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Abstract. Assume ZF + AD + DCR. There is no injection of <ω1ω1 (the set of countable length sequences

of countable ordinals) into ωON (the class of ω length sequences of ordinals). There is no injection of [ω1]ω1

(the powerset of ω1) into <ω1ON (the class of countable length sequences of ordinals).

1. Introduction

Mathematical size between two sets is compared through injections and bijections. If A and B are two
sets, then |A| ≤ |B| indicates that there is an injection from A to B. One writes |A| < |B| if and only if
|A| ≤ |B| and not |B| ≤ |A|. One writes |A| = |B| if there is a bijection between A and B. In ZF, the
Cantor-Schröder-Bernstein theorem asserts that |A| ≤ |B| and |B| ≤ |A| imply that |A| = |B|. The axiom
of choice, AC, implies every set can be wellordered and is in bijection with an ordinal and the least such one
is called its cardinality. Thus under AC, the class of cardinals is wellordered under the injection relation.
A frequent phenomenon is that the relations between the size of two sets with explicit definitions are often
independent of ZF + AC. The continuum hypothesis is a notable example.

The axiom of determinacy, AD, asserts that all integer games between two players of a certain form
have a winning strategy for one of the two players. Cardinalities of sets are no longer wellorderable under
injections. However, under AD and its extensions, mathematical size of sets become more natural in that
size corresponds more closely to the identity of the object or its fundamental combinatorial properties. The
computation of size under determinacy involves techniques that are closely connected to definability. For
instance, under AD, |R| and ω1 are incomparable cardinalities. Even under AC, it seems that one cannot
explicitly specify a wellordering of the reals without imposing conditions on the structure of the universe,
such as the reals all belong to the constructible universe L or some other canonical inner model. Moreover,
various large cardinal principles imply that wellordering of the reals must necessarily be quite complicated.
Under AD, the incomparability of |R| and ω1 follows from the measurability of ω1. Measurability of ω1 can
be proved using the Martin measure on the Turing degrees. Alternatively, Solovay showed the club measure
on ω1 is a normal measure using the Σ1

1 boundedness principle.
Let ON denote the class of ordinals. Let ε ∈ ON and X ⊆ ON be a set or class. Let εX be the set of

functions f : ε→ X. Let <εX =
⋃
δ<ε

δX. Let [X]ε be the set of functions f : ε→ X which are increasing.

Let [X]<ε =
⋃
δ<ε[X]δ.

Suppose κ and δ are two ordinals greater than 1. The main question in this paper is whether <ω1κ can
inject into ωδ. These two sets seem to have a fundamental difference. <ω1κ consists of sequences of arbitrary
countable length and ωδ consists entirely of sequences of one fixed length ω. Asuming the axiom of choice,
these sets may not be distinguishble through size since, for example, |[ω1]ω| = |[ω1]<ω1 | under ZFC.

Observe that |<ω12| = |[ω1]<ω1 | = |<ω1ω1|. Thus a negative answer to the above question follows from a
negative answer to the following question.

Question 1.1. Is there an injection from [ω1]<ω1 into ωON?

Another related question is that if κ and δ are two ordinals greater than 1, then does |ω1κ| ≤ |<ω1δ| hold?
Again these two sets have a fundamental difference: ω1κ consists of sequences of length ω1 and <ω1δ consists
of countable length sequences. Observe that |ω12| = |P(ω1)| = |[ω1]ω1 |. Thus a negative answer to the
above question follows from a negative answer to the following question.

Question 1.2. Is there an injection from [ω1]ω1 into <ω1ON?
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This paper will work in extensions of AD. A very useful extension of AD is a theory called AD+ isolated
by Woodin ([12] Section 9.1). AD+ consists of the following statements.

• DCR.
• Every set of reals has an∞-Borel code. (An∞-Borel code is a pair (S, ϕ) where S is a set of ordinals

and ϕ is a formula of set theory. Let B(S,ϕ) = {r ∈ R : L[S, r] |= ϕ(S, r)}. (S, ϕ) is an ∞-Borel code
for a set A ⊆ R if and only if A = B(S,r).)

• Ordinal Determinacy, which is the statements that for every λ < Θ, X ⊆ R, and continuous function
π : ωλ→ R, the two player game on λ with payoff set π−1(X) is determined.

Results of Kechris and Woodin showed that if AD holds, then L(R) |= AD+. The relation between AD
and AD+ as well as the relations between the three statements in AD+ are not known.

Woodin [11] was aware of a negative answer to a particular instance of Question 1.1 under ZF + DC +

ADR. This involves investigating the cardinality of a set called S1 = {σ ∈ [ω1]<ω1 : ω
L[σ]
1 = sup(σ)}. In

ZF+ADR +DC, |S1| ≤ |[ω1]<ω1 | however S1 does not inject into [ω1]ω. Since S1 ⊆ [ω1]<ω1 , a negative answer
to Question 1.1 follows from AD+ by the following result.

Fact 1.3. ([3]) Assume ZF+AD+DCR and all sets of reals have an∞-Borel code. Then there is no injection
of S1 into ωON. As a consequence, there is no injection of [ω1]<ω1 into ωON.

This result uses∞-Borel codes to absorb fragments of functions into suitable ZFC models. To the authors’
knowledge, the most intersting properties about S1 (and even to distinguish |S1| from |R|) require arguments
using ∞-Borel codes. Unlike S1, [ω1]<ω1 is a more combinatorial object and [5] distinguished [ω1]ω and
[ω1]<ω1 in AD alone using the almost everywhere continuity property (on sequences of a fixed countable
length).

First, this paper will show that under just ZF + AD, one can prove the following.

Theorem 2.9. Assuming ZF + AD, ¬(|[ω1]<ω1 | ≤ |ω(ωω)|).

Then one will obtain the conclusion of Fact 1.3 under just ZF + AD + DCR.

Theorem 4.4. Assume ZF + AD + DCR. There is no injection of [ω1]<ω1 → ωON.

These two theorems are then used to prove the following theorem.

Theorem 4.7. Assume ZF + AD + DCR. There is no injection of [ω1]ω1 into <ω1ON.
Assuming just ZF + AD, ¬(|[ω1]ω1 | ≤ |<ω1(ωω)|).

Fact 1.3 is proved using techniques that clearly have an AD+ flavor. In contrast, the results of this
paper are proved using an eclectic combination of classical determinacy arguments and more recent results
of classical flavor. Almost everywhere continuity results for functions Φ : [ω1]ε → ω1 from [5] use the Kunen
tree which is an important tool for analyzing the ultrapower of ω1 by the partition measures. Various almost
everywhere club uniformization results will be employed. One consequence of these club uniformization
results is the almost everywhere continuity property for functions of the form Φ : [ω1]ω1 → ω1 from [4].
Generic coding arguments, category notions, and the Banach-Mazur games will be used to make uniform
selection of cofinal sets and uniform selection of Σ1

2 bounding prewellorderings. Martin’s good coding system
and the Martin style games which are used to prove the partition relations will indirectly appear in the almost
everywhere good code uniformization.

Ideas involving S1 require forcing techniques over ZFC-models that do not seem to generalize to cardinals
higher than ω1. [5] used classical determinacy arguments to prove ¬(|[ω1]<ω1 | ≤ |[ω1]ω|) under just AD, but
the techniques used could be generalized to prove ¬(|[ω2]<ω2 | ≤ |[ω2]ω1 |) under AD which has no known AD+

style proof to the authors’ knowledge. The methods used here seem to be more suitable to generalizations
of the main questions to higher strong partition cardinals such as δ1

3 .
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2. Below ωω

Let ε ∈ ON and f : ε → ON. For α ≤ ε, let bound(f, α) = sup{f(β) : β < α}. The function f is
discontinuous everywhere if and only if for all α < ε, bound(f, α) < f(α). The function f has uniform
cofinality ω if and only if there is a function F : ε × ω → ON so that for all α < ε and n ∈ ω, F (α, n) <
F (α, n + 1) and F (α) = sup{F (α, k) : k ∈ ω}. The function f has the correct type if and only if it is
discontinuous everywhere and has uniform cofinality ω. If X is a set or class of ordinals, then [X]ε∗ and
[X]<ε∗ are the subsets of [X]ε and [X]<ε (respectively) consisting of those functions of the correct type. One
can show that if ε ≤ κ and κ is a cardinal, then |[κ]ε| = |[κ]ε∗|. The notion of having correct type is used to
formuate a correct type partition property which provides club homogeneous sets.

Definition 2.1. Let ε ≤ κ be ordinals. Let κ →∗ (κ)ε2 indicate that for all P : [κ]ε∗ → 2, there is a club
C ⊆ κ and an i ∈ 2 so that for all f ∈ [C]ε∗, P (f) = i. If κ→∗ (κ)ε2 for all ε < κ, then κ is said to be a weak
partition cardinal. If κ→∗ (κ)κ2 , then κ is said to be a strong partition cardinal.

