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Abstract

The main result of this paper shows that a weak form of Tower Sealing holds in a generic extension
of hod mice with a strong cardinal and a proper class of Woodin cardinals. We show Tower Sealing
fails in such extensions in general. We show that this weak form of Tower Sealing (called Partial
Tower Sealing) implies Sealing and that its consistency strength is below that of ZFC+“there is a
Woodin limit of Woodin cardinals”.

1. Introduction

This paper formulates a weak form of Woodin’s Tower Sealing, Partial Tower Sealing cf. Definition
1.1, and shows that this form of Tower Sealing implies Sealing under various circumstances. The main
result of this paper is Theorem 1.3, which shows that Partial Tower Sealing can hold in hod mice; as a
result, Partial Tower Sealing is consistent relative to the theory ZFC+“there is a Woodin limit of Woodin
cardinals” (WLW).

Suppose g is a V -generic filter. Let Γ∞
g be the class of all universally Baire sets in V [g]. When

V [g] = V , we simply write Γ∞. For a cardinal κ, we write Q<κ for the countable tower forcing as defined
in [Lar04, Definition 2.7.1].

Definition 1.1. Suppose there is a proper class of Woodin cardinals. Let δ be a Woodin cardinal.
We say that Partial Tower Sealing holds at δ if whenever g is < δ-generic over V and G ⊆ Q<δ is
V [g]-generic, letting jG : V [g] →M ⊆ V [g][G] be the associated generic embedding, then

1. L(Γ∞
g ) ∩ ℘(R) = Γ∞

g .

2. (Γ∞
g )♯, (Γ∞

g∗G)
♯ exist and there is an elementary embedding l : L(Γ∞

g∗G) → L(jG(Γ
∞
g )) such that

l ↾ Γ∞
g∗G = id and l is an order-preserving surjection from the class of indiscernibles of L(Γ∞

g∗G) to
the class of indiscernibles of L(jG(Γ

∞
g )).

If Partial Tower Sealing holds at δ and additionally, Γg∗G = jG(Γ
∞
g ), then we say Tower Sealing holds

at δ. ⊣

Definition 1.2. Suppose there is a proper class of Woodin cardinals. We say Sealing holds at a Woodin
cardinal δ if the following statements hold.

1. For every < δ generic g over V , ℘(Rg) ∩ L(Γ∞
g ,Rg) = Γ∞

g .

2. For every < δ generic g over V , for every < δ generic h over V [g], there is an elementary embedding

j : L(Γ∞
g ,Rg) → L(Γ∞

g∗h,Rh).

such that for every A ∈ Γ∞
g , j(A) = Ah. ⊣
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We note that if clause (1) of both Definitions 1.2 and 1.1 holds, then

L(Γ∞
g ) ⊨ AD+.

This is by a theorem of Woodin, [Lar04, Section 3.3], which states that if there is a proper class of
Woodin cardinal and if A ∈ Γ∞, then L(A,R) ⊨ AD+. Moreover, by a theorem of Steel, [Ste09], every
A ∈ Γ∞ has a scale in Γ∞, this implies that

L(Γ∞) ⊨ “every set of reals is Suslin”. (1.1)

Sealing is a form of Shoenfield-type generic absoluteness for the theory of universally Baire sets.
Sealing is an important hypothesis in set theory and particularly in inner model theory. [ST19] has a
detailed discussion on the importance of Sealing and related topics; so we only summarize some main
points here. If a large cardinal theory ϕ implies Sealing then the Inner Model Program for building
canonical inner models of ϕ cannot succeed (at least with the criteria for defining “canonical inner
models” as is done to date), cf [ST19, Sealing Dichotomy]. Sealing signifies a place beyond which new
methodologies are needed in order to advance the Core Model Induction techniques. In particular, to
obtain consistency strength beyond Sealing from strong theories such as the Proper Forcing Axiom,
one needs to construct canonical subsets of Γ∞ (third-order objects), instead of elements of Γ∞ like
what has been done before (see [ST19, Section 1] for a more detailed discussion). The consistency of
Sealing was first proved by Woodin, who showed that if there is a proper class of Woodin cardinals and
a supercompact cardinal κ then Sealing holds after collapsing 22

κ

to be countable. Woodin’s proof can
be found in [Lar04]. [ST24; ST21] show that Sealing holds in hod mice and various types of hybrid mice
whose existence is consistent relative to WLW, which improves significantly Woodin’s result.

Woodin [Lar04, Theorem 3.4.17] also obtains the consistency of Tower Sealing from a supercompact
cardinal and a proper class of Woodin cardinals. [ST24] claims Tower Sealing holds in an excellent hybrid
premouse (defined in [ST24]), but this is not true. Part of this paper’s motivation is to correct this, cf.
Theorem 6.1. This leads us to the formulation of Partial Tower Sealing, a weak form of Tower Sealing
strong enough to imply Sealing in various circumstances, cf. Theorem 1.6, and weak enough to hold in
hod mice. The proof that this form of Tower Sealing holds in such hod mice is given in Theorem 1.3. It
is not known whether Tower Sealing can hold in hod mice at the moment.

Theorem 1.3. Suppose (P,Ψ) is an lbr hod pair or a layered hod pair such that P ⊨“there is a strong
cardinal and a proper class of Woodin cardinals”. Let κ be the least strong cardinal of P and g ⊂
Coll(ω, κ+) be P-generic. Then

P[g] ⊨ “∀δ if δ is Woodin, then Partial Tower Sealing holds at δ.”

Remark 1.4. In general, we cannot expect Tower Sealing to hold in generic extensions of hod mice.
See Theorem 6.1.

From the hypothesis of Theorem 1.3 and recent work of the first author, we immediately obtain the
following corollary.

Corollary 1.5. Partial Tower Sealing is consistent relative to ZFC+“there is a Woodin limit of Woodin
cardinals”.

The next theorem shows that Partial Tower Sealing implies Sealing holds at certain Woodin cardinals.
The reader can see section 2 and section 3 for the definition of Hom∗

g∗G and related notions.

Theorem 1.6. Suppose δ is a Woodin cardinal which is a limit of Woodin cardinals with the property
that whenever g is < δ-generic, G ⊆ Q<δ is V [g]-generic, then Γ∞

g∗G = Hom∗
g∗G. Suppose Partial Tower

Sealing holds at δ. Then Sealing holds at δ.

Remark 1.7. The hypothesis used in Theorem 1.6 holds in various important situations. For example,
if δ is a Woodin limit of Woodin cardinals and strong cardinals, then whenever G ⊆ Q<δ is V -generic,
Γ∞
G = Hom∗

G. Also, if V is the universe of a hod mouse with a proper class of Woodin cardinals,
then at every Woodin cardinal δ which is a limit of Woodin cardinals, whenever G ⊆ Q<δ is V -generic,
Γ∞
G = Hom∗

G. See Section 3 for more details.

It is unclear whether Tower Sealing can hold in hod mice and whether Tower Sealing is consistent
relative to ZFC+“there is a Woodin limit of Woodin cardinals”. In theorems 6.1 and 6.5, we provide
further evidence that it seems very hard to force Tower Sealing to hold in hod mice.
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The paper is organized as follows. In Section 2 we review basic notions used in this paper. In Section
3 we shows Partial Tower Sealing implies Sealing holds at certain Woodin cardinals. In Section 4, we
recall the derived model representation of Γ∞ in [ST21] and use it to prove the consistency of Partial
Tower Sealing in Section 5. In Section 6 we prove Theorems 6.1 and 6.5 which show that in general,
Tower Sealing fails in hod mice. In Section 7 we collect some open problems and questions related to
the results of this paper.

2. Preliminaries

2.1. Homogenously Suslin and universally Baire sets

We say that a pair of trees T, S are δ-absolutely complementing if for any poset P of size ≤ δ, for any
generic g ⊆ P, V [g] ⊨ “p[T ] = R− p[S]”. Similarly, we say that T, S are < δ-absolutely complementing if
for any poset P of size < δ, for any generic g ⊆ P, V [g] ⊨ “p[T ] = R − p[S]”. Given a limit of Woodin
cardinals ν and g ⊆ Col(ω,< ν), let

1. R∗
g =

⋃
α<ν RV [g∩Col(ω,α)],

2. Hom∗
g be the set of reals A ∈ V (R∗

g) such that for some α < ν, there is a pair (T, S) ∈ V [g ∩
Col(ω, α)] such that V [g ∩ Col(ω, α)] ⊨ “(T, S) are < ν-complementing trees” and p[T ]V (R∗

g) = A,
and

3. the derived model associated with g be defined by: DM(g) = L(Hom∗
g,R∗

g).

We now recall the notions of homogeneously Suslin and universally Baire sets. Given an uncountable
cardinal κ, and a set Z, measκ(Z) denotes the set of all κ-additive measures on Z<ω. If µ ∈ measκ(Z),
then there is a unique n < ω such that Zn ∈ µ by κ-additivity; we let this n = dim(µ). If µ, ν ∈
measκ(Z), we say that µ projects to ν if dim(ν) = m ≤ dim(µ) = n and for all A ⊆ Zm,

A ∈ ν ⇔ {u : u ↾ m ∈ A} ∈ µ.

In this case, there is a natural embedding from the ultrapower of V by ν into the ultrapower of V by µ:

πν,µ : Ult(V, ν) → Ult(V, µ)

defined by πν,µ([f ]ν) = [f∗]µ where f∗(u) = f(u ↾ m) for all u ∈ Zn. A tower of measures on Z is a
sequence ⟨µn : n < k⟩ for some k ≤ ω such that for all m ≤ n < k, dim(µn) = n and µn projects to
µm. A tower ⟨µn : n < ω⟩ is countably complete if the direct limit of {Ult(V, µn), πµm,µn

: m ≤ n < ω}
is well-founded. We will also say that the tower ⟨µn : n < ω⟩ is well-founded.

Recall we identify the set of reals R with the Baire space ωω.

Definition 2.1. Fix an uncountable cardinal κ. A function µ̄ : ω<ω → measκ(Z) is a κ-complete
homogeneity system with support Z if for all s, t ∈ ω<ω, writing µt for µ̄(t):

(a) dom(µt) = dom(t),

(b) s ⊆ t⇒ µt projects to µs.

Often times, we will not specify the support Z; instead, we just say µ̄ is a κ-complete homogeneity
system.

A set A ⊆ R is κ-homogeneous iff there is a κ-complete homogeneity system µ̄ such that

A = Sµ =def {x : µ̄x is countably complete}.

A is homogeneous if it is κ-homogeneous for all κ. Let Hom∞ be the collection of all homogeneous
sets. ⊣

Definition 2.2. A ⊆ R is κ-universally Baire if there are trees T,U ⊆ (ω×ON)<ω that are κ-absolutely
complemented, i.e. A = p[T ] = R\p[U ] and whenever P is a forcing such that |P| ≤ κ and g ⊆ P is
V -generic, in V [g], p[T ] = R\p[U ]. In this case, we let Ag = p[T ] be the canonical interpretation of A in
V [g].

