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Abstract. If κ is an infinite cardinal, the boldface GCH at κ is the statement that κ+ does not inject into
P(κ). It will be shown here that ω1 → (ω1)

ω1
2 (the strong partition property at ω1) and jµ1

ω1
(ω1) = ω2

(the ultrapower of ω1 by the club filter on ω1 is ω2) implies that the boldface GCH holds at ωn for all n < ω
using combinatorial arguments. In particular, AD implies the boldface GCH holds at ωn for all n < ω.

1. Introduction3

This paper will work with the Zermelo-Frankel axiom ZF for set theory (without the axiom of choice,4

AC). Let κ be an infinite cardinal. There is a cardinal which does not inject into P(κ). What is the5

smallest cardinal which does not inject into P(κ)? Since κ always injects into P(κ), the smallest that6

this cardinal can be is κ+, the cardinal successor of κ. Cantor showed that κ does not surject onto P(κ).7

Thus |κ| < |P(κ)|. If the axiom of choice holds, then all sets are wellorderable and one must have that κ+8

injects into P(κ). Assuming the axiom of choice, the smallest cardinal which does not inject into P(κ)9

must be greater than κ+. The usual generalized continuum hypothesis at κ (under AC) is the assertion that10

|P(κ)| = 2κ = κ+. Assuming AC and the generalized continuum hypothesis at κ, one has that κ++ is the11

smallest cardinal which does not inject into P(κ). However, without the axiom of choice, it is potentially12

possible to have the most elegant answer to the above question: κ+ is the smallest cardinal that does not13

inject into P(κ). Steel ([18], Theorem 8.26) calls this phenomenon the boldface GCH at κ which is the14

assertion that κ+ does not inject into P(κ). Say that the boldface GCH holds below κ if the boldface GCH15

holds for all δ < κ.16

The boldface GCH at ω or the statement that there are no uncountable wellorderable subsets of R is a17

very important property of many nice choiceless framework for the set theoretic universe. It follows from18

classical regularity properties. If countable choice for R, ACR
ω, holds and all subsets of R have the property of19

Baire, then wellordered unions of meager sets are meager. This implies R is not wellorderable. If in addition,20

all subsets of R have the perfect set property, then every uncountable subset of R cannot be wellorderable.21

Thus the boldface GCH at ω holds under ACR
ω and all subsets of R have the property of Baire and the perfect22

set property. If ω1 is measurable (there is a countably complete nonprincipal ultrafilter on ω1), then also the23

boldface GCH at ω holds (see Fact 3.2). These properties are all consequences of the axiom of determinacy,24

AD, which states that every infinite two player game has a winning strategy for one of the two players. AD+
25

is Woodin’s extension of the axiom of determinacy.26

The boldface GCH at ω is very important for the basic theory of determinacy. One important consequence27

is that if the boldface GCH at ω holds,M is an inner model of ZFC, and P ∈M is a forcing which is countable28

in the real world, then in the real world, there is a generic G ⊆ P which is P-generic over M . The existence29

of generics for forcings countable in the real world is used in Woodin’s analysis of nice models of AD+ as30

symmetric extension of their HOD-type submodels using Vopěnka forcing or ordinal definable ∞-Borel code31

forcing. The boldface GCH at ω synergizes well with the Baire property. For example, Woodin ([15] Theorem32

5.42 Claim 2) showed that ACR
ω, the boldface GCH at ω, and all subsets of R have the Baire property, then33

for any set A, if P ∈ HOD{A} is a forcing which is countable in the real world, then there is a comeager set34

of G ⊆ P which are P-generic over HOD{A} and moreover HOD{A}[G] = HOD{A,G}. Recently, [2] used this35

observation of Woodin to show the following cardinality computations: Assume ACR
ω, all subsets of R have36

the Baire property, and the boldface GCH at ω holds, then |ωω1| < |<ω1ω1|, ωω1 does not inject into R×ON,37

and S1 does not inject into ωω1 (where S1 = {f ∈ [ω1]
<ω1 : sup(f) = ω

L[f ]
1 }).38
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The boldface GCH at ω and all subsets of R have the Baire property proves the following result: ([9]39

Proposition 3.5) For every Φ : R → P(ON), there exists a comeager K and countable E ⊆ P(ON) so that40

for all r ∈ K, there exists an F ⊆ E so that Φ(r) =
⋃

F . This result is used to prove some interesting41

combinatorial results under AD+. Let Θ be the supremum of the ordinals onto which R surjects. By [9]42

Lemma 3.8 and Theorem 4.3, under AD+, if κ < Θ is an cardinal of uncountable cofinality, then there43

are no maximal almost disjoint family A on κ such that ¬(|A| < cof(κ)). More recently, the above fact44

was used to obtain large sets with respect to a normal measure or partition filters which are simultaneous45

homogeneous for many partitions. This is used in [1] to show under AD+ that there is a four-element basis46

for linear ordering on R × κ when κ < Θ is a regular cardinal and there is a twelve-element basis for the47

linear orderings on R× κ when κ < Θ is a singular cardinal of uncountable cofinality.48

The axiom of determinacy influences most strongly the sets which are surjective images of R. Steel ([18]49

Theorem 8.26) showed that in L(R), the boldface GCH holds below Θ. Woodin ([19] Theorem 2.16) extended50

these methods to show that AD+ proves the boldface GCH holds below Θ.51

The general boldface GCH plays an important role in the structure of the cardinality of sets which are52

nonwellorderable but linearly orderable (or equivalently, sets which are in bijection with subsets of the53

power set of an ordinal). If κ is a cardinal, let PB(κ) be the set of bounded subsets of κ. By [2] and [6]54

Theorem 4.8, if the boldface GCH holds below κ, then ¬([κ]cof(κ)| ≤ |PB(κ)|). If κ is regular cardinal and55

the boldface GCH at κ holds, then |[κ]<κ| < |P(κ)|. Let B(ω, κ) be the set of all f : ω → κ such that56

sup(f) < κ. If cof(κ) > ω, then ωκ = B(ω, κ). However, [2] shows that if the boldface GCH holds below κ,57

then |B(ω, κ)| < |ωκ| if cof(κ) = ω.58

Steel’s and Woodin’s result that the boldface GCH holds below Θ can be regarded as the first step in59

classifying the cardinal exponentiations below Θ. Substantial evidence from [5], [6], [8], [7], and [10] suggests60

that cardinal exponentiation follows a very elegant simple behavior called the ABCD Conjecture: Under61

AD+, for all cardinals ω ≤ α ≤ β < Θ and ω ≤ γ ≤ δ < Θ, |αβ| ≤ |γδ| if and only if α ≤ γ and β ≤ δ.62

Recently, [2] showed that under AD+, if ω < κ < Θ and ϵ < κ, then PB(κ) does not inject into ϵON, the63

class of ϵ-length sequences of ordinals. By combining the latter result and the the boldface GCH below Θ,64

[2] proved the ABCD conjecture under AD+.65

The proof of the boldface GCH below Θ uses the inner model theory analysis of HOD. First, Steel ([17],66

[20], and [18] Theorem 8.26) showed that if L(R) |= AD, then L(R) |= “the boldface GCH below Θ”. To show67

this, Steel showed that HODL(R) ↾ δ21 is a direct limit of a directed system of certain iterable mice. Woodin68

(as sketched in [19] Theorem 2.16) generalized this argument to show AD+ proves the boldface GCH below69

Θ. To do this, one first applies Suslin-co-Suslin reflection to bring the question of the boldface GCH at some70

κ < Θ into a nice model of AD+. Woodin then showed that a certain HOD-type submodel of this nice AD+
71

model has a direct system analysis using hybrid strategy mice.72

More recently, many purely combinatorial questions of determinacy have been resolved below ωω or the73

projective ordinals by classical determinacy methods to provide evidence before a general proof using inner74

model theory is found. The boldface GCH at ω was known by the classical regularity properties or using the75

fact that ω1 is measurable. The boldface GCH at ω1 was known by the fact that ω2 is measurable since it is76

a weak partition cardinal as shown by Martin. Remarkably, it seems that Steel established the full boldface77

GCH below Θ without even knowing that the boldface GCH holds at ω2 by classical determinacy arguments.78

This paper will give a proof that the boldface GCH holds below ωω using combinatorial methods of AD.79

(It should be noted that by the Moschovakis coding lemma, if κ < ΘL(R), the boldface GCH at κ holds in80

the real world if and only if L(R) |= “the boldface GCH holds at κ”. Thus Steel’s result actually implies that81

AD proves the boldface GCH below ΘL(R).) The paper will work with a combinatorial principle of ω1 which82

is true in AD. Let ⋆ denote the following principle. (See Definition 2.10.)83

⋆ For every function f : ω1 → ω1, there is a Kunen function K which bounds f .84

ω1 →∗ (ω1)
ω1
2 is the strong partition relation on ω1. Martin showed that AD implies ω1 →∗ (ω1)

ω1
2 . See85

Definition 2.10 for the definition of a Kunen function. Essentially, a Kunen function bounding f : ω1 → ω186

is a sequence ⟨φα : α < ω1⟩ such that there is a club C ⊆ ω1 so that for all α ∈ C, φα is a surjection of α87

onto f(α). Kunen proved that AD implies every function f : ω1 → ω1 has a Kunen function bounding it88

by defining what is known as a Kunen tree. Both of these results are important elementary consequences of89

AD, but this paper will only use ω1 →∗ (ω1)
ω1
2 and ⋆. One can show that over ω1 →∗ (ω1)

2
2, ⋆ is equivalent90
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to jµ1
ω1
(ω1) = ω2 where µ1

ω1
is the club filter on ω1. Kleinberg [14] studied the cardinals below ωω using91

the hypothesis that ω1 →∗ (ω1)
ω1
2 and jµ1

ω1
(ω1) = ω2. It seems that ⋆ is much more directly practical than92

jµ1
ω1
(ω1) = ω2. AD is the only theory in which ω1 →∗ (ω1)

ω1
2 and ⋆ (or jµ1

ω1
(ω1) = ω2) is known to hold.93

AD, using the method of good coding system by Martin, is the only known theory that implies the existence94

of a strong partition cardinal. Radin forcing was used by Mitchell ([16]) to produce a model in which the95

club filter µ1
ω1

is a countably complete ultrafilter and by Woodin to produce a model in which ω1 is a weak96

partition cardinal (ω1 →∗ (ω1)
ϵ
2 for all ϵ < ω1). However, it seems that AD is still the only known theory in97

which µ1
ω1

is a countably complete ultrafilter and jµ1
ω1
(ω1) = ω2.98

The main result of the paper is that ω1 →∗ (ω1)
ω1
2 and ⋆ imply the boldface GCH below ωω. The paper is99

completely self-contained. The combinatorial methods used here can be generalized using Jackson’s theory100

of descriptions ([11]) for the projective ordinals to show the boldface GCH holds below the supremum of the101

projective ordinals, sup{δ1n : n ∈ ω}, and a bit beyond under AD. These methods show the boldface GCH at102

a level far below Θ. Only inner model theory is known to prove the boldface GCH below Θ assuming AD+.103

2. Partition Relations and Ultrapowers by Partition Filters104

If X is a set and Y is a class, then XY is the class of all functions f : X → Y . If ϵ ∈ ON and X ⊆ ON is105

a set, then [X]ϵ is the set of all increasing functions f : ϵ→ X. If κ is a cardinal, ϵ ≤ κ and γ < δ, then the106

ordinary partition relation κ→ (κ)ϵγ is the assertion that for all P : [κ]ϵ → γ, there is a β < γ and an A ⊆ κ107

with |A| = κ so that for all f ∈ [A]ϵ, P (f) = β. However one will need the correct type partition relations108

here since one will be primarily interested in the ultrapowers by the partition measures obtained using the109

correct type partition relations.110

Definition 2.1. Let ϵ ∈ ON and f : ϵ→ ON be a function.111

• f is discontinuous everywhere if and only if for all α < ϵ, sup(f ↾ α) = sup{f(ᾱ) : ᾱ < α} < f(α).112

• f has uniform cofinality ω if and only if there is a function F : ϵ×ω → ON so that for all α < ϵ and113

n ∈ ω, F (α, n) < F (α, n+ 1) and f(α) = sup{F (α, n) : n ∈ ω}.114

• f has the correct type if and only if f is both discontinuous everywhere and has uniform cofinality115

ω.116

If X ⊆ ON and ϵ ∈ ON, then let [X]ϵ∗ denote the set of all increasing function f : ϵ→ X of the correct type.117

Note that [κ]1∗ is the set of ordinals below κ of cofinality ω.118

Definition 2.2. Let κ be an uncountable cardinal, ϵ ≤ κ, and γ < κ. The correct type partition relation119

κ→∗ (κ)ϵγ is the statement that for all P : [κ]ϵ∗ → γ, there is a β < γ and a C ⊆ κ which is a club subset of120

κ so that for all f ∈ [C]ϵ∗, P (f) = β.121

If κ is an uncountable cardinal, ϵ ≤ κ, and γ < κ, then κ →∗ (κ)<ϵ
γ is the statement that for all ϵ̄ < ϵ,122

κ→∗ (κ)ϵ̄γ . If κ is an uncountable cardinal, ϵ ≤ κ, and γ ≤ κ, then κ→∗ (κ)ϵ<γ is the statement that for all123

γ̄ < γ, κ→∗ (κ)ϵγ̄ . If κ is an uncountable cardinal, ϵ ≤ κ, and γ ≤ κ, then κ→∗ (κ)<ϵ
<γ is the statement that124

for all ϵ̄ < ϵ and γ̄ < γ, κ→∗ (κ)ϵ̄γ̄ .125

If κ→∗ (κ)<κ
2 , then κ is called a weak partition cardinal. If κ→∗ (κ)κ2 , then κ is called a strong partition126

cardinal. If κ→∗ (κ)κ<κ, then κ is called a very strong partition cardinal.127

One can show that κ→ (κ)ω·ϵ
γ implies κ→∗ (κ)ϵγ and κ→∗ (κ)ϵγ implies κ→ (κ)ϵγ for all ϵ ≤ κ and γ < κ.128

