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Abstract

In this paper, we show that the failure of the unique branch hypothesis (UBH) for tame trees

(see Definition 0.1) implies that in some homogenous generic extension of V there is a transitive

model M containing Ord ∪ R such that M � ADR + Θ is regular. The results of this paper

significantly extend earlier works from [7] and [11] for tame trees.

We establish, using the core model induction, a lower bound for certain failures of the Unique

Branch Hypothesis, (UBH), which is the statement that every iteration tree that acts on V has at

most one cofinal well-founded branch. This paper is a continuation of [7], but it is self-contained.

For the rest of this paper, all trees considered are nonoverlapping, that is whenever E and F are

extenders such that E is used before F along a branch of the tree, then lh(E) ≤ crit(F ). Suppose

there is a proper class of strong cardinals. We say κ reflects the set of strong cardinals (or κ is

a strong reflecting strongs) if for every λ there is an embedding j : V → M witnessing that κ is

λ-strong and for any cardinal µ ∈ [κ, λ), V � “µ is strong” iff M � “µ is strong”. Now we recall

the definition of tame trees from [7].

Definition 0.1 (Tame iteration tree). An iteration tree T on V is tame if for all α < β < lh(T )

such that α = predT (β + 1), MTα � “∃κ < λ < cp(ETβ ) such that λ is a strong cardinal and κ is

strong reflecting strongs”.

UBH was first introduced by Martin and Steel in [1]. Towards showing UBH, Neeman, in [3],

showed that a certain weakening of UBH called cUBH holds provided there are no non-bland mice1.

However, in [14], Woodin showed that in the presence of supercompact cardinals UBH can fail for

tame trees. Woodin constructs alternating chains whose branches are well-founded. Extenders of

such trees can be demanded to reflect the set of strong cardinals which reflect strong cardinals.

Hence critical points of the branch embeddings can be demanded to be above the first strong

cardinal which reflects strong cardinals. It is still an important open problem whether UBH holds

1We will not use this terminology.
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for trees that use extenders that are 2ℵ0-closed in the models that they are chosen from.2 A positive

resolution of this problem will lead to the resolution of the inner model problem for superstrong

cardinals and beyond. It is worth remarking that the aforementioned form of UBH for tame trees

will also lead to the resolution of the inner model problem for superstrong cardinals and beyond.

Our work can be viewed as an attempt to prove UBH for tame trees by showing that its failure is

strong consistency-wise.

We recall some material presented in [5] and [7]. Recall Θ is the supremum of ordinals α such

that there is a surjection from R onto α. Working under AD + DCR, we say that (θα : α ≤ Ω) is

the Solovay sequence if: (a) θ0 is the supremum of ordinals α such that there is an OD surjection

from R onto α, (b) for α < Ω (and θα < Θ), θα+1 is the supremum of ordinals α such that for

some A ⊆ R of Wadge rank θα, there is an ODA surjection from R onto α, (c) for β ≤ Ω limit,

θβ = supα<βθα, and (d) θΩ = Θ. For a set A ⊆ R, we let θA be the supremum of α such that there

is an ODA surjection from R onto α. We may also define the Solovay sequence (θΓ
α : α ≤ Ω) of

a pointclass Γ with sufficient closure. We list some important determinacy theories in increasing

consistency strength: (1) AD+, (2) AD+ + Θ > θ0, (3) ADR, (4) ADR + DC, (5) ADR + Θ is regular.

Con((5)) implies, among others, the consistency of MM(c), a significant fragment of Martin’s

Maximum (MM) and was conjectured by Woodin to be equiconsistent with a supercompact cardinal.

The first author, in [4], shows that (5) is consistent relative to the existence of a Woodin cardinal

which is a limit of Woodin cardinals, which is significantly weaker than a supercompact cardinal.

The following is the main theorem of the paper, which improves significantly the lower-bounds

obtained by [7] and [11]. [11] obtains (1) as a lower-bound and the main result of [7] obtains (2) as

a lower-bound for failures of UBH for tame trees; Theorem 0.2 obtains (5) as a lower-bound under

the same hypothesis.

Theorem 0.2 (Main Theorem). Suppose there is a proper class of strong cardinals and UBH fails

for tame trees. Then in a set generic extension of V , there is a transitive inner model M such that

Ord ∪ R ⊆M and M � “ADR + Θ is regular”.