A is universally Baire if A is κ-universally Baire for all κ. Let Γ∞ be the collection of all universally
Baire sets. ⊣

3



We remark that if A is κ-universally Baire as witnessed by pairs (T1, U1) and (T2, U2) and P such
that |P| ≤ κ and g ⊂ P is V -generic, then Ag = p[T1] = p[T2], i.e. Ag does not depend on the choice
of absolutely complemented trees that witness A is κ-universally Baire. A similar remark applies to
κ-homogeneously Suslin sets; in other words, if A = Sµ̄ where the measures in µ̄ are κ-complete, then
for any <-κ generic g, the canonical interpretation Ag is defined as

(Sµ̄)g = {x ∈ RV [g] : µ̄x is countably complete in V [g]}.

Suppose there is a proper class of Woodin cardinals. The following are some standard results about
universally Baire sets we will use throughout our paper. The proof of these results can be found in
[Ste09].

(I) Hom∞ = Γ∞.

(II) For any A ∈ Γ∞, L(A,R) ⊨ AD+; furthermore, given such an A, there is a B ∈ Γ∞ such that
B /∈ L(A,R) and A ∈ L(B,R). In fact, A♯ is an example of such a B.

(III) Suppose A ∈ Γ∞. Let B be the code for the first order theory with real parameters of the structure
(HC,∈, A) (under some reasonable coding of HC by reals). Then B ∈ Γ∞ and if g is V -generic
for some forcing, then in V [g], Bg ∈ Γ∞ is the code for the first order theory with real parameters
of (HCV [g],∈, Ag).

(IV) Every set in Γ∞ has a scale in Γ∞.

Under the same hypothesis, the results above also imply that

• Γ∞ is closed under Wadge reducibility,

• if A ∈ Γ∞, then ¬A ∈ Γ∞,

• if A ∈ Γ∞ and g is V -generic for some forcing, then there is an elementary embedding j : L(A,R) →
L(Ag,Rg), where Rg = RV [g].

2.2. Hod mice

Suppose (P,Ψ) is a hod pair in the sense of [Ste22] and that P has a proper class of Woodin cardinals.
We recall some properties of iteration strategies of certain countable elementary substructures X ≺ P|η
for some inaccessible η proved in [ST21].

We adopt some notations from [ST21]. First, the pair (P,Ψ) is called an iterable pair in [ST21].
Given a strong limit cardinal κ and F ⊆ Ord, set

WΨ
κ = (Hκ,P|κ,ΨP|κ ↾ Hκ,∈).

Given a structure Q in a language extending the language of set theory with a transitive universe, and
an X ≺ Q, we let MX be the transitive collapse of X and πX :MX → Q be the inverse of the transitive
collapse. In general, the preimages of objects in X will be denoted by using X as a subscript, e.g.
π−1
X (P) = PX . Also, if η < δ, we write Ψη,δ for the fragment of Ψ that acts on the window (η, δ).

Suppose in addition Q = (R, ...P,Ψη,δ, ...). We will then write X ≺ (Q|Ψη,δ) to mean that X ≺ Q and
the strategy of PX that we are interested in is ΨπX

η,δ . We set ΛX = ΨπX

η,δ . If g is a generic over V , we

write Ψgη,δ for the canonical interpretation of Ψη,δ in V [g] (if exists) and ΛgX = (Ψgη,δ)
πX .

By results of [Ste22], Ψ has all the properties required to run the constructions in [ST21]. In particular,
results of [ST21, Sections 2, 3, 4] can be applied to (P,Ψ). We summarize some key facts that we use in
the constructions in Section 4. We need develop some terminology to state these facts. In the following,
we will write V for the universe of P and the notions below will hold in V .

Suppose ν is a Woodin cardinal. We let EAν be the ω-generator version of the extender algebra
associated with ν (see e.g. [Ste10] for a detailed discussion of Woodin’s extender algebras). We say the
triple (M, δ,Φ) Suslin, co-Suslin captures1 the set of reals B if there is a pair (T, S) ∈ M such that
M ⊨ “(T, S) are δ-complementing” and

1. M is a countable transitive model of some fragment of ZFC,

1This notion is probably due to Steel, see [Ste08].
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2. Φ is an ω1-strategy for M ,

3. M ⊨ “δ is a Woodin cardinal”,

4. for x ∈ R, x ∈ B if and only if there is an iteration T of M according to Φ with last model N such
that x is generic over N for EANπT (δ) and x ∈ p[πT (T )].

Suppose M is a countable transitive model of set theory and Φ is a strategy of M . Let (η, g) be such
that g is M -generic for a poset in M |η. Let Φ′ be the fragment of Φ that acts on iterations that are
above η. Then Φ′ can be viewed as an iteration strategy of M [g]. This is because if T is an iteration of
M [g] above η, there is an iteration U of M that is above η and such that

1. lh(T ) = lh(U),

2. T and U have the same tree structure,

3. for each α < lh(T ), MT
α =MU

α [g],

4. for each α < lh(T ), ET
α is the extension of EU

α onto MU
α [g].

Let Φ′′ be the strategy of M [g] with the above properties. We then say that Φ′′ is induced by Φ′. We
will often confuse Φ′′ with Φ′. The following lemma is the key fact that we need for 4; it is proved in
[ST21, Lemma 4.4]. Say u = (η, δ, λ) is a good triple if it is increasing, δ is a Woodin cardinal, and λ is
an inaccessible cardinal.

Lemma 2.3. Suppose u = (η, δ, λ) is a good triple and g is V -generic for a poset in Vη. Let A ∈ Γ∞
g .

Then, in V [g], there is a club of countable X ≺ (Wλ[g]|Ψgη,δ) such that (MX , δX ,Λ
g
X) Suslin, co-Suslin

captures A.2 For each such X, let X ′ = X ∩Wλ ≺Wλ, and (MX′ ,ΛX′) be the transitive collapse of X ′

and its strategy. Then A is projective in ΛX′ . Moreover, these facts remain true in any further generic
extension by a poset in Vη[g].

3. Partial Tower Sealing implies Sealing

In this section, we prove Theorem 1.6 and give some applications of 1.6 and Partial Tower Sealing.
Suppose δ is a Woodin limit of Woodin cardinals and G ⊆ Q<δ is V -generic, we let R∗

G = RV [G] and
Hom∗

G be the set of A ⊆ R∗
G such that for any γ, there is a homogeneity system µ̄ = ⟨µs : s ∈ ω<ω⟩ with

the properties:

• each measure µs is γ-complete in V [G].

• µ⃗ ∈ V [x] for some x ∈ R∗
G.

• A = {z : (µz↾n : n < ω) is well-founded}.

In the last item above, we write A = Sµ̄. If the measures in µ̄ are all κ-complete for some uncountable
cardinal κ and g is < κ-generic, recall we can canonically extend A to Ag = (Sµ̄)g, where

(Sµ̄)g = {z ∈ V [G, g] : (µz↾n : n < ω) is well-founded in V [G, g]}.

Also, it is clear that for δ,G as above, there is a γ (sufficiently large) such that any A ∈ Hom∗
G is

witnessed by a homogeneity system µ̄ where each measure µ ∈ µ̄ is γ-complete.

Remark 3.1. Let δ,G,A be as above. Suppose further that there is a proper class of Woodin cardinals.
We can in fact choose γ large enough so that letting g ∈ V (R∗

G) be < δ-generic such that µ̄ ∈ V [g]
consists of γ-complete measures, then (Sµ̄)g is in fact universally Baire in V [g] and that A = (Sµ̄)G is
universally Baire in V [G]. This follows from results of Woodin and Martin-Steel, [Ste09]. See item (I)
of Section 2.

Proof of Theorem 1.6. We fix a Woodin cardinal δ as in the hypothesis of the theorem. We need to verify
clause (2) of Definition 1.2. Let P ∈ Vδ and g ⊆ P be V -generic. We show that there is an elementary
embedding j : L(Γ∞,R) → L(Γ∞

g ,Rg). Even though this only proves a special case of clause (2), but it
will be evident that the proof can be generalized to prove the full statement. To simplify the notation,
we write L(Γ∞) for L(Γ∞,R) etc.

2To conform with the above setup, we tacitly assume Λg
X to be the iteration strategy acting on trees above ηX .
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Let G ⊆ Q<δ be V -generic and jG be the associated embedding. By Partial Tower Sealing, we have
an elementary map l : L(Γ∞

G ) → L(jG(Γ
∞)) such that l ↾ Γ∞

G = id. We can then define a map

i : L(Γ∞) → L(Γ∞
G )

as the unique map determined by: i(A) = AG for each A ∈ Γ∞ and i(α) = β iff l(β) = jG(α) for
any indiscernible α of L(Γ∞). It is easy to see that i can be canonically extended to all of L(Γ∞)
because every z ∈ L(Γ∞) has the form τ [x,A, s] for some term τ , a real x, A ∈ Γ∞, and s a finite set of
indiscernibles. Therefore, we can simply define

i(z) = τL(Γ
∞
G )[x,AG, i(s)].

Claim 3.2. i is well-defined and elementary.

Proof. Suppose φ is a formula, x ∈ R, A ∈ Γ∞, and s is a finite sequence of indiscernibles. Then

L(Γ∞) ⊨ φ[A, x, s] ⇔ L(jG(Γ
∞)) ⊨ φ[jG(A), x, jG(s)]

⇔ L(Γ∞
G ) ⊨ φ[AG, x, i(s)].

The first equivalence follows from elementarity of jG and the second equivalence follows from the ele-
mentarity of l and the fact that l(i(s)) = jG(s) and l(AG) = jG(A) = AG. It is easy to see that the
equivalences above prove the claim.

Let G′ ⊆ Q<δ be V [g]-generic and jG′ : V [g] → M ′ ⊆ V [g][G′] be the associated embedding. By
Partial Tower Sealing, we have an elementary map l′ : L(Γ∞

g∗G′) → L(jG′(Γ∞
g )) such that l′ ↾ Γ∞

g∗G′ = id.
As before, we can define the elementary map i′ : L(Γ∞

g ) → L(Γ∞
g∗G′) similar to how i was defined.

Now, we can find G,G′ such that the following hold:

(i) G ⊆ Q<δ is V -generic such that g ∈ V [G].

(ii) G′ ⊆ Q<δ is V [g]-generic.

(iii) RV [G] = RV [g][G′].

(iv) Γ∞
G = Γ∞

g∗G′ .

