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Abstract

The main result of this paper shows that a weak form of Tower Sealing holds in a generic extension
of hod mice with a strong cardinal and a proper class of Woodin cardinals. We show Tower Sealing
fails in such extensions in general. We show that this weak form of Tower Sealing (called Partial
Tower Sealing) implies Sealing and that its consistency strength is below that of ZFC+“there is a
Woodin limit of Woodin cardinals”.

1. Introduction

This paper formulates a weak form of Woodin’s Tower Sealing, Partial Tower Sealing cf. Definition
1.1, and shows that this form of Tower Sealing implies Sealing under various circumstances. The main
result of this paper is Theorem 1.3, which shows that Partial Tower Sealing can hold in hod mice; as a
result, Partial Tower Sealing is consistent relative to the theory ZFC+ “there is a Woodin limit of Woodin
cardinals” (WLW).

Suppose g is a V-generic filter. Let I';° be the class of all universally Baire sets in V[g]. When
Vl]g] = V, we simply write I'*°. For a cardinal k, we write Q«, for the countable tower forcing as defined
in [ , Definition 2.7.1].

Definition 1.1. Suppose there is a proper class of Woodin cardinals. Let § be a Woodin cardinal.
We say that Partial Tower Sealing holds at § if whenever g is < d-generic over V and G C Qs is
V]g]-generic, letting ja : V]g] = M C V]g|[G] be the associated generic embedding, then

1. L(T%) N p(R) = I

2. (Fgo)ﬁ,( ;G)ﬁ exist and there is an elementary embedding [ : L(I'}S;) — L(j(I'§)) such that
[ T3¢ =id and [ is an order-preserving surjection from the class of indiscernibles of L(I'3%;) to
the class of indiscernibles of L(jg(I'5%)).

If Partial Tower Sealing holds at ¢ and additionally, I'j.q = jo(I'y°), then we say Tower Sealing holds
at d. -

Definition 1.2. Suppose there is a proper class of Woodin cardinals. We say Sealing holds at a Woodin
cardinal 4 if the following statements hold.

1. For every < ¢ generic g over V, p(R,) N L(I';°, Ry) =T'°.

2. For every < 0 generic g over V, for every < § generic h over V|[g], there is an elementary embedding

j : L(FZOaRg) - L(nghnRh)

such that for every A € I'y°, j(A) = Al -
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We note that if clause (1) of both Definitions 1.2 and 1.1 holds, then
L(T) = AD™.

This is by a theorem of Woodin, | , Section 3.3], which states that if there is a proper class of
Woodin cardinal and if A € T, then L(A,R) E ADT. Moreover, by a theorem of Steel, [ ], every
A € T'* has a scale in I'*°, this implies that

L(T"*°) E “every set of reals is Suslin”. (1.1)

Sealing is a form of Shoenfield-type generic absoluteness for the theory of universally Baire sets.
Sealing is an important hypothesis in set theory and particularly in inner model theory. [ | has a
detailed discussion on the importance of Sealing and related topics; so we only summarize some main
points here. If a large cardinal theory ¢ implies Sealing then the Inner Model Program for building
canonical inner models of ¢ cannot succeed (at least with the criteria for defining “canonical inner
models” as is done to date), cf | , Sealing Dichotomy]. Sealing signifies a place beyond which new
methodologies are needed in order to advance the Core Model Induction techniques. In particular, to
obtain consistency strength beyond Sealing from strong theories such as the Proper Forcing Axiom,
one needs to construct canonical subsets of I'* (third-order objects), instead of elements of I'*° like
what has been done before (see | , Section 1] for a more detailed discussion). The consistency of
Sealing was first proved by Woodin, who showed that if there is a proper class of Woodin cardinals and
a supercompact cardinal x then Sealing holds after collapsing 22" to be countable. Woodin’s proof can
be found in | . | ; | show that Sealing holds in hod mice and various types of hybrid mice
whose existence is consistent relative to WLW, which improves significantly Woodin’s result.

Woodin | , Theorem 3.4.17] also obtains the consistency of Tower Sealing from a supercompact
cardinal and a proper class of Woodin cardinals. | ] claims Tower Sealing holds in an excellent hybrid
premouse (defined in [ ]), but this is not true. Part of this paper’s motivation is to correct this, cf.
Theorem 6.1. This leads us to the formulation of Partial Tower Sealing, a weak form of Tower Sealing
strong enough to imply Sealing in various circumstances, cf. Theorem 1.6, and weak enough to hold in
hod mice. The proof that this form of Tower Sealing holds in such hod mice is given in Theorem 1.3. It
is not known whether Tower Sealing can hold in hod mice at the moment.

Theorem 1.3. Suppose (P, V) is an lbr hod pair or a layered hod pair such that P E “there is a strong
cardinal and a proper class of Woodin cardinals”. Let k be the least strong cardinal of P and g C
Coll(w, k™) be P-generic. Then

Plgl E V8§ if 6 is Woodin, then Partial Tower Sealing holds at 8.

Remark 1.4. In general, we cannot expect Tower Sealing to hold in generic extensions of hod mice.
See Theorem 6.1.

From the hypothesis of Theorem 1.3 and recent work of the first author, we immediately obtain the
following corollary.

Corollary 1.5. Partial Tower Sealing is consistent relative to ZFC+ “there is a Woodin limit of Woodin
cardinals”.

The next theorem shows that Partial Tower Sealing implies Sealing holds at certain Woodin cardinals.
The reader can see section 2 and section 3 for the definition of Homj, s and related notions.

Theorem 1.6. Suppose § is a Woodin cardinal which is a limit of Woodin cardinals with the property
that whenever g is < d-generic, G C Qs is V]g]-generic, then I'iq = Homy, . Suppose Partial Tower
Sealing holds at . Then Sealing holds at §.

Remark 1.7. The hypothesis used in Theorem 1.6 holds in various important situations. For example,
if § is a Woodin limit of Woodin cardinals and strong cardinals, then whenever G C Q.4 is V-generic,
'y = Homg. Also, if V is the universe of a hod mouse with a proper class of Woodin cardinals,
then at every Woodin cardinal & which is a limit of Woodin cardinals, whenever G C Qs is V-generic,
'y’ = Homy,. See Section 3 for more details.

It is unclear whether Tower Sealing can hold in hod mice and whether Tower Sealing is consistent
relative to ZFC+ “there is a Woodin limit of Woodin cardinals”. In theorems 6.1 and 6.5, we provide
further evidence that it seems very hard to force Tower Sealing to hold in hod mice.



The paper is organized as follows. In Section 2 we review basic notions used in this paper. In Section
3 we shows Partial Tower Sealing implies Sealing holds at certain Woodin cardinals. In Section 4, we
recall the derived model representation of I'* in [ ] and use it to prove the consistency of Partial
Tower Sealing in Section 5. In Section 6 we prove Theorems 6.1 and 6.5 which show that in general,
Tower Sealing fails in hod mice. In Section 7 we collect some open problems and questions related to
the results of this paper.

2. Preliminaries

2.1. Homogenously Suslin and universally Baire sets

We say that a pair of trees T, S are d-absolutely complementing if for any poset P of size < §, for any
generic g C P, Vig] E “p[T] = R —p[S]”. Similarly, we say that T, .S are < d-absolutely complementing if
for any poset P of size < §, for any generic g C P, Vg] F “p[T] = R — p[S]”. Given a limit of Woodin
cardinals v and g C Col(w, < v), let

* Col(w,a
L R; 7Ua<yRV[9ﬁ w,o)]

2. Hom; be the set of reals A € V(R}) such that for some a < v, there is a pair (7,S5) € V[gn
Col(w, @)] such that V[g N Col(w, a)] E “(T, S) are < v-complementing trees” and p[T]"®s) = A,
and

3. the derived model associated with g be defined by: DM (g) = L(Hom},R}).

We now recall the notions of homogeneously Suslin and universally Baire sets. Given an uncountable
cardinal x, and a set Z, meas,(Z) denotes the set of all k-additive measures on Z<%. If € meas,(Z),
then there is a unique n < w such that Z" € p by k-additivity; we let this n = dim(p). If p,v €
meas,(Z), we say that p projects to v if dim(v) = m < dim(u) = n and for all A C Z™,

Aeve{u:u|me A} € p.
In this case, there is a natural embedding from the ultrapower of V' by v into the ultrapower of V' by u:
Ty, 2 Ult(V,v) — Ult(V, )

defined by 7, ,([f],) = [f*], where f*(u) = f(u [ m) for all u € Z™. A tower of measures on Z is a
sequence (p, : n < k) for some k < w such that for all m < n < k, dim(p,) = n and p, projects to
Hm- A tower (p, : n < w) is countably complete if the direct limit of {Ult(V, n), Ty = m <1 < w}
is well-founded. We will also say that the tower (i, : n < w) is well-founded.

Recall we identify the set of reals R with the Baire space “w.

Definition 2.1. Fix an uncountable cardinal k. A function i : w<* — meas.(Z) is a k-complete
homogeneity system with support Z if for all s,t € w<¥, writing p; for (t):

(a) dom(ut) = domf(t),
(b) s Ct = p projects to fis.