Note that every function of uniform cofinality ω must take range among the limit ordinals. Thus for129

any cardinal κ and 1 ≤ ϵ ≤ κ, [κ]ϵ∗ ̸= ∅ requires that κ be an uncountable cardinal. Thus the notions of130

correct type function and the correct type partition relations are only meaningful for uncountable cardinals.131

Partition on ω (and notions such as the Ramsey property) can only be expressed using the ordinary partition132

relation.133

Definition 2.3. Let κ be an uncountable cardinal and ϵ ≤ κ. Define the ϵ-exponent (correct type) partition134

filter µϵ
κ on [κ]ϵ∗ by A ∈ µϵ

κ if and only if there is a club C ⊆ κ so that [C]ϵ∗ ⊆ A. Note that µ1
κ is the ω-club135

filter.136

If X ⊆ ON, then let enumX : ot(X) → X be the increasing enumeration of X. An ordinal γ is indecom-137

posable if and only if for all α, β < γ, α+ β < γ and α · β < γ. If κ is a cardinal, X ⊆ κ, ot(X) = κ, α < κ,138

and γ < κ, then let nextγX(α) be the (1 + γ)th-element of X greater than α.139

3



The following results says that if C ⊆ κ is a club, then there is a club D ⊆ C which is very thin inside of140

C. This club is particularly useful for many constructions.141

Fact 2.4. Let κ be an uncountable regular cardinal. Let C ⊆ κ be a club consisting entirely of indecomposable142

ordinals. Let D = {α ∈ C : enumC(α) = α}. Then D is a club subset of C and for any ϵ ∈ D and143

α, β, γ, δ < ϵ, nextα·β+γ
C (δ) < ϵ.144

Proof. D is easily seen to be closed. Let α < κ. Let α0 = α + 1. If αn ∈ C has been defined, then let145

αn+1 = enumC(αn + 1). Let αω = sup{αn : n ∈ ω} and note that α < αω ∈ C since C is a club. For all146

β < αω, there is an n ∈ ω so that β < αn. Thus enumC(β) < enumC(αn) < enumC(αn + 1) = αn+1 <147

αω. Since {enumC(β) : β < αω} ⊆ {γ ∈ C : γ < αω}, ot{γ ∈ C : γ < αω} = αω. Since αω ∈ C,148

enumC(αω) = αω. Thus α < αω and αω ∈ D. This shows that D is unbounded. Thus D is a club. Now149

suppose ϵ ∈ D and α, β, γ, δ < ϵ. Since ϵ ∈ D ⊆ C and C consists entirely of indecomposable ordinals, ϵ150

is an indecomposable ordinal. Since ϵ is in particular a limit ordinal and ϵ = enumC(ϵ) > δ, there is some151

ν < ϵ so that δ < enumC(ν) < enumC(ϵ) = ϵ. Since ϵ is indecomposable, ν + α · β + γ < ϵ. Note that152

nextα·β+γ
C (δ) < enumC(ν + α · β + γ) < enumC(ϵ) = ϵ. □153

Fact 2.5. Let κ be an uncountable cardinal.154

(1) κ→∗ (κ)22 implies that κ is regular.155

(2) For all ϵ ≤ κ, κ→∗ (κ)ϵ2 implies µϵ
κ is an ultrafilter.156

(3) For all ϵ ≤ κ and γ < κ, κ→∗ (κ)ϵγ implies µϵ
κ is a γ+-complete ultrafilter.157

(4) If ϵ < κ, then κ→∗ (κ)ϵ+ϵ
2 implies κ→∗ (κ)ϵ<κ. Thus κ→∗ (κ)<κ

2 implies κ→∗ (κ)<κ
<κ.158

Proof. (1) Suppose κ is not regular. Let δ = cof(κ) < κ and ρ : δ → κ be an increasing cofinal function.159

Define P : [κ]2 → 2 by P (α, β) = 0 if and only if there exists an η < δ so that α < ρ(η) < β. By κ→∗ (κ)22,160

let C ⊆ κ be a club homogeneous for P . First, suppose C is homogeneous for P taking value 0. For each161

α < κ, let ηα = enumC(ω · α + ω). For all α < κ, (ηα, ηα+1) ∈ [C]2∗. P (ηα, ηα+1) = 0 implies there is a162

ξ < δ so that ηα < ρ(ξ) < ηα+1. Let ξα be the least ξ such that ηα < ρ(ξ) < ηα+1. For any α < ᾱ < κ,163

ρ(ξα) < ηα+1 ≤ ηᾱ < ρ(ξᾱ). Since ρ is an increasing function, this implies that ⟨ξα : α < κ⟩ is an increasing164

function of κ into δ which is impossible since δ < κ. Next, suppose C is homogeneous for P taking value 1.165

Let α be any element of [C]1∗. Since ρ is cofinal, fix ξ̄ < δ so that α < ρ(ξ̄). Since C is a club, let β be any166

element of [C]1∗ so that ρ(ξ̄) < β. Thus α < ρ(ξ̄) < β. However, P (α, β) = 0 implies that there is no ξ < δ167

with α < ρ(ξ) < β which is contradiction. So C is not homogeneous for P which also a contradiction.168

(2) Let X ⊆ [ω1]
ϵ
∗. Define PX : [κ]ϵ → 2 by PX(ℓ) = 1 if and only if ℓ ∈ X. By κ→∗ (κ)ϵ2, there is a club169

C homogeneous for P . If C is homogeneous for P taking value 1, then [C]ϵ∗ ⊆ X and hence X ∈ µϵ
κ. If C is170

homogeneous for P taking value 0, then [C]ϵ∗ ⊆ [κ]ϵ∗ \X and thus [κ]ϵ∗ \X ∈ µϵ
κ.171

(3) Suppose µϵ
κ is not γ+-complete. Let δ < γ+ and ⟨Xξ : ξ < δ⟩ is a sequence in µϵ

κ such that172 ⋂
ξ<δXξ /∈ µϵ

κ. Let ϕ : γ → δ be a surjection. For η < γ, let Yη = Xϕ(η) and note that ⟨Yη : η < γ⟩ is a173

sequence in µϵ
κ and

⋂
η<γ Yη /∈ µϵ

κ. Let C0 ⊆ κ be a club so that [C0]
ϵ
∗ ⊆ [κ]ϵ∗ \

⋂
η<γ Yη. Define P : [C0]

ϵ
∗ → γ174

by P (ℓ) is the least η < γ so that ℓ /∈ Yη. By κ →∗ (κ)ϵγ , there is an η̄ < γ and a club C1 ⊆ C0 so that for175

all ℓ ∈ [C1]
ϵ
∗, P (ℓ) = η̄. Thus [C1]

ϵ
∗ ∩ Yη̄ = ∅. Thus Yη̄ /∈ µϵ

κ. Contradiction.176

(4) Let γ < κ and P : [κ]ϵ∗ → γ. If ℓ ∈ [κ]ϵ+ϵ, then let ℓ0, ℓ1 ∈ [κ]ϵ be defined by ℓ0 = ℓ ↾ ϵ and177

ℓ1(α) = ℓ(ϵ+ α). Define Q0 : [κ]ϵ+ϵ → 2 by Q0(ℓ) = 0 if and only if P (ℓ0) = P (ℓ1). By κ→∗ (κ)ϵ+ϵ
2 , let C0178

be a club homogeneous for Q. Suppose C0 is homogeneous for Q taking value 1. Define Q1 : [κ]ϵ+ϵ → 2 by179

Q1(ℓ) = 0 if and only if P (ℓ0) < P (ℓ1). By κ →∗ (κ)ϵ+ϵ
2 , there is a club C1 ⊆ C0 which is homogeneous for180

Q1. First, suppose C1 is homogeneous for Q1 taking value 1. For each n ∈ ω, let ιn : ϵ → κ be defined by181

ιn(α) = enumC1
((ω·ϵ)·n+ω·α+ω). Let In : ϵ×ω → ω1 be defined by In(α, k) = enumC1

((ω·ϵ)·n+ω·α+k). For182

all n ∈ ω, ιn is discontinuous and In witnesses that ιn has uniform cofinality ω. Thus ιn ∈ [C1]
ϵ
∗. Note that183

for all n < ω, sup(ιn) < ιn+1(0). For each n ∈ ω, there is an ℓn ∈ [C1]
ϵ+ϵ
∗ so that ℓ0n = ιn and ℓ1n = ιn+1. For184

each n ∈ ω, Q0(ℓn) = 1 and Q1(ℓn) = 1 imply that P (ιn) = P (ℓ0n) > P (ℓ1n) = P (ιn+1). Thus ⟨P (ιn) : n ∈ ω⟩185

is an infinite descending sequence of ordinals which is a contradiction. Now suppose C1 is homogeneous for186

Q1 taking value 1. For each ξ < γ + 1, let τξ(α) = enumC1
((ω · ϵ) · ξ + ω · α + ω). Let Tξ : ϵ × ω → ω1 by187

Tξ(α, k) = enumC1((ω ·ϵ) ·ξ+ω ·α+k). For each ξ < γ+1, τξ is discontinuous and has uniform cofinality ω as188

witnessed by Tξ. For each ξ0 < ξ1 < γ+1, there is an ℓξ0,ξ1 ∈ [C1]
ϵ+ϵ
∗ so that ℓ0ξ0,ξ1 = τξ0 and ℓ1ξ0,ξ1 = τξ1 . For189
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all ξ0 < ξ1 < γ + 1, Q0(ℓξ0,ξ1) = 1 and Q1(ℓξ0,ξ1) = 0 imply that P (τξ0) = P (ℓ0ξ0,ξ1) < P (ℓ1ξ0,ξ1) = P (τξ1).190

Thus ⟨τ(ξ) : ξ < γ + 1⟩ is order embedding of γ + 1 into γ which is impossible. Thus C0 must have191

been homogeneous for Q0 taking value 0. Let ι0, ι1 ∈ [C0]
ϵ
∗. Let ῑ ∈ [C0]

ϵ
∗ be any element such that192

max{sup(ι0), sup(ι1)} < ῑ(0). Then there are ℓ0, ℓ1 ∈ [C0]
ϵ
∗ so that ℓ00 = ι0, ℓ

0
1 = ι1 and ℓ10 = ῑ = ℓ11.193

Then Q0(ℓ0) = 0 = Q1(ℓ1) implies that P (ι0) = P (ℓ00) = P (ℓ10) = P (ῑ) = P (ℓ11) = P (ℓ01) = P (ι1). Since194

ι0, ι1 ∈ [C0]
ϵ
∗ were arbitrary, one has that P is constant on [C0]

ϵ
∗. □195

Fact 2.6. Let κ be an uncountable cardinal, 1 ≤ ϵ < κ, δ < ϵ, κ →∗ (κ)
δ+1+(ϵ−δ)
2 , and κ →∗ (κ)ϵ−δ

<κ . Let196

Φ : [κ]ϵ → κ has the property that {ι ∈ [κ]ϵ : Φ(ι) < ι(δ)} ∈ µϵ
κ. Then there is a club C ⊆ κ and a function197

Ψ : [C]δ∗ → κ so that for all ι ∈ [C]ϵ∗, Φ(ι) = Ψ(ι ↾ δ).198

Proof. If ℓ ∈ [κ]
δ+1+(ϵ−δ)
2 , let ℓ̂ ∈ [ω1]

ϵ
∗ be defined by ℓ̂(α) = ℓ(α) if α < δ and ℓ̂(α) = ℓ(δ + 1 + (α − δ)) if199

δ ≤ α < ϵ. Let C0 ⊆ κ be a club consisting entirely of indecomposable ordinals so that for all ι ∈ [C0]
ϵ
∗,200

Φ(ι) < ι(δ). Define P : [C]δ+1+(ϵ−δ) → 2 by P (ℓ) = 0 if and only if Φ(ℓ̂) < ℓ(δ). By κ →∗ (κ)
δ+1+(ϵ−δ)
2 ,201

there is a club C1 ⊆ C0 which is homogeneous for P . Let C2 = {α ∈ C1 : enumC1
(α) = α}. Pick any202

ι ∈ [C2]
ϵ
∗. Since Φ(ι) < ι(δ) because ι ∈ [C2]

ϵ
∗ ⊆ [C0]

ϵ
∗, next

ω
C1

(Φ(ι)) < ι(δ) by Fact 2.4. Let ℓ ∈ [C1]
δ+1+(ϵ−δ)
∗203

be such that ℓ̂ = ι and ℓ(δ) = nextωC1
(Φ(ι)) (and note that ℓ has uniform cofinality ω since ι does and204

cof(nextωC1
(Φ(ι))) = ω). Since Φ(ℓ̂) = Φ(ι) < nextωC1

(Φ(ι)) = ℓ(δ), one has P (ℓ) = 0. Thus C1 is homogeneous205

for P taking value 0. For any σ ∈ [C2]
δ
∗, let Φσ : [C2\(sup(σ)+1)]ϵ−δ

∗ → κ be defined by Φσ(τ) = Φ(σ τ̂). For206

any τ ∈ [C2 \ (sup(σ) + 1)]ϵ−δ
∗ , let ℓσ,τ = σ ⟨̂nextωC1

(sup(σ))⟩̂ τ . Note that ℓσ,τ ∈ [C1]
δ+1+(ϵ−δ)
∗ , ℓ̂σ,τ = σ τ̂ ,207

and ℓ(δ) = nextωC1
(sup(σ)). P (ℓσ,τ ) = 0 implies that Φσ(τ) = Φ(σ τ̂) = Φ(ℓ̂σ,τ ) < ℓ(δ) = nextωC1

(sup(σ)).208

By κ →∗ (κ)ϵ−δ
<κ , µϵ−δ

κ is κ-complete. There is a γσ < κ so that for µϵ−δ
κ -almost all τ , Φσ(τ) = γσ. Define209

Q : [C2]
ϵ
∗ → 2 by Q(ι) = 0 if and only if Φ(ι) = γι↾δ. By κ →∗ (κ)ϵ2, there is a club C3 ⊆ C2 which is210

homogeneous for Q. Pick any σ ∈ [C3]
δ
∗. There is a club D ⊆ C3 \ (sup(σ) + 1) so that for all τ ∈ [D]ϵ−δ