By standard facts concerning Q<δ, we can find G,G′ satisfying (i)-(iii), see [Ste09]. We give a little
more details here. By the usual factoring property of Coll(ω,< δ) and the fact that g is < δ-generic, there
is a V -generic H ⊆ Coll(ω,< δ) such that g ∈ V [H]. By [Ste09, Lemma 6.6], there are generics G ⊂ Q<δ
and G′ ⊂ QV [g]

<δ such that G is V -generic, G′ is V [g]-generic such that RV [G] = RV [g][G′] = RV [H]. These
generics G,G′ clearly satisfy (i) - (iii).

We show that (iv) is satisfied as well. In fact, we show

Γ∞
G = Γ∞

g∗G′ = Hom∗
g∗G′ = Hom∗

G. (3.1)

First, note that Hom∗
g∗G′ = Hom∗

G. This is because R∗
G = R∗

g∗G′ , so any homogeneity system µ̄
witnessing A ∈ Hom∗

G is in V [x] for some x ∈ R∗
G = R∗

g∗G′ ; therefore, µ̄ witnesses A ∈ Hom∗
g∗G′ . The

converse is proved the same way.
But then note that by our hypothesis:

Hom∗
G = Γ∞

G

and
Hom∗

g∗G′ = Γ∞
g∗G′ .

So the equalities in (3.1) hold.
Let G,G′ satisfy (i)-(iv) above. So we have elementary embeddings i0 : L(Γ∞) → L(Γ∞

G ) = L(Γ∞
g∗G′)

and i1 : L(Γ∞
g ) → L(Γ∞

G ) = L(Γ∞
g∗G′), where i0 = jG ↾ L(Γ∞) and i1 = jG′ ↾ L(Γ∞

g ). Let j : L(Γ∞) →
L(Γ∞

g ) be defined by: j(A) = Ag for each A ∈ Γ∞ and j(α) = β iff i1(β) = i0(α). Just like in the proof
of Claim 3.2, we have that k is elementary. This completes the proof of the theorem.
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Corollary 3.3. Suppose there is a proper class of Woodin cardinals and δ is a Woodin limit of Woodin
cardinals. Then whenever g is <-δ generic, whenever G ⊆ Q<δ is V [g]-generic, then Γ∞

g∗G = Hom∗
g∗G.

Therefore, if Partial Tower Sealing holds at δ, then Sealing holds at δ.

Proof. Let g,G be as in the statement of the corollary. As in the proof of Theorem 1.6, we can find
G′ ⊆ Q<δ such that

(a) G′ ⊆ Q<δ is V -generic such that g ∈ V [G′].

(b) G′ ⊆ Q<δ is V [g]-generic.

(c) RV [G′] = RV [g][G].

We need to verify that

(d) Γ∞
G′ = Γ∞

g∗G.

As in the proof of (3.1), Hom∗
g∗G = Hom∗

G′ . We need to verify:

Hom∗
G′ = Γ∞

G′ (3.2)

and
Hom∗

g∗G = Γ∞
g∗G. (3.3)

We just prove 3.2 as the proof of 3.3 is the same. Let A ∈ Hom∗
G′ . Then there is some g ∈ V (R∗

G′) such
that g is < δ-generic and some µ̄ ∈ V [g] such that A = (Sµ̄)G′ . Let B = (Sµ̄)g. We may assume all
measures in µ̄ are γ-complete for a sufficiently large γ so that B is in fact universally Baire in V [g] and
that A is universally Baire in V [G′] (see Remark 3.1). So A ∈ Γ∞

G′ . Conversely, suppose A ∈ Γ∞
G′ . By

work of Martin-Steel and Woodin [Ste09] and the fact that there is a proper class of Woodin cardinals, A
is κ-homogeneously Suslin for some sufficiently large κ > δ. Let µ̄ witness A is κ-homogenously Suslin.

Since µ̄ is countable and δ = ω
V [G′]
1 , µ̄ ∈ V [g] for some < δ generic g ∈ V (R∗

G′). Let B = (Sµ̄)g be the
κ-homogeneously Suslin set in V [g] witnessed by µ̄. So A = (Sµ̄)G′ is the canonical extension of B. This
means A ∈ Hom∗

G′ as desired.3

Assume AD+, we say that a pointclass Γ such that Γ = ℘(R) ∩ L(Γ) is OD-full if whenever A ∈ Γ
and x, y ∈ R are such that y ∈ OD(A, x), then y ∈ OD(A, x) in L(Γ). We write Θ for the supremum of
ordinals α for which there is a surjection of R onto α; we write (θα : α ≤ γ) for the Solovay sequence.
These notations can be relativized to pointclasses like Γ and we write ΘΓ, θΓα for such objects. For Σ an
(ω1, ω1)-iteration strategy for a countable mouse or a hod mouse P, for a ∈ HC, we let LpΣ(a) be the
stack of all sound Σ-mice M over a such that ρω(M) = ω.

Theorem 3.4. Suppose Partial Tower Sealing holds at a Woodin cardinal δ. Let G ⊆ Q<δ be V -generic
and jG : V →M ⊆ V [G] be the associated embedding, then ΓG∞ is OD-full in jG(Γ∞). In particular, the
following hold.

1. Suppose Σ ∈ Γ∞
G is an iteration strategy, then for any a ∈ HCV [G], LpΣ(a) ∩ L(Γ∞

G ) = LpΣ(a) ∩
L(jG(Γ

∞)).

2. ΘΓ∞
G = θ

j(Γ∞)
α for some limit ordinal α.

Proof. Fix G, jG and let l : L(ΓG∞) → L(jG(Γ
∞)) be given by Partial Tower Sealing. Let a ∈ HCV [G] and

let A ∈ Γ∞
G . Suppose y ∈ OD(A, a)∩HCV [G] in L(Γ∞

G ), then by elementarity and the fact that l(A) = A
and l ↾ RV [G] = id, we have that y ∈ OD(A, a) in L(jG(Γ

∞)). Conversely, if y ∈ OD(A, a) ∩HCV [G] in
L(j(Γ∞)), then letting T be the tree projecting to the universal Σ2

1˜(A)-set in L(jG(Γ
∞)); the existence

of T follows from the fact that

L(jG(Γ
∞)) ⊨ “ there is no largest Suslin cardinal”

which follows from (1.1). So y ∈ L[T, a]. Now by our choice of T and the fact that Σ2
1˜(A) is the same in

L(jG(Γ
∞)) and in L(Γ∞

G ), T ∈ L(Γ∞
G ). We have then that l(T ) = T . Since L(Γ∞

G ) ⊨ y ∈ L[T, a], we see
that y ∈ OD(A, a) in L(Γ∞

G ).

3We may assume κ is large enough that µ̄ witnesses A ∈ Hom∗
G′ .
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To see (1), note that by elementarity and the fact that l(Σ) = Σ,

l(LpΣ(a)L(Γ
∞
G )) = (LpΣ(a))L(jG(Γ∞)).

Clearly LpΣ(a)L(Γ
∞
G ) � LpΣ(a))L(jG(Γ∞)). Now suppose M � (LpΣ(a))L(jG(Γ∞)) is the least that is

not in (LpΣ(a))L(Γ
∞
G ), then since M ∈ OD(Σ, a) in L(jG(Γ

∞)), M ∈ OD(Σ, a) in L(Γ∞
G ). Since

L(jG(Γ
∞)) ⊨ M is a Σ-mouse over a, using l, we see that

L(Γ∞
G ) ⊨ M is a Σ-mouse over a.

This means M� (LpΣ(a))L(Γ
∞
G ) as desired.

For (2), the fact that ΘΓ∞
G = θ

jG(Γ∞)
α follows from OD-fullness of Γ∞

G ; in fact, for each β such that

θβ < θα in j(Γ∞), θ
Γ∞
G

β = θ
j(Γ∞)
β . α is limit because L(Γ∞

G ) ⊨ “every set of reals is Suslin” as mentioned
above.

4. Derived model representation of Γ∞ and Sealing

In this section, we summarize the construction in [ST21] that realizes Γ∞ as a derived model via a direct
limit construction. We assume the hypothesis of Theorem 1.3 and write V for the universe of P. We fix
a generic g ⊆ Coll(ω, κ+) and write ι for κ+. We note that by our assumption and standard theory of
hod mice [Ste22], the hypotheses required to apply Theorem 0.4 of [ST21] are satisfied in V [g].

We say u = (η, δ, δ′, λ) is a good quadruple if (η, δ, λ) and (η, δ′, λ) are good triples with δ < δ′ (see
Section 2). Suppose u = (η, δ, δ′, λ) is a good quadruple and h is a V [g]-generic such that g ∗h is generic
for a poset in Vη. Working in V [g ∗ h], let D(h, η, δ, λ) be the club of countable

X ≺ ((Wλ[g ∗ h], u)|Ψgη,δ)

such that HV
ι ∪ {g} ⊆ X.

Suppose A ∈ Γ∞
g∗h. Then for a club of X ∈ D(h, η, δ, λ), A is Suslin, co-Suslin captured by

(MX , δX ,Λ
g∗h
X ) and A is projective in ΛX′ where X ′ = X ∩ Wλ (see Lemma 2.3). Given such an

X, we say X captures A.
Let k ⊆ Col(ω,Γ∞

g∗h) be generic, and let (Ai : i < ω), (wi : i < ω) be generic enumerations of Γ∞
g∗h

and Rg∗h respectively in V [g ∗ h ∗ k]. Let (Xi : i < ω) ∈ V [g ∗ h ∗ k] be such that for each i

1. Xi ∈ D(h, η, δ, λ), and

2. Xi captures Ai.

In particular, Ai is projective in ΛX′
i
, where X

′

i = Xi ∩Wλ. We set M0
n = MX′

n
, π0

n = πX0
, κ0 = κX0

,

ν0 = δX0 , ν
′
0 = δ′X0

, η0 = ηX0 , δ0 = δ, P0 = P.

Next we inductively define sequences (M i
n : i, n < ω), (πin : i, n < ω), (Λi : i ≤ ω), (τ i,i+1

n : i, n < ω),
(νn : i < ω), (ν′n : i < ω), (ηn : n < ω), (κi : i < ω), (θi : i < ω), (Ti, Ei : i < ω), (M ′

i : i < ω),
(Ui, Fi : i < ω), (Pi : i ≤ n), (P ′

i : i < ω), and (σi : i < ω) satisfying the following conditions (see Figure
5.1 of [ST21]).

(a) For all i, n < ω, πin :M i
n → Pi and rng(πin) ⊆ rng(πin+1).

(b) τ i,i+1
n :M i

n →M i+1
n . Let τn :M0

n →Mn
n be the composition of τ j,j+1

n ’s for j < n.

(c) For all i, n < ω, κn = τn(κ0), ηn = τn(η0), νn = τn(ν0) and ν
′
n = τn(ν

′
0).

(d) For all n < ω, Tn is an iteration of Mn
n |ν′n above νn that makes wn generic and M ′

n is its last model.