Fact 2.2. (Martin; [7] Theorem 12.2, [2] Fact 4.9, [2] Corollary 4.27) Assume ZF + AD. For all ε ≤ ω1,
ω1 →∗ (ω1)ε2. (Martin and Paris; [2] Theorem 5.19) For all ε < ω2, ω2 →∗ (ω2)ε2.

For 1 ≤ ε ≤ ω1, define the filter W ε
1 on [ω1]ε∗ by A ∈ W ε

1 if and only if there is a club C ⊆ ω1 so
that [C]ε∗ ⊆ A. The partition relations imply that W ε

1 is a countably complete measure. In particular,
ω1 is a measurable cardinal. Using the Kunen tree analysis, it can be shown in ZF + AD (without DCR)
for each 1 ≤ n < ω1,

∏
[ω1]n ω1/W

n
1 is a wellordering under the usual ultrapower ordering and in fact

ωn+1 =
∏

[ω1]n ω1/W
n
1 . The Martin and Paris weak partition property for ω2 from Fact 2.2 follows from the

ultrapower representation of ω2. These partition properties on ω2 imply that ω2 is measurable (for instance
using the ω-club filter or the ω1-club filter on ω2) and hence regular. The ultrapower representation also
shows that for all n ≥ 3, cof(ωn) = ω2.

One can explicitly give an ω2 cofinal sequence through ωn when n ≥ 2. Let V be the subset of the
ultrapower

∏
ω1
ω1/W

1
1 which has a representative f : ω1 → ω1 which is an increasing function of the

correct type. Since |
∏
ω1
ω1/W

1
1 | = ω2, one also has that |V| = ω2. For n ≥ 2 and f : ω1 → ω1, define

Kn(f) : [ω1]n−1 → ω1 by Kn(f)(α1, ..., αn−1) = f(αn−1). Define ρn : V →
∏

[ω1]n−1 ω1/W
n−1
1 = ωn by

ρn([f ]W 1
1
) = [Kn(f)]Wn−1

1
. (Observe that ρn is well defined and independent of the choice of representative

f .) One can check that ρn : V→ ωn is cofinal.

Fact 2.3. (Kunen; [2] Theorem 5.10; [6] Lemma 4.1) Assume ZF + AD. Let f : ω1 → ω1 be a function.
There is a function K : ω1×ω1 → ω1 so that for each ω < α < ω1, f(α) < sup{K(α, β) : β < α} = {K(α, β) :
β < α}.

Fact 2.4. Assume ZF+AD. Let δ < ε ≤ ω1 and Φ : [ω1]ε∗ → ω1 have the property that there is a club C ⊆ ω1

so that for all f ∈ [C]ε∗, Φ(f) < f(δ). Then there is a club F ⊆ ω1 so that for all f, g ∈ [F ]ε∗, if f � δ = g � δ,
then Φ(f) = Φ(g).

Proof. Let δ, ε, Φ, and C be as in the statement. Let ε′ = δ + 1 + (ε − δ). Let h : ε′ → ω1. Define
main(h) : ε→ ω1 by

main(h)(α) =

{
h(α) α < δ

h(δ + 1 + (α− δ)) α ≥ δ
.

Let extra(h) ∈ ω1 by extra(h) = h(δ). Define a partition Φ : [C]ε
′

∗ → 2 by P (h) = 0 if and only if

Φ(main(h)) < extra(h). By ω1 →∗ (ω1)ε
′

2 , let D0 ⊆ C be a club homogeneous for P . Let D1 ⊆ D0 be the
set of limit points of D0. Pick f ∈ [D1]ε∗. Since f ∈ [C]ε∗, Φ(f) < f(δ) ∈ D1. Let γ ∈ D0 be so that
bound(f, δ) < γ < f(δ). Let h : ε′ → D0 be such that main(h) = f and extra(h) = γ. Since P (h) = 0, D0 is
homogeneous for P taking value 0.

Let nextD0
: ω1 → D0 be defined by nextD0

(α) is the least element of D0 larger than α. For any
f ∈ [D1]ε∗, Φ(f) < nextD0

(bound(f, δ)). This follows from P (h) = 0 where h : ε′ → D0 is defined so that
main(h) = f and extra(h) = nextD0

(bound(f, δ)). For each σ ∈ [D1]δ, let Vσ : [D1]ε−δ → nextD0
(sup(σ)) by

Vσ(k) = Φ(σ k̂). By the countable completeness of W ε−δ
1 , there is a club E and a γσ < nextD0

(sup(σ)) so
that for all k ∈ [E]ε−δ∗ , Vσ(k) = γσ.
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Define Q : [D1]ε∗ → 2 by Q(f) = 0 if and only if Φ(f) = γf�δ. By ω1 →∗ (ω1)ε2, there is a club F ⊆ D1

which is homogeneous for Q. Pick any σ ∈ [F ]δ∗. There is a club E ⊆ F so that for all k ∈ [E]ε−δ∗ , Vσ(k) = γσ.
Pick a k ∈ [E]ε−δ and let f = σ k̂. Then Φ(f) = Φ(σ k̂) = Vσ(k) = γσ = γf�δ. So Q(f) = 0 and hence F
must be homogeneous for Q taking value 0. Thus F is the desired club. �

The following is the almost everywhere continuity property for functions Φ : [ω1]ε → ω1 when ε < ω1.

Fact 2.5. ([5] Theorem 2.15) Assume ZF + AD. Let ε < ω1 and Φ : [ω1]ε∗ → ω1. There is an δ < ε and a
club C ⊆ ω1 so that for all f, g ∈ [C]ε∗, if sup(f) = sup(g) and f � δ = g � δ, then Φ(f) = Φ(g).

Proof. In [5], this fact is derived from a finer and complete analysis of continuity given by [5] Theorem 2.14.
The following is a simpler proof of just the coarser continuity stated above.

Define a partition P : [ω1]ε+1
∗ → 2 by P (h) if and only if Φ(h � ε) < h(ε). By ω1 →∗ (ω1)ε+1

2 , there is
a club C0 ⊆ ω1 which is homogeneous for P . Pick an f ∈ [C0]ε∗ and let γ ∈ C0 be such that Φ(f) < γ.
Define h = f γ̂. Since h ∈ [C0]ε∗ and P (h) = 0, C0 is homogeneous for P taking value 0. For all f ∈ [C0]ε∗,
Φ(f) < nextC0

(sup(f)) by using the fact that P (h) = 0 where h ∈ [C0]ε+1
∗ is defined so that h � ε = f

and h(ε) = nextC0(sup(f)). By Fact 2.3, there is a function K : ω1 × ω1 → ω1 with the property that
for all ω ≤ α < ω1, nextC0(α) < sup{K(α, β) : β < α} = {K(α, β) : β < α}. Since for all f ∈ [C0]ε∗,
Φ(f) < nextC0

(sup(f)), define Ψ : [C0]ε∗ → ω1 by Ψ(f) is the least β < sup(f) so that Φ(f) = K(sup(f), β).
For each f ∈ [C0]ε∗, let δf be the least δ so that Ψ(f) < f(δ). Since W ε

1 is countably additive, there is a δ < ε
and a club C1 ⊆ C0 so that for all f ∈ [C1]ε∗, δf = δ. Fact 2.4 implies there is a club C ⊆ C1 so that for all
f, g ∈ [C]ε∗, if f � δ = g � δ, then Ψ(f) = Ψ(g). For any f, g ∈ [C]ε∗, if f � δ = g � δ and sup(f) = sup(g),
then Φ(f) = K(sup(f),Ψ(f)) = K(sup(g),Ψ(g)) = Φ(g). C is the desired club. �

[5] uses Fact 2.5 to give an argument in ZF + AD that [ω1]<ω1 does not inject into ωω1. Since this result
is the backbone of all other results in the paper, the proof will be given for completeness.

Fact 2.6. ([5] Theorem 2.16) Assuming ZF + AD, ¬(|[ω1]<ω1 | ≤ |ωω1|). In particular, |[ω1]ω| < |[ω1]<ω1 |.