Often times, we will not specify the support Z; instead, we just say [ is a k-complete homogeneity
system.
A set A C R is k-homogeneous iff there is a k-complete homogeneity system p such that

A =S, =g {x: [iy is countably complete}.

A is homogeneous if it is k-homogeneous for all k. Let Hom,, be the collection of all homogeneous
sets. -

Definition 2.2. A C R is k-universally Baire if there are trees T, U C (w x ON)<%“ that are x-absolutely
complemented, i.e. A = p[T] = R\p[U] and whenever P is a forcing such that |P| < x and g C P is
V-generic, in Vg], p[T] = R\p[U]. In this case, we let A, = p[T] be the canonical interpretation of A in
Vigl-

A is universally Baire if A is k-universally Baire for all k. Let I'>° be the collection of all universally
Baire sets. -



We remark that if A is k-universally Baire as witnessed by pairs (T1,U;) and (T3, Us) and P such
that [P| < k and g C P is V-generic, then A, = p[T1] = p[T3], i.e. Ay does not depend on the choice
of absolutely complemented trees that witness A is k-universally Baire. A similar remark applies to
r-homogeneously Suslin sets; in other words, if A = S; where the measures in fi are x-complete, then
for any <-x generic g, the canonical interpretation Ay is defined as

(Sz)g = {z € RV . i, is countably complete in V[g]}.

Suppose there is a proper class of Woodin cardinals. The following are some standard results about
universally Baire sets we will use throughout our paper. The proof of these results can be found in

[Ste09].
(I) Homg, = IT'*°.

(IT) For any A € T, L(A,R) £ AD™; furthermore, given such an A, there is a B € ' such that
B ¢ L(A,R) and A € L(B,R). In fact, A* is an example of such a B.

(ITI) Suppose A € T'™°. Let B be the code for the first order theory with real parameters of the structure
(HC, €, A) (under some reasonable coding of HC by reals). Then B € T'™ and if g is V-generic
for some forcing, then in Vig], By € I'™° is the code for the first order theory with real parameters
of (HCVI €, A)).

(IV) Every set in I'*° has a scale in I'*°.

Under the same hypothesis, the results above also imply that
e ['>° is closed under Wadge reducibility,
e if A eI, then —A € I'*™°,

e if A € '™ and g is V-generic for some forcing, then there is an elementary embedding j : L(A,R) —
L(Ag,R,), where Ry = RVI9).

2.2. Hod mice

Suppose (P, ¥) is a hod pair in the sense of | ] and that P has a proper class of Woodin cardinals.
We recall some properties of iteration strategies of certain countable elementary substructures X < P|n
for some inaccessible 7 proved in | ].

We adopt some notations from | |. First, the pair (P, V) is called an iterable pair in | ]
Given a strong limit cardinal k and F' C Ord, set

WY = (H,, Pls, Up, | Hy, €).

Given a structure @ in a language extending the language of set theory with a transitive universe, and
an X < @, we let Mx be the transitive collapse of X and 7mx : Mx — @ be the inverse of the transitive
collapse. In general, the preimages of objects in X will be denoted by using X as a subscript, e.g.
% (P) = Px. Also, if n < §, we write ¥, 5 for the fragment of ¥ that acts on the window (n,4).
Suppose in addition @ = (R,...P, ¥, 5,...). We will then write X < (Q|¥, ;) to mean that X < Q and
the strategy of Px that we are interested in is \IJ”X We set Ax = \IJ”X. If g is a generic over V, we
write W7 5 for the canonical interpretation of W, 5 1n Vlg] (if exists) and Ag( =

By results of [ ], ¥ has all the properties required to run the constructions mT[ . In particular,
results of | , Sections 2, 3, 4] can be applied to (P, ¥). We summarize some key facts that we use in
the constructions in Section 4. We need develop some terminology to state these facts. In the following,
we will write V' for the universe of P and the notions below will hold in V.

Suppose v is a Woodin cardinal. We let EA, be the w-generator version of the extender algebra
associated with v (see e.g. | | for a detailed discussion of Woodin’s extender algebras). We say the
triple (M, 6, ®) Suslin, co-Suslin captures® the set of reals B if there is a pair (T,S) € M such that
M E “(T,S) are é-complementing” and

1. M is a countable transitive model of some fragment of ZFC,

I This notion is probably due to Steel, see [ ]



2. ® is an w;-strategy for M,
3. M F “§ is a Woodin cardinal”,

4. for x € R, z € B if and only if there is an iteration 7 of M according to ¢ with last model N such
that z is generic over N for EAZTVT((;) and z € p[r7 (T)].

Suppose M is a countable transitive model of set theory and ® is a strategy of M. Let (7, g) be such
that g is M-generic for a poset in M|n. Let ®' be the fragment of ® that acts on iterations that are
above 7. Then ®’ can be viewed as an iteration strategy of M[g]. This is because if T is an iteration of
M]g] above 7, there is an iteration U of M that is above i and such that

1. Ih(T) = lh(U),

2. T and U have the same tree structure,

3. for each a < IW(T), M] = M4][g],

4. for each a < Ih(T), ET is the extension of EY onto MY[g].

Let ®” be the strategy of M|[g] with the above properties. We then say that ®” is induced by ®’. We
will often confuse ®” with ®’. The following lemma is the key fact that we need for 4; it is proved in
[ , Lemma 4.4]. Say u = (n,d,\) is a good triple if it is increasing, J is a Woodin cardinal, and A is
an inaccessible cardinal.

Lemma 2.3. Suppose u = (1,0,)) is a good triple and g is V -generic for a poset in V,. Let A € I'°.
Then, in Vg], there is a club of countable X < (Wi[g]|V¥] ;) such that (Mx,dx,A%) Suslin, co-Suslin
captures A.2 For each such X, let X' = X N Wy < Wy, and (Mx:,Ax/) be the transitive collapse of X'
and its strategy. Then A is projective in Ax,. Moreover, these facts remain true in any further generic
extension by a poset in Vy[g].

3. Partial Tower Sealing implies Sealing

In this section, we prove Theorem 1.6 and give some applications of 1.6 and Partial Tower Sealing.

Suppose § is a Woodin limit of Woodin cardinals and G C Qs is V-generic, we let Ry, = RVIE] and
Homg, be the set of A C RY, such that for any v, there is a homogeneity system fi = (u, : § € w<*) with
the properties:

e cach measure p, is y-complete in V[G].
e i € V[z] for some z € R,.
o A={z:(tzn : 1 < w) is well-founded}.

In the last item above, we write A = S;. If the measures in i are all k-complete for some uncountable
cardinal x and g is < k-generic, recall we can canonically extend A to A; = (Sz),4, where

(Sp)g ={z € V[G,g] : (pzn : n < w) is well-founded in V|G, ¢}

Also, it is clear that for §, G as above, there is a v (sufficiently large) such that any A € Hom, is
witnessed by a homogeneity system i where each measure p € i is y-complete.

Remark 3.1. Let §, G, A be as above. Suppose further that there is a proper class of Woodin cardinals.
We can in fact choose 7 large enough so that letting g € V(R§,) be < d-generic such that g € Vg
consists of y-complete measures, then (Sg)4 is in fact universally Baire in V[g] and that A = (Sz)g is
universally Baire in V[G]. This follows from results of Woodin and Martin-Steel, | ]. See item (I)
of Section 2.

Proof of Theorem 1.6. We fix a Woodin cardinal § as in the hypothesis of the theorem. We need to verify
clause (2) of Definition 1.2. Let P € Vs and g C P be V-generic. We show that there is an elementary
embedding j : L(I'™°,R) — L(I'y°,Ry). Even though this only proves a special case of clause (2), but it
will be evident that the proof can be generalized to prove the full statement. To simplify the notation,
we write L(I'*) for L(I'*°,R) etc.

2To conform with the above setup, we tacitly assume Ag( to be the iteration strategy acting on trees above nx.



Let G C Qs be V-generic and jo be the associated embedding. By Partial Tower Sealing, we have
an elementary map [ : L(I'Y) — L(jg(I'*°)) such that I [ I'¥ = id. We can then define a map

i: L(T®) — LTY)

as the unique map determined by: i(4) = Ag for each A € T and i(a) = 8 iff I(B) = jg(a) for
any indiscernible a of L(I'*°). It is easy to see that ¢ can be canonically extended to all of L(I'*°)
because every z € L(I'*) has the form 7[z, A, s] for some term 7, a real z, A € I'*°, and s a finite set of
indiscernibles. Therefore, we can simply define

’L(Z) = TL(FOGO) [(E, AGv Z(S)]
Claim 3.2. i is well-defined and elementary.