(e) θn = πTn(ν′n) and En ∈ E⃗M
′
n is such that lh(En) > θn and cp(En) = κn.

(f) for all m,n, Mn+1
m = Ult(Mn

m, En) and τ
n,n+1
m = π

Mn
m

En
.

(g) Un = πnnTn, P ′
n is the last model of Un, σn :M ′

n → P ′
n is the copy map and Fn = σn(En).

4

(h) Pn+1 = Ult(Pn, Fn) and ψn+1
m :Mn+1

m → Pn+1 is given by πn+1
m (π

Mn
m

En
(f)(a)) = πPn

Fn
(πnm(f))(σn(a)).

4So ⊕i≤nTi and ⊕i≤nUi are sealed iterations based on κ.
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(i) Λn = (πnn-pullback of (Ψg∗hλ )Pn|ψn(νn))ηn,νn = (σn-pullback of (Ψg∗hλ )P′
n|σn(νn))ηn,νn (see [ST21,

Corollary 3.6]).

Let Mω
n be the direct limit of (Mm

n : m < ω) under the maps τm,m+1
n . Letting Pω be the direct limit

of (Pn : n < ω) and the compositions of πPn

Fn
, we have natural maps πωn :Mω

n → Pω. Notice that

(1) for each n < ω, κn < ω
V [g∗h]
1 and supnκn = ω

V [g∗h]
1 .

It follows that if τmn :Mm
n →Mω

n is the direct limit embedding then

(2) τmn (κn) = ω
V [g∗h]
1 .

Next, notice that

(3) for each m,n, p, letting ιn = τn(ιX0
) = τn(ι), M

n
m|ιn =Mn

p |ιn and ιn = (κ+n )
Mn

m .
(4) for each m,n, p, πnm ↾ (Mn

m|ιn) = πnp ↾ (Mn
p |ιn)

(5) for each m, n > 1 and p > n, Mn
m|θn−1 =Mp

m|θn−1.
(6) for each m, n > 1 and p with p > n, πnm ↾ (Mn

m|θn−1) = πpm ↾ (Mp
m|θn−1).

Because of condition (d) above we can find G ⊆ Coll(ω,< ω
V [g∗h]
1 ) generic over Mω

n (for each n < ω)

such that RMω
n [G] = Rg∗h and G ∈ V [g ∗ h ∗ k]. By constructions, ω

V [g∗h]
1 is a limit of Woodin cardinals

in Mω
n . [ST21] shows that

Lemma 4.1. For each n < ω, DM(G)M
ω
n [G] = L(Γ∞

g∗h,Rg∗h).

Lemma 4.1 implies that clause 1 of Sealing and of Partial Tower Sealing holds. [ST21] uses Lemma 4.1
to also verify clause 2 of Sealing holds.

In the next section, we will use the above constructions to verify clause 2 of Partial Tower Sealing
holds. We say that the sequence (Xi : i < ω) is cofinal in Γ∞

g∗h as witnessed by (Ai : i ∈ ω) and
(wi : i < ω). We also say that (Mn

0 ,Λn, θn, τn,m : n < m < ω) is a Γ∞
g∗h-genericity iteration induced by

(Xi : i < ω) where τn,m :Mn
0 →Mm

0 is the composition of τ i,i+1
0 for i ∈ [n,m).

5. Partial Tower Sealing

In this section, we use the results of the previous section to prove Theorem 1.3. We work in the universe
of P, which we call V . Let κ be the least strong cardinal. Let g ⊆ Coll(ω, κ+) be V -generic and let
δ > κ be Woodin. We prove Partial Tower Sealing holds in V [g] at δ.

Work in V [g], let G ⊆ Q<δ be V [g]-generic and let jG : V [g] → M ⊆ V [g,G] be the associated
embedding. We want to find an embedding j : L(Γ∞

g∗G) → L(jG(Γ
∞
g )) such that j ↾ Γ∞

g∗G is the identity
and furthermore, j is an order-preserving bijection on the class of indiscernibles of the models.

We note that the main result of [ST21] already shows Sealing holds in V [g] at δ, therefore, there is
an elementary embedding i : L(Γ∞

g ) → L(Γ∞
g∗G) such that i(A) = AG for all A ∈ Γ∞

g . Furthermore,

(Γ∞
g )♯, (Γ∞

g∗G)
♯ exist and i is the order-preserving bijection on the class of indiscernibles of the models.

jG induces an elementary embedding k : L(Γ∞
g ) → L(jG(Γ

∞
g )) such that jG(A) = AG for all A ∈ Γ∞

g .
If Γ∞

g∗G = jG(Γ
∞
g ) then we simply let j be the identity. In general, letW = L(Γ∞

g∗G), W
′ = L(jG(Γ

∞
g )), τ

a term, A ∈ Γ∞
g∗G, x ∈ Rg∗G, and s a finite sequence of indiscernibles for both W,W ′ such that jG(s) = s

and i(s) = s, then we define

j(τW (A, x, s)) = τW
′
(A, x, s).

Since (Γ∞
g∗G)

♯, (jG(Γ
∞
g ))♯ exist, everything in W has the form τW (A, x, s) for some A, x, s (and similarly

for W ′), j is defined on all of W . We need to check that j is elementary.
Let (ξi : i < ω) be the first ω indiscernibles for both W,W ′ with the properties described above; we

may assume that s = (ξi : i < lh(s)). Let u = (η, δ′, δ′′, λ) be a good quadruple such that supi<ω ξi < η.
Let k ⊆ Col(ω,Γ∞

g∗G) be V [g ∗ G]-generic and k′ ⊆ Coll(ω, jG(Γ
∞
g )) be M -generic. We may assume

k′ ∈ V [g ∗G ∗ k]
We have that Γ∞

g∗G is the Wadge closure of strategies of the countable substructures of V [g]λ. More

precisely, given A ∈ Γ∞
g∗G, there is an X ≺ (Wλ|Ψg∗Gη,δ′ ) such that A is Wadge reducible to ΛX and

ΛX ∈ Γ∞
g∗G. It follows that to show that j is elementary it is enough to show that given a formula

ϕ, m ∈ ω, um being the first m common indiscernbiles of W,W ′ that are fixed points of all relevant
embeddings, X ≺ ((V [g]λ, u)|Ψg∗Gη,δ′ ) and a real x ∈ Rg∗G,
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M0
0 = N0

0 M1
0 = N1

0

M2
0

N2
0

M3
0

N3
0

Mω
0

Nω
0

...

...

Figure 1: Two genericity iterations: the derived mode of Mω
0 is L(Γ∞

g∗G) and the derived model of Nω
0

is L(jG(Γ
∞
g )).

W ⊨ ϕ[um,ΛX , x] ⇒W ′ ⊨ ϕ[um,ΛX , x].5

Fix then a tuple (ϕ, n,X, x) as above.

Working inside V [g ∗G∗k], let (Yi : i < ω) be a cofinal sequence in Γ∞
g∗G as witnessed by some A⃗ and

w⃗ such that A0 = ∅, w0 = x and Y ′
0 = X. Using k′, we also construct (Zi : i < ω), a cofinal sequence

in jG(Γ
∞
g ) as witnessed by some B⃗ and v⃗ such that B0 = ∅, v0 = x and Z ′

0 = X. Here the Zi’s are

elementary substructures of VMjG(λ).

Let (Mn
0 ,Λn, θn, τn,l : n < l < ω) be a Γ∞

g∗G-genericity iteration induced by (Yi : i < ω) and
(Nn

0 ,Φn, νn, σn,l : n < l < ω) be a jG(Γ
∞
g )-genericity iteration induced by (Zi : i < ω). It is not hard

to see that we can make sure that M1
0 = N1

0 by simply selecting the same extender E0 after T0; by our
assumptions, M0

0 = N0
0 and w0 = v0. Note that this makes sense because if X ≺ V [g]λ, then X ≺ VMjG(λ)

since V [g]λ ≺ VMjG(λ). Furthermore, by elemenarity of jG and the fact that ω
V [G]
1 > ι > κ, M = jG(V )[g]

and j(V ) ⊨ “κ is strong”. See Figure 1.
L(Γg∗G∞ ) is realized as the derived model of Mω

0 and L(jG(Γ
g
∞)) is realized as the derived model of

Nω
0 , and the two iterations agree on the first extender used (namely E0) and therefore M1

0 = N1
0 .

Let ζ = ηX and Γ = (Ψη,δ′)X . Let Mω
0 be the direct limit along (Mn

0 : n < ω) and Nω
0 the direct

limit along (Nn
0 : n < ω). For n < ω, let κn be the least strong cardinal of Mn

0 and κ′n be the least
strong cardinal of Nn

0 . Let s
n
m be the first m (cardinal) indiscernibles of L[Mn

0 |κn] and tnm be the first m
(cardinal) indiscernibles of L[Nn

0 |κ′n]. Notice that (Mn
0 |κn)# ∈Mn

0 and (Nn
0 |κ′n)# ∈ Nn

0 . It follows that
τn,l(s

n
m) = slm and σn,l(t

n
m) = tlm for n < l ≤ ω. We may and do modify the snm, t

n
m’s so that sωm = um

and tωm = um for each m.
We then have the following sequence of implications. Below we let Γ∗ be the name for the generic

extension of Γ in the relevant model and ˙DM be the name for the derived model. The third implication
below uses the fact that M1

0 = N1
0 .

W ⊨ ϕ[um,ΛX , x] ⇒Mω
0 [x] ⊨ ∅ ⊩Coll(ω,<κω)

˙DM ⊨ ϕ[sωm,Γ
∗, x]

⇒M1
0 [x] = N1

0 [x] ⊨ ∅ ⊩Coll(ω,<κ1)
˙DM ⊨ ϕ[s1m,Γ

∗, x]

⇒ Nω
0 [x] ⊨ ∅ ⊩Coll(ω,<κ′

ω)
˙DM ⊨ ϕ[tωm,Γ

∗, x]

⇒W ′ ⊨ ϕ[um,ΛX , x].

The converse has the same proof. We therefore have proved the equivalence and the theorem.

6. Failure of Tower Sealing

We show in this section that in general, Tower Sealing fails in hod mice. We recall some terminology
from [ST24]. The reader can consult [ST24, Definition 2.6] for the definition of an excellent hybrid
premouse P. Let P be such a premouse and P0 � P be the unique lsa type hod premouse that is an
initial segment of P from [ST24, Definition 2.6]. In particular, there is a Woodin cardinal δ0 of P such
that P0 = (P|δ0)♯ � P and

P0 ⊨ “∃κ < δ0 κ is < δ0-strong and a limit of Woodin cardinals.”