∗ ,211

Φσ(τ) = γσ. Fix τ ∈ [D]ϵ−δ
∗ . Let ι = σ τ̂ and note that ι ∈ [C3]

ϵ
∗. Φ(ι) = Φι↾δ(τ) = Φσ(τ) = γσ = γι↾δ. Thus212

Q(ι) = 0. This shows that C3 is homogeneous for Q taking value 0. Define Ψ : [C3]
δ
∗ → κ by Ψ(σ) = γσ.213

For any ι ∈ [C3]
ϵ
∗, Q(ι) = 0 implies that Φ(ι) = γι↾δ = Ψ(ι ↾ δ). □214

Fact 2.7. Let κ be an uncountable cardinal satisfying κ→∗ (κ)22. Then µ1
κ is normal.215

Proof. Note that κ →∗ (κ)22 implies κ →∗ (κ)1<κ by Fact 2.5. This result now follows from Fact 2.6 with216

δ = 0 and ϵ = 1. □217

Fact 2.8. Suppose ϵ < κ and κ →∗ (κ)ϵ+1
2 . Let Φ : [κ]ϵ → κ. Then there is a club C ⊆ κ so that for all218

f ∈ [C]ϵ∗, Φ(f) < nextωC(sup(f)).219

Proof. Define P : [κ]ϵ+1
∗ → 2 by P (g) = 0 if and only if Φ(g ↾ ϵ) < g(ϵ). By κ →∗ (κ)ϵ+1

2 , there is a club220

C ⊆ κ which is homogeneous for P . Pick any f ∈ [C]ϵ∗. Let γ = nextωC(Φ(f)). Let g = f ⟨̂γ⟩ and note221

that g ∈ [C]ϵ+1
∗ . Since Φ(g ↾ ϵ) = Φ(f) < nextωC(Φ(f)) = γ = g(ϵ), one has that P (g) = 0. Since C is222

homogeneous for P and g ∈ [C]ϵ+1
∗ , one has that C is homogeneous for P taking value 0. For any f ∈ [C]ϵ∗,223

let gf = f ⟨̂nextωC(sup(f))⟩. P (gf ) = 0 implies that Φ(f) = Φ(gf ↾ ϵ) < gf (ϵ) = nextωC(sup(f)). □224

Note that the ordinary partition relation ω → (ω)n2 for n ∈ ω is the finite Ramsey theorem. For an225

uncountable cardinals κ, the ordinary partition relation κ → (κ)22 is equivalent to the weak compactness of226

κ which is compatible with the axiom of choice. However, the correct type partition relation κ →∗ (κ)22227

implies µ1
κ is normal which can be used to show ωκ is not a wellorderable set. The finite exponent correct228

type partition relation already seems to imply many of the consequences of the infinite exponent ordinary229

partition relation. If ACR
ω holds and ϵ < ω1, then a function f : ϵ→ ω1 has uniform cofinality ω if and only230

if the range of f consists of limit ordinals. However if µ1
ω1

is a normal ultrafilter, then one can show that231

the identity function id : ω1 → ω1 does not have uniform cofinality ω. The notion of a correct type function232

is a nontrivial concept when handling functions f : ω1 → ω1 which will happen frequently in this paper.233

Fact 2.9. (Martin; [12], [11], [4], [3]) Assume AD. ω1 →∗ (ω1)
ω1
<ω1

.234
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Since AD implies ω1 → (ω1)
ω1
<ω1

, one has that for all ϵ ≤ ω1, µ
ϵ
ω1

are countably complete ultrafilters.235

Actually, AD implies there are no nonprincipal ultrafilters on ω which can be used to show any ultrafilter on236

any set is countably complete.237

Definition 2.10. Let
∏

α<ω1
α = {(α, β) : β < α}. A Kunen function is a function K :

∏
α<ω1

α → ω1238

such that for all α < ω1, {K(α, β) : β < α} is an ordinal which will be denote χK
α . Define ΞK : ω1 → ω1 by239

ΞK(α) = χK
α . If β < ω1, then let Kβ : (ω1 \ β + 1) → ω1 be defined by Kβ(α) = K(α, β).240

Let f : ω1 → ω1. The Kunen function K bounds f if and only if {α < ω1 : f(α) ≤ ΞK(α)} ∈ µ1
ω1
. The241

Kunen function K strictly bounds f if and only if {α ∈ ω1 : f(α) < ΞK(α)} ∈ µ1
ω1
.242

Fact 2.11. (Kunen; [11] Lemma 4.1)) AD. For every function f : ω1 → ω1, there is a Kunen function243

K :
∏

α<ω1
α→ ω1 which bounds f .244

Definition 2.12. Let ⋆ be the following statement.245

• For any function f : ω1 → ω1, there is a Kunen function K :
∏

α<ω1
α→ ω1 which bounds f .246

Note that ω1 →∗ (ω1)
ω1
2 and ⋆ follows from AD by Fact 2.9 and Fact 2.11. The main result of the paper247

will be proved from the combinatorial principles ω1 →∗ (ω1)
ω1
2 and ⋆.248

Definition 2.13. If µ is an measure on a set X. If f and g are two functions on X, then let f ∼µ g if249

and only if {x ∈ X : f(x) = g(x)} ∈ µ. If f : X → ON and g : X → ON, then write f <µ g if and only if250

{x ∈ X : f(x) < g(x)} ∈ µ. If f : X → ON, then let [f ]µ be the class of all functions g with g ∼µ f . The251

ultrapower
∏

X ON/µ is the set of ∼µ equivalence class of functions f : X → ON. The ultrapower ordering252

on
∏

X ON/µ is defined by x ≺µ y if and only if there exists f, g : X → ON so that x = [f ]µ and y = [g]µ253

and f <µ g. jµ : ON →
∏

X ON/µ is defined by jµ(α) = [cα]µ where cα : X → {α} is the constant function.254

If µ is a measure and x ∈ jµ(ω1), then let initµ(x) = {y ∈ jµ(ω1) : y ≺µ x}.255

Fact 2.14. Assume ω1 →∗ (ω1)
ω1
2 . jµ1

ω1
(ω1) ≤ ω2 implies ⋆.256

Proof. ω1 →∗ (ω1)
2
2 implies µ1

ω1
, the club filter on ω1, is a normal ultrafilter on ω1 by Fact 2.7. Thus257

ω1 = [id]µ1
ω1

where id : ω1 → ω1 is the identity function. Now suppose jµ1
ω1
(ω1) ≤ ω2. Let f : ω1 → ω1 be258

any function with [id]µ1
ω1

≤ [f ]µ1
ω1
. Thus ω1 = [id]µ1

ω1
≤ [f ]µ1

ω1
< jµ1

ω1
(ω1) ≤ ω2. Let b : ω1 → initµ1

ω1
([f ]µ1

ω1
)259

be a bijection. Define a wellordering ≺ on ω1 by α ≺ β if and only if b(α) < b(β). Let W = (ω1,≺) and260

note that ot(W) = [f ]µ1
ω1
. For each α < ω1, let Wα = (α,≺↾ α). If β < α < ω1, then let ot(Wα, β) be the261

rank of β in Wα. Define K :
∏

α<ω1
α → ω1 by K(α, β) = ot(Wα, β). One seeks to show that K is a Kunen262

function for f . It is clear that for all α ∈ ω1, {K(α, β) : β < α} = {ot(Wα, β) : β < α} = ot(Wα). Thus263

ΞK(α) = ot(Wα). Suppose η < [f ]µ1
ω1
. Let ξη = b−1(η). Define gη : ω1\(ξη+1) → ω1 by gη(α) = ot(Wα, ξη).264

Note that for all α ∈ ω1 \ (ξη + 1), gη(α) < ot(Wα) = ΞK(α). Define Ψ : initµ1
ω1
([f ]µ1

ω1
) → initµ([Ξ

K]µ1
ω1
)265

by Ψ(η) = [gη]µ1
ω1
. Suppose η0 < η1 < [f ]µ1

ω1
. Let ζ = max{ξη0

, ξη1
}. For all α ∈ ω1 \ (ζ + 1), gη0

(α) =266

ot(Wα, ξη0) < ot(Wα, ξη1) = gη1(α) since b(ξη0) = η0 < η1 < b(ξη1). Thus Ψ(η0) = [gη0 ]µ1
ω1

< [gη1 ]µ1
ω1

=267

Ψ(η1). Ψ is an order embedding of initµ([f ]µ1
ω1
) into initµ1

ω1
([ΞK]). Thus [f ]µ1

ω1
≤ [ΞK]µ1

ω1
. This shows that268

{α ∈ ω1 : f(α) ≤ ΞK(α)} ∈ µ1
ω1
. K is a Kunen function bounding f . □269

Fact 2.15. Assume ω1 →∗ (ω1)
2
2. Let f : ω1 → ω1 and K be a Kunen function strictly bounding f . Then270

there is a γ < ω1 so that f ∼µ Kγ .271

Proof. ω1 →∗ (ω1)
2
2 implies that µ1

ω1
is a normal ultrafilter by Fact 2.7. Let A = {α ∈ ω1 : f(α) < ΞK(α)} ∈272

µ. For each α ∈ ω1, one has that f(α) < ΞK(α) = χK
α = {K(α, β) : β < α}. Define g : A → ω1 by g(α) is273

the least β < α so that K(α, β) = f(α). For all α ∈ A, g(α) < α. Since µ1
ω1

is normal, there is a γ < ω1 and274

B ⊆ A with B ∈ µ and g(α) = γ for all α ∈ B. Thus Kγ(α) = f(α) for all α ∈ B. □275

Fact 2.16. Assume ω1 →∗ (ω1)
2
2. Let f : ω1 → ω1 and K be a Kunen function bounding f . Then there is276

an injection Γ : initµ1
ω1
([f ]µ1

ω1
) → ω1 so that for all x ∈ initµ1

ω1
([f ]µ1

ω1
), [KΓ(x)]µ1

ω1
= x.277

Proof. Suppose x ≺µ1
ω1

[f ]µ1
ω1
. Let g : ω1 → ω1 represent x. Then g <µ1

ω1
f and hence K is also a Kunen278

function bounding g. By Fact 2.15, there is a γ < ω1 so that Kγ ∼µ g. Let Γ(x) be the least γ such that279

[Kγ ]µ1
ω1

= x. This defines the desired injection Γ : [f ]µ1
ω1

→ ω1. □280
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Dependent choice implies ultrapowers of ordinals are wellordering. However the existence of Kunen281

functions bounding functions from ω1 to ω1 is sufficient to show that the ultrapower of ω1 by the finite282

exponent partition measures on ω1 are wellorderings.283

Fact 2.17. Assume ω1 →∗ (ω1)
2
2 and ⋆. The ultrapower jµ1

ω1
(ω1) =

∏
ω1
ω1/µ

1
ω1

is a wellordering.284

Proof. Suppose the ultrapower is not wellfounded. There is an A ⊆
∏

ω1
ω1/µ

1
ω1

which has no minimal285

element according to the ultrapower ordering ≺µ1
ω1
. Pick any element x ∈ A. Let f : ω1 → ω1 be a286

representative for x. Let K be a Kunen function bounding f . By Fact 2.16, there is an injection Γ :287

initµ1
ω1
([f ]µ1

ω1
) → ω1 so that for all y ≺µ1

ω1
[f ]µ1

ω1
, y = [KΓ(y)]µ1

ω1
. Let B = Γ[[f ]µ1

ω1
] be the range of Γ.288

Let δ0 be the least ordinal δ ∈ B. Suppose δn has been defined. Since [f ]µ1
ω1

has no ≺-least element,289

there is some δ ∈ B so that Kδ <µ1
ω1

Kδn . Let δn+1 be the least δ ∈ B so that Kδ <µ1
ω1

Kδn . For each290

n ∈ ω, Dn = {α ∈ ω1 : Kδn+1(α) < Kδn(α)} ∈ µ1
ω1
. Since µ1

ω1
is countably complete, D =

⋂
n∈ωDn ∈ µ1

ω1
291

and hence nonempty. Let ᾱ ∈ D. Then ⟨Kδn(ᾱ) : n ∈ ω⟩ is an infinite descending sequence of ordinals.292

Contradiction. □293

Fact 2.18. Assume ω1 →∗ (ω1)
2
2 and ⋆. jµ1

ω1
(ω1) ≤ ω2.294

Proof. By Fact 2.17, jµ1
ω1
(ω1) is a wellordering. By Fact 2.16, each initial segment of jµ1

ω1
(ω1) injects into295

ω1. Thus jµ1
ω1
(ω1) ≤ ω2. □296

Fact 2.19. Assume ω1 →∗ (ω1)
2
2. ⋆ and jµ1

ω1
(ω1) ≤ ω2 are equivalent.297

Proof. This follows from Fact 2.14 an Fact 2.18. □298

Fact 2.20. Let κ be an uncountable cardinal and µ be a normal ultrafilter on κ containing no bounded subsets299

of κ. Let q : κ→ κ be a function and A ∈ µ. Then the set B = {α ∈ A : (∀α′ < α)(q(α′) < α)} ∈ µ.300

Proof. Suppose not. Then C = κ \ B ∈ µ. Let f : C → κ be defined by f(α) is the least α′ < α so that301

α ≤ q(α′). Since µ is normal, there is a D ⊆ C with D ∈ µ and a β < κ so that for all α ∈ D, h(α) = β.302

Thus for all α ∈ D, α ≤ q(h(α)) = q(β). This is impossible since D is an unbounded set. □303

Fact 2.21. Let κ be an uncountable cardinal and µ be a normal ultrafilter on κ containing no bounded subsets304

of κ. If A ∈ µ, then {α ∈ A : enumA(α) = α} ∈ µ.305

Proof. By applying Fact 2.20 to enumA, the set Ā = {α ∈ κ : (∀α′ < α)(enumA(α
′) < α)} ∈ µ. Let306

B = A ∩ Ā ∈ µ. If α ∈ B, then sup(enumA ↾ α) = α and thus enumA(α) = α since α ∈ A. So307

B ⊆ {α ∈ A : enumA(α) = α}. □308

Fact 2.22. (Martin) Assume κ is an uncountable cardinal satisfying κ→∗ (κ)κ2 .309