Proof. Suppose ¢ is a formula, © € R, A € T',, and s is a finite sequence of indiscernibles. Then

L(T®) E¢[A,z,5] & L(ja(I'™)) F ¢ljc(A), z,ja(s)]
& L(TE) F elAg, z,i(s)]-

The first equivalence follows from elementarity of jg and the second equivalence follows from the ele-
mentarity of [ and the fact that {(i(s)) = ja(s) and I(Ag) = ja(A) = Ag. It is easy to see that the
equivalences above prove the claim. O

Let G’ C Q«s be Vg]-generic and jor : V]g] = M’ C V][g][G’] be the associated embedding. By
Partial Tower Sealing, we have an elementary map I : L(I';%q/) — L(jar(I'g?)) such that I [ T'5S,, = id.
As before, we can define the elementary map ' : L(I'y°) — L(I'§5/) similar to how i was defined.

Now, we can find G, G’ such that the following hold:

By standard facts concerning Q«s, we can find G, G’ satisfying (i)-(iii), see | ]. We give a little
more details here. By the usual factoring property of Coll(w, < ¢) and the fact that g is < d-generic, there
is a V-generic H C Coll(w, < §) such that g € V[H]. By | , Lemma 6.6], there are generics G C Qs
and G' C ngg] such that G is V-generic, G’ is V[g]-generic such that RVIC] = RVI4IE] = RVIH] These
generics G, G’ clearly satisfy (i) - (iii).

We show that (iv) is satisfied as well. In fact, we show

oo _ oo _ * o *
G — Lo« = HOmg*G/ = HOmG. (31)

First, note that Homj,; = Homg. This is because Ri; = R}, o/, so any homogeneity system p
witnessing A € Homg, is in V[z] for some x € Rf; = R}, /; therefore, i witnesses A € Hom, .. The
converse is proved the same way.

But then note that by our hypothesis:

Homp =T¢

and
* _ oo
HOmg*G/ = Fg*G"

So the equalities in (3.1) hold.

Let G, G' satisfy (i)-(iv) above. So we have elementary embeddings io : L(I'™*) — L(I'%Y) = L(I')3¢/)
and iy : L(I°) — L(TE) = LIS, where ig = jg | L(T®) and i1 = jer | LTS). Let j : L(I®) —
L(T5°) be defined by: j(A) = Ay for each A € T and j(a) = 3 iff i1(8) = io(«). Just like in the proof
of Claim 3.2, we have that k is elementary. This completes the proof of the theorem.

O



Corollary 3.3. Suppose there is a proper class of Woodin cardinals and § is a Woodin limit of Woodin
cardinals. Then whenever g is <-§ generic, whenever G C Qs is V]g]-generic, then I'%e = Homj,q-
Therefore, if Partial Tower Sealing holds at §, then Sealing holds at 6.

Proof. Let g,G be as in the statement of the corollary. As in the proof of Theorem 1.6, we can find
G’ C Qs such that

(a) G’ C Qs is V-generic such that g € V[G'].
(b) G' C Qs is V]g]-generic.
(c) RVIG'] — RVIdIG].
We need to verify that
(d) T =T

As in the proof of (3.1), Hom},, = Homg,. We need to verify:

Hom¢ =T¢ (3.2)
and

We just prove 3.2 as the proof of 3.3 is the same. Let A € Homg,,. Then there is some g € V(R,) such
that g is < d-generic and some i € Vg] such that A = (Sz)g/. Let B = (Sz)y. We may assume all
measures in i are y-complete for a sufficiently large v so that B is in fact universally Baire in V[g] and
that A is universally Baire in V[G’'] (see Remark 3.1). So A € I'%,. Conversely, suppose A € I'%,. By
work of Martin-Steel and Woodin | ] and the fact that there is a proper class of Woodin cardinals, A
is k-homogeneously Suslin for some sufficiently large x > §. Let i witness A is k-homogenously Suslin.
Since [ is countable and 6 = wY[G/], f € Vig] for some < § generic g € V(RY,). Let B = (Sz), be the
k-homogeneously Suslin set in V'[g] witnessed by fi. So A = (Sz)¢ is the canonical extension of B. This
means A € Hom},, as desired.?

O

Assume ADT, we say that a pointclass T' such that T' = (R) N L(T") is OD-full if whenever A € T
and z,y € R are such that y € OD(A, z), then y € OD(A,z) in L(I'). We write © for the supremum of
ordinals « for which there is a surjection of R onto «; we write (6, : a < ) for the Solovay sequence.
These notations can be relativized to pointclasses like I' and we write O, 8% for such objects. For ¥ an
(w1, wr )-iteration strategy for a countable mouse or a hod mouse P, for a € HC, we let Lp™(a) be the
stack of all sound ¥-mice M over a such that p,(M) = w.

Theorem 3.4. Suppose Partial Tower Sealing holds at a Woodin cardinal 6. Let G C Q<5 be V-generic
and jg : V — M C V[G] be the associated embedding, then TS is OD-full in jo(To). In particular, the
following hold.

1. Suppose ¥ € '} is an iteration strategy, then for any a € HCVIE, Lp®(a) N L(ITy) = Lp*(a) N
L(ja(I>)).

2. Qs =g ™) for some limit ordinal «.

Proof. Fix G, jg and let I : L(T'S) — L(jc(T'>)) be given by Partial Tower Sealing. Let a € HC"¢] and
let AeT'y. Supposey € OD(A,a) NHCVIC in L(T'¥), then by elementarity and the fact that I(A) = A
and [ [ RVIE! = id, we have that y € OD(A,a) in L(jo(T'>)). Conversely, if y € OD(A,a) N HCVIC] in
L(j(I'>)), then letting T' be the tree projecting to the universal ¥3(A)-set in L(jg(I'™)); the existence
of T follows from the fact that -

L(ja(T*)) E “ there is no largest Suslin cardinal”

which follows from (1.1). So y € L[T, a]. Now by our choice of T and the fact that X%(A) is the same in
L(je(T'>)) and in L(I'Y), T € L(I'E). We have then that {(T)) = T. Since L(I'¥) F y € L[T, a], we see
that y € OD(A,a) in L(T'E).

3We may assume & is large enough that i witnesses A € Homg,, .



To see (1), note that by elementarity and the fact that I(X) = X,
H(Lp™(a)HT8)) = (Lp® (a) P T,

Clearly Lp®(a)*™d) < Lp*¥(a))L@eT™) Now suppose M < (Lp~(a))X@eT™) is the least that is
not in (Lp*(a))XT&), then since M € OD(X,a) in L(jo(I'™®)), M € OD(X,a) in L(I'E). Since
L(ja(T'*>)) E M is a ¥-mouse over a, using I, we see that

L(T'E) E M is a X-mouse over a.

This means M <1 (Lp*(a))*('d) as desired.

For (2), the fact that eré = G?f(r ) follows from OD-fullness of I'g?; in fact, for each 3 such that
0 < 8, in j(I'™), GEG = Hé(r ). is limit because L(T'Y) E “every set of reals is Suslin” as mentioned
above. O

4. Derived model representation of I'> and Sealing

In this section, we summarize the construction in [ ] that realizes ' as a derived model via a direct
limit construction. We assume the hypothesis of Theorem 1.3 and write V for the universe of P. We fix
a generic g C Coll(w, k") and write ¢ for K. We note that by our assumption and standard theory of
hod mice | ], the hypotheses required to apply Theorem 0.4 of | | are satisfied in V[g].

We say u = (,8,6’,\) is a good quadruple if (n,d, ) and (n,d’, A) are good triples with § < ¢’ (see
Section 2). Suppose u = (1,4,d’, A) is a good quadruple and h is a V]g]-generic such that g * h is generic
for a poset in V,,. Working in Vg * h], let D(h,n,d, ) be the club of countable

X < (Walg * h], )5 5)

such that HY U {g} C X.

Suppose A € I'55,. Then for a club of X € D(h,n,0,A), A is Suslin, co-Suslin captured by
(MX,5X,Ag(*h) and A is projective in Axs where X’ = X N W) (see Lemma 2.3). Given such an
X, we say X captures A.

Let k C Col(w,I'73;,) be generic, and let (A4; : i < w), (w; : i < w) be generic enumerations of I'%,
and Ry, respectively in Vg * hx k]. Let (X; : i <w) € V(g * h * k] be such that for each i

1. X; € D(h,n,0,)), and
2. X, captures A;.

In particular, A; is projective in A, where X; = X; NWy. We set M0 = Mx:, 70 = Tx,, Ko = Kx,,
Yo = b, ¥ = 0%, 10 = 11Xy, 60 = 6, Po = P. ‘ .

Next we inductively define sequences (M_ :i,n < w), (7% 1 i,n < w), (A; 1 i <w), (5 1i,n < w),
Wp i <w), (W, 1i<w), (M :n<w), (ki :i<w), (0; :i<w), (T,E i<w), (M :i<w),
Ui, Fy i1 < w), (Pi:i<n), (Pl:i<w), and (0, : i < w) satisfying the following conditions (see Figure
5.1 of | D-

For all i,n < w, 7}, : M}

— P; and rng(n) C rng(wl ).
o MY — METL Let 7, : MY — M be the composition of 77771’s for j < n.

)
)

(¢) For all i,n < w, Kn = T(Ko)s M = Tn(M0), Vn = Tn(vo) and v}, = 7, (1).

(d) For all n < w, Ty, is an iteration of M |v/ above v, that makes w,, generic and M] is its last model.
)

0, =77 (v.) and E, € EMn is such that [h(E,) > 0, and cp(E,) = kn.

