It follows from (3), (4) and (7) that
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(8) p[s] N g[t] is cofinal in o~

It then follows that ¢, = d,., contradiction. O

4.14.2 The comparison argument

In this subsection we prove the following comparison theorem under the hypothesis
that the lower level comparison holds. Suppose (P, ) and (Q, A) are two hod pairs
of limit type such that I'(P,X) = I'(Q,A) =4 I', both ¥ and A are I'-fullness
preserving.

Definition 4.14.3 (Lower Level Comparison) We say low level comparison holds
for hod pairs or sts hod pairs (P, %) and (Q, A) if

1. for every (T,P;) € B(P,%) and (U,Q,) € B(Q,A), comparison holds for
(7)17 EPLT) and (QlaAQl,U)a and

2. whenever (7,P;) € I(P,X), (U, Q) € I(Q,A) and K are such that
o K Jhoqg P1 and K Jjoq 91,
e [C is of successor type and,
® Y- 7 =Ny

there is a normal stack S of limit length according to both ¥p, 7 and Ag,
that is based on K and is such that letting b = Xp, 7(S) and ¢ = Ag, 4(S),

(a) 75 and 75 exist,
(b) 7$() = 75(K), and
(c) letting K" = 75 (K), Zgr 75100 = Mcru—~5-1{e}-

_|

The following is the comparison theorem we will prove in this subsection. The
theorem uses concepts defined in Definition 3.3.9 and Definition 3.10.4.

Theorem 4.14.4 (Diamond comparison) Suppose (P,Y%) and (Q, A) are two hod
pairs such that I'(P,X) = I'(Q,A) =4y I', both ¥ and A are I'-fullness preserving
(w1, w1, wr)-strategies, P and Q are countable and are of limit type, and lower level
comparison holds between (P,%) and (Q,A). Then there are (T,R) € I(P,X) and
(U,R) € 1(Q, ) such that either
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1. P and Q are of lsa type and E%,CT = A%,CM or

2. P and Q are not of lsa type and Xr 7 = Ary.

There are several other variations of the above theorem that works for sts hod
pairs and also for a hod pair and an sts hod pair. We will state these theorems after
the proof of Theorem 4.14.4. We prove Theorem 4.14.4 by showing that the failure
of its conclusion produces a bad sequence of length w,. Towards showing this, we
prove two useful lemmas.

We say that weak comparison holds between (P, X)) and (Q, A) if thereis (T,U, R, S)
such that

1. (T,R) e I(P,Y),
2. (U,S) e 1(Q,N),
3. RV =8 and v+ = Agv .
Our first lemma says that lower level comparison implies that weak comparison holds.

Lemma 4.14.5 Suppose (P,¥) and (Q,A) are two hod pairs such that ['(P,X) =
['(Q,A) =gy T'%% both ¥ and A are I-fullness preserving, P and Q are of limit
type, and that lower level comparison holds between (P, ¥) and (Q, A). Then weak
comparison holds between (P, X) and (Q, A).

Proof. We inductively construct (P;,7; : i < w) and (Q;,U; : i < w) such that the
following conditions hold.

1. Py =P and Qy = Q.
2. Suppose ¢ = 2n. Then the following holds.

(a) T;is a stack on P; based on P and according to Xp, &, _,7; with last model
Pit1.

(b) U; is a stack on Q; according to Ag, @, _u, With last model Q; ;.

(c) Letting P! be the least non gentle layer of P;,; such that 77i[P?] C P/,
Pz/ od Q?—‘,—l and A'Pg,@kgiuk = E'Pl{,@kg[ﬁc‘

3. Suppose ¢ = 2n + 1. Then the following holds.

162G6e Definition 3.10.4.
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(a) 7; is a stack on P; according to Xp, @, _,7, with last model P;4.

(b) U; is a stack on Q; based on QY and according to Ag, ,_u; with last
model Q; ;.

(c) Letting Q) be the least non gentle layer of Q;,; such that 7% [Q?] C Q!
Q; Dhod 7)7?-5-1 and AQ',EBkgiUk = EQ/7®ICS7;77€.

We show how to carry out the inductive step. Suppose we have constructed
(Pi, Qi i < 2n) and (T;,U; : i < 2n). We now consider two cases.

Case 1. cf”(§73) is not a measurable cardinal in Pa,.

Notice that in this case, we have that P; = Q; and Xp, 7; = Ag, 1r,- Thus, weak
comparison holds for (P,) and (Q,A) provided we can take care of n = 0 case.
Notice also that in this case Py = Pg.

Let (NV; : i < w) be a sequence of layers of P(= Py) such that

e for all i < w, &i is a Woodin cardinal of P,
e for all i < w, N 9oq Ni11 and

By induction we construct a sequence (7., Wk, Sk, Ri, S, Ri, Ry* + k < w) such
that the following hold.

1. (86‘,738) € [(Q,AQ), 'R,E;* Dhod RS and
['(No, Xp,) = F(RS*,AR3*755).
Also, (75", W) € I1(P,%), (So,Ro) € I(Rj, Ary.s;) and the following condi-
tions hold:

(a) 75 is based on Ny and Sy is based on R§*.
(b) 77 (Np) = 7 (Rg") and
(c) letting K = 770 (Np),

Y70 = Asi—so-

2. Fork+1< w, (SI:—&-D Z—H) € I(Rk, ARku@nsz(S:nf—\Sm)>7 Rz:—l od ,R’Z—I—l and

F( I:‘i’l’ ZN’]:+17€B7VL§I€T7$L) = F(RZiD ARzily@mﬁk(S;{\Sm))
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where N} = 7%m<iTm (Nyq). Also,

(77:;1, Wk+1) S I(Wk’ ZWk,EBmngJL)?
(Skt1: Rier1) € IRjp1: AR: | @i (S5mSm))~St41)

k+1
and the following conditions hold:

(a) Ty1 is based on N, and Siyq is based on R} ;.
(b) mlwri( i) = T (RY) and
(c) letting K = 771 (N,,),
VK @merni T = MBnzin (S0 Sm)-
We then let Ty = Bp<, T, and Uy = @1, S;~S. Also, we let Py be the last model
of Ty and Q; be the last model of U.

Case 2. cf?"(§7%) is a measurable cardinal in P.

The difference between this case and the previous case is that here we cannot
start by fixing (NV; : i < w) as above. Here is the outline of the construction of

(Ena u2n7 P2n+17 Q2n+1)-
Because F<P2n7 27’27u€9¢<2n7—¢) = F(an, AQ27L7€B2‘<2nU¢)7 we can find

(807 RO) € I(QQm AQ2n7@i<2nui>

and R{ 9hed Ro such that letting £ € EP2n be the extender of Mitchel order 0 with
crit(E) = cf72n (§P2n),

L(P3s Zpsn,(@icanT)~ (Utt(Pon B)Y) = D(RG, ARy (@ cantt)~ 150})
Appealing to low level comparison, we can find

(7;:1, P2n+1) S ](Ult(Pan E)a Epzn,(@i<2nﬁ)A{Ult(P2n7E)}) and
(Sla Rl) S I(Ro, ARO,(@K%M‘)“SO)

such that
1. T, is based on PY |
2. &) is based on Ry,
3.l (Ph ) = w5 (RY) =aep K, and
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4 K (@iconT) 1BV Tz, = MK(@icontl) 5581

Let then 7571 = {E}A 22, Z/{Qn = 86\81 and Q2n+1 = Rl.
The two cases above finish the construction of (73, Usn, Pant1, Qon+1). The con-
struction of (Tan11,Uspn i1, Pant2, Qonte) is very similar and we leave it to the reader.
Notice now that if T = ®;,T;, U = B U;, R is the last model of T and S is
the last model of U then (7,R) and (U, S) witness that weak comparison holds for
(P,X) and (Q,A). O

Lemma 4.14.6 Suppose (P, X¥) and (Q,A) are two hod pairs such that I'(P, ¥) =
I'(Q,A) =4es I', both ¥ and A have strong branch condensation and are strongly I'-
fullness preserving, both P and Q are of limit type and low level comparison holds for
(P,X) and (Q, A). Suppose further that P® = Q% and Yps = Ags. Let (T, R,U,S)
be the trees of the extender comparison of P and Q!%3. Suppose that either

1. R#S or
2. R =S8 and 27277' 7§ Ag’u.
Then there is a bad block on ((P,X), (Q,A)).

Proof. Tt follows from Lemma 4.7.2 that we can find minimal low level disagree-
ment ((7,P*), (U*, Q*),K) between (R,Xx ) and (S,Asy). Let E be the W-un-
dropping extender of 7~7* and F be the W-un-dropping extender of U ~U*, and
let 7y be the extension of 77* obtained by applying F and U, be the extension of
U U obtained by applying F'. We then let P; and Q; be the last models of 7y and
Z/{O.

Let X be a normal stack as in clause 2 of Definition 4.14.3. Let b = X(7,°S),
c= AUy X), Py = M]" and Qy = M¥. Set T; = X~ {b} and Uy = X~ {c}. We
thus have that 77t and 7 exist, 771 (K) = 71 (K) and

27'(7—1 (K), 75" T1 = A7ru1 (K) Uy Uy

Next (appealing to Lemma 4.14.5) let (72, Ps) and (s, Q3) witness that the weak
comparison holds for

(P2> E7’2,76A7’1 )7 and(Q2> AQZ7U€M1)‘

Next let Py = P, Qp = Q, X9 = X, Ag = A, and for ¢ € {1,2,3} let %; =
Yp@nesTe and Aj = Ag, ¢, - It is then easy to see that

163Thus, 7 is on P with last model R and U is on Q with last model S. See Definition 4.7.9.
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(((qu Q’i7 217‘/\1) t< 4)7 (7;,2/[1 1< 3)7 (b7 C))
is a bad block on ((P, %), (Q,A)). O
The proof of Theorem 4.14.4

Suppose that the conclusion of Theorem 4.14.4 fails. This means that

(1) whenever (7,R) € I(P,%) and (U, R) € 1(Q, ),
1. if P and Q are of Isa type then ¥3% # AR%, or

2. if P and Q are not of Isa type then Xz 7 # Az u.

It follows from Lemma 4.14.5 that, without loss of generality, we can assume
that P = Q" and Yp» = Age. We now by induction construct a bad sequence
(By i <wy) on ((P,X),(Q,A)).

It follows from Lemma 4.14.6 that there is a bad block on ((P, %), (Q,A)). Let
By be any bad block on ((P,X),(Q,A)). Suppose next that we have constructed
(Bg : B < A) for A a limit. Let P, and Q) be the direct limit of respectively
(Ps: B < A)and (Qs: B < A) under the corresponding iteration embeddings. Then
letting ¥, and A, be the corresponding tails of ¥ and A, we have that (P, X))
and (Qy,A,) satisfy the hypothesis of Lemma 4.14.6. Let then B be a bad block
on ((Px, 2x), (x, Ax))-

Next suppose that we have constructed (Bg : f < A+1). Let Pyy1 = Prs, Qap1 =
Q)3 and let 7 and U be the stacks respectively on the top of (Bg : f < A+1) and in
the bottom of (Bg : § < A+ 1). We then again can find, using Lemma 4.14.6, a bad
block Byy1 on ((Pay1, Xpy,,,7)s (@at1, Mgy, ). It then follows that the resulting
sequence (Bg : f < wy) is a bad sequence on ((P, ), (Q,A)). This is a contradiction
to Lemma 4.14.2, and this contradiction completes the proof of Theorem 4.14.4.

4.15 Some concluding remarks

The proof of Theorem 4.14.4 can be used to show that fullness preserving strategies
that have strong branch condensation become commuting on a tail. We end this
section by a an outline of this useful fact.

Proposition 4.15.1 Suppose (P, X)) is an sts hod pair and I is a projectively closed
pointclass. Suppose that ¥ has strong branch condensation and is I'-fullness preserv-
ing. Then for some (T, Q) € IP°(P,X), Xqg is commuting"®*.

164Gee Definition 4.10.5.
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Proof. Towards a contradiction assume not. Then we can find a sequence
¢ = (Pa, Ta, Qar Ua, Ra, by ko - o < wy)
such that the following conditions hold:

1. For each a < wy, Puy1 is the result of comparing the pairs (Q,,¥g,) and
(Ra Br, )"

2. For each a < wy, (Pa,(Ta, Qa), Ua, Ra), k., ko) witnesses that 3p_ is not

Y (o2
commuting.

3. For each limit ordinal @ < w,'%, P, is the direct limit of (Pg, 75, : 8 <
v < @)'%" where 7 : Pg — P, is the embedding given by concatenating the
Ps-to-Qp-to-Psy1 stacks.

It follows from Proposition 4.10.3 that in clause 3 above we could define P, as the
direct limit of (Pg, Wgﬁ 1 B < v < «a) where Wgﬁ : Pg — P, is the embedding given
by concatenating the Ps-to-Rg-to-Psy1 stacks.
Suppose now that ¢ : H — H,,, is such that H is countable and transitive, and
c € rge(o). Let k = wl. Tt follows that
_ _ b
T =0 [ Pe=10 .-
Let now 7 : Q, — P,, and i : R, — P,, be the two iteration embeddings. It
follows from strong branch condensation and in particular from Proposition 4.10.3
that letting § = 0%+,

(1) i | Reld =3 | Quld6'%.

Hence, we have that 7 | 73,.@](57)2 = 77 | Pﬁ\(SPZ. It remains to show that for

A€ p(07%) NP, s (A) = k.(A). But we have that

(2) i(n(A)) = j(n7~(A)) and k.(A) = 77=(A) N 4.

165The comparison is possible because of Corollary 4.10.7.

166The rest of the objects are undefined for o = wj.

167Notice that in Definition 4.10.5 we can assume that 77 is defined, possibly by applying un-
dropping extenders. This is because commuting for sts hod pairs is a principle about the bottom
parts not the entire model.

168Notice that k, | 6 = id.
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It then follows from (1) and (2) that 7% (A) = k,(A). O

The following proposition implies that in many situations we can construct au-
thenticating iterations as described in Definition 3.7.3. We will use it in the proof of
Theorem 6.1.4.

Proposition 4.15.2 Suppose (P,X) is an sts pair and T' is a projectively closed
pointclass. Suppose X is

e strongly I'-fullness preserving,
e has strong branch condensation and
o is commuting'®’.

Suppose (T, Q) € I°?*(P,X), (U, R) € I’*(P,X) and W,S) € I°(R,Xr) are such
that for some § < 69" the following conditions hold:

1. QE % is a Woodin cardinal”,
2. W is a normal stack, and
3. S|6 = QJo.
Let
o IC <poa Q be such that §° =6,
o a < 1h(W) be the least such that K= I MY,
o 5 <1h(W) be such that m(W.z3) = K|J,
o w is the window of Q such that 6% = 6'"°, and
e b=10,8)w.

Wia
Then s(T,w) C m, P17

The Proposition 4.15.2 can be proven by simply comparing (S, Xs) and (Q, o)
and then using commuting and Corollary 4.10.7.

169Gee Definition 4.10.5.
170See Notation 2.7.14.
171Gee Definition 2.9.1.
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Chapter 5

Hod mice revisited

In this section we generalize the result of [30, Chapter 3] to our current context. As
in [30], these results lead towards showing that given a hod pair (P, %), I'(P,X) is
an OD-full pointclass (see Definition 3.16 of [30]).

Recall the effect of Proposition 4.10.2; if (P,Y) is a hod pair such that ¥ has
strong branch condensation and if @ € pI(P,Y), then the strategy of Q induced
by ¥ is independent of the particular iteration producing Q. In Section 4.10, this
strategy was denoted by Xgo. In this chapter, whenever the strategy of a hod mouse
has a strong branch condensation, we will make use of the aforementioned notation
without giving any further explanation.

5.1 The uniqueness of the internal strategy

The first theorem, Theorem 5.1.2, is just a direct generalization of [30, Theorem 3.3].
It says that the internal strategies are unique. First we prove a useful lemma.

Lemma 5.1.1 Suppose P is a hod premouse, Q <, P, U € P is a stack on Q
with last model R such that &/ has a one point extension!, and R’ <,,q R is such
that R E “6% is a Woodin cardinal”. Suppose further that if 7¢ is undefined then
letting E be the R’-un-dropping extender of U, Ult(P, E) is well-founded. Then
cf (0% > w.

Proof. Towards a contradiction, assume not. We give the proof assuming that 7
is defined. If not, then one could instead work with Ult(P, F) instead of P and g
instead of 7, where E is the R/-un-dropping extender of U.

ISee Definition 2.10.2.
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Notice that it cannot be the case that R’ € rge(r¥) as 7 is continuous at the
Woodin cardinals of P. Therefore, by minimizing Q, we can assume that Q is of
limit type. We now apply Lemma 2.9.5 to (U, w) where w is the window of R such
that 6% = %', Let = . We thus have that there is a sequence (h; : i < w) € Q°
and a sequence (a; : 1 < w) € (P<*)“ such that

6% = sup{n¥(h;)(a;) : i < w}.
Notice now that (7¥(h;) : i < w) € R. Therefore,
6% = sup{r¥(hi)(a) : a € [n]<* A 7% (h;)(a) < %'}

It then follows that R F cf ((573/) < 7, which is a contradiction as o® is a Woodin
cardinal of R. O

Theorem 5.1.2 (Uniqueness of internal strategies) Suppose P is a hod pre-
mouse such that P = ZFC — Powerset, 67 is a regqular cardinal of P and W <hoq P
is such that P = “XJ, is a ((67)*, (67)*%)-strategy™. Then P = “W has a unique
iteration strategqy 7.

Proof. Working in P, suppose A # Y1), is another iteration strategy for W. Let
¥ = ¥7,. Notice that Lemma 5.1.1 implies that if

e U is a stack on W according to both A and X,
e 1h(Y) is a limit ordinal, and
e b=23%(U) and c = A(U)

then

(*) either

(A) both Q(b,U) and Q(c,U) exist, or
(B)b=c.

This is because if b # ¢ then cf” (§(14)) = w and hence, we have that

1. either 7 is undefined or 6(i) is not a Woodin cardinal of MY, and

2If (67) is the largest cardinal then we assume that ((67)%)" = ord(P).
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2. either 7¥ is undefined or §(U) is not a Woodin cardinal of MY,

¢

The above clauses imply that 6(U) is not a Woodin cardinal neither in MY nor in
MY Therefore, both Q(b,U) and Q(c,U) exist.

It then follows from the proof of Lemma 4.7.2% that we can find a minimal low-
level disagreement (71, Wy, Ta, Ws, Q) between (W, %) and (W, A). Moreover, we
can assume that h(77) < 67 and Ih(73) < 67*. Let S € P be a stack on Q according
to both ¥g 7; and Ag 7, and such that Xg 77 (S) # Ag 7 (S). It then follows from (*)
that letting b = g 7, (S) and ¢ = g 1 (S), both Q(b, S) and Q(c, S) exist. However,
since Yo- 7; = Ag-.7; and also both Q(b,S) and Q(c,S) are 67 + 1-iterable in P,
we have that Q(b,S) = Q(c,S) O

5.2 Generic interpretability

We now move to generic interpretability. We start by recalling and generalizing the
definition of a pre-hod pair (see [30, Definition 3.7]).

Definition 5.2.1 (Prehod pair) (P,Y) is a prehod pair if
1. P is a countable hod premouse of successor type,

2. If P~ is not of limit type then 3 is an (wy, w;)-strategy for P acting on stacks
based on P~.

3. If P~ is of limit type then ¥ is an (wy,ws,w;)-strategy for P acting on stacks
based on P~.

4. If i : P — Q comes from an iteration according to ¥, ¥£_ = Yo | Q°,

5. For any P-cardinal n € (67, "), considering P|n as a X-mouse over P~, there
is an wy-strategy A for P|n°.

3The use of I-fullness preservation can be substituted by (*).

4If not, then we can reflect below 67. Recall that W <j,0q P, so the desired Skolem hull of P can
be required to contain W.

5Thus, P is a ¥-mouse over P~.

6Thus, A acts on stacks above 6% .
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Notice that there must be a unique strategy A as in clause 5 of Definition 5.2.1.7
Also, recall the definition of Generic Interpretability, [30, Definition 3.8]. In our
current context it takes the following form.

Definition 5.2.2 (Generic Interpretability) Suppose (P, X) is a pre-hod pair, a
meek hod pair of limit type or an sts hod pair. We say generic interpretability holds
for (P, %) if there is a function F' such that

1. F is definable over P with no parameters,

2. dom(F) consists of pairs (Q, k) such that @ € Y7, Q < P|§” and « € (§<,67)
is a P-cardinal,

3. for (Q, k) € dom(F), F(Q,r) = (T, S) such that ,

(a> T’ S c PCOll(w,ordQ))’

b) P E “lFeoiw.ord T and S are k-complementing”,
(w,0rdQ))

(c) for any v € (ordQ), k) and any P-generic g C Coll(w,v),

Plg] E “p[T,] is an (wy, wy,wy)-iteration strategy for Q which extends
27377
Q

and

(p[T,))Ple) = Sg | HCPW,

The proof that the generic interpretability holds is just like the proof of [30,
Theorem 3.10] using Theorem 4.13.2 and Theorem 5.1.2 instead of [30, Lemma 2.15]
and [30, Theorem 3.3]. First the proof of [30, Lemma 3.9] can be used with no
changes to establish the following useful lemma.

Lemma 5.2.3 Suppose (P,Y) is a prehod pair. Let x € (6”7 ,67) be a P-cardinal
and A* be the iteration strategy of P|x as in 5 of Definition 5.2.1. Let A be the
fragment of A* that acts on non-dropping stacks. Let g C Coll(w, k) be P-generic.
Then Plg] locally Suslin, co-Suslin captures Code(A) and its complement at any
cardinal of P greater than 5.

"A is the O-structure guided strategy.
8Recall that this means that for every P-cardinal v > , there are v-complementing trees U,V €
Plg] such that for any < v-generic h, Code(A) N P[g][h] = (p[U])PEM = (RPIR] — p[v])Plallr],
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Fix now a prehod pair (P, %) and let Q € Y”. Let k < §” be a P-cardinal such
that

e k> ord(Q) and

e in the case Q is of limit type, P has no extenders with critical point 62" and
index greater than k.

Let G = {E € EPI¥” . y(E) is an inaccessible cardinal of P and crit(E) > x}. Notice
that (P, 67,3, G) is a self-capturing background triple. Let

hpc™ = (M%NWY%CI);F’FJ’FV’ZJV 1y <9)

be the output of hpc of (P,6”, %, 6)9.

Here we abuse the notation and write ®3 both for the strategy of My that is
internal to P and also for the external strategy. It follows from Theorem 4.13.2 ,
Lemma 5.1.2 and Lemma 5.2.3 that for some 3, (Mg, ®3) is a tail of (Q,¥g). We
then set

NZ?Q = Mg and A, o = (IJE.

In what follows, we will omit superscript P, but ask the reader to keep in mind that
certain notions depend on P. Also let 7, o : Q — N, g be the iteration embedding
according to Xg and let 7T, o be the normal stack on Q with last model N o. The
following is a consequence of Lemma 5.2.3, hull condensation of 3 and the proof of
Theorem 4.13.2.

Corollary 5.2.4 Suppose (P, ) is a pre-hod pair such that for some projectively
closed pointclass I', ¥ has branch condensation and is I'-fullness preserving. Suppose
Q € Y” and k > ord(Q) are such that

e x> ord(Q) and

e in the case Q is of limit type, P has no extenders with critical point 52" and
index greater than k.

Let 17 € (ord(N;.g),67) and n < w. Then there are names (T, 5) € PC«m such
that

L. PE “IFeown T and S are (67)*"-complementing”,

9See Definition 4.3.3. The aforementioned definition requires a pointclass I' but one can simply
ignore all the clauses of Definition 4.3.3 that mention I'.
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2. for any A € (n, ((67)™)7) and any P-generic g C Coll(w, \),

Plg] E “p[T,] is an (wy,w;)-iteration strategy for N, o”
and letting ® be the ﬂﬁg—pullback of the strategy given by (p[Tg])P[g] then
O =Yg | HCPU.

Our generic interpretability result can now be proved using the tree production
lemma ([20, Theorem 3.3.15 |) and Corollary 5.2.4. We leave the details to the reader.

Theorem 5.2.5 (The generic interpretability) Suppose (P,X) is a prehod pair
or is a non-gentle hod pair of limit type or is an sts hod pair. Also, suppose that
for some projectively closed pointclass I', ¥ is I'-fullness preserving. Assume that for
every @ € YP, Yo has strong branch condensation. Then generic interpretability

holds for (P,X).

Next, we present our result on internal fullness preservation. The proof follows
the same line of thought as the proof of [30, Theorem 3.12 |. Below S*(R) is the
s-transform of S into a hybrid mouse over R and it is defined when ord(R) is a
cutpoint of S (see [58, Remark 12.7] and [10]).

Definition 5.2.6 Suppose P is a hod premouse and Q € Y”. We say A = X7 is
internally fullness preserving if the following holds for (7,R) € I(Q, A)'® such
that P E “|T|* exists”.

1. For all limit type S € Y, if M € P is a sound max(6” + 1, (|T]7)7)-iterable

Ag)ssb 7-mouse over 8|05 then M < S.

2. Suppose W <ijoq S is of Isa type and W = ((W|68")#)S. Suppose M € P is a
sound max (6% + 1, (|7]")7)-iterable Ayy 7-sts mouse over W. Then M < S.

3. Suppose R dpeqa R is of successor type and n € (ord(R7), "] is a cutpoint
cardinal of R. Suppose M € P is a sound max(6” +1, (|7]7)7)-iterable Ar-1-

mouse over R|n. Then M < (R|(nT)®)*(R|n).
_|
Theorem 5.2.7 (Internal fullness preservation) Suppose P is a hod premouse

qnd Q € Y" is such that (ord(Q)*)” ewists. Then X5 is internally fullness preseru-
ing.

0Thus, (T,R) € P.
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5.3 The derived models of hod mice

In this section, we state, without a proof, a version of [30, Theorem 3.19]. Suppose
(P,X) is an allowable pair'! such that ¥ has strong branch condensation and is
fullness preserving'?. Suppose Q <joq P is such that Q is meek and is of limit type.
Thus, 6€ is a limit of Woodin cardinals of P. Suppose further that cfP(5Q) is not
a measurable cardinal in P. We then let D*(P, %, Q) be the set of all A C R such
that for some strong cutpoint 7 < 6< of Q and g C Coll(w, 7)-generic over P there
are trees T, U € Pl[g] such that

1. Plg] E “(T,U) is §°-complementing” and

2. x € Aif and only if there is (S,R) € 1(Q,X¥g) and a Woodin cardinal 6 of R
such that

e 7% is above T,

e 1 is generic for the extender algebra of R[g] at ¢ and

e Rlg,z] Fx € p[rS(T)].

It follows from Corollary 4.13.4 and Theorem 4.10.2 that for z € R, the right hand
side of the above equivalence is independent of the choice of (S, R).

We let D(P, %, Q) be the derived model of Q as computed by g, i.e., for A C
R, A € D(P,%, Q) if there is (S,R) € I(P,%) such that S is based on Q and
A€ D*(R,%g,75(Q)).

Next recall [30, Definition 3.18]. Essentially a pointclass is completely mouse-full
if the next model of determinacy has the same mice relative to common iteration
strategies. We introduce this notion more carefully.

Given a set of reals A C R, welet W4 = {B C R : w(B) < w(A)}. Next following
Definition 3.13 of [30], we say A C R is a new set if

1. L(A,R) F AD,
2. gJ(R) N L(WA,R) = Wiy,
3. ©LWak) i5 4 Suslin cardinal of L(A4,R).

The following is [30, Definition 3.17].

11Gee Definition 3.10.7.
12Gee Definition 4.6.2.
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Definition 5.3.1 Given a pointclass I', we say [" is completely mouse full if either
I' = p(R) or there is a new set A such that
1. I'= Wy,
2. if (P,%) is allowable such that Code(¥) € I'" and L(A,R) E “X has strong
branch condensation and is I'-fullness preserving” then for every a € HC,
Lp"*(a) = (Lp*(a)) 4.
_|

Given two pointclasses I'y and I'y, we write I'y <,0use ' if I'y € I's and I'y
has the same mice as I'y relative to common iteration strategies. More precisely,
if (P,>) € I'y is an allowable pair such that L(I';,R) F “¥ has strong branch
condensation and is [';-fullness preserving” then for any a € HC,

Ly"%(a) = LpF*¥(a).
Finally, following [30, Definition 3.18],

Definition 5.3.2 I' is mouse full if either it is completely mouse full or is a union of
completely mouse full pointclasses (T, : a < Q) such that for all a, Ty, <nouse Lt
and for all limit o, I'y = Uz, I's- -

We can now state our generalization of [30, Theorem 3.19].

Theorem 5.3.3 Suppose (P,X) is an allowable pair and I' is a pointclass closed
under continuous preimages.'> Suppose further that P is non-gentle and of limit
type, and that X2 has strong branch condensation and is I'-fullness preserving. Then

1. T(P,X) = UQGpI(’P,E),Q/ﬂQ D(Q,%0, Q).

2. For any Q € pl(P,Y), if Q <Goa Q is non-gentle and is of limit type then
D(Q,%g, Q') is completely mouse full.

13We define the Solovay sequence (0L : a < ) relative to I' as the Solovay sequence defined in
the model L(T',R) if T is constructibly closed (i.e., p(R) N L(I',R) = T'). We can aslo make sense
of the Solovay sequence relative to I' in the case I' is a limit of constructibly closed pointclasses;
here for A € T, we say a set B is OD'(A) if B is OD(A)XMR) for some constructibly closed A < T
From here on, when we talk about the Solovay sequence relative to a pointclass I', ' is assumed to
have one of the two properties above. Notice that if I' is a constructibly closed pointclass which is
a union of constructibly closed pointclasses strictly contained in it, then the two ways of computing
the Solovay sequence relative to I' are equivalent.
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3. For any Q € pl(P,%), if Q <hoa Q" oa Q are such that

e Q and Q" are non-gentle and are of limit type,

o Q" <joq Q is the least non-gentle layer of Q that has w more Woodin
cardinals than @',

then letting I'" = D(Q, Xg, Q"), if £ is such that eg/odeEQ/) = 9? then for every
n, letting Q! Jpoqa Q" be the layer of Q" that has exactly n Woodin cardinals
above ord(Q'),

Hadez%) = ngn and Q' =€ + w.

4. T(P,X) is a mouse full pointclass.

We finish with a theorem generalizing [30, Theorem 3.20]. It shows that I'(P, )
satisfies mouse capturing for any ¥ where Q € pI(P, ). Recall from [30] (the first
page of the introduction of [30]) that MC stands for mouse capturing, i.e., for the
statement that for z,y € R, x € OD, if and only if there is an w;-iterable y-mouse
M such that x € M. Given an allowable pair (P, ¥) such that ¥ has strong branch
condensation and is I'*-fullness preserving for some projectively closed pointclass I'*,
we say MC holds for X' if for 2,y € R, € OD, 5 if and only if there is an w;-
iterable X-mouse M over y such that x € M. Given a mouse full pointaclass [ and a
allowable pair (P, ) € I' such that ¥ is I-fullness preserving and has strong branch
condensation, we write

' E “MC for X7
if one of the following holds:

1. T'is completely mouse full and whenever A is a new set such that I' = W4 then
L(A,R) E “MC for X".

2. T"is not completely mouse full and if (I',, : o < Q) are the completely mouse full
pointclasses witnessing that I' is mouse full then for some o < Q, L(I',,R) E
“MC for 7.

Theorem 5.3.4 Suppose (P,X) is an allowable pair of limit type and X has strong
branch condensation and is I'*-fullness preserving for some projectively closed point-
class I'*. Suppose further that there is a good pointclass I' such that Code(X) € Ap.

Then for every Q € pB(P,>),
(P, %) E “MC for So”.

4The statement “MC holds for ¥” can be made precise for an arbitrary strategy with hull
condensation. Our definition also includes st-strategies.
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5.4 Anomalous hod premice

In this paper, we use anomalous hod premice the same way we used them in [30], to
generate pointclasses that are mouse full but not completely mouse full. The reader
may wish to review Definition 2.7.15 and Definition 3.9.2.

Definition 5.4.1 (Anomalous hod premouse of type I) P is an anomalous
hod premouse of type I if P is a germane hp — Ises such that letting Q = hl(P),
Q is of successor type, P F “09 is Woodin” and either p(P) < §< or J,[P] E “0< is
not a Woodin cardinal”. -

Definition 5.4.2 (Anomalous hod premouse of type II) P is an anomalous
hod premouse of type II if P is a germane hp — Ises such that letting Q = hl(P),
Q is a gentle hod premouse, p(P) < §< but for every £ € (6, ordP)), p(P]|wé) > §<.
_{

Definition 5.4.3 (Anomalous hod premouse of type III) P is an anomalous
hod premouse of type IIT if P is a germane hp — Ises such that letting Q = hl(P),
Q is non-gentle limit type hod premouse, p(P) < 62" but for every wé < ord(P),
p(P||w€) > 6971, 3

Thus, in the language of Definition 2.7.19, if P is an anomalous hod premouse
then P is not projecting well but all of its initial segments do project well. We say
P is an anomalous hod premouse if it is an anomalous hod premouse of type ¢ where
ie{l, 11, 111}.

Definition 5.4.4 (Anomalous hod pair) (P, %) is an anomalous hod pair if
one of the following conditions holds:

1. P is an anomalous hod premouse of type I or II, ¥ is an (wq,w;)-iteration
strategy with hull condensation and whenever Q is a ¥ iterate of P, X2 C 3 |
QlG.

2. P is an anomalous hod premouse of type III, ¥ is a (wy, wy, wq)-iteration strat-
egy'” with hull condensation and whenever Q is a ¥ iterate of P, X2 C ¥ | Q.

We then say that (P,3) is a simple anomalous hod pair if either

151t follows from the arguments on page 142 of [30] that p(P||w¢) = 59" is not possible in
situations that will arise in this book.

16Recall that X9 is the internal strategy of Q.

17See Definition 2.10.6.
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e it is an anomalous hod pair and P is of type I or II, or

e P is an anomalous hod premouse of type III, ¥ is a (wy,w;)-iteration strategy
with hull condensation and whenever Q is a ¥ iterate of P, X2 C X | Q.