We remark that there are papers in the literature that obtain “ADR + Θ is regular” as a lower

bound for certain theories. For instance, in [12], the second author constructed an inner model of

“ADR+Θ is regular” from the Proper Forcing Axiom, and in [6], the first author constructed an inner

model of “ADR + Θ is regular” from certain failures of covering. However, the methods developed

in this paper are different from those methods developed in the two aforementioned papers in

a rather significant way. In the aforementioned papers, the authors work under hypothesis that

imply the failure of lower part covering. More precisely, in the aforementioned papers, equivalents

of Theorem 3.3 are proved while having the luxury of knowing that |P+| < ω2 in M [m]. Here we

do not know that |P+| < ω2, yet our large cardinal assumption still allows us to get an (ω1, ω1)-

iteration strategy with the desired properties. We anticipate that the construction of such a strategy

will be useful in other similar contexts as well.

2The first extender used in the trees Woodin constructs is not 2ℵ0 -closed.
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1. PRELIMINARIES

1.1. STACKING MICE

We recall the notions used in [7]. Fix some uncountable cardinal λ and assume ZF. Notice that

any function f : Hλ → Hλ can be naturally coded by a subset of ℘(∪κ<λ℘(κ)). We then let

Code∗λ : HHλ
λ → ℘(∪κ<λ℘(κ)) be one such coding. If λ = ω1 then we just write Code∗. Because for

α ≤ λ, any (α, λ)-iteration strategy3 for a hybrid premouse4 of size < λ is in HHλ
λ , we have that

any such strategy is in the domain of Code∗λ.

Suppose Λ ∈ dom(Code∗λ) is a strategy with hull condensation and µ ≤ λ. Recall that we say

F is (µ,Λ)-mouse operator if for some X ∈ Hλ and formula φ in the language of Λ-mice, whenever

Y is such that X ∈ Y , F (Y ) is the minimal µ-iterable Λ-mouse satisfying φ[Y ].

We then let Codeλ be Code∗λ restricted to F ∈ dom(Code∗λ) that are defined by the following

recursion.

1. for some α ≤ λ, F is an (α, λ)-iteration strategy with hull condensation5,

2. for some α ≤ λ and for some (α, λ)-iteration strategy Λ ∈ dom(Code∗λ) with hull condensation,

F is a (λ,Λ)-mouse operator,

3. for some α ≤ λ, for some (α, λ)-iteration strategy Λ ∈ dom(Code∗λ) with hull condensation,

for some (λ,Λ)-mouse operator G ∈ dom(Code∗λ) and for some β ≤ λ, F is a (β,Λ)-iteration

strategy with hull condensation for some G-mouse M∈ Hλ.

When λ = ω1 then we just write Code instead of Codeω1 . Given an F ∈ dom(Codeλ) we let MF

be, in the case F is an iteration strategy, the structure that F iterates and, in the case F is a mouse

operator, the base of the cone on which F is defined.

Let P ∈ Hλ be a hybrid premouse and for some α ≤ λ, let Σ be (α, λ)-iteration strategy

with hull condensation for P. Suppose now that Γ ⊆ ℘(∪κ<λ℘(κ)) is such that Codeλ(Σ) ∈ Γ.

Given a Σ-premouse M, we say M is Γ-iterable if |M| < λ and M has a λ-iteration strategy (or

(α, λ)-iteration strategy for some α ≤ λ) Λ such that Codeλ(Λ) ∈ Γ6. We let MiceΓ,Σ be the set of

Σ-premice that are Γ-iterable.

Definition 1.1. Given a Σ-premouse M ∈ Hλ, we say M is countably α-iterable if whenever

π : N → M is a countable submodel of M, N , as a Σπ-mouse, is α-iterable. When α = ω1 + 1

then we just say that M is countably iterable. We say M is countably Γ-iterable if whenever π and

N are as above, N is Γ-iterable.

3This is an iteration strategy for stacks of less than α normal trees, each of which has length less than λ. Typically
these are fine-structural n-maximal iteration trees (as defined in [2]), where n is the degree of soundness of the
premouse we iterate. We will suppress this parameter thoughout our paper.