Proof. Suppose there is an injection Φ : [ω1]<ω1 → ωω1. For each ε < ω1 and n ∈ ω, define Φεn : [ω1]ε → ω1

by Φεn(f) = Φ(f)(n). By Fact 2.5, there is a δ < ε and a club C ⊆ ω1 so that for all f, g ∈ [C]ε∗, if f � δ = g � δ
and sup(f) = sup(g), then Φεn(f) = Φεn(g). Let δεn be the least such δ. For each n ∈ ω, let Λn : ω1 → ω1

by defined by Λn(ε) = δεn. Since Λn is regressive and the club measure W 1
1 is normal, there is a δn < ω1 so

that there exists a club C ⊆ ω1 with the property that Λn(ε) = δn for all ε ∈ C. By the Moschovakis coding
lemma, there is a surjection π : R→P(ω1). Define R ⊆ ω ×R by R(n, x) if and only if π(x) is a club with

the property that for all ε ∈ π(x), Λn(ε) = δn. By ACR
ω, there is a sequence 〈xn : n ∈ ω〉 so that for all

n ∈ ω, R(n, xn). Let Cn = π(xn) and C =
⋂
n∈ω Cn. Let δ = sup{δn : n ∈ ω} and note that δ < ω1 since

ω1 is regular. Fix an ordinal ε > δ with ε ∈ C. Using the Moschovakis coding lemma and ACR
ω again, there

is a sequence 〈Dn : n ∈ ω〉 of club subsets of ω1 with the property that for all n ∈ ω, for all f, g ∈ [Dn]ε∗,
if f � δεn = g � δεn and sup(f) = sup(g), then Φεn(f) = Φεn(g). Let D =

⋂
n∈ωDn. Pick f, g ∈ [D]ε∗ so that

f � δ = g � δ, sup(f) = sup(g), and f 6= g. Since δ ≥ δn = δεn (since ε ∈ C) for all n ∈ ω, one has that
Φ(f) = Φ(g). This contradicts Φ being an injection. �

Let clubω1 denote the collection of club subsets of ω1. The following is the everywhere ω1 club uniformiza-
tion.

Fact 2.7. ([2] Fact 4.8) Assume ZF + AD. Suppose R ⊆ ω1 × clubω1
is a relation which is ⊆-downward

closed in the club coordinate. (This means for all α ∈ ω1, if C ⊆ D are club subsets of ω1 and R(α,D), then
R(α,C).) Then there is a function Φ : dom(R)→ clubω1 so that for all α ∈ dom(R), R(α,Φ(α)).

The following is useful notation. If f : ω1 → ω1 and ε < ω1, then let drop(f, ε) : ω1 → ω1 be defined
by drop(f, ε)(α) = f(ε + α). The following argument appears in [5] for just ω2. The following adapts the
arguments for all ωn such that 2 ≤ n < ω.

Theorem 2.8. Assume ZF + AD, ¬(|[ω1]<ω1 | ≤ ωωn) for all n ∈ ω.

Proof. Suppose Φ : [ω1]<ω1 → ωωn is an injection. Fact 2.6 implies this is impossible if n ≤ 1. So suppose
n ≥ 2 and inductively this result has been shown for all k < n.
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For each ε < ω1, define a partition Pε : [ω1]ω1
∗ → 2 by Pε(f) = 0 if and only if sup(Φ(f � ε)) <

ρn([drop(f, ε)]W 1
1
), where ρn : V → ωn is cofinal. (Note that sup(Φ(f � ε)) < ωn since Φ(f � ε) ∈ ωωn and

cof(ωn) = ω2.) By ω1 →∗ (ω1)ω1
2 , there is a club C ⊆ ω1 which is homogeneous for Pε. Pick any σ ∈ [C]ε∗.

Since ρn is cofinal, there is an h ∈ [C]ω1
∗ with sup(σ) < h(0) and sup(Φ(σ)) < ρn([h]W 1

1
). Let f = σˆh. Note

that f ∈ [C]ω1
∗ and Pε(f) = 0 since sup(Φ(f � ε)) = sup(Φ(σ)) < ρn([h]W 1

1
) = ρn([drop(f, ε)]W 1

1
). Thus C is

homogeneous for Pε taking value 0. Fix a g ∈ [C]ω1
∗ . Let β = ρn([g]W 1

1
). For any σ ∈ [C]ε∗, let γσ be the

least γ < ω1 so that sup(σ) < g(γ). Let fσ = σ d̂rop(g, γσ) and note that fσ ∈ [C]ω1
∗ . P (fσ) = 0 implies that

sup(Φ(σ)) < ρn([drop(fσ, ε)]W 1
1
) = ρn([g]W 1

1
) = β since [drop(fσ, ε)]W 1

1
= [g]W 1

1
. Let βε be the least ordinal

β for which there exists a club C ⊆ ω1 so that for all σ ∈ [C]ε∗, sup(Φ(σ)) < β.
Define a relation R ⊆ ω1 × clubω1

by R(ε, C) if and only if for all σ ∈ [C]ε∗, sup(Φ(σ)) < βε. Note that R
is ⊆-downward in the clubω1

coordinate and dom(R) = ω1. By Fact 2.7, there is a sequence 〈Cε : ε < ω1〉
so that for all ε < ω1, R(ε, Cε). Let δ = sup{βε : ε < ω1} and note that δ < ωn since cof(ωn) = ω2. Let
B : δ → ωn−1 be an injection. Define an injection Ψ :

⋃
ε<ω1

[Cε]
ε
∗ → ωωn−1 by Ψ(σ)(n) = B(Φ(σ)(n)).

This is well defined since for all σ ∈ [Cε]
ε
∗, Φ(σ)(n) < βε < δ. Since |

⋃
ε<ω1

[Cε]
ε
∗| = |[ω1]<ω1 |, Ψ induces an

injection of [ω1]<ω1 into ωωn−1, which is impossible by the induction hypothesis. �

Note that the next result implies Theorem 2.8; however, the proof is more tedious.

Theorem 2.9. Assume ZF + AD, ¬(|[ω1]<ω1 | ≤ |ω(ωω)|).

Proof. Suppose there is an injection Φ : [ω1]<ω1 → ωωω. By the countable additivity of W 1
1 , for each n ∈ ω

and ε < ω1, there is a club C and an integer b so that Φ(σ)(n) < ωb for all σ ∈ [C]ε∗. Let bεn be the least
such integer. Again by the countable additivity of W 1

1 , for each n ∈ ω, there is a club D and an integer bn
so that for all ε ∈ D, bεn = bn. By the Moschovakis coding lemma and ACR

ω, there is a sequence 〈Dn : n ∈ ω〉
of club subsets of ω1 so that for all ε ∈ Dn, bεn = bn. Let D∗ =

⋂
n∈ωDn.

Claim 1: For each n ∈ ω, there is a sequence 〈Eε : ε ∈ D∗〉 of club subsets of ω1 and an injection
I : A→ ω1, where A = {Φ(σ)(n) : σ ∈

⋃
ε∈D∗ [Eε]

ε
∗}.

To see Claim 1: Fix n ∈ ω. Recall for each i ≥ 2, there are cofinal maps ρi : V → ωi of V (which has
cardinality ω2) into ωi. Define R ⊆ D∗×clubω1

by R(ε, C) if and only if for all σ ∈ [C]ε∗, Φ(σ)(n) < ωbn . Since
R is ⊆-downward closed in the clubω1 -coordinate and dom(R) = D∗, Fact 2.7 implies there is a sequence
〈C ′ε : ε ∈ D∗〉 so that for all ε ∈ D∗, R(ε, C ′ε). Let Cbnε = C ′ε, abn = ωbn , and Ψbn :

⋃
ε∈D∗ [C

bn
ε ]ε∗ → ωabn be

defined by Ψbn(σ) = Φ(σ)(n).
Suppose for 0 < k ≤ bn, the following objects have been defined.

• For all k ≤ j ≤ bn, aj ≤ bn and for all k < j ≤ bn, if aj > 1, then aj−1 < aj .
• For all k ≤ j ≤ bn, 〈Cjε : ε ∈ D∗〉 is a sequence of clubs and for all k ≤ j0 < j1 ≤ bn, Cj0ε ⊆ Cj1ε .
• For all k ≤ j ≤ bn, Ψj :

⋃
ε∈D∗ [C

j
ε ]ε∗ → ωaj .

• For k < j ≤ bn, Ij : Tj → ωaj−1
is an injection where Tj = {Ψj(σ) : σ ∈

⋃
ε∈D∗ [C

j
ε ]ε∗}.

(Case I: ak > 1.) Fix ε ∈ D∗. Define P kε : [Ckε ]ω1
∗ → 2 by P kε (f) = 0 if and only if Ψk(f � ε) <

ρak([drop(f, ε)]W 1
1
). By ω1 →∗ (ω1)ω1

2 , there is a club K ⊆ Ckε which is homogeneous for P kε . Fix a σ ∈ [K]ε∗.

Pick any ` ∈ [K]ω1
∗ so that `(0) > sup(σ) and Ψk(σ) < ρak([`]W 1

1
) which is possible since ρak : V → ωak

is cofinal. Let f = σˆ̀ . Note that P kε (f) = 0 since Ψk(f � ε) = Ψk(σ) < ρak([`]W 1
1
) = ρak([drop(f, ε)]W 1

1
).

Since f ∈ [K]ω1
∗ , K is homogeneous for P kε taking value 0. Now fix an ` ∈ [K]ω1

∗ and let β = ρak([`]W 1
1
).