_|

The following lemma is due to Mitchell and Steel. It appears as Claim 5 in the
proof of Theorem 6.2 of [23]. In the current work, the lemma is used to show that
certain hod pair constructions converge, which leads to showing that generation of
pointclasses holds (see Theorem 10.1.2). It was used in [30] in a similar fashion (see
[30, Lemma 3.25]).

Lemma 5.4.5 Suppose (P,) is an anomalous hod pair or a simple hod pair such
that for n < k(P), (P,n) is not anomalous. Let k = k(P), P’ = (P,k — 1) and
¥ = ¥ps, and suppose (T, Q) € I(P',%'). Then

e if P is of type I or II then p,(Q) < §¢ and
e if P is of type IIT then pi(Q) < 6<".

The next theorem is the adaptation of [30, Theorem 3.27] to our current setting.
It generalizes our results from previous sections to anomalous hod pairs.

Theorem 5.4.6 Suppose (P, %) is an anomalous hod pair of type II or III. Suppose
that there is a projectively closed pointclass T' such that for any (T,Q) € B(P,X)
there is a hod pair (R, ) such that A has (strong) branch condensation and is low-
level T-fullness preserving'®, and there is m: Q — R such that A™ = Xg 7. Then

1. For every (T,Q) € B(P,X), Yo7 has (strong) branch condensation, is posi-
tional and is commuting.

2. ¥ is strongly low-level T'(P, X)-fullness preserving and T'(P, %) is a mouse full
pointclass.

We omit the proof of Theorem 5.4.6 as it is only notationally more complicated
than the proof of [30, Theorem 3.10]. We remind the reader that the proof of [30,
Theorem 3.27] depended on the generic interpretability result, which appeared as
[30, Theorem 3.10]. In our current context we need to use Theorem 5.2.5. The
general idea is that we can translate the properties of ¥ into the derived model of P
as computed via . This fact then just gets preserved under pull-back embeddings.

It is also possible to prove a version of Theorem 5.4.6 for sts hod pairs. To prove
it, we again need to use Theorem 5.2.5. We state it without a proof.

18Gee Definition 4.6.2.
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Theorem 5.4.7 Suppose (P,%) is an sts hod pair and U is a projectively closed
pointclass. Suppose that for any (T, Q) € B(P,%) there is a hod pair (R,A) such
that A has strong branch condensation and is (strongly) I'-fullness fullness preserving,
and there is m: Q — R such that A™ =Yg 1. Then

1. For every (T,Q) € B(P,X), Yo7 has (strong) branch condensation, is posi-
tional and is commuting.

2. ¥ is strongly T°(P,X)-fullness preserving and T°(P,X) is a mouse full point-
class.

The following is an easy corollary of Theorem 5.4.6.

Corollary 5.4.8 (Branch condensation pulls back) Suppose (P, ¥) is a hod pair
of limit type and ¥ has (strong) branch condensation. Suppose 7 : Q — P is ele-
mentary. Then for every R <, Q such that 6% is a cutpoint of Q, (X™)z has (strong)
branch condensation.

5.5 Branch condensation on a tail

The main theorem of this section, Theorem 5.5.3, will be used in several places
(e.g. the proof of Theorem 10.1.4) in this book as well as in core model induction
applications. First we need to introduce a new concept, which fortunately for us,
Farmer Schlutzenberg has developed independently and much more generally.

Definition 5.5.1 Suppose (P, ) is an anomalous pair of type [11. We say (P, )
has a supporting bicephalous if there is a bicephalous B = (p, M, P) in the sense
of [15, Definition| such that

1. p=67",

2. M is germane' and such that p(M) < p, hI(M) = P|p and M < Lp>”'»(P|p),
3. for every n < w, p,(M) # p,

4. k(M) is the least n such that p,1(M) < p,

5. for every v € [ord(P?),ord(M)), p(M||7) > p,

6. B has an w-iteration strategy X1 which extends X.

19Gee Definition 2.7.15.
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_|

Remark 5.5.2 The reader unfamiliar with [15] may treat B in Definition 5.5.1 as a
pair constructed by some I'-hod pair construction. After reaching P|p the hod pair
construction aims to reach the next I' — cbl?®. The construction proceeds as a fully
backgrounded construction relative to Xp|,. Once P? is reached it is declared to be
a layer and a new strategy appears, the strategy of P°. To reach M we just simply
need to continue the construction relative to Xpj,. This will all be relevant in the
proof of Theorem 10.1.4. Also notice that clause 4 implies that we iterate M using
one fine structural level lower than one would normally do. -

Theorem 5.5.3 (Branch condensation on a tail) Suppose (P,X) is an anoma-
lous hod pair of type II or III. Suppose that for every (T,Q) € B(P,X), Xo 71 has
strong branch condensation. Moreover, assume either

(1) ZFC holds and P is of type I1, or
(2) AD* holds and if P is of type 111 then it has a supporting bicephalous.

Then if P is of type 11 then there is (T,Q) € I(P,X) such that ¥o 1 has strong
branch condensation, and if P is of type [11 then X has strong branch condensation.

Proof. The case when P is of type I is very similar to the proof of [30, Theorem
3.28]. The case when P is of type III is similar to the proof of Theorem 4.9.5. In
order not to repeat the entire Section 4.9, we outline the proof of branch condensation
and leave the rest to reader. Let B = (p, M,P) and X7 witness that (P, X) has a
supporting bicephalous.

Suppose (T, Q,U, ¢, o) is such that

L (T,Q) e I(P,%),

2. U is a stack according to ¥ and 1h(H/) is a limit ordinal,
3. c¢is a cofinal well-founded branch of U,

4. o : MY — Q is elementary?' and such that 77 = o o ¥/,

We would like to show that ¢ = X(U). Let d = X(U). The most dificult case, which
also represents the difficulties involved in other cases that are left to the reader, is

20See Definition 4.3.1.
215 may not be fully elementary, just at the right fine structural level.
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the case when 7t exists, RY has a maximal element, and if o« = max(RY) then U,

is above (MY)? and Q(c,Us,)-exists. Set then W = m™ () and let ® be the o-
pullback of ¥,01) 7 and ®) = Xy y~(4y. Finally, set &g = (P()*° and ¢; = ().
We then have that if @y = ®; then in fact, as Q(d,U) exists, Q(d,U) = Q(c,U) and
therefore, ¢ = d. Assume then that &y # 4.

Let then (Xy, Wy, X1, Wi, R) be a minimal low level disagreement?? between @,
and ®;. Recall the notation X“¢ introduced in clause 4 and 5 of Notation 2.10.9.
Let Yo = U™ {c} ™ (Xp)% and Yy = U™ {c}(X))%. Let Yy and Y; be the stacks
on B obtained by applying Jy and Y, to B. Y is according to ¥t while Y
is not according to a strategy but it has well-founded models because of o. Let
By = (v, Mo, Py) and By = (v1, My, Py) be the last models of V" and Y, Let A}

be the strategy of By?* and let A} = 2;1’3};.

We now have that m* = 7910 which implies that vy = 14, My = M; and
Pt = PP In fact, letting F be the (p, 70%(p))-extender?® derived from 7> then for
i €2, My =Ult(M,F) and P; = Ult(P’ F). Let then v = vy, N = My, S = P¢,
A° be the strategy of A/ induced by Aj and A! be the strategy of A/ induced by A.
We have that A% # Ak.

Notice next that because ¥p|, has branch condensation, p(N) < 6% and more-
over, letting n = k(N)?, and A be the nth reduct of N then

(1) sup(Hulll' (py(N") UR™) N oR) = o&.

Let then K" = cHullY (py(N")UR) and i’ : K — N” be the uncollapsing embedding.
Let K be decoding of K" and i :  — N be the canonical uncoring embedding. (1)
then implies that

(2) K E “6® is a Woodin cardinal” and J,[K] F “6% is not a Woodin cardinal”.

Let now A? = (i-pullback of A%) and A3 = (i-pullback of AY). Let Z be a nor-

mal stack?” on K based on R such that Z¢ =4.;] (Z,R) is according to both A? and
A3 and such that setting e = A%(Z) and f = A3(Z) then

22Gee Definition 4.7.1.

23This strategy comes from the copying procedure; By embeds into a X t-iterate of B that starts
out by applying 7 to B and then copies (Xp)5s.

24 p= 5P

258ee Lemma 5.4.5. This follows from the proof of Claim 5 in the proof of Theorem 6.2 of [23].

26We abuse our notation and think of A" as both fine structural and non-fine structural.

2"We can choose Z to be normal because of Theorem 4.13.2.
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3)e#f.

It follows from Theorem 5.4.6 that Q(e, Z%) exists if and only if Q(f, Z%) exists,
and therefore, neither exists. Let K. = MZ and Ky = M7.
Let A° =A% -, and A/ = AR, 2~y Letting 7 = 6(Z), we now have that

(4) K¢, Ky E “6% is a Woodin cardinal” and J,[K.], JL[K;] E “0% is not a Woodin
cardinal”,

(5) K. and Ky are 7-sound,

(6) WZ(R) = W?(R) =def Rl and A%l = A;;l =def A128.

e

Thus, if we argue that K. = K; then we would be done as it would show that
e = f, contradicting (3). Set I', = I'(K,,A°) and I'; = ['(K;, AY). Suppose first
that I'. = I'y. Then because A°® and A7 both are I'.-fullness preserving and there-
fore, (KCe, A°) and (Kf, A7) can be compared as in Theorem 4.14.4, (5) implies that
Ke=Kjy.

We now assume that I'. # I'y. Without losing generality, lets suppose that
I'. C T'y. It follows from the above argument that K, is ordinal definable in I'y from
Ay. Indeed, let A € I'y be such that every set in I'. has Wadge rank < w(A). Then
in L(A,R), K, is the unique anomalous hod premouse V that has an w;-iteration
strategy II such that

LTV, ={CCR:w(C)<wl)},
2. Ry <5, V%,

3. Tg, = A,

4. YV is T-sound.

It then follows from Theorem 5.4.6 that K. € Ky, which contradicts (4). O

28This is a consequence of Theorem 4.13.2. Z is produced by iterating R into a universal model.
29Gee Definition 9.1.2.
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Chapter 6

The internal theory of Isa hod mice

A major shortcoming of our treatment of short-tree-strategy mice is that we did not
add branches to all trees. Suppose (P, Y) is an sts hod pair, X is a self-well-ordered
set such that P € X and M is a Y-sts premouse over X based on P. Recall the
short tree strategy indexing scheme Definition 3.8.9. Recall that our strategy for in-
dexing branches was to consider two kinds of iterations, uvs and nuvs'. We outright
index the branches of uvs iterations. However, we only consider a subclass of nuvs
iterations. If for some 3 < o(M), T € dom(XMP) is an M|B-ambiguous tree then
(i) T is a result of comparing P with a certain background construction of M|g and
(ii) we index the branch of 7 after we find a certain certificate of shortness (recall
Definition 3.8.9). It is then not clear from our definition that ¥ | M C M. The
main goal of this chapter is to show that, provided M is sufficiently closed, > [ M
is a definable class of M. Below we make our goal more precise.

Motivational Question. Suppose (P,X) is a hod pair or an sts hod pair, X is
a self-well-ordered set such that P € X and M is a 3 or Y-sts mouse over X (see
Definition 3.8.21). Is 3 | A definable over N7 Is ¥ | M[g] definable over N'[g] where
g is N-generic?

In Section 5.2 we gave an answer to Motivational Question in the case M is P
itself (see Theorem 5.2.5). Another answer was given by [30, Lemma 3.35], where it
was shown that X | M[g] is definable over A'[g] provided P doesn’t have non-meek
layers. Here, we are mainly concerned with proving a version of [30, Lemma 3.35]
in the case of a non-meek hod premice. Because of this we will state many of our
definitions and theorems for hod pairs or sts hod pairs (P, ¥) such that P is non-

ISee Definition 3.3.2.
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meek?. To simplify our terminology, we will say (P,Y) is a non-meek hod pair if P
is a non-meek hod premouse and ¥ is either an iteration strategy or an sts-strategy
(this is only allowed in the case P is of Isa type).

While a positive answer to the Motivational Questions is desirable, it is naive
to hope that one exists for all such /. A positive answer depends on how closed
N is. If for instance the branch of 7T is given via a Q-structure that is beyond the
#-operator while our N is only closed under the #-operator then, in most cases,
identifying the correct branch of T inside N via a procedure that is uniform in 7
will be impossible. In this chapter, we give a positive answer to the Motivational
Question provided our N is sufficiently closed. We make this notion more precise.

Suppose (P,Y) is a non-meek hod pair and N is a Y-mouse such that N E
ZFC—Replacement. We say N is X-closed if ¥ | NV C N. We say N is generically
Y-closed if N is Y-closed and whenever g is N -generic, X [ N]g| is definable over
(Ngl, €) (in the language of X-premice). It is worth remarking that the structure
(Mg, €) is a structure in the language of Y-premice and in particular, there are
names for EV and V.

Definition 6.0.1 We say N is uniformly generically Y-closed if N is generically
Y-closed and there are formulas ¢ and 1 (in the language of X-premice) such that
for any N -generic g, any stack 7 € N[g] on P and any b € Ng],

T € dom(X) + (Ngl], €) E ¢[T]
X(T) =0b< (Nlgl,€) FY[T,b]

The main theorem of this chapter is Theorem 6.1.4. It gives a positive answer
to our Motivational Question in the case A is Y-closed and has fullness preserving
iteration strategy (see Definition 6.1.1 and Definition 6.1.3). The main idea behind
the proof of Theorem 6.1.4 is that the branch of an iteration tree 7 on P can be
identified by the authentication process introduced in Definition 3.7.4.

Given a transitive set X, we let X# be the least sound active mouse over X. Also
recall that if X is any set and A C X? then p[A4] is the projection of A onto one of
the coordinates of A. The specific coordinate onto which we project will always be
clear from the context.

2See Definition 2.7.1.
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6.1 Internally >-closed mice

In this section we introduce a kind of closure property of hybrid mice for which we can
give a positive answer to our motivational question. The first such closure property
is internal closure, which postulates that our mouse has enough of the strategy.

Definition 6.1.1 (Internally 3-closed mouse) Suppose
e (P,Y) is an allowable pair?,
e P is a non-meek hod premouse,

e if 3 is an iteration strategy then N is a YX-premouse over some X based on P,
and

e if Y is an sts premouse then A is a Y-sts premouse over some X based on P.

1. We say N is internally Y-closed premouse if for every x < ord(N') there is
M <N such that

(a) M E ZFC,
(b) N|x I M,
(c) for every (T,S) € B(P,M)*, £ is total in M5,
(d)

(e) letting &g < &1 < d2 be the first three Woodin cardinals of M that are
greater than r, for every ¢ € 3 and n € [k,0;), letting (M., N, : v <
v),(Fy v <v),(T, : v < v)) be the output of the (P, X)-coherent fully

backgrounded construction of M|4,° in which extenders used have critical
points > 7, the following conditions hold:

M has at least three Woodin cardinals that are greater than ,

i. If ¥ is an iteration strategy then 77 -exists and M,, is the last model
of T,.
ii. If ¥ is an st-strategy then 77" exists and 7, is M-terminal”.
iii. If (7,8S) € B(P,2VM)?® then for some 3, M, |3 is a Y& -iterate of S

via a normal stack.

3See Definition 3.10.7.
4Thus, (T,S) € M.
5Thus, Eg\/l =Ys7 [ M.
6See Definition 3.5.1.
7See Definition 3.8.8.
8See Definition 3.3.9.

77/7b
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2. If M, N and k are as above then we say M witnesses the internal X-closure
of N at k.

3. We say N is an internally Y-closed mouse (sts mouse) if it is an internally
Y-closed premouse and has an w;-iteration strategy A witnessing that A is a
Y-mouse (sts mouse).

_|

Two remarks are in order. First notice that internal Y-closure is a first order
property of A/, and in clause 3 above we do not need to require that A-iterates of N
are internally Y-closed as this is just a consequence of elementarity.

Secondly, we cannot in general hope to prove that generic interpretability holds
for internally Y-closed mice. The reason is that there might be @ € B(P,¥) such
that Yo is beyond the iteration strategy of N (in the sense that A <, Xg), and
if such a Q is generic over N then it is not wise to hope that Yo [ N would be
definable over N'[Q]. In order to prove generic interpretability result for internally
Y-closed premice we need to find a fullness condition that would let us take care of
examples as above. In particular, we seem to need to require that any > as above is
strictly below the strategy of N'. The next couple of paragraphs make this intuitive
notion more precise.

Suppose N is an internally Y-closed mouse,  is an N-cardinal and M is as in
Definition 6.1.1. Let dp < d; < 92 be the first three Woodin cardinals of M that
are greater than , and let n € [k,09) and i € 3 be the least such that n < J;.
We then let Sé‘” be the YM-iterate of P constructed via the (P, ¥M)-coherent fully
backgrounded construction of M|d; where critical points of extenders used are > 7.
We let L{/]\/’ be the normal tree on P with last model S,;V‘ and

T M .
K 7t - otherwise.

M {W“%b : P is of Isa type
Notice that 7" € V.

Keeping the notation and terminology of Definition 6.1.1, suppose A is an iter-
ation strategy for A/ (witnessing that A/ is an internally Y-closed mouse). Suppose
¢ < ord(N) and A% is the fragment of A that acts on stacks above £. We then let
(N, A%) be the collection of all sets A C R such that for some (7,R) € I(N,A),
k < ord(R) and M < R witnessing that R is internally -closed at k the following
holds: letting dy < d; < o be the first three Woodin cardinals of M that are greater
than , whenever 7 € [k, d2), there is Q <joq (S;1)" such that
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1. Sé‘/‘ E “52 is a Woodin cardinal” and
2. w(A) < w(Code(Xgym)).

Remark 6.1.2 For convenience, we will use the notation I'(P, ) for both sts pairs
and hod pairs. In the case of sts hod pairs, it is just T*(P,X). .

Definition 6.1.3 Suppose N is as in Definition 6.1.1 and A is an w;-iteration strat-
egy for N (witnessing that A is an internally Y-closed mouse). We then say that A
is a fullness preserving iteration strategy for N if for every £ < ord(/N), letting
A¢ be the fragment of A that acts on stacks above &, T'(N, A%) = T'(P, ). -

The following is our generic interpretability result for internally X-closed mice N/
that have a fullness preserving iteration strategy.

Theorem 6.1.4 Assume NsesN® Suppose (P,Y) is an allowable pair, T is a pro-
jectively closed pointclass and N is an internally Y-closed premouse (possibly over
some set X ). Suppose 3 is

e strongly I'-fullness preserving,
e has strong branch condensation and
e is commuting'®.

Then the following conditions hold.

1. If (P,X) is a hod pair and N is a X-mouse then for any N -generic g, Ng| is
Y-closed and X | Ng| is uniformly in g definable over Ng].

2. If (P,X) is an sts hod pair and N is a X-sts mouse with a fullness preserving
iteration strateqy then for any N -generic g, N'g] is B-closed and X | Ng| is
uniformly in g definable over Ng].

In the next few sections, we will develop the terminology we need to prove Theo-
rem 6.1.4. We will not give the proof of clause 1 of Theorem 6.1.4. It is much easier
than the proof of clause 2 of Theorem 6.1.4 and it is very much like the proof of [30,
Theorem 3.10]. Thus, we only concentrate on sts hod pairs.

9See Definition 4.0.1.
10See Definition 4.10.5.
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6.2 Authentication procedure revisited

Suppose (P,X) is an sts hod pair, A is an internally X-closed premouse, g is N-
generic and 7 € dom(¥)NAg] is a normal stack on P above P’ such that T doesn’t
have fatal drops. Suppose first that 7 € b(3). In this case, we would like to identify
Q(b, T) in Ng] via a procedure that is uniform in 7. Here b = X(7). Clearly if
Q(b, T) < m™(T) then we can easily identify Q(b, 7). Suppose then m™(7)<Q(b, T).
We now face two problems.

The first problem is showing that Q(b, 7) € M[g] and the second is showing that
Q(b, T) can be identified in A in a uniform manner. Both of these require more of
N than just internal Y-closure. To prove both of these facts, we will need that N
has a fullness preserving iteration strategy. Our strategy for finding Q(b, T) in N is
that if A is sufficiently rich then some backgrounded construction will reach Q(b, T).
To execute this plan, we first need to describe the sort of backgrounded construc-
tions that we will consider. In what follows, we borrow ideas from Section 3.7. In
particular, it will be helpful to recall Definition 3.7.5 and other definitions from that
section.

Definition 6.2.1 ((N, X)-authenticated iteration strategy) Suppose (P,Y) is
an sts hod pair, X C P® and N is a ¥-sts premouse such that X € A/. Suppose that
g C P is N-generic for some poset P € N and R € N[g] is an Isa type hod premouse.
We define a partial short tree strategy @%’X’g without a model component for R as
follows. @%’X’g acts on indexable stacks'!.

1. t=(R,T,R1,Ti) € dom(®y ) NTg] if and only if ¢ is (P, TV, X)-authenticated'?,

2. Given t = (R, To, Ry, T7) € dom(®N~9) N Ng] with T; £ 0, DN 9(t) = b if
and only if t~{b} is (P, ¥V, X)-authenticated.

When X = PP we simply omit it from our terminology. -

Continuing with the R, N of Definition 6.2.1, we next define an A -authenticated
backgrounded construction over R. This is essentially a fully backgrounded con-
struction relative to @%’g (see Definition 4.2.1).

Definition 6.2.2 Suppose (P,Y) is an sts hod pair, X € P* N A and NV is a -
sts premouse such that X € N. Suppose that ¢ C P is A-generic for some poset
P € N and Y,R € N]g| are such that YV is a self-well-ordered set and R € Y

11Gee Definition 3.3.3.
12Gee Definition 3.7.3.
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is an Isa type hod premouse. Suppose further that x is an N -cardinal such that
{P,R,Y} € N|kg].

We then say that (M., N, :v <wv),(F,:v <v),(T,:v <wv)) is the output of
the (N, k, X)-authenticated fully backgrounded construction over Y based on R in
which extenders used have critical points >  if (M., N, : v <), (F, : v <v), (T, :
v < v)) is the output of (R, CD%’X’Q )-coherent fully backgrounded construction'® of
N done over Y using extenders with critical points > x!4.

Finally, we say Q is an (N, X)-authenticated sts mouse over Y based on R if
Q € N and for some v,

e {P,R,Y,Q} € N|v[g] and

e Q appears as a model in the (N, v, X)-authenticated fully backgrounded con-
struction over Y based on R.

When X = P° we simply omit it from our terminology. -

Suppose now that (P,Y) is an sts hod pair, X C P® and A is an internally
Y-closed mouse with a fullness preserving iteration strategy A such that X € N.
Suppose P € N is a poset and g C P is N-generic. Suppose further that Y € Ng].
We then let

LpV9Xstst(y, R) = | J{K € Ng] : there is an N -cardinal s such that
{P,R,Y,K} € N|k[g] such that K is an (N, k, X )-authenticated sound sts mouse
over Y based on R such that p(K) = ord(Y)}

Again, if X = P’ then we omit it from the notation.

Notice that we do not know that Lp™"9 st (Y, R) is a meaningful object, since
we do not know that if Qg and Q; are authenticated by My and M, respectively
then they are compatible. This, however, is true when R is an iterate of P and X has
strong branch condensation and is strongly I'-fullness preserving for some I'. This
fact will also be verified in the next section.

We can then define (LpY'9%X5+(Y,R) : a < ord(N)) by induction as usual.
More precisely, the sequence is defined via the following recursion.

L Lpy (Y, R) = tre(Y, R).

9. Lp,i\/’,g,X,sts,—i—(Y, R) _ Lp/\f,g,X,sts,-‘r(}/7 R)

13See Definition 3.5.1.
141f the construction reaches a stack 7 such that @%’X’g (T) is undefined we stop the construction.
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3. Lplfgr e (¥, R) = LpVokomt (LpY o Xt (v, 7))

«

4 LY R) = U yen LY 9T (VL R).

When Y = J,[R] or X = PP, we omit them from the above notation.

The “+” version of the Lp operator defined above may stack more sts mice than
we need. To get the proper operator we need to only consider K € N[g] which have
an iteration strategy in I'(P,X). This fact can be expressed in a first order manner

over Ng].

Definition 6.2.3 Suppose (P,X), N and (P,g,X,Y,R) are as above. Let £ <
LpN:o-Xstst(y, R). We say K is simple (in N) if there is x and M < A such that

e (P,X,Y,R,K) € Nlklg],
e M witnesses the internal Y-closure of N at &,

e letting 0y < 01 < 09 be the first three Woodin cardinals of M that are above &,
there is some Q <jq (SM)? such that if 5 € (ord(Q), ) is the least such that
Lpt PE):Ee(M|n) £ “n is a Woodin cardinal”'® then K is an (M|, ord(Q), X)-
authenticated sound sts mouse over Y based on R such that p(K) = ord(R).

_|

We then let
LpNvg’X:StS(Y’ R) = J{K € Ng] : K is simple and K <« LpN’g’X’St3’+(Y, R)}.

We will omit g and X when they are clear from the context. The effect of clause 3
of Definition 6.2.3 is that since I is built by a fully backgrounded construction of
M|n using extenders with critical points > ord(Q), the strategy K acquired from
the strategy of M|n via the resurrection procedure of [23, Chapter 12| is in I'(P, X).
This is because the strategy of M|n that acts on stacks above ord(Q) is in I'(P, X).
Thus, the following claim is true.

Proposition 6.2.4 Suppose (P, %), N and (P, g, X, Y, R) are as in Definition 6.2.3.
Suppose R = m™(T) where T is a normal stack according to 2. Suppose further that

Y2 has strong branch condensation and is I'-fullness preserving for some projectively
closed pointclass I'. Then LpN’g’X’StS(R) Q Lpt P22 (R,

15Let QT be the least hod initial segment of S,ﬁ” such that Q< O1 and 52" is a Woodin cardinal
of SM. Since M is closed under X g+, the condition Lp" (P=)Ee (M|n) E “p is a Woodin cardinal”
is first order over Ag].
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Proof. We have already explained that every K < LpN 9-X585(R) has an iteration
strategy in I'(P,¥). Moreover, because ¥ has strong branch condensation and is

[-fullness preserving, the strategy K acquired from the strategy of M|n witnesses
that K is a Yr-sts'S. O

We can now describe the N -authenticated iterations of P.

Definition 6.2.5 (NM-authenticated iteration) Suppose (P,Y) is an sts pair, T’
is a projectively closed pointclass and N is an internally Y-closed mouse with a
fullness preserving iteration strategy A. Suppose further that ¥ has strong branch
condensation and is strongly I'-fullness preserving. Also suppose that ¢ C P is
N-generic for some poset P € N and T € Ng] is a stack on P. We say T is
N-authenticated if the following conditions holds.

1. For every a € max’ 7

LpV st (MT) E “MI is a Woodin cardinal”.

2. For every o € max’ | w7<ab exists.

3. For all @ € R7 such that n’=e? exists, letting W = ncl'® if W is above
ord((MT)?) then for all limit ordinals v < [h(W) such that W [ v is nuvs,

(a) LpM*#(mt (W [ 7)) E “6(W | 7) is not a Woodin cardinal”, and
(b) letting b= [0,7)7, Q(b, W [ 7)
QbW I 7) ILpM*(m" (W [ 7).

exists and
4. For every a € R such that n7=e? exists, if nc] is based on S =4.; (M)’ then

(S,nc?) is a (P, £V)-authenticated iteration'

5. For every a € R” such that 77=e® exists, letting U = nc] and S =4y M7, if

U is above 65" and is such that for some n € (65°,8°), U is based on On Sl 20

and is above 7, then (0% U) is a (P, ¥V)-authenticated iteration.

n,Sn,n?

16While this is non-trivial, most of the proof is contained in the proofs of Theorem 4.12.1 and
Proposition 4.12.5.

17See Definition 3.1.6.

18See Notation 2.4.4.

19Gee Definition 3.7.4.

29See Definition 2.6.11.
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6. For every a € R” such that 77==® exists, letting U = nc] and S =4.p M7, if
U is a normal tree on S? above 6%°, then (S, T2s) is a (P, ZN)-authenticated
iteration®!.

6.3 (Generic interpretability in internally >-closed
premice

In this section, we prove our main theorem, Theorem 6.1.4. As we said before, we
will only prove clause 2. We start by fixing an sts hod pair (P, ) such that X
has strong branch condensation, a projectively closed pointclass I' such that X is
strongly I-fullness preserving and an internally Y-closed premouse N such that N
has a fullness preserving iteration strategy A?2. We want to show that A/ is uniformly
generically »-closed.

Fix a poset P € N and an N-generic ¢ C P. We start by defining a short tree
strategy ® for P. ® is defined over A[g] in a uniform manner. Its domain consists of
N-authenticated iterations (see Definition 6.2.5). Given an N -authenticated itera-
tion 7 of limit length, we set ®(7) = z if and only if one of the following conditions
holds.

1. T is nuvs and letting o = max(R7), LpV**(m*(724)) E “6(T2q) is a Woodin
cardinal” and z = m™* (7).

2. Clause 1 above fails, x € N'[g] is a branch of T such that N'[g] E “z is a cofinal
well-founded branch of 77 and T~ {z} is N-authenticated.

To complete the proof of Theorem 6.1.4 we need to show that

(a) whenever T € dom(®) Ndom(X), ®(7) is defined and is equal to X(7).
Fix then 7’ € N|g] such that 7’ € dom(®) N dom(X). Suppose first that
(*1) T" is nuvs.

Let a = max(R”') and set T = T, and & =4y M]. We thus have that

21This clause follows from the one above it.
22See Definition 6.1.3.
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Jom*(T)] E “0(T) is a Woodin cardinal”. We want to conclude that ®(7) is
defined and ®(7) = X(7).

Suppose first that X(7) = m™* (7). Then because X is I-fullness preserving, there
is N0 X,,+(y-sts Q@ over m*(7) such that

e Q is sound,
e Q has a strategy A € I'(P, X)) witnessing that Q is a ¥,,+(7)-sts over m™(7),
e QF “§(T)is a Woodin cardinal” but J,[Q] F “§(T) is not a Woodin cardinal”.

It then follows from Proposition 6.2.4 that ®(7) = m™ (7).

Suppose next that ¥(7) = b where b is a cofinal well-founded branch of 7. We
thus have that Q(b, T) =45 W exists and want to conclude that ®(7) = b. Notice
that if

Lp™t (m* ( 1a)) F “0(TL,) is not a Woodin cardinal”
then W < Lp™»*® (m*( o)) and, therefore, ®(7) = b. Assume then that
(1) Lp™*t (m( 1a)) F “6(T%,) is a Woodin cardinal”.

Set T = Tls. The following claim finishes the proof of (a) assuming (*1).
Claim. W < Lp™* (m* (7).

Proof. Recall from Definition 3.10.6 that W has a strategy in ¥ € I'°(P,X) wit-
nessing that W is a X+ (-sts mouse over m* (7). Let x be an N-cardinal such
that {PP, 7} € N|k[g]. Using fullness preservation of A, fix an iteration tree Uy on N
above x and according to A with last model A such that 7 exists and there is an

M < N such that
1. M witnesses the internal Y-closure of A at xk and
2. for some Q < (SM)°) w(Code(¥)) < w(Code(Xg)).

Fix a real x witnessing w(Code(¥)) < w(Code(Xyg)).

Let dp < 01 < 92 be the first three Woodin cardinals of M that are greater than
k. Let Uy be an iteration tree on M based on M|d; according to Ay, and above
do that is constructed according to the rules of z-genericity iteration. Let 7 = 7t
and let My be the last model of U;. We then have that x is generic for the extender
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algebra of My at m(d1). It follows that
(2) W [ (Ma|m(02))[g][z] € Ma[g][=]*.

Let (M, N, 1 v <), (F,: v <), (T, : v <v)) be the output of the (Mz|m(ds), 7(d1))-
authenticated fully backgrounded construction over J,[m™(7)] based on m™* (7).
Next we have that.

(3) For some v < v, W= M.,
(3) is a consequence of the following facts:

(3A) Extenders used in the construction of S have critical points > 7(d;) (so the
construction side doesn’t move).

(3B) For each y, M., is a ¥,,+(-sts mouse over m™*(7)%.

(3C) W side loses (because (2) implies W is 7(d2)-iterable in Ms|[g][z] and the con-
struction is universal®%).

Clearly (3) finishes the proof of the claim. O

We now assume the following:
(*2) T" is uvs.

Again, our goal is to show that X(7”) = ®(7'). As many components of the proof
are similar to the proofs of Theorem 4.12.1 and Proposition 4.12.4, we will not give
the full proof. It is in fact enough to show the following:

(b) Suppose a € R7" is such that 77" ? is defined and for all 8 € R Na, (Mgl)b #
(MI'). Let T = T2, and S = M". There is then x < ord(N) and M < N
witnessing that N is internally Y-closed at x and such that

1. {P, T} € N|klg],

2. there is a normal stack U on S according to s such that either

2To make this conclusion, we use the fact that Ma[g][z] is closed under ¥g. This can be
established using the generic interpretability results of [30].

24See Definition 6.2.2.

25See Theorem 4.12.1 and Proposition 4.12.5.

26See the universality clause of Theorem 4.5.6.
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(a) U has a last model K < SM or
(b) U is of limit length and X(U) = m™(U) = SM.

The tree U is built using the authentication procedure described in Definition 3.7.3.
Proposition 4.15.2 guarantees that the prescription for finding the branches of U as
in clause 2 of Definition 3.7.3 produces a branch which is according to Xs. The fact

that AV has a fullness preserving iteration strategy implies that S cannot outiterate
sM.

6.4 S-constructions

Our definition of sts mice makes heavy use of the fact that the set X is a self-well-
ordered set. In particular, our definition cannot be used to define sts mice over
R. Another shortcoming of our definition is that it does not explain how to do S-
constructions. In this short section, motivated by Section 3.38 of [30], we indicate
how to use Theorem 6.1.4 to redefine hod mice in a way that one can define sts mice
over R and perform S-constructions.

Recall the difficulty with defining hybrid mice over R. In our definition, we
always choose the least stack of some sort for which the branch has not been added
and index a branch. Since R may not be self-well-ordered, we do not have the luxury
of choosing the least such stack.