4For more on hybrid mice, see [4] or [9].
5In this case as well as in cases below α = 0 is allowed.
6Recall that iteration strategy for a Σ-mouse must respect Σ. In particular, all Λ-iterates of M are Σ-premice.
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Suppose M is a Σ-premouse. We then let o(M) = Ord∩M. We also let M||ξ be M cutoff at

ξ, i.e., we keep the predicate indexed at ξ. We letM|ξ beM||ξ without the last predicate. We say

ξ is a cutpoint of M if there is no extender E on M such that ξ ∈ (cp(E), lh(E)]. We say ξ is a

strong cutpoint if there is no E onM such that ξ ∈ [cp(E), lh(E)]. We say η < o(M) is overlapped

in M if η isn’t a cutpoint of M. Given η < o(M) we let

OMη = ∪{N /M : ρ(N ) ≤ η and η is not overlapped in N}.

Given a self-wellordered7 a ∈ Hλ we define the stacks over a by

Definition 1.2. 1. LpΣ(a) = ∪{N : N is a countably iterable sound Σ-mouse over a such that

ρ(N ) = a},

2. Kλ,Γ,Σ(a) = ∪{N : N is a countably Γ-iterable sound Σ-mouse over a such that ρ(N ) = a},

3. Wλ,Γ,Σ(a) = ∪{N : N is a Γ-iterable sound Σ-mouse over a such that ρ(N ) = a}.

Remark 1.3. In the definition above, when we say “Σ-mouse”, we really mean “g-organized Σ-

mouse” in the sense of [9]. We will suppress the term “g-organized” in this paper as all Σ-mice

considered here will be g-organized Σ-mice. The reason for considering “g-organized Σ-mice” is

because one can perform S-constructions on g-organized Σ-mice, but not on Σ-mice as defined in

[8].

When Γ = ℘(∪κ<λ℘(κ)) then we omit it from our notation. We can define the sequences

〈LpΣ
ξ (a) : ξ < η〉, 〈Kλ,Γ,Σξ (a) : ξ < ν〉, and 〈Wλ,Γ,Σ

ξ (a) : ξ < µ〉 as usual. For Lp operator the

definition is as follows:

1. LpΣ
0 (a) = LpΣ(a),

2. for ξ < η, if LpΣ
ξ (a) ∈ Hλ then LpΣ

ξ+1 = LpΣ
+(LpΣ

ξ (a))8,

3. for limit ξ < η, LpΣ
ξ =

⋃
α<ξ Lp

Σ
α(a),

4. η is least such that for all ξ < η, LpΣ
ξ (a) is defined.

The other stacks are defined similarly.

1.2. (Γ,Σ)-SUITABLE PREMICE

Again fix an uncountable cardinal λ and assume ZF. We also fix Σ ∈ dom(Codeλ) such that Σ is

a (α, λ)-iteration strategy with hull condensation and Γ ⊆ ℘(∪κ<λ℘(κ)) such that Codeλ(Σ) ∈ Γ.

We now import some material from Subsection 1.3 of [5]. The most important notion we need from

that subsection is that of (Γ,Σ)-suitable premouse which is defined as follows:

7I.e., self well-ordered, a set a is called self well-ordered if trc(a ∪ {a}) is well-ordered in L1(a).
8LpΣ

+(LpΣ
ξ (a)) is the stack of sound, countably iterable Σ-mice N projecting to ≤ o(LpΣ

ξ (a)) and extends LpΣ
ξ (a).

Similar definitions can be made for WΣ
+(WΣ

ξ (a)) and KΣ
+(KΣ

ξ (a)).
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Definition 1.4 ((Γ,Σ)-suitable premouse). A Σ-premouse P is (Γ,Σ)-suitable if there is a unique

cardinal δ such that

1. P � “δ is the unique Woodin cardinal”,

2. o(P) = supn<ω(δ+n)P ,

3. for every η 6= δ, if η is a strong cutpoint of P then Wλ,Γ,Σ
+ (P|η) = P|((η)+)P .

4. for any η < o(P), if η 6= δ, then CΓ(N|η) � “η is not Woodin”.

If Γ = ℘(∪α<λ℘(α)) then we use λ instead of Γ. In particular, we use λ-suitable to mean

Γ-suitable. We will do the same with all the other notions, such as fullness preservation and short

tree iterability, defined in this section. Also, if Γ is fixed throughout or is clear from the context,

then we simply say P is Σ-suitable. We let P− be the structure that Σ iterates.