For any σ ∈ [K]ε∗, let γσ be the least γ so that sup(σ) < `(γ). Let fσ = σ d̂rop(`, γσ). P kε (fσ) = 0 implies
that Ψk(σ) = Ψk(fσ � ε) < ρak([drop(fσ, ε)]W 1

1
) = ρak([`]W 1

1
) = β since [drop(fσ, ε)]W 1

1
= [`]W 1

1
. It has

been shown that there is a β so that there exists a club K ⊆ Ckε with the property that for all σ ∈ [K]ε∗,
Ψk(σ) < β. Let βε be the least such β ≥ ω with this property. Let δ = sup{βε : ε ∈ D∗}. Since ak > 1,
cof(ωak) = ω2 so δ < ωak .

Now define S ⊆ D∗ × clubω1
by S(ε,K) if and only if K ⊆ Ckε and for all σ ∈ [K]ε∗, Ψk(σ) < δ. Note

that dom(S) = D∗ by the previous discussion and S is ⊆-downward closed in the clubω1
-coordinate. By

Fact 2.7, there is a sequence of clubs 〈Ck−1
ε : ε ∈ D∗〉 with the property that for all ε ∈ D∗, S(ε, Ck−1

ε ).
For all σ ∈

⋃
ε∈D∗ [C

k−1
ε ]ε∗, Ψk(σ) < β|σ| < δ < ωak . Since ω ≤ δ < ωak , there is an ak−1 < ak so that

ωak−1
≤ δ < ωak−1+1. Let Ik : δ → ωak−1

be an injection. Let Tk = {Ψk(σ) : σ ∈
⋃
ε∈D∗ [C

k−1
ε ]ε∗} and note

that the restriction Ik : Tk → ωak−1
is an injection. Let Ψk−1 :

⋃
ε∈D∗ [C

k−1
ε ]ε∗ → ωak−1

be defined by Ik ◦Ψk.
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(Case II: ak ≤ 1) Let ak−1 = ak, Ck−1
ε = Ckε for each ε ∈ D∗, Tk = {Ψk(σ) : σ ∈

⋃
ε∈D∗ [C

k−1
ε ]ε∗},

Ik : Tk → ωak−1
be the inclusion map, and Ψk−1 = Ψk.

By recursion, one has constructed 〈ak : 0 ≤ k ≤ bn〉, 〈〈Ckε : ε ∈ D∗〉 : 0 ≤ k ≤ bn〉, 〈Tk : 0 < k ≤ bn〉,
and 〈Ik : 0 < k ≤ bn〉. Since ak−1 < ak for all 0 < k ≤ bn such that ak > 1 and abn = bn, one must have
that a0 ≤ 1. For each ε ∈ D∗, let Eε = C0

ε and I : A→ ω1 be defined by I = I1 ◦ ... ◦ Ibn , where recall that
A = {Φ(σ)(n) : σ ∈

⋃
ε∈D∗ [Eε]

ε
∗}. This completes the proof of Claim 1.

Using Claim 1, the Moschovakis coding lemma, and ACR
ω, there exist sequences 〈〈Enε : ε ∈ D∗〉 : n ∈ ω〉

and 〈In : n ∈ ω〉 so that for all n ∈ ω, In : An → ω1 is an injection where An = {Φ(σ)(n) : σ ∈
⋃
ε∈D∗ [E

n
ε ]ε∗}.

For each ε ∈ D∗, let Eε =
⋂
n∈ω E

n
ε . Let Σ :

⋃
ε∈D∗ [Eε]

ε
n → ωω1 be defined by Σ(σ)(n) = In(Φ(σ)(n)). Now

suppose σ0, σ1 ∈
⋃
ε∈D∗ [Eε]

ε
∗ and σ0 6= σ1. Since Φ is an injection, Φ(σ0) 6= Φ(σ1). Thus there is some n ∈ ω

so that Φ(σ0)(n) 6= Φ(σ1)(n). Since Φ(σ0)(n),Φ(σ1)(n) ∈ An and In : An → ω1 is an injection, one has that
Σ(σ0) 6= Σ(σ1) because Σ(σ0)(n) = In(Φ(σ0)(n)) 6= In(Φ(σ1)(n)) = Σ(σ1)(n). It has been shown that Σ is
an injection. Since |

⋃
ε∈D∗ [Eε]

ε
∗| = |[ω1]<ω1 |, Σ induces an injection from [ω1]<ω1 to ωω1. This is impossible

by Fact 2.6. �

3. Uniform Choice of Unbounded Subsets and Bounding Prewellorderings

Definition 3.1. Let 2 ≤ α < ω1. For s ∈ <ωα, let Nα
s = {f ∈ ωα : s ⊆ f}. Give ωα the topology generated

by {Nα
s : s ∈ <ω1α} as a basis. Using this topology, one can define the usual category notions. Note that

since α is countable, ωα is homeomorphic to the usual topology on ωω. Let surjα be the set of functions
f : ω → α which are surjections, i.e. f [ω] = α. Observe that surjα is a comeager subset of ωα.

Under AD, the meager ideal on ωω has full wellordered additivity. That is, if λ ∈ ON and 〈Aα : α < λ〉
is a sequence of meager subsets of ωω, then

⋃
α<λAα is a meager subset of ωω. Since, ωω and ωα are

homeomorphic for each α < ω1, the meager ideal on ωα also has full wellordered additivity.

The following is a simple form of the Kechris-Woodin generic coding function [9] for ω1.

Fact 3.2. There is a function G : ωω1 →WO so that for α < ω1, if f ∈ surjα, then ot(G(f)) = α.

Proof. Let f ∈ ωα. Let Af = {n ∈ ω : (∀m)(m < n ⇒ f(m) 6= f(n))}. Define G(f) to be the element of
WO with domain Af so that for all m,n ∈ Af , m <G(f) n if and only if f(m) < f(n). Note that if f ∈ surjα,
then (Af , <G(f)) is order isomorphic to α. �

Fact 3.3. Assume ZF+AD. Let 〈να : α < ω1〉 be a sequence of ordinals so that for all α < ω1, cof(να) ≤ ω1

and sup{να : α < ω1} < Θ. Then there is a sequence 〈Kα : α < ω1〉 so that for all α < ω1, Kα ⊆ να,
|Kα| ≤ ω1, and supKα = να.

Proof. Let δ = sup{να : α < ω1} < Θ. By the Moschovakis coding lemma, there is a surjection π : R →
P(δ). Define a relation S ⊆ WO × R by S(w, r) if and only if π(r) codes a function ρ : ω1 → νot(w) such
that sup ρ[ω1] = νot(w). By the Moschovakis coding lemma, there is relation R with the following properties.

• R ⊆ S and R is Σ1
2.

• For all α < ω1, R ∩ (WOα × R) 6= ∅.
Let T ⊆WO× R be defined by

T (w, r)⇔ (∃v)(v ∈WO ∧ ot(v) = ot(w) ∧R(v, r)).

T is Σ1
2, dom(T ) = WO, and for all w ∈ WO, T (w, r) if and only if π(r) codes a function ρ : ω1 → νot(w)

such that sup ρ[ω1] = νot(w). Since T is Σ1
2, AD implies that T has a uniformization function Ψ′ : WO→ R,

i.e. for all w ∈ WO, T (w,Ψ′(w)). For each w ∈ WO, let Ψ(w) = π(Ψ′(w)), i.e. Ψ(w) is the unbounded
function from ω1 into νot(w) coded by Ψ′(w).

Define a partial function H as follows. For α < ω1, β < ω1, and s ∈ <ωα, (α, β, s) ∈ dom(H) if and only
if there is an η < να such that {f ∈ Nα

s ∩ surjα : Ψ(G(f))(β) = η} is comeager in Nα
s . If (α, β, s) ∈ dom(H),

then let H(α, β, s) be the unique η with the above property.
Define Kα = {H(α, β, s) : (α, β, s) ∈ dom(H)}. Note |Kα| ≤ ω1. It remains to show that supKα = να.