(f) for all m,n, M2+ = Ult(M,, E,) and 70" = ™.

(g) U, = 7"T,, P! is the last model of U,,, o, : M}, — P! is the copy map and F,, = 0,,(E,).*

() Poer = UIH(Py ) and gt - M Py is given by wst (xi (£)(a) = w52 (i (1)) (0 (a).

m

450 Di<nTi and B;<,U; are sealed iterations based on k.



(i) A, = (n%-pullback of (\Ilﬁ*h)pnwn(yn))nmun = (op-pullback of (\Ili*h)p“an(un))nmyn (see | ,
Corollary 3.6]).

Let MY be the direct limit of (M™ : m < w) under the maps 77" "1, Letting P,, be the direct limit
of (P, : n < w) and the compositions of w?:', we have natural maps 7y’ : M’ — P,,. Notice that

V{g*h]

(1) for each n < w, Ky, < w, Y[g*h].

and sup,k, = w

It follows that if 7,* : M — M is the direct limit embedding then
m Vigxh

(2) 7 (rn) = w77,

Next, notice that

(3) for each m,n,p, letting ¢, = Tn(LXO) =Tn(t), M} |en = M} |en and ¢ = (5,)M
(4) for each m,n,p, 7y, [ (M} |en) = 7 | (M) |en)

(5) for each m, n > 1 and p > n, M)} |9n 1= M P10y _1.

(6) for each m, n > 1 and p with p > n, 772, | (M:;ﬂ@n_l) =72 | (M2 |6,-1).

Because of condition (d) above we can find G C Coll(w, < wY[g h]) generic over MY (for each n < w)

such that RM=16] = =Ry, and G € Vg x h * k]. By constructions, w, VIa*h] ig a limit of Woodin cardinals
in M¥. | ] shows that

Lemma 4.1. For each n < w, DM(G)M=1C] = L(T5sh: Ryun).

Lemma 4.1 implies that clause 1 of Sealing and of Partial Tower Sealing holds. [ ] uses Lemma 4.1
to also verify clause 2 of Sealing holds.

In the next section, we will use the above constructions to verify clause 2 of Partial Tower Sealing
holds. We say that the sequence (X; : i < w) is cofinal in I'}3, as witnessed by (4; : i € w) and
(w; : i <w). We also say that (Mg, Ay, 0p, Tnm 0 < m < w) is a 'S, -genericity iteration induced by

(X; 19 < w) where 7, , : M§¥ — M{" is the composition of Té L for i € [n, m).

5. Partial Tower Sealing

In this section, we use the results of the previous section to prove Theorem 1.3. We work in the universe
of P, which we call V. Let s be the least strong cardinal. Let g C Coll(w, ") be V-generic and let
d > k be Woodin. We prove Partial Tower Sealing holds in V[g] at ¢.

Work in Vg, let G C Qs be V]g]-generic and let jo : V]g] = M C V]g,G] be the associated
embedding. We want to find an embedding j : L(I'33¢) — L(jc(I'y°)) such that j [ I'%s is the identity
and furthermore, j is an order-preserving bijection on the class of indiscernibles of the models.

We note that the main result of | ] already shows Sealing holds in V[g] at ¢, therefore, there is
an elementary embedding i : L(I')°) — L(I'3%;) such that i(A) = Ag for all A € I'l®. Furthermore,
(T50)%, (T55)*F exist and i is the order-preserving bijection on the class of indiscernibles of the models.

Jjc induces an elementary embedding k : L(I'5°) — L(jc(I'y°)) such that jo(A) = Ag for all A € I';°.
T8 = ja(I'g°) then we simply let j be the 1dent1ty In general, let W = L(I'}Sq), W' = L(jo('y°)),
aterm, A € '), = € Ry, and s a finite sequence of indiscernibles for both W, W' such that jg( )=s
and i(s) = s, then we define

J(7 (A, z,5)) = TW,(A,.I, s).
Since ( ﬁc)ﬁ, (ja(T'5°))? exist, everything in W has the form 7'V (A, z, s) for some A, z, s (and similarly
for W), j is defined on all of W. We need to check that j is elementary.

Let (& : i < w) be the first w indiscernibles for both W, W’ with the properties described above; we
may assume that s = (& : ¢ <lh(s)). Let u = (n,¢’,6"”, ) be a good quadruple such that sup,,, & < 7.
Let k£ C Col(w, ;%) be Vg * Gl-generic and k' C Coll(w Ja(I'y°)) be M-generic. We may assume
K eV]g*Gx* k]

We have that I'% is the Wadge closure of strategies of the countable substructures of V[g]y. More
precisely, given A € ', there is an X < (WA|\I/Z*§) such that A is Wadge reducible to Ax and
Ax € I'%ig- It follows that to show that j is elementary it is enough to show that given a formula
¢, m € w, u,, being the first m common indiscernbiles of W, W' that are fixed points of all relevant
embeddings, X < ((V]g]a, )|\I/17 5/) and a real z € Ry.q,



M3 M3 t - My

Ng N Ny

Figure 1: Two genericity iterations: the derived mode of My is L(T ;?kc) and the derived model of N§
is L(je(T'5°))-

W E ¢lum, Ax,z] = W' E ¢lum, Ax, ).’

Fix then a tuple (¢,n, X, z) as above.

Working inside V[g* G x k], let (Y; : i < w) be a cofinal sequence in I'%i¢ as witnessed by some A and
w such that Ag = 0, wop = x and Yy = X. Using k', we also construct (Z; : i < w), a cofinal sequence
in jG(I‘g") as witnessed by some B and @ such that By =0, vo = z and Zj = X. Here the Z;’s are
elementary substructures of VM .

Let (M§,An,00,Tny :n <1 < w) be a I'0% g-genericity iteration induced by (Y; 1 i < w) and
(NG, @y Vny oy m < 1 < w) be a jg(I';°)-genericity iteration induced by (Z; : 4 < w). It is not hard
to see that we can make sure that Mg = NJ by simply selecting the same extender Ey after Tg; by our
assumptions, M{ = N§ and wy = vg. Note that this makes sense because if X < V[g]x, then X < VjM

a(N)
since V]g]x < ‘/j]\c/[()\)' Furthermore, by elemenarity of js and the fact that WY[G] >1>k, M =jg(V)[g]

and j(V) E “k is strong”. See Figure 1.

L(T'9:%) is realized as the derived model of MY and L(jg(I'%,)) is realized as the derived model of
N§, and the two iterations agree on the first extender used (namely Ep) and therefore M} = Ng.

Let ( =nx and I' = (¥, 5)x. Let Mg be the direct limit along (M§ : n < w) and N§ the direct
limit along (NJ' : n < w). For n < w, let k, be the least strong cardinal of M} and k], be the least
strong cardinal of NJ. Let s™ be the first m (cardinal) indiscernibles of L[M{|k,] and t7, be the first m
(cardinal) indiscernibles of L[N@|x.,]. Notice that (M@|k,)* € My and (Ng|k!)* € N&. It follows that
Tua(s?) = st and o, (t%) = t,, for n < I < w. We may and do modify the s?,#"’s so that s%, = u,,
and ¥, = u,, for each m.

We then have the following sequence of implications. Below we let I'* be the name for the generic
extension of I in the relevant model and DM be the name for the derived model. The third implication
below uses the fact that M} = N}.

WE ¢[um7AX7x] = M(L)U[x} F0 ”_C'oll(w,<nw) DM F ¢[S:Jn71—‘*u x]
= MOl [I] = N&[x] F Q) “_Coll(w,<f€1) DM = ¢[5$n,r*,$]
= N(‘)d[x} F @ H_CO”(W,<KL)) DM = d)[t(;:w F*,ZIJ}
= W'E ¢[um, Ax, ]

The converse has the same proof. We therefore have proved the equivalence and the theorem.

6. Failure of Tower Sealing

We show in this section that in general, Tower Sealing fails in hod mice. We recall some terminology

from [ ]. The reader can consult | , Definition 2.6] for the definition of an excellent hybrid
premouse P. Let P be such a premouse and Py < P be the unique lsa type hod premouse that is an
initial segment of P from | , Definition 2.6]. In particular, there is a Woodin cardinal §p of P such

that Py = (P|do)* < P and
Py E “dk < §p Kk is < dg-strong and a limit of Woodin cardinals.”

Let A = S” be the short-tree strategy predicate for Py defined in P, then P is a A-premouse with a
proper class of Woodin cardinals.® As shown in [ ], A has canonical interpretations in all generic

5The <« is similar as will be evident by the following proof.
6In [ ], we demand that P’s class of measurable limit of Woodin cardinals is stationary.
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extensions of P; furthermore, let g C Coll(w,Py) be P-generic, then Plg] E Sealing. In fact, Section 5
shows that
Plg] EV§ if 6 is Woodin, then Partial Tower Sealing holds at o.

The next theorem shows that Tower Sealing at any cardinal ¢ cannot hold in P[g].