(1) Let µ be an ultrafilter on κ such that jµ(κ) is a wellordering. Then jµ(κ) is a cardinal.310

(2) Let µ be a normal ultrafilter on κ which contains no bounded subsets of κ such that jµ(κ) is a311

wellordering. Then jµ(κ) is a regular cardinal.312

Proof. (1) First assume µ is an ultrafilter on an uncountable cardinal satisfying κ →∗ (κ)κ2 and jµ(κ) is a313

wellordering (and thus one may assume jµ(κ) is an ordinal). For the sake of contradiction, suppose jµ(κ) is314

not a cardinal. Then there is a λ < jµ(κ) and an injection Φ : jµ(κ) → λ. If f : κ→ κ is a function, then let315

f0 = f(2 · α) and f1 = f(2 · α+ 1). Define P : [κ]κ∗ → 2 by P (f) = 0 if and only if Φ([f0]µ) = Φ([f1]µ). By316

κ→∗ (κ)κ2 , there is a club C0 ⊆ κ which is homogeneous for P . Take any f ∈ [C0]
κ
∗ . Note that for all α < κ,317

f0(α) < f1(α) and hence [f0]µ < [f1]µ. Since Φ is injective, Φ([f0]µ) ̸= Φ([f1]µ) and thus P (f) = 1. So C0318

is homogeneous for P taking value 1. Define Q : [C0]
κ
∗ → 2 by Q(f) = 0 if and only if Φ([f0]µ) < Φ([f1]µ).319

By κ→∗ (κ)κ2 , there is a club C1 ⊆ C0 which is homogeneous for Q. First suppose C1 is homogeneous for Q320

taking value 1. For each k ∈ ω and α < κ, let gk(α) = enumC1((ω · ω) · α+ ω · k + ω). Note that gk ∈ [C1]
κ
∗ .321

For each k ∈ ω, there is an fk ∈ [C1]
κ
∗ so that f0k = gk and f1k = gk+1. Then P (fk) = 1 and Q(fk) = 1322

imply that Φ([gk+1]µ) = Φ([f1k ]µ) < Φ([f0k ]µ) = Φ([gk]µ). Thus ⟨Φ([gk]µ) : k ∈ ω⟩ is an infinite descending323

sequence in the ordinal λ which is a contradiction. Suppose C1 is homogeneous for Q taking value 0. Since324
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λ < jµ(κ), let h : κ → κ be such that [h]µ = λ. Define T = {(α, β) : α < κ ∧ β < h(α) + 2}.1 Let <lex325

be the lexicographic ordering on T . Note that the ordertype of (T,<lex) is κ. Let ψ : T → C1 be an order326

preserving function from (T,<lex) into (C1, <) of the correct type which means the following two conditions327

hold:328

• For all x ∈ T , sup{ψ(y) : y <lex x} < ψ(x).329

• There is a function Ψ : T × ω → κ so that for all x ∈ T and k ∈ ω, Ψ(x, k) < Ψ(x, k + 1) and330

ψ(x) = sup{Ψ(x, k) : k ∈ ω}.331

For any function g : κ→ κ, define ĝ : κ→ C1 by

ĝ(α) =

{
ψ(α, g(α)) g(α) < h(α) + 1

ψ(α, 0) otherwise
.

Define Ĝ : κ× ω → κ by

Ĝ(α, k) =

{
Ψ((α, g(α), k) g(α) < h(α) + 1

Ψ((α, 0), k) otherwise
.

Note that Ĝ witnesses that ĝ has uniform cofinality ω. Since ψ is discontinuous everywhere, ĝ is discontinuous
everywhere. Thus ĝ : κ → C1 is an increasing function of the correct type and hence ĝ ∈ [C1]

κ
∗ . For any

η < λ+ 1, let δη = [ĝ]µ for any g : κ→ κ such that [g]µ = η. Note that δη is independent of the choice of g
representing η. Let η0 < η1 < λ+ 1. Let g0, g1 : κ→ κ be such that η0 = [g0]µ and η1 = [g1]µ. For i ∈ 2, let
g̃0, g̃1 ∈ [C1]

κ
∗ be defined by

g̃0(α) =

{
ψ(α, g0(α)) g0(α) < g1(α) < h(α) + 1

ψ(α, 0) otherwise
and g̃1(α) =

{
ψ(α, g1(α)) g0(α) < g1(α) < h(α) + 1

ψ(α, 1) otherwise

Note that for all α < κ, g̃0(α) < g̃1(α) by the definitions above and the fact that ψ is order preserving on332

(T,<lex). For all α < κ, g̃1(α) < g̃0(α+1) since g̃1(α) = ψ(α, ξ) for some ξ < h(α)+2, g̃0(α+1) = ψ(α+1, ζ)333

for some ζ < h(α + 1) + 2, and by comparing the first coordinates since ψ is order preserving on (T,<lex).334

Thus there is an f ∈ [C1]
κ
∗ so that f0 = g̃0 and f1 = g̃1. Since [g0]µ < [g1]µ < λ + 1, one has that335

A = {α ∈ ω1 : g0(α) < g1(α) < h(α) + 1} ∈ µ. Hence for all α ∈ A, ĝ0(α) = g̃0(α) and ĝ1(α) = g̃1(α).336

Thus δη0
= [ĝ0]µ = [g̃0]µ = [f0]µ and δη1

= [ĝ1]µ = [g̃1]µ = [f1]µ. P (f) = 1 and Q(f) = 0 imply that337

δη0
= [f0]µ < [f1]µ = δη1

. Thus ⟨δη : η < λ + 1⟩ is an order preserving injection of λ + 1 into λ which is338

impossible. (Note that since jµ(κ) is an ordinal, λ < jµ(κ) is also an ordinal. For ordinals λ, λ + 1 cannot339

inject into λ.)340

(2) Now suppose µ is a normal ultrafilter on κ which does not contain any bounded subsets of κ and jµ(κ)
is an ordinal. For the sake of contradiction, suppose jµ(κ) is not regular. Then there is an infinite cardinal
λ < jµ(κ) and an increasing map ρ : λ→ jµ(κ). Define V : [κ]κ∗ → 2 by V (f) = 0 if and only if there exists a
ξ < λ so that [f0]µ < ρ(ξ) < [f1]µ (where f0, f1 ∈ [κ]κ is obtained from f ∈ [κ]κ as before). By κ→∗ (κ)κ2 ,
there is a club C0 homogeneous for V . First suppose C0 is homogeneous for V taking value 0. Let h : κ→ κ
be such that [h]µ = λ. Define W = {(α, β) : β < h(α) + 2}. As before, (W,<lex) has ordertype κ. Let
ψ : W → C0 be a order preserving function from (W,<lex) → C0 of the correct type. For any g : κ → κ,
define ǧ0, ǧ1 : κ→ κ by

ǧ0(α) =

{
ψ(α, g(α)) g(α+ 1) < h(α) + 2

ψ(0, 0) otherwise
and ǧ1(α) =

{
ψ(α, g(α) + 1) g(α+ 1) < h(α) + 2

ψ(0, 1) otherwise
.

Note that for all g : κ→ κ, ǧ0, ǧ1 ∈ [C0]
κ
∗ and for all α < κ, ǧ0(α) < ǧ1(α) < ǧ0(α+1) by arguments similar341

to the above. Thus there is some f ∈ [C0]
κ
∗ so that f0 = ǧ0 and f1 = ǧ1. Now suppose η < λ + 1. Let342

g : κ → κ be such that η = [g]µ. Let f ∈ [C0]
κ
∗ be such that f0 = ǧ0 and f1 = ǧ1. V (f) = 0 implies that343

there is a ξ < λ so that [ǧ0]µ = [f0]µ < ρ(ξ) < [f1]µ = [ǧ1]µ. Let ξη be the least such ξ and note that344

ξη is independent of the choice of g representing η. Now suppose η0 < η1 < λ + 1. Let g, p : κ → κ be345

such that η0 = [g]µ and η1 = [p]µ. Note that B = {α ∈ κ : g(α) < p(α) < h(α) + 2} ∈ µ. For all α ∈ B,346

ǧ1(α) ≤ p̌0(α). Thus ρ(ξη0) < [ǧ1]µ ≤ [p̌0]µ < ρ(ξη1). Since ρ is an increasing function, one must have347

that ξη0
< ξη1

. Thus ⟨ξη : η < λ + 1⟩ is an order preserving injection of λ + 1 into λ. This is impossible.348

1The purpose for adding 2 rather than 1 is to ensure that (α, 0), (α, 1) ∈ T for all α < κ.
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Now suppose C0 is homogeneous for V taking value 1. Let g0 ∈ [C0]
κ
∗ . Since ρ : λ → jµ(κ) is cofinal,349

there is some ξ̄ so that ρ(ξ̄) > [g0]µ. Since jµ(C0) is order isomorphic to jµ(κ), let g1 ∈ [C0]
κ
∗ be so that350

[g1]µ > ρ(ξ̄). Since g0 is an increasing function, for all α < κ, there is an α′ so that g1(α) < g0(α
′). Let q(α)351

be the least α′ so that g1(α) < g0(α
′). Since [g0]µ < ρ(ξ̄) < [g1]µ, let A0 ∈ µ be such that for all α ∈ A0,352

g0(α) < g1(α). Let A1 = {α ∈ A0 : (∀α′ < α)(q(α′) < α)} and note that A1 ∈ µ by Fact 2.20. Define353

f : κ → κ by f(2 · α) = g0(enumA1(α)) and f(2 · α + 1) = g1(enumA1(α)) for all α < κ. Note that for all354

α < κ, f(2 ·α) = g0(enumA1
(α)) < g1(enumA1

(α)) = f(2 ·α+1) since g0(γ) < g1(γ) for all γ ∈ A1. Note also355

that for all α < κ, f(2 · α + 1) = g1(enumA1
(α)) < g0(q(enumA1

(α))) < g0(enumA1
(α + 1)) = f(2 · (α + 1))356

by the definition of q and A1. This shows that f : κ→ κ is an increasing function. It is clear that f ∈ [C0]
κ
∗357

since g0, g1 ∈ [C0]
κ
∗ . Let A2 = {α ∈ A1 : enumA1(α) = α} which belongs to µ by Fact 2.21. For all i ∈ 2 and358

α ∈ A2, f
i(α) = gi(enumA1(α)) = gi(α). Thus [f i]µ = [gi]µ for both i ∈ 2. V (f) = 1 implies that there is359

no ξ < λ with [g0]µ = [f0]µ < ρ(ξ) < [f1]µ = [g1]µ. This is contradiction since [g0]µ < ρ(ξ̄) < [g1]µ. It has360

been shown that V has no homogeneous club which violates κ→∗ (κ)κ2 . □361

Fact 2.23. (Martin) Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Then jµ1

ω1
(ω1) = ω2 and ω2 is a regular cardinal.362

Proof. By Fact 2.17, jµ1
ω1
(ω1) is a wellordering. By Fact 2.16, each initial segment of jµ1

ω1
(ω1) injects into ω1.363

Thus ω1 = [id]µ1
ω1
< jµ1

ω1
(ω1) ≤ (ω1)

+ = ω2. Since Fact 2.22 implies jµ1
ω1
(ω1) must be a cardinal, one has364

that jµ1
ω1
(ω1) = ω2. Since µ1

ω1
is a normal ultrafilter by Fact 2.7, Fact 2.22 also implies that ω2 = jµ1

ω1
(ω1)365

is regular. □366

Fact 2.24. Assume ω1 →∗ (ω1)
ω1
2 . ⋆ and jµ1

ω1
(ω1) = ω2 are equivalent.367

Proof. This follow from Fact 2.14 and Fact 2.23 □368

Next, one will show that for all 1 ≤ n < ω, jµn
ω1
(ω1) = ωn+1 and cof(ωn+1) = ω2 (without assuming any369

form of dependent choice or even countable choice).370

Fact 2.25. Assume ω1 →∗ (ω1)
n+1
2 . For each 1 ≤ n < ω and g : ω1 → ω1, let Σ̂n(g) : [ω1]

n → ω1 be371

defined by Σ̂(g)(ι) = g(ι(n− 1)). Let Σn : jµ1
ω1
(ω1) → jµn

ω1
(ω1) be defined by Σn([g]µ1

ω1
) = [Σ̂(g)]µn

ω1
. Then372

Σn : jµ1
ω1
(ω1) → jµn

ω1
(ω1) is cofinal.373

Proof. Suppose x ∈ jµn
ω1
(ω1). Let f : [ω1]

n → ω1 represent x. Define Pf : [ω1]
n+1 → 2 by Pf (ℓ) = 0 if and374

only if f(ℓ ↾ n) < ℓ(n). By ω1 →∗ (ω1)
n+1
2 , there is a club C ⊆ ω1 which is homogeneous for Pf . Pick any375

ι ∈ [C]n∗ . Let γ ∈ [C]1∗ be such that f(ι) < γ. Let ℓ = ι̂ ⟨γ⟩ and note that ℓ ∈ [C]n+1
∗ . Then Pf (ℓ) = 0 since376

f(ℓ ↾ n) = f(ι) < γ = ℓ(n). This shows that C is homogeneous for Pf taking value 0. Let g : ω1 → ω1377

be defined by g(α) = nextωC(α). Let ι ∈ [C]n∗ and let ℓι = ι̂ ⟨g(ι(n − 1))⟩. Note that ℓι ∈ [C]n+1
∗ and thus378

Pf (ℓι) = 0. This implies that f(ι) = f(ℓι ↾ n) < ℓι(n) = g(ι(n−1)) = Σ̂n(g)(ι). Since ι ∈ [C]n∗ was arbitrary,379

it has been shown that x = [f ]µn
ω1

≺µn
n−1

[Σ̂n(g)]µn
ω1

= Σn([g]µ1
ω1
). □380

Fact 2.26. Assume 1 ≤ m < n < ω and ω1 →∗ (ω1)
n
2 . There is an order embedding of jµm

ω1
(ω1) into a381

proper initial segment of jµn
ω1
(ω1).382

Proof. If f : [ω1]
m → ω1, then let f̂ : [ω1]

n → ω1 be defined by f̂(ℓ) = f(ℓ ↾ m). Define Ψ : jµm
ω1
(ω1) →383

jµn
ω1
(ω1) by Ψ(x) = [f̂ ]µn

ω1
where f : [ω1]

m → ω1 represents x. One can check that Ψ is well defined384

independent of the choice of representative f for x and is an order embedding.385