Fix γ < να. For each f ∈ surjα, let βf be the least β < ω1 so that Ψ(G(f))(β) > γ. For each β < ω1,
let Bβ = {f ∈ surjα : βf = β}. Since surjα is comeager, surjα =

⋃
β<ω1

Bβ , and wellordered unions of
meager subsets of ωα are meager, there is a β∗ < ω1 so that Bβ∗ is nonmeager. For each ζ > γ, let
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Cζ = {f ∈ Bβ∗ : Ψ(G(f))(β∗) = ζ}. Since Bβ∗ is nonmeager, Bβ∗ =
⋃
ζ>γ Cζ , and wellordered unions of

meager subsets of ωα are meager, there is a ζ∗ > γ so that Cζ∗ is nonmeager. By the Baire property, there is
an s ∈ ωα so that Cζ∗ is comeager in Nα

s . Then for comeagerly many f ∈ Nα
s , Ψ(G(f))(β∗) = ζ∗ > γ. Hence

(α, β∗, s) ∈ dom(H) and H(α, β∗, s) = ζ∗ > γ. Thus ζ∗ ∈ Kα. Since γ < να was arbitrary, supKα = να. �

Let Γ be a (boldface) pointclass, Γ̌ be the dual pointclass of Γ, and ∆ = Γ∩ Γ̌. Let δ(Γ) be the supremum
of the prewellorderings on R which belong to ∆. Let v(Γ) be the supremum of the Γ̌ wellfounded relations
on R. If A ∈ P(R), then let rkW (A) denote the Wadge rank of A (which exists assuming DCR). If Γ is a
pointclass, then let o(Γ) = sup{rkW (A) : A ∈ Γ}.

Fact 3.4. ([6] Lemma 2.13 and 2.16) Suppose Γ is a nonselfdual pointclass, closed under ∀R, ∨, ∧, and has
the prewellordering property. Then δ(Γ) = v(Γ) and is a regular cardinal.

Fact 3.5. ([8] Lemma 2.3) Assume ZF + AD + DCR. Suppose ∆ is a (boldface) pointclass closed under ¬,
∧, and ∀R. Then o(∆) = δ(∆).

Fact 3.6. Assume ZF + AD + DCR. Suppose Γ is a nonselfdual pointclass closed under ∃R, ∀R, ∧, ∨, and
has the prewellordering property. δ = δ(Γ) = δ(∆) = o(∆) is a regular cardinal. Let C be the set of η < δ so
that Υη = {A ⊆ R : rkW (A) < η} is a pointclass closed under ∃R. C is a club subset of δ.

Proof. The first statement follows from Fact 3.4 and Fact 3.5. It remains to show that the set C defined
above is a club subset of δ. Let γ < δ. Since δ = o(∆), find some A ∈ ∆ so that γ < rkW (A). The pointclass
Σ1

1(A) is the smallest nonselfdual pointclass containing A and closed under ∃R, ∧, and ∨. Let U ∈ Σ1
1(A)

be a universal set. Let ξ = rkW (U) + 1. Note that γ < ξ and since Υξ = Σ1
1(A), one has that ξ ∈ C. This

shows that C is unbounded. Suppose ξ is a limit of points in C. Suppose B ⊆ R×R and rkW (B) < ξ. There
is some ξ′ < ξ with ξ′ ∈ C so that rkW (B) < ξ′ < ξ. Since B ∈ Υξ′ and Υξ′ is closed under ∃R, ∃RB ∈ Υξ′ .
Hence rkW (∃RB) ≤ ξ′ < ξ. Thus Υξ is closed under ∃R. It has been shown that C is a club. �

For any A ⊆ R, an example of such a pointclass closed under ∃R, ∀R, ∧, ∨, having the prewellordering

property, and containing A is Σ
L(A,R)
1 . Let δA denote the first Σ1-stable ordinal of L(A,R), i.e. the least δ

so that Lδ(A,R) ≺1 L(A,R). It can be shown that δA = o(∆
L(A,R)
1 ) = δ(Σ

L(A,R)
1 ).

Fact 3.7. (Steel; [10] Theorem 2.1) Assume ZF+AD+DCR. Let Γ be a nonselfdual pointclass and ∆ = Γ∩Γ̌.
Suppose ∃R∆ ⊆ ∆. Suppose κ < cof(o(∆)). If A is κ-Suslin and B ∈ Γ, then A ∩B ∈ Γ.

The next result is a finer version of Steel’s result concerning Suslin bounded prewellorderings with par-
ticular emphasis on a bound for the Wadge rank of the desired prewellordering.

Fact 3.8. (Steel) Assume ZF + AD + DCR. Let δ be such that cof(δ) ≥ ω2. Suppose κ is such that
κ > δ and there is a pointclass Γ∗ which is closed under ∀R, ∃R, ∧, ∨, has the prewellordering property,
and o(Γ∗) = o(∆∗) = κ, where ∆∗ = Γ∗ ∩ Γ̌∗. Then there is a prewellordering (P,�) with the following
properties.

• The length of (P,�) is δ. Let ϕ : P → δ be the associated norm of �.
• ϕ : P → δ satisfies Σ1

2 bounding, which means that for all Σ1
2 S ⊆ P , there is a ζ < δ so that

ϕ[S] ⊆ ζ.
• rkW (P ) < κ and rkW (�) < κ.

Proof. This argument follows the template from [6] Theorem 2.28 with additional complexity calcuations. Let
ν = cof(δ). Let η be the νth-element of the club C ⊆ κ from Fact 3.6. Then Υη = {A ⊆ R : rkW (A) < η} is
a pointclass closed under ∃R. Let B ⊆ R be such that rkW (B) = η. Let Γ = Υη+1 = {A ⊆ R : A ≤W B}. By

a basic property of the Wadge degrees, Γ is nonselfdual because cof(rkW (B)) > ω. Also observe Υη = Γ∩ Γ̌.
Fix some recursive coding of continuous functions F : R→ R by R. If x ∈ R, then let Σx : R→ R denote

the continuous function coded by x. Let π : ω × ω → ω be a recursive bijection. If x ∈ R = ωω and n ∈ ω,
then let x[n](k) = x(π(n, k)).

Let E ⊆ R be defined by x ∈ E if and only if Σ−1
x[0] [B] = R \Σ−1

x[1] [B]. Note that E ∈ ∆∗ since ∆∗ is closed

under ∨, ∧, ¬, ∀R, and ∃R. Therefore o(E) < κ. Note that if x ∈ E, then Σ−1
x[0] [B] ∈ Υη and for every A ∈ Υη,
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there is some x ∈ E so that A = Σ−1
x[0] [B]. Define a prewellordering ϕ0 : E → η by ϕ0(x) = rkW (Σ−1

x[0] [B]).
For all x, y ∈ E, define x �ϕ0

y if and only if ϕ0(x) ≤ ϕ0(y). Note that x �ϕ0
y if and only if

(∃Rz)(Σ−1
x[0] [B] = Σ−1

z [Σ−1
y[0]

[B]]).

Thus the prewellordering �ϕ0
associated to ϕ0 belongs to ∆∗ and hence has Wadge rank below κ.

Next, one seeks to show that ϕ0 : E → η is Σ1
2 bounded. Let S ⊆ E be a Σ1

2 set (so it is also an ω1-Suslin
set). Suppose supϕ0[S] = η. Define F0 ⊆ R× R by

F0(x, y)⇔ (x ∈ S ∧ Σx[0](y) ∈ B)⇔ (x ∈ S ∧ Σx[1](y) /∈ B).

Since Υη = Γ ∩ Γ̌ is closed under ∃R and ω1 < cof(η) = cof(o(Υη)), one has that F0 belongs to Υη

by applying Fact 3.7 to the ω1-Suslin set S, the set B ∈ Γ, and the set (R \ B) ∈ Γ̌. Now suppose
A ∈ Υη and thus rkW (A) < η. Since supϕ0[S] = η, there is some x ∈ S so that ϕ0(x) > rkW (A). Thus

A ≤W Σ−1
x[0] [B] = (F0)x ≤W F0. This shows that every set in Υη is Wadge reducible to F0. Thus rkW (F0) ≥ η

however rkW (F0) < η since F0 ∈ Υη. Thus supϕ0[S] < η. It has been shown that there is Σ1
2 bounded

prewellordering ϕ0 : E → η where η < κ, cof(η) = ν, and the Wadge rank of the associated prewellordering
�ϕ0

is less than κ.
Since cof(η) = ν, let ρ0 : ν → η be an increasing cofinal map. Define ϕ1 : E → ν by ϕ1(x) is the least

α < ν so that ρ0(α) ≥ ϕ0(x). Suppose S ⊆ E is Σ1
2. Since ϕ0 is Σ1

2 bounded, there is some ζ < η so that
ϕ0[S] ⊆ ζ. Since ρ0 is cofinal through η, there is some ξ < ν so that ρ0(ξ) > ζ. Thus ϕ1[S] ⊆ ξ. Hence ϕ1

is also Σ1
2 bounded.

Since ν < κ = o(∆∗) = δ(∆∗), there is a norm ψ0 : R→ ν whose associated prewellordering �ψ0 belongs
to ∆∗. Define a relation S ⊆ R × E by S(x, y) if and only if ρ0(ψ0(x)) = ϕ0(y). By the Moschovakis
coding lemma, there is an R ⊆ S so that for all α < ν, R ∩ (ψ−1

0 [{α}] × E) 6= ∅ and R ∈ ∆∗ (in fact
R ∈ Σ1

1(�ψ0
) ⊆ ∆∗). Note that x �ϕ1

y if and only if

(∀Ra)(∀Rb)[(R(a, b) ∧ y �ϕ0
b)⇒ x �ϕ0

b].