Theorem 6.1. 1. Suppose (P,X) is excellent. Let Py, A be the associated lsa type hod premouse
derived from P and A be the short-tree strateqy of Py defined in P. Let g C Coll(w,Py) be P-
generic. Then

Plg) E ¥ if 6 is Woodin, then Tower Sealing fails at 6.”

2. Suppose (P, W) is the minimal lbr hod pair such that P E “there is a strong cardinal and a proper
class of Woodin cardinals”. Let x be the least strong cardinal of P and g C Coll(w,x™) be P-

generic. Then
Plg] E “V6 if 6 is Woodin, then Tower Sealing fails at §.”

To prove part (1), let 6 be a Woodin cardinal of P > &g, equivalently, ¢ is a Woodin cardinal in
Plg]. Working in Plg], let G C Qs be Plg]-generic and jg : Plg] — M C Plg]|G] be the associated
embedding. We show jg(T'9,) # I'%*¢. Suppose not. Letting I' = I'Ne = je(I'y°) and A be the
canonical interpretation of A in P[g], then

Lp"e T (Py) = Lp/e™T(Py).

Lptel(Py) < Lp?e@™T(Py) since Ag C jg(A). The other direction holds by our assumption that

e =ijc(ly); it M Lp’¢™ T (Py), then letting X ¢ be the unique iteration strategy for M, then

Ymel = F(?Do,Ag) , 80 M < LpAG F(Po).

Now, let M < jg(P) be the least such that p,(M) < wf[g] and Y be the canonical strategy
of M as a jg(A) -mouse in M. Then since X is a total strategy, it must be in I". This means
M ALp’¢™T(Py). ¥ is universally Baire in P[g][G], so in P[g][G][h] where h is Col(w, §)-generic over
Plg][G], M < Lpher (730) and hence M € P[g] by homogeneity. However, M defines a surjection from
some a < wf[ 9 onto w g] , M cannot be in Pl[g]. This is a contradiction. Therefore, I')S; # ja(I'y°) as
claimed.

Now we prove part (2). Let &, g be as in the statement of the theorem. Fix a Woodin cardinal § > k.
Let G C Qs be Vg]-generic. Let jg : V[g] = M C V[g][G] be the associated generic embedding. We
will show that

jo(T,) # T2, (6.1)

Suppose (6.1) fails. We write V for the universe of P. Recall that « = T and hence ¢+ = wY[g]. In

V[g][G], let MG, be the direct limit of all countable iterates of P|§ via ¥9*¢ and let i : P|§ — MS be
the direct limit embedding. We let M2 be the direct limit of all countable iterates of jg(P)|d via jg(¥9)
and iy : jg(P)|d — MM be the direct limit embedding. By our assumption, letting I' = jg(T'%,) = ['%*¢
and © = O, then by the general properties of the direct limit construction,

ic(k) =im(k) =©

and
ME | = MMe =HOD! D 0.

In the following, we will write j for jg. Let (M, ®) <1 (5(P)|, j(¥9)) be such that
o (1F)Y <o(M);
e p,(M) < (17)V and M is the minimal such level of M with this property;
e O is the canonical strategy of M.
Let 7= (+7)V. We note that M|7 = P|7 and 7 is a cardinal of M.

Lemma 6.2. MS |(©)FM% = MM |(@)FMx.

"The equality ' = T'(Py, Ag) follows from | ], here I'(Po, Ag) is the pointclass generated by Po,Ag. I'(Po,Ag)
consists of A C R such that there is an embedding i : Py — Q according to Ag such that A <,, ¥ where ¥ = (Ag)Q‘i(@.
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Proof. Work in V[g][G], let v >> wy be a regular cardinal and X < H}Y/[g] '“I 'be countable such that

w}/[g] < XnNded Let mx : Mx — X be the uncollapse map and dx = crt(mx). Let (Q,R) =
7' (P|3,5(P)|8). Note that Q, R F “k is strong” and

Qi =Rt =Pl =j(P).

Furthermore, let Gx = 7' (G), then Q = P|6x and R = jig, (P)|dx where jg is the generic ultrapower
map induced by Gx. Since X is transitive below §, we in fact get (by condensation, cf. | , Theorem
4.6]) that (Q,x) = (P|ox, ¥5) and (R, Ax) = (j(P)|dx,j(¥9)r), where Ux is the ' -pullback of
U9*G and Ay is the W)}l—pullback of jo(¥?). Note also that dx > k is an inaccessible cardinal in P and
i(P).

( I)Jet Ox = 71}1(@) and (Qeo, Roo) = 77;{1(./\/1000,./\/101‘21). By elementarity, Qu|Ox = Reo|Ox, Qoo is
a Wx-iterate of Q, and R is a Ax-iterate of R. Note that Ux, Ax are fullness preserving in L(T).
Q0o|®x = Reo|Ox, and by fullness preservation of ¥y, Ax® that

Quc|(Ox) "9 = Rec|(Ox) " 7.
This gives the lemma by elementarity. O

Let Moo = MS|(O)FME = MM|(©)+Mx. Now let (Q,%) <1 (QF,£+) where (QF, %) €
I(§(P),jc(¥9))? and (R,A) < (RT,AT) € I(P,¥9*%) with the following properties:

(i) Moo(Q,%) 9 Moo and Moo (R, A) < M.
(i) Mo(Q,%) < Mo(R,A).

g*G

+ + i~ (W9
(iii) 7T5+,OO lig = Wé\ztoo [ tr, where 1o = W;(G;)M?QNL) and (g = wgw’RJ,(L).

(iv) o(R) is a cardinal of R* and therefore is a limit of indices of extenders on the sequence of R with
critical point kg, where kg = W%lg;%+ (k), and o( M (R, A)) is a limit cardinal of M.

(v) 0(Q) is a cardinal of QF and therefore is a limit of indices of extenders on the sequence of R with
critical point kg, where kg = ﬂ;?;;Z)QJr(H), and o(M(Q, X)) is a limit cardinal of M.

We note that such pairs can easily be constructed by the general properties of the direct limit systems.
TItem (ii) follows from the assumption that 6.1 fails. Item (iii) follows from the proof of Lemma 6.2; indeed,
using the notation as there, we can let R™ be Ult(P|d, E) where E is the (long) extender of length © x
derived from the iteration map H;Iél’gxm computed in My [Gx] and QF = Ult(j(P)|dx, F) where F is
Ax

Jory (P)|6x |65 00 computed in Mx[Gx],

the (long) extender of length © x derived from the iteration map II
then

s+ AT o
Tot oo | 10 =Tt o [ 1R =7x | (Ox)T9.

In the following, whenever (Q,¥’) € I(P|6, ¥9*F), we write kg, tg etc. for the images of , ¢ etc. under
the iteration embedding. _

Let Mg = Ultg(M, K) where K is the extender derived from w;f;)ﬁ?w I . Then we have, by

standard fine-structural computations, that

(vi) p1(Mg) < 74 where 755 = 7 (1) = supml | 7.

(vi)) Mg < Qt.

gxG i (D9 gxG
Lemma 6.3. 7T7\I;|57R+ L= W;?;)|52Q+ [t and TS = ngéﬂy (7).

Proof. To see the second clause, first note that the first clause implies that K is the extender derived

g*G 9*G . . . . .

from 7% . | ¢; furthermore, m% . . is continuous at 7 because 7 is a successor cardinal in P and
P|5,R ) » TPIsR

g*xG

hence by (vi), 75 = 7r7‘I;."5R+ (7).

8This is because dx > k is an inaccessible cardinal of P and j(P). By condensation, ¥x = ‘Ilgc, and since W9*C is
fullness preserving, ¥ x is as well. A similar argument applies to Ax.
9For a hod pair (S, Y), the set I(S,Y) denotes the collection of non-dropping iterates (S’, Y') of (S, Y).
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To see the first clause, we use the minimality assumption on our mouse P. We note that

g*G i (v
7T7\I;$R+ | k= W;?é),gh | k.
This is because \I/?,*lf = j(¥9);(pys- We write o for this map. Let 7)] be the theory of the first n-
indiscernibles for P. For any A C &, let 7 be a term such that A = 77 [T}, s] for some s € [k]<“. Then

w9*G

Tp o+ (A) = TR TR 5(s)]. Similarly, Wﬁg;’)@ (A) = 797 [T2", o(s)]. By the minimality assumption,
T]f+ = TnQ+ for all n. This means

e (09
7T7q;|6,R+ (A) = W;Ep)\)&gﬁ— (A)

as desired.

By the choice of Q, (vi), (vii), and Lemma 6.3, we easily get that
(viii) Mg < Q.
(ix) QIr5 = RI74.

Let T be the normal tree on Q according to ¥ with last model My, (Q,X) and U the normal tree on
R according to A with last model M (R, A).

Lemma 6.4. Suppose o < Ih(T) is on the main branch of T and § < IMU) is on the main branch of
U. Suppose

o M |n] (ko) = Mf|nls(kr),

o the generators of [0,a]r are contained in 7] (ko).

e the generators of [0, flu are contained in ﬂol’{ﬁ(mg).