The problem with S-constructions is very similar. Suppose (P, X) is a hod pair
or an sts hod pair and N and M are two transitive models of some fragment of
set theory such that J,(M) C J,(N) and for some poset P € J,(M) and some
M-generic G C P, J,(N) = J,(M)[G]. Suppose further that both M and N are
Y-closed and P € NN M. For us, S-constructions are constructions that translate
Y-mice over N to Y-mice over M. For more details consult Section 3.38 of [30].27

The difficulty in performing S-constructions is the following. Suppose N is a
Y-mouse over N, and we want to translate it onto a X-mouse over M. Suppose our
translation has produced a Y-mouse M over M, and our indexing scheme demands
that a branch of some stack 7" € N be indexed in the very next step in the translation
procedure. The problem is that 7 may not be a stack in M nor may it be the stack
whose branch is indexed in M.

To solve this problem, we change the definition of hybrid premouse in a way
that the iterations whose branches are indexed do not depend on generic extensions.
In particular, instead of indexing iterations according to X, we considered generic

2"Tn this process is called P-constructions.
» p
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genericity iterations on ./\/lf’z. Such iterations make levels of the model generically
generic and do not depend on generic extensions. This move solves both problems.
In the first case what is important is that the indexed iterations do not depend on
the well-ordering of the model, and in the second case what is important is that the
indexed iterations do not depend on generic extensions. For more details consult
Definition 3.37 of [30] or [50] for a similar construction.

Here our solution is similar. Suppose (P,3) is an sts hod pair such that ¥ has
strong branch condensation and is I'-fullness preserving for some projectively closed
pointclass I' and M is an Y-sts mouse over some set X such that P € X. Then
the iterations of P that are indexed in M are of the form ¢ = (P, T, Q,U), where
t is an indexable stack®®. 7T is always the result of comparing P with a certain
backgrounded construction. Notice that this neither depends on the well-ordering of
M nor on small generic extensions. U is a stack on Q° and, in Definition 3.8.9, we
chose the least such stack. Thus the choice of i depends on both the well-ordering of
M and small generic extensions®”. To solve the issue, we will start considering stacks
s = (P,T,Q,U) where T is as before but now U is a generic genericity iteration

on M, 2 46 make a level of the model generically generic. We only consider such

. . »y . Dy
generic genericity iterations of ./\/l;éﬁ 2" that are based on the first Woodin of Mj& @,

7EQb

The reason we choose Mf is that we want to use clause 1 of Theorem 6.1.4.

It is not hard to see that if 9 < d; are the first two Woodin cardinals of Mf’ng
and g C Coll(w,dp) is ./\/lf’ng—generic then M;#’Egbwl [g] is internally X gs-closed.
Clause 1 of Theorem 6.1.4 is a weaker result than [30, Lemma 3.35], which is what
is used to reorganize hod mice in [30]. We could prove an equivalent of [30, Lemma
3.35], but doing this is much harder than proving clause 1 of Theorem 6.1.4.

To show that the resulting structure M is closed under X, we will first show that

we can find branches of indexable stacks. Given such a stack t = (P, T, Q,U) let W

be an iteration of ./\/lf’ng such that (P,7T,Q,W) is indexed in M and if S is the
last model of W then U is generic over S for B where § is the least Woodin of 8
and BY is the extender algebra of S at 6. It then follows from Theorem 6.1.4 that
Yov | SInlU] € S[U] where 7 is the second Woodin cardinal of S. The rest of the
proof is just repeating the proof of Theorem 6.1.4.

Instead of re-developing the entire theory of sts mice, we will simply give the def-
inition of indexable stack. The rest of the definitions, those developed in Section 3.6,
Section 3.7, Section 3.8, Section 3.9 and Section 3.10, stay more or less the same.

28See Definition 3.3.3.
29Gmall in the sense that the generic is smaller than the critical point of the first background
extender used in the construction.
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It is important to note that the theory of sts mice as well as hod mice does not in
general depend on particular indexing schemes.

Definition 6.4.1 (Revised Indexable stack) Suppose P is a hod-like #-lsa type
Ises®. We say that an st-stack®!

T = (Ma)a<ys (Ea)a<n—1, D, R, (Ba, Ma)acr, short, max, T')
is a revised indexable stack on P if one of the following clauses hold:

1. max = 0 and there is @ € R7 such that 77<e? is defined and letting®?> M =

#.5
(Mg~ MM TS s a normal stack on M that is above ord((M7)?) and is
based on M|d where § is the least Woodin cardinal of M.

2. |max| = 1, T is a normal stack®® and if « is the unique element of max then
7 o is defined and next” (a) = Ih(7)3.

_|

We say P is a revised hod premouse if it is indexed according to our revised
indexing scheme, which will only index authentic revised indexable stacks®. We say
(P, X) is revised hod pair if P is revised hod premouse and ¥ is an iteration strategy
for P.

Theorem 6.4.2 Suppose (P, ) is a revised hod premouse such that ¥ is strongly T'-
fullness preserving for some projectively closed pointclass I' and ¥ has strong branch
condensation. Then for any Q € Y* and P-generic g,

1. if Q is not of lsa type then Yo | Plg| is uniformly in Q definable over Plgl,
and

2. if Q 1s of lsa type then the fragment of Esgtc [ Plg] that acts on revised indezxable
stacks is uniformly in Q definable over Plg|.

30See Definition 2.7.3.

31Gee Definition 3.2.1.

#.5 T b T . #.2 T b .
My MY Ma s (Mg, M in the sense of M.

33See Definition 3.3.1.
341t follows that T>, is above w{a (57)b). See also Notation 2.4.4.
35See Section 3.7.
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We now just import our lemmas on S-construction from Section 3.8 of [30] to
our current context. Let (P,X) be a hod pair or an sts pair such that ¥ has the
strong branch condensation and is strongly I'-fullness preserving for some pointclass
I'. Suppose M is a sound »-mouse and ¢ is a cutpoint cardinal of M. Suppose
further that A” € M|J + 1 is such that § C N C HM, N models a sufficiently strong
fragment of ZF —Replacement, N is a YX-mouse or a YX-sts mouse and there is a partial
ordering P € L, [N] such that M|§ is P-generic over L, [N]. We would like to define
S-construction of M over N relative to 3.

Definition 6.4.3 An S-construction of M over N relative to 3 is a sequence (S,, S, :
a < n) of X-mice over N such that

1. S = L [V,
2. if M|J is generic over S, for a forcing in L[] then

(a) if M||(w- ) is active and has a last branch b then S, is the expansion of

So by b and Suy1 = rud(S,).

(b) if M||[(w- ) is active and has a last extender £ then S, is the expansion
of S, by E and 8,11 = rud(S,),

(c) if M||(w x a) is passive then S, = S, and S,41 = rud(S,),
3. if X is limit then Sy = J,_, S

a<\ Yo

The following is the restatement of Lemma 3.42 of [30].

Lemma 6.4.4 Suppose (P,X), M, N are as above and ¢ is a strong cutpoint car-
dinal of M. Suppose further that N' € M|J + 1 is such that 6 € N C HM and
there is a partial ordering P € L,[N] such that whenever Q is a ¥-mouse over N/
such that H2 = N then M|§ is P-generic over Q. Then there is a ¥-mouse S over
N such that Mo is generic over S and S|M|)] = M.

The following is just the restatement of Lemma 3.43 of [30].

Lemma 6.4.5 Suppose (P,X), M and N are as above. Suppose further that M E
ZFC — Replacement is a ¥-mouse and 7 is a strong cutpoint non-Woodin cardinal of
M. Suppose v > 1 is a cardinal of M and N = (J#*)MP. Suppose J,(N|n) F “nis
Woodin”. Let (S,, S, : @ < v) be the S-construction of M|(n*)™ over N|n relative
to 2. Then for some o < v, S, F “n isn’t Woodin”.



Chapter 7
Analysis of HOD

VHOD

In this chapter we analyze Vg'™" of the minimal model of the Largest Suslin Ax-
HOD

iom. The analysis is very much like the analysis of V5" in the minimal model of
AD' + 60, = O, which appeared in [30, Chapter 4]. Just like in [30, Chapter 4], we
need to introduce the notion of suitable pair, B-iterable pair and etc. The proof of
Theorem 7.2.2 is very much like the proof of [30, Theorem 4.24].

7.1 DB-iterability

In this section, we import B-iterability technology to our current context. Most of
what we will need was laid out in [30, Section 4.1 and Section 4.2]. Here we will only
sketch the necessary arguments.

Definition 7.1.1 (Suitable pair) (P,X) is a suitable pair if the following clauses
hold:

1. Either P is a hod premouse of successor type or P is a #-like Isa type hod
premouse’.

2. If P is not of lsa type then

e (P,Y) is a pre-hod pair?,

e ¥ has strong branch condensation and is strongly fullness preserving®,

1See Definition 2.7.3. Thus, in both cases P £ “67 is a Woodin cardinal”. Also, if P is not of
Isa type then P is a ¥p--mouse above P~.

2See Definition 5.2.1.

3Thus, p(R)-fullness preserving.

265
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e For any P-cardinal n > 40} _,, if 1 is a strong cutpoint then P|(n*)” =
Lp™(Pln).

3. If P is of Isa type then (P, ) is an sts hod pair such that 3 has strong branch
condensation and is strongly fullness preserving?.

For convenience, we extend the notation P~ to lsa type (see Notation 2.7.14).

Notation 7.1.2 Suppose P° is either of Isa type or of successor type. We then let

- — P : P is of Isa type
N Ugq,,,» @ :otherwise.

Also, if (P, %) is a suitable sts pair then we let Ip(P, %) = Lp3(P). -

Suppose (P, %) and (Q, A) are hod pairs or sts hod pairs such that ¥ and A have
strong branch condensation and are strongly fullness preserving. We then let

(P,%) <ps (Q,N)

if and only if (P, ) loses the coiteration with (Q, A). Notice that <p; is a well-
founded relation. We then let o(P,X) = [(P,¥)[. , and we let [P, ] be the =p;
equivalence class of (P, Y), i.e.,

(Q,A) € [P,X] iff (Q,A) is a hod pair such that A has branch condensation and is
strongly fullness preserving and a(Q, A) = a(P, X).

Notice that [P, X] is independent of (P, ). We let
B(P,%) = {BC[P,%] xR: B is OD}.

Note that B(P, X) is defined for hod pairs or sts hod pairs, but not for suitable pairs
that are not sts hod pairs®.

The following standard lemma features prominently in our computations of HOD.
The proof is very much like the proof of Lemma 4.16 of [30]. Below SMC stands for
Strong Mouse Capturing. More precisely, SMC states that for any hod pair or sts
hod pair (P,X) such that X is strongly fullness preserving and has strong branch
condensation then for any x,y € R, x € OD, 5 if and only if z € Lp™(y).

4In this fullness preservation implies that LpZ(P) E “67 is a Woodin cardinal”.

®As was decided many pages before, we develop the theory of hod mice over (). Thus, X* = .

6This is because if (P, X) is a non-sts suitable pair then ¥ does not act on P but only on P~.
For such pairs, comparison is somewhat meaningless.
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Lemma 7.1.3 Assume SMC and suppose (P, X)) is a suitable pair and B € B(P~,X).
Set

P : P is of successor type
" Ip(P,X) : otherwise.

Suppose k is a Py -cardinal such that if P is of Isa type then for some n > 0,

k= ((67)*")P+ and otherwise k > 67 . Then there is T € Pfou(w’”) such that (P, 7)
locally term captures Bpy) at & for a comeager set of P -genetics g C Coll(w, k).

If B is locally term captured for comeager many set generics over a suitable pair

(P, %) then we let Tg,’f be the invariant term in P, locally term capturing B at s

for comeager many set generics. One way to get term capturing for all generics is to
show that a suitable pair can be extended to a structure that has one more Woodin.

Definition 7.1.4 (n-Suitable pair) (P,X) is an n-suitable pair if there is § such
that

P E “0 is a Woodin cardinal”
and the following clauses hold:
1. Either (P|(67%)7,%) is a suitable pair or letting @ = min(dom(EP) — §),
(Pla, ¥) is suitable”. Set

P {77|((5+‘“)7’ : (P|(67%)P,X) is a suitable pair
0 pu—

Pla : otherwise

2. If Py is of Isa type then P is a Y-sts premouse over Py and otherwise P is a
Y-premouse over Py,

3. P E ZFC — Replacement + “there are exactly n Woodin cardinals, ny < n1 <
... < nn_1 that are strictly greater than §”,

4. ord(P) = sup,,(n" )7 (here we set n_; = J),

5. For any P-cardinal p > §, if 5 is a strong cutpoint then P|(n+)? = Lp™(P|1)
where 7' = min(dom(E") — 7).

"Because P|(67*)” has infinitely many cardinals above &, in the first case P|(§7%)” is of suc-
cessor type and in the second, P|a is of an Isa type.
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We say P is of lsa type if Py is of lsa type. Otherwise we say that P is of successor
type. 4

If (P,Y) is n-suitable then we let 67 be the § of Definition 7.1.4 and Py be as
in Definition 7.1.4. Clearly O-suitable pair is just a suitable pair. The following are
easy consequences of Lemma 7.1.3.

Lemma 7.1.5 Assume SMC. Suppose (P, ¥) is an n-suitable pair and B € B(P~, %).
Suppose k is a P-cardinal such that

e if P is of Isa type then x > ((67)")” and
e otherwise k > 0" .

Then there is 7 € PYU«") guch that (P,7) locally term captures Bpy) at k for
comeager set of P-generics g C Coll(w, k).

Corollary 7.1.6 Assume SMC. Suppose (P,Y) is an n-suitable pair and B €
B(P~,X). Let v = ((6")*)”. Suppose & is a P-cardinal such that

o if P is of Isa type then x € (((67)%)”,v) and
e otherwise k € (670, v).
Then (P|v, TE:E ) locally term captures Bpy) at & for all P-generic g C Coll(w, k).

Corollary 7.1.6 is our main method of showing that various B are term captured
over the hod mice that we will construct. Suppose now that (P, ) is a hod pair. It
is now a trivial matter to import the terminology of [30, Section 4.1] to our current
context. We will have that S(X) consists of those Q such that Qy € pI(P, %) and
(Q,Xg,) is a suitable pair. Given Q € S(X), we let f5(Q) = GEKOrd(Q)TgEQOS‘. Then
the rest of the notions are defined for F' = {fp : B € B(P,%)}. Therefore, in the
sequel, we will freely use the terminology of [30, Section 4.1].

7.2 The computation of HOD

Throughout this section we assume AD* 4+ SMC and let (6, : o < ) be the Solovay
sequence. Our goal is to compute VQZIOD for f < Q. We will do it under some
additional hypothesis described below. In the next few chapters, we will prove that

8Here Qy is defined in Definition 7.1.4.
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our additional hypothesis follows from AD™ 4 “No initial segment of the Solovay
sequence satisfies LSA”.

Suppose (P,3) is a hod pair or an sts pair such that ¥ has strong branch con-
densation and is strongly fullness preserving. We will continue using the notation
a(P,X), Py and P~ from the previous section®.

Suppose first that 8+ 1 = Q. We then let Z = {(Q, A, B) :

1. (Q,A) is suitable, A is strongly fullness preserving and has strong branch con-
densation, and a(Q~,A) = 3,

2. for some integer n, B= (By, ..., By) and for every i < n, B; € B(Q~,A), and
3. (Q,A) is strongly B-iterable }.
Theorem 8.1.14 and the results of Section 10.1 show that Z # (). Define < on Z by
(P,%,B) = (Q,A,C) < BC C and (Q,A, B) is a B-tail of (P, %, B).
When (R, U, é) < (9,A, é), there is a canonical map
I R® QA
g H]§ — HE ,
which is independent of B-iterable branches. We let T(Rw,B) (O, B) be this map. We
then have that (Z, <) is directed. Let
_ QA 3
F = {Hé :(Q,A,B) € I},

and also let M, be the direct limit of F under the iteration maps TR0, B),(O.A,B)-
Let 0o = 0M=. For (Q,A,B) € I, we let T(QA,B) 00 Hg’A — M. Standard
arguments show that M, is well-founded.

Following [30, Section 4.4], we let ¢ be the following sentence: for every 41 < 2
there is a hod pair (P, X) such that

1. P is of successor type,
2. O[(Pi,zpf) = B,
3. Y is strongly fullness preserving and has strong branch condensation,

4. for any Q € pI(P,%X)UpB(P,%), if Q is of successor type then

9See Definition 7.1.2.
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(a) there is a sequence (B; : 1 < w) € B(Q~,Xo-)¥ which guides ¢ and

(b) for any B € B(Q~,¥g-) there is R € pI(Q,¥g) such that ¥x respects
B.

Our additional hypothesis, ¢, is the conjunction of ¢ with the following statement:
If Q = 5+ 1 then there is a suitable (-iterable (P, X)) such that

1. a(P~,3p-) = f and Xp- is strongly fullness preserving and has strong branch
condensation,

2. for any B € B(P~, Xp-) there is an (-iterate (Q, @) of (P, X) such that (Q, P)
is strongly B-iterable.

3. M is well-founded and 6o, = © = 054;.

We will use the following lemma to establish 1. It can be proved exactly the
same way as [30, Lemma 4.23].

Lemma 7.2.1 Suppose I' C p(R) is such that
LT, R)EAD" +SMC+ Q=B+ 1and I' = p(R) N L([',R).

Suppose I'* C o(R) is such that I' C I'*, L(I'*,R) E AD" and there is a hod a pair
(P,%) € I'* such that the following hold.

1. ¥ has strong branch condensation and is strongly I'-fullness preserving.
2. Either P is of successor type or of Isa type.
3. Code(Xp-) € I' and

(a) if P is of successor type then L(I',R) E “(P,¥p-) is a suitable pair such
that a(P~,Xp-) = " and

(b) if P is of Isa type then L(I',R) E “(P,%5¢) is a suitable pair such that
(P~ Sp-) = 7.

Letting

A= Yp- P is of successor type
yste . otherwise

the following clauses hold:
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4. There is a sequence (B; : i < w) € [(B(P~,A))XT®]« guiding 3.
5. For any B € (B(P~,A))LT®) there is R € pI(P, ) such that Yx respects B.
Then L(I', R) E ¢ and MET® = M (P, %).10

The next theorem is the adaptation of [30, Theorem 2.24] to our current context.
It can be proved via exactly the same proof. Because of this, we omit the proof.

Theorem 7.2.2 (Computation of HOD) Assume AD™. Suppose I' C p(R) is
such that I' = p(R) N L(I',R). Set W = L(I',R) and let (8p : 5 < Q) be the Solovay
sequence of W. Then the following holds:

1. Suppose W E ¢ and f+1 < Q. Let (P,X) witness ¢ for . Then letting
M= ML(P,X), E=EM and A = M, for every a < 3 there Q<ipoq M such
that

(a) 0° = 0,,

(b) 62 is either a Woodin cardinal of M or a limit of Woodin cardinals of
M, and

(¢) Mlfa = (V4iOP"  E | 6o, A T VRIOP™ €).

2. If W E % then letting M = MY E =EM and A = oM, for every a < ) there
15 Q poq M such that

((l) 59 = 0Oa,
(b) 62 is either a Woodin cardinal of M or a limit of Woodin cardinals of
M, and

(c) M|0, = (VIOPY E | 0,,A | VIOPY €).

Thus, working in a model of ADT, if a < Q then to compute HODIf, we only
need to produce a hod pair (P,X) satisfying Lemma 7.2.1. In the next chapter, in
particular in Theorem 8.1.14 and Section 10.1, we will show that this is indeed true
in the minimal model of the Largest Suslin Axiom.

ORecall that MI (P,X) is the direct limit of all S-iterates of P
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Chapter 8

Models of LSA as derived models

In this chapter, we show that certain derived models satisfy the LSA. We also prove
results that are important elsewhere. The results of Section 10.1 and Theorem 8.1.14
are needed to carry out the computation of HOD (see Theorem 7.2.2). We start with
introducing the pointclass I'(P, X) where (P, X) is an sts hod pair.

8.1 TI'(P,X) revisited

In this section, we translate the results of [30, Section 5.6] to our current context.
Suppose (P, ) is a hod pair such that either P is of successor type or of #-Isa type!
and ¥ is strongly fullness preserving and has strong branch condensation. Recall the
notation P~.

Suppose first that P is of successor type. We now generalize the results of [30),
Section 5.6]. Recall the notation Micey, (see Notation 4.1.14). Because P is not of
Isa type, it follows that Code(X) is Suslin, co-Suslin (this can be proved using the
proof of [30, Lemma 5.9]). It follows that there is a scaled pointclass closed under
continuous images and pre-images and under 3%, and also contains Mices . We
then let I'5, be the least such pointclass. Also, let

Iy = (£}(Code(Ep-))) M5,
Notice that I'y, is a lightface good pointclass, and so we set
Iy = User(ZF (Code(Zp-), 2)) M-,

Also Micegp_ belongs to I's; and is a universal 'y, set. We let

ISee the discussion after Definition 2.7.3.
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['(P,X) ={A: for cone of x € R, AN Cr(z) € Cr,(Cry (7))} = Env(l's)%
Notice that if (Q, A) is a tail of (P,X) then I'(Q,A) = I'(P,3). The next theorem

is essentialy the conjunction of [30, Lemma 5.13-5.16].

Theorem 8.1.1 Assume AD" and suppose (P,X) is a hod pair of successor type
and ¥ is strongly fullness preserving and has strong branch condensation. Then the
following holds.

1. There is a tail (Q,A) of (P,X) such that I'y = Tx.

2. Suppose I's, = I's. Then for any real x coding P~,
Cry(2) = Lp" 7~ (2).

3. Suppose I', = I'ss. Then Code(X) € T'(P, ).
4. Suppose I's = I's.. Then there is a tail (Q,A\) of (P,X) such that

I'Q,A) = p(R)Nn L(I'(Q,A),R).
Because T'(Q,A) = T'(P, %), it follows that T'(P, %) = p(R) N L(I'(P, %), R).

We spend the rest of this section defining I'(P,X) in the case P is of #-lsa
type. The reader may wish to review Definition 3.4.2, Definition 3.10.5 and Defini-
tion 3.10.6. The difficulty with representing the LSA pointclasses as I'(P, X)) is the
following. Suppose I' is an LSA pointclass, i.e., I' = p(R) N L(I',R) and L(I',R) F
AD' +LSA. Let a be such that a+1 = Q! and set T® = {A C R : w(A4) < 0,}3. LSA
pointclasses are peculiar because the pair that generates I'” is essentially the same
as the pair that generates I'. More precisely, if (P,X) generates I' then (P, X5%)
generates I'°.

Definition 8.1.2 Suppose (P, ) is a hod pair such that P is of #-lsa type and
has strong branch condensation and is strongly fullness preserving*. We then let

['(P,%) ={A:for concof z € R, ANLp~""(z) € Lp> " ()}

2Here, Cr(z) is the largest countable I'(x) set. It is defined to be the set of y € R such that for
some set A € I'N p(R?) and some ordinal o < wy, for every z € R coding «, y is the unique real
such that (y,z,z) € A.

3The superscript “b” stands for bottom.

4See Definition 4.9.2 and Definition 4.6.4.
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_|

Notice that the definition of T'(P, ¥) depends on ¥¥¢ and hence, can also be defined
for sts pairs. It is not immediately clear that L(I'(P,3)) N p(R) = I'(P, X). The-
orem 8.1.13 shows that it is indeed true. Before we prove it, we prove some useful
lemmas. The first lemma shows that various Y-sts mice are internally >-closed.

Lemma 8.1.3 Assume ADT + NsesS®. Suppose (R, ®) is an sts hod pair such that
® has strong branch condensation and is strongly fullness preserving® and M is
a ®-sts mouse over R. Suppose 7 is a Woodin cardinal of M and (n*)™ exists.
Suppose further that whenever @ € B(R,XMI") and Q is of successor type, then
YA = ®g | M. Given v < 7, let SM be the last model of (R, M)-coherent fully
backgrounded construction of M|n that uses extenders with critical points > 7 and

let 7, on R be the normal tree leading to S;'. Then for all v < 7, 77~ exists and
7Tob(§R") = 52"

Proof. Towards a contradiction assume that for some v our claim fails. Suppose first
that 77+ is undefined. We omit v and M from subscripts and superscripts. Let B
be the set of layers P of SM such that Wzdpjb exists. We then have that UpcgP # S,
and so letting o = sup{6” : P € B}, a < n and 7= is defined.

Suppose first that SMO” > o, Let O <poa MT be the least complete layer® of
./\/laT such that UB < Q. It follows that 7>, is a normal tree based on Q. But since
SY¥ = & | M, it follows from universality’ that Ih(7>,) < n and 77> is defined.
This is a contradiction, as it implies that there is @' € B such that < > a.

Assume now that 6M3)" = . Since 77 does not exist, T, must be based
on (MT)? and be above 6dM)".  However, it follows from our assumption that
Zg‘ = ®o | M, and once again we get a counterexample to the universality of
S.

The proof that 77*(§R") = 65" is very similar and we leave it to the reader.

OJ

The following set up will be used in Lemma 8.1.5, Corollary 8.1.6, Corollary 8.1.7,
Lemma 8.1.8, Corollary 8.1.9, Lemma 8.1.10, Corollary 8.1.11 and Lemma 8.1.12.

5See Definition 4.0.1.

6See Proposition 4.10.2.

“See Definition 3.5.1. See also Section 4.12.
8See Notation 2.7.14.

9See Theorem 4.5.6 and Theorem 4.13.2.
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Assume AD™T + NsesS. Suppose (P,X) is a hod pair such that P is of lsa type,
P = (P|67)# and ¥ has strong branch condensation and is strongly fullness pre-
serving. Suppose Code(X) is Suslin, co-Suslin. Let I' be any good pointclasses such
that Code(X) € Ap. Let M = (M, 6,G, Q) and let C = (M, (P, ¥,),I'*, A) Suslin,
co-Suslin capture both T''” and Code(X). We then have that the fully backgrounded
hod pair construction of M reaches a tail of (P, %) (see Theorem 4.13.4). Let (Q, A)
be this tail. Let A/ be the last model of!!

(Le((Q, A*te), 7,[Q]))M:E),

Because Y is fullness preserving we have that A/ F “4¢ is a Woodin cardinal”.
Let ® be the strategy of A induced by W. Notice that @ is fullness preserving in
the sense of Lp operator, i.e., whenever M is a ®-iterate of N' and 7 is a strong
cutpoint of M then M| (nt)M = Lp™™“(M|n). This can be shown using the proof of
Theorem 4.6.3. We now prove several lemmas about (N, ®) leading up to showing
that T'(Q, A**¢) can be realized as a derived model of N'. Let k be the least strong
cardinal of A/. The first lemma is quite standard.

Lemma 8.1.4 N F “k is a limit of Woodin cardinals”.

Proof. Tt is enough to show that ¢ is a limit of M-cardinals 7 such that LpAStC(M In) E
“n is a Woodin cardinal”. Fix v < §. Because Code(X) € Ar, we have that for cone
of z, Lpgm(z) € Cr(z). We can assume, using absoluteness'?, that the base of this
cone is in M. Let T, S € M be J-complementing trees witnessing that A is Suslin,
co-Suslin captured by (M, 9, G, Q). Let 7 : R — Hs+)m be a Skolem hull such that
crit(m) > v is an M-cardinal and {7, S} € rge(w). Let n = crit(7). Then it follows
that Cr(M|n) € M and hence, Cr(M|n) E “n is a Woodin cardinal”. It follows that
Lp™™(M|n) E “n is a Woodin cardinal”. O

The next lemma uses language introduced in Definition 6.1.3.

Lemma 8.1.5 & is fullness preserving, i.e., ® witnesses that T'(N |k, ®) = ['°(Q, A*).

Proof. Clearly, because ® witnesses that N is a A*“sts mouse, I'(N|k, ®) C
I(Q, As*). Fix then (7,R) € B(Q, A**). We want to see that

(1) there is a ®P-iterate N of M|k such that for some ¢t = (Q,7,S,U) € Ny, ¢

10Gee Definition 4.1.5, Definition 4.1.8 and Lemma 4.1.12.
11GQee Definition 4.2.1.
12Gee Lemma 4.1.11.
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is according to ZM and Ag <, Ags.

Suppose (1) fails. We can then assume, without loss of generality, that for some
v < § and some g C Coll(w,v), (T,R) € M[g]. Again without losing general-
ity we can assume that R is of successor type. Let now & be the output of the
(Q, ¥N)-coherent fully backgrounded construction of N that uses extenders with
critical points > v. Let U be a normal tree on Q with last model S. We claim that

(2) T exists, 7P(02") = 65" and & <poq SP is a Ag-iterate of R.

The first two clauses of (2) are consequences of Lemma 8.1.3. The third is a straight-
forward consequence of the fact that A is both positional and fullness preserving and
of the fact that S side never moves in the comparison with R'®. This finishes the
proof of Lemma 8.1.5.

O

Before we proceed, we record some lemmas that can now be proved. Since these
lemmas are standard, we will state these results without proofs and instead will
give references. The next lemma can be proved following the proof of clause 2 of
Theorem 6.1.4 and also standard arguments like the proofs of Corollary 1.2 and
Proposition 1.4, 1.5 of [28] and [30, Chapter 3.1].

Lemma 8.1.6 Suppose 7 : N|(k*)" — M is an iteration via @y, and g is M-

generic. Then letting F' be the function F(X) = Lp™™*(X), F | Mg is definable
over M|g] uniformly in (M, g)*.

Below HC stands for the set of all hereditarily countable sets.

Corollary 8.1.7 Suppose 7 : N|(kH)V — M is an iteration via @y (.+)v and F is

as in Lemma 8.1.6. Then if h C Coll(w, < 7(k)) is M-generic then F' | HCMIM ¢
M[RMW]15.

Lemma 8.1.6 can be used to prove the following lemma. See also the proof of
clause 2 of Theorem 6.1.4, Proposition 6.2.4, Definition 6.2.5 and [28, Proposition
1.5].

13See Proposition 4.10.2 and [30, Lemma 2.6].
14T e., the definition works for any such M and g.
15 Because & is a regular cardinal in A/, we have that RM[M = (R*)MIh],
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Lemma 8.1.8 Suppose 7 : N|(k7)Y — M is an iteration via @+ and 4 is a
cutpoint Woodin cardinal of M. Let £ be a cutpoint cardinal of M such that M has
no Woodin cardinals in the interval (&,6). Let n € (&,6) be an M-cardinal and let W
be the fragment of ® that acts on normal non-dropping trees based on M|(n*)™M that
are above . Then letting h C Coll(w, (n*)™) be M-generic, ® | M|r(k)[h] € M

and is 7(k)-universally Baire in M|h].

Corollary 8.1.9 Suppose 7 : N|(s*)Y — M is an iteration via D)y Suppose
g is M|m(k)-generic, X € (M|r(x))[g] and R € Lp*""(X) is such that p(R) =
ord(X). Let h C Coll(w,|X]) be (M|n(k))[g]-generic. Then R € M]g|[h] and
M]g][h] E “R has a 7(k)-universally Baire iteration strategy W witnessing that R is
a A**-sts mouse over X based on Q.

Moreover, if R € (M|r(k))[g] is a sound A*“-sts premouse over X such that
p(R) = ord(X) and for some (M|m(k))[g]-generic h C Coll(w, |X]), M[g]lh]| E “R
has a (k)-iteration strategy” then R < Lp™™ (X)'6.

The next lemma shows that ['(Q, A**) can be realized as the set of reals of
a derived model of a ®-iterate of N'. We introduced the notation D(M, A, h) in
Section 3.8. The derived model theorem says that D(M, )\, h) E AD*, but we need
a stronger version of this theorem.

Suppose V is a transitive inner model of ZFC — Powerset, A is a limit of Woodin
cardinals of V, (ATT)Y exists and h C Coll(w, < \) is V-generic. Let

R* = Ua<>\RV[gﬂColl(w,<a)}

and I' = {A € V(R*) : VR*) E “L(A,R*) E AD™"}. Set DT (V,\, h) =qges
(L(T,R*))¥®) Then the stronger version of Woodin’s derived model theorem says
that DT (V, A\, h) E AD*. Sometimes D*(V, \, h) is called the new derived model.

Suppose now that in addition to the above, V is countable and ® is an w; + 1-
iteration strategy for V. Let ¢ : w — R be generic for Coll(w,R) and let (z; : i < w)
be the enumeration of R given by z; = ¢(i). We can now perform an R-genericity
iteration of V via ® much like it is done in [60, Chapter 7.2 and Corollary 7.17]. Let V'
be this iterate of V and let h C Coll(w, < w}) be V'-generic such that (R*)'19 = RY,
We then let DT (V,®,\, g) = DY(V', Wy, h).

Lemma 8.1.10 The new derived model of N'|(k+)" as computed via U =gep @ (v
is L(I'(Q, A®*)). More precisely, for any g C Coll(w,R), DY(N|(sT)V, ¥, k,g) =
L(T(Q,A%)) and p(R) N DT(V, U, A, g) = I'(Q, A*). In particular, I'(Q, A*°) =
p(R) N L(I(Q, A™)).

6Notice that R has a unique 7(k)-iteration strategy in M|g][h].
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Proof. We will use clause 2 of Theorem 6.1.4. First we verify that clause 2 of Theo-
rem 6.1.4 applies. For this we need to verify that

(1) NV is internally A*-closed, and
(2) @ is a fullness preserving strategy for A.

Notice that (1) is a consequence of Lemma 8.1.3 and (2) is just Lemma 8.1.5. We
thus have that clause 2 of Theorem 6.1.4 applies.

To prove Lemma 8.1.10 we need to show that given an R-genericity iteration
7 N|(kH)N = W according to @+,

(3) if A € T'(Q, A*¢) then A € W(R), and
(4) if A € W(R) is such that L(A,R) E AD" then A € T'(Q, Ast).

We start with (3). Towards a contradiction, assume not and let A € T'(Q, As*)
witness this. We have that for cone of z € R, AN Lp»"(2) € Lpd™(2). Let z
be some base of the aforementioned cone. Let & > © be such that L¢(p(R)) E
ZF — Replacement and o : M — L¢(p(R)) be a countable hull such that A, z € HCY
and {®, A} € rge(o). Let AM =o71(A).