Thus �ϕ1
∈ ∆∗ and rkW (�ϕ1

) < κ. It has been shown that there is a prewellordering ϕ1 : E → ν which is
Σ1

2 bounded and rkW (�ϕ1) < κ.
Since cof(δ) = ν, let ρ1 : ν → δ be an increasing cofinal map. Since o(∆∗) = δ(∆∗) = κ and δ < κ,

let ψ1 : R → δ be a surjective map so that rkW (�ψ1
) < κ. Define S1 ⊆ E × R by S1(x, y) if and

only if ρ1(ϕ1(x)) = ψ1(y). By the Moschovakis coding lemma, there is a relation R1 ⊆ S1 such that
R1 ∈ Σ1

1(�ϕ1
) ⊆ ∆∗ and for all α < ν, R1 ∩ (ϕ−1

1 [{α}]× R) 6= ∅.
For each β < δ, define Pβ ⊆ R by x ∈ Pβ if and only if

ψ1(x[0]) = β ∧ x[1] ∈ E ∧ β < ρ1(ϕ1(x[1])).

Fix some w ∈ R so that ψ1(w) = β. Then x ∈ Pβ if and only if

ψ1(x[0]) = ψ1(w) ∧ (∃Rz)(∃Rv)
(
x[1] ∈ E ∧ z ∈ E ∧ ϕ1(x[1]) = ϕ1(z) ∧R1(z, v) ∧ ψ1(w) < ψ1(v)

)
.

Using �ψ1
∈ ∆∗, R1 ∈ ∆∗, and the closure properties of ∆∗, one has that Pβ ∈ ∆∗ for any β < δ and thus

rkW (Pβ) < κ. Let P =
⋃
β<δ Pβ . Since κ is regular, sup{rkW (Pβ) : β < δ} < κ. Pick a set D ∈ ∆∗ such that

for all β < δ, rkW (Pβ) < rkW (D). Define S2 ⊆ R × R by S2(x, y) if and only if Pψ1(x) = Σ−1
y [D]. By the

Moschovakis coding lemma, there is a R2 ⊆ S2 with R2 ∈ ∆∗ so that for all α < δ, R2 ∩ (ψ−1
1 [{α}]×R) 6= ∅.

Then x ∈ P if and only

(∃Rw)(∃Ry)(R2(w, y) ∧ Σy(x) ∈ D).

Thus P ∈ ∆∗ and hence rkW (P ) < κ.
Define a norm ϕ : P → δ by ϕ(x) = ψ1(x[0]). Since rkW (�ψ1) < κ and rkW (P ) < κ, one has that

rkW (�ϕ) < κ. Let T ⊆ P be Σ1
2. Let T ′ = {x : (∃y)(y ∈ T ∧ x = y[1])}. Since T ⊆ P , one has that T ′ is a

Σ1
2 subset of E. Since ϕ1 is Σ1

2 bounded, there is a ζ < ν so that ϕ1[T ′] ⊆ ζ. By definition of P =
⋃
β<δ Pβ ,

one has that ϕ[T ] ⊆ ρ1(ζ) < δ. It has been shown that ϕ : P → δ is a Σ1
2 bounded prewellordering of length

δ so that rkW (≤ϕ) < κ. This completes the proof. �
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Fix a coding of strategies by reals. If x ∈ R, let ρx : <ωω → ω denote a strategy on ω coded by x. If
w ∈WO≥ω, then ρwx : <ωot(w)→ ot(w) denote the strategy on ot(w) which results from transferring ρx via
the bijection Bw : ω → ot(w) naturally induced from w. In this way, one says that (w, x) with w ∈WO and
x ∈ R code the strategy ρwx .

The following (in the ω case) is a well-known result concerning the unfolded Banach-Mazur game. If
2 ≤ α < ω1, then one has that ωα is homeomorphic to ωω so the result transfers to the countable ordinal α.

Fact 3.9. Let α < ω1. Let A ⊆ ωα and B ⊆ ωα×ωω. Consider the following game G∗A,B defined as follows.

G∗A,B

1 s0 s2 s4 s6 ...

f

2
s1 s3 s5 s7

z0 z1 z3 z4

...
z

For all i ∈ ω, si ∈ <ωα and zi ∈ ω. Player 1 plays s2i for all i ∈ ω. Player 2 plays s2i+1 and zi for all
i ∈ ω. Let f = s0 ŝ1 ŝ2... and z ∈ ωω be defined by z(i) = zi. Player 2 wins G∗A,B if and only if f ∈ A and

B(f, z).
If A is comeager in ωα and A ⊆ dom(B), then Player 2 has a winning strategy. For every w ∈ WO so

that ot(w) = α and coding finite sequence of ordinals in α by elements of α, one can find some x ∈ R so that
ρwx is a Player 2 winning strategy for G∗A,B.

Fact 3.10. Assume ZF+AD+DCR. Let 〈δα : α < ω1〉 be such that sup{δα : α < ω1} < Θ and for all α < ω1,
cof(δα) ≥ ω2. Then there is a sequence 〈(Pα,�α) : α < ω1〉 so that for all α < ω1, �α is a prewellordering
on Pα of length δα so that the associated surjective norm ϕα : Pα → δα is Σ1

2 bounded.

Proof. Let δ = sup{δα : α < ω1} which is less than Θ by assumption. Let �δ denote a prewellordering
on R of length δ. Let Γ be a nonselfdual pointclass closed under ∀R, ∃R, ∧, ∨, having the prewellordering

property, and containing �δ (for example, Σ
L(�δ,R)
1 ). Then o(Γ) > δ. Let A∗ be a universal set in Γ and

note that rkW (A∗) = o(Γ). Define a relation S ⊆WO×R by S(w, x) if and only if Σ−1
x [A∗] is a Σ1

2 bounded
prewellordering of length δot(w), where recall that Σx : R → R is the continuous function coded by the real

x. Note that dom(S) = WO since by Fact 3.8, for each α < ω1, there is a Σ1
2 bounded prewellordering

(P,�) of length δα so that (P,�) ≤W A∗. By the Moschovakis coding lemma, there is a Σ1
2 relation

R′ ⊆ S so that for all α < ω1, R′ ∩ (WOα × R) 6= ∅. Define R ⊆ WO × R by R(w, x) if and only if
(∃v)(v ∈WO ∧ ot(v) = ot(w) ∧ R′(v, x)). Note that R is Σ1

2 and dom(R) = WO. Since AD can uniformize
projective relations, let Φ : WO → R be a uniformization for R, which means for all w ∈WO, R(w,Φ(w)).
For each w ∈WO, let (Qw,�w) denote the Σ1

2 bounded prewellordering of length δot(w) coded by Σ−1
Φ(w)[A

∗].

Let ϕw : Qw → δot(w) be the associated surjective norm of (Qw,�w).
For each α < ω1, let Pα consists of the collection of (w, x) such that w ∈ WOα and x ∈ R with the

following properties.

(1) ρwx is a Player 2 strategy in games of the following form.

1 s0 s2 s4 s6 ...

f

2
s1 s3 s5 s7

z0 z1 z3 z4

...
z

For each i ∈ ω, si ∈ <ωα. For each i, s2i is played by Player 1 and s2i+1 is played by Player 2.
For all i ∈ ω, zi ∈ ω and is played by Player 2. Let f ∈ ωα be defined by f = s0 ŝ1 ŝ2... and z ∈ R
be defined by z(i) = zi for all i ∈ ω. (These are the same condition as the unfolded Banach-Mazur
game on α from Fact 3.9 except that no payoff set has been specified.)

For each p ∈ ω(<ωα), let sp2n = p(n). Let 〈sp2n+1 : n ∈ ω〉 and 〈zpi : i ∈ ω〉 be the response of
Player 2 using ρwx . Let f(w, x, p) = sp0 ŝ

p
1 ŝ

p
2... and let z(w, x, p) ∈ R be defined by z(w, x, p)(i) = zpi .

(2) There exists a βw,x < δα so that for all p ∈ ω(<ωα),

z(w, x, p) ∈ QG(f(w,x,p)) and ϕG(f(w,x,p))(z(w, x, p)) = βw,x.
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Define ϕα : Pα → δα by ϕα((w, x)) = βw,x. Let �α be the prewellordering on Pα induced from ϕα.
Claim 1: ϕα is surjective.
To see Claim 1: Fix a β < δα. Let A = surjα which is a comeager subset of ωα. Let B ⊆ surjα × R be

defined by (f, z) ∈ B if and only if z ∈ QG(f) and ϕG(f)(z) = β. Since f ∈ surjα implies G(f) = α, one has
that dom(B) = surjα = A. Fact 3.9 implies that there is a (w, x) with w ∈WOα and x ∈ R so that ρwx is a
Player 2 winning strategy in G∗A,B . From the definitions, one has that (w, x) ∈ Pα and ϕα((w, x)) = β.