Then letting k* = nga(lﬁlg) = ﬂgﬁ(nn), a*+1 be the successor a on the main branch of T (if one exists)

and B* + 1 the successor of B on the main branch of U (if one exists), then if EZ;* has critical point k*,
then Eg* also has critical point k* and EJ, = Eg’

Proof. We show this by induction on the branches [0, a]r, [0, 8]y. We assume the lemma holds for pairs
(o, ") where o/ € [0,a), B’ € [0, 8)y. We first make a couple of simple observations.

First, suppose a* + 1 exists, so E7. is defined. Suppose crt(E7.) = x*. Then EY. is defined and
crt(ng*) = x*. This is easily seen to be true as otherwise, K (r,A) < Ko (9,x), but M (Q,%)
Moo(R,A). This implies M (Q, X) has more than one strong cardinal. Contradiction.

Now observe that if k* < 7771\1,00(/@71), then Eg’* exists and crt(Eg’*) = k*. This is because if crt(Eg*) >
K*, then future extenders used along the main branch of &/ must have critical points > x*, but this means
k* is a strong cardinal of M (R, A) since « is on the main branch of &. Since ﬂ%m(mg) is a strong
cardinal of Mo (R,A) > k*, this means M (R, A) has more than one strong cardinal. Contradiction.
A similar statement holds for the T-side, namely if £* < 73  (ko), then E. exists and crt(E7.) = x*

The two observations above easily imply most of the conclusions of the lemma except for the last
equality. So we assume that EI*,E%’* both exist and have critical point x*. By the initial segment con-

dition, we know that 1h(E7.) = Ih(EY.) =acs €. Furthermore, (M. XM 1) = (MY. g’AME’*Hﬁ)'
Letting ¢* = Wg:a(LQ) = WOU,B(LR)7 we have
ut * A+ *
=77 . 6.2
T o0 | TMU oo e (6.2)

This follows from (iii) and by our induction hypothesis which implies that 7], | 1o = 7r16{ 5 | tr. To see
(6.2), let € < 1*, 50 € =7 (f)(a) = 76 5(f)(a) for f € Qlug and a € [K*]<¥. So

0,
T (€)= 75t (18 (1))
=7 (75 ()(a)

AT
= WM%**,oo(g)'

13



In fact, we get that 7TZ+7— + and 7TA’JZ; +  agree on all the elements of the H,» of the models.
Mo ,00 Mg 00

Now we can show the equality of the two extenders by the following calculations: let a € [A(E.)]<%
and A C [r*]lel,

(a,A) e El. s ae mpT (A)

»n+
= ac WMZ’_F,OO(A)

The second equivalence follows from the following facts:

o 75 o(A) =72 1 oo 0 TET+(A).

a,00

e By the general properties of direct limits, there is a factor map ¢ : My (Q, %) = M (QT,2T)
such that crt(o) = kar(o,m)-

o 2 (a) = a.

Combining the above facts, we see that a € mpr (A) is equivalent to a € oo my.y; o o Tpr-(4) =
+

WJE\:/laT’+,oo

after. The last equivalence is proved just like the second equivalence. O

(A). This gives the second equivalence. The third equivalence follows from (6.2) and the remark

Now we have two cases:
Case 1: w{oo(mg) =76 oo (KR).

Let this ordinal be 7. Then « is the strong cardinal of My (R, A) and of M (Q,X). Furthermore,
T2 (Mg) 9 Moo(R, A) where F is the extender derived from mf . and 7 ©(Myg) is the O-ultrapower

0,00

embedding derived from F' on Mg. Since p1(Mg) < 74, by elementarity, pr(m¥'e (M) < 7 0o (T5)-
On the other hand, since 7 is a cardinal of P, 7§ is a (successor) cardinal of R and is a continuity point
of mf . This means 7{  (75) = e (75) (by Lemma 6.4) is a cardinal of Moo (R,00), but Y2 (My)
witnesses 7§ (74) is not a cardinal of Mo (R, 00). We have a contradiction.
Case 2: 7] (ko) < 7 o (kR).

Let a be the least in U such that the strong cardinal of MY = n{_ (kg). It’s easy to see such an
« exists and in fact o in on the main branch of U (see the analysis in Lemma 6.4). Now we have that
letting E be the extender on the main branch of ¢ that is applied to MY, then 1h(E) > o(ﬁI/;AQ(./\/l 2)).
This is because ig(m] ., (kg)) is an inaccessible cardinal of Mo (R,A) and by our case hypothesis,

w?,flg(./\/l 0) A M (9, %), so by the agreement between models, it is easy to see that 71'}/\;/[9 (Mg) aMYU.
But this leads to a contradiction as in Case 1 because 778{& (75) is not a cardinal of MY,

This completes the proof of Theorem 6.1. One weakness of the above proof is it seems very hard
to generalize Lemma 6.2 to obtain the agreements between the two direct limits at a strong cardinal of
those limits above ©. Therefore, one may hope to prove Tower Sealing holds in a generic extension of a

hod mouse with two (or more) isolated strong cardinals. We show that this is not the case.

Theorem 6.5 (ADT). Suppose (P, V) is an Ibr hod pair such that P & “there is a proper class of Woodin
cardinals and there are finitely many strong cardinals”. Let Kk be the largest strong cardinal of P, and
let g C Coll(w, ™). Suppose there is no subcompact cardinal in P. Then in Plg], Tower Sealing fails at
every Woodin cardinal.

Proof. Suppose there are n strong cardinals in P with « being the largest one. Let § > k be a Woodin
cardinal. We show Tower Sealing fails at & in P[g]. Let Q = P|§TF and fix an X < Q with |X| = s+
and X Nk+t+ € k7. Let 7 : Mx — X be the uncollapse map with crt(mw) = vx. We may choose X so
that vx does not index an extender on the Q-sequence and cof(yx) > &; there is a xT-club of such X
because there are no subcompact cardinals in P. As in | ; ], we coiterate Q and the phalanx
(Q, Mx,vx) into a common hod pair construction.

More precisely, let ¥ = Ug and write M for Mx. Fix a coarse strategy pair ((N*, €,w, F, U*), U**),
in the sense of | ], that captures ¥, and let C be the maximal (w,F) construction, with models
M, and induced strategies €,,;. Let 6* = §(w). By | , Theorem 3.26], (x)(M,X) holds, so we can
fix (no, ko) lex least such that (Q,X) iterates to (M, kg, Qy.ke ), and for all (v,1) <iex (10, ko), (Q, %)
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iterates strictly past (M, ;, Q). Let U, ; be the unique normal tree on Q witnessing (Q, X)) iterates past
(Mu,b QV,Z)-lo

To make the main points transparent and simplify certain arguments, we assume n = 2. We write

HOQ < Ii for the strong cardinals of @ and for any non-dropping iterate R of Q, we write kY, kT for the

strong cardmals of R. Similarly, we denote x3!, kM for the strong cardinals of M.
We define trees S,; on (Q,M,vx) for certain (v,1) < (no, ko). Fix (v,1) < (1o, ko) for now, and
assume S,/ is defined whenever (v',1’) < (v,1). Let U = U, ;, and for 7 < Ih(U), let

S = Sur4)

be the tail strategy for MY induced by X. We proceed to define S = S, ;, by comparing the phalanx
(9, M,~vx) (using strategy (£,%X7X)) with M, ;. As we define S, we lift S to a padded tree 7 on Q, by
copying. Let us write

24 = Z710011)
for the tail strategy for MQT induced by X..

We let Q = M5, M = M$. For 6 < Ih(S), we will have copy map 7 from Mj into M] . The map
7 is a nearly elementary.!! We attach the complete strategy

Ao = (=)™

to Mg. We also define a non-decreasing sequence of ordinals A\g = )\g that measure agreement between
models of §, and tell us which model we should apply the next extender to.
We start with

M§ =, MF =M,y = vx,
and
MJ = M] =Q,m =id,m = 7x,00 = 7x,
and
Ap=3%, Ay =X,

We say that 0,1 are distinct roots of S. We say that 0 is unstable, and 1 is stable. As we proceed,
we shall declare additional nodes 6 of S to be unstable. We do so because (Mg, Ag) = (MY, EX)!? for
some 7y, and when we do so, we shall immediately define ./\/lg 1, as well as 0p and . Here Agy 1 = Ag°.
In this case, [0,0]s does not drop, and all £ <g 6 are also unstable. We regard 6 + 1 as a new root of S.
This is the only way new roots are constructed.

If 6 is unstable, then we define

Yo =i o(70)-

The construction of S takes place in rounds in which we either add one stable 6, or one unstable
and its stable successor 6 + 1. Thus the current last model is always stable, and all extenders used in S
are taken from stable models. If  is stable, then A, = )\(E,‘YS)

For 0 < lh(S), let 7y : M‘g — Mg be the copy map. We are maintaining by induction that the last
node 7 of our current S is stable, and

Induction hypotheses (f),. If § <~ and 6 is unstable, then

1) 0 <s 6 and [0,0]s does not drop (in model or degree), and every £ <g 6 is unstable,

)
2) there is a v such that (Mg, Ag) = (MY, 5Y),
3) M

— . S _
9+1 = Mg, and Tp41 = T O 09 : M9+1 — Mg+1 = Mg

(
(
(
(

4) 7y does not index an extender on the Mj-sequence.