Let g : [ω1]
n → ω1 be defined by g(ℓ) = ℓ(m). The claim is that the range of ψ is below [g]µn

ω1
. Let386

f : [ω1]
m → ω1. Let Pf : [ω1]

m+1 → ω1 be defined by Pf (σ) = 0 if and only if f(σ ↾ m) < σ(m). By387

ω1 → (ω1)
m+1
2 , let C0 ⊆ ω1 be a club homogeneous for Pf . Pick ι ∈ [C0]

m
∗ . Let σ = ι̂ ⟨nextωC0

(f(ι))⟩388

and note that σ ∈ [C0]
m+1
∗ . Since f(σ ↾ m) = f(ι) < nextωC0

(f(ι)) = σ(m), one has that Pf (σ) = 0.389

Thus C0 is a homogeneous for Pf taking value 0. For any ι ∈ [C0]
m
∗ , let σι = ι̂ ⟨nextωC0

(ι(m − 1))⟩.390

Pf (σι) = 0 implies that f(ι) < nextωC0
(ι(m − 1)). Let C1 = {α ∈ C0 : enumC0

(α) = α}. Let ℓ ∈ [C1]
n.391

One has f̂(ℓ) = f(ℓ ↾ m) < nextωC0
(ℓ(m − 1)) < ℓ(m) = g(ℓ) since ℓ(m) ∈ C1 and using Fact 2.4. Thus392

Ψ([f ]µm
ω1
) < [g]µn

ω1
. This shows that Ψ maps jµm

ω1
(ω1) into an initial segment of jµn

ω1
(ω1). □393
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Definition 2.27. Suppose f : [ω1]
n → ω1. For each 1 ≤ k ≤ n, define Ikf : [ω1]

k → ω1 by Ikf (σ) =394

sup{f(τˆσ) : τ ∈ [ω1]
n−k ∧ sup(τ) < σ(0)}. (Note that Inf = f .)395

Note that if f, g : [ω1]
n → ω1 with [f ]µn

ω1
⪯µn

ω1
[g]µn

ω1
, then it is not necessarily true that [I1f ]µ1

ω1
≤ [I1g ]µ1

ω1
.396

However, one has the following.397

Fact 2.28. Suppose 1 ≤ n < ω1, f, g : [ω1]
n → ω1 with [f ]µn

ω1
⪯µn

ω1
[g]µn

ω1
. Then there is a f̄ : [ω1]

n → ω1398

so that [f̄ ]µn
ω1

= [f ]µn
ω1

and for all α < ω1, I
1
f̄
(α) ≤ I1g (α).399

Proof. Since [f ]µn
ω1

⪯µn
ω1

[g]µn
ω1
, A = {ℓ ∈ [ω1]

n : f(ℓ) ≤ g(ℓ)} ∈ µn
ω1
. Define f̄ : [ω1]

n → ω1 by

f̄(ℓ) =

{
f(ℓ) ℓ ∈ A

0 ℓ /∈ A
.

Note that [f ]µn
ω1

= [f̄ ]µn
ω1
. For all α ∈ ω1, I

1
f̄
(α) = sup{f̄(ℓ) : ℓ ∈ [ω1]

n ∧ ℓ(n − 1) = α} = sup{f̄(ℓ) : ℓ ∈400

A ∧ ℓ(n− 1) = α} ≤ sup{g(ℓ) : ℓ ∈ A ∧ ℓ(n− 1) = α} ≤ sup{g(ℓ) : ℓ ∈ [ω1]
n ∧ ℓ(n− 1) = α} = I1g (α) where401

the first inequality uses the fact that f(ℓ) ≤ g(ℓ) for all ℓ ∈ A. □402

Definition 2.29. Suppose 1 ≤ n < ω, K is a Kunen function, and h : [ω1]
n → ω1. Define Kn,h : [ω1]

n+1 →403

ω1 by Kn,h(ℓ) = K(ℓ(n), h(ℓ ↾ n)) when h(ℓ ↾ n) < ℓ(n) and Kn,h(ℓ) = 0 otherwise.404

Fact 2.30. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. For all 1 ≤ n < ω, jµn

ω1
(ω1) = ωn+1 and cof(ωn+1) = ω2.405

Proof. Suppose 1 ≤ n < ω and the following has been shown:406

(1) jµn
ω1
(ω1) = ωn+1 and cof(ωn+1) = ω2.407

(2) If A ⊆ ωn+1 with |A| ≤ ω1, there is a function Σ so that for all α ∈ A, Σ(α) : [ω1]
n
∗ → ω1 and408

[Σ(α)]µn
ω1

= α.2409

For n = 1, both properties have been shown. (1) is Fact 2.23. To see (2), suppose A ⊆ ω2 with |A| ≤ ω1.410

Since ω2 is regular, sup(A) < ω2. Let f : ω1 → ω1 represent sup(A) and K be a Kunen function bounding f .411

By Fact 2.16, there is a function Γ so that for all α < sup(A), α = [KΓ(α)]µ1
ω1
. For α ∈ A, let Σ(α) = KΓ(α).412

Now suppose the two properties have been established at n. One seeks to establish the two properties at413

n+ 1.414

First, one will show that jµn+1
ω1

(ω1) is wellfounded. Suppose X ⊆ jµn+1
ω1

(ω1) has no ≺µn+1
ω1

-minimal ele-415

ments. Pick x ∈ X and let f : [ω1]
n+1 → ω1 represent x. Let K be a Kunen function bounding I1f : ω1 → ω1.416

For any y ≺µn+1
ω1

x, use Fact 2.28 to pick a g : [ω1]
n+1 → ω1 which represents y and I1g ≤µ1

ω1
I1f . Thus K is417

also a Kunen function which bounds I1g . Let Ag = {α ∈ ω1 : I1g (α) < ΞK(α)} and note that Ag ∈ µ1
ω1
. For418

any ℓ ∈ [Ag]
n+1
∗ , g(ℓ) ≤ I1g (ℓ(n)) < ΞK(ℓ(n)). Let ĥ(ℓ) be the least ordinal γ < ℓ(n) so that g(ℓ) = K(ℓ(n), γ).419

Since ĥ(ℓ) < ℓ(n) for µn+1
ω1

-almost all ℓ, Fact 2.6 implies there is an h : [ω1]
n → ω1 so that for µn+1

ω1
-almost420

all ℓ, ĥ(ℓ) = h(ℓ ↾ n). By (1) at n, one has that [h]µn
ω1

∈ jµn
ω1
(ω1) = ωn+1. It has been shown that for421

all y ≺µn+1
ω1

x, there is an ordinal δ < ωn+1 so that for any h : [ω1]
n → ω1 representing δ, the function422

Kn,h : [ω1]
n+1 → ω1 defined (in Definition 2.29) by Kn,h(ℓ) = K(ℓ(n), h(ℓ ↾ n)) represents y. Let δy be the423

least such δ for y. Let B = {δy : y ∈ X ∧ y ≺µn+1
ω1

x} and note that B ⊆ ωn+1. Let δ0 be the least member424

of B according to the usual ordering on ωn+1. Suppose δk has been found and let yk be the element of425

X represented by Kn,h for any h : [ω1]
n → ω1 representing δk. Since X has no minimal element, there is426

some δ so that for any h : [ω1]
n → ω1 representing δ, the function Kn,h represents an element of X which427

is ≺µn+1
ω1

below yk. Let δk+1 be the least such ordinal δ. This defines a sequence ⟨δk : k ∈ ω⟩ of ordinals428

below ωn+1 and corresponding sequence ⟨yk : k ∈ ω⟩ in X. Note that for all k ∈ ω, yk+1 ≺µn+1
ω1

yk. Since429

|{δk : k ∈ ω}| = ω < ω1, property (2) at n gives a sequence ⟨hk : k ∈ ω⟩ so that [hn]µn
ω1

= δk. For each430

n ∈ ω, let Ek = {ℓ ∈ [ω1]
n+1 : Kn,hk+1(ℓ) < Kn,hk(ℓ)} and note that Ek ∈ µn+1

ω1
since yk+1 ≺µn+1

ω1
yk. Since431

ω1 →∗ (ω1)
2n+2
2 implies µn+1

ω1
is countably complete, E =

⋂
k∈ω Ek ∈ µn+1

ω1
and hence nonempty. Let ℓ ∈ E.432

2For this proof, one only needs the result for |A| ≤ ω. However, the proof is no different for A with |A| ≤ ω1. There are
other applications which require the stronger form.
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Then ⟨Kn,hk(ℓ) : k ∈ ω⟩ is an infinite descending sequence of ordinals which is a contradiction. It has been433

shown that jµn+1
ω1

(ω1) is a wellordering.434

Next, one will show that jµn+1
ω1

(ω1) ≤ ωn+2. Let x ∈ jµn+1
ω1

(ω1), f : [ω1]
n+1 → ω1 represent x, and K be435

a Kunen function bounding I1f . The argument above showed that for any y ≺µn+1
ω1

x, there is an ordinal436

δ < ωn+1 so that for any h : [ω1]
n → ω1 which represents δ, Kn,h : [ω1]

n+1 → ω1 represents y. Let δy437

be the least such δ for y. The map Υ : initµn+1
ω1

(x) → ωn+1 defined by Υ(y) = δy is an injection. So438

initµn+1
ω1

(x) has cardinality less than or equal to ωn+1. Since x ∈ jµn+1
ω1

(ω1) was arbitrary, this shows that439

jµn+1
ω1

(ω1) ≤ (ωn+1)
+ = ωn+2.440

By Fact 2.26, ωn+1 = jµn
ω1
(ω1) < jµn+1

ω1
(ω1) ≤ ωn+2. Since Fact 2.22 implies jµn+1

ω1
(ω1) is a cardinal,441

one has that jµn+1
ω1

(ω1) = ωn+2. cof(ωn+2) = jµ1
ω1
(ω1) = ω2 by Fact 2.25. Property (1) at n + 1 has been442

established.443

Now to establish property (2) at n + 1. Suppose A ⊆ ωn+2 with |A| ≤ ω1. Since cof(ωn+2) = ω2, one444

has that sup(A) < ωn+2. Let f : [ω1]
n+1 → ω1 represent sup(A) and let K be a Kunen function bounding445

I1f . As argued above, there is a sequence ⟨δα : α ∈ A⟩ in ωn+1 with the property that for all α ∈ A, for any446

h : [ω1]
n → ω1 representing δα, Kn,h represents α. The set {δα : α ∈ A} is a subset of ωn+1 of cardinality447

less than or equal to ω1. By property (2) at n, there is a sequence ⟨hα : α ∈ A⟩ so that hα : [ω1]
n → ω1448

represents δα. Then ⟨Kn,hα : α ∈ A⟩ has the property that for all α ∈ A, Kn,hα represents α. This verifies449

property (2) at n+ 2.450

By induction, this completes the proof. □451

As mentioned in the footnote, the proof of Fact 2.30 actually showed that one can find representatives452

for ω1-many elements of jµn
ω1
(ω1). Although this is not needed in the proof of Fact 2.30 or anywhere else in453

this paper, this is a very important instance of choice that is required for many combinatorial results below454

ωω. For example, it is needed to show ω2 is a weak partition cardinal. This fact proved within the proof of455

Fact 2.30 is explicitly isolated below.456

Fact 2.31. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let 1 ≤ n < ω and A ⊆ jµn

ω1
(ω1) = ωn+1 with |A| ≤ ω1. There457

is a function Γ on A so that for all α ∈ A, Γ(α) : [ω1]
n → ω1 and α = [Γ(α)]µn

ω1
.458

[3] shows that these combinatorial methods using the Kunen functions can show that jµϵ
ω1
(ωω) is well-459

founded and even show that jµϵ
ω1
(ωω) < ωω+1 for all ϵ < ω1. However this seems to be the limit of the purely460

combinatorial methods. These methods cannot be used to calculate jµϵ
ω1
(ωω+1) for ϵ < ω1. These combi-461

natorial methods have no influence on the ultrapower by the strong partition measure µω1
ω1
. Using Martin’s462

good coding system for ω·ϵω1 for ϵ < ω1 to make complexity calculations, [3] showed that jµϵ
ω1
(ωω+1) = ωω+1463

for all ϵ < ω1. Calculating the ultrapowers by the strong partition measure on ω1 is an important question464

concerning the strong partition property. [3] showed that jµω1
ω1
(ω1) is wellfounded in AD alone by using465

Martin’s good coding system for ω1ω1 to bring the ultrapower into L(R) to apply a result of Kechris [13]466

which states that AD implies L(R) |= DC. The first step in understanding the ultrapower by the strong467

partition measure on ω1 was completed in [3] by answering a question of Goldberg that jµω1
ω1
(ω1) < ωω+1.468