Suppose P is (Γ,Σ)-suitable. Then we let δP be the δ of Definition 1.4. We then proceed as in

Section 1.3 of [5] to define (1) nice iteration tree, (2) (Γ,Σ)-short tree, (3) (Γ,Σ)-maximal tree, (4)

(Γ,Σ)-correctly guided finite stack and (5) the last model of a (Γ,Σ)-correctly guided finite stack

by using Wλ,Γ,Σ operator instead of WΓ operator.

1.3. A BRIEF INTRODUCTION TO HOD MICE

In this paper, a hod premouse P is one defined as in [4]9. The reader is advised to consult [4] for

basic results and notations concerning hod premice and mice. Let us mention some basic first-order

properties of a hod premouse P. There are an ordinal λP and sequences 〈(P(α),ΣPα ) | α < λP〉
and 〈δPα | α ≤ λP〉 such that

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then P � δPα is

Woodin;

2. P(0) = Lpω(P|δ0)P ; for α < λP , P(α + 1) = (Lp
ΣPα
ω (P|δα))P ; for limit α ≤ λP , P(α) =

(Lp
⊕β<αΣPβ
ω (P|δα))P ;

3. P � ΣPα is a (ω, o(P), o(P))10-strategy for P(α) with hull condensation;

4. if α < β < λP then ΣPβ extends ΣPα .

We will write δP for δP
λP

and ΣP = ⊕β<λPΣPβ . Note that P(0) is a pure extender model. Suppose

P and Q are two hod premice. Then P Ehod Q if there is α ≤ λQ such that P = Q(α). We say

then that P is a hod initial segment of Q. (P,Σ) is a hod pair if P is a hod premouse and Σ is a

strategy for P (acting on countable stacks of countable normal trees) such that ΣP ⊆ Σ and this

fact is preserved under Σ-iterations. Typically, we will construct hod pairs (P,Σ) such that Σ has

hull condensation, branch condensation, and is Γ-fullness preserving for some pointclass Γ.

9By a similar remark, by “hod premice” we mean “reorganized hod premice” in the sense of [4] or “g-organized
hod premice” in the sense of [9]. Again, the reason has to do with S-constructions.

10This just means ΣPα acts on all stacks of ω-maximal, normal trees in P.
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Suppose (Q,Σ) is a hod pair. P is a (Q,Σ)-hod premouse if there are ordinal λP and sequences

〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then P � δPα is

Woodin;

2. P(0) = LpΣ
ω (P|δ0)P (so P(0) is a Σ-premouse built over Q); for α < λP , P(α + 1) =

(Lp
Σ⊕ΣPα
ω (P|δα))P ; for limit α ≤ λP , P(α) = (Lp

⊕β<αΣ⊕ΣPβ
ω (P|δα))P ;

3. P � ΣPα is a (ω, o(P), o(P))strategy for P(α) with hull condensation;

4. if α < β < λP then ΣPβ extends ΣPα .

Inside P, the strategies ΣPα act on stacks above Q and every ΣP
α iterate is a Σ-premouse. Again,

we write δP for δP
λP

and ΣP = ⊕β<λPΣPβ . (P,Λ) is a (Q,Σ)-hod pair if P is a (Q,Σ)-hod premouse

and Λ is a strategy for P such that ΣP ⊆ Λ and this fact is preserved under Λ-iterations. The

reader should consult [4] for the definition of B(Q,Σ), and I(Q,Σ). In a core model induction, we

don’t quite have at the moment (Q,Σ) is constructed an AD+-model M such that (Q,Σ) ∈M but

we do know that every (R,Λ) ∈ B(Q,Σ) belongs to such a model. We then can show (using our

hypothesis) that (Q,Σ) belongs to an AD+-model.

[4] constructs under AD+ (under Strong Mouse Capturing (SMC)) hod pairs that are fullness

preserving, positional, commuting, and have branch condensation. Such hod pairs are particularly

important for our computation as they are points in the direct limit system giving rise to HOD

of AD+ models. For hod pairs (MΣ,Σ), if Σ is a strategy with branch condensation and ~T is a

stack on MΣ with last model N , ΣN ,~T is independent of ~T . Therefore, later on we will omit the

subscript ~T from ΣN,~T whenever Σ is a strategy with branch condensation andMΣ is a hod mouse.