10We note that since k(Q) = 0, Q is strongly stable in the sense of [ ]. The possibility that (Q,X) iterates to some
type 2 pair generated by (Myg ko, Qno,ko) doesn’t occur here.
HSee | , Section 2.3] for a summary of the types of elementary maps between mouse pairs.

12The external strategy agreement does not seem important to require for  to be declared unstable. We should be able
to declare 6 unstable when only the models agree.
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Setting oy = m, we have (});.
For a node v of §, we write S-pred(v) for the immediate <gs-predecessor of S. For v a node in S, we
set

st(y) = the least stable 6 such that 6 <g =,
and
() {st('y) : if st(y) =0 + 1 for some unstable 6
S =

undefined : otherwise.

The construction of S ends when we reach a stable 6 such that

(I My, < ./\/lg, or Még = M, and S drops, or

II) M$ <M, ;, and [rt(),6]s does not drop in model or degree.
] )

If case (I) occurs, then we go on to define S, ;41. If case (II) occurs, we stop the construction.

We now describe how to extend S one more step. First we assume S has successor length v 4+ 1 and
let Mf be the current last model, so that v is stable. Suppose (t), holds. Suppose (I), (II) above do not
hold for +, so that we have a least disagreement between Mﬁ and M, ;. Suppose the least disagreement
involves only an extender E on the sequence of Mf.m Letting 7 = 1h(E), we have

o M, |(r,0) = MS|(r,—1),* and
L4 (Qu,l)(,r’(]) = (A’Y)(T,—l)'

We now describe how to extend S one more step. We set Ef = E* and /\;5{ = Ag.'> Let € be
the least such that crt(E) < )\?. We let S-pred(y + 1) = &. Let (8, k) be lex least such that either
p(MZ[(B, k) <crt(E) or (8, k) = (6(Mg), k(ME)). Set

M§+1 :Ult(MfKﬂa k)v E+)7
and let igv _1 be the canonical embedding. Let
Myy—-&-l :Ult(MZ—KWE(ﬂ)a k)vﬂ—’y(E)+)7
and let 7,41 be given by the Shift Lemma. This determines A,;.

If € is stable or (8, k) < (0(M§), k(M§)), then we declare y+1 to be stable. (1)1 follows vacuously
from ().

If £ is unstable and E* is not used in U, then again we declare v + 1 stable. Again, ()41 follows
vacuously from (7).

Finally, suppose ¢ is unstable and E™ is used in U, say E+ = Eﬁ’ Let 7 be such that

_u
65—6

T

where e‘g is the sequence of extenders used on the branch [0, ¢]s and similarly for €¢%. So in particular,
(ME,Ag) = (M, ).

We have that
S S~ ~
e =€ (BET) = M (BT = elt+1.

[ | shows that 7 = U — pred(u + 1). We then we declare v + 1 to be unstable and v + 2 stable. We
must define the tuple needed for (),42. Let i =4, and

<N7 Ga 0—7’7*> = <M?,M?+1,U§7’Y§>.
We let

13Later, we will prove that this is the case.

14 Recall /\/(‘3|(7'7 —1) is the structure obtained from M§/|T by removing E. Sometimes, we will write M~ for
M|(o(M), —1).

15 This is the notation used in | ], for an extender E on the M-sequence, E7 is the extender with generators A\pU{\g}

that represents iglt(ME) 0 i} where F is the order zero total measure on Ag in Ult(M, E). We also write MEY) = Ag,

Ih(Et) = 1h(E). ET is the plus-type extender derived from E.
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Vo1 = i(7") = 0§ 441 (70)-

Now we define M:f 4o and o,41. Note that by our assumption that cof(yx) > x and the fact that
crt(F) < kM7 | where kM7 is the largest strong cardinal of MY

Yy+1 = sup i[y"].

Let M§+2 = Ult(G, ET), i?+1,7+2 be the ultrapower map, and o4 : Mf+2 — Mi—&-l be the copy map
and my41 =Ty 0 0yq1.
If there is a least disagreement between M;S/ 1o and M, ;, it has to involve an extender F' from

the sequence of Mf o (by [ , Lemma 5.64]). If no such F exists, we leave )\f +1v)‘§ o undefined.
Otherwise, let
Ao = AF)

and

)\fﬂ = min()\§+2, Vy41)-
The )\f’s tell us what model should an extender used in S be applied to.
Claim 6.6. (f),41 holds.

Proof. (1)-(3) are clear. (4) also follows because yy11 = i 4 1(70). By the fact that 4o does not index
an extender on the M§-sequence and elementarity, Y41 does not index an extender on the M§ 11"
sequence. O

If (I) or (II) holds at y + 2, then the construction of S is over. Otherwise, we let ES , be the least
disagreement between M:S/ 1o and M, ;, and we set
)‘§+1 = inf(yy41, A(E»‘ys+2))~
This completes the successor step in the construction of S.
Now suppose we are given S [ 8, where 0 is a limit ordinal. Let b = (7 [ 6).

Case 1. There is a largest 1 € b such that n is unstable.

Fix n. There are two subcases.

(A) for all y € b— (n+ 1), rt(y) = n+ 1. In this case, b — (n + 1) is a branch of S. Let S choose this
branch,

n+1,0)s =b—(n+1),

and let M be the direct limit of the MS for sufficiently large v € b— (n+1). We define the branch
embedding iig a usual and 7 : M§ — MZ_ is given by the fact that the copy maps commute with
the branch embeddings. We declare 6 to be stable.

(B) forall vy € b— (n+1), rt(y) = n. Let S choose

[03 0)5 = (b - T’) U [0777}53

and let Mg be the direct limit of the ./\/15 for sufficiently large v € b. Branch embeddings Zf,e for

~v > n are defined as usual. 7y : ./\/lg — M(,T is given by the fact that copy maps commute with
branch embeddings. We declare 6 to be stable.

Since 6§ is stable, (1) follows at once from Vy < 6 (}),.
Case 2. There are boundedly many unstable ordinals in b but no largest one.
We let 1 be the sup of the unstable ordinals in b. Let S choose

[0,0)s = (b—mn) U[0,7ls,

and define the corresponding objects as in case 1(B). We declare 6 stable, and again (1)g is immediate.
Case 3. There are arbitrarily large unstable ordinals in b. In this case, b is a disjoint union of pairs
{7, + 1} such that 7 is unstable and v + 1 is stable. We set
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[0,0)s = {£ € b | £ is unstable},

and let M§ be the direct limit of the Mg’s for £ € b unstable. There is no dropping in model or degree
along [0, 0)s. We define maps ige, o as usual. If (M3, Ag) is not a pair of the form (MY, ¥Y), then we
declare 6 stable and (f)y is immediate.

Suppose that (./\/lg , M) is a pair of U. We declare # unstable. We set

Yo = i3 9(70)

and
M;}il = the direct limit of ifﬂﬁ,H(Mﬂ‘S{H), for v <g v <g 0.

We also let
0g = common value of i y(c), for v <g 0 sufficiently large.'®

It is easy then to see that ®y = <Mg,./\/lg+1,0'0,’}/9> witnesses (f)g holds.

If (I) holds, then we stop the construction of S = S,,; and move on to S, ;41. If (II) holds, we stop
the construction of S and do not move on. If neither holds, we let EQ‘S .1 be the extender on the M;)g 1
sequence that represents its first disagreement with M, ;, and set

/\g+1 = A(Eg+1)7

)\‘g == inf()\9+1, ’yg).

It then is routine to verify ()g41.

This finishes our construction of S = S, ; and 7. Note that every extender used in S is taken from
a stable node and every stable node, except the last model of S contributes exactly one extender to S.
The last model of S is stable.

Remark 6.7. It is possible in general that £ is unstable, S-pred(y+1) = &, and crt(E:Yg) = Ar where F’
is the last extender of M§|’y§. In this case, (8,k) = (Ih(F),0). The problem then is that MS,; is not
an lpm, because its last extender i¢ 41 (F) has a missing whole initial segment, namely F. This is the
JSZ anomaly.

In the situations of least-disagreement comparisons, when a JSZ extender occurs, the Schindler-
Zeman solution is to just continue comparing anyway. Suppose a JSZ extender, which fails the Jensen
ISC, has the form E;ISH = Lo FE is used on the U-side. Say our phalanx is (M, @, o) where E;f = L with
cart(L) = Ap and E = EM  then E ¢ M, = Ult(M|v, L) and M$,, = Ult(M, ES, ;) = Ult(M, LoU).
Note that the Jensen ISC holds everywhere on U, then the main branch of i uses first £ and then L.
So L is used on both S and U; this cannot happen in a comparison by least-extender disagreement.
Since our comparison is against a common background construction, the SZ solution does not seem to
work here; some care must be taken when JSZ anomalies occur. The JSZ anomaly affects how we lift
our problematic phalanx and forces us to modify the rules of S,; to enable to prove the comparison
terminates and other aspects of the comparison. See | | for how to handle the JSZ anomalies in the
context of comparison against a background construction.