Fact 2.32. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let 1 ≤ n < ω. If δ ∈ ωn+1 \ ωn, then there is a function469

f : [ω1]
n → ω1 such that [f ]µn

ω1
= δ with the property that for all ι0, ι1 ∈ [ω1]

n
∗ , if ι0(n− 1) < ι1(n− 1), then470

f(ι0) < f(ι1).471

Proof. Let f0 : [ω1]
n → ω1 be any representative for δ with respect to µn

ω1
. Let A0 = {ι ∈ [ω1]

n
∗ :472

f(ι) ≥ ι(n − 1)}. One must have that A0 ∈ µn
ω1

since otherwise Fact 2.6 implies there is a function473

g : [ω1]
n−1 → ω1 so that for µn

ω1
-almost all ℓ, f0(ℓ) = g(ℓ ↾ n − 1). This would imply that δ = [f0]µn

ω1
=474

[g]µn−1
ω1

∈ jµn−1
ω1

(ω1) = ωn which contradicts the assumption that δ ∈ ωn+1 \ ωn. Let C0 ⊆ ω1 be a club475

so that [C0]
n
∗ ⊆ A0. Define P : [C0]

n+1
∗ → 2 by P (ℓ) = 0 if and only if f0(ℓ ↾ n) < ℓ(n). Let C1 ⊆ C0476

be homogeneous for P using ω1 →∗ (ω1)
n+1
2 . Pick any ι ∈ [C1]

n
∗ . Let ℓ = ι̂ ⟨nextωC1

(f(ι))⟩ and note that477

ℓ ∈ [C1]
n+1
∗ . Then f(ℓ ↾ n) = f(ι) < nextωC1

(f(ι)) = ℓ(n + 1). Thus P (ℓ) = 0 and hence C1 must be478

homogeneous for P taking value 0. For any ι ∈ [C1]
n
∗ , let ℓι = ι̂ ⟨nextωC0

(ι(n − 1))⟩. P (ℓι) = 0 implies479
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that f(ι) = f(ℓι ↾ n) < ℓι(n) = nextωC1
(ι(n − 1)). Let C2 = {α ∈ C1 : enumC1(α) = α}. Note that480

if ℓ ∈ [ω1]
n
∗ , then enumC2

◦ ℓ ∈ [C2]
n
∗ . Define f1 : [ω1]

n
∗ → ω1 by f1(ι) = f0(enumC2

◦ ι). Now suppose481

ι0, ι1 ∈ [ω1]
n
∗ with ι0(n − 1) < ι1(n − 1). By the observations above and the definition of C2, one has that482

f1(ι0) = f0(enumC2 ◦ ι0) < nextωC1
(enumC2(ι0(n−1))) < (enumC2 ◦ ι1)(n−1) ≤ f0(enumC2 ◦ ι1) = f1(ι1). Let483

C3 = {α ∈ C2 : enumC2
(α) = α}. For all ι ∈ [C3]

n
∗ , one has that enumC2

◦ ι = ι. Thus δ = [f0]µn
ω1

= [f1]µn
ω1
.484

f1 is the representative of δ with the desired properties. □485

Definition 2.33. Let ⊏n be the reverse lexicographic ordering on [ω1]
n defined as follows: Let <lex be486

the lexicographic ordering on n-tuples. If ι ∈ [ω1]
n (so ι is an increasing function), let ι∗ ∈ nω1 be defined487

by ι∗(k) = ι(n − 1 − k). Define ⊏n on [ω1]
n
∗ by ι ⊏n ℓ if and only if ι∗ <lex ℓ

∗. (Even more explicitly,488

let α0 < ... < αn−1 < ω1 and β0 < ... < βn−1 < ω1. (α0, ..., αn−1) ⊏n (β0, ..., βn−1) if and only if489

(αn−1, αn−2, ..., α0) <lex (βn−1, βn−2, ..., β0).)490

A function f : [ω1]
n → ω1 has type n if and only if the following hold:491

• f is order preserving from ([ω1]
n,⊏n) into the usual ordinal ordering (ω1, <).492

• (Discontinuous everywhere) For any ℓ ∈ [ω1]
n, sup{f(ι) : ι ⊏n ℓ} < f(ℓ).493

• (Uniform cofinality ω) There is a function F : [ω1]
n × ω → ω1 so that for all ℓ ∈ [ω1]

n and k ∈ ω,494

F (ℓ, k) < F (ℓ, k + 1) and f(ℓ) = sup{F (ℓ, k) : k ∈ ω}.495

Note that a function f : ω1 → ω1 has type 1 if and only if it is an increasing function of the correct type496

(that is, f ∈ [ω1]
ω1
∗ ).497

Define Bn+1 ⊆ ωn+1 to be the set of δ ∈ ωn+1 so that there is a function f : [ω1]
n → ω1 of type n with498

δ = [f ]µn
ω1
. If C ⊆ ω1, then let BC

n+1 be the set of δ ∈ ωn+1 so that there is a function f : [ω1]
n → C of type499

n with δ = [f ]µn
ω1
.500

Definition 2.34. Let Vn = {(αn−1, ..., α0, γ) ∈ n+1ω1 : α0 < α1 < ... < αn−1 ∧ γ < αn−1}. Let ≪ be501

the lexicographic ordering on Vn. Let Vn = (Vn,≪) which is a wellordering of ordertype ω1. A function502

ϕ : Vn → ω1 has the correct type if and only if the following holds:503

• ϕ is order preserving from Vn into (ω1, <), the usual ordering on ω1.504

• ϕ is discontinuous everywhere: for all x ∈ Vn, ϕ(x) > sup{ϕ(y) : y ≪ x}.505

• ϕ has uniform cofinality ω: there is a function Φ : Vn × ω → ω1 with the property that for all x ∈ V506

and k ∈ ω, Φ(x, k) < Φ(x, k + 1) and ϕ(x) = sup{Φ(x, k) : k ∈ ω}.507

Fact 2.35. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let C ⊆ ω1 be a club. There is an order embedding of ωn+1 into508

BC
n+1.509

Proof. Let ϕ : Vn → C be a function of the correct type. It is clear that the order type of ωn+1 \ ωn510

is ωn+1. One will define an order embedding of ωn+1 \ ωn into BC
n+1. Let δ ∈ ωn+1 \ ωn. By Fact511

2.32, there is an f : [ω1]
n
∗ → ω1 so that δ = [f ]µn

ω1
and has the property that for all ι0, ι1 ∈ [ω1]

n
∗ , if512

ι0(n − 1) < ι1(n − 1), then f(ι0) < f(ι1). Suppose α0 < α1 are two limit ordinals. Let γ0, γ1 be such that513

α0 < γ0 < γ1 < α1. For i ∈ 2, let ιγi = (0, 1, ..., n−2, γi). By the property of f , one has that f(ιγ0) < f(ιγ1).514

Hence I1f (α0) ≤ f(ιγ0
) < f(ιγ1

) < I1f (α1). So I
1
f is an increasing function on the limit ordinals below ω1. This515

implies that (I1f (ι(n− 1)), I1f (ι(n− 2)), ..., I1f (ι(0)), f(ι)) ∈ Vn when ι ∈ [ω1]
n
∗ . Let f̂ : [ω1]

n
∗ → ω1 be defined516

by f̂(ι) = ϕ(I1f (ι(n−1)), I1f (ι(n−2)), ..., I1f (ι(0)), f(ι)). Define Ψ : (ωn+1 \ωn) → BC
n+1 by Ψ(δ) = [f̂ ]µn

ω1
for517

any f : [ω1]
n → ω1 such that δ = [f ]µn

ω1
and for all ι0, ι1 ∈ [ω1]

n, if ι0(n− 1) < ι1(n− 1), then f(ι0) < f(ι1).518

Ψ is well defined independent of the choice of such f representing δ. Suppose ι0 ⊏n ι1. If k < n is largest519

such that ι0(k) ̸= ι1(k), then ι0(k) < ι1(k). By the obervation above, I1f (ι0(j)) = I1f (ι1(j)) for all k < j < n520

and I1f (ι0(k)) < I1f (ι1(k)). Since ϕ is order preserving on Vn, one has that f̂(ι0) < f̂(ι1). This shows that521

f̂ is order preserving on ([ω1]
n
∗ ,⊏n). f̂ is discontinuous everywhere and has uniform cofinality ω since ϕ is522

discontinuous everywhere and has uniform cofinality ω. So f̂ has type n. This shows that Ψ does map into523

BC
n+1. Suppose δ0, δ1 ∈ ωn+1 \ ωn and δ0 < δ1. Let g0, g1 : [ω1]

n → ω1 represent δ0 and δ1, respectively,524

with the necessary properties stated above. Let D ⊆ ω1 be a club so that for all ι ∈ [D]n∗ , g0(ι) < g1(ι).525

For i ∈ 2, define fi : [ω1]
n → ω1 by fi(ℓ) = gi(enumD ◦ ℓ). Let D̃ = {α ∈ D : enumD(α) = α}. Note that526

for all ℓ ∈ D̃ and i ∈ 2, fi(ℓ) = gi(ℓ). Thus δi = [gi]µn
ω1

= [fi]µn
ω1

and fi still has the necessary properties.527

Moreover, for all ℓ ∈ [ω1]
n, f0(ℓ) < f1(ℓ). Thus for all α ∈ [ω1]

n, I1f0(α) ≤ I1f1(α). So for all ι ∈ [ω1]
n,528
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(I1f0(ι(n−1)), ..., I1f0(ι(0)), f0(ι)) ≪ (I1f1(ι(n−1)), ..., I1f1(ι(0)), f1(ι)) and therefore f̂0(ι) < f̂1(ι). This shows529

that Ψ(δ0) = [f̂0]µn
ω1
< [f̂1]µn

ω1
= Ψ(δ1). This shows that Ψ : (ωn+1 \ ωn) → BC

n+1 is an order preserving530

injection. □531

Definition 2.36. Suppose 1 ≤ n < ω and δ ∈ Bn+1. For any 1 ≤ k ≤ n, let Ik
δ = [Ikf ]µk

ω1
for all532

f : [ω1]
n → ω1 of type n such that [f ]µn

ω1
= δ. (Note that Ik

δ is independent of the choice of f representing533

δ but f must be a function of type n.)534

Fact 2.37. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let 1 ≤ n < ω, C ⊆ ω1 be a club, and ϕ : Vn+1 → C be a function535

of the correct type. Let ψ : [ω1]
n → ω1 be defined by ψ(α0, ..., αn−1) = sup{ϕ(αn−1, ..., α0, ζ, 0) : ζ < α0}.536

Let δ = [ψ]µn
ω1
. The set |{η < BC

n+2 : In
η = δ}| = |ωn+1|.537

Proof. Let A = {η < BC
n+2 : In

η = δ}. Let ν ∈ ωn+1. Let f : [ω1]
n → ω1 be such that [f ]µn

ω1
= ν. By Fact 2.8,

there is a clubD0 ⊆ ω1 so that for all ℓ ∈ [D]n∗ , f(ℓ) < nextωD0
(ℓ(n−1)). LetD1 = {α ∈ D0 : enumD0

(α) = α}.
For all ℓ ∈ [D1]

n+1, f(ℓ ↾ n) < nextωD0
(ℓ(n− 1)) < ℓ(n) using Fact 2.4. Define a function f̂ : [D1]

n+1 → C by

f̂(α0, ..., αn) = ϕ(αn, ..., α0, f(α0, ..., αn−1)).

Note that this is well defined since (αn, .., α0, f(α0, ..., αn−1)) ∈ Vn+1 by the property of D1. Let f̃ :

[ω1]
n+1 → C be defined by f̃(ℓ) = f̂(enumD1 ◦ ℓ). Let D2 = {α ∈ D1 : enumD1(α) = α}. Note that for all

ℓ ∈ [D2]
n+1
∗ , ℓ = enumD1

◦ ℓ. Thus [f̂ ]µn+1
ω1

= [f̃ ]µn+1
ω1

. Note that f̃ has type n + 1 since ϕ has the correct

type from Vn+1 into (C,<). So [f̃ ]µn+1
ω1

∈ BC
n+2. Observe that for all (α0, ..., αn−1) ∈ [D2]

n
∗ ,

In
f̃
(α0, ..., αn−1) = sup{f̃(ζ, α0, ..., αn−1) : ζ < α0} = sup{f̂(ζ, α0, ..., αn−1) : ζ < α0}

= sup{ϕ(αn−1, ..., α0, ζ, f(α0, ..., αn−1)) : ζ < α0} = sup{ϕ(αn−1, ..., α0, ζ, 0) : ζ < α0} = ψ(α0, ..., αn−1)

Let Υ(η) = [f̃ ]µn+1
ω1

= [f̂ ]µn+1
ω1

. By the above discussion, Υ(η) ∈ BC
n+2 and In

Υ(η) = [In
f̃
]µn

ω1
= [ψ]µn

ω1
= δ.538

Thus Υ : ωn+1 → A. Suppose η0 < η1. Let f0, f1 : [ω1]
n → ω1 be such that η0 = [f0]µn

ω1
and η1 = [f1]µn

ω1
.539

For µn
ω1
-almost all ℓ, f0(ℓ) < f1(ℓ). Thus for µn+1

ω1
-almost all ι, f̂0(ι) < f̂1(ι). Thus Υ : ωn+1 → A is order540

preserving and hence an injection. Thus |A| = |ωn+1|. □541

3. Boldface GCH below ωω542

Definition 3.1. Let κ be a cardinal. The boldface GCH holds at κ if and only if there is no injection of κ+543

into P(κ). The boldface GCH below κ is the statement that for all δ < κ, the boldface GCH holds at δ.544

Fact 3.2. Let κ be a cardinal and δ < κ. If there is a δ+-complete nonprincipal ultrafilter on κ, then there545

is no injection of κ into P(δ).546

Proof. Let µ be a δ+-complete nonprincipal ultrafilter on κ. Suppose ⟨Aα : α < κ⟩ is an injection of κ into547

P(δ). For each ξ < δ, let E0
ξ = {α ∈ κ : ξ /∈ Aα} and E1

ξ = {α ∈ κ : ξ ∈ Aα}. Since µ is an ultrafilter, there548

is a unique iξ ∈ 2 so that E
iξ
ξ ∈ µ. Let E =

⋂
ξ<δ E

iξ
ξ and note that E ∈ µ since µ is δ+-complete. Since µ549

is nonprincipal, let α0, α1 ∈ E with α0 ̸= α1. For all ξ < δ, since α0, α1 ∈ E ⊆ E
iξ
ξ , ξ ∈ Aα0 if and only if550

iξ = 1 if and only if ξ ∈ Aα1
. Thus Aα0

= Aα1
. This contradicts the injectiveness of ⟨Aα : α < κ⟩. □551

Fact 3.3. If κ→∗ (κ)22, then there is no injection of κ into P(δ) for any δ < κ.552

Proof. κ→∗ (κ)22 implies that µ1
κ is a κ-complete ultrafilter by Fact 2.5. The result follow from Fact 3.2. □553

Fact 3.4. ω1 →∗ (ω1)
2
2 implies the boldface GCH at ω.554

Martin [12] (and Kleinberg [14]) (also see [4]) showed that ω1 →∗ (ω1)
ω1
2 and ⋆ imply that ω2 is a555

weak partition cardinal (satisfies ω2 → (ω2)
<ω2
2 ). Thus under these assumptions, Fact 3.3 implies that the556

boldface GCH holds at ω1. Although the proof of the weak partition property on ω2 can be shown by similar557

techniques used here, it is very enlightening to see a direct proof of the boldface GCH at ω1 to motivate the558

proof of the boldface GCH at ωn for 2 ≤ n < ω.559
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Definition 3.5. Let U1 = {(0, 0)} ∪ {(1, α, i) : α < ω1 ∧ i < 2}. Let ≪1 be the lexicographic ordering on560