Let Λ = SP be the short-tree strategy predicate for P0 defined in P, then P is a Λ-premouse with a
proper class of Woodin cardinals.6 As shown in [ST24], Λ has canonical interpretations in all generic

5The ⇐ is similar as will be evident by the following proof.
6In [ST24], we demand that P’s class of measurable limit of Woodin cardinals is stationary.

10



extensions of P; furthermore, let g ⊆ Coll(ω,P0) be P-generic, then P[g] ⊨ Sealing. In fact, Section 5
shows that

P[g] ⊨ ∀δ if δ is Woodin, then Partial Tower Sealing holds at δ.

The next theorem shows that Tower Sealing at any cardinal δ cannot hold in P[g].

Theorem 6.1. 1. Suppose (P,Σ) is excellent. Let P0,Λ be the associated lsa type hod premouse
derived from P and Λ be the short-tree strategy of P0 defined in P. Let g ⊆ Coll(ω,P0) be P-
generic. Then

P[g] ⊨ “∀δ if δ is Woodin, then Tower Sealing fails at δ.”

2. Suppose (P,Ψ) is the minimal lbr hod pair such that P ⊨“there is a strong cardinal and a proper
class of Woodin cardinals”. Let κ be the least strong cardinal of P and g ⊂ Coll(ω, κ+) be P-
generic. Then

P[g] ⊨ “∀δ if δ is Woodin, then Tower Sealing fails at δ.”

To prove part (1), let δ be a Woodin cardinal of P > δ0, equivalently, δ is a Woodin cardinal in
P[g]. Working in P[g], let G ⊆ Q<δ be P[g]-generic and jG : P[g] → M ⊆ P[g][G] be the associated
embedding. We show jG(Γ

g
∞) ̸= Γg∗G∞ . Suppose not. Letting Γ = Γ∞

g∗G = jG(Γ
∞
g ) and ΛG be the

canonical interpretation of Λ in P[g], then

LpΛG,Γ(P0) = LpjG(Λ),Γ(P0).

LpΛG,Γ(P0) � LpjG(Λ),Γ(P0) since ΛG ⊆ jG(Λ). The other direction holds by our assumption that

Γ∞
g∗G = jG(Γ

∞
g ); if M � LpjG(Λ),Γ(P0), then letting ΣM be the unique iteration strategy for M, then

ΣM ∈ Γ = Γ(P0,ΛG)
7, so M� LpΛG,Γ(P0).

Now, let M � jG(P) be the least such that ρω(M) < ω
P[g]
1 and ΣM be the canonical strategy

of M as a jG(Λ)-mouse in M . Then since ΣM is a total strategy, it must be in Γ. This means

M�LpjG(Λ),Γ(P0). ΣM is universally Baire in P[g][G], so in P[g][G][h] where h is Col(ω, δ)-generic over
P[g][G], M� LpΛG∗h(P0) and hence M ∈ P[g] by homogeneity. However, M defines a surjection from

some α < ω
P[g]
1 onto ω

P[g]
1 , M cannot be in P[g]. This is a contradiction. Therefore, Γ∞

g∗G ̸= jG(Γ
∞
g ) as

claimed.
Now we prove part (2). Let κ, g be as in the statement of the theorem. Fix a Woodin cardinal δ > κ.

Let G ⊆ Q<δ be V [g]-generic. Let jG : V [g] → M ⊆ V [g][G] be the associated generic embedding. We
will show that

jG(Γ
g
∞) ̸= Γg∗G∞ . (6.1)

Suppose (6.1) fails. We write V for the universe of P. Recall that ι = κ+ and hence ι+ = ω
V [g]
1 . In

V [g][G], let MG
∞ be the direct limit of all countable iterates of P|δ via Ψg∗G and let iG : P|δ → MG

∞ be
the direct limit embedding. We let MM

∞ be the direct limit of all countable iterates of jG(P)|δ via jG(Ψg)
and iM : jG(P)|δ → MM

∞ be the direct limit embedding. By our assumption, letting Γ = jG(Γ
g
∞) = Γg∗G∞

and Θ = ΘΓ, then by the general properties of the direct limit construction,

iG(κ) = iM (κ) = Θ

and
MG

∞|Θ = MM
∞ |Θ = HODL(Γ)|Θ.

In the following, we will write j for jG. Let (M,Φ)� (j(P )|δ, j(Ψg)) be such that

• (ι+)V < o(M);

• ρω(M) < (ι+)V and M is the minimal such level of M with this property;

• Φ is the canonical strategy of M.

Let τ = (ι+)V . We note that M|τ = P|τ and τ is a cardinal of M.

Lemma 6.2. MG
∞|(Θ)+,M

G
∞ = MM

∞ |(Θ)+,M
M
∞ .

7The equality Γ = Γ(P0,ΛG) follows from [ST24], here Γ(P0,ΛG) is the pointclass generated by P0,ΛG. Γ(P0,ΛG)
consists of A ⊆ R such that there is an embedding i : P0 → Q according to ΛG such that A <w Ψ where Ψ = (ΛG)Q|i(κ).
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Proof. Work in V [g][G], let γ >> ω1 be a regular cardinal and X ≺ H
V [g][G]
γ be countable such that

ω
V [g]
1 < X ∩ δ ∈ δ. Let πX : MX → X be the uncollapse map and δX = crt(πX). Let (Q,R) =
π−1
X (P|δ, j(P)|δ). Note that Q,R ⊨ “κ is strong” and

Q|ι = R|ι = P|ι = j(P)|ι.

Furthermore, let GX = π−1
X (G), then Q = P|δX andR = jGX

(P)|δX where jGX
is the generic ultrapower

map induced by GX . Since X is transitive below δ, we in fact get (by condensation, cf. [ST22, Theorem

4.6]) that (Q,ΨX) = (P|δX ,Ψg∗GQ ) and (R,ΛX) = (j(P)|δX , j(Ψg)R), where ΨX is the π−1
X -pullback of

Ψg∗G and ΛX is the π−1
X -pullback of jG(Ψ

g). Note also that δX > κ is an inaccessible cardinal in P and
j(P).

Let ΘX = π−1
X (Θ) and (Q∞,R∞) = π−1

X (MG
∞,MM

∞). By elementarity, Q∞|ΘX = R∞|ΘX , Q∞ is
a ΨX -iterate of Q, and R∞ is a ΛX -iterate of R. Note that ΨX ,ΛX are fullness preserving in L(Γ).
Q∞|ΘX = R∞|ΘX , and by fullness preservation of ΨX ,ΛX

8 that

Q∞|(ΘX)+,Q∞ = R∞|(ΘX)+,R∞ .

This gives the lemma by elementarity.

Let M∞ = MG
∞|(Θ)+,M

G
∞ = MM

∞ |(Θ)+,M
M
∞ . Now let (Q,Σ) � (Q+,Σ+) where (Q+,Σ+) ∈

I(j(P), jG(Ψ
g))9 and (R,Λ)� (R+,Λ+) ∈ I(P,Ψg∗G) with the following properties:

(i) M∞(Q,Σ)�M∞ and M∞(R,Λ)�M∞.

(ii) M∞(Q,Σ)�M∞(R,Λ).

(iii) πΣ+

Q+,∞ ↾ ιQ = πΛ+

R+,∞ ↾ ιR, where ιQ = π
jG(Ψg)
j(P)|δ,Q+(ι) and ιR = πΨg∗G

P|δ,R+(ι).

(iv) o(R) is a cardinal of R+ and therefore is a limit of indices of extenders on the sequence of R with

critical point κR, where κR = πΨg∗G

P|δ,R+(κ), and o(M∞(R,Λ)) is a limit cardinal of M∞.

(v) o(Q) is a cardinal of Q+ and therefore is a limit of indices of extenders on the sequence of R with

critical point κQ, where κQ = π
jG(Ψg)
j(P)|δ,Q+(κ), and o(M∞(Q,Σ)) is a limit cardinal of M∞.

We note that such pairs can easily be constructed by the general properties of the direct limit systems.
Item (ii) follows from the assumption that 6.1 fails. Item (iii) follows from the proof of Lemma 6.2; indeed,
using the notation as there, we can let R+ be Ult(P|δ, E) where E is the (long) extender of length ΘX
derived from the iteration map ΠΨX

P|δX ,∞ computed in MX [GX ] and Q+ = Ult(j(P)|δX , F ) where F is

the (long) extender of length ΘX derived from the iteration map ΠΛX

jGX
(P)|δX |δX ,∞ computed inMX [GX ],

then
πΣ+

Q+,∞ ↾ ιQ = πΛ+

R+,∞ ↾ ιR = πX ↾ (ΘX)+,Q∞ .

In the following, whenever (Q,Ψ′) ∈ I(P|δ,Ψg∗G), we write κQ, ιQ etc. for the images of κ, ι etc. under
the iteration embedding.

Let MQ = Ult0(M,K) where K is the extender derived from π
jG(Ψg)
j(P)|δ,Q+ ↾ ι. Then we have, by

standard fine-structural computations, that

(vi) ρ1(MQ) < τ∗Q where τ∗Q = πMK (τ) = supπMK ↾ τ.

(vii) MQ �Q+.

Lemma 6.3. πΨg∗G

P|δ,R+ ↾ ι = π
jG(Ψg)
j(P)|δ,Q+ ↾ ι and τ∗Q = πΨg∗G

P|δ,R+(τ).

Proof. To see the second clause, first note that the first clause implies that K is the extender derived

from πΨg∗G

P|δ,R+ ↾ ι; furthermore, πΨg∗G

P|δ,R+ is continuous at τ because τ is a successor cardinal in P and

hence by (vi), τ∗Q = πΨg∗G

P|δ,R+(τ).

8This is because δX > κ is an inaccessible cardinal of P and j(P). By condensation, ΨX = Ψg∗G
Q , and since Ψg∗G is

fullness preserving, ΨX is as well. A similar argument applies to ΛX .
9For a hod pair (S,Υ), the set I(S,Υ) denotes the collection of non-dropping iterates (S′,Υ′) of (S,Υ).
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To see the first clause, we use the minimality assumption on our mouse P. We note that

πΨg∗G

P,R+ ↾ κ = π
jG(Ψg)
j(P),Q+ ↾ κ.

This is because Ψg∗GP|κ = j(Ψg)j(P)|κ. We write σ for this map. Let TP
n be the theory of the first n-

indiscernibles for P. For any A ⊆ κ, let τ be a term such that A = τP [TP
n , s] for some s ∈ [κ]<ω. Then

πΨg∗G

P,R+(A) = τR
+

[TR+

n , σ(s)]. Similarly, π
j(Ψg)
j(P),Q+(A) = τQ

+

[TQ+

n , σ(s)]. By the minimality assumption,

TR+

n = TQ+

n for all n. This means

πΨg∗G

P|δ,R+(A) = π
j(Ψg)
j(P)|δ,Q+(A)

as desired.

By the choice of Q, (vi), (vii), and Lemma 6.3, we easily get that

(viii) MQ �Q.