The JSZ anomaly does not occur in the comparison we are describing in this paper. The reason is
that we chose X so that yx does not index an extender on the Q-sequence and this fact propagates to
the lifted phalanxes.

Claim 6.8. For some (v,1) < (1, ko), the construction of S, stops for reason (II).

Proof. This is similar to the proof of | , Lemma 9.6.2].
O

Fix (v,1) < (no, ko) such that the construction of S = S,; terminates at a stable 6 such that for

some 7, Mg < Mf,{”. Let S = S,;, U = Uy, and let v be the least such that /\/1‘99 < MZ,’Y{ We have
Ih(S) =0+ 1, and [rt(0), f]s does not drop in model or degree.

Claim 6.9. For some unstable £, t(0) = £ + 1.

Proof. Suppose the claim is false. Then

16We abuse the notation a bit here when we write zf ¢(0y) as g, is technically not an element of Mf, but the meaning
of oy should be clear.
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Figure 2: Diagram of the comparison argument: Mg <MY, Mg = MY, crt(ig, ) > 7e = crt(oe), and
the embedding zlf,y acts on S <« MY where S the the collapsing structure of 7.

(i) either rt(6) = & > 0 for £ unstable,
(ii) or rt(f) = ¢ for £ stable and is a limit of unstable ¢’ < &,

In either case, the embeddings i§ . and if, exist, so i§, exists. Let P = Mg and R = MY. Let
= z"(i@7 j= i(L)”w oc:P— P = MZ be the copy map, and i* : M — P* be the branch embedding of
[0, 0] if these maps are defined.

By Dodd-Jensen, P = R, i,j,i* are defined, and ¢ = j. Let H be the first extender used along [0, 8]
and K be the first extender used along [0,7]y. Since ¢ = j, K, H are compatible.

Since we can recover branch extenders from branch embeddings, we have

S _ U
ee—e,y.

Let n <g 6 be the least stable. Then eﬁ = eg [ 6 = eﬁ’ | § for some §.!7 There is a 7 <y v such
that e = 69/’ [0 = eﬁ. So M;S] = MY. By pullback consistency,'® we easily get that A, = Y. If n
is a limit ordinal, then by the rule of S, we declare n unstable, contradicting our assumption. So let
S — pred(n) = u; then p is unstable by the minimality of 7. But then we declare n unstable by the rule
of § at successor stages. Again this is a contradiction. O

Let € be as in Claim 6.9, and 7 be such that (Mg, A¢) = (MY, £X). We have that
o (M5, Ap) I (M,;,Q,,)d (MZ:Y’,Z%) for some (v,1) < (no, ko)-
e [+ 1,0]s does not drop in model or degree.
e The tuple (Mg, Mg, |, 0¢,7¢) witnesses (1)e.
Let P = /\/lg and R = M%’ See Figure 2 for the relevant diagram of the comparison.
Claim 6.10. (i) 7 <n <~ implies lh(E%’) > e and if n < T then )\(E%’) < 7.
(ii)) P < R.

Proof. The first clause of part (i) follows from the agreement between P, ML,J,R,./\/I‘S = MY, more
precisely, these models agree up to ¢, therefore, for any 7 < n < 7, lh(Eff ) > 7e. For the second clause,
note that by construction, ¥ = e‘g 19 and 1h(e¥) = lh(e‘g ) < 4g; the fact that 1h(e‘g ) < 7¢ follows from

the rules of lifting phalanx, all extenders used in ef have critical point less than ~¢ and therefore, their
length has to be < v¢. If n < 7 then /\(Ef;’) < lh(ETz;’) < lh(ef) < 7¢ as desired.

I71f 1t(6) = 0 then eﬁ consists of a single extender H and § = 1. This is a special case and is simpler.

18Pyllback consistency follows from other properties of mouse pairs specified in [ ]

19617’_{ is the extender sequence used along [0, 7]y and similarly e‘g is the extender sequence used along [0, &]s.
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To see part (ii), suppose P = R. First note that the branch [0,7]y cannot drop because P is a
ZFC™-model while if [0,v]y drops then R is not. So [0,7]y has no drop. We may assume v > 7 as
otherwise, P = R = MY but MY has a collapsing level for 7¢ while 7¢ is a cardinal in P. Contradiction.
So v > 7. Let 7/ € [0,7]u be the least element of this branch > 7. It is easy to see that MY and MY,
agree up to their common 'yg' and the branch embedding ilj,ﬂ has critical point > 7. But this is also

a contradiction because MY, hence MY and R, has a collapsing level for v¢ while ¢ is a cardinal in
P. O

Claim 6.11. 7 € [0,7]y and letting ¢ + 1 € [r,y]y be the U-successor of T on the branch [0,7]y,
crt(BY) > .

Proof. Let a <y B+ 1 € [0,7]y be such that a < 7, 84+ 1 > 7, and « is the U-predecessor of 8 + 1.
Suppose crt(E%’) < 7¢, then we claim that

Subclaim. crt(EY) must be a strong cardinal in MY and i¥ ;. | exists.

Proof. First note that by an easy induction on 8 > 7, crt(Elg) must be a strong cardinal in MY%. Second,

u u
note that since o < 7, for 7 € {0,1}, ija < H;MT. 20
U MY . MY MY . u .
So let us assume x = crt(E£g) = «; " for some i and k; * < ;7. Since M3, [ye = Plye, in P,
u u u u

/ilM“ is strong to /{ZM’ ; since Ii'iAAT is strong in P, ﬁ?/l“ is strong in P as well. We get that
P E “ there are n + 1 strong cardinals.”
This ; — MY MY . . . . u u
Is is a contradiction. So k; * = k; 7 as desired. Furthermore, this easily gives that M and M}

agrees up to the successor cardinal of kM. This gives the second clause and completes the proof of the
subclaim.
O

u
Using the subclaim, let k = crt(E%’) = nlM"‘ for some ¢, and A\ = igyﬁﬂ(n). Then since 1h(E%’) > Ve,
A > 7 and A is a strong cardinal in M%’H. Furthermore, A < lh(Eg’) < o(P) and M%’HH)\ = P\
Since z‘fﬂﬁ is above 7, the strong cardinals of P are below ~,. In particular,

M%’HH)\ = P||\ E “ there are n strong cardinals.”
But then since A is strong in M%’+17

M%’H F “ there are n + 1 strong cardinals”.

This is a contradiction.

We have shown that letting a, 5 + 1 be as above, then crt(E/I;’) > 7, in fact it is easy to see that
crt(EY) > ve. If 7 ¢ [0,7]u, then o < 7 and hence A(EY) < 7, but then crt(EY) < MEY) < 7.
Contradiction. This shows 7 € [0,7]y and completes the proof of the claim.

O

Claim 6.11 and the argument in Claim 6.10 imply that the branch [r,~]y must drop, in fact, letting
S < MY be the collapsing structure for v¢, MY, ; = Ult(S, EY). In other words, the branch [r,7]y is
based on S. Let i : S — R be the iteration embedding and j : MfH — P be the iteration embedding

ig,19- We have that by pullback consistency, (34)" = (£¥)s and A} = Agyq1. Claims 6.10 and 6.11
easily imply that A¢yq is projective in (X%)g. Similarly, letting S* <1 Q be the collapsing structure for
Y0, A1 is projective in (X4)ge.

The above gives us the following: if j : P[g] — M is a generic ultrapower induced by a generic G C Qs,

then letting ¥ be the iteration strategy for the collapsing structure @ <1 M of wf[g], every A € Ffo[g”G]
is projective in W. This means Ffo[g] & -y (I‘fo[g]). Therefore, Tower Sealing fails in P[g]. O
MY MY MY MY MY

i

20Note is that it can’t happen that crt(E%) =Ky " and Ky T < Ky @ < K} * < k] 7. This is because this means

u u
A(Egil) > n(/)vl’ , therefore, since crt(Eg) = n(j)vl’ , the rule of U implies that E% must be applied to model earlier than
«a. Contradiction.
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Remark 6.12. The proof of the above theorem, particularly Claim 6.11 uses the assumption the set of
strong cardinals in the model is finite. The proof can be generalized in a straightforward way to models
in which the set of strong cardinals is discrete and has order smaller than the least measurable cardinal.
It is not clear how to generalize this proof of hod mice with strong cardinals which reflect the class of
strong cardinals.

7. Questions
Question 7.1. e Can Tower Sealing hold in a generic extension of a hod mouse?
o [s Tower Sealing consistent relative to ZFC+ “there is a Woodin limit of Woodin cardinals”?

As mentioned in the previous section, it is plausible that some form of Tower Sealing may be shown to
hold in hod mice with strong cardinals which reflect the class of strong cardinals; however, the argument
has to be different from what is given in this paper. A natural conjecture is

Conjecture 7.2. Suppose (P, V) is a hod pair such that P £ “there is a strong cardinal which reflects
the class of strong cardinals and there is a proper class of Woodin cardinals”. Let k be the least strong
cardinal which reflects the class of strong cardinals and let g C Coll(w, ™), then

Plgl E V6 if § is Woodin, then Tower Sealing holds at 0.”
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