Let g € L(p(R)) be M-generic for Coll(w,RM). Let (y; : i < w) be the generic
sequence enumerating RM and let (§; : i < w) be a sequence of cutpoint Woodin
cardinals of NV|(k™) with sup x. Let (N, T; : i < w) be the RM-genericity iteration.
Thus, Ny = N|(s7)V, T; is a tree on N that is based on N;|7®i<i7i(;) and is above
7®i<iTi(§;_1)17 and T; is built according to the rules of y;-genericity iteration. Let
mix : Ni = Nj be the composition of the iteration embeddings. Let A, be the direct
limit of AV; under 7; .

Because z € RM, we have that A N (N, Jw!)(RM) e Lp™™ (N, |w})(RM))). No-
tice that it follows from Lemma 8.1.6 that if AT is the last model of 1 (@<, T;, N)'®
then

Lp"™ (AL |w]") (RM)) € N (RM).

It follows that AM € D(N,,,wM h) where h C Coll(w, < w) is an N -generic such
that RV« = RM_ This finishes the proof of (3).

We keep the notation used to prove (3) and start proving (4). To prove (4), we
need to show that if A is as in (4) and M, o etc were defined as before relative to A
then

17Let 6_1 =0.
18Gee Definition 2.4.10.
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(5) 071(A) € (T(Q, A*))M

Suppose that (5) fails. We then have that there is B € N, (R") such that L(B,RM) &
AD" and B ¢ (I'(Q, A*%))™. We first claim that

Claim. in L(B,RM), for cone of y, BN Lp"(y) € Lp}™ ().
Proof. Suppose not. Working in L(B,RM), fix y € RM such that for any y* € RY
Turing above y, BNLp™" (y) & Lph™ (y). Fix i < w such that y € N,[hNColl(w, §;)].
Notice that
(6) for every y € RM, (Lp™™ (1)) B#) = Lp*™(y).
(6) is a consequence of Corollary 8.1.9. This is because if R < (Lp*™ (y))L(BEY)
is such that p(R) = w then R has an iteration strategy in N, [y] as the iteration

strategy of R is ordinal definable from A%, y in the derived model of N,,.
Let k < w be such that there is a symmetric name 7 for B in N [hN Coll(w, d)].

Let j = max(i, k) + 1. We then have that

(7) in L(B,RM), BN (N,,|6;)[h N Coll(w, ;)] € Lp™™ (N,]6;)[h N Coll(w, 6;)]).
However, it follows from Lemma 6.4.4 that

(8) Lp™" ((N]8;) [l N Coll(w, 6;)]) = No| (6] [l 1 Coll(w, 6;)].

(8) and (7) contradict (6) (as Thncoli(w,s,) = B N (Nold;)[h N Coll(w, 6;)]). O

We will now make use of [34, Theorem 0.1]. It follows from the proof of the
aforementioned theorem (applied to all sets of reals in L(B,RM)) that

(9) p(R)HEZ) C (Lp™™ (RM))HEEY) and

(10) if K < (Lp™™ (RM))LBEY) g such that p(K) = R and k : K’ — K is such that
K’ is countable in L(B,RM) then K’ < Lp*™ (k=1(RM)).

A Skolem hull argument done inside N shows that (10) implies that,

(11) (L™ (RM)HEFD g Lph™ (RM).
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Suppose now that

(a) Lp™" (RM) € M.

Then clearly (11) implies that
(12) B e M.

(12) and the Claim imply (5). Thus, it is enough to prove that (a) holds. (a) easily
follows from the fact that Lp™ (RM) € NF(R) implying that Lp" (RM) € M][g].
But since g is generic for a homogenous poset, it follows that Lp™™ RMye M. O

The following is a simple corollary of the proof of Lemma 8.1.10.

Corollary 8.1.11 Suppose (7; : i < w) is a sequence of consecutive Woodin cardi-
nals of Vs and A = sup,_, 7. The derived model of R =4.; N|(A*)V as computed
via P is L(I'(Q, A%°)). In particular, ['(Q, A%¢) = p(R) N L(I'(Q, A*)).

Let Q. be the direct limit of all A-iterates of Q and let 7 : @ — Q. be the
iteration embedding. Let 2 be the (wy,w;) fragment of Agy 19 Notice that 7 | Q°
depends only on A*** and hence (by the coding lemma), it is in L(T'(Q, A**)). Also,
because A is fullness preserving, it follows that 7[Q%] can be coded as a subset of
w(I*(Q,A)). This is because Q% |69% = (J{M(R,Az) : R € pB(Q,A)} and
62 = w(I*(Q, A)).

Lemma 8.1.12 A% € J,(7[Q"], Q%,T%(Q, A)).

Proof. Set ¥ = A®. Notice that if (7,S) € I(Q,¥) and W is a tree on S of
limit length according to Wg such that W is above 65" and W € b(Us) then letting
b = Us(W)?', Q(b,W) exists and has an iteration strategy in I'°(Q,A). This is
simply because there is an extender E € EMY with critical point 65" such that
Q(b,W) < (Ult(M}Y, E))*. We can then define ¥ in J,(7[Q°, Q% ,T°(Q,A)) with
the following procedure. We work in J,(7[Q°], Q% ,T%(Q, A)).

Suppose first X is a transitive set and R € X is an Isa type hod mouse. Suppose
that there is an embedding 7 : Q® — RY. Suppose further that M is an sts mouse

19Gee [33] where it is shown that A is < ©-uB.
20Tf T is the Q-to-Qu stack then 7 | Q = 770,
21 Thus, b is a branch.
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over X based on R. We say M is good if it has an iteration strategy A € T'°(Q, A)
such that if S is a A-iterate of M, t = (R, T,R%,U) € S is according to X5, and
Ri = 77 *(RP) then letting A; = Ag,,

1. (Ry,4A1) is a hod pair such that A; has strong branch condensation and is
strongly fullness preserving,

2. Ry = Hull® (77" o 7[QY] U §F1),

3. letting o : Ry — Q% be given by
o(x) = 7(f)(rR} (@),

where f € Q" and a € (67R71)<“ are such that = 77" o 7(f)(a),

7] Q=0conTbtor.

4. U is according to A;.

We can now define Lp?°°****7(X) which is the stack of good sts mice over X that are
based on R. Then we can define Lp?****7(X).

Suppose next that R is an Isa type hod premouse and 7 : Q° — R is an
embedding. Suppose U is a stack on Rb](SRb. We say (R°,U) is a T-good iteration
if there is k : R® — QY such that 7 | Q° = ko7 and for some (S,A) € I'’(Q,A)
such that A has strong branch condensation and is strongly fullness preserving,

k| (RYOR") C 75 oo [S] and if o : R|6%" — S is given by

o(x) = (755) "' (k(z))

then U is according to o-pullback of A.

We can similarly define 7-good iterations when U is above 6R". In this case, we
simply demand that ¢/ be according to the unique strategy of ¥’ of R® which acts
on stacks that are above %" and letting A’ = (o-pullback of A)22, U witnesses that
R’ is a A’-premouse above 6R".

Suppose now that

T = (Ma)a<y: (Ea)a<n-1, D, R, (Ba, Ma)acr, short, max, T')

22Here, o is as above.
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is an st-stack?® on Q of countable length. Recall Remark 3.2.3 and Definition 2.7.24.
These conventions stipulate that R consists of cutpoints of 7. Also recall Nota-
tion 2.4.4. We say T is m-b-realizable if there is a sequence (o, : a € R) such that
the following clauses hold?*:

1.

2.

T doesn’t have a fatal drop?®,

O i (My)? — QP is an elementary embedding.

T,b

a,af

For all a, o/ € R with a < o/, 0o =0y o7

For all € R, letting Ay = (04 | Mq|6Ma-pullback of ), for each complete
layer R< M8, 0, | R = ﬂ%f“oo where W%f“oo R = Mo(R,(Ao)r) is the

iteration map according to (A,)%.

For all @ € R such that o # max(R), letting o/ = min(R — (o + 1)), if 75 o i
based on Mg|5Mg then 7, is according to A,.

For all @ € R such that a # max(R), letting o/ = min(R — (o + 1)), if 75 o is
based on M? and is above M then Ta.o 1s according to the unique strategy
of M that acts on stacks above & and witnesses that M? is a (Ag)

b
mouse over M, |6Ma.

Ma|oME™

For every a € R such that a + 1 < 1h(T), letting W = nc]?5, for all limit
ordinal 7 < [h(W) such that W | ~ is nuvs, letting 7 = ng(f,

(a) if Lp?™*7(m*(W | 7)) E “6(W | 7) is a Woodin cardinal” then
Ih(W) =~ +1 and v € R and

(b) if Lp?®s'=T(m+t(W | +)) E “6(W | 7) is not a Woodin cardinal” then
setting b = [0,7), b is a cofinal branch for W [ 7 such that Q(b,W | v)
exists and Q(b, W | v) < Lp?“*T(m+t(W | v)).

Let then A be an iteration strategy for Q such that its domain consists of st-
stacks 7 which are 7-b-realizable and for 7 € dom(A), A(7) = b if and only if
T {b} is a m-b-realizable st-stack. It can now be shown that A is the fragment of
U that acts on st-stacks that do not have a fatal drop. The proof is very much like

23See Definition 3.2.1.

24Tor the definition of 7/ *°

see Section 2.8.

a,a’

25See Definition 2.6.8.
26See Notation 2.4.4.
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the proof of clause 2 of Theorem 6.1.4 and it also uses Definition 3.10.6%7. We leave
it to the reader.

To compute A€, notice that A% is the unique short-tree strategy A’ of Q such
that A’ is fullness preserving and A as defined above is the fragment of A’ that acts
on st-stacks without fatal drops. This easily follows from Lemma 4.7.2. U

We are now in a position to state the main theorem of this section.

Theorem 8.1.13 Assume AD" + NsesS. Suppose (P,X) is a hod pair such that
P is of #-lsa type*® and ¥ has strong branch condensation and is strongly fullness
preserving. Suppose Code(X) is Suslin, co-Suslin. Then for some Q € pI(P,3),

1. L(I(Q,¥g)) Np(R) =T(Q,Xg),

2. the set{(z,y): x € R andy & Lp~2 ()} cannot be uniformized in L(D(Q, Xg)),
and

3. L(T'(Q, o)) E LSA.

Proof. Assume that one of 1-3 above is false. Let I'y = {A C R : A is ordinal
definable from 3 and a real}. Then one of 1-3 is false inside L(I'g, R), which means
we can assume that V' = L(I'g,R). Let (ap, ) be lexicofraphically least such that
letting I'y = {A C R : w(A) < oy} the following holds:

1. W =4es Lg, (', R) E ZF — Powerset + “O exists”,
2. Y ey and ag = O TR and
3. one of clauses 1-3 fails in Lg, (I'}, R).

Let Ty = (X%(Code(X)))" and let T’ be any good pointclass such that Ty C Ar.
Using Theorem 4.1.12 we can find M = (M, 4, G, Q) and C = (M, (PR, ¥y), I, A)
such that C Suslin, co-Suslin capture both I'*, Code(X) and the set D consisting
of triples (u,v,w) € R3 where u codes Q@ € pI(P,X), v codes a self-well-ordered
X € HC with Q € X and w codes Lp=™" (X).

We then have that the fully backgrounded hod pair construction of M reaches a
tail of (P, ) (see Theorem 4.13.4). Let (Q, A) be this tail (so A = Xg). Let A be
the last model of

2"In particular, see the conclusion of Definition 3.10.6.
28See Definition 2.7.3.
29Gee Definition 4.1.5, Definition 4.1.8 and Lemma 4.1.12.
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(Le((Q, A*), J,[Q))) M€

Because ¥ is fullness preserving we have that N'F “§< is a Woodin cardinal”. Let ®
be the strategy of A induced by Q. We now start proving that (Q, A) is as desired.

Clause 1 is just Lemma 8.1.10. We prove clause 2 of Theorem 8.1.13, which
amounts to showing that the set B = {(z,y) : z € RAy & Lp*"" ()} as computed
in W cannot be uniformized in L(I'(Q, A**)). Towards a contradiction assume that
B can be uniformized in L(I'(Q, A%¢)). It follows that we can find a set of reals
A € T'(Q, A% such that A codes a sjs (4; : i < w) with the property that Ay = B.

Let 7 : N|(k1) — M be an R-genericity iteration. We then have that A is in the
(new) derived model of M. Fix then a < 7(k)-generic g over M such that there is
a term relation 7 € M|g| realizing A. Let 6 < m(k) be a cutpoint Woodin cardinal
of M which is not a limit of Woodin cardinals of M and such that g is a < ¢-
generic. Let £ < 0 be a cutpoint M-cardinal such that M has no Woodin cardinals
in the interval (&,0). Let M* <M be such that 7 € M*, M* E ZFC — Powerset and
M|r(k) < M*. Let now o : § — M* be such that crit(o) € (¢,9), o(crit(o)) = 4,
crit(o) is an M-cardinal and 7 € rge(o). It follows that Lp™ (M|crit(c)) € S and
Lp™™ (Mcrit(0)) E “crit(o) is a Woodin cardinal”, contradiction! This finishes the
proof of clause 2 of Theorem 8.1.13.

To finish the proof of Theorem 8.1.13 we need to show that L(I'(Q, A)) E LSA.
Suppose first that

(a) for every transitive X € HC such that Q € X and for every R < Lp*™"(X)
such that p(R) = ord(X), R has an iteration strategy ®* € I'°(Q, A) such that ®*
witnesses that R is a A®**“-sts mouse over X based on Q.

We claim that (a) implies L(I'(Q, A)) F LSA. Towards a contradiction assume not
and set B = {(z,y) :z € RAy & Lp*""(x)}. We claim that

(1) B is Suslin, co-Suslin in L(I'(Q, A)).

Clearly (2) contradicts clause 2 of Theorem 8.1.13. Set W = A, Tt follows from (a)
that

(2) B is projective in W.
Let Q. be the direct limit of all A-iterates of Q and let # : @ — Q. be the

iteration embedding. Notice that 7 | Q° depends only on ¥ and hence, because of
Lemma 8.1.12; it is in L(I'(Q, A)). Also, because V¥ is fullness preserving, it follows
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that 7[Q"] can be coded as a subset of w(I'*(Q,A)). This is because QP [§%% =
U{Ma(R,AR) : R € pB(Q,A)} and 62" = w(I(Q, A)).

It follows from (2) and Lemma 8.1.12 that B € J,,(w[Q°], Q°, T*(Q, A)). Since we
are assuming L(I'(Q, A)) E =LSA and since, in L(I'(Q,A)), §9% is both < © and is
a limit of Suslin cardinals, B must be Suslin, co-Suslin in L(I'(Q, A)), implying (1).
Thus, it is enough to prove (a).

Suppose (a) fails. We can then assume that the witness is in some Coll(w, Q)-
generic extension of M. Let g C Coll(w, Q) be M-generic and let X € HCMl) pe
a counterexample to (a). We then have that X is < k-generic over N. In fact,
if n € (ord(Q), k) is any Woodin cardinal of A, then X can be added to N by
the extender algebra of N at 7. Let then R < LpAStC(X ) be the least such that
p(R) = o(X) yet if A is the strategy of R witnessing that R is a A**“-sts mouse over
X based on Q then A € I'’(Q, A). Notice that we have that

(3) Code(A) is Suslin, co-Suslin in L(I'(Q, A)) (this follows from Corollary 8.1.9).

It is then enough to show that the Suslin, co-Suslin sets of L(I'(Q,A)) are exactly
those of T°(Q,A). Assume otherwise. Let Q. = M (Q,A). Because every set
in T°(Q, A) is §9%-Suslin, co-Suslin we have that there is some 1 < & such that if
h C Coll(w,n) is N |k-generic then there is

(T, 8) € I(Q, Aste) N HCV IR
such that As € L(I'(Q, A))*°. Tt then follows that
As | N|k[h] € N[h]*'.

Let now v > o(S) be a cutpoint Woodin cardinal of N'|s. Let S be an iterate
of 8§ above §° that is built according to the rules of A/|v-genericity iteration®?. For
this genericity iteration we use the extender algebra at §° that uses extenders with
critical points > 65, Thus, the S-to-S; iteration is above §5". ‘We have that &; €
NTR]|(vN. Let N be the output of (Le((Q, A%*), 7,,[Q]) FWI4E) where G consists
of those extenders of A/ that have an inaccessible length (in A/) and a critical point
> vT. It follows from fullness preservation that A; £ “0¢ is a Woodin cardinal”.

30This can be shown using Theorem 4.13.2 and the fact that A** is Suslin, co-Suslin in L(T'(Q, A)),
which follows from our assumption and Lemma 8.1.12.
31As | N|k[h] € N|h] because of Lemma 8.1.6.

32This iteration starts by iterating the least measurable of S that is > 65" v + 1 times.
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Let N5 be the (N, v, 77 ?[Q%)-authenticated backgrounded construction over
N|v based on @%. Then it follows from universality of N3 that N|(vt)Y C N, C
Ni[Nv]. However, 6 is not a cardinal of N yet it is a cardinal of Nj[A|v], con-
tradiction! This finishes the proof of (a) and hence, the proof of Theorem 8.1.13.
0

The next theorem can now be proved using Corollary 8.1.11 and the proof of
Theorem 5.20 of [30].

Theorem 8.1.14 Assume AD' + NsesS. Suppose (P,X) is a hod pair such that P
1s either of successor type or of #-lsa type and Y has branch condensation and is
fullness preserving. Suppose B € B(P~,Xp-). There is then Q € pl(P,%) and
B = (B;: i <w) CB(P,Xp-) such that B strongly quides Yo and By = B.

8.2 A hybrid upper bound for LSA

The main theorem of this section, Theorem 8.2.6, is a corollary to the proofs given
in the previous section. It can be used in core model induction applications to show
that certain hypotheses imply that there is a model of LSA. We give a fairly detailed
proof of Theorem 8.2.6.

Definition 8.2.1 Suppose (P, X) is an sts hod pair®’. We let NjZ,lsa(P7 ¥) be the
minimal active ¥-sts mouse M over P such that M has w.2 many Woodin cardinals
greater than 7. -

Recall Definition 2.3.15 and Definition 2.5.2. Suppose now that M = NfQ’lsa(P, ¥).
Let A be the supremum of the Woodin cardinals of M. Because the only total exten-
der of M whose critical point is > A is the last extender of M, the strategy predicate
above \ is empty. Thus, M = (M|\)#. We use w.2 many Woodin cardinals be-
cause we need to produce proper initial segments of M that are unambiguous and
satisfy the properties listed in clause 5 of Definition 3.8.9. Notice that the way we
stated clause 5 of Definition 3.8.9 implies that the strategy predicate of M|y cannot
be empty above v. We remark that we strongly believe that one could re-organize
the manuscript in a way that we could prove all the lemmas in this section for
Nf 1sa (P, X) which is the minimal active X-sts premouse over P that has w Woodin
cardinals above §%.

33This makes sense as N|v is generic over S; and 7Tt e N3, see Definition 6.2.2.
34See Definition 3.10.6.
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Definition 8.2.2 We say A is an active w.2 Woodin lsa mouse if it has an
iteration strategy X such that

1. N has a Woodin cardinal & such that letting P = ((NV]0)#)V, (P, 2% is an
sts hod pair such that X%¢ has strong branch condensation and is strongly
[P, ¥5t¢)-fullness preserving,

2. N = NjQ,lszz(P? ch)7

3. for every P’ <poq P such that P’ is of #-Isa type®® layer of P, Nf&lsa (P, 2) <
P and
N7, 1 (P 355) E “€ is not a Woodin cardinal”.

w.2,lsa

We say P is the Isa part of N'. We say (N, X)) is an active w.2 Woodin Isa pair.
_|

Notice that if (A, %) is an active w.2 Woodin lsa pair then p(N) < (s*)V where,
letting P be the Isa part of N, k is the least < §%-strong cardinal of P,

In what follows, we let the statement there is an active w.2 Woodin lsa pair be
shortening for the statement that there is a pair (N, X) such that A is an active w
Woodin Isa mouse and ¥ witnesses the clauses of Definition 8.2.2.

Notice that it follows from Theorem 4.14.4 that if (N,X) and (M, A) are two
active w Woodin Isa pairs with common lIsa part P such that ¥5¢ = A% then N’ = M
and ¥ = A. Let [ = w.2 — {w}.

Lemma 8.2.3 Suppose (N,Y) is an active w.2 Woodin Isa pair and P is the lsa
part of N. Let N be the result of iterating the last extender of N through the
ordinals. Let (&; : i € I) be the Woodin cardinals of N above 67 and let A be their
supremum. Let 7 : N/ — M be an iteration via ¥ that is above 6”. Suppose ¢ is
< w(\)-generic over M and W € (M|M[g]) N pB(P,L%%)37. Let k € w be such that
g is generic for a poset in M|r(d;) and let S{' be the last model of the (P, XM)-
coherent fully backgrounded construction of M|m(dx41) using critical points > &,%.
Then the following holds:

35See Definition 2.7.3. This means that P’ = ((P'|67")#)P.

36The fact that p(N) < (k1) can be proved as follows. Suppose that p(N) > (7). Let
M = HullN ((k1)N). Clearly M is also an active w Woodin lsa mouse. We would be done if we
had M < N. To show this, we use the proof of Theorem 4.11.8, and compare (N, M, (7)) with
N. We need to verify that a version of Lemma 4.11.6 holds for (M, M, (k*)"). However, this can
be done via exactly the same proof. We leave the details to the reader.

37See Definition 3.3.9. Recall that pT is the projection of 7.

38See Definition 3.5.1.



8.2. A HYBRID UPPER BOUND FOR LSA 289

1. Suppose T =4 TM is the normal P-to-SM stack. Then
(a) 1h(7) is a limit ordinal,
(b)
(c) TP exists,
)
) N,

’7' is nuvs3?

( Tb( ') = (S, and
(e) N, lsa( m*(7T), Efﬁi(ﬂ) E “0(T) is a Woodin cardinal”.

2. There is U € M[h] such that U is according to ¥,y and the last model of U is
a layer of (S{M)°.

Proof. To make the proof notationally more pleasant, we ignore m and assume
N = M. The general case is very similar.

Clause 2 above follows from clause 1 and from the fact that ¥ is positional® and
that (S¥)-side doesn’t move in the comparison of W and (S))’. As proofs like this
have appeared in the manuscript many times before we omit most of it. The exact
procedure used to recover U € N[h] is the authentication process used to define sts
mice*!

Clause 1.a and clause 1.b follows from standard arguments. Clause 1.b is a con-
sequence of the fact that assuming 7T is a uvs, (P, 7T) is an indexable stack and since
N has more than d,,; many inaccessible cardinals, 7 € dom(¥") and hence, the
construction producing S,/X can go further*?. Clause 1.c and 1.d are straightforward
consequences of clause 1.b%*. We verify clause 1.e.

Let P, = m™ (7). Notice that P67 = S} and also P is a #-lsa type. We want
to see that N 21sa(P1, 250) E 071 is a Woodin cardinal”. Towards a contradiction
suppose

(*) N

w.

2 lsa(Pl, E%tf ) E “671 is not a Woodin cardinal”.

Let b = 3(7). (*) then implies that Q(b,T) exists and is a ¥3°-sts mouse over
P;. We now work towards showing that A" has a branch indexed for 7, which is a
contradiction as then the construction of S} can go further.

39See Definition 3.3.2.

40See Section 4.10.

41Gee Section 3.7 and also the proof of Sublemma 4.12.4.
42Gee Definition 3.3.3.

43See Lemma 2.7.25.
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Working in NV, let 31 be the N-authenticated st-iteration strategy** of P, and let
K’ be the output of the fully backgrounded construction of M|\ relative to ¥; done
over J,[P1] using extenders with critical point > §;* and let K = J[K']. Notice
that ¥, = 3p, | M|A\C.

Claim 1. K has w.2 Woodin cardinals. In fact, for every k' > k, § is a Woodin
cardinal of IC.

Proof. Suppose not. This means that the construction producing K doesn’t reach \.
As iterability cannot be an issue (recall that A is iterable), the construction fails to
reach A\ because the construction reaches a model K* such that there is an indexable
stack t = (m™*(7), T1, P2, U) € K* whose branch must be indexed but ¢ & dom(%).
Notice now that ¢ cannot be nuvs as branches of such iterations are determined inter-
nally in *47. Thus, ¢t must be uvs. Notice, however, that because P5 € pB(Py, ¥p,),
we have that Py is (P, ¥ )-authenticated and so, we must have that (P2,U) is an
(P, ¥V)-authenticated iteration. O

Our goal now is to compare the construction producing K and Q(b, 7). Let ¥ be
the strategy of Q(b, T) witnessing that Q(b,T) is a ¥3¢-sts mouse. Notice that we
do not know that Q(b, T) € N[h]. The comparison that we use is the one used in [19].

Claim 2. The comparison of the construction producing K and Q(b,T) is suc-
cessful.

Proof. Towards a contradiction assume not. We can then find a normal tree T;
on Q(b, T) with last model Q; and a normal tree U; on N with last model N; such
that

e 7; is according to W,
e U4 is according to ¥ and has no drops,

e for some [ ¢ dom(EQl), letting K; = 71 (K),

44Gee Definition 6.2.1.

45Gee Definition 4.2.1.

46See Theorem 6.1.4.

47Recall that there can be an issue here. It can be the case that the branch determined by K*
does not agree with the branch determined by ;. To show this, we use an argument like the one
used in the proof of Theorem 4.12.1.
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- Qi[B = KilB,
— B ¢ dom(EX") and
— Q|8 # K4l[B.

Let then t = (P, W, R, W) € Q1|f be an indexable stack whose branch is indexed
at [ (either in Q; or k). As our indexing schema is local, it follows that a branch
of t must be indexed at 3 in both IC; and Q;. Since both Q(b, T) and Ky are X5¢-sts
mice over P;, we have that ; and Q; cannot disagree on the branch of ¢. O

Because K has w.2 Woodin cardinals and is a proper class model, it follows from
Claim 2 and clause 3 of Definition 8.2.2 that Q(b,T) < K. We thus have that
Q(b, T) € N. Tt follows that to show that N has a branch indexed for T, it is
enough to show that clause 5 of Definition 3.8.9 holds for W =4.; Q(b,T). To do
this, we need to show that

(a) there is M <4 N and a pair (8, 7) such that,
1. B <o(M) and b e M|B,

2. M|p is unambiguous (see Definition 3.6.2) and M|8 E ZFC+ “there are in-
finitely many Woodin cardinals > 6(7)”,

3. letting (7; : ¢ < w) be the first w Woodin cardinals > §(T") of M|, M| E “W
is < Ord-iterable above §(7T) via a strategy ® such that letting v = sup,;_,, n;,
for every generic g C Coll(w, < v), ® has an extension &+ € D(M|S,v,g)
such that D(M,v,g) E “@* is an wi-iteration strategy” and whenever R €
D(M|B,v,g) is a d-iterate of W and ¢ € R is an indexable stack on P; then
t is (P, XM)-authenticated.

To show the existence of such an M, it is enough to show that N[, satisfies
clauses 1-3 and first two clauses are straightforward. Let (1; : ¢ € w) enumerate
(0; 17 € (k+ 2,w)) in increasing order. We show that (n; : i € w) witnesses clause 3

holds.

Claim 3. if Ky is the (N, 6y, 1)-authenticated®® construction of N|d,o done over
J.[P1] based on P; then ord(K;) = 042 and K1 < K.

48This is because Q(b, T) is w.2 small.
49Gee Definition 6.2.2.
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Proof. Suppose not. It follows from the proof of Claim 2 that K; has height d;.o. If
K1 4 K then there is some model Q appearing in the construction producing K such
that p(Q) < dk+2. Let p be the standard parameter of Q. Let X < Q be such that
p(Q) < X Ndkya € Spyo and X NGy o is a cardinal in AN and Q be the transitive
collapse of X. By condensation (using the fact that X contains solidity witnesses
for p), @< Q. Since Q is sound and p(Q) = p(Q) < X N, X N6 is not a cardinal
in N. Contradiction. O

It follows from Claim 3 that W < ;. To complete the proof of Clause 3 of (a),
it is now enough to show the following claim.

Claim 4. Suppose 0 € (841, 0pr2) is an N-cardinal and g C Coll(w, (nt)V). Let
® be the fragment of ¥ that acts on non-dropping trees that are based on A|(n*)V
and are above 0;.1. Then ® | N|A[g] € N|A[g] and if A = & [ HCYM then in Ag],
A is a < A-universally Baire iteration strategy such that for any poset P € N|\[g],
if k C P is Ng]-generic and AF is the canonical extension of A to HCNM9** then

Proof. We only prove that ® | N|A[g] € NM|A[g] and leave the rest to the reader.
Let @ = N|(n*)" and let W, € N[g] be a tree on Q of limit length and accord-
ing to ®. Let e = ®(W,;). We want to show that e € A[g|] and N[g] has uniform
way of identifying e. Notice that Q(e, W) exists. Let Ky be the N-authenticated
background construction over M(W;). The proof of Claim 1 and Claim 2 show that
Q(e,W;) < Ky. It is now easy to find the uniform definition of e. The reader may
wish to consult the proof of [28, Proposition 1.4]. O

Claim 4 finishes the proof of Lemma 8.2.3. 0

Corollary 8.2.4 Suppose (N, X) is an active w.2 Woodin Isa pair and P is the Isa
part of N. Let A be the result of iterating the last extender of N through the
ordinals. Let ® be the fragment of ¥ that acts on stacks above 7. Then ® is
I'(P, ¥5t¢)-fullness preserving®.

Proof. Given S € pB(P,X%¢), let m : N — M be a X-iterate of N above §” such
that S is generic over M for the extender algebra at the first Woodin of M that is
larger than 67. It follows from Lemma 8.2.3 that S is M-authenticated®. O

50This is possible because d, o is strongly inaccessible in N
51See Definition 6.1.3.
52Gee Definition 6.2.1.
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Lemma 8.2.5 Suppose (N, Y) is an active w.2 Woodin lsa pair and P is the lsa part
of N'. Let N be the result of iterating the last extender of ' through the ordinals.
Let § < 1 be two consecutive Woodin cardinals of A/ such that § > 6. Let N'*
be the output of (A, d)-authenticated®® background construction of N|n done over
J.|[P] based on P. Then

1. N* has height  and

2. if V] is the result of translating A onto a structure over A™* via S-constructions™
then N7 is a normal iterate of A/ via a tree that is based on N|dy where dq is
the least Woodin cardinal of N above §7.

Proof. We start by verifying clause 1. Suppose N* fails to reach height n. This
can only happen if at some stage of the construction we reach a model M such that
there is some indexable stack ¢t = (P, T, 771,7/7) € M that is according to ¥M, it is
required by the rules of the sts indexing scheme that we add a branch of ¢ to M but
t does not have an N-authenticated branch. Notice that this can only happen when
t is uvs but Lemma 8.2.3 implies that any uvs has an AN -authenticated branch.

We now verify clause 2. Notice that N[N |n] = N. Thus N; is n-sound w.2
Woodin mouse. It is then enough to show that there is a tree Y € N on N|dy such
that m(U) = N*.

Suppose not. Let & € N be the normal stack on A|dy that is built by comparing
N0y with the construction producing N*. Since the aforementioned comparison
fails, we must have that X(U) ¢ N. Let b = X(U). It follows from Lemma 6.4.4 that
Q(b,U) € N°°. Hence, b € N, contraditicon.

We must have that Q(b,U) exists and Q(b,U) 4 N*. Tt follows that N* £ “5(U) is
a Woodin cardinal”. Thus, in the further comparison of Q(b,U) and the construction
producing N*, N* side does not move. 0

Theorem 8.2.6 Suppose (N, X) is an active w.2 Woodin lsa pair and P is the lsa
part of N'. Let N be the result of iterating the last extender of N through the ordinals
and let ¥> be the strategy of N that acts on iterations above 6*. Let \ be the supre-
mum of the Woodin cardinals of N and let X' be the supremum of the first w Woodin
cardinals of N'. Then whenever g C Coll(w,R) is generic, DY(N, 3>, X, g) E LSA%.

53See Definition 6.2.2.
54See Definition 6.4.3.

55Q(b,U) can be obtained via an S-construction, translating A/ to an sts mouse over m(U).
56See Definition 8.1.10.



294 CHAPTER 8. MODELS OF LSA AS DERIVED MODELS

Proof. Let (0; : i < w.2) be the Woodin cardinals of A/ and their limits that are
greater than 7. It follows from Lemma 8.1.3 that A/|) is internally Y3°-closed. It
follows from Corollary 8.2.4 that ¥~ is T'°(P, £5¢)-fullness preserving.

Suppose X is a transitive countable set such that P € X. Let for i € 2,
7 N — M, be an iteration according to ¥ such that crit(m;) > 6 and X is
< m(X\')-generic over M.

Claim 1. LpMO’StS(X, 'P) _ Lle’StS(X, 7))57'

Proof. Let Ky be the Mgy-authenticated background construction over X based
on P and K; be the M-authenticated background construction over X based on
P. We compare the construction producing Iy with the one producing ;. Notice
that it follows from the proof of Claim 1 of Lemma 8.2.3 that both constructions
reach proper class models. It then follows from the proof of Claim 2 of Lemma 8.2.3
that the aforementioned comparison produces oy : My — My and o7 : M — M;
such that crit(o;) > ord(X) and 0¢(Ko) and o1(K;) are lined up (i.e. one is an initial
segment of the other). Because they both have exactly w.2 Woodin cardinals it fol-
lows from our minimality assumption on A that o¢(Ky) = 01(K1). The claim now
follows. ([l

Given a transitive X € HC, we let W(X) = Lp™**(X, P) where M is such that
there is an iteration 7 : N' — M according to ¥ such that crit(7) > 67 and X is
< m(X\)-generic over M. Suppose now that S’ € pI(P,X) and S is a #-Isa type™
proper layer of S’. Let = . We then claim that

Claim 2. W(S) E “n is not a Woodin cardinal”.

Proof. Suppose otherwise. Notice that S’ E “n is not a Woodin cardinal”. Let
Q < S’ be the longest initial segment Q* of &’ such that @* E “n is a Woodin
cardinal”. Then Q is a thc—sts mouse. Let now 7 : N'— M be an iteration accord-
ing to ¥~ such that &’ is < 7(\')-generic over M. Let K be the M-authenticated
background construction done over 7, [S] based on S. Because we are assuming that
the claim fails, we must have that IC F “n is a Woodin cardinal”.