(ix) Q|τ∗Q = R|τ∗Q.

Let T be the normal tree on Q according to Σ with last model M∞(Q,Σ) and U the normal tree on
R according to Λ with last model M∞(R,Λ).

Lemma 6.4. Suppose α < lh(T ) is on the main branch of T and β < lh(U) is on the main branch of
U . Suppose

• MT
α |πT

0,α(κQ) = MU
β |πU

0,β(κR),

• the generators of [0, α]T are contained in πT
0,α(κQ),

• the generators of [0, β]U are contained in πU
0,β(κR).

Then letting κ∗ = πT
0,α(κQ) = πU

0,β(κR), α∗+1 be the successor α on the main branch of T (if one exists)

and β∗ + 1 the successor of β on the main branch of U (if one exists), then if ET
α∗ has critical point κ∗,

then EU
β∗ also has critical point κ∗ and ET

α∗ = EU
β∗ .

Proof. We show this by induction on the branches [0, α]T , [0, β]U . We assume the lemma holds for pairs
(α′, β′) where α′ ∈ [0, α)T , β

′ ∈ [0, β)U . We first make a couple of simple observations.
First, suppose α∗ + 1 exists, so ET

α∗ is defined. Suppose crt(ET
α∗) = κ∗. Then EU

β∗ is defined and

crt(EU
β∗) = κ∗. This is easily seen to be true as otherwise, κM∞(R,Λ) < κM∞(Q,Σ), but M∞(Q,Σ) �

M∞(R,Λ). This implies M∞(Q,Σ) has more than one strong cardinal. Contradiction.
Now observe that if κ∗ < πΛ

R,∞(κR), then EU
β∗ exists and crt(EU

β∗) = κ∗. This is because if crt(EU
β∗) >

κ∗, then future extenders used along the main branch of U must have critical points > κ∗, but this means
κ∗ is a strong cardinal of M∞(R,Λ) since α is on the main branch of U . Since πΛ

R,∞(κR) is a strong
cardinal of M∞(R,Λ) > κ∗, this means M∞(R,Λ) has more than one strong cardinal. Contradiction.
A similar statement holds for the T -side, namely if κ∗ < πΣ

Q,∞(κQ), then E
T
α∗ exists and crt(ET

α∗) = κ∗

The two observations above easily imply most of the conclusions of the lemma except for the last
equality. So we assume that ET

α∗ , EU
β∗ both exist and have critical point κ∗. By the initial segment con-

dition, we know that lh(ET
α∗) = lh(EU

β∗) =def ξ. Furthermore, (MT
α∗ ||ξ,ΣMT

α∗ ||ξ) = (MU
β∗ ||ξ,ΛMU

β∗ ||ξ).

Letting ι∗ = πT
0,α(ιQ) = πU

0,β(ιR), we have

πΣ+

MT ,+
α ,∞ ↾ ι∗ = πΛ,+

MU,+
β ,∞

↾ ι∗. (6.2)

This follows from (iii) and by our induction hypothesis which implies that πT
0,α ↾ ιQ = πU

0,β ↾ ιR. To see

(6.2), let ξ < ι∗, so ξ = πT
0,α(f)(a) = πU

0,β(f)(a) for f ∈ Q|ιQ and a ∈ [κ∗]<ω. So

πΣ+

MT ,+
α ,∞(ξ) = πΣ+

Q+,∞(πT
0,α(f))(a)

= πΛ+

R+,∞(πU
0,β(f))(a)

= πΛ+

MU,+
β ,∞(ξ).
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In fact, we get that πΣ+

MT ,+
α ,∞ and πΛ,+

MU,+
β ,∞

agree on all the elements of the Hι∗ of the models.

Now we can show the equality of the two extenders by the following calculations: let a ∈ [λ(ET
α∗)]<ω

and A ⊆ [κ∗]|a|,

(a,A) ∈ ET
α∗ ⇔ a ∈ πET

α∗
(A)

⇔ a ∈ πΣ+

MT ,+
α ,∞(A)

⇔ a ∈ πΛ+

MU,+
β ,∞(A)

⇔ (a,A) ∈ EU
β∗ .

The second equivalence follows from the following facts:

• πΣ
α,∞(A) = πΣ

α∗+1,∞ ◦ πET
α

∗(A).

• By the general properties of direct limits, there is a factor map σ : M∞(Q,Σ) → M∞(Q+,Σ+)
such that crt(σ) = κM∞(Q,Σ).

• πΣ
α∗+1,∞(a) = a.

Combining the above facts, we see that a ∈ πET
α∗
(A) is equivalent to a ∈ σ ◦ πΣ

α∗+1,∞ ◦ πET
α

∗(A) =

πΣ+

MT ,+
α ,∞(A). This gives the second equivalence. The third equivalence follows from (6.2) and the remark

after. The last equivalence is proved just like the second equivalence.

Now we have two cases:
Case 1: πT

0,∞(κQ) = πU
0,∞(κR).

Let this ordinal be γ. Then γ is the strong cardinal of M∞(R,Λ) and of M∞(Q,Σ). Furthermore,

πMQ
F (MQ)�M∞(R,Λ) where F is the extender derived from πT

0,∞ and πMQ
F (MQ) is the 0-ultrapower

embedding derived from F on MQ. Since ρ1(MQ) < τ∗Q, by elementarity, ρ1(π
MQ
F (MQ)) < πT

0,∞(τ∗Q).
On the other hand, since τ is a cardinal of P, τ∗Q is a (successor) cardinal of R and is a continuity point

of πU
0,∞. This means πU

0,∞(τ∗Q) = πMQ
F (τ∗Q) (by Lemma 6.4) is a cardinal of M∞(R,∞), but πMQ

F (MQ)

witnesses πU
0,∞(τ∗Q) is not a cardinal of M∞(R,∞). We have a contradiction.

Case 2: πT
0,∞(κQ) < πU

0,∞(κR).

Let α be the least in U such that the strong cardinal of MU
α = πT

0,∞(κQ). It’s easy to see such an
α exists and in fact α in on the main branch of U (see the analysis in Lemma 6.4). Now we have that

letting E be the extender on the main branch of U that is applied to MU
α , then lh(E) ≥ o(πMQ

F (MQ)).
This is because iE(π

T
0,∞(κQ)) is an inaccessible cardinal of M∞(R,Λ) and by our case hypothesis,

πMQ
F (MQ)�M∞(Q,Σ), so by the agreement between models, it is easy to see that πMQ

F (MQ)�MU
α .

But this leads to a contradiction as in Case 1 because πU
0,α(τ

∗
Q) is not a cardinal of MU

α .
This completes the proof of Theorem 6.1. One weakness of the above proof is it seems very hard

to generalize Lemma 6.2 to obtain the agreements between the two direct limits at a strong cardinal of
those limits above Θ. Therefore, one may hope to prove Tower Sealing holds in a generic extension of a
hod mouse with two (or more) isolated strong cardinals. We show that this is not the case.

Theorem 6.5 (AD+). Suppose (P,Ψ) is an lbr hod pair such that P ⊨“there is a proper class of Woodin
cardinals and there are finitely many strong cardinals”. Let κ be the largest strong cardinal of P, and
let g ⊆ Coll(ω, κ+). Suppose there is no subcompact cardinal in P. Then in P[g], Tower Sealing fails at
every Woodin cardinal.

Proof. Suppose there are n strong cardinals in P with κ being the largest one. Let δ > κ be a Woodin
cardinal. We show Tower Sealing fails at δ in P[g]. Let Q = P|δ+,P and fix an X ≺ Q with |X| = κ+

and X ∩ κ++ ∈ κ++. Let π : MX → X be the uncollapse map with crt(π) = γX . We may choose X so
that γX does not index an extender on the Q-sequence and cof(γX) > κ; there is a κ+-club of such X
because there are no subcompact cardinals in P. As in [ST22; Ste22], we coiterate Q and the phalanx
(Q,MX , γX) into a common hod pair construction.

More precisely, let Σ = ΨQ and write M for MX . Fix a coarse strategy pair ((N∗,∈, w,F ,Ψ∗),Ψ∗∗),
in the sense of [Ste22], that captures Σ, and let C be the maximal (w,F) construction, with models
Mν,l and induced strategies Ων,l. Let δ∗ = δ(w). By [ST22, Theorem 3.26], (∗)(M,Σ) holds, so we can
fix ⟨η0, k0⟩ lex least such that (Q,Σ) iterates to (Mη0,k0 ,Ωη0,k0), and for all (ν, l) <lex (η0, k0), (Q,Σ)
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iterates strictly past (Mν,l,Ων,l). Let Uν,l be the unique normal tree on Q witnessing (Q,Σ) iterates past
(Mµ,l,Ων,l).

10

To make the main points transparent and simplify certain arguments, we assume n = 2. We write
κQ0 < κQ1 for the strong cardinals of Q and for any non-dropping iterate R of Q, we write κR0 , κ

R
1 for the

strong cardinals of R. Similarly, we denote κM0 , κ
M
1 for the strong cardinals of M .

We define trees Sν,l on (Q,M, γX) for certain (ν, l) ≤ (η0, k0). Fix (ν, l) ≤ (η0, k0) for now, and
assume Sν′,l′ is defined whenever (ν′, l′) < (ν, l). Let U = Uν,l, and for τ < lh(U), let

ΣU
τ = ΣU↾(τ+1)

be the tail strategy for MU
τ induced by Σ. We proceed to define S = Sν,l, by comparing the phalanx

(Q,M, γX) (using strategy (Σ,ΣπX )) with Mν,l. As we define S, we lift S to a padded tree T on Q, by
copying. Let us write

ΣT
θ = ΣT ↾(θ+1)

for the tail strategy for MT
θ induced by Σ.

We let Q = MS
0 , M = MS

1 . For θ < lh(S), we will have copy map πθ from MS
θ into MT

θ . The map
πθ is a nearly elementary.11 We attach the complete strategy

Λθ = (ΣT
θ )

πθ

to MS
θ . We also define a non-decreasing sequence of ordinals λθ = λSθ that measure agreement between

models of S, and tell us which model we should apply the next extender to.
We start with

MS
0 = Q,MS

1 =M,γ0 = γX ,

and

MT
0 = MT

1 = Q, π0 = id, π1 = πX , σ0 = πX ,

and

Λ0 = Σ, Λ1 = Σπ1 .

We say that 0, 1 are distinct roots of S. We say that 0 is unstable, and 1 is stable. As we proceed,
we shall declare additional nodes θ of S to be unstable. We do so because (MS

θ ,Λθ) = (MU
γ ,Σ

U
γ )

12 for

some γ, and when we do so, we shall immediately define MS
θ+1, as well as σθ and γθ. Here Λθ+1 = Λσθ

θ .
In this case, [0, θ]S does not drop, and all ξ ≤S θ are also unstable. We regard θ+ 1 as a new root of S.
This is the only way new roots are constructed.