U1. Let U1 = (U1,≪1). Note that (0, 0) is the minimal element of U1. Note that the ordertype of U1 is ω1.561

Suppose F : U1 → ω1. Define F 0, F 1 : ω1 → ω1 and F 2 ∈ ω1 by F 0(α) = F (1, α, 0), F 1(α) = F (1, α, 1), and562

F 2 = F (0, 0). (Note that F 2 is just a countable ordinal.) A function F : U1 → ω1 has the correct type if563

and only if the following two conditions hold.564

• F is discontinuous everywhere: For all x ∈ U1, sup{F (y) : y ≪1 x} < F (x).565

• F has uniform cofinality ω: There is a function F : U1 × ω → ω so that for all x ∈ U1 and k ∈ ω,566

F(x, k) < F(x, k + 1) and F (x) = sup{F(x, k) : k ∈ ω}.567

If F : U1 → ω1 has the correct type, then F
0, F 1 : ω1 → ω1 are functions of the correct type and cof(F 2) = ω.568

If X ⊆ ω1, then let [X]U1
∗ be the set of all F : U1 → X of the correct type and order preserving between U1569

and (X,<), where < is the usual ordinal ordering.570

Lemma 3.6. Assume ω1 →∗ (ω1)
n+1
2 . Let f0, f1 : ω1 → ω1 be functions of type 1 such that [f0]µ1

ω1
< [f1]µ1

ω1
571

and let δ ∈ [ω1]
1
∗ (i.e. is a limit ordinal). Then there is an F ∈ [ω1]

U1
∗ so that [F 0]µ1

ω1
= [f0]µ1

ω1
, [F 1]µ1

ω1
=572

[f1]µ1
ω1
, F 2 = δ, F 0[ω1] ⊆ f0[ω1], and F

1[ω1] ⊆ f1[ω1].573

Proof. Since f0 and f1 are of type 1, they are both increasing, discontinuous, and have uniform cofinality
ω. Let G0 : ω1 × ω → ω1 witness that f0 has uniform cofinality ω and let G1 : ω1 × ω → ω1 witness that
f1 has uniform cofinality ω. Since δ < ω1 is a limit ordinal, let ρ : ω → δ be an increasing cofinal function.
For each α < ω1, let h(α) be the least element ᾱ ∈ ω1 so that f1(α) < f0(ᾱ). Since [f0]µ1

ω1
< [f1]µ1

ω1
, there

is a club C0 ⊆ ω1 so that for all α ∈ [C0]
1
∗, f0(α) < f1(α). Let C1 = {α ∈ C0 : (∀α′ < α)(h(α′) < α)}. C1

is a club subset of C0. One may assume δ < min(C1). For notational simplicity, let e = enum[C1]1∗
. Define

F : U1 → ω1 by F (0, 0) = δ, and F (1, α, i) = fi(e(α)) for i < 2 and α < ω1. Fix α < ω1. Note that
F (1, α, 0) = f0(e(α)) < f1(e(α)) = F (1, α, 1) by the property of the club C0 and the fact that e(α) ∈ [C1]

1
∗.

F (1, α, 1) = f1(e(α)) < f0(h(e(α))) < f0(e(α + 1)) = F (1, α + 1, 0) since the first inequality comes from
the property of h and the second inequality comes from the property of C1. This shows that F is order
preserving from U1 into the usual ordering on ω1. The elements of U1 of limit rank take the form (1, α, 0)
where α is a limit ordinal. Note that sup{F (x) : x ≪1 (1, α, 0)} = sup{F (1, α′, 0) : α′ < α} = sup(f0 ↾
e(α) < f0(e(α)) < F (1, α, 0) using the discontinuity of f0. This shows that F is discontinuous everywhere.
Let F : U1 × ω → ω1 be defined by

F(x, k) =

{
ρ(k) x = (0, 0)

Gi(e(α), k) x = (1, α, i)

F witnesses that F has uniform cofinality ω. Thus F has the correct type. By construction, it is clear that574

F 0[ω1] ⊆ f0[ω1] and F 1[ω1] ⊆ f1[ω1]. Let C2 = {α ∈ C1 : enumC1
(α) = α} which is a club subset of C1.575

For all α ∈ C2 and i ∈ 2, F (1, α, i) = fi(e(α)) = fi(enum[C1]1∗
(α)) = fi(α) since enumC1

(α) = α implies576

that ot({ᾱ ∈ C1 : ᾱ < α ∧ cof(ᾱ) = ω}) = α and thus enum[C1]1∗
(α) = α. This shows that for all i < 2,577

[F i]µ1
ω1

= [fi]µ1
ω1
. □578

Theorem 3.7. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Then the boldface GCH holds at ω1.579

Proof. By Fact 3.4, one has that the boldface GCH holds at ω. Suppose the boldface GCH at ω1 fails.580

Let ⟨Aη : η < ω2⟩ be an injection of ω2 into P(ω1). Define P : [ω1]
U1
∗ → 2 by P (F ) = 0 if and only581

if min(A[F 0]µ1
ω1

△A[F 1]µ1
ω1

) < F 2 (where △ refers to symmetric difference). Since U1 has ordertype ω1,582

ω1 →∗ (ω1)
ω1
2 implies there is a club C ⊆ ω1 homogeneous for P . Pick any f0, f1 : ω1 → C of type 1 so that583

[f0]µ1
ω1
< [f1]µ1

ω1
. Since ⟨Aη : η < ω2⟩ is an injection, A[f0]µ1

ω1

̸= A[f1]µ1
ω1

and thus A[f0]µ1
ω1

△A[f1]µ1
ω1

̸= ∅.584

Let δ ∈ [C]1∗ be such that min(A[f0]µ1
ω1

△A[f1]µ1
ω1

) < δ. By Lemma 3.6, there is an F ∈ [ω1]
U1
∗ so that585

[F 0]µ1
ω1

= [f0]µ1
ω1
, [F 1]µ1

ω1
= [f1]µ1

ω1
, F 2 = δ, F 0[ω1] ⊆ f0[ω1] ⊆ C, and F 1[ω1] ⊆ f1[ω1] ⊆ C. Thus586

F ∈ [C]U1
∗ . Thus min(A[F 0]µ1

ω1

△A[F 1]µ1
ω1

) < F 2 implies that P (F ) = 0. This shows that C must be587

homogeneous for P taking value 0. Fix a δ ∈ [C]1∗. By Fact 2.35, ω2 order embeds into BC
2 . Pick any588

ν ∈ BC
2 so that BC

2 ↾ ν = {η ∈ BC
2 : η < ν} has cardinality ω1. Let η0, η1 ∈ BC

2 ↾ ν with η0 ̸= η1. Without589

loss of generality, suppose η0 < η1. Let f0, f1 : ω1 → C be functions of type 1 so that η0 = [f0]µ1
ω1

and590
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η1 = [f1]µ1
ω1
. By Lemma 3.6, there is an F ∈ [C]U1

∗ so that [F0]µ1
ω1

= [f0]µ1
ω1

= η0, [F
1]µ1

ω1
= [f1]µ1

ω1
= η1, and591

F 2 = δ. Thus P (F ) = 0 implies that min(Aη0
△Aη1

) < δ. This implies that the function Φ : BC
2 ↾ ν → P(δ)592

defined by Φ(η) = Aη ∩ δ is an injection. Since δ < ω1 implies |P(δ)| = |P(ω)| and |BC
2 ↾ ν| = ω1, one has593

an injection of ω1 into P(ω). This violates the boldface GCH at ω. □594

Definition 3.8. Let 2 ≤ n < ω. Let Un = {(αn−1, 0, αn−2, ..., α0, i) : α0 < ... < αn−1 < ω1 ∧ i <595

2} ∪ {(α, 1) : n − 1 ≤ α < ω1}. Let ≪n be the lexicographic ordering on Un. Let Un = (Un,≪n).596

Observe that ot(Un) = ω1. Suppose F : Un → ω1. Define F 0, F 1 : [ω1]
n → ω1 and F 2 : ω1 → ω1 by597

F 0(ι) = F (ι(n− 1), 0, ι(n− 2), ..., ι(0), 0), F 1(ι) = F (ι(n− 1), 0, ι(n− 2), ..., ι(0), 1), and F 2(α) = F (α, 1). A598

function F : Un → ω1 has the correct type if and only if the following two conditions hold:599

• F is discontinuous everywhere: For all x ∈ Un, sup{F (y) : y ≪n x} < F (x).600

• F has uniform cofinality ω: There is a function F : Un × ω → ω1 so that for all x ∈ Un and k ∈ ω,601

F(x, k) < F(x, k + 1) and F (x) = sup{F(x, k) : k ∈ ω}.602

Note that if F : Un → ω1 has the correct type, then F 0, F 1 : [ω1]
n → ω1 has type n, [F 0]µn

ω1
< [F 1]µn

ω1
, and603

F 2 : ω1 → ω1 has the correct type. If X ⊆ ω1, then let [X]Un
∗ be the set of all F : Un → X of the correct604

type and order preserving between Un and (X,<) with the usual ordering.605

Lemma 3.9. Suppose 2 ≤ n < ω. Assume ω1 →∗ (ω1)
n+1
2 . Let f0, f1 : [ω1]

n → ω1 and f2 : ω1 → ω1 be606

functions with the following properties.607

• f0 and f1 have type n. f2 has type 1.608

• [In−1
f0

]µn−1
ω1

= [In−1
f1

]µn−1
ω1

and [f0]µn
ω1
< [f1]µn

ω1
.609

• [I1f0 ]µn
ω1

= [I1f1 ]µn
ω1
< [f2]µ1

ω1
.610

Then there is an F ∈ [ω1]
Un
∗ with the following properties.611

• [F 0]µn
ω1

= [f0]µn
ω1
, [F 1]µn

ω1
= [f1]µn

ω1
, and [F 2]µ1

ω1
= [f2]µ1

ω1
,612

• F 0[[ω1]
n] ⊆ f0[[ω1]

n], F 1[[ω1]
n] ⊆ f1[[ω1]

n], and F 2[ω1] ⊆ f2[ω1].613

Proof. Let C0 ⊆ ω1 be a club with the following properties:614

(1) For all ℓ ∈ [ω1]
n
∗ , I

n−1
f0

(ℓ) = In−1
f1

(ℓ).615

(2) For all ℓ ∈ [ω1]
n
∗ , f0(ℓ) < f1(ℓ).616

(3) For all α ∈ C0, I
1
f0
(α) = I1f1(α) < f2(α).617

If ℓ ∈ [ω1]
n+1, let ℓ0, ℓ1 ∈ [ω1]

n be defined by ℓ1(k) = ℓ(k + 1) and

ℓ0(k) =

{
ℓ(0) k = 0

ℓ(k + 1) 0 < k < n
.

Define P : [C0]
n+1 → 2 by P (ℓ) = 0 if and only if f1(ℓ

0) < f0(ℓ
1). By ω1 →∗ (ω1)

n+1
2 , there is a club C1 ⊆ C0618

which is homogeneous for P . Let C2 = {α ∈ C1 : enumC1(α) = α}. Pick (α0, α1, ..., αn−1) ∈ [C2]
n
∗ . Since619

α1 is a limit point of C1 and In−1
f0

(α1, ..., αn−1) = In−1
f1

(α1, ..., αn−1) because (α1, ..., αn−1) ∈ [C2]
n−1
∗ ⊆620

[C0]
n−1
∗ , there must be some γ ∈ C1 so that α0 < γ < α1 and f1(α0, ..., αn−1) < f0(γ, α1, ..., αn−1). Pick621

ℓ ∈ [C1]
n+1
∗ so that ℓ0 = (α0, α1, ..., αn−1) and ℓ1 = (γ, α1, ..., αn−1). Then P (ℓ) = 0 since f1(ℓ

0) =622

f1(α0, ..., αn−1) < f0(γ, α1, ..., αn−1) = f0(ℓ
1). This shows that C1 is homogeneous for P taking value 0.623

Since f0 and f1 have type n, I1f0 and I1f1 are increasing functions. For any α ∈ ω1, there is some γ ∈ C1624

so that f2(α) < I1f0(γ) = I1f1(γ). Let h : ω1 → C1 be defined by h(α) is the least such γ ∈ C1. Let625

C3 = {α ∈ C1 : enumC1
(α) = α ∧ (∀α′ < α)(h(α′) < α)} which is a club subset of C1.626

For notational simplicity, let e = enum[C3]1∗
. Define F : Un → ω1 by F (αn−1, 0, ..., α1, i) = fi(e(α0), ..., e(αn−1))627

for all (α0, .., αn−1) ∈ [ω1]
n and i ∈ 2 and F (α, 1) = f2(e(α)) for all α < ω1.628

First, one will show that F is an order preserving map from Un into the usual ordering on ω1. Suppose629

x, y ∈ Un and x≪n y. One seeks to show F (x) < F (y).630

• Suppose x = (α, 1) and y = (β, 1) with α < β:

F (x) = F (α, 1) = f2(e(α)) < f2(e(β)) = F (β, 1) = F (y)

since f2 has type 1.631
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• Suppose x = (α, 1) and y = (βn−1, 0, βn−2, ..., β0, i) for some i < 2 and β0 < ... < βn−1 with
α < βn−1: Note that

F (x) = F (α, 1) = f2(e(α)) < I1fi(h(e(α)))

< fi(e(β0), ..., e(βn−1)) = F (βn−1, 0, βn−2, ..., β0, i) = F (y).

The first inequality comes from the definition of h, the second inequality comes from h(e(α)) <632

e(βn−1) by the definition of e(βn−1) ∈ C3, and the last inequality comes from fi having type n.633

• Suppose x = (αn−1, 0, αn−2, ..., α0, i) and y = (β, 1) for some i < 2 and α0 < ... < αn−1 with
αn−1 ≤ β:

F (x) = F (αn−1, 0, αn−1, ..., α0, i) = fi(e(α0), ..., e(αn−1)) ≤ I1fi(e(αn−1))

< f2(e(αn−1)) ≤ f2(e(β)) = F (β, 1) = F (y).