Claim 2: ϕα is Σ1
2 bounded.

To see Claim 2: Recall the following basic fact about Banach-Mazur type games. For any (w, x) ∈ Pα,
there is a comeager set Kw,x of f ∈ ωα so that there exists a p : ω → <ωα such that f(w, x, p) = f . For each
f ∈ Kw,x, there is a canonical pf,w,x : ω → <ωα so that f(w, x, pf,w,x) = f . For a fixed f , there is a Borel
function with the property that given a (w, x) such that f ∈ Kw,x, the function will output pf,w,x.

Let S ⊆ Pα be Σ1
2. Fix an f ∈ surjα. Let Sf = {(w, x) ∈ S : (∃p)(f(w, x, p) = f)} which is a Σ1

2 set. For
any (w, x) ∈ Sf ⊆ S ⊆ Pα, one has that z(w, x, pf,w,x) ∈ PG(f). Thus Tf = {z(w, x, pf,w,x) : (w, x) ∈ Sf}
is a subset of PG(f) and is Σ1

2. Since ϕG(f) is Σ1
2 bounded, let γf be the least ordinal below δα so that

ϕG(f)[Tf ] ⊆ γf .
For each γ < δα, let Bγ = {f ∈ surjα : γf = γ} and B<γ = {f ∈ surjα : γf < γ}. The claim is

that there is a γ∗ so that B<γ∗ is comeager. Suppose not, then for all γ, B<γ is not comeager. Since
surjα \B<γ =

⋃
γ′≥γ Bγ and wellordered union of meager sets are meager, one must have some γ′ ≥ γ such

that Bγ′ is nonmeager. Thus it has been shown that for all γ < δα, there exists a γ′ so that γ < γ′ < δα
and Bγ′ is nonmeager. Let ε0 be the least ordinal ε > 0 so that Bε is nonmeager. Suppose β < ω1 and for
all α < β, εα has been defined. Let εβ be the least ordinal ε greater than or equal to sup{εα : α < β} so
that Bε is nonmeager. This defines a sequence 〈Bε : ε < ω1〉 of disjoint nonmeager subsets of ωα. Since
AD implies all sets of reals have the Baire property, the existence of this sequence contradicts the countable
chain condition of the topology on ωα. Thus it has been shown that there is a γ∗ so that B<γ∗ is comeager.

Now fix a (w, x) ∈ S. Since Kw,x and B<γ∗ are comeager, Kw,x ∩B<γ∗ 6= ∅. Let f ∈ Kw,x ∩B<γ∗ .

ϕα((w, x)) = βw,x = ϕG(f(w,x,pf,w,x)(z(w, x, p
f,w,x)) = ϕG(f)(z(w, x, p

f,w,x)) < γf < γ∗

The second equation follows from the definition of (w, x) ∈ Pα. The third equation comes from the fact that
f ∈ Kw,x and the definition of pf,w,x. The first inequality follows from the fact that z(w, x, pf,w,x) ∈ Tf .
The second inequality is obtained from f ∈ B<γ∗ . Thus it has been shown that ϕα[S] ⊆ γ∗, and so ϕα
satisfies Σ1

2 bounding. �

4. General Result for All Ordinals

The following is the good coding system for functions from ε < ω1 into ω1. Such coding system are used
to prove partition properties.

Definition 4.1. (Martin, [2] Fact 4.9) Let ε < ω1. Fix w∗ ∈ WO so that w∗ codes a wellordering with
domain ω of ordertype ε (assuming without loss of generality that ω ≤ ε). For n ∈ ω, let ot(w∗, n) ∈ ε
denote the rank of n in the wellordering w∗. For each α < ε, let num(w∗, α) ∈ ω denote the integer n so that
ot(w∗, n) = α. Define decode : R→P(ε× ω1) by decode(x)(β, γ) if and only if x[num(w∗,β)] ∈WOγ . Define
GCβ,γ ⊆ R by x ∈ GCβ,γ if and only if decode(x)(β, γ). Observe that if x ∈ GCβ,γ , then for any ξ < ω1, if
decode(x)(β, ξ) holds, then one must have that γ = ξ. By ACωR, for any f : ε → ω1, there is some x ∈ R so
that decode(x) is the graph of f .

This defines a good coding system (Σ1
1, decode,GCβ,γ : β < ε, γ < ω1) for εω1. Let GC =

⋂
β<ε

⋃
γ<ω1

GCβ,γ .

Thus for all x ∈ GC, decode(x) is the graph of a function f : ε→ ω1.

Fact 4.2. ([1]) Fix ε < ω1. Let (Σ1
1, decode,GCβ,γ : β < ε, γ < ω1) be a fixed good coding system for εω1. For

any club D ⊆ ω1, there is a club C ⊆ D so that INCε(C), which is the set of x ∈ GC so that decode(x) ∈ [C]ε,
is Π1

1.

If ε < ω1 and f : ω · ε→ ω1, let block(f) : ε→ ω1 be defined by block(f)(α) = sup{f(ω · α+ n) : n ∈ ω}.

Fact 4.3. ([2] Theorem 3.8; [1]) (Almost Everywhere Good Code Uniformization) Assume ZF + AD. Let
ε < ω1 and (Σ1

1, decode,GCβ,γ : β < ω · ε, γ < ω1) be a good coding system for ω·εω1. Suppose R ⊆ [ω1]ε∗×R.
10



Then there is a club C ⊆ ω1 and a Lipschitz continuous function Ξ : R → R so that for all x ∈ INCω·ε(C),
R(block(decode(x)),Ξ(x)).

Theorem 4.4. Assume ZF + AD + DCR. There is no injection of [ω1]<ω1 → ωON.

Proof. Suppose there is an injection Φ : [ω1]<ω1 → ωON. By the Moschovakis coding lemma, there is a
surjection π : R→ [ω1]<ω1 . Define Ψ : R× ω → ON by Ψ(r, n) = Φ(π(r))(n). Thus Ψ[R× ω] is a surjective
image of R. Thus there is a δ < Θ so that Ψ[R× ω] is in bijection with δ. This implies that that there is an
injection Φ′ : [ω1]<ω1 → ωδ where δ < Θ. Thus it suffices to show that there is no injection Φ : [ω1]<ω1 → ωδ
where δ < Θ. For the sake of contradiction, fix such an injection Φ. For each ε < ω1 and n ∈ ω, let
Φεn : [ω1]ε → δ be defined by Φεn(f) = Φ(f)(n).

Claim: For each ε < ω1 and n ∈ ω, there is a club C ⊆ ω1 so that |Φεn[[C]ε∗]| ≤ ω1.
Given the claim, the theorem follows: If C is a club, let AεC = {ξ < δ : (∃f ∈ [C]ε∗)(∃n ∈ ω)(Φ(f)(n) = ξ}.

Fixing an ε < ω1, one can use ACR
ω and the claim to show that there is a sequence 〈Cn : n ∈ ω〉 so that for

all n ∈ ω, |Φεn[[Cn]ε∗]| = ω1. Letting C =
⋂
n∈ω Cn, one has that AεC ⊆

⋃
n∈ω Φεn[[Cn]ε∗] and hence |AεC | ≤ ω1.

It has been shown that for all ε < ω1, there is a club C so that |AεC | ≤ ω1. By Fact 2.7, there is a sequence
〈Cε : ε < ω1〉 so that for all ε < ω1, |AεCε | ≤ ω1. Let T =

⋃
ε<ω1

AεCε and note that |T | = ω1. Observe that

if f ∈
⋃
ε<ω1

[Cε]
ε
∗, then Φ(f) ∈ ωT . Since Φ is an injection, |

⋃
ε<ω1

[Cε]
ε
∗| = |[ω1]<ω1 |, and |T | = ω1, one has

that Φ induces an injection of [ω1]<ω1 into ωω1. This is impossible by Fact 2.6.
Thus it remains to show the claim: Now fix ε < ω1 and n ∈ ω. Let S−1 = {δ}. Suppose k ∈ {−1} ∪ ω

and Sk ⊆ δ + 1 has been defined with |Sk| ≤ ω1. Let S0
k = {γ ∈ Sk : cof(γ) ≤ ω1} and let S1

k = {γ ∈ Sk :
cof(γ) > ω1}. Let ι0 : ω1 → S0

k and ι1 : ω1 → S1
k be surjections.

Let νξ = ι0(ξ). Applying Fact 3.3 to 〈νξ : ξ < ω1〉, there is a sequence 〈Kξ : ξ < ω1〉 so that for all ξ < ω1,
Kξ ⊆ νξ, |Kξ| ≤ ω1, and supKξ = νξ.