If θ is unstable, then we define
γθ = iS0,θ(γ0).

The construction of S takes place in rounds in which we either add one stable θ, or one unstable θ
and its stable successor θ + 1. Thus the current last model is always stable, and all extenders used in S
are taken from stable models. If γ is stable, then λγ = λ(ES

γ ).

For θ < lh(S), let πθ : MS
θ → MT

θ be the copy map. We are maintaining by induction that the last
node γ of our current S is stable, and

Induction hypotheses (†)γ. If θ < γ and θ is unstable, then

(1) 0 ≤S θ and [0, θ]S does not drop (in model or degree), and every ξ ≤S θ is unstable,

(2) there is a γ such that (MS
θ ,Λθ) = (MU

γ ,Σ
U
γ ),

(3) MT
θ+1 = MT

θ , and πθ+1 = πθ ◦ σθ : MS
θ+1 → MT

θ+1 = MT
θ .

(4) γθ does not index an extender on the MS
θ -sequence.

10We note that since k(Q) = 0, Q is strongly stable in the sense of [Ste22]. The possibility that (Q,Σ) iterates to some
type 2 pair generated by (Mη0,k0

,Ωη0,k0
) doesn’t occur here.

11See [ST22, Section 2.3] for a summary of the types of elementary maps between mouse pairs.
12The external strategy agreement does not seem important to require for θ to be declared unstable. We should be able

to declare θ unstable when only the models agree.
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Setting σ0 = π, we have (†)1.
For a node γ of S, we write S-pred(γ) for the immediate ≤S -predecessor of S. For γ a node in S, we

set

st(γ) = the least stable θ such that θ ≤S γ,

and

st∗(γ) =

{
st(γ) : if st(γ) = θ + 1 for some unstable θ

undefined : otherwise.

The construction of S ends when we reach a stable θ such that

(I) Mν,l �MS
θ , or M

S
θ =Mν,l and S drops, or

(II) MS
θ �Mν,l, and [rt(θ), θ]S does not drop in model or degree.

If case (I) occurs, then we go on to define Sν,l+1. If case (II) occurs, we stop the construction.
We now describe how to extend S one more step. First we assume S has successor length γ + 1 and

let MS
γ be the current last model, so that γ is stable. Suppose (†)γ holds. Suppose (I), (II) above do not

hold for γ, so that we have a least disagreement between MS
γ and Mν,l. Suppose the least disagreement

involves only an extender E on the sequence of MS
γ .

13 Letting τ = lh(E), we have

• Mν,l|(τ, 0) = MS
γ |(τ,−1),14 and

• (Ων,l)(τ,0) = (Λγ)(τ,−1).

We now describe how to extend S one more step. We set ES
γ = E+ and λSγ = λE .

15 Let ξ be

the least such that crt(E) < λSξ . We let S-pred(γ + 1) = ξ. Let (β, k) be lex least such that either

ρ(MS
ξ |(β, k)) ≤crt(E) or (β, k) = (ô(MS

ξ ), k(MS
ξ )). Set

MS
γ+1 =Ult(MS

ξ |(β, k), E+),

and let îSξ,γ+1 be the canonical embedding. Let

MT
γ+1 =Ult(MT

ξ |(πξ(β), k), πγ(E)+),

and let πγ+1 be given by the Shift Lemma. This determines Λγ+1.
If ξ is stable or (β, k) < (ô(MS

ξ ), k(MS
ξ )), then we declare γ+1 to be stable. (†)γ+1 follows vacuously

from (†)γ .
If ξ is unstable and E+ is not used in U , then again we declare γ + 1 stable. Again, (†)γ+1 follows

vacuously from (†)γ .
Finally, suppose ξ is unstable and E+ is used in U , say E+ = EU

µ . Let τ be such that

eSξ = eUτ ,

where eSξ is the sequence of extenders used on the branch [0, ξ]S and similarly for eUτ . So in particular,

(MS
ξ ,Λξ) = (MU

τ ,Σ
U
τ ).

We have that
eSγ+1 = eSξ

⌢⟨E+⟩ = eUτ
⌢⟨E+⟩ = eUµ+1.

[Ste25] shows that τ = U − pred(µ+ 1). We then we declare γ + 1 to be unstable and γ + 2 stable. We
must define the tuple needed for (†)γ+2. Let i = iSξ,γ+1, and

⟨N,G, σ, γ∗⟩ = ⟨MS
ξ ,MS

ξ+1, σξ, γξ⟩.

We let

13Later, we will prove that this is the case.
14Recall MS

γ |(τ,−1) is the structure obtained from MS
γ |τ by removing E. Sometimes, we will write M− for

M |(o(M),−1).
15This is the notation used in [Ste22], for an extender E on the M -sequence, E+ is the extender with generators λE∪{λE}

that represents i
Ult(M,E)
F ◦ iME , where F is the order zero total measure on λE in Ult(M,E). We also write λ̂(E+) = λE ,

lh(E+) = lh(E). E+ is the plus-type extender derived from E.
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γγ+1 = i(γ∗) = iS0,γ+1(γ0).

Now we define MS
γ+2 and σγ+1. Note that by our assumption that cof(γX) > κ and the fact that

crt(E) ≤ κM
U
τ , where κM

U
τ is the largest strong cardinal of MU

τ ,

γγ+1 = sup i[γ∗].

Let MS
γ+2 = Ult(G,E+), iSξ+1,γ+2 be the ultrapower map, and σγ+1 : MS

γ+2 → MS
γ+1 be the copy map

and πγ+1 = πγ ◦ σγ+1.
If there is a least disagreement between MS

γ+2 and Mν,l, it has to involve an extender F from

the sequence of MS
γ+2 (by [Ste22, Lemma 5.64]). If no such F exists, we leave λSγ+1, λ

S
γ+2 undefined.

Otherwise, let

λSγ+2 = λ(F )

and

λSγ+1 = min(λSγ+2, γγ+1).

The λSξ ’s tell us what model should an extender used in S be applied to.

Claim 6.6. (†)γ+1 holds.

Proof. (1)–(3) are clear. (4) also follows because γγ+1 = iS0,γ+1(γ0). By the fact that γ0 does not index

an extender on the MS
0 -sequence and elementarity, γγ+1 does not index an extender on the MS

γ+1-
sequence.

If (I) or (II) holds at γ + 2, then the construction of S is over. Otherwise, we let ES
γ+2 be the least

disagreement between MS
γ+2 and Mν,l, and we set

λSγ+1 = inf(γγ+1, λ(E
S
γ+2)).

This completes the successor step in the construction of S.
Now suppose we are given S ↾ θ, where θ is a limit ordinal. Let b = Σ(T ↾ θ).

Case 1. There is a largest η ∈ b such that η is unstable.

Fix η. There are two subcases.

(A) for all γ ∈ b − (η + 1), rt(γ) = η + 1. In this case, b − (η + 1) is a branch of S. Let S choose this
branch,

[η + 1, θ)S = b− (η + 1),

and let MS
θ be the direct limit of the MS

γ for sufficiently large γ ∈ b− (η+1). We define the branch

embedding iSγ,θ a usual and πθ : MS
θ → MT

θ is given by the fact that the copy maps commute with
the branch embeddings. We declare θ to be stable.

(B) for all γ ∈ b− (η + 1), rt(γ) = η. Let S choose

[0, θ)S = (b− η) ∪ [0, η]S ,

and let MS
θ be the direct limit of the MS

γ for sufficiently large γ ∈ b. Branch embeddings iSγ,θ for

γ ≥ η are defined as usual. πθ : MS
θ → MT

θ is given by the fact that copy maps commute with
branch embeddings. We declare θ to be stable.

Since θ is stable, (†)θ follows at once from ∀γ < θ (†)γ .
Case 2. There are boundedly many unstable ordinals in b but no largest one.

We let η be the sup of the unstable ordinals in b. Let S choose

[0, θ)S = (b− η) ∪ [0, η]S ,

and define the corresponding objects as in case 1(B). We declare θ stable, and again (†)θ is immediate.
Case 3. There are arbitrarily large unstable ordinals in b. In this case, b is a disjoint union of pairs
{γ, γ + 1} such that γ is unstable and γ + 1 is stable. We set
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[0, θ)S = {ξ ∈ b | ξ is unstable},

and let MS
θ be the direct limit of the MS

ξ ’s for ξ ∈ b unstable. There is no dropping in model or degree

along [0, θ)S . We define maps iSξ,θ, πθ as usual. If (MS
θ ,Λθ) is not a pair of the form (MU

τ ,Σ
U
τ ), then we

declare θ stable and (†)θ is immediate.
Suppose that (MS

θ ,Λθ) is a pair of U . We declare θ unstable. We set

γθ = iS0,θ(γ0)

and
MS

θ+1 = the direct limit of iSγ+1,γ′+1(MS
γ+1), for γ <S γ

′ <S θ.

We also let
σθ = common value of iSγ,θ(σγ), for γ <S θ sufficiently large.16

It is easy then to see that Φθ = ⟨MS
θ ,MS

θ+1, σθ, γθ⟩ witnesses (†)θ holds.
If (I) holds, then we stop the construction of S = Sν,l and move on to Sν,l+1. If (II) holds, we stop

the construction of S and do not move on. If neither holds, we let ES
θ+1 be the extender on the MS

θ+1

sequence that represents its first disagreement with Mν,l, and set

λSθ+1 = λ(ES
θ+1),

λSθ = inf(λθ+1, γθ).

It then is routine to verify (†)θ+1.
This finishes our construction of S = Sν,l and T . Note that every extender used in S is taken from

a stable node and every stable node, except the last model of S contributes exactly one extender to S.
The last model of S is stable.

Remark 6.7. It is possible in general that ξ is unstable, S-pred(γ+1) = ξ, and crt(ES
γ ) = λF where F

is the last extender of MS
ξ |γξ. In this case, (β, k) = (lh(F ), 0). The problem then is that MS

γ+1 is not
an lpm, because its last extender iξ,γ+1(F ) has a missing whole initial segment, namely F . This is the
JSZ anomaly.

In the situations of least-disagreement comparisons, when a JSZ extender occurs, the Schindler-
Zeman solution is to just continue comparing anyway. Suppose a JSZ extender, which fails the Jensen
ISC, has the form ES

η+1 = L◦E is used on the U-side. Say our phalanx is (M,Q, γ0) where E
S
η = L with

crt(L) = λE and E = EMγ0 , then E /∈MS
η+1 = Ult(M |γ0, L) and MS

η+2 = Ult(M,ES
η+1) = Ult(M,L ◦U).