The first inequality comes from the definition of I1fi , the second inequality comes from property (3)634

of the club C0, and the third inequality comes from the fact that f2 has type 1.635

• Suppose x = (αn−1, 0, αn−1, ..., α0, i) and y = (βn−1, 0, βn−1, ..., β0, j) for some i, j ∈ 2, α0 < ... <
αn−1, β0 < ... < βn−1, and there is some k > 0 so that αk < βk and for all k < k′ < n, αk′ = βk′ :

F (x) = F (αn−1, 0, αn−1, ..., α0, i) = fi(e(α0), ..., e(αn−1)) ≤ In−k
fi

(e(αk), ..., e(αn−1))

= In−k
fj

(e(αk), ..., e(αn−1)) < In−k
fj

(nextC1
(e(αk)), e(αk+1), ..., e(αn−1))

= In−k
fj

(nextC1
(e(αk)), e(βk+1), ..., e(βn−1)) < fj(e(β0), ..., e(βn−1))

= F (βn−1, 0, βn−1, ..., β0, j) = F (y).

• Suppose x = (αn−1, 0, αn−1, ..., α0, 0) and y = (βn−1, 0, βn−1, ..., β0, 1) for α0 < ... < αn−1 and
β0 < ... < βn−1 such that for all 0 < k < n, αk = βk and α0 ≤ β0:

F (x) = F (αn−1, 0, αn−1, ..., α0, 0) = f0(e(α0), ..., e(αn−1)) < f1(e(α0), ..., e(αn−1))

≤ f1(e(β0), ..., e(βn−1)) = F (βn−1, 0, βn−2, ..., β0, 1) = F (y).

• Suppose x = (αn−1, 0, αn−1, ..., α0, 1) and y = (βn−1, 0, βn−1, ..., β0, 0) for α0 < ... < αn−1 and β0 <
... < βn−1 such that for all 0 < k < n, αk = βk and α0 < β0: Let ℓ = (e(α0), e(β0), e(β1), ..., e(βn−1)) =
(e(α0), e(β0), e(α1), ..., e(αn−1)). In the notation above, ℓ0 = (e(α0), ..., e(αn−1)) and ℓ

1 = (e(β0), ..., e(βn−1)).
P (ℓ) = 0 implies that f1(e(α0), ..., e(αn−1)) = f1(ℓ

0) < f0(ℓ
1) = f0(e(β0), ..., e(βn−1)). So we have

the following.

F (x) = F (αn−1, 0, αn−2, ..., α0, 1) = f1(e(α0), ..., e(αn−1))

< f0(e(β0), ..., e(βn−1)) = F (βn−1, 0, βn−2, ..., β0, 0) = F (y)

This shows that F is order preserving.636

Next one will show that F is discontinuous everywhere. Suppose x ∈ Un has limit rank in ≪n.637

• Suppose x = (α, 1) for some α ∈ ω1. Then sup(F ↾ x) = sup{F (α, 0, αn−2, ..., α0, i) : i ∈ 2∧α0 < ... <638

αn−1 < α} = sup{F (α, 0, αn−2, ..., α0, 0) : α0 < ... < αn−2 < α} = sup{f0(e(α0), e(α1), ..., e(αn−2), e(α)) :639

α0 < α1 < ... < αn−2 < α} = I1f0(e(α)) < f2(e(α)) = F (x).640

• Suppose x = (αn−1, 0, αn−2, ..., α0, 0) and has limit rank. Then sup(F ↾ x) = sup{f0(ℓ) : ℓ ⊏n641

(α0, ..., αn−1)} < f0(α0, ..., αn−1) = F (x) using the discontinuity of f0.642

This shows that F is discontinuous everywhere.643

Let G0, G1 : [ω1]
n × ω → ω1 witness that f0 and f1 have uniform cofinality ω. Let G2 : ω1 × ω → ω1

witness that f2 has uniform cofinality ω. Define F : Un × ω → ω1 be defined as follows.

F(x, k) =

{
G2(e(α), k) x = (α, 1)

Gi((e(α0), ..., e(αn−1)), k) x = (αn−1, 0, αn−2, ..., α0, i) ∧ i ∈ 2
.

F witness that F has uniform cofinality ω. It has been shown that F is a function of the correct type.644

It is clear from the construction that F 0[[ω1]
n] ⊆ f0[[ω1]

n], F 1[[ω1]
n] ⊆ f1[[ω1]

n], and F 2[ω1] ⊆ f2[ω1].645

Let C4 = {α ∈ C3 : enumC3
(α) = α} which is a club subset of C3. For all α ∈ [C4]

1
∗, α = enumC3

(α) =646

enum[C3]1∗
(α) = e(α). For all (α0, ..., αn−1) ∈ [C4]

n and i ∈ 2, F i(α0, ..., αn−1) = fi(e(α0), ..., eαn−1
) =647
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fi(α0, ..., αn−1). For all α ∈ [C3]
1
∗, F

2(α) = f2(e(α)) = f2(α). This shows that [F
1]µn

ω1
= [f0]µn

ω1
, [F 1]µn

ω1
=648

[f1]µn
ω1
, and [F 2]µ1

ω1
= [f2]µ1

ω1
. □649

Theorem 3.10. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. The boldface GCH holds below ωω.650

Proof. The boldface GCH at ωn for all n < ω will be shown by induction. For n = 0, the boldface GCH at ω651

has already been shown by Fact 3.4. For n = 1, the boldface GCH at ω1 has already been shown by Theorem652

3.7. Suppose n > 1 and the boldface GCH has been shown at ωn−1. Suppose for the sake of contradiction,653

the boldface GCH at ωn fails. Let ⟨Aη : η < ωn+1⟩ be an injection of ωn+1 into P(ωn). Recall Un = (Un,≪n)654

from Definition 3.8. By Fact 2.30, cof(ωn+1) = ω2 for all 1 ≤ n < ω. Fix ρ : ω2 → ωn be an increasing655

cofinal map. Define P : [ω1]
Un → 2 by P (F ) = 0 if and only if min(A[F 0]µn

ω1

△A[F 1]µn
ω1

) < ρ([F 2]µ1
ω1
),656

where △ refers to the symmetric difference. (Note that here one is using the fact that jµ1
ω1
(ω1) = ω2657

and jµn
ω1
(ω1) = ωn+1 established in Fact 2.30.) Since ot(Un) = ω1, ω1 →∗ (ω1)

ω1
2 implies there is a club658

C ⊆ ω1 which is homogeneous for P . Let f0, f1 : [ω1]
n → C be any two function of type n with [f0]µn

ω1
<659

[f1]µn
ω1

and [In−1
f0

]µn−1
ω1

= [In−1
f1

]µn−1
ω1

. Since ⟨Aη : η < ωn+1⟩ is an injection, A[f0]µn
ω1

̸= A[f1]µn
ω1

and thus660

A[f0]µn
ω1

△A[f1]µn
ω1

̸= ∅. Let f2 : ω1 → C be any function of type 1 so that ρ([f2]µn
ω1
) > min(A[f0]µn

ω1

△A[f1]µn
ω1

)661

and [f2]µ1
ω1
> [I1f0 ]µ1

ω1
= [I1f1 ]µ1

ω1
. By Lemma 3.9, there is an F ∈ [ω1]

Un
∗ so that [F 0]µn

ω1
= [f0]µn

ω1
, [F 1]µn

ω1
=662

[f1]µn
ω1
, [F 2]µ1

ω1
= [f2]µn

ω1
, F 0[[ω1]

n] ⊆ f0[[ω1
n]] ⊆ C, F 1[[ω1]

n] ⊆ f1[[ω1]
n] ⊆ C, and F 2[ω1] ⊆ f2[ω1] ⊆ C.663

Thus F ∈ [C]Un
∗ . Then ρ([F 2]µn

ω1
) > min(A[F 0]µn

ω1

△A[F 1]µn
ω1

) implies that P (F ) = 0. This shows that C must664

be homogeneous for P taking value 0. Pick any ϕ : Vn → C of the correct type from Vn into (C,<) (where665

recall Vn is defined in Definition 2.34). By Fact 2.37, there is a χ < ωn so that Eχ = {η ∈ BC
n+1 : In−1

η = χ}666

has cardinality ωn. Let g : ω1 → C be any function of type 1 so that [g]µ1
ω1

> I1
χ. Let ϵ = [g]µ1

ω1
.667

Suppose η0, η1 ∈ Eχ and η0 ̸= η1. Without loss of generality, suppose η0 < η1. Let f0, f2 : [ω1]
n → C be668

functions of type n so that [f0]µn
ω1

= η0 and [f1]
µn
ω1 = η1. By definition of η0, η1 ∈ Eχ, [I

n−1
fi

]µn−1
ω1

= χ and669

[I1fi ]µ1
ω1

= I1
χ < [g]µ1

ω1
= ϵ for both i ∈ 2. By Lemma 3.9, there is an F ∈ [C]Un

∗ so that [F 0]µn
ω1

= [f0]µn
ω1

= η0,670

[F 1]µn
ω1

= [f1]
µn
ω1 = η1, and [F 2]µ1

ω1
= [g]µ1

ω1
= ϵ. By P (F ) = 0, one has that min(Aη0△Aη1) < ρ(ϵ). This671

shows that the function Υ : Eχ → P(ρ(ϵ)) defined by Υ(η) = Aη ∩ ρ(ϵ) is an injection. Since |Eχ| = ωn and672

|P(ρ(ϵ))| = |P(ωn−1)| because ρ(ϵ) < ωn, Υ induces an injection of ωn into P(ωn−1) which violates the673

inductive assumption that the boldface GCH holds at ωn−1. □674

Under AD, ωω+1 = δ13 and there is a ωω+1-complete nonprincipal ultrafilter on ωω+1. Thus the boldface675

GCH holds at ωω by Fact 3.2. The combinatorial methods used here can be generalized with Jackson’s theory676

of descriptions ([11]) for the projective ordinals to show that the boldface GCH holds below the supremum of677

the projective ordinals, sup{δ1n : n ∈ ω}, assuming AD. Jackson’s theory can go slightly beyond the projective678

ordinals but not all the way through Θ. The inner model theoretic techniques of Steel and Woodin are the679

only known methods to prove the boldface GCH below Θ under AD+.680

References681

1. William Chan, Basis for uncountable linear orders, In preparation.682

2. , Cardinality of the set of bounded subsets of a cardinal, In preparation.683

3. , Definable combinatorics of strong partition cardinals, In preparation.684

4. William Chan, An introduction to combinatorics of determinacy, Trends in Set Theory, Contemp. Math., vol. 752, Amer.685

Math. Soc., Providence, RI, 2020, pp. 21–75. MR 4132099686

5. William Chan and Stephen Jackson, Definable combinatorics at the first uncountable cardinal, Trans. Amer. Math. Soc.687

374 (2021), no. 3, 2035–2056. MR 4216731688

6. , Applications of infinity-Borel codes to definability and definable cardinals, Fund. Math. 265 (2024), no. 3, 215–258.689

MR 4771874690

7. William Chan, Stephen Jackson, and Nam Trang, The size of the class of countable sequences of ordinals, Trans. Amer.691

Math. Soc. 375 (2022), no. 3, 1725–1743. MR 4378077692

8. , More definable combinatorics around the first and second uncountable cardinals, J. Math. Log. 23 (2023), no. 3,693

Paper No. 2250029, 31. MR 4603918694

9. , Almost disjoint families under determinacy, Adv. Math. 437 (2024), Paper No. 109410, 34. MR 4669334695

17



10. , Almost Everywhere Behavior of Functions According to Partition Measures, Forum Math. Sigma 12 (2024), Paper696

No. e16. MR 4696011697

11. Steve Jackson, Structural consequences of AD, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1753–698

1876. MR 2768700699

12. Alexander S. Kechris, AD and projective ordinals, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77),700

Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 91–132. MR 526915701

13. , The axiom of determinacy implies dependent choices in L(R), J. Symbolic Logic 49 (1984), no. 1, 161–173.702

MR 736611703

14. Eugene M. Kleinberg, Infinitary combinatorics and the axiom of determinateness, Lecture Notes in Mathematics, Vol. 612,704

Springer-Verlag, Berlin-New York, 1977. MR 0479903705

15. Peter Koellner and W. Hugh Woodin, Large cardinals from determinacy, Handbook of set theory. Vols. 1, 2, 3, Springer,706

Dordrecht, 2010, pp. 1951–2119. MR 2768702707

16. William Mitchell, How weak is a closed unbounded ultrafilter?, Logic Colloquium ’80 (Prague, 1980), Studies in Logic and708

the Foundations of Mathematics, vol. 108, North-Holland, Amsterdam-New York, 1982, pp. 209–230. MR 673794709

17. John R. Steel, HODL(R) is a core model below Θ, Bull. Symbolic Logic 1 (1995), no. 1, 75–84. MR 1324625710

18. , An outline of inner model theory, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1595–1684.711

MR 2768698712

19. , Ordinal definability in models of determinacy. Introduction to Part V, Ordinal definability and recursion theory:713

The Cabal Seminar. Vol. III, Lect. Notes Log., vol. 43, Assoc. Symbol. Logic, Ithaca, NY, 2016, pp. 3–48. MR 3469165714

20. John R. Steel and W. Hugh Woodin, HOD as a core model, Ordinal definability and recursion theory: The Cabal Seminar.715

Vol. III, Lect. Notes Log., vol. 43, Assoc. Symbol. Logic, Ithaca, NY, 2016, pp. 257–345. MR 3469173716

Institute for Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria717

Email address: William.Chan@tuwien.ac.at718

Department of Mathematics, University of North Texas, Denton, TX 76203719

Email address: Stephen.Jackson@unt.edu720

Department of Mathematics, University of North Texas, Denton, TX 76203721

Email address: Nam.Trang@unt.edu722

18


	1. Introduction
	2. Partition Relations and Ultrapowers by Partition Filters
	3. Boldface GCH below 
	References