Let δξ = ι1(ξ). Applying Fact 3.10 to 〈δξ : ξ < ω1〉, there is a sequence 〈(Pξ,�ξ) : ξ < ω1〉 of prewellorder-
ings so that for each ξ, (Pξ,�ξ) is a Σ1

2 bounded prewellordering of length δξ with ϕξ : Pξ → δξ being its
associated surjective norm.

Fix an f ∈ [ω1]ε∗. Consider the relation Sf ⊆ WO × R defined by Sf (w, x) if and only if (x ∈ Pot(w)) ∧
(Φεn(f) < ϕot(w)(x)). Note that w ∈ dom(Sf ) if and only if Φεn(f) < δot(w). Fix a Σ1

2 set U ⊆ R×R2 which

is universal for Σ1
2 subsets of R2. By the Moschovakis coding lemma, there is a z ∈ R so that Uz ⊆ Sf and

for all ξ < ω1, Uz ∩ (WOξ × R) 6= ∅ if and only if Sf ∩ (WOξ × R) 6= ∅. Such a z ∈ R will be called an
f -selector.

Define T ⊆ [ω1]ε∗ × R by T (f, z) if and only if z is an f -selector. Note that dom(T ) = [ω1]ε∗. After fixing
a good coding system (Σ1

1, decode,GCβ,γ : β < ω · ε, γ < ω1) for ω·εω1 and using Fact 4.3, there is a club
D ⊆ ω1 and a Lipschitz function Ξ : R→ R so that for all x ∈ Incω·ε(D), T (block(decode(x)),Ξ(x)). By Fact
4.2, there is a C ′ ⊆ D so that Incω·ε(C ′) is Π1

1. Thus Ξ[Incω·ε(C ′)] is a Σ1
2 set. Let C ⊆ C ′ be the collection

of limit points of C ′. Fix a ξ < ω1. Let

Vξ = {x : (∃z)(∃w ∈WOξ)(z ∈ Ξ[Incω·ε(C ′)] ∧ Uz(w, x))}.
Vξ is Σ1

2 and Vξ ⊆ Pξ since all elements of Ξ[Incω·ε(C ′)] are f -selectors. Since Pξ is Σ1
2 bounded, there is a

γ < δξ so that ϕξ[Vξ] ⊆ γ. Note that if f ∈ [C]ε∗, then there is a u ∈ Incω·ε(C ′) so that block(decode(u)) = f .
Then Ξ(u) is an f -selector. If Φεn(f) < δξ, then there is some w ∈ WOξ and x ∈ Pξ so that UΞ(u)(w, x).
Hence x ∈ Vξ and therefore Φεn(f) < ϕξ(x) < γ < δξ.

Thus it has been shown there is a club C so that for all ξ < ω1, there is an ordinal γ < δξ so that
Φεn(f) < γ or Φεn(f) ≥ δξ for all f ∈ [C]ε∗. For each ξ < ω1, let δ∗ξ be the least such ordinal γ < δξ so that

there is a club C so that for all f ∈ [C]ε∗, Φεn(f) < γ or Φεn(f) ≥ δξ.
Now let Sk+1 = (

⋃
ξ<ω1

Kξ) ∪ {δ∗ξ : ξ < ω1}. Note that Sk+1 has the following property.

(1) Sk+1 ⊆ δ and |Sk+1| = ω1.
(2) If ξ ∈ Sk and cof(ξ) ≤ ω1, then sup(Sk+1 ∩ ξ) = ξ.
(3) There is a club C so that for all ξ ∈ Sk with cof(ξ) > ω1, there is a ξ∗ < ξ with ξ∗ ∈ Sk+1 so that

for all f ∈ [C]ε∗, Φεn(f) < ξ∗ or Φεn(f) ≥ ξ.
The construction of Sk+1 depends on Sk ⊆ δ and the surjections ι0 and ι1. Since δ < Θ, there is a

surjection of R onto P(δ). Thus DCR is sufficient to create a sequence 〈Sk : k ∈ ω〉 so that the relation
between Sk and Sk+1 is as specified above. Let S =

⋃
k<ω Sk and observe that |S| = ω1.
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Using ACR
ω, there is a sequence 〈Ck : k ∈ ω〉 which witnesses (3) for Sk (recall S−1 = {δ}). Let C =⋂

k∈ω Ck, and one will show that Φεn[[C]ε∗] ⊆ S. So suppose otherwise that there is an f ∈ [C]ε∗ so that
Φεn(f) /∈ S. Let ν = Φεn(f). Let ν−1 = δ. Suppose νk ∈ Sk has been defined with ν < νk. If cof(νk) ≤ ω1,
then (2) implies there is some ordinal ζ ∈ Sk+1 such that ν < ζ < νk. If cof(νk) > ω1, then by (3) for Sk,
there is a ν∗k ∈ Sk+1 so that Φεn(f) = ν < ν∗k < νk. Thus in either case, let νk+1 be the least ordinal ζ ∈ Sk+1

so that ν < ζ < νk. Then 〈νk : k ∈ ω〉 is an infinite descending sequence of ordinals which is impossible.
It has been shown that there is a club C ⊆ ω1 so that Φεn[[C]ε∗] ⊆ S. Since |S| ≤ ω1, |Φεn[[C]ε∗]| ≤ ω1.

This proves the claim. �

The next result is the almost everywhere continuity property for functions of the form Φ : [ω1]ω1 → ω1. It
follows from the almost everywhere short length club uniformization for relations of the form R ⊆ [ω1]<ω1

∗ ×
clubω1 which are ⊆-downward closed in the clubω1 coordinate ([4] Theorem 3.10) proved under AD. Unlike
Fact 2.7, the everywhere version of this uniformization fails in L(R) |= AD ([4] Fact 3.9); however, the
everywhere version does hold under ZF + ADR ([4] Theorem 3.7).

Fact 4.5. ([4] Theorem 4.5) Assume ZF + AD. Let Φ : [ω1]ω1 → ω1. Then there is a club C ⊆ ω1 so
that Φ � [C]ω1

∗ is continuous. That is, for all f ∈ [C]ω1
∗ , there is an α < ω1 so that for all g ∈ [C]ω1

∗ , if
f � α = g � α, then Φ(f) = Φ(g).

Fact 4.6. ([4] Theorem 4.6) Assume ZF+AD. For all functions Φ : [ω1]ω1
∗ → ω1, there is an α < ω1 so that

|Φ−1[{α}]| = |[ω1]ω1
∗ |.

Proof. By Fact 4.5, there is a club so that Φ � [C]ω1
∗ is continuous. Pick any f ∈ [C]ω1

∗ and let β = Φ(f).
By continuity, there is an α < ω1 so that for all g ∈ [C]ω1

∗ with f � α = g � α, Φ(g) = Φ(f) = β.
Let NC

f�α = {g ∈ [C]ω1
∗ : g � α = f � α}. Note that |NC

f�α| = |[ω1]ω1
∗ | and NC

f�α ⊆ Φ−1[{β}]. Thus

|Φ−1[{β}]| = |[ω1]ω1
∗ |. �

The above argument is inefficient since it uses the almost everywhere continuity property (Fact 4.5) which
follows from a suitable almost everywhere club uniformization property. The proof of this club uniformization
property at a cardinal δ requires more than δ being a strong partition cardinal and even more than the
existence of a good coding system for δδ. [1] isolates a strengthening of the good coding system sufficient to
prove the necessary club uniformization and the almost everywhere continuity property. However, Fact 4.6
can be proved by purely combinatorial arguments using only the strong partition property. In particular,
[1] shows that under ZF, if δ is a cardinal so that δ →∗ (δ)δ2, κ ∈ ON, and Φ : [δ]δ∗ → κ, then there exists an
α < κ so that |Φ−1[{α}]| = |[δ]δ∗|.

Theorem 4.7. Assume ZF + AD + DCR. There is no injection of [ω1]ω1 into <ω1ON.
Assuming just ZF + AD, ¬(|[ω1]ω1 | ≤ |<ω1(ωω)|).

Proof. Since R surjects onto [ω1]ω1 by the Moschovakis coding lemma, any injection Υ : [ω1]ω1 → <ω1ON
induces an injection Φ : [ω1]ω1 → <ω1δ for some δ < Θ. If σ ∈ <ω1δ, then let length(σ) = |σ|. Let
Ψ : [ω1]ω1 → ω1 be defined by Ψ = length ◦ Φ. By Fact 4.6 and the fact that |[ω1]ω1

∗ | = |[ω1]ω1 |, there is an
ε < ω1 so that |Ψ−1[{ε}]| = |[ω1]ω1 |. So Φ : Ψ−1[{ε}] → εδ induces an injection from [ω1]<ω1 into ωδ since
|[ω1]<ω1 | < |[ω1]ω1 | and |εδ| = |ωδ|. However this is impossible by Theorem 4.4. The second result is the
same argument using Theorem 2.9. �
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