We now compare Q with the construction of M producing K. Notice that this
comparison halts (this follows from the proof of Claim 2 that appears in the proof of
Lemma 8.2.3). Now, Q has to win this comparison. Since K is proper class and has

57See Definition 6.2.3 and the discussion following it.
58See Definition 2.7.3.
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w.2 Woodin cardinals, the fact that Q wins contradicts the minimality assumption
on N (more precisely, contradicts clause 3 of Definition 8.2.2). O

Suppose next that S € pI(P,¥) and = 6°. We then have that
Claim 3. W(S) E “n is a Woodin cardinal”.

Proof. Let 0 : N — ST be the result of applying the iteration producing S to
the entire model /. Thus S is the Isa part of S*. Let now 7 : N' — M be an
iteration according to ¥ above 67 such that S is < m(\)-generic over M. Let K
be the M-authenticated background construction done over J,,[S] based on S. We
now compare the construction producing I with S*. As before this construction
has to halt. It then follows from our minimality condition on A/ that W(S) E “n is
a Woodin cardinal”. U

The next claim computes the powerset of the Woodin cardinals of /. The proof
is very similar to the proof of Claim 3 and we omit it.

Claim 4. Let 7 : N — M be an iteration according to ¥ above 67. Then for
any k < w, M|(6;)M = W(M|b).

The next claim can be proved using the proof of Claim 3 and the proof of Lemma 8.1.9.
Also see the proof of Claim 4 of Lemma 8.2.3.

Claim 5. Suppose X € HC is a transitive set and R < W(X) is such that
p(R) = o(X). Let 7 : N'— M be an iteration according to 3 above §7 such that X
is < w(\')-generic over M. Let k < w be such that for some g C Coll(w, < 7(d)),
X € HCMI™CWlsl Then R has a < m(\)-universally Baire iteration strategy in M|g].

Suppose g C Coll(w,R) generic. Let (z; : i < w) be an enumeration of R in Vg].
Let 7 : N' — M be R-genericity iteration according to ¥ that is below X and is
guided by (x; : © < w). The next claim is a corollary to Claim 5 and clause 2 of
Theorem 6.1.4.

Claim 6. Set B = {(z,y) € R* : y € W(x)}. Then B € M(R) and X3¢ € M(R).
Let Po be the direct limit of all ¥ =4, Yp-iterates of P and let 7 : P — Py

be the iteration embedding. Notice that 7 | P° depends only on W. Also, because ¥
is strongly T'°(P, ¥)-fullness preserving, it follows that 7[P?] can be coded as a subset
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of w(IP(P, L)), This is because PL|67% = [ J{Mu(R,Ag) : R € pB(P,¥)}
and 07" = w(IP(P, X)), Tt follows from Lemma 8.1.12 that

Claim 7. ¥ € J,(P%, n[P*], T°(P, ¥)).
Next we establish a crucial claim.
Claim 8. J (P, w[P?],T(P,¥)) E AD™.

Proof. Suppose not. Let A € J (Pt n[P%],T°(P,¥)) be a set of reals that is not de-
termined. Let X = 7[P?]. Fixz € R and Q € pB(P, ¥) such that A is definable from
(X, 2, (Q,¥g),Pl) and a finite sequence of ordinals over J (P2, w[P%], (P, ¥)).
By minimizing the sequence of ordinals we can suppose that A is definable without
ordinal parameters.

Let (M;,T; : i < w) be the R-genericity iteration of N relative to a generic
enumeration (z; : ¢ < w) of R (this iteration is according to ¥~ is below X’ (the sup
of the first w-Woodins of AN and is above §7). For i < w let m; = %<7 and for
i <j<wlet m,;: M; = M, be the composition of iteration embeddings. We then
have that A € M(R), where M is the direct limit of M,’s under the embeddings
i j-

Let ¢ be large enough so that z,Q € HCMil@Jsil apq Yo I HCMil@s:=0] i
< m;(N')-universally Baire. Let 7 € M;[(z; : j <1i)] be a name such that m;,(7) is a
term relation for A. Let n = m;(0;11). We claim that if

R = (Mil(n")M)[(x; : 5 < )]

then letting ® be the fragment of ¥4, that acts on trees based on R that are above
mi(6;), (R, ®,7r) term captures A where (p,u) € 7 if and only if p € Coll(w,n),
u € REAMwn) and p I+ « IFcotiw,<mvy) w € 77. It then follows from a result of
Neeman that A is determined (see [25]).

Let then 7 be an iteration tree on M; based on R according to ®. Let S be the
last model of 7. We want to see that

(a) if h C Coll(w, 7" (n)) is S-generic then (77 (7)), = AN S[h].

Let & > i be large enough that S € My[(z; : j < k)]. Let S* be the output of
M |7k (8k41)-authenticated backgrounded construction done over S|x” () based on

595P% is the largest cardinal of Pb and 7[P?] is cofinal in P%,. Thus, we have A C §P% which
codes the pair (P°, 7[P?)).
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P. We then have that S* is an iterate of S|r7 (m;(8;12))%. Let 8™ = mp441(S).
Finally, let S; be the result of translating M, over §** via S-constructions. We
then have that

(1) SiIM et |mres1 (1)) = Mt
(2) S, is an iterate of S such that if v : § — &) is the iteration embedding then

crit(v) > 77 (n).

(2) is a consequence of the fact that S** = m(U’) where U' = 71 (U) and U
is as in the footnote above. It then follows that if b is the branch of U’ given by 34,
then MY is 74 (0g41)-sound.

It follows that we can think of p = (7; : j € (k + 1,w)) as an R-genericity
iteration on Sy guided by (z; : j € (k+ 1,w)). Let then Sy be the last model of this
genericity iteration and let m : N'— S, be the iteration embedding. More precisely,
m=mnPovon’ om;.

Because M| 1 1(0k11) = Mpgs1|mre1(0x1), we have that So[M|mgy1(0k11)] = M.
Let 0 : M; — S, be the iteration embedding. It then follows that in Sy[(z; :
Jj < i)], o(r) is the term relation that is forced by Coll(w,< m(X\)) to be the
least set in J(PL, w[P®],T°(P,¥)) which is not determined and is definable from
(X, 2,(Q,¥g),P%). It then follows that

(3) o(7) is realized as A.
(a) now follows from (2) and the fact that crit(7?) > 77 (n). O

The proof of the next claim is exactly like the proof of (a) that appeared in the
proof of Theorem 8.1.13 and Lemma 8.2.3. We leave it to the reader.

Claim 9. For any transitive X € HC such that P € X and for any R < W(X)
such that p(R) = o(X), R has an iteration strategy in I'*(P, ¥).

It follows from Claim 9 that the set B =
jective in ¥ and hence, B € J(P°, w[P®],T*(P
J(B) E AD". We now have the following:

{(z,y) € R? : y & W(x)} is pro-

(x,
,2)). It follows from Claim 9 that

60See Lemma 8.2.5. More precisely, there is a normal stack U on S|77 (7;(8;12)) that is above
77 (n), Ih(U) is a limit ordinal and m(U) = S*.
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Claim 10. In M(R),let T = {A CR: L(A,R) F AD"}. Then ¥, B € L(T,R).

It follows from the proof of clause 2 of Theorem 8.1.13 that B cannot be uni-
formized in L(I",R). Hence, L(I',R) E LSA. O



Chapter 9

Condensing sets

The goal of this chapter is to introduce the theory of condensing sets. Such sets were
first considered in [32, Section 10, 11.1], where they were presented in the form of a
condensation property for elementary embeddings (see [32, Definition 11.14]). The
current presentation dates back to an unpublished note by the first author.

Prior to this work, condensing sets have been used in the context of the core model
induction. As a convenience to the reader, we recap some of the basic machinery
used in the core model induction. We model our presentation on [32] but we will
also use the set up of [67]. A typical situation is as follows. We have an embedding
j : M — N with critical point x and such that H¥ = HY . In M, we consider
the maximal model of determinacy that has been built via core model induction.
While the exact definition of the maximal model is somewhat case specific, it can be
essentially described as follows.

Let g C Coll(w, < j(k)) be N-generic. For v < j(k) let g, = g N Coll(w, < v).
We then can extend j to act on M[g.]. We denote this extension by j again and we
have that j : M([g.] — N|g].

Consider the set of hod pairs (Q, A) such that

1. Q € HCMlgxl,

2. for some v < k such that Q € M|g,], letting ¥ = A | HCY) & € M[g,] and
M]g,] E “Code(¥) is k-uB” and

3. if T, S € M]|g,] witness that Code(V) is x-uB then Code(A) = p[T]M 1o,

Let I' be the set of such pairs (Q, A). An additional requirement is that A is fullness
preserving and has branch condensation. While the branch condensation is the same
as before, fullness preservation is not the same as the definition given in earlier

299
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chapters. We refer the interested reader to [32] for more details on how to define T
It is in fact somewhat more involved.

The goal of a core model induction is to show that I' is rich. This is done as
follows. First a target theory is fixed. The theory used in [32] is “ADg + “© is
regular”. In Chapter 12, our target is LSA. Suppose then there is no Isa type hod
pair (Q,A) € I'. Preliminary arguments, such as those used in [35, Theorem 4.1],
show that I' is of limit type, i.e., for any (Q,A) € I" there is (R, V) € I" such that
['(Q,A) CT'(R, V).

Next we let P~ = g rjer Moo(Q,A). Fixing a complete layer' R of P~ and
(Q,A) € T" such that R = My (Q,A), we let ¥r = Ag. It follows from comparison
that X is independent of (Q,A). Let ¥ = @&rYXr where the joint ranges over the
complete layers of P~.

We now define P as follows. Suppose next that there is M < LpE(P_) such
that p(M) < ord(P~). We then let P be the least such M. Otherwise we let
P = Lp*(P).

The next major step is to build an iteration strategy for P that extends ¥. We
let X% be this new strategy. X% is constructed as follows.

Definition 9.0.1 (The construction of the strategy) Suppose T € HCV is a
stack on P where

T = ((Ma)a<777 (Ea)a<n—17 D> Ra (5047 ma)aeRa T)

Recall Notation 2.4.4. Suppose j [ P € N[g]. Working in Nlg], we say T is j-
realizable if there is a sequence (0, : @ € R) such that the following clauses hold*:

1. T doesn’t have a fatal drop?,

2. 04 : M, — j(P) is an elementary embedding.

3. For all o, € R with a < o', 0, =04 © WZ:,a/-

4. For all € R, letting A = (04 | My |0™e-pullback of j(X)), for each complete

layer RaM,, 04 | R = 7T7A€:‘oo where W%C:‘OO : R — Mo(R, (Ay)r) is the iteration

map according to (Ay)r?.

!See Definition 2.7.14.

2For the definition of 7TZ;’OZZ,7
3See Definition 2.6.8.

4This condition assumes that A, is fullness preserving.

see Section 2.8.
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5. For all @ € R such that a # max(R), letting o/ = min(R — (a« + 1)), Ta,o 18
according to Ay°.

Given a stack 7 € HCVY we set T € dom(X+) if T is j-realizable. For T €
dom(X), we set X+ (T) = bif T-{M]} is j-realizable. =

It is not hard to extend X% to act on all stacks, not just those without fatal drops.
YT may not be a total strategy simply because we may not be able to satisfy clauses
4 and 5 of Definition 9.0.1. Moreover, it may also depend on the realization maps.
However, the proof of [32, Lemma 11.6] gives the following.

Theorem 9.0.2 Suppose |P| < (x7)™. Then j | P € Nlg| and ¥ is a total
(w1, w1)-strategy in N|g].

Then there are two arguments that we run as part of the proof of Theorem 9.0.2.
First we show that 7 = Lp>(P~). The reader can see, for example [67, Lemma 3.78],
for an argument. Roughly, if not, suppose n is such that p,1(P) < 67 < p,(P),
then in j(I'), we can find a complete layer R of P and an OD;(};) set A C 6% such
that A ¢ P. By fullness of P and SMC in j(I'), A € P. Contradiction.

The next argument attempts to show that P E “07 is regular”. Showing this
finishes the proof of the main theorem of [32]. In this book we present an argument
for obtaining a model of LSA from PFA (see Theorem 12.0.2). To prove Theorem
12.0.2, we need to do more in order to finish the argument. It is in this step that the
theory of condensing sets is used. A reader interested in more details may consult
[32, Section 10, 11.1] and [67, Lemma 3.81].

9.1 Condensing sets

We introduce the notion of condensing set in the most general setting. Suppose ¢ is
a formula in the language of set theory and A is a set. We let F, 4 be a collection
of hod pairs (Q, A) such that Q is countable, A is an (ws,ws, ws)-iteration strategy
having strong branch condensation and such that ¢[A, (Q, A)] holds.

Terminology 9.1.1 1. Wesay (¢, A) is bottom part closed if whenever (Q, A) €
Foaand R € pB(Q,A) then (R, AR) € Fopa.

2. Wessay (¢, A) is of limit type if for every (Q, A) € Fy 4, thereis (R, V) € Fy 4
such that R is of limit type and Code(A) € I'*(R, ).

®Notice that because we are assuming 7~ does not have fatal drops, T, is based on M |6Me.
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3. Let Ty a4 = U{T(R,¥) : (R,¥) € Fya AR is of limit type}. We say (¢, A) is
stable if whenever (R, V) € F, 4, ¥ is strongly I'y 4-fullness preserving.

4. We say (¢, A) is directed if whenever (Q,A), (P,X) € F, 4, there are R €
pl(Q,A) and S € pI(P, %) such that either

(a) R S]hod S and ZR = AR or
(b) S ﬁhod R and Ag = ZS.
-

Notation 9.1.2 Given a hod premouse P, we write R <_, P if R is a complete®
layer of P. -

Notation 9.1.3 Suppose (¢, A) is bottom part closed, is of limit type, is stable and
is directed.

1. Let P(;A = U(Q,A)E}—¢,A Moo(QvA)

2. Fix Repq Py 4 and (Q,A) € Fya such that R = Mao(Q, A). Let Sr g, = Ar
and let Xy 4 = @quodp;AE'R,qﬁ,A-

3. Suppose there is M < Lp'e4:%e.4 (P, 4) such that p(M) < ord(P, ,). Then let
Py,a be the least such M. Otherwise let Py 4 = LpF¢”A’2¢’A(77Q;A).

In clause 3 above M < Lp'ea2s4 (P;.4) if and only if whenever m: M" — M is an
elementary embedding and M’ is countable, M’ < Lp'#4>%.4 (7 (P 4))- .

Definition 9.1.4 Suppose (¢, A) is bottom-part closed, is of limit type, is stable
and is directed. We say (¢, A) is full if Py 4 = Lpr¢’A’E¢’A(P¢;A). =

Definition 9.1.5 We say lower part (¢, A)-covering holds if (¢, A) is full and
cf(ord(Pg.a)) > wi. .

Notation 9.1.6 Suppose now that lower part (¢, A)-covering fails. Given X €
0w, (P), we let

e Px be the transitive collapse of Hull?#4(X),

o 7x : Px — Py 4 be the inverse of the transitive collapse,

6See Notation 2.7.14.



9.1. CONDENSING SETS 303

e Y x be the 7x-pullback of ¥ 4,
[ ] 6X - (57))(.

_|

Remark 9.1.7 Thus, Yx is a strategy that acts on stacks that are based on Px|dx.
It follows that if Px F “dx is a regular cardinal” then Xx is (essentially”) a strategy
for Px. =

Definition 9.1.8 (Weakly condensing set) Suppose (¢, A)-covering fails and set
I' =Ty, P="Pyaand ¥ = Xy 4. We say that X € p,,(P) is a (¢, A)-weakly
condensing set if P = Hull”(X U ¢”) and whenever X C Y € g, (P), Ly is a
strongly I'-fullness preserving iteration strategy with strong branch condensation.

Notation 9.1.9 Suppose (¢, A)-covering fails and set I' = T'y 4, P = Py and
Y =Y, a. Suppose X CY € g, (P). Let 7xy : Px = Py be v oTx. Let

Xv_ _ EY
® 0y = Ungwd<7>y TR 000

e 0 : Py — P be given by: for any f € Py and any a € (Py|dy)<¥, and
r =1xy(f)(a),

o3 (x) = x () oy~ ().
_|

Definition 9.1.10 Suppose (¢, A)-covering fails and set I' = I'y 4, P = Py 4 and
Y =%44. Let X CY € g, (P). We say that ¥ extends X or Y is an extension
of X if

1. 7xy | (Px|67%) is the iteration map via Y,

2. letting v = sup7x.y[67%], v | Py|v is the iteration embedding according to
(Ex)pyhj, and

3. Py = Hullfy <5PY U TX’y[be.

7As defined, ¥ x still does not act on iterations that are above dx.
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Definition 9.1.11 Suppose (¢, A)-covering fails and set I' = I'y 4, P = Py 4 and
3 = Y4 .4. Suppose Y is an extension of a weakly condensing set X. Let dy = 677.
We say that Y is an honest extension of X if

(a) Py|sup(rxy[0x]) is a Xx-iterate of Px|dx,
(b) Txy | (Px|ox) = 13X ) and

Px|0x, Py |sup(tx,y[6x
(c) o is an elementary embedding®.

_|

Remark 9.1.12 X is obviously an honest extension of itself, but there are other
(non-trivial) honest extensions of X. For example, if X = X’ NP where X' < HY
for some regular A (this will be the case for our intended X) and Y = Y' NP for
some X’ <Y’ then Y is an honest extension of X. =

Definition 9.1.13 (Condensing set) Suppose (¢, A)-covering fails and set I' =
Lpa, P="Pyaand X =3, 4. Suppose X € p,,(P) is a (¢, A)-weakly condensing
set. We say that X is a (¢, A)-condensing set if whenever Y extends X, Y is an
honest extension of X.

We say that X is a strongly (¢, A)-condensing set if whenever Y extends X,
Y is a (¢, A)-condensing set. —

We expect that under many hypothesis such as PFA lower part (¢, A)-covering
fails. We also expect that under many hypothesis, failure of lower part (¢, A)-
covering implies the existence of (¢, A)-condensing sets. In the next few chapters,
we explore some specific situations where we know how to prove the existence of
(¢, A)-condensing sets.

We finish by remarking that (¢, A) depends on the specific situation we are in.
For instance, in [32], ¢ isolates those hod pairs that have certain extendability and
self-determining properties (see [32, Definition 3.1, 3.5, 3.8]).

We finish here by showing that below LSA, pullback strategies are unique.

Lemma 9.1.14 (Uniqueness of strategies) Suppose (¢, A, X) is such that ¢ is a
formula in the language of set theory, (¢, A) is full, lower part (¢, A)-covering fails
and X is a (¢, A)-condensing set. Suppose further that whenever (Q,A) € I'y 4, Q
is not of lsa type. Then whenever Y; and Y5 are two honest extensions of X such
that Pyl = Pyz, then Eyl = ZYQ.

8We clearly have that 7x = o5 o Tx y.
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Proof. Suppose that Xy, # Xy,. Let Py = Py,, Po = Py,, P1 = Xy, and &y = Xy,.
Because we can trace disagreement of strategies to minimal disagreements (using our
smallness assumption on hod mice)?, we can find a minimal low level disagreement'”
(T1, 94, T2, @5, R) between ®; and ®,'!'. Let E be the R-un-dropping extender of
71 and 73'2, and set for i = 1,2, W; = Ult(P;, E). We thus have that

(1) Wy = Ws, R is of successor type and (®1)p- = (P2)r-.

Because both Y7 and Y; are extensions of X, we have that both 7xy | (Px|0x)
and 7x z | (Px|0x) are the iteration embedding according to ¥ x. Because ¥ x has
strong branch condensation and is strongly I'y, s4-fullness preserving, we have that
TX7y [ (Px|5)() = TX,Z r (Px|5x)13. Let then T —def 7'X7y r (Px|5x) = TX,Z [
(Px0x).-

Next, because of the smallness assumption on hod pairs in I'y 4, it follows from
(¢, A)-condensation of X that

(2) for i € {1,2}, sup(Hull™Vi (7 o T[Px]) N %) = §RM.

Set for i = 1,2, X; = T, {E}. We can now find, using Theorem 4.13.4, a nor-
mal stack U; on W, according to (®1), x, and a normal stack Uy on W, according
to (®2)wy, v, such that setting by = (1), 2 Uh), bo = (P2)wy a0 (Us), R = MP
and Ry = ./\/lzlfj then setting Uy = (®1)r, x~u () and Yo = (Po)r, x51 (0

(3) for i € {1,2}, U; is based on R, | (Us,R) =| (Us,R), by # by and 7} (R) =
T (R)
(4) letting S = WZI (R), (¥1)s = (¥2)s-

Notice now that we can find k; : Ry — P and ko : Ry — P such that letting
fori=1,2, 7v, = 7,

(5) fori=1,2, 7, =k; 0 (W? oTE),

9See Lemma 4.7.2.

10See Definition 4.7.1.

11See Remark 9.1.7. It follows that 7; and 75 are based on a proper initial segment of P; = Ps.
12Gee clause 5d of Definition 4.7.1.

13See Proposition 4.10.2.

141t is easier to first establish that sup(Hull™V (g o T[Px] Ud® )N dR) = §%. See Lemma 2.9.5.
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(6) fori=1,2,k; | S = Wé%';gsw, and
(7) fori=1,2, WZ omg o7 is according to Y.

It follows that letting for i = 1,2, Z; = Y; U rge(ﬁgfoo), Z; extends X, and moreover,
because X is a condensing set, for i = 1,2, k; = o '°.

Notice that it follows from (4) that k; | S = ko | S. Also, notice that
(8) ki I (Hull® (S~ Ui oo 7[Px])) = ko | (Hull®2(S™ U2 o g o 7[Px])).
Combining (2) and (8) we get that (using (3))
9) rge(wfff) N rge(wzlf) is cofinal in 4.

Clearly (9) and parts of (3)'7 imply that b; = by, while other parts of (3) state
that b1 7é bg. OJ

The following is a useful corollary of the definition of a condensing set. We will
apply this corollary in many applications later.

Corollary 9.1.15 Suppose Y < Z are extensions of a (¢, A)-condensing set X and
Z is an extension of Y. Suppose B € p(67)NP and B € Y. Let a € (62¥)<%. Then

Tré);,oo<a) € B if and only if WZ?OO(TY,Z(G)) €B.

9.2 Condensing sets from elementary embeddings

The following two theorems can be proved using the proof of [32, Lemma 11.15].
First we introduce some terminology.

Terminology 9.2.1 Suppose k is an inaccessible cardinal and G C Col(w, < k) is
V-generic. Suppose (¢, A) is such that V[G] E “(¢, A) is full and lower part (¢, A)-
covering fails”. We say (¢, A) is homogenous if Py 4 € V, Xy 4 [ V € V and for
any (Q,A) € Fya, there is (R,¥) € Fy such that R € V, ¥ | HY € V and
VIG]ET(Q,A) C I'(R, D). 4

15(5) and (6) easily follows from the fact that 7; and 73 are based on proper initial segment of
P |57)1 .

16 Again, this easily traces back to the fact that 7; is based on a proper initial segment of P;|6%:.

1"That for i € {1,2}, U; is based on R, | (U, R) = (Uz, R).
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Theorem 9.2.2 Suppose N C M are transitive models of set theory and j : M — N
1s an elementary embedding with critical point k such that j is amenable to M, i.e.,
for every X € M, j(X) € M. Suppose g C Coll(w,< j(k)) is N-generic. Let
JjT 1 Mlg.] = Ng| be the extension of j where for a < j(k), go = g N Coll(w, < ).
Suppose ¢ is a formula in the language of set theory and A € M|g]. Suppose further
that M[g.) E “(¢,A) is full, (¢, A) is homogenous and lower part (¢, A)-covering
fails”. Then j[Py 4] is a strongly (¢, j(A))-condensing set in Nlg|. Hence, M[g] F
“there is a strongly (¢, A)-condensing set”.

Terminology 9.2.3 We say (¢, A) is maximal if there is no hod pair or an sts hod
pair (Q,A) such that Q is of limit type, A has strong branch condensation and is
strongly I'y a-fullness preserving and I'(Q, A) =T’y 4. —

Theorem 9.2.4 Assume ZF + DC and suppose (¢, A) is maximal and full, lower
part (¢, A)-covering fails and X is a (¢, A)-condensing set. Then Py a E “6704 is
reqular”.

We will not prove Theorem 9.2.4 but will give a fairly complete proof of Theo-
rem 9.2.2.

The proof of Theorem 9.2.2.

We fix (M, N, j,k,9,¢,A) as in the statement of Theorem 9.2.2. The proof follows
the proof of [32, Theorem 10.3]. Throughout this section we will use the following
notation:

Notation 9.2.5 Working in M|g,], let

o P =Py 4
o P ="Pya,
o X =234,
o F=Fya,
o I'=T4y 4.

Theorem 9.2.6 Ng] F “j[P] is a weakly condensing set”.
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Proof. Notice that that jlord(P)] is cofinal in ord(j(P)). Below, we often confuse
strategies with their interpretations in relevant generic extensions or in relevant in-
ner models. However, in some cases, the distinction between the two strategies is
important, and in those situations we will either separate the two strategies or point
out that the distinction is important. Also, below if Y € @, (j(P)) then we let
Py = j(P)y and Ly = j(2)y.

We want to show that

(a) if Y € (pu, (5(P)))N9) is such that j[P] C Y then L(j7(T)) E “Py is Ly-full”!®.

Towards a contradiction assume that (a) is false. Notice that if Y witnesses that
(a) is false then Py may not be in M|[g,|. Fix one such Y that is a counterexample
to (a), and let M be a sound Yy-mouse over Py|dy that has an iteration strategy
in j*(T) but such that M @ Py and p(M) = dy. Let Y € NCU=<(=2) he a name
for Y and M be a name for M. We can then find some ¥,p-hod pair (P*,11) € N
and a hod pair (S, ®) € N such that

1. Pt e Hj,

J(k)

2. IT has strong branch condensation,
3. PT is meek and of limit type,
4. ofPT (0P = w,

5. (Y Nj(Pl67)) C rge(ns,,) and no proper complete layer of S has this prop-
erty!?,

6. I € N is a (j(k),j(k
a strategy I19 € j4(T)
mouse,

))-strategy for PT that can be uniquely extended to
20 and moreover, II witnesses that Pt is a X;pp-hod

7. Nlg.| E it is forced by Coll(w, < (k,j(k)) that

(a) M is a sound ¥y-mouse over Py |dy that projects to dy.

8Le., Py = Lp/ O3 (Py|oy).

Yle., if 8" «f,4 S then (Y N j(P|67)) € rge(ns ). See Notation 9.1.2.

2071 can be obtained by computing the direct limit of all those hod pairs (Q, A) € j(Fy 4) with
the property that @ € N[g,] where v € (k,j(x)) is chosen in a way that 3y and the strategy of
M appear in N[g,]. We might then have to take some initial segment of this direct limit to satisfy
clauses 3-5 above.
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(b) M has an iteration strategy in the derived model of (P, II)2" as computed
by any R-genericity iteration,

(¢) @ is in the derived model of (P*,II) as computed by any R-genericity
iteration,

(d) M is not an initial segment, of Py

Because P+ might have cardinality > x, when we form Py =4.; Ult(PT, E), where
E is the (crit(7jpp)y ), Oy )-extender derived from 7jp)y, we cannot conclude that Pyt
is iterable in N[g]. This is because we do not know that j [ PT € N. To resolve this
issue we take a hull of size k. Let x; = (k7)M.

We work in N[g,]. We can now find © : W{g.] = (Hj(y))V9 (in N[g,]) such
that

e W € M is transitive and kK +1 C W,
e (j(P),j I P.Y, (P 1I),(S,®)) € rge(n).

Let Z =7 YY), N =7 '(M), R =7'(j(P)) and k : P — R be n='(j | P).
Working in Nlg,,], let h C Coll(w, < (k, k(r)) be W-generic, and set

o Z =17y, Nb=N,Q=(Pz)",

e o= (rip)"1 and 7 = ()",
o Pt =77 (P*) and Il = 7~ 1(II),
o (5,0) =118, ).

Thus, we have that

(A)k=7o00,0:P—>Qand7:Q — R,
(B) in Wlg, * hl,

1. NV is a sound ¥ z-mouse over Q|§< that projects to 6.

2. in any derived model of (PT, ) as computed by an R-genericity iteration, A
has an w;-iteration strategy witnessing that it is a 2z-mouse,

3. N is not an initial segment of Q.

4. @ is in the derived model of (P+,II) as computed by any R-genericity iteration,

21We confuse the extension of II to this extension with II-itself.
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5. letting & : Q|02 — §|6% be such that & = (7r§00)*1 o1, ¥y = (&-pullback of

(I)§|5§-
Let now F be the (crit(o), §2)-extender derived from o, and set QF = Ul@, F).
Let ot = 7", Notice that because w0 k = j | P, we have ¢T : QT — j(P¥) such
that
(C)j I Pr=¢" oo™
Let TT' be the 7 | P+-pullback of IT1?? and let " be the m-pullback of . Notice that

(D1) T | HCWlowhl — 1728,

D2) T witnesses that P+ is a Y-hod mouse®*
(D2) :
(D3) & | HCWlowhl = G,

Notice now that we have

F) in Nlg|, j*(ﬁJr I (H,i\f[g“])) is a (j(k), j(k))-iteration strategy witnessing that

(F) i
j(PT) is a j(¥)-hod mouse, and moreover, j | P+ € N|[g]*°.

We let ¥ = (X,)Wlo=*hl Notice that in W g, * h], ¥ is the 7-pullback of 7~1(j(X%)).
Let Ut be the ¢t | (Q|69) = 7w o7 [ (Q|69)-pullback of j(X). It follows that

(G) Ut is the 7 o {-pullback of @, and it is also &-pullback of o
We now claim that

(b) in N[g], in any derived model of (P+, ﬁ+) as computed by an R-genericity iter-
ation, N has an w;-iteration strategy witnessesing that A is a UT-mouse.

The proof of (b) is like the proof of Claim 1 of [32, Lemma 10.4]. We outline it

22We confuse II with its extension to N[g]. Similarly, we think of T asa strategy in N as well
as in N[g]. Same comment applies below to II and ®.

2See proof of Claim 2 in the proof of [32, Lemma 10.4]. The same equation for W|g] follows
easily from hull condensation of ﬁ+, but this equation for W{g, * h] needs more work.

24This follows from the fact that IT witnesses that P+ is a ¥-hod mouse and 7 | P = id.

M
25Because ‘P*‘ = K.
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below. Working in W/[g,], let W = M#T® and let A be the unique iteration strat-
egy of W. Because m1(W) = M#L® we have that letting AT be the m-pullback of
m(A),

(H) W = ./\/lf7ﬁ+§+, and A" witnesses that W is a II' & @ -mouse.

Working in W|g, * h| and using (B2), we can find a A-iterate W of W, a Woodin
cardinal n of W, and W,-generic m C Coll(w,n) such that letting A be the sup of
the Woodin cardinals of Wi,

(11) ./V’,f S Wl[m],

(I2) Wy [m] E “the derived model at A satisfies that any derived model of (P+,II) as
computed by an R-genericity iteration has an wi-iteration strategy for A" witnessing
that N is a mouse relative to the &-pullback of ®7.

Let then W, be a At-iterate of W, which is obtained via some RN-genericity
iteration in such a way that letting ¢ : W, — W, be the iteration embedding,
crit(z) > n. It then follows from (I1), (I2) and (H) that

(J) W N, €] E “the derived model at A satisfies that any derived model of (PF,T1")
as computed by an R-genericity iteration has an wi-iteration strategy for N witness-
ing that A is a mouse relative to the &-pullback of o

(b) now easily follows from (J), (H) and (G).

To finish the proof of Theorem 9.2.6, it remains to implement the last portion
of the proof of [32, Theorem 10.3]. Let Ay be ¢T-pullback of j+(ﬁ+ I (H,i\i[[g“})).
Notice that it follows from (F) that Ag witnesses that Q1 is a ¥*-hod mouse. It
then follows from (b) that

(K) in Nlg], in any derived model of (Q",Ay) as computed by an R-genericity
iteration, N has an wi-iteration strategy A witnessing that A is a ¥ -mouse.

(K) gives contradiction, as it implies that

(L) @t F “ord(Q) is not a cardinal”?®,

26This is because (K) implies that A/ is ordinal definable in Q* and therefore, N € Q.
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while clearly P+ E “ord(P) is a cardinal”, contradicting the elementarity of ¢+
0]

The main theorem of this chapter is.

Theorem 9.2.7 In Ng|, j[P] is a strongly condensing set.

Proof. We will show that j[P] is a condensing set. A very similar proof, which
is only notationally more complicated, shows that j[P] is strongly condensing. To
prove the theorem, we need the following definition, due to the first author (cf. [32]
or [67]). The proof is based on [32, Lemma 11.15]. For completeness, we give a
fairly detailed argument here. The reader may wish to recall Notation 9.1.2. Below
ifY € p., (§(P)) then we let Py = j(P)y and Xy = j(X)y.

We work in N[g]. Suppose X € @, (7(P)) is a weakly condensing set and B €
X Np(67P)). We say that X has B-condensation if whenever Y € g, (j(P)) is such
that X <Y, 7xyv(Tx ) = Tyv.p, where for Z € p,, (j(P)),

Tzp = {(,5) | s € [07]= for some R <,y Pz A j(P) F plng’(s), Bl}.

We say X has term condensation if it has B-condensation for every B € X Ngp(877).

To prove that a weakly condensing set X is condensing, it is enough to prove that
7x has term condensation. It is not hard to show that if for every A € j(P) there
is X with A-condensation then j[P] has term condensation?’. We say, working in
Nlgl, X € 9, (j(P)) is good if for every R < , Px, 7x | R = w%f‘oo. It follows from
[32, Lemma 11.9] that the set of good X is a club. Notice that j[P] is good.