1.4. HOD UNDER AD+

Using techniques above and the theory of hod mice developed in [4], [4] and [13] compute HOD (up

to Θ) in AD+ models of V = L(℘(R)) + SMC11 + Θ = θα+1 for some α below “ADR + Θ is regular”.

These papers show the existence of an M∞ such that:

1. M∞ ∈ HOD.

2. M|Θ is a hod premouse.

3. M∞|Θ = (V HODΣ
Θ , ~EM∞|Θ, SM∞ ,∈), where SM∞|Θ is the predicate for strategies of hod

initial segments of M∞|Θ.

We call M∞ the hod limit.

[4] also computes HOD (up to Θ) in models of V = L(℘(R))+SMC+ADR below “ADR+Θ is regu-

lar” by exhibiting a hod premouseM∞ satisfying (1)-(3) as above. HereM∞ =
⋃

(P,Σ)M∞(Q,Λ),

11SMC stands for the Strong Mouse Capturing, which says that for any hod pair (P,Σ) such that Σ has branch
condensation and is fullness preserving, then MC(Σ) holds.
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where (Q,Λ) is a hod pair with branch condensation and is fullness preserving and M∞(Q,Λ) is

the direct limit of all (non-dropping) Λ-iterates of Q.

What’s important for us are the notions discussed in those papers to compute HOD in the

successor cases. Let (P−,Σ) be as above and suppose also that the direct limitM∞(P−,Σ) agrees

with HOD up to θα. Let

B(P−,Σ) = {B ⊆ ℘(R)× R× R | B is OD, for any (Q,Λ) iterate of (P−,Σ),

and for any (x, y) ∈ B(Q,Λ), x codes Q}.

In the above definition, we identify Λ with the set of reals Code(Λ). We also write “P is Σ-

suitable” for “(P,Σ) is a suitable pair”. For such a P, we let δP be the Woodin cardinal of P
(above P−). If (P−,Σ) = (∅, ∅), then each B ∈ B(∅, ∅) can be canonically identified with an OD

set of reals and hence B(∅, ∅) can be canonically identified with the collection of OD sets of reals.

Suppose B ∈ B(P−,Σ) and κ < o(P). Let τPB,κ be the canonical term in P that captures B at κ

i.e. for any g ⊆ Col(ω, κ) generic over P

B(P−,Σ) ∩ P[g] = (τPB,κ)g.

Let δ = δP . For each m < ω, let

γP,ΣB,m = sup(HullP1 (P− ∪ τPB,(δ+m)P ) ∩ δ),

HP,ΣB,m = HullP1 (γP,ΣB,m ∪ {τ
P
B,(δ+m)P}),

γP,ΣB = supm<ωγ
P,Σ
B,m,

and

HP,ΣB =
⋃
m<ω

HP,ΣB,m.

Similar definitions can be given for γP,Σ~B,m
, HP,Σ~B,m

, γP,Σ~B
, HP,Σ~B

for any finite sequence ~B ∈ B(P−,Σ).

One just needs to include relevant terms for each element of ~B in each relevant hull. The usual

notions of B-iterability, strong B-iterability, and the corresponding weak iteration gamesWG(P,Σ),

WG(P,Σ, B) are defined in [4, Section 3.1]. [4] and [13] show that if (P−,Σ) is a hod pair such

that

(i) Σ is fullness preserving, commuting, positional, and has branch condensation,

(ii) δM∞(P−,Σ) = θα for some α,

(iii) M∞(P−,Σ)|θα = HOD|θα,

then we can compute HOD|θα+1 as follows.
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Let

F = {(P,Σ, ~B) | ~B ∈ B(P−,Σ)<ω, (P−,Σ) satisfies (i)− (iii),P is Σ-suitable

and (P,Σ) is strongly ~B-iterable}.

The ordering on F is defined as follows:

(P,Σ, ~B) 4 (Q,Λ, ~C) ⇔ ~B ⊆ ~C,∃r(r is a run of WG(P,Σ, ~B) with the last model P∗

such that (P∗)− = Q−, Σ(P∗)− = Λ,P∗ = Q|(η+ω)Q

where Q � η > o(Q−) is Woodin).