Note that the Jensen ISC holds everywhere on U , then the main branch of U uses first E and then L.
So L is used on both S and U ; this cannot happen in a comparison by least-extender disagreement.
Since our comparison is against a common background construction, the SZ solution does not seem to
work here; some care must be taken when JSZ anomalies occur. The JSZ anomaly affects how we lift
our problematic phalanx and forces us to modify the rules of Sν,l to enable to prove the comparison
terminates and other aspects of the comparison. See [Ste25] for how to handle the JSZ anomalies in the
context of comparison against a background construction.

The JSZ anomaly does not occur in the comparison we are describing in this paper. The reason is
that we chose X so that γX does not index an extender on the Q-sequence and this fact propagates to
the lifted phalanxes.

Claim 6.8. For some (ν, l) ≤ (η0, k0), the construction of Sν,l stops for reason (II).

Proof. This is similar to the proof of [Ste22, Lemma 9.6.2].

Fix (ν, l) ≤ (η0, k0) such that the construction of S = Sν,l terminates at a stable θ such that for

some γ, MS
θ � MUν,l

γ . Let S = Sν,l, U = Uν,l, and let γ be the least such that MS
θ � MU

γ . We have
lh(S) = θ + 1, and [rt(θ), θ]S does not drop in model or degree.

Claim 6.9. For some unstable ξ, rt(θ) = ξ + 1.

Proof. Suppose the claim is false. Then

16We abuse the notation a bit here when we write iSγ,θ(σγ) as σγ is technically not an element of MS
γ , but the meaning

of σθ should be clear.

18



Q
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σξ

iS0,ξ

iSξ+1,θ

Figure 2: Diagram of the comparison argument: MS
θ �MU

γ , MS
ξ = MU

τ , crt(i
S
ξ+1,θ) > γξ = crt(σξ), and

the embedding iUτ,γ acts on S �MU
τ where S the the collapsing structure of γξ.

(i) either rt(θ) = ξ ≥ 0 for ξ unstable,

(ii) or rt(θ) = ξ for ξ stable and is a limit of unstable ξ′ < ξ,

In either case, the embeddings iS0,ξ and iSξ,θ exist, so iS0,θ exists. Let P = MS
θ and R = MU

γ . Let

i = iS0,θ, j = iU0,γ , σ : P → P ∗ = MT
θ be the copy map, and i∗ : M → P ∗ be the branch embedding of

[0, θ]T if these maps are defined.
By Dodd-Jensen, P = R, i, j, i∗ are defined, and i = j. Let H be the first extender used along [0, θ]S

and K be the first extender used along [0, γ]U . Since i = j, K,H are compatible.
Since we can recover branch extenders from branch embeddings, we have

eSθ = eUγ .

Let η ≤S θ be the least stable. Then eSη = eSθ ↾ δ = eUγ ↾ δ for some δ.17 There is a τ ≤U γ such

that eUτ = eUγ ↾ δ = eSη . So MS
η = MU

τ . By pullback consistency,18 we easily get that Λη = ΣU
τ . If η

is a limit ordinal, then by the rule of S, we declare η unstable, contradicting our assumption. So let
S − pred(η) = µ; then µ is unstable by the minimality of η. But then we declare η unstable by the rule
of S at successor stages. Again this is a contradiction.

Let ξ be as in Claim 6.9, and τ be such that (MS
ξ ,Λξ) = (MU

τ ,Σ
U
τ ). We have that

• (MS
θ ,Λθ)� (Mν,l,Ων,l)� (MU

γ ,Σ
U
γ ) for some (ν, l) ≤ (η0, k0).

• [ξ + 1, θ]S does not drop in model or degree.

• The tuple (MS
ξ ,MS

ξ+1, σξ, γξ) witnesses (†)ξ.

Let P = MS
θ and R = MU

γ . See Figure 2 for the relevant diagram of the comparison.

Claim 6.10. (i) τ ≤ η < γ implies lh(EU
η ) ≥ γξ and if η < τ then λ(EU

η ) ≤ γξ.

(ii) P �R.

Proof. The first clause of part (i) follows from the agreement between P,Mν,l, R,MS
ξ = MU

τ , more

precisely, these models agree up to γξ, therefore, for any τ ≤ η < γ, lh(EU
η ) ≥ γξ. For the second clause,

note that by construction, eUτ = eSξ
19 and lh(eUτ ) = lh(eSξ ) ≤ γξ; the fact that lh(eSξ ) ≤ γξ follows from

the rules of lifting phalanx, all extenders used in eSξ have critical point less than γξ and therefore, their

length has to be ≤ γξ. If η < τ then λ(EU
η ) ≤ lh(EU

η ) ≤ lh(eUτ ) ≤ γξ as desired.

17If rt(θ) = 0 then eSη consists of a single extender H and δ = 1. This is a special case and is simpler.
18Pullback consistency follows from other properties of mouse pairs specified in [Ste22].
19eUτ is the extender sequence used along [0, τ ]U and similarly eSξ is the extender sequence used along [0, ξ]S .
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To see part (ii), suppose P = R. First note that the branch [0, γ]U cannot drop because P is a
ZFC−-model while if [0, γ]U drops then R is not. So [0, γ]U has no drop. We may assume γ > τ as
otherwise, P = R = MU

τ but MU
τ has a collapsing level for γξ while γξ is a cardinal in P . Contradiction.

So γ > τ . Let τ ′ ∈ [0, γ]U be the least element of this branch ≥ τ . It is easy to see that MU
τ and MU

τ ′

agree up to their common γ+ξ and the branch embedding iUτ ′,γ has critical point > γξ. But this is also

a contradiction because MU
τ , hence MU

τ ′ and R, has a collapsing level for γξ while γξ is a cardinal in
P .

Claim 6.11. τ ∈ [0, γ]U and letting ϵ + 1 ∈ [τ, γ]U be the U -successor of τ on the branch [0, γ]U ,
crt(EU

ϵ ) > γξ.

Proof. Let α <U β + 1 ∈ [0, γ]U be such that α ≤ τ , β + 1 > τ , and α is the U -predecessor of β + 1.
Suppose crt(EU

β ) < γξ, then we claim that

Subclaim. crt(EU
β ) must be a strong cardinal in MU

α and iUα,β+1 exists.

Proof. First note that by an easy induction on β ≥ τ, crt(EU
β ) must be a strong cardinal in MU

τ . Second,

note that since α ≤ τ , for i ∈ {0, 1}, κM
U
α

i ≤ κ
MU

τ
i . 20

So let us assume κ = crt(EU
β ) = κ

MU
τ

i for some i and κ
MU

α
i < κ

MU
τ

i . Since MU
β+1|γξ = P |γξ, in P ,

κ
MU

α
i is strong to κ

MU
τ

i ; since κ
MU

τ
i is strong in P , κ

MU
α

i is strong in P as well. We get that

P ⊨ “ there are n+ 1 strong cardinals.”

This is a contradiction. So κ
MU

α
i = κ

MU
τ

i as desired. Furthermore, this easily gives that MU
α and MU

β

agrees up to the successor cardinal of κM
U
α . This gives the second clause and completes the proof of the

subclaim.

Using the subclaim, let κ = crt(EU
β ) = κ

MU
α

i for some i, and λ = iUα,β+1(κ). Then since lh(EU
β ) > γξ,

λ > γξ and λ is a strong cardinal in MU
β+1. Furthermore, λ < lh(EU

β ) ≤ o(P ) and MU
β+1||λ = P ||λ.

Since iSξ+1,θ is above γξ, the strong cardinals of P are below γξ. In particular,

MU
β+1||λ = P ||λ ⊨ “ there are n strong cardinals.”

But then since λ is strong in MU
β+1,

MU
β+1 ⊨ “ there are n+ 1 strong cardinals”.

This is a contradiction.
We have shown that letting α, β + 1 be as above, then crt(EU

β ) ≥ γξ, in fact it is easy to see that

crt(EU
β ) > γξ. If τ /∈ [0, γ]U , then α < τ and hence λ(EU

α ) ≤ γξ, but then crt(EU
β ) < λ(EU

α ) ≤ γξ.
Contradiction. This shows τ ∈ [0, γ]U and completes the proof of the claim.

Claim 6.11 and the argument in Claim 6.10 imply that the branch [τ, γ]U must drop, in fact, letting
S � MU

τ be the collapsing structure for γξ, MU
ϵ+1 = Ult(S,EU

ϵ ). In other words, the branch [τ, γ]U is
based on S. Let i : S → R be the iteration embedding and j : MS

ξ+1 → P be the iteration embedding

iSξ+1,θ. We have that by pullback consistency, (ΣU
γ )
i = (ΣU

τ )S and Λjθ = Λξ+1. Claims 6.10 and 6.11

easily imply that Λξ+1 is projective in (ΣU
τ )S . Similarly, letting S∗ �Q be the collapsing structure for

γ0, Λ1 is projective in (ΣU
0 )S∗ .

The above gives us the following: if j : P[g] →M is a generic ultrapower induced by a generic G ⊂ Qδ,
then letting Ψ be the iteration strategy for the collapsing structure Q �M of ω

P[g]
1 , every A ∈ Γ

P[g][G]
∞

is projective in Ψ. This means Γ
P[g][G]
∞ ⊊ j(Γ

P[g]
∞ ). Therefore, Tower Sealing fails in P[g].

20Note is that it can’t happen that crt(EU
β ) = κ

MU
τ

0 and κ
MU

τ
0 < κ

MU
α

0 < κ
MU

α
1 < κ

MU
τ

1 . This is because this means

λ(EU
α−1) > κ

MU
τ

0 , therefore, since crt(EU
β ) = κ

MU
τ

0 , the rule of U implies that EU
β must be applied to model earlier than

α. Contradiction.
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Remark 6.12. The proof of the above theorem, particularly Claim 6.11 uses the assumption the set of
strong cardinals in the model is finite. The proof can be generalized in a straightforward way to models
in which the set of strong cardinals is discrete and has order smaller than the least measurable cardinal.
It is not clear how to generalize this proof of hod mice with strong cardinals which reflect the class of
strong cardinals.

7. Questions

Question 7.1. • Can Tower Sealing hold in a generic extension of a hod mouse?

• Is Tower Sealing consistent relative to ZFC+ “there is a Woodin limit of Woodin cardinals”?

As mentioned in the previous section, it is plausible that some form of Tower Sealing may be shown to
hold in hod mice with strong cardinals which reflect the class of strong cardinals; however, the argument
has to be different from what is given in this paper. A natural conjecture is

Conjecture 7.2. Suppose (P,Ψ) is a hod pair such that P ⊨ “there is a strong cardinal which reflects
the class of strong cardinals and there is a proper class of Woodin cardinals”. Let κ be the least strong
cardinal which reflects the class of strong cardinals and let g ⊆ Coll(ω, κ+), then

P[g] ⊨ “∀δ if δ is Woodin, then Tower Sealing holds at δ.”
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