Towards a contradiction, assume that (in N[g]) there is a set A € P such that no
X € 9, (7(P)) with the property j[P] C X, has A-condensation. We now fix such
a set A. We say (in NJg]) that a tuple {(P;, Q;, X;,Y;, &, mi, ¢i | | <w), B, M} is a
bad tuple (relative to A) if

L. Xo =Yy =j[P],

2. for all i <w, X; € g, (4(P)) is good,
3. for all i <w, P; = Px, and Q; = Py;;
4. foralli < j<w, X; <Y, < Xj;

~ _ _ _ 28.
5. forall i <w, & = Tx, v, T = Ty, x,, and @; = Tx, X0, 5

27See the proof of [32, Lemma 11.15]. This essentially follows from the elementarity of j.
28Thus, gz : ,Pz — Qi, T - Q,’ — Pi+1 and ¢z = T Ofi.
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6. M € j(P|67) and letting n = sup,,(X; N S PN, Mln = 5(P)|n;

7. letting n be as above, for every formula ¢ and for every s € n<“, M F ¢[B, s]
if and only if j(P) E ¢[A, s;

8. for all i € [1,w), &(Tx; 4) # Ty, A

Claim 9.2.8 There is a bad tuple.

Proof. Tt is easy to construct a bad tuple {(P;, Q;, Xy, Y;, &, mi, ¢ | it < w), A, 7(P)}
with j(P) playing the role of M and A playing the role of B. Once this is done,
letting 7 = sup(X; N &7P)), we set M = cHull’P)({A},n). B then is the transitive
collapse of A.

]

Fix a bad tuple A* = {(P;, Q;, X;,Y;, &, mi, ¢ | © <w), B, M}. Let
o 1 =sup(X; NP,
e Z,=X;Nn, W; =Y;Nn,
o &, =%y, and U; = Yy,
o T, ={(¢,8): s €[] AME gb[B,ng‘api’oo(s)]},

o S;={(¢,s):5€[%YAME ¢[B, 1Y (s)]}-

Q;]6%i,00
and set
A = {<P7d inq)ivgiaﬂ-ivqbi)j—‘iasi | 1< W),B,M}

Notice that it follows that for all i < w, T; = Tx, 4 and S; = Ty; 4. Let C € j7(I)
be such that n < OXCR) and M C HODX®) " Then because ®; and ¥; can be
recovered from j(3) ), and respectively Z; and W;, A € L(C,R) and L(C,R) F *(.A)
where *(.A) is the conjunction of the following clauses:

L foralli <w, &§: P — Qim0 Qi — Piyr and ¢; = m; 05
2. for all i <w, T; € P; and &(T;) # Si;

3. for all i < w, letting ¥; be the mi-pullback of ®;,1, S; = {(¢,5) : s € [§9]< A
ME ¢[B, w5 o, ()]}

Qz'églvoo
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4. for all i <w, Ty = {(¢,8) : s € [67]<¥ and M E gb[B,?T?;'épi MO

5. 7 < © and M C HODXE®),
Notice that Py = P and &y = 3. Let now (Py,Ily) be a $p-hod pair such that

We may also assume (P, Iy | N) € N, Py is of limit type and ofPo (670 is not a
measurable cardinal of P;". This type of reflection is possible because we replaced
Jj(P) by M. Let u = (¢, T; : i < w) and set

W = MBJ,HO,EBKJI% (u) )

Let A be the unique strategy of W witnessing that W is a Il @ (®;,P;)-mouse over
u. We now have that

(A) in Nlg|], whenever D is obtained as a derived model of (W, A) via some R-
genericity iteration,
D E x(A).
We remark that the following objects are in N:
e M, Wand A [ N.
o (P, ®; | N,o;, T; | i <w).

However, (Q;,&;,m,S;) are not in V. Notice also that the objects listed above
are in D(Z, w9 h). We set B = {{(P;,®;,¢:,T; | i < w), B, M} and given ¢ =
(/\/;,Q/Ji,O'i,Ui) we write B! for the set {(Pi,M,(bi,¢i,Ui,¢i,ﬂ,Ui | 1 < w>,B,M}

Thus, we have the following:

(B) in N[g|, whenever D is obtained as a derived model of (W,A) via some R-
genericity iteration,

D E “there is t = (N;,;, 0;, U;) such that x(B")”.

Let now 7 : Wlg.] — (H;\(figl,;]) be such that all the relevant objects are in the

range of m, W € N, |[W|" =k, j | P € rge(nr) and crit(r) > x. By“all relevant
objects” we mean those objects that are in NV, and in particular those listed above.
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For a € rge(n), let @ = 7 !(a). For i < w, let ®;" be the m-pullback of ®;, and also
Let A be the m-pullback of A.
We thus have that

(C)W = Mg;ﬁ0+’@i<“@+, and A witnesses that W is a I, & (®i<w@+)—mou5e,
(D) in Nlg], whenever D is obtained as a derived model of (W, KJr) via some
R-genericity iteration, there is S € HOD” and F € S such that letting By =

{(P @760 Ti |1 < w), F, S}
D E “there is t = (N}, 1;, 04, U;) such that *(Bh)”,
(E) in N[g], whenever D is obtained as a derived model of (P, H_0+) via some

R-genericity iteration, there is S € HOD” and F € S such that letting By =
{(P.3", 6. T | i <w).F, 5}
D E “there is t = (N, ¥;, 05, U;) such that *(B§)”.
The proof of (E) is like the proof of (b) in the proof of Theorem 9.2.6. Notice that
in N|[g|, the derived models of (P, 10, ) obtained via R-genericity iteration have the
form D =45 L(T (730 I, )) le then some (F,S) € D and t = (N}, ¢;,0:,U;) € D

such that letting By = {(P;, ;6T | i <w),F,S}, DEx(B}).
We thus have that the following clauses hold:

1. foralli < w, ¥;: P; = N, 0; : Nj = Pipq and ¢; = 0; 0 y;
2. for alli < w, T; € P; and for all i € [1,w), ¥(T;) # Us;

3. foralli <w, U; = {(¢,5) : s € [N ]| ANSE ¢[F, 7

N;|6Vi 00 ( )]} where Y; is the
—t
o;-pullback of ®; ;

4. foralli<w, T, = {¢,s) € s € [67]< and S F ¢|[F, wf‘ap ()]}

5. S € HODMI(PS o),

Now we define by induction W P N o TN o 77+1, oF P o 77
as follows. ¢f : P& — P; is the ultrapower map by the (crit(¢g), 071)- extender
derived from ¢,. Note that qbo extends ¢g. Let ¢f : P& — N be the ultrapower
map by the (crit(), &0)-extender derived from vy. Again 1§ extends 1. Finally
let of = (%)’1 o tg. The maps ¢, o; ,¢+ are defined similarly. Let P be the
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: ,ﬁ 1 < k < w) where ﬁ is the composition
of (¢t :m € [i,k)). Let or, P = P+ and o, N — P+ be the direct limit
embeddings.

direct limit of the linear system (P;"

Let now Hypo be the following statement:

Hypo : There is an (w1, w; + 1)-iteration strategy for II, for P} such that the follow-
ing clauses hold: o -
Hypol : T, acts on stacks that are above ™= where P, = ¢, (Py).

Hypo2 : For every i < w?, letting II; be the @—pullbaek of II,, II; witnesses that

= . =+ a5
P is a ®; -hod mouse over P;.

We have that N[g] F Hypo. Indeed, let for i < w, m; = 7x, o (7 | P;) and let
my : P, — j(P) be the canonical embedding built via the direct limit construc-
tion. We thus have that for each i, m; = my, o ¢;,,. Just like ¢;, we can extend
m; (for i < w) to m} : P7 — j(PF). The desired strategy II, is m_-pullback of
§(M T (HM)). Because m; extends 7x, o (r | P;), we have that Hypo holds.

We now show how to finish the proof assuming Hypo. By a similar argument as
in [66, Theorem 3.1.25] or as in [32, Page 663, just before (8) in the proof of Lemma
11.15], we can use the strategies ﬁf’s to simultaneously execute a R"[¢l-genericity
iterations. The process yields a sequence of models (73_Jr /\/’WJr ;| 1 < w) and maps
W ﬁ — N, ob, N — Pl and ¢f, = o7, 005, The iteration

described above uées aj -pullback of II; to iterate A" Wé denote this strategy by
DIP

Because the genericity iterations are above ord(P;) and ord(N;) for all i < w
and by [30, Theorem 3.26], the interpretation of the strategy of P; (N respectively)
in the derived model of ﬁ ( j ;, respectively) is o, (3, respectively). Let C;
be the derived model of P, and D; be the derived model of NV, (at the sup of
the Woodin cardinals of each model). Then RVI¢) = R% = RP:. Furthermore,
C;iNpR) C D;NpR) C Cir Np(R) for all 7.

Notice that we in fact have that C; = L(F(P_;F, II;)) and D; = L(T(NV;F, ).
Therefore, it follows from our choice of Ily, (F,S) € N;<,(C; N D;), and since S is
ordinal definable in each of C; and D;, (F,S) € Mi<, (P, NN};). Tt follows that for

each i < w, T, and U, are definable respectively in ﬁ and /\/::r ; from (F,S). Indeed,

2Including i = 0. L
%0This embedding should not be confused with ¢ .
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we have that

(F) for every i < w, (¢,s) € T; if and only if s € [07']<“ and in the derived model of
P at 072 (= wi'¥), S B GIF AR o ()]},

(G) for every i < w, (¢,s) € U; if and only if s € [0"]<“ and in the derived model
of NF, at 6o (= N[gl) S SIF, 1 on oo (5)]12

Notice next that

(H) for every i < w, ¢};(P;) = N; and ¢ ,(D;) = £;%,
(I) there is ip < w such that for every i > iy, o5i(S, F) (S, F) and ¥} (S, F) =
(S, F)*.

Thus, if 4o is as in (I) then v, (T;,) = Uy, contradiction! O

It is now easy to derive Theorem 9.2.2 from Theorem 9.2.7 and Theorem 9.2.6.

Theorem 9.2.2 is typically applied in core model induction applications where
there exists a mild large cardinal (e.g. a measurable cardinal) that gives rise to the
embedding j as in the hypothesis of the theorem. Below, we outline the proof of the
following theorem, which gives the existence of condensing sets in some situations
where large cardinals may not exist (e.g. under PFA). One applies Theorem 9.2.2
in applications where the core model induction is carried out in VC4«:<#) and ap-
plies Theorem 9.2.9 in applications where the core model induction is carried out in
VC’oll(w,H)'

In the following, we use the notations as in 9.2.5 and in the previous section (in
particular, P = Py 1), 5 = X(g.4) ctc. In the case A € V, we define PT =P, =
Lp>!¢(P7) to be the union of sound X-premice M such that p,(M) < ord(P~) such
that whenever © : M* — M is elementary and M* € V is countable, then there
is a unique iteration strategy A € I' witnessing M* is a X"-mouse. We note that
P, Pt €V and

P APt

though in general, equality may not hold.

31Here we abuse notation and use @+ for the extension of ®; to the derived model of ’P(j: i
32Gimilar comments like above apply here as well.

33By this equation we mean that the internal strategy of ”P7f is mapped to the internal strategy
of ;.

34Because S and F are ordinal definable in the respective derived models.
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Theorem 9.2.9 Suppose k is a cardinal such that k¥ = Kk, and Kk > 220 Let
g C Coll(w, k) be V-generic. Suppose ¢ is a formula in the language of set theory
and A € V such that V]g] E “(¢,A) is full, homogeneous and lower part (¢, A)-
covering fails”. Furthermore, suppose cof(ord(PT)) < k. Then V]g] E “there is a
strongly (¢, A)-condensing set”.

Remark 9.2.10 The assumption “cof(ord(P*)) < £” in the above theorem holds in
many situations, e.g. PFA. If P = P then this clause is superfluous as it is implied
by the failure of lower part (¢, A)-covering,. -

The rest of the section is dedicated to outlining the proof of the theorem. We
assume the hypothesis of the theorem from now to the end of this section. Let
A >>rk and X < (H,,e). We say that X is good if | X| =k, kK C X, X¥ C X,
{P,PT,X |V} € X, and X NP* is cofinal in P.

Let X be good. Let mx : Mx — (Hj,¢€) be the uncollapse map. 7y extends
uniquely to a map 7y : Mx|[g] — Hylg]. We let yx be the critical point of mx
and 7% (Px,Px, P, Yx,[x) = (P7,P,PT,X,T); in general, if a € H,[g] is in
the range of 7%, then we let ax = W}’_l(a). We say that a good X is c['-full if
Py = Lp¥"le(Py) and is D-full if Px = Lp*"*1(Px). It is clear that

Ly (P5) < Lp=™ (P,

Lemma 9.2.11 The set S of cI'-full X is stationary. Furthermore, there is a sta-
tionary T' C S such that for each X € T', X is I'-full.

Proof. We first show the first clause implies the second. Suppose the set S of cI'-full
X is stationary and for contradiction, suppose that there is a club C' such that for
all X € CN S, X is not I'-full. Let (X,, M, : @ < k") be such that

e (X, :a < k") is an increasing and continuous sequence in C' such that for all
successor a, X, € S.

e For each a, M, € Lp™**I(Py )\ Px..
Letting P, = Py, Pt = P}(:»WXQ = 7, etc., we note that for any successor «,
M, <P}

This easily implies that letting 7, 3 = Wﬁ_l om, for a < f, then for all successor
ordinals o < f3,
Ta,8(Ma) = Mg.
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Now let M be the direct limit of (7,5, My : @ < BA X,, X € 5), then
PIMIPT.

In particular, M is not an initial segment of P. Now we show M < P, which is
a contradiction. Let 7 : M* — M be elementary with M* € V|[g] countable,
transitive. Then there is X, € S and 7 : M* — M, such that 7, o7 = 7. This
implies:

o Y7 =237 and
e by the definition of M,, M* is a ¥™-mouse with unique strategy in I'.

This shows M <1 P. Contradiction.

Now we prove the first clause; the idea of the proof is basically that of [12,
Theorem 3.4]. Suppose the set W of good X such that X is not c[-full contains
a r-club. Let 1 = cof" (ord(P*)) and (M, : i < 1) be an enumeration of a cofinal
sequence of sound M such that p; (M) < ord(P~) and P~ <M IPT. Let (X, :a <
k1) enumerate an increasing, continuous sequence such that for successor ordinal o
or limit « of cofinality > wy, X, € W. We use the notation as above, writing for
example P, = Px,. We also write © for ord(P~), 6, for 7, *(0), and ~,, for vx,. We
assume (M; 11 <n) € Xg and let (M? i <n)=nr((M;:i<n)).

For each a, let N, be the least sound N such that PJ < N < Lp=1e(Py)
and p,(N,) < ord(P;). Let n, be the least n such that p,,1(N,) < ord(P;). Let
7 Ny — Qg be the corresponding Y, ultrapower map given by the extender
of length © derived from 7,; similarly, we define 7, ; : N, — QF from 7, 5. Note
that the objects Q,, Qg are all well-founded and hence we identify them with their
transitive isomorph. By the assumption that n < x and X, is good, the map 7, is
cofinal in ord(P*) and therefore, =(Q, < PT).

So there is an n such that

C={a<kt:v,=aAn,=nAcof(a) >w}

contains a wi-club. Fix an o € C for now and let (Y3 : § < k™) be a continuous,
increasing sequence of Y < H) such that YNk™ € k™, Y¥ C Y and (N, Qq, 7)) € Y.
For each 3, let o3 : Hg — Yj be the uncollapse map and kg = crt(oz). As in the
proof of [12, Theorem 3.4], we get a club

Co={8<kb:k5=08NAmg(ms) NPT =Y, NP"}
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and furthermore, using the agreement between oz with 73 on points in P*, we also
get for g € C,,
Qg = Ug_l(Qa)-?)S
Fix 6 € AqertCo N C such that cof(5) # n. This is possible because n < k and

Kk > wy. For simplicity, let us assume p;(Np) = 05%. So we have po(Nj3) = ord(Np)
and

1 = cof (ord(Py)) = cof (ord(Np)) < .

Now we let (&; : i < 1) be cofinal in ord(N3) and for each i < 7, let o; : N} —

Hulljlvﬁ'di(@g U p1(N3)) be the uncollapse map. By condensation, N < Py for each

1.
Since cof(8) # 1 and O3 = U, T 59a, 50 Py is the direct limit of the P
under the maps 7, g, there is an a < [ and there are cofinal sets 7, 7" C n such that

ieT= M p(M?) e Hully" (z! 10, Upi(N5))
and
i €T = N;, o7 ' (p1(Ns)) € mng(ma ).
Now we claim that for the a above,
Hulljlv‘a (70, 590 Up1(Np)) Nord(Py) = mg(ma,s) Nord(Py). (9.1)

Suppose & € rng(m,,3) Nord(Py). Let Ta5(€) = & for some & < ord(P;). There
is some ¢ € T" such that
€ € Hull;™ (0, Upy (ML)

«

. This implies

B .
¢ € Hull;!" (n!! 504 U pi(M5)) € Hull)" (7! ;04 U pi(N3)).

35As in the proof of [12, Theorem 3.4], the map ¢ : Q8 — agl(Qa) defined as: (7}, 5(f)(a)) =
06_1 o (f)(a) for a € [O5]<* and letting § be such that 7, 5(5) > max(a), f : [6]' — N, come
from the level n Skolem term over N, is a well-defined elementary map and surjective. Therefore,
it must be the identity.

36The general case where n > 1 is the least such that p,(N3) = Oz is handled just as in [12,
Theorem 3.4] by working with the n-reduct.

3TThe second equality follows from [12, Lemma 1.2].
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Conversely, let £ € Hullf/ﬂ(wgﬂ@a U p1(N3s)) Nord(Py). So there is i € T,

a Skolem term 7, and parameter € € [/ ;0,]<“ such that & = 7Vol%[€ p; (N3)].

We may also assume Oz € Hulljlvﬁ‘é"(ﬂgﬁ@a U p1(N3)); this is possible by the “2”

direction of 9.1, which we just proved. We easily get that { € I ulljlvﬂ ‘6i(@5 Up1(Np)),
hence £ € Hull} (05 Ua; ' (p1(N3))). So in fact, £ = 7™Vi[€, 5, (p1(N3))]. This
implies

¢ € Hull" (7] 400 U7 (p1(N3))) C tg(mas)

as desired.

Now we finish the proof of the theorem. Let @ : N' — A3 be the uncollapse map.
By 9.1, 7 and 7, 5 agree on rng(ma,5)Nord(P; ). Therefore, Nord(P) = Ny |ord(P,)
and Qflord(P§) = Njlord(P;). Now let 7 : M — H, be elementary with M

countable transitive and rng(r) containing all relevant objects. We let m(M) = N
and (M) = N,. Then note that M is a %5 -mouse and M is a YT-mouse.

But X, = Zg“’ﬂ so in fact, M is a XT-mouse. This easily implies M = M". By
elementarity, N’ = A,. Finally, using N' = N, and the agreement between & and
Ta,3, We have

Qg = Ng.

By pressing down, there is an a and a stationary set Y of g such that for all 3 € Y,
Q% = Nj is the ultrapower of N,, using the extender of length ©4 derived from 7, 5.
Let N be the direct limit of such the N3 under these ultrapower maps. Then we
easily get N' = Q, and hence

Q, < Pt.

Contradiction.

Remark 9.2.12 The proof of the above lemma just requires a bit less of x than the
hypothesis of Theorem 9.2.9, namely we just need kK > wy and k* = k. -

The following theorems are the corresponding versions of Theorem 9.2.6 and The-
orem 9.2.7 and immediately imply Theorem 9.2.9. Before proving Theorem 9.2.14,
we note that the set of good X contains an w;-club and if X is good, then X con-
tains p(R) because £ > 2%°. The following lemma will be used in the proof of both
theorems.
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Lemma 9.2.13 Suppose X is good and I'-full. Suppose (P%,II) is a X x-hod pair
in I' such that (P%,II | V) € V. Let P* = Ult(P%, E) be the ultrapower of P%
via the extender of length © derived from 7x and 7% be the ultrapower map. Let
k :'R* — P* be elementary and R* is countable, transitive in V. Then there is a
Yo-elementary map 7 : R* — P such that letting R = k~'(P), then LFIR = x27/7 38

Proof. First we note that E is a total extender over P% because Lemma 9.2.11
implies that p”x(©x) C M. So the definition of P* makes sense.

The proof of this lemma is essentially that of [12, Lemma 8.12] but with an
additional detail. We will use the notations as introduced in [12, Section 8] regarding
extenders. First let W = {(P,, Xa) : @ < 22°} enumerate all countable hod pairs in
V such that ¥, € I'*. Since X is good, W C X this is where we use £ > 22" in an
essential way. Let a be such that ¥, = ™ ® and R = Q..

Let U = rng(7) and ((a;, 4;) : i < w) enumerate all pairs (¢, A) such that there
is a Yo-formula ¢ and [a}, filE,...,[a", fi]g € U such that

A= {u € ord(Px)lel : Py E@[fE(u), ..., f(u)]} € E..

Let a C w be the set of n such that [a,, f,]r represents some element of P. Let
{7 : n < w} enumerate all the Skolem functions of Py and b= {i: In € a f, = 7, }.
So {m%(fn)(an) : n € a} is an elementary substructure of P. In H),, the following
first order statement with parameters (Q,, >, ), (P, X) holds: “ there is a sequence
(a, : n < w) of finite sets of ordinals such that for each n, a, € mx(A,) and
Q. = {mx(m,)(an) : 1 € bAN € a} <y, P and X, is the pullback of ¥ under the
uncollapse map”. So by elementarity, the corresponding statement holds in My:
there is a sequence (a,, : n < w) of finite sets of ordinals such that for each n, a,, € A,
and Q, = {m,,(a,) : i € bAn € a} <5, Px and ¥, is the pullback of ¥x under the
uncollapse map”. Let (a, : n < w) witness the above statement.

The embedding 7 is defined by: T([an, fn]g) = fu(dyn) is the desired embedding
with the property that

TR _ vkIR
SR = pkIR,

O

Theorem 9.2.14 There is a stationary set S’ C S such that whenever X € S’,
X NP is a weakly (¢, A)-condensing set.

38D. Adolf has observed that this lemma holds and can be used to prove Lemma 9.2.11. However,
Lemma 9.2.13 uses essentially that x > 22°, while Lemma 9.2.11 holds with less required of x.
39We confuse X, with its canonical extension in Vg].
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Proof. Suppose not. Fix a good X such that X is I'-full but X NP is not a
weakly condensing set. Note that mx [ Px is cofinal in P. Let Y be an extension of
X NP such that (Qy, Xy ) has the following properties:

(1) lettlng k= Ty, Zy = Ek,

(ii) Qy is not I'-full, so letting R = Qy, there is a sound Xy-mouse M such that
(M <R) and p,(M) = §*.

By definition, 7x = 7y o Txy (Tx = mx | Px here). Let (P%,Ax) € V be a
Yix-hod pair such that

e I'(P%,Ax) E R is not full as witnessed by M. °
o Ax €T is I'-fullness preserving and has strong branch condensation.
o P% is meek, is of limit type, and cof”x (67%) = w.

Such a pair (P%, Ax) exists by boolean comparisons. In particular, P% is a ¥x-hod
premouse over Px.

By arguments similar to before or that used in [67, Lemma 3.78], no M < P% is
such that p,(M) < ord(Py) and in fact, ord(Px) is a cardinal of P%.

By the above argument, P% thinks Px is full. Let

Tx 1 Px = P*
be the ultrapower map by the extender E of length © induced by mx. Note that 7%

extends mx | Px (since mx is cofinal in P) and P* is wellfounded since X is closed
under w-sequences. Let

P — RY

be the ultrapower map by the extender of length 6™ induced by i =4 7xy. Note
that R < R* and R* is wellfounded since there is a natural map

kR P

extending k such that 75 = k* o 7*. Without loss of generality, we may assume M’s
unique strategy Y <, Ax. Also, let (R, /\/l) be the canonical Col(w, k)-names for
(R, M). Let K be the transitive closure of HY U (R, M).

Let W = M2x# and A be the unique strategy of W. Let W* be a A-iterate of W
below its first Woodin cardinal that makes K-generically generic. Then in W*[K],
the derived model D(W*|K) satisfies

40For brevity, we suppress mentioning the pair (S, ®) as in the proof of Theorem 9.2.6 and instead
focus on the main points of the proof.
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L(D(P%,Ax),R) E R is not full as witnessed by M.*!

So the above fact is forced over W*[K] for R.

Let H < H, be countable (in V') such that all relevant objects are in H. Let
7 : M — H invert the transitive collapse and for all a« € H, let @ = 7 !(a). By
Lemma 9.2.13, there is a map 7 : Rt — P%*? such that letting Ay be the m-pullback
of Ax and A; be the w-pullback of Ay, then

A fﬁ _ Eﬂ%%) 43

and furthermore since 7 | Py = 7o i*, *

Ao = AL

In particular, Ag <,) Ay and letting Xz = Ay | R = XrIPok, (R, M) is a Yz-hod
pair and that ord(R) is a cardinal in R*. o B
We also confuse A with the m-pullback of A. Hence I'(P%, Ag) witnesses that R is

not full and this fact is forced over W*[K] for the name R. This means if we further
iterate W* via A to ) such that RVIE can be realized as the symmetric reals over )
then in the derived model D()),

L(T(P%,Ao)) E R is not full, (9.2)

In the above, we have used the fact that the interpretation of the UB-code of the
strategy for P% in ) to its derived model is Ay [ RVI); this key fact is proved in [30,
Theorem 3.26] and Chapter 6.

Now we iterate R* to S via A; to realize RVI¢! as the symmetric reals for the
collapse Col(w, < §%), where 6° is the sup of S’s Woodin cardinals. By the fact that
Ao <w A1 and (R*,Ay) is a Yz-hod pair, we get that in the derived model D(S),

R is not full as witnessed by M.

41This is because we can continue iterating W* above the first Woodin cardinal to YW** such that
letting A be the sup of the Woodin cardinals of W**_ then there is a Col(w, < A)-generic h such
that RVIS is the symmetric reals for W**[h]. And in W**(RVI[C]) the derived model satisfies that
L(T'(P%, Ax)) E R is not full.
742We abuse notation a bit here. Technically, R is not in V. R is the interpretation the name
R over a M[h] where h € V is Coll(w, ) generic over M. A similar comment applies to the maps
i+, k*.

*3This fact was missing from the proof of [(7, Lemma 3.80]. We need this to know that (R+,A1)
is a ©71P°k_hod pair. B

44This follows from the definition of 7 and the fact that 7% o7 | Py =7 | P o k* 0 4*.
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So Yy is ODyx_ in D(S) and hence M € R*.* This contradicts internal fullness of
R in R* since M collapses ord(R) in R* but ord(R) is a cardinal in R*.
O

For a good X, using the embedding mx we can define a wx-realizable strategy
¥ % for Py using the construction of Definition 9.0.1. We have that X% is such that

e X1 extends Yx;

e for any Z;} iterate Q of Px via stack T such that the iteration embedding T

exists, there is an embedding o : @ — P such that 7x = oo 7T Furthermore,
letting ¥ = (X} )+ o, for all S <5, Q, ¥s has branch condensation.

e X7 is I'(Py, X} )-fullness preserving.
Theorem 9.2.14 then implies that X3 is I-fullness preserving.

Theorem 9.2.15 There is a stationary set S’ C S such that whenever X € S’,
X NP is a strongly (¢, A)-condensing set.

Proof. The proof of this theorem is an adaptation of the proof of Theorem 9.2.14 in
a similar way one adapts the proof of Theorem 9.2.6 to prove Theorem 9.2.7. For
completeness, we give a fairly detailed argument here. We will omit (¢, A) from our
notations.

Suppose X is a weakly condensing set and B € Py N p(Ox).* We say that 7x
has B-condensation if whenever Q@ = Qy (where Y is an extension of X) is such
that there are elementary embeddings v : Px — Q, 7 : @ — P such that Q is
countable in V[g] and 7x = 7 o v, then v(Tp, p) = Tor 5, Where

Tpyp ={(;s) | s € [Ox]™ A Px F s, Bl},
and
Torp=1{{,s)|s €02 for some a < A\g AP F gb[?TZEQa)’oo(S),TX(B)]},

where Y5 is the T-pullback strategy of X. We say 7x has condensation if it has
B-condensation for every B € Px N p(dx).

45We note that it is crucial here that both M and R* are Y-mice.
46For the rest of this proof, whenever X is weakly condensing, we automatically assume that
X = X' NP for some good X'.
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As before, we just prove the condensing part . To prove that a weakly condensing
set X is condensing, it is enough to prove that 7x has condensation. Suppose for
contradiction that the set T of X’ € S such that X = X' NP is cofinal in P and is
not a condensing set is stationary. For each X’ € T, let X = X' NP (we will use
this type of notations throughout this proof without mentioning again) and Ay be
the <y-least such that 7y fails to have Ax-condensation, where <x is the canonical
well-ordering of Py. We say that a tuple {(P;, Q;,7,&, T, 0; | i < w), Moy} is a
bad tuple if

1. YeT,;
2. P; = Py, for all i, where X! € T and Q; = Qy, for Y; an extension of Xj;
3. foralli<j, X; <Y, < X; <Y;

4. Moy be the direct limit of iterates (Q, A) of (Py, X)) such that A has branch
condensation;

5. forall7, & P — Qi,0, 1 Qi = Maoy, Tt Piy1 = Mooy, and m; 1 Q; — Pigq;
6. for all i, 7, = 03 0&;, 0 = Typ1 o™y, and Tx, x,., | Pi =det Piiv1 = ™ 0 &3

7. ¢i,i+1(AXi> = AXM;

8. for all i, &(Tp, ax,) # T0i0:,Ax, -

In (8), T, s, 4y is computed relative to M vy, that is

94

To, 5iax, = {(4,5) | s € [62i]<« for some o < A9 A Moy E ¢[7TZ?("CY)7OO(S),7'¢(AXZ.)]}

Claim 9.2.16 There is a bad tuple.

Proof. For brevity, we first construct a bad tuple {(P;, Q;, 7, &, mi,0i | i < w), P}
with P playing the role of M, y. We then simply choose a sufficiently large, good
Y and let iy : Py — My be the direct limit map, my : My y — P be the natural
factor map, i.e. my oiy = my. It’s easy to see that for all sufficiently large Y, the
tuple {(P;, Q;,my o7, my' 0 & myt om;,myt ooy | i < w), My} is a bad tuple.

The key point is (6). Let A% = 7x(Ax) for all X € T. By Fodor’s lemma,
there is an A* such that 3*X € T A% = A*.*" So there is an increasing and cofinal

47«3* X € T” means “stationarily many X € 7.
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sequence {X, | o < k7} C T such that for a < 8, 7x, x,(Ax,) = Ax, = T)z;(A).
This easily implies the existence of such a tuple {(P;, Q;, i, &, mi, 04 | i <w), P}. O

Fix a bad tuple A = {(P;, Q;, 7, &, 7,00 | i < w), Mooy}. Let (Pf,1I) be a (g-
organized) Yp,-hod pair (cf. [50]) such that

[(Py, 1) E A is a bad tuple.

We may also assume (P;,II | V) € V, §P0 is limit of Woodin cardinals and is
of nonmeasurable cofinality in Py and there is some a < AP0 such that Yy <
HPJ(a)' This type of reflection is possible because we replace P by My, y. Let

W = MEPIEn<eExn and A be the unique strategy of W. If Z is the result of
iterating YW via A to make R[] generic, then letting h be Z-generic for the Levy
collapse of the sup of Z’s Woodin cardinals to w such that RVl is the symmetric
reals of Z[h], then in Z(RVIC]),

[(Py, 1) E Ais a bad tuple.

Now we define by induction & : P;” — QF, m" - QF = Py, ¢, : P = P,
as follows. ¢(J)r,1 : Py — Pi is the ultrapower map by the extender derived from
Txo.x, Of length ©x,. Note that ¢f, extends ¢o1. Let & : Py — Qf extend &
be the ultrapower map by the extender derived from & of length §<°. Finally let
Ty = (¢¢1) " 0 & . The maps &', m;", ¢, are defined similarly. Let also My =
Ult(PO+ , E), where E is the extender derived from 7y y of length ©y. There are
maps €y : P;T — My, €311 @ QF — My for all i such that ey; = €941 0 & and
€241 = €912 O 7ri+. When 7 = 0, ¢ is simply ip. Letting ¥, = ¥p, and ¥ = Xg,,
A; = Ay, there is a finite sequence of ordinals ¢ and a formula 6(u,v) such that in
L(Py, )

9. for every i < w, (¢,s) € Tp, 4, < Q[Wg;(a)oo,t], where « is least such that
s € [0

10. for every i, there is (¢;,s;) € To, ¢ a,) such that —\(9[71';2(0{)(82'),75] where « is
least such that s; € [02]<~.

The pair (6, t) essentially defines a Wadge-initial segment of T'(Py, IT) that can define
the pair (Muoy, A*), where 7;(A;) = A* for some (any) i.

Now let X < H) be countable that contains all relevant objects and 7 : M — X
invert the transitive collapse. For a € X, let @ = 7~ !(a). By countable completeness
of the extender E and Lemma 9.2.13, there is a map 7* : My — Pg with the
property specified in Lemma 9.2.13. Let II; be the 7* o &-pullback of II, so in Vg,
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(My,II"") is a ¥}, -hod pair,*®

Vi <w, (P

7

IL) is a Y% -hod pair,

and L o o
Yy <o I <o Oy -+ <, IT7°.

Let A € (Hz)M be the canonical name for A. It’s easy to see (using the as-
sumption on W) that if W* is a result of iterating W via A (we confuse A with the
m-pullback of A; they coincide on M) in M below the first Woodin of W to make
H-generically generic, where H is the transitive closure of H f);[ U A, then in W* [H],
the derived model of W*[H| at the sup of W*’s Woodin cardinals satisfies:

L(Py,R) E A is a bad tuple.

Now we stretch this fact out to V[G] by iterating W* to W** to make RVIE.-
generic. In W* (R letting i : W* — W** be the iteration map then

(770 D) Ei(A)* is a bad tuple.

By a similar argument as in [66, Theorem 3.1.25], we can use the strategies
E+’s to simultanously execute a RYI%-genericity iterations. The last branch of the
iteration tree is wellfounded. The process yields a sequence of models (P < i Q:rw |1 <
w) and maps fT : 73Jr — QW, : Q:w — Pz-l—lw? and (b:,ri—f—l,w = Wifw o ﬂ;fw.
o, embeds 1nto a II™ -iterate of My and hence the direct

limit Pa of (P, o Q;rw | 4,7 < w) under maps 7T+ ’s and £+ is wellfounded. As

Furthermore, each P;"

7,w)

mentioned above, 73Jr is a (g-organized) X7T-premouse and Qw is a 9UT-premouse.

Let C; be the derived model of wa, D; be the derived model of Q;, (at the sup
of the Woodin cardinals of each model), then RVI¢?] = R% = RP:. Furthermore,
CiNpR) C D;Np(R) C Ciy Np(R) for all .

(9), (10) and the construction above give us that there is a t € [OR|<¥, a formula
0(u,v) such that

11. for each i, in C;, for every (¢, s) such that s € 67, (¢, s) € Ts 71 < 0[ o (a) (s),t]

where « is least such that s € [67¢]<%.

48[67, Lemma 3.82] concludes this by claiming 7 | My = € o 7*, which is not true. One needs
Lemma 9.2.13 to conclude this. -
49We abuse the notation slightly here. Technically, A is not in W* but WW* has a canonical name

A for A. Hence by i(A), we mean the interpretation of i(A).
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Let n be such that for all © > n, a(t) = t. Such an n exists because the direct limit
P is wellfounded as we can arrange that P, is embeddable into a II™ -iterate of
My. By elementarity of & and the fact that fjw P =&,

7,W

12. for all ¢ > n, in D;, for every (¢, s) such that s € 59, (p,s) € T e <

9[7%(&),00(3)’ t] where o is least such that s € [§91]<.

However, using (10), we get

13. for every i, in D;, there is a formula ¢; and some s; € [0%]<* such that
(i, 5) € T4 but —¢|

W%(a) _(s:), 1] where « is least such that s € [621]<“.

Clearly (12) and (13) give us a contradiction. This completes the proof of the lemma.
0

9.3 Condensing sets in models of AD"

Thus far we have built condensing sets while working in models of ZFC. In this
section, we prove their existence in models of AD'. The material presented in this
section will be used in the proof of generation of pointclasses (see Theorem 10.1.2).
Throughout this section we assume AD' + V = L(p(R)). Recall the notation
Iy <ouse T2 (see [30, Page 82] or Section 5.3).

Suppose I' is a mouse full pointclass (Definition 5.3.2) such that:

(*)r there is a good pointclass I'* containing I' and there is a sequence (I'y, : o < )
with the property that

1. Qis a limit ordinal,

2. Ty <Snouse I

3. for a < B8 < Q, I'y nouse I'gs

4.V —1<a<Q, Iy is completely mousefull®,

5. there is no completely mouse-full pointclass ¥ <045 [ such that for some «,
Fa nouse \I/ nouse Fa—l—l;

5OSet F_l = @
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6. if o < 2 is a limit ordinal then I'y = Uz, I's,

7.T=U,.qTa

Recall the definitions of HP' and Mice' (see Notation 4.1.14). Let F = {(P, %) €
HP' : ¥ is strongly I'-fullness preserving and has strong branch condensation}. We
then let M™ = UJp sycr Moo(P, X). It follows from AD" theory that if (P,X) € F
then ¥ can be extended to a (©,0,O)-iteration strategy®'. In what follows, we
assume that if (P, X) € F then ¥ is a (0, O, ©)-iteration strategy.

Recall Notation 9.1.2. Given R <, M™, we let Xz be the strategy of R such
that whenever (P,A) € F is such that M, (P,¥) = R then Ax = ¥x. Next
we let LpF’EBR“iodM*ER (M™) be the stack of all sound ORrae M- 2r-premice N over
M~ such that p(N) < ord(M™) and whenever 7 : S — N is elementary and S is
countable then S, as a Brae a-1(M-)UR-mouse, has an wi-iteration strategy in I'.

Finally, if there is N/ < LpF’@quodezR (M) such that p(N) < ord(M™) then let

M be the least such A" and otherwise let M = Lp  “Roat™ "R (M™).

We let ¢(u,v) be the formula that expresses the fact that w is a mouse full
pointclass such that (%), holds and v is a hod pair (Q, A) such that Code(A) € u and
A has strong branch condensation and is strongly u-fullness preserving.

Remark 9.3.1 We have developed the concept of a hod mouse below LSA. In the
next theorem, hod pairs are all Isa small. However, the proof is general enough and
uses this hypothesis only because we have not set up a general theory of hod mice.

Because of this, we omit the extra hypothesis that we are in the minimal model of
LSA. -

Theorem 9.3.2 Assume ZF + AD™52. Suppose I' is a mouse full pointclass such
that (x)r holds. Let

o F=Fur=1{(P,%) € HP" : X is strongly T -fullness preserving and has strong

branch condensation},

L] M_ == U('P,E)GJ:MOO<P7Z>7 and

e let M be defined as follows: if there is N < LpF@R“ﬁodM*ER (M™) such that
p(N) < ord(M™) then let M be the least such N and otherwise let M =

Lp' “Rehoa ™R (M),
Then one of the following holds®.

51For example, see [33].
52Also, see the above remark.
53What follows is not intended as an “either or” conclusion.
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1. There is a hod pair or an anomalous hod pair (P,X) such that ¥ has strong
branch condensation and is strongly I'-fullness preserving, and I'(P,¥) = T’
(i.e., (¢,T) is not mazimal).

2. M = LpF’@quodM_ZR(M_), lower part (¢,T)-covering fails and there is a
strongly (¢,T")-condensing set X € g, (M).

3. For some (Q,A) € HP" such that A has strong branch condensation and is
strongly T-fullness preserving and for some x € R, Lp™(z) # Lp"* ().

Proof. Towards a contradiction assume that all three clauses are false. We drop
(¢,T') from our terminology. We will abuse our terminology and will say “I’-hod pair
construction of M”. Whenever we do this we mean the I'-hod pair construction of
M as defined in Definition 4.3.3. Here, M is a background whose universe is M, and
it will always be clear exactly what M should be.

Let Ag C R be such that Ay € lub(T"). Let T'g, I'§, (No, o), A, I'1 be such that

o Iy, I'; and I'; are good pointclasses,
[ J F Q NAFO?

o I'h C Ar;,

Ax € lub(Ty),

(No, Do) is a [';-Woodin Suslin, co-Suslin capturing the sequence (7,,(A4g) : n €
w)5t,

Let Fjy be as in Theorem 4.1.12 for (I, I'§, (No, ®o), Af), and fixing some (N7, 1), '], A3
let I} be as in Theorem 4.1.12 for (I';, '}, (N, ®1), A7).

e Let x € dom(Fy) be such that if Fy(z) = (N7, M’, 8, ¥') then letting G be as in
clause 7 of Theorem 4.1.12 and setting My = (N, 6, G, V'), (M, (No, ®o), L'y, Af)
Suslin, co-Suslin captures I' and A,.

e Let y € dom(F}) be such that if Fi(y) = (N, M,,d,,¥,) then letting ij be
as in clause 7 of Theorem 4.1.12 and setting M, = (N;, dy, éy, 2y),

(Mya (Nh ®1)7 FT) AT)

5See Section 4.1.1. There T,,(X) is defined for X a strategy but the same definition can be
applied to any set of reals.
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Suslin, co-Suslin captures I' and (N7, 1) Suslin, co-Suslin captures Code(W*)
where U* is the wi-strategy of /\/lf’%.

We record the following fact, which is a consequence of the proof of Lemma 4.1.11%.

Lemma 9.3.3 Suppose u is a set, W = ./\/lfﬁ’%(u) and A is the unique strategy of
W witnessing that WV is a W-mouse. Let 0 be the least Woodin cardinal of YW and
let W' be a A-iterate of W such that the iteration embedding j : W — W' exists.
Let h C Coll(w, j(0)) be W'-generic. Then for any real 7 € W'[h],

(HCY' Ao nW'[R], 7, €) < (HC, Ay, 7, €).

Let x be the least < §,-strong cardinal of Nj. Let g C Coll(w, < &) be N -
generic. Let Fo € Nj[g] be the set of (Q,A) € N;[g] such that

e Q¢ HCN;[Q],
o N;lgl E (Q,A) € HP,
° ./\/'; lg] E “A is T'-fullness preserving and has strong branch condensation”.

We use the methodology of Section 4.1.3 to obtain (D, ) such that Fy = (Fyp)Vv 9.
Notice that (Q,A) € Fy if and only if there is a real o € N[g] such that ¢(0) is a
Gédel number for some formula ¢ and (in N [g]) letting AfY = Ag NN [g],

(A) Code(A) is definable over (HC, Ay?, 0, €) via ¢ without parameters and

(B) (HC, A§?Y,0,Code(A), €) E “A is T-fullness preserving and has strong branch
condensation”,

(C) (A) and (B) hold in all further generic extensions of N [g].

We have that (¢, D) is lower part closed and stable. The next claim shows that
it is directed.

Claim 1. Nylg] F “(¢, D) is directed”.
Proof. Fix (Qo, o), (Q1,A1) € Fo. We now compare (Q;,A;) with the hod pair

construction of N; . It follows from Theorem 4.13.4 that for each i < 2, Q; iterates,
via A;, to some model QF in the aforementioned hod pair construction such that

55The lemma follows because letting d; be the second Woodin cardinal of W/, ¥ allows us to
define a d;-uB representation for T,,(®g) (see Lemma 4.1.11).
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(As) o+ is the strategy Q; inherits from the background construction. Let v; < k be
such that Q; € N[g N Coll(w,v;)], and let g; = g N Coll(w,v;). To complete the
proof it is enough to show that®.

(a) for each i, (Q;, (Ai)Qj) appears in the T-hod pair construction of N;|x[g;] in

which all extenders used have critical point > max(vy, v4).

Let n € (k,d,) be such that (QF, A;) appears in the I-hod pair construction of
Nj|nlgi]. Let then E € ENi be such that crit(E) = s and vy > v. It fol-
lows that in Ult(N}, E)[gi], (Qf,Ai) appears in the I-hod pair construction of
(UILN, B)|mg(k))[g:). (a) now follows from elementarity. O

Working in N, let P~ = Pyp- For a <k, let go = g N Coll(w, < ). Our next
claim implies that (i, D) is of limit type.

Claim 2. P~ is of a limit type.

Proof. Suppose not. It follows that there is (Q, A) € Fy such that P~ = M (Q, A).
Let v < k be a cutpoint cardinal of N; such that Q & HCN 194157 Tt follows from
the proof of (a) in Claim 1 above that the T'-hod pair construction of V|« in which
extenders used have critical point > v reaches a pair (R, ®) such that R is a A-iterate
of @ and & = Ax.

Because of our condition on I' (namely that € is a limit ordinal) there is a+1 < §2
such that T, = I'(Q,A). Tt follows that the I'-hod pair construction of N using
extenders with critical point > v reaches (S, A) € F such that ['(S,A) =T'qyq. It
follows from the proof of (a) in Claim 1 above that the I'-hod pair construction of
N, |k in which extenders used have critical point > v reaches such a pair (S, A). It is
then enough to show that N;f[g] & (S, A) € HP™™. Let 11 € (v, k) be an N -cutpoint
cardinal such that S € Nj|v;.

Let n € (v1, k) be the least AV -cardinal such that M (N In) E “nis a Woodin
cardinal”. Let N be the output of the fully backgrounded construction of NJ |n rel-

56This is because then by a Skolem hull argument we can obtain common iterates of
(Qo,Ao), (Q1, A1) that are in HCMv 19 and apply Lemma 4.1.11.

5TIt follows that A | HCMv ) € A*[g,] and A = (A | HCNV 9] € A%[g,])9. We leave the
details of such calculations to the reader. The methodology behind such calculations is presented
in Section 4.1.3.

®8Here we confuse A with its extension to N; [g]. Fullness preservation and branch condensation
follow from Theorem 4.6.3 and Theorem 4.9.5. Recall that we are assuming that clause 3 of
Theorem 9.3.2 is false.
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ative to ®; using extenders with critical points > 1,°?. We now compare (S, A)
with the I'-hod pair construction of ;. Notice that all extenders of N; have critical
points > v4. Let &1 be the output of the aforementioned I'-hod pair construction.
We claim that

(b) some proper initial segment of S; is a A-iterate of S.

Suppose not. Let z € dom(F}) be such that y <7 z and letting
o Fi(z) = (N, M., 6., 02),
° éz be as in clause 7 of Theorem 4.1.12 and
o M. = (M.,d..G., V.),

then (ML, (N, 1), T, A7) Suslin, co-Suslin captures Code(A) and N € HCM:
Working in N*, let ; be the least N*-cardinal such that M7 (N*|n,) E “ny is

a Woodin cardinal”. Let N* be the output of the fully backgrounded construction

of N|m relative to ®; done over N|v;. Comparing N with the construction

producing N'* we get a normal stack 7 on J\/;;k according to ¥, such that 7 is based
on Ny|n and if 7~ is T without its last branch then m(7~) = N*|n;.

We now have that M%®(A*|n;) £ “n; is a Woodin cardinal” (this can be shown
by considering S-constructions). Yet, by elementarity (S, A) wins the comparison
against the I'-hod pair construction of N*|n;, contradicting universality of the latter.
This contradiction implies that some initial segment of Sy is a A-iterate of S. Let
S, be this initial segment. This finishes the proof of (b).

We now want to show that there is a real ¢ € Rvl9 such that Code(As,) is
definable over (HC, Ay, ¢, €) without parameters. Fix r € R such that Code(Ag,) is
definable over (HC, Ay, r, €) without parameters, and let ¢ be the formula defining
Code(As,). Let & be a cutpoint of A such that S, € Mj|€. Let Nit = M¥P*(Nq|n)
and let U™ be the strategy of Ni". Let m : N]” — N3 be an iteration of N~ via
U such that r is generic over N for the extender algebra at 7(n). We now have that

(1) Na[r] E “Code(As,) is definable over (HC, Ag N A3[r], r, €)% via formula ¢!

It follows from elementarity of 7 that

59See Remark 4.2.3
60Here and below, we confuse Ay with its interpretations in relevant models.
61Gee Lemma 9.3.3.
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(2) Ni" E “it is forced by Coll(w,n) that there is a real s such that Code(As,)
is definable via ¢ over (HC, Ag, s €)”.

Because A} is countable in \[g], we can fix ¢ € R"v¥) such that

(3) ¢ is in some < 7n-generic extension of Ni™ and N [q] F “Code(As,) is defin-
able via ¢ over (HC, Ay, ¢, €)”.

Now ¢ is a Woodin cardinal in N;'[g], and so using genericity iterations we can
show that Code(Ag,) is definable over (HC, Ay, g, €) via ¢. This finishes the proof of
Claim 2.%2 0

Our discussion before Claim 1, Claim 1 and Claim 2 show that (¢, D) is lower
part closed, is of limit type, is stable and is directed. We now work in N; lg].

Notation 9.3.4 Let
1. ¥ =%, p (see clause 2 of Notation 9.1.3) and

2. 7) == ,Pw’D.

Notice that if A is Coll(w, Rv19))-generic over Af[g] then there is a real z € N;[g]
such that z(0) is a Godel number for a formula ¢ such that 3 is definable over
(HCNJ[Q*h],AO N HCV ol €) via ¢ without parameters. Notice that if 3T is the
strategy for P|6” definable over (HC, Ay, 2, €) via ¢ without parameters then ¥+ |
(N 10,)]g] = £. We will confuse X* with X. =

Claim 3. Code(X) € I'.

Proof. Towards a contradiction assume Code(X) ¢ I'. Tt then follows that I'(P|67, ) =
I', and hence clause 1 of Theorem 9.3.2 holds. 0

Since I'} # p(R), there is a C' C R such that I'f, F} € L(C,R). We then have
that L(C,R) E DC. Work in W = L(C,R) and let G C Coll(w;,R) be W-generic.
Notice that W[G] E ZFC. Recall F from the statement of Theorem 9.3.2. Let
((Qa,Ap) : @ < wy) € WIG] be an enumeration of F and (z, : o < wy) € W[G] be

an enumeration of R. In WG], choose a sequence (y, : a < wy) of reals such that

62The proof is a bit more involved. Notice that /\/1+ [q] captures Suslin, co-Suslin captures

Code(As,). This is because for some N, -successor cardinal v/ € [v1,7), Code(Ag,) is determined

by the fragment of \Ijj\rfﬂw that acts on iteration that are above v;. It follows that N [¢] has a way
1

of determining Code(Ag,) in its generic extensions. Lemma 9.3.3 then gives what we want.
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yo =y and g € N},

for all a < wy, letting Fi(ya) = (N, My,, 0y, ¥y, ), (25 : f < a) € N and
®p<alla is Suslin, co-Suslin captured by (N ,4d,,, ¥, ), and

for < wi, (N7 :v < ) € HC'¥s.,

y

We now construct a sequence of ®j-mice (Mg, Ny : Ny <My Ao < wy) and a
sequence of commuting embeddings 7, g : M, — Mg such that 7, g(N,) = N and

if K,

= crit(ma,5) then N, = M,|kq. For @ > 0 we will have that M, is the output

of a fully backgrounded construction of N relative to ®; and also that N, I M.,
and M, will be a W, -iterate of N; . Below we describe the construction.

Set Mo = N and Ny = Molx.

For a < wy, let G, consist of those E € ENia such that crit(E) > ord(N,) and
v(E) is an inaccessible cardinal of N .

Given M,, and N, let M, = (Le((Ny, q)l)’Na))(N;a,aa,@a).

63

@

Let Ta 041 1 Mo = Maqr be the iteration embedding according to (W,)

Let K11 be the least §,_ ,-strong cardinal of M, and let

Ya+1

Na-i—l = Ma+1 |'%a+1 .

It follows that Nyyi = Taas1(Nag)

Suppose now that A < w; is a limit ordinal and we have constructed a sequence
(Mo, Ny - Ny < My Ao < ) and a sequence of commuting embedding 7, 5
M, — Mg for a < B < A Let M} be the direct limit of M, under 7, g.
Let 7}, \ : Ma — M3 be the embedding given by the direct limit construction.

Let then N, = moA (M) and let M, = (Le((Nl,<I>1),/\/}\))(Ny*k’6*’é*). Letting
k: M5 — M, be the iteration embedding according to (W, ) sy, We set Ta .\ =
kom? .

%3Notice that because N € HCVvesr, Moy s a (¥y) M, -iterate of M.

64Notice that if E € EMa is the extender with the least index on the extender sequence of M,
such that crit(E) = K, then FE is the first extender used in the M,-to-M, 1 iteration. Here we
assume that all extenders with crit(F) are total. Otherwise we can translate them away as is done

in [

, Remark 12.7].
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Finally let M,, be the direct limit of the system (Mg, map: o < 8 < wq) and
let Tow, @ Mo — My, be the direct limit embedding. Let P,, = mo.,(P) and
Pc:1 = T(O:"Jl (P_)

Claim 4. Fix a < wy and let h C Coll(w, < Kq) be N;&—generic. Then 7y (P) =
(Py.p)5al and mp 0 (X) = (Sy,p)Nvall,

We leave the proof of Claim 4 to the reader as it is very similar to the proofs of
Claim 1 and Claim 2. For a < wy, we let Py, = ma(Pa), P, = moa(P~) and
DY = 770711(2)'

Claim 5. P, = M.
Proof. Notice that

(1) for @ < f < wy and for R <, Pa, Tap | R is the iteration embedding ac-
cording to (X%)x, and

(2) if @« < wy, R<,, Py and Q is a (X)g-iterate of R then there is f < w; such
that some 7, (R) is a (X%)g-iterate of Q.

(3) for all @ < wy there is R <5, P such that R is a A,-iterate of Q,.

To see (2), let 5 be large enough such that (Qg, Ag) = (Q, (X%)g). It then follows that
Tas(R) is a (X%)g-iterate of Q. Tt follows from (1) and (2) that P, [0M = M|éM.

If p(P.,) < ord(P,,) then we must have that P,, = M. Suppose then p(P,,) >
ord(P;). Clearly P, < Lp"*(M™). Suppose then P, <Lp"*(M~). By a standard
Skolem hull argument, it follows that for some o < wy, Py <Lp" > (700 (P7)). How-
ever, because p(P,,) > ord(P, ), Ny F “P, = Lp"*" (m9.0(P7))”, contradiction.
0

Claim 6. p(M) > ord(M™).

Proof. Assume p(M) < ord(M™) (it follows from the definition of M that equality
is impossible). We now have that p(P) < 6”. The argument now takes place in
N;lgl. Let N = N and let U € N be the Mitchell order 0 ultrafilter on . Let
j: N — Ult(N,U) be the ultrapower embedding and j© : N[g] — Ult(N,U)[d']
be its lift up to N[g]. Notice that j%(I") makes sense. As in core model induction
applications Y can be extended to a strategy X' for P%. It follows from clause 2 of

65For example, see Definition 9.0.1, Section 10.2.5, [30, Definition 6.14] and also [32] and [67].
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Theorem 5.5.3 that there is a tail (Q,A) € Ult(N,U)|g] of (P,%’) such that A has
strong branch condensation. Because we are assuming that (in Ult(NV,U)[g]) clause
1 of Theorem 9.3.2 fails and because X' is a j-realizable strategy, I'(Q,A) C j™(T)
and Code(A) € I'. Notice next that p(Q) < §2. We can then finish by using the
argument given on page 143 of [30]%. O

We thus have that P = Lp"">(P™).
Claim 7. Ny E |P| = k.

Proof. Recall the real z introduced before the statement of Claim 3. We have that
z € Ny[g][h] where h is Coll(w, RN 9))-generic. Tt then follows that P is definable
over (HCNJ[Q]W,AO N HCNJ[Q][h],z, €) and hence, P € HCN IR Thus |P|NJ[9] = K.
O

Notice that Claim 7 implies that lower part (¢, I')-covering fails as it implies that
cf(ord(P,,)) = wb. Tt follows from Theorem 9.2.7 that X =4.; 70 1[P] € p(P1) "M,
is such that

(A) for any M;j-generic h C Coll(w,< k1), My[h] E “X is countable and is a
(1, D)-condensing set”.

It follows from Claim 7 that

(B) for every o € [1,w;) and for every M, -generic h C Coll(w, < Kq), My, [h] E
“T.|X] is a (¢, D)-condensing set”.

Claim 8. For every o € [1,w;) and for every N -generic h C Coll(w, < kq),
N [ F “miq[X] is a weakly (¢, D)-condensing set”.

Proof. We give the proof for a = 1 and leave the rest to the reader. Let h C
Coll(w, < k1) be N -generic and let Y € (g, (P1)Vii " be an extension of X. In
what follows we will use the notation introduced in Section 9.1 relative to N [h].
Thus, Xy € N [h] is the 7v : Py — Pi-pullback of 71 (X). However, we will also
confuse ¥y and 7 1(X) with their canonical extensions that act on all stacks.

Recall that ¥ is a strategy for P~ which in this case is just P|6%.
66This is a standard argument in core model induction. The reader can also consult [32] and [67].
67This is because 7, is continuous at ord(7P).
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The proof of the claim follows the steps of Theorem 9.2.6. Recall that in that
proof the key step is to find a universal model extending P such that m; acts on
it. Here, we describe how to find this universal model and leave the rest, which is
just like the proof of Theorem 9.2.6, to the reader. To simplify, we only show that if
Qy = 73 (P) then Qy = Lp" > (Qy). The rest of the proof is very similar.

Suppose then that Qy <Lp" > (Qy) and let SalLp"*¥(Qy) be the least such that
p(S) <ord(Qy) and S 4 Qy. Let (R,A) € HP' be such that

e R is meek and of limit type,
e (R,A) be a ¥-hod pair,
o L(I'(R,A),R) E “S, as a ¥y-mouse, has an w;-iteration strategy.”

Let a < w; be such that Code(A) is Suslin, co-Suslin captured by (N ,dy,,V,,).
Recalling Definition 4.2.1 and Remark 4.2.3, let

e W* be the output of (Le((Ny,®1) @ (P, 2)’\7w(N17'P)))g\£;v5vay) and

e W* be the output of (Le((Ny, 1) & (P, 2)7jw(NI”])>>>(>/\£Ja»§yavaa).

Notice that it follows that ord(W*) = ¢, and ord(W**) = §,,. We now compare the
construction producing W* and the construction producing W**. The comparison
produces a tree T on ./\f; of limit length such that

(T1) T e Ny,
(T2) setting b = U, (T), 7] (W*) = W*,
(T3) T is above k.

Let W be the I'-hod pair construction of (W**,§,,, é*, ¥*) done over P and rel-
ative to £ where

e G* is the set of those extenders from E™"" whose critical point is > ord(P)
and v(F) is an inaccessible cardinal and

e > is the strategy of W** induced by ¥, .

It follows from Theorem 4.13.2 that there is K <;,,4 YW which is a A-iterate of R, and
hence,

68See Definition 4.3.3.
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(1) L(T'(KC, Ax)) E “S, as a Xy-mouse, has an w;-iteration strategy”.

K is our universal model but we cannot yet apply 7 to it. To do this, let U = 71T
The copying construction produces o : M] — MY such that 7 oy, = oo 7).
Moreover, because of (T3) above, crit(c) =k, o(P) =Prand o [ P =moy [ P. It

then follows that

(2) 0(K) is a mp1(X)-hod premouse over Py, and
(3) Ak is the o-pullback of the strategy of ¢(K) induced by (V) vu-

The reason (3) holds is the following. First notice that Ax is the strategy of K
induced by ¥*. But for some v < ¢, , we build K via I'-hod pair construction of
W*|v, and hence A is the strategy of K induced by Eppes - W**|v has a unique ws-
strategy as a ®; @ Y-mouse, and therefore Z*W*ﬂu is the strategy induced by (¥,)) MY
and this strategy is the o-pullback of the strategy of o(W**|v) which is induced by
(\Ify)Mz,j'

It now follows that we can lift 7xy to K and obtain 7%, : K — Y and
7 Y = o(K) such that

(4)
(5)

o [IC:T;IOW}y,

g r P = T 0,1 r P

The rest of the proof follows very closely to the proof of Lemma 9.2.6 and uses
(1). This finishes our outline of the proof of Claim 8. O

Working in V, given A € P,, and X € g, (P.,), we let Tx 4 be the set of
(¢, s) such that s € [0x]<* and P,, F ¢[A’7T7§§|5X,oo(s)]’ We then say that X has
A-condensation if for every Y € 0, (Pu,): Txv(Tx.a) = Ty.a. To show that there
is a strongly (¢, I")-condensing set, it is enough to show that for each A there is an
X € pu, (P,,) with A-condensation. Assuming this, it is not hard to show that for

some v < Wy, Taw |Pal 1S @ condensing set.

Claim 9. Suppose A € P,,. There is ap < wy such that A € rge(my, ., ) and for
every a € (ap,wr) and for every N -generic h € Coll(w, < kq), Ny [ F “Tag.a[Pao)

. : 9 — 1
is an A,-condensing set” where A, = 7, (A).

Proof. Towards a contradiction assume otherwise. Let («; : i < w) be such that

e forall i <w, a; < wy,



9.3. CONDENSING SETS IN MODELS OF AD™* 341

e for all i < w and for every N;@_H—generic h C Coll(w, < Kayyy)s Ny, [h] E

Yorjp1

14 : : 7
Tasaips | Pa,) 18 not a A, -condensing set”.

it
Let o = sup,_,, ;. Let v; < Kq,,, be such that for some ./\f;am—generic h C Coll(w, v;)
there is W € (pu, (Pa,,,)) et such that A [h] E it is forced by Coll(w, <
Ka,.,) that W witness that 74, ,,,[Pa,] is not a A, -condensing set”. Fix then

(hi, W) that play the role of (h, W) and such that h; € N . Set Z; = 7o, 0,y [Pal-
We thus have that

(1) in N;ai+l [h2]7 TZi7Wi(Té

ivAaH_l

[hi]69'

) 7£ TéVmAai_’_l where T&Aai+1 is defined like TU,A

above only inside A/ *
Yoy1q

Let X| = 74, 0[Pa,) and Y/ = 7, o[W;]. It is not hard to verify that

(2) n N;a, TXZ{,YZ/ (T;
N

a) 7 T3 4, where T 4 is defined like Ty 4 above only inside

/
R

Like in the proof of Theorem 9.2.7, we can find some ) € Pa|57)“ and B € Y with
the property that letting sup;_, X! =4ger 1 < 672, V|n = P4|n and for every s € [n]<*
and every ¢, ¥ & ¢[B, s] if and only if P, F ¢[A,,s]. Let now (in N ) P; = Py,
Q, = PY«LI’ éz =TXLY] " P; — Qi, T, = TYi/’Xz{Jrl Qi — 7)7;+1 and sz = TXZ{7XZ{+1. Finally,
set (C,X) = Tow, (B,Y), Xi = Tauw (X]) and Y; = 74, (Y7). It is not hard to verify
that

(3) in V, A= {(P;,Q;, X;,Y;,&,mi, 0;),C, X} is a bad tuple relative to A in the
sense that

1. for all i <w, X; € g, (P.,) is such that 7x, [ Px, = 7T7z>§%|5x. o

2. for all i <w, P; = Px, and Q; = Py;;
3. foralli < j<w, X; <Y, < Xj;
70

4. for all i < w, fz =TX;,Yi Ti = TY; Xiqa and (bz = TX; Xip1

5. X € P,, and letting v = sup,_,(X; N 67=1), X|v = P,,|v;

5More precisely, (s, ¢) € T&Am+1 if and only if s € [6y]<¥ and P = ¢[Aai+177r72>5|5[, ()]

Qi1
All of the relevant objects are computed in N;a’_ﬂ [hi]
70Thus, gl : ,Pz — Qi, T - Q,’ — Pi+1 and ¢z =T Ofi.
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6. letting v be as above, for every formula ¢ and for every s € v<¥ X E ¢[C), s] if
and only if j(P) F ¢[A, s];

7. for all i € [1,w), &(Tx, 4) # Ty, a.

As in the proof of Claim 8 we can find some normal stack 7 on N; with last
model W such that

(3) T is above x and 77 is defined,
(4) the I-hod pair construction of

W, 7TT<5y)a 777<éy))

done over P and relative to Y using extenders with critical point > x reaches a 2-hod
pair (K, A) such that

L(T(K,A)) E “the sequence A = {(P;, Q;, X;, Y, &, mi, ;), C, X'} is a bad tuple”.

Let U = mo T, W be the last model of U and let o : W — W' be the copy map.
We have that o-pullback of o(A) is A™. We now finish the proof by performing the
following steps:

Step 1: lift K to each P; via mg,, and obtain P;",
Step 2: lift K to each Q; via & o mg,, and obtain Q;,

Step 3: extend (&, m;, ¢;) to & P — QF, nf : QF — P, and ¢ : P;" — P,
Step 4: find maps p; : P — o(K) and ¢; : QF — o(K) such that p; = ¢; 0 & =
Pit1 0 7Ti+a

Step 5: let P be the direct limit of (P;", ¢y : ¢ < k < w) where ¢, : P;" — P, be
the composition of (p, : n € [i,k)),

Step 6: let ¢;,, : P — PF and ¢;, : QF — P be the direct limit embeddings,
Step 7: let p} : P — o(K) be constructed via the direct limit construction,

Step 8: set for i < w, IIY = (p;-pullback of o(A)) and II{ = (¢g;-pullback of o(A)),
Step 9: apply the three dimensional argument from the last portion of the proof of
Theorem 9.2.7 to derive a contradiction.

The above steps finish the proof of Claim 9. 0

The discussion before Claim 9 implies that there is a (¢, I')-condensing set, which
is clause 3 of Theorem 9.3.2. Since we were assuming all three clauses of Theo-
rem 9.3.2 are false, this is clearly a contradiction and finishes the proof of Theo-
rem 9.3.2. 0

"I'Here we confuse the local strategies with their interpretations in V.



Chapter 10

Applications

10.1 The generation of the mouse full pointclasses

In this section, our goal is to show that under Strong Mouse Capturing (SMC) if '
is a mouse full pointclass (see Definition 5.3.2) such that I" # ©(R) and there is a
good pointclass I'* with the property that I' C I'* then there is a hod pair or an sts
pair (P, X) such that I'(P,3) = I'. Recall that SMC states that for any hod pair or
sts hod pair (P, X)) such that ¥ is strongly fullness preserving and has strong branch
condensation then for any x,y € R, x € OD,, 5 if and only if z € Lp*(y). We work
under the following two minimality assumptions.

Definition 10.1.1 #, is the following statement: There is a pointclass I' C p(R)
such that there is a Suslin cardinal bigger than w(I') and L(I',R) F LSA.

NWLW is the following statement: There is no iteration strategy for an active
mouse with a Woodin cardinal that is a limit of Woodin cardinals. -

As in [30, Section 6.1], we will construct (P,>) as above via a hod pair con-
struction of some sufficiently strong background universe. Here is our theorem on
generation of pointclasses.

Theorem 10.1.2 (The generation of the mouse full pointclasses I) Assume
ADT + —#t, + NWLW!.

Suppose T' # p(R) is a mouse full pointclass such that I' E SMC. Then one of the
following holds:

1See Theorem 10.3.1, which removes the hypothesis that NWLW holds.
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1. For some (Q,A) € HP" such that A has strong branch condensation and is
strongly T-fullness preserving and for some x € R, Lp™(z) # Lp"* ().

2. T is completely mouse full and letting A C R witness the fact that I' is com-
pletely mouse full, the following holds in L(A,R):

(a) —LSA and there is a hod pair (P,%) such that ¥ has strong branch con-
densation and is strongly fullness preserving and I'(P,X) =T.

(b) LSA and there is an sts hod pair (P, %) such that X has branch condensa-
tion and is fullness preserving, P is of #-lsa type® and T°(P,¥) =T.

Additionally, assuming (i) clause 1 fails, (ii) if A is as in clause 2 then L(A,R)
LSA, and (iii) there is a good pointclass I'* such that I' C Ars, then there is a hod
pair (P,X) such that P is of #-lsa type, (P,X5¢) € L(A,R) and (P, X%°) satisfies
the conditions in clause 2.b.

Proof. Our proof has the same structure as the proof of [30, Theorem 6.1]. However,
unlike that proof, we will make an important use of Theorem 9.3.2. The proof is
again by induction. Suppose I' # p(RR) is a mouse full pointclass such that whenever
I is properly contained in I' and is a mouse full pointclass then there is a hod pair
(P,%) asin 1 or 2. We want to show that the claim holds for I'. Towards a contra-
diction assume the conclusion of Theorem 10.1.2 is false. We examine several cases.

Case 1. There is a sequence of mouse full pointclass (I'y, : @ < ) such that
o €T, I'=U,cqla and for a < 8 < Q, 'y Dpnouse L'

We will use the terminology of Section 9.3. Let ¢(u,v) be the formula that
expresses the fact that w is a mouse full pointclass having the properties that I’
has and v is a hod pair (Q,A) such that Code(A) € u and A has strong branch
condensation and is strongly u-fullness preserving.

Let M™ =P, and M = Py r. Because we are assuming that I' is not generated
by a hod pair, 1t follows from clause 2 of Theorem 9.3.2 that p(M) > o(M™) and
that there is a condensing set X € p,, (M). In what follows we will use the notation
introduced in Section 9.1. In particular, recall the definition of 7y and o3 .

Following the proof of Theorem 9.3.2 let ', I'¢, 'y, I'f, Ao, AT, (No, @o), (N1, ®1), Fo,
and F) be as in that proof. We introduce two more kinds of set of reals that we need
to be captured.

2See Definition 2.7.3.
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Let (o : i < w) be an enumeration of X and let z; = (ay : k <17). Let (¢; 1 i < w)
be an enumeration of formulas in the language of hod mice. Let B, be the set of
pairs ((Q,A, ), (R, ¥,7)) such that (Q,A),(R,¥) € HP', g < §9, v < 6% and
Tk 50 (7) is the unique ordinal £ such that M E ¢plz;, 7§ o (8),£]. We then let A,
be the set of reals o such that ¢(0) is a Godel number of some formula ¢ such that
B; . is definable over (HC, Ay, 0, €) via ¢ without parameters.

Next, let B’ be the set of (Q,A) € HP' such that X N §" C 75 5[ 2|69] and
the transitive collapse of HullM(X U n§ [Q|69]) is Q. Given (Q,A) € B/, let
Yoa = T5,,,[QJ69]. Let B” be the set of ((Q,A), Xga) such that (Q,A) € B and
Xon = T;QI,A[X]' Let B be the set of reals o such that ¢(0) is a Godel number of
some formula ¢ such that B is definable over (HC, Ay, o, €) via ¢ without parameters.

We now define our final set C. Given x € R, let A, = {u € R : {u} is
OD; x}. We let C = {(z,y) € R* : y codes A,”}. Let now xz € dom(Fp)

be such that if Fy(z) = (N, M,8,¥) then letting G be as in clause 7 of Theo-
rem 4.1.12, (N, 9, G, V), (No, @o), I, Ao) Suslin, co-Suslin captures I', Ay, B and C.
Let U* be the iteration strategy of M7 ® and let y € dom(F;) be such that if
Fi(y) = (N, My, 6,,%,) and letting M, be as in clause 3 of Theorem 4.1.12, then
(M, (N, @1),T%, A) captures Code(W*).

We claim that some hod pair appearing on the I'-hod pair construction of N;|5y
generates I'. Here the proof is somewhat different than the proof of Theorem 6.1
of [30]. There the contradictory assumption that such constructions do not reach
[ led to a construction of a hod pair (P,X) such that A¥ = §” and P E “6” is
regular”. This meant that a pointclass satisfying ADg + “© is a regular cardinal”
had been reached giving the desired contradiction. In our current situation, if the
constructions never stops then we will reach an Isa type hod premouse P of height
dy. We need techniques to argue that this cannot happen.

We proceed by assuming that the ['-hod pair construction of N; |0, does not
reach a pair generating ['. Let P* be the final model of the I'-hod pair construction
of Nj|6,. By this we mean that either (i) ord(P*) = d, and P*)# is a hod premouse
or (ii) ord(P*) < 0, and the I'-hod pair construction of N[0, after reaching P* does
not produce a hod premouse Q such that §¢ = §%". If (i) is true then set P = (P*)#
and otherwise set P = (P*|67")#. Let X be the strategy of P induced by %,. Note
that d, is not a limit of Woodin cardinals in P as otherwise P F “j, is a Woodin
cardinal that is limit of Woodin cardinals”, contradicting our smallness assumption.

3 A, is countable. Here we just mean that y lists the members of A, via the coding introduced
in Definition 4.1.2.
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Claim 1. ord(P*) = 4,.

Proof. Suppose not. It follows from Theorem 4.9.5, Theorem 4.6.3 and Theo-
rem 4.12.1 that the only way our construction could break down before reaching
oy is if

e ¥ < §, and p(P) = ord(P*),
e P is of #-lsa type, and

e letting A = ¥p, A has strong branch condensation and is strongly I'-fullness
preserving,

o LpM(P) E “57 is a Woodin cardinal”.

Because I'(P, A*¢) C T and T'*(P, A**¢) # T, we can fix (R, ®) € HP" such that R is
meek and of limit type and (P, A) € L(I'(R, ®)). We have that in L(I'(R, ®)), A has
strong branch condensation and is strongly fullness preserving. It now follows from
Theorem 8.1.13 applied in L(I'(R, ®)) that for some S € pI(P,A), L(I'(S,As)) F
LSA, contradicting our assumption that —#;,, holds. O

We thus have that 67 = §,. Let x be the least < §”-strong cardinal of P. For
a < K, let g, = gNColl(w, < ).

Claim 2. (P*, ) € B.

Proof. Let g C Coll(w,< k) be Nj-generic. We let (1(u,v),D) be as in the
proof of Theorem 9.3.2. Following the notation used in the proof of Theorem 9.3.2,
let S = Pyp* and S~ = P, p- It follows from the proof of Theorem 9.3.2 that
p(S) > o(S).

We claim that S is an iterate of P°. Let, in N[g], ML (P’ Lps) be the direct
limit of Xps-iterates Q of PP such that P°-to-Q iteration has countable length. Notice
that M’_(P?, ) < S. This is simply because for every Q <j.q¢ PP, (Q,%g) € HP'.
Suppose then that Mo (P’ Sp) < S. Let (R,1I) € HP' N A [g]° be such that
Moo(P?, Epr) 4 Moo(R,II). Let < & be such that R € Nj|g,] and there is a
o € RNN;[gy] such that ¢(0) is a Gédel number for a formula ¢ with the property
that Code(Il) is definable over (HC, Ay, o, €) via ( without parameters.

*Recall that this is defined in N [g].
5Here we are abusing the notation and use II for both the strategy in ./\/J [g] as well as its
extension in V.
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Let Q be the output of the hod pair construction of P® in which extenders used
have critical points > . It follows from Theorem 4.13.2 that for some Q' <joq A<, Q'
is a Il-iterate of R. Let E € E” be an extender with critical point k such that vg
is an inaccessible cardinal of P and Q' is constructed by the hod pair construction
of Plvp. Let E* € ENV be the resurrection of E. It follows that in Ult(Ny, E¥),
some hod pair appearing on the hod pair construction of m(P?) in which extenders
used are bigger than k is a Il-iterate of R. It then follows that some hod pair
appearing on some hod pair construction of P’ is a Il-iterate of R. It then follows
that Code(I) <,, Code(Xps) implying that M’ (R, 1)< M. (P?, Lps), contradiction
(here M’ _(R,1I) is defined similarly to M’_(P? ). This contradiction proves the
claim. ([l

It is not hard to see, by a simple Skolem hull argument using the fact that P € ./\/; ,
that

(1) for a club of n < d,, (P|n)* E “n is a Woodin cardinal”.
Let C' be the club in (1). For n € C, let R, = (P|n)*, ¥, = 2%° and Q, < P be the
longest ¥,-sts mouse such that Q, F “n is a Woodin cardinal”. Using Lemma 6.4.4,

we can translate Q, into X,-sts mouse Q, over (N |n)#. Notice that

(2) for every n, Q, has an iteration strategy A witnessing that Q, is a 3,-sts mouse
over J,[(N;[n)*] based on R,

(2) is a consequence of the fact that Q, appears on a I'-hod pair construction of
./\/‘y’k . Moreover,

(3) for every n and for every real = coding Nj|n, Q, is OD}, .
(3) follows from proofs that have already appeared in the book. For instance, see
the notion of goodness that appeared in the proof of Lemma 8.1.12. We now claim

that

Claim 3. for a club of n € C — (k+ 1), Q, € jl,‘f*(/\fy"|n) where v, is the least

CFollowing Section 6.2 it can be shown that for each v € (k,d,) which is a successor cardinal of
P, the fragment of ¥ that acts on non-droping iterations based on P|v and are above k is in P.
This allows us to make sense of hod pair constructions. See also the results of [28, Section 1]. The
above outline uses Theorem 4.5.6.
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ordinal such that \71,‘1:(./\/’;|77) F ZFC.

Proof. Let A be least such that J\" (N;]6,) £ ZFC. Let n € C be such that
there is a map 7 : 7,0 (Nj|n) — IV (N;|0,). Thus

(4) J,0 (NyIn) F “n is a Woodin cardinal”.

Using genericity iterations, we can find N” € J,7"(Nj|n) such that A is a U*-

iterate of M?’% such that (N In)# is generic over the extender algebra Bé\({ where
do is the least Woodin cardinal of A that is > 1. Let h C Coll(w,n) be N -generic.
Fix a real © € N[N n][h] coding N;|n. It follows that there is y € R such that
(z,y) € CNNIN;[n][h]. Therefore Q, € N[Ny |n|[h]. As x is arbitrary, we have
that Q, € J7" (N, |n). Tt follows that 77" (N;[n) F “n is not a Woodin cardinal”,
contradicting (4). O

The rest of the proof is easy. It follows from Claim 3 that we can find an 1 such
that Q, € qu;(NJVI) and there is an elementary embedding 7 : jl,f*(./\/’ﬂn) —
TV (N;16,) where X is the least such that Jy' (N;|d,) = ZFC. Because Q, €
j;g(N;M), we have that jy‘g*(/\/'ﬂn) F “n is not a Woodin cardinal”, and because
T jf:(/\fmn) — J\ " (N;10,), we have that J\" (N;|d,) E “d, is not a Woodin
cardinal”. This is an obvious contradiction! Thus, we must have that the I' hod pair
construction of ./\/'y* reaches a generator for I'. We now move to case 2.

Case 2. T is a completely mouse full pointclass such that for some «, L(I',R) F
0a+1 = @

Because we are assuming —#s,, we must have that L(I', R) F =LSA. The rest of
the proof is very much like the proof of [30, Theorem 6.1]. To complete it, we need to
use Theorem 7.2.2 instead of [30, Theorem 4.24]. We leave the details to the reader.
The proof of “additionally” clause is similar to Case 1 and uses Theorem 4.13.2 and
Lemma 8.1.12. U

Theorem 10.1.2 has one shortcoming. It cannot be used to compute HOD of
the minimal model of LSA as it only generates pointclasses whose Wadge ordinal is
strictly smaller than the largest Suslin cardinal. To compute HOD of the minimal
model of LSA we will need the following theorem.

Theorem 10.1.3 Assume AD" + LSA and suppose —# 5, + NWLWT. Let o be such

7As in the previous theorem, Theorem 10.3.1 removes the extra assumption that NWLW holds.
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that 0,1 = ©, and suppose that there is a hod pair or an sts hod pair (P,%) such
that

e X is strongly fullness preserving and has strong branch condensation and

o (P, Y)={ACR:w(A) <6,}.
Then (P,X) is an sts hod pair and for any B € B[P, 3] there is Q € pI(P,X) such
that (Q,%g) is strongly B-iterable.

Proof. Towards a contradiction, assume not. We reflect the failure of our claim to
A2 Let (3,7) be lexicographically least such that letting T = {A C R : w(A) < ~},

1. I'=pR)NTJ3(I',R) and Ls(I',R) E LSA + ZF — Powerset,

2. letting a be such that Lg(I',R) F “O,41 = ©”, Lg(I',R) F “there is a hod pair
or an sts hod pair (P,X) such that X is strongly fullness preserving and has
strong branch condensation and T'*(P, %) = {A C R : w(A) < 0,} but either

(a) (P,X) is not an sts hod pair or

(b) there is a B € B[P, X] such that whenever Q € pI(P.Y), (Q,Xg) is not
strongly B-iterable”.

Because (3,7) is minimized, we have that ' C A?. Fix (P,X) as above. First we
claim that

Claim. X is not an iteration strategy.

Proof. Towards a contradiction suppose not. Let Ay € lub(l'), I'* be a good
pointclass beyond T' and (N, ¥g) be a I™*~-Woodin which Suslin, co-Suslin captures
(T.(Ap) : n < w)®. Let F be as in Theorem 4.1.12 for T'*, and let x € dom(F)
be such that letting F(z) = (N}, M,,0,,%,) and M, be as in clause 7 of The-
orem 4.1.12, (M, (No, ¥o),I™*, Ag) Suslin, co-Suslin captures Code(X) and I'. It
follows that Le((P, %), J,[P])"¢1% reaches MZ . Let ¥ be the iteration strategy of
MZ* . Notice that

(1) ¥ € Ly(T,R).

Because ¥ is an iteration strategy, it follows from clause 1 of Theorem 6.1.4 that
there are trees (T, S) € M¥> such that letting 6y < d; be the Woodin cardinals of
MG

8Here, T,,(Ap) is defined the way T}, (V) is defined in Section 4.1.1.
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1. M#> E T, S) are 6;-complementing”,

2. whenever 7 : M}¥> — N is an iteration according to ¥ and g C Coll(w, 7(Jp))
is N-generic then Code(X) N RVl = p[x(T)] and (Code(X))e N RVl =

plm(9)].

Let M., be the direct limit of all U-iterates of MZ > and let 7 : M7 — M., be the
direct limit embedding. It then follows that Code(X) = p[n(T")] and (Code(X))¢ =
plr[S]]. It follows from (1) that n(7T"),n(S) € L(I',R), implying that L(I',R) F
“Code(X) is Suslin, co-Suslin”. It follows that Code(X) € I'(P, X)), contradiction! [

It follows from Claim 1 that (P, ) is an sts hod pair. Hence, we must have that

(2) there is B € B[P, X] such that whenever Q € pI(P,X), (Q,Xg) is not strongly
B-iterable.

We can now finish by following the proof of Theorem 8.1.14. The only issue is that
in Theorem 8.1.14 we require that 3 be a strategy, but this is only needed externally.
In our current context, we need a strategy >* that extends ¥ and is Lg(I", R)-fullness
preserving and has branch condensation. Obtaining such a >* might require passing
to a X-iterate of P. We can obtain such a strategy by further iterating P via X to a
hod pair construction of a sufficiently strong background triple using the theory de-
veloped in Section 4.13. Notice that (2) holds even for this new pair, and so without
loss of generality we may just as well assume that >* exists. The rest is just like in
the proof of Theorem 8.1.14.

OJ

Theorem 10.1.4 (The generation of the mouse full pointclasses II) Assume
ADT + —#g, + NWLWY.
Suppose that
o [' £ o(R) is a mouse full pointclass such that I' F SMC and

e for some (Q,A) € HPY such that A has strong branch condensation and is
strongly I'-fullness preserving and for some x € R, LpA(x) + LpF’A(x).

Then there is an anomalous pair'® (P,Y) such that

9See Theorem 10.3.1, which removes the hypothesis that NWLW holds.
10See Definition 5.4.4.
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e X has strong branch condensation and is strongly I'-fullness preserving and
o I'(P,X)=T.

Proof. The proof is similar to the proof of Theorem 10.1.2 but here we need to
revise Theorem 4.6.3 and Theorem 4.9.5. There, the strong fullness preservation and
strong branch condensation are proved using the method of thick hulls developed in
Section 4.5. Here, we need to use the fact that

(*) for some (Q,A) € HP" such that A has strong branch condensation and is
strongly I'-fullness preserving and for some = € R, LpA(x) # LpF’A(x).

The following is the main way (*) affects the proof of Theorem 4.6.3: For exam-
ple, we can no longer assume that if 7 and N are as in that proof (just after (b))
then (4) of that proof holds. Below we outline our method of dealing with the
aforementioned issue.

Towards contradiction assume not and suppose I' is the least pointclass satisfying
our hypothesis which is not generated as stated above. The following are the two
lemmas that we need to prove.

Lemma 10.1.5 Suppose C = (M, (P, V), I™*, A) Suslin, co-Suslin captures I' and
M = (M, 5,G,5). Set

hpcéf‘ = (M’yuN'y;ny’ (I),—;, F,j_, F’Y7b’y iy < (5)

Suppose 3 < 6, P € Yz and M E “(P,(ds)p) € HP'”. Then (@E)'p is almost
low-level strongly I'-fullness preserving.'t.

Lemma 10.1.6 Suppose C = (M, (P, V), ™", A) Suslin, co-Suslin captures I' and
M = (M,5,G,%). Set

hpcéf‘ = (M’yuN'y;ny’ (I),t, F,j_, F’Y7b’y iy < 5)

Suppose 8 < 0, P € Yz and M E “(P,(®s)p) € HP'”. Then (®%)p has branch

condensation.

1n this context, it may not be the case that P is I'-full at the top. Meaning, if P is meek of
limit type then it may not be the case that P = LpF’(%)PW’ (P|67). For example, this may happen
if P = (P|67)# and I = T'(P, (®3)p). In this context, fullness preservation is meant to be for lower
level strategies. See Definition 4.6.2.
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In both of those cases, the hard case is when P is of limit type and I' is of
limit type. We assume this and set A = (®3)p. We will only outline the proof
of fullness preservation. Strong fullness preservation can be established by a very
similar argument. We then have that there is a witness to non fullness preservation or
non branch condensation added by a collapse of some v < d. Let then g C Coll(w, v)
be this collapse. We now outline how to proceed assuming that P is not gentle (there
is not much to prove in this case). This in particular implies that P = Lp"*(P[67").

In the case of fullness preservation this witness is a tuple (7, M) such that T
is according to A and M is a mouse witnessing the failure of one of the clauses of
fullness preservation. The key is that M has an iteration strategy coded by a set in
I'. Let I” be a good pointclass contained in I and such that the iteration strategy
of M is in Ap. Let n be the least I"-Woodin cardinal of M above ¢ =45 max(v, ()
where ¢ = sup{lh(F.\) : v < B}. We now repeat the proof of Theorem 4.6.3 while
working inside M’ = Cp/(M|n). Let 7 = 67 and G' = {F € G : crit(F) > 1}. The
key point is that when in that proof we let N be the last model of

(Le((P|7, Apj,), PP)sg) M labn )

we have that no level of N projects across P°. This is because if ¥’ is the fragment
of 3, that acts on stacks that are above ¢ then Code(¥’) € I'.

The issue with branch condensation can be resolved similarly. In the case of
branch condensation, the witness is (7,U,b, o) € M|g] such that

(i) T is according to A, w7 exists and T has a last model R,
(i) U is according to A and is of limit length,

(ili) b is a cofinal branch of U and A(U) # b,

(iv) o : MY — R is such that 77 = o o7},

The dificult case is when P is non-meek, and so we assume this. We assume A
is an iteration strategy as the other case is very similar. Let ¢ and 7 be as above.

The most dificult case is when 7¢? is defined, Q(b,U) exists and is an sts pre-
mouse over m™*(U). Other cases follow the same pattern but this one is the most
involved. Here we need to show that Q(b,U) is in fact (Ap+ @) **-sts mouse over
m™(U). Let n be such that o | Q(b,U) : MY — R||n. Because Code((Agy, 7)) € T,
we have that if ® is the o [ Q(b,U)-pullback of (Agy,7)* then Code(®) € T'. Thus,
it is enough to show that, setting ¥ = (Ap+ o) *

(a) & =W.



10.1. THE GENERATION OF THE MOUSE FULL POINTCLASSES 353

Let W = m™(U). Suppose ® # U, and let (Xy, Wy, X1, Wi,Y) be a minimal dis-
agreement'? between ® and ¥. We have that Code(®y -~ x,) and Code(¥y ) are
in I". Let then I"” be a good pointclass contained in I' such that

{COde(CI)y’uAXO), COde(\I’yvum)(l)} g AF’-

Let now n, M’, G’ , >’ be as above defined relative to the new meaning of I'. Again
the proof now simply follows the proof of Theorem 4.9.5.

The next major issue to deal with is when we pass from gentle stage to the next
hod premouse. Just like in the proof of Theorem 10.1.2, we build our desired gen-
erator for I' via a hod pair construction of some background triple. We find some
C = (M, (P,¥), I, A) that Suslin, co-Suslin captures I" where M = (M, §, G, Y).
Fix a hod pair (Q,®) € HP" such that ® has strong branch condensation and is
I-fullness preserving and for some z € R, Lp®(x) # Lp""*(z). We now get that

(1) whenever i : @ — Q' is an iteration according to ® and whenever y € R is
a real Turing above =,

Lp®e (y) # Lp" "< (y).

(1) can be established via more or less standard arguments. For example, see
[30, Lemma 6.21 |. The key ingredient of the proof is that if (1) fails for Q" and y
then any universal ®o-mouse over which 7 and Q are set generic is also ®-universal.
To find such a universal ®o-mouse, we can choose some good pointclass IV such
that ®,®" € Ap where ® is the iteration strategy of Lp®(x). Let then F be as in
Theorem 4.1.12 for I'' and let z € dom(F") be such that (M., (N, ¥),I*, A) Suslin,
co-Suslin captures some set of reals coding (Q, ®go/,y, ', i, x), and where the rest
of the objects are defined as in clause 7 of Theorem 4.1.12. The desired universal
® o-mouse is

(Le((Q, Do), y) M9,

Letting A be that model, we have that A/ has a Woodin cardinal and (i, Q, x) is set
generic over N. It then follows from the universality of N that Lp®(z) € N[(i, Q, x)]
and if K < Lp®(z) then K appears in some fully backgrounded construction of
N|(i, Q,z)]. We leave the details to the reader.

For each @' € pI(Q,®) and for each y € R Turing above z let Mg, < Lp®<(y)
be the least such that Mg/, does not have an iteration strategy in I' (as a ®g-
mouse). Let Vo, be the unique iteration strategy of Mg ,. In addition to the

12Gee Definition 4.7.1.
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requirements mentioned above, we demand that A that appeared in C codes the set
of all triple that have the form (Q',y, Vo /). In particular, Q,x € M and &g, is
Suslin, co-Suslin captured by C.

Set now

hpcé,l“ = (M'Y’N’Y’}/:W@'—yi_aFy_‘_aF’wb'y Ly S 5)

Because of our set up, there is v < ¢ such that M., € pI(Q, ®). This implies that
the construction cannot last o steps. If it did, then because <I>;r =Dy, 13 letting N
be the last model of

(Le((My, Dy, ) N2,

where G/ = {F € ENo : vy < Y(W(F)) < crit(F)) and v(F) is an inaccessible
cardinal of N5}, some fully backgrounded construction of some set generic extension
of N would reach M, . This would imply that Code(® 4. ,) € I', contradiction.
We thus have that the construction has to stop.

Because clause 4a of Definition 4.3.3 never occurs, we must have that clause 4b
occurs. Let then £ be such that N has the property described in clause 4b of Defini-
tion 4.3.3. We have that N is germane'®. Let P = N;. Let ¥ = ®/. The following
is our main claim.

Claim. T'(P,V) =T.

Proof. Because W-iterates of P, via the resurrection process, embed into hod mice
whose iteration strategies are in I', we have that I'(P, W) C I". It remains to show
that I' C I'(P, ¥). Assume then that I'(P, V) C T

Using Theorem 5.5.3', we can find some tail (P’,¥’) of (P, W) such that P' €
pI(P,¥’), ¥ has branch condensation and I'(P’, ¥') = I'(P, ¥). It then follows that
Code(¥) € T, which can be shown by using the proof of Lemma 8.1.12. It now
follows that Code(¥) € T.

Notice next that by induction we can assume that if S «f_, P then Ug is I'-
fullness preserving and has branch condensation. This means that we can now apply

13See Theorem 4.13.2.

14See Definition 2.7.15.

5 Theorem 5.5.3 is applicable because (P, ¥) is an anomalous hod pair and if it is of type III
then we can produce a supporting bicephalous via fully backgrounded construction done over P°
relative to Wy, 0. The proof of (1) above shows that this construction will reach an M with the

property that p(M) < §P". The arguments presented on page 142 of [30] then show that if M is
the least such level of the aformentioned backgrounded construction then in fact p(M) < 57"
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the proof of 2a and 2b on page 142 of [30] to conclude that p(P) > ord(hl(P)), which
is a contradiction'®. O

The desired hod pair generating I is the tail of (P, W) provided by Theorem 5.5.3.
O

10.2 A proof of the Mouse Set Conjecture below
LSA

Throughout we will assume AD™" =4t AD* + V = L(p(R)). Recall the definition of
#1sa and NWLW defined in the previous section'”. Recall that Strong Mouse Capturing
(SMC) is the statement that for any hod pair or an sts hod pair (P, ¥) such that
has strong branch condensation and is strongly fullness preserving, and for any reals
x,y, x is ordinal definable from ¥ and y if and only if z is in some Y-mouse over y.
The following is the main theorem of this section.

Theorem 10.2.1 Assume ADTT+—# . +-NWLW. Then the Strong Mouse Capturing
holds.

The rest of this section is devoted to the proof of Theorem 10.2.1. We assume
familiarity with the proof of [30, Theorem 6.19] and build directly on it. We start by
stating the main steps of [30, Theorem 6.19]. We will follow these steps and provide
proofs only for the new cases.

Towards a contradiction assume that SMC is false. Our first step is to locate the
minimal level of the Wadge hierarchy over which SMC becomes false. For simplicity
we assume that the Mouse Capturing, instead of the Strong Mouse Capturing, is false.
Mouse Capturing is the same as SMC when the pair (P,X) = (). The general case is
only different in one aspect, it needs to be relativized to some strategy or a short
tree strategy ..

Notation 10.2.2 Throughout this section, we let I be the least Wadge initial seg-
ment such that for some «

L. T = p(R) N La(T', R),
2. Lo(T,R) E SMC,

16h] is defined in Definition 2.7.15.
17See Definition 10.1.1.
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3. there are reals x and y such that L,1(IR) F “y is OD(x)” yet no z-mouse
has y as a member.

_|

For the purposes of this section we make the following definition.

Definition 10.2.3 Suppose (P,Y) is a hod pair and I'* is a projectively closed
pointclass'®. We say (P,Y) is I'*-perfect if the following conditions are met.

1. X is [™-strongly fullness preserving and has strong branch condensation.
2. For every Q € pI(P,%) UpB(P,X) such that Q is of successor type, there is
B=(B;:i<w)CB[Q,Xo-) such that B strongly guides .
If I'* = p(R) then we omit I'* from our notation. —

The following theorem was heavily used in [30]. It is essentially due to Steel and
Woodin (see [53]).

Theorem 10.2.4 Assume AD" and suppose (P,X) is a hod pair or an sts hod pair
such that L(X,R) E “(P,X) is perfect”. Then L(X,R) E MC(X).

A key theorem used in the proof of Theorem 10.2.1 is the following capturing
theorem. Its precursor is stated as [30, Theorem 6.5].

Theorem 10.2.5 Suppose (P,X) is a perfect hod pair and 'y is a good pointclass
such that Code(X) € Ar,. Suppose F is as in Theorem 4.1.12 for 'y and z € dom(F)
is such that if F(z) = (NF,M,,8,,3.,) then (N7,0,,3,) Suslin, co-Suslin captures
Code(X)™. Let N' = (Le(0))N:19:20. Then there is Q € pI(P,%) NN such that
Yo f./\/’ S j[./\/]

The next key lemma that is used in the proof of Theorem 10.2.1 is the follow-
ing generation lemma that can be traced to [30, Lemma 6.23]. Below I' is as in
Notation 10.2.2.

Lemma 10.2.6 There is a perfect pair (P, ) such that
I(P,$) CT C L(T,R).

Our goal now is to give an outline of the way Theorem 10.2.5 and Lemma 10.2.6
are used to prove Theorem 10.2.1.

18See Definition 4.6.1.

19We abuse the terminology and omit the other object used to express this type of capturing. In
the sequel, if the nature of these other objects, like the pair (N, ¥), is not important we will omit
them from the discussions.

20This is just the ordinary fully backgrounded construction. See Definition 4.2.1.
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10.2.1 The structure of the proof of the Mouse Set Conjec-
ture

First we outline the proof of the following general theorem.

Theorem 10.2.7 Suppose (P, %) is a perfect pair. Then L(X,R) E “for every R<S ,
P2, Mouse Capturing holds for Yr”.

Proof. We only outline the proof as the full proof is presented in [30, Section 6.4].
For simplicity we outline the proof for the least complete layer of P. Let R <, P
be the least layer of P. We want to show that

(1) L(3,R) E “Mouse Capturing holds for ¥z”.

The general case is only notationally more complex. Suppose z,y € R are such
that L(X,R) E “y € ODx,(z)". It follows from Theorem 10.2.4 that there is a -
mouse M over (P, x) containing y such that M has an iteration strategy in L(3, R).
In fact, it follows from Theorem 10.2.4 that

(2) for every Q € pI(P, ) there is a ¥ g-mouse M over (Q, x) such that y € M and
M has an iteration strategy in L(X,R).??

Let Mg be the least Yg-mouse over (Q, x) such that y is definable over Mg. Let

Ag be the iteration strategy of Mg (witnessing that Mg is a Xg-mouse). Let
I' € L(X,R) be a good pointclass such that the set

A= {(z,u) € R?: z codes some Mg and u is an iteration according to Ag}

is in Ars. Let F' be as in Theorem 4.1.12 for I'* and let z € dom(F') be such that if
F(z) = (NS, M, 0., %,) then (N7, 6,,3,) Suslin, co-Suslin captures ¥ and the set
A. Let N' = (Le(0, z))M=1% Tt follows from Theorem 10.2.5 that

(3) there is a @ € N such that Xg | N € J[N].

It follows from the universality of A that Mg € A (this is because (Le((Q, X))V

21See Notation 9.1.2.
22This is because L(Xg,R) = L(X,R) and L(Xg,R) F MC(Xg).
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is universal in N} and the strategy Ag of Mg is captured by N (via A)). It then
follows that y € M. As A is an z-mouse, this completes the proof. O

Suppose now that (P,3) is a I'-perfect pair such that I'(P,%) C I' C L(X,R).
Such a pair is given to us by Lemma 10.2.6.

We now apply Theorem 10.2.4. For each Q € pI(P,X) there is a ¥ g-mouse Mg
over (Q,x) such that y is definable over Mg. We then again can find an z-mouse
N such that for some Q@ € N NpI(P,%), Mg € N. Tt follows that y € N'. Thus,
to finish the proof of Theorem 10.2.1, it is enough to establish Theorem 10.2.5 and
Lemma 10.2.6.

10.2.2 Review of basic notions

In this subsection we review basic notions introduced in [30, Theorem 6.5] for proving
a version of Theorem 10.2.5.

Terminology 10.2.8 We are in fact working towards the proof of Theorem 10.2.5,
and the notation and the terminology of this subsection will be used in the later
subsections. Fix (P,X), I';, F' and z as in the statement of Theorem 10.2.5. Let
N = (Le(0)N=. .

Goal: We are looking for Q € pI(P,X) NN such that ¥g [ N € JN].
We start working in N¥. Without loss of generality we can assume that

(1) whenever R € pB(P,%) N (NF]4,) there is S € pI(R,Xr) NN such that
Ns TN e TN

As in [30], there are several cases.
1. P is of successor type.
2. P is of limit type and P is meek.
3. P is non-meek but P is not of #-lsa type.
4. (P,X) is an sts hod pair.

The first two cases are just like the cases considered in [30, Theorem 6.5], we leave
those to the reader. Here we analyze the remaining two cases. To start, we need to
import some notions from [30, Section 6.3].
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Definition 10.2.9 Suppose for a moment that we are working in some model of
ZFC. Suppose k is an inaccessible cardinal. We say that (Q, A) is a hod pair at x
if

1. (Q,A) is a hod pair,
2. Qe HC®
3. Ais a (k, k)-iteration strategy,

4. Code(A) is a k-universally Baire set of reals.

Suppose (Q, A) is a hod pair at x. Then we let

Lp™*(a) = | J{M : M is a sound A-mouse over a such that p, (M) = ord(a) and
M D (Le((Q,A), )"}

As is customary, we let Lp2*(a) be the ath iterate of Lp™*(a). Below S*(R) is the
x-transform of S into a hybrid mouse over R, it is defined when R is a cutpoint of

S (ct. [10]).

Definition 10.2.10 (Fullness preservation in models of ZFC) Suppose now that
(P,X) is a hod pair at k. We then say X is k-fullness preserving if the following
holds for all (7, Q) € I(P,X)NV,.

1. For all meek? layers R of Q such that R is of successor type®, letting S =
R=26 for all n € (ord(S),ord(R)) if n is a cutpoint cardinal of R then

(RI(*)R)* = Lp™s7"(R]3).
2. For all meek®” layers R of Q such that R is of limit type,

R = Lp RIRT5(R|6R).

23We will later apply this definition to @ which are not countable. The reason we make this
assumption is so that we can have clause 4 below. It follows that the current definition makes sense
in a variety of situations, and in particular when clause 4 holds after collapsing Q to be countable.

24Gee Definition 2.7.1.

25See Definition 2.7.17.

26This is the longest proper layer of R. See Notation 2.7.14.

27See Definition 2.7.1.
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3. If P is of #-1sa type then LngfT”‘(Q) E “6< is a Woodin cardinal”?®.

We continuing our work inside some model of ZFC.

Definition 10.2.11 (Universal tail) Suppose (Q,A) is a hod pair at x such that
A has branch condensation and is k-fullness preserving. Suppose A < k is an inac-
cessible cardinal. Then we say (Q*, A*) is a A-universal tail of (Q, A) if there is a
(possibly generalized) stack

T = (Mg, Tz, Ez: B <N)

on Q according to A with last model Q* such that 1h(7) = A and for any (S,R) €
I(Q,A) NV, there is a stack U on R according to Ag s such that for some a < A,
M, is the last model of U.

If 7 is as above then we say 7T is a A-u