Suppose (P,Σ, ~B) 4 (Q,Λ, ~C) then there is a unique map π
(P,Σ),(Q,∆)
~B

: HP,Σ~B
→ HQ,Λ~B

given by

strong ~B-iterability. (F ,4) is then directed. Let

M∞,α = direct limit of (F ,4) under maps π
(P,Σ),(Q,∆)
~B

.

Then M∞,α ∈ HOD and M∞,α|θα+1 = HOD|θα+1. Also for each (P,Σ, ~B) ∈ F , let

π
(P,Σ),∞
~B

: HP,Σ~B
→M∞,α

be the natural map, and let for each such ~B

H
M∞,α
~B

=
⋃

(P,Σ, ~B)∈F π
(P,Σ),∞
~B

[HP,Σ~B
],

and

γ
M∞,α
~B

=
⋃

(P,Σ, ~B)∈F π
(P,Σ),∞
~B

[γP,Σ~B
],

Now suppose f : Θ → Θ (f could be taken from a parent ZFC universe) is such that for each α

such that θα < Θ, f � (θα + 1) ∈ HOD and f(θα) < θα+1. We call such an f appropriate. Fix

an appropriate f and an α and let F ,M∞,α be as above for α. Let (P,Σ, B) ∈ F be such that

f � (θα + 1) ∪ {f � (θα + 1)} ∈ rng(π
(P,Σ),∞
B � HP,ΣB ). In particular, γM∞B > f(θα). We call such a

triple (P,Σ, B) f -suitable. We then say that a Σ-suitable P is (strongly) (f,Σ)-iterable if letting

Bf be the OD-least B in B(P−,Σ) such that (P,Σ, Bf ) is f -suitable, then (P,Σ) is (strongly)

B-iterable. Whenever (P,Σ, Bf ) ∈ F is f -iterable, we also write γP,Σf for γP,ΣBf
or simply γPf if Σ

is clear from the context.

2. THE MAXIMAL MODEL AND A FRAMEWORK FOR THE CORE MODEL INDUCTION

The core model induction is a method for constructing models of determinacy while working under

various hypothesis. During the induction one climbs up through the Solovay hierarchy. This is a

hierarchy of axioms that extend AD+ and roughly describes how complicated the Solovay sequence

is. One first defines, under a certain smallness assumption, for instance “there are no models M
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such that R∪Ord ⊂M such that M � ADR +Θ is regular”, a so-called maximal model of AD+, M.

We show M � AD+. We also show that M cannot satisfy “Θ = θα+1” for some α and “ADR + Θ

is singular” as in each case, we can construct a hod pair (P,Σ) that generates ℘(R) ∩M, but by

maximality of M, (P,Σ) ∈M. Contradiction. This shows that there must indeed be such models

M satisfying “ADR + Θ is regular”.

Throughout the paper we work under the smallness assumption

(†): “there are no models M such that R ∪Ord ⊂M such that M � ADR + Θ is regular”.12

In this section we first recall the notion of the maximal model and some correctness results from

[7]; the second part of the section sets up the framework for our core model induction.

We start by introducing universally Baire iteration strategies and mouse operators. We assume

ZFC. Throughout this paper we fix a canonical method for coding sets in HC by reals. Given a

real x which is a code of a set in HC, we let Mx be the structure coded by x and let πx : Mx → Nx

be the transitive collapse of Mx. We let WF be the set of reals which code sets in HC.

Definition 2.1 (uB operators). Suppose Λ ∈ dom(Code) and λ ≥ ω1 is a cardinal. We say Λ

is λ-uB if there are < λ-complementing trees13 (T, S) witnessing that Code(Λ) is < λ-uB in the

following stronger sense: for all x ∈WF and n,m ∈ x,

(x, n,m) ∈ p[T ] ⇐⇒ πx(m) ∈ Λ(πx(n)).

If g is a < λ-generic then we let Λg be the canonical interpretation of Λ onto V [g], i.e., given

a, b ∈ HCV [g], Λg(a) = b if and only if whenever x ∈ WF V [g] is such that a ∈ Nx and n ∈ x is

such that πx(n) = a then b = πx[{m : (x, n,m) ∈ (p[T ])V [g]}].
If Λ is λ-uB for all λ then we say Λ is uB.

Suppose now λ is an uncountable cardinal, g is a < λ-generic, a ∈ (Hλ)V [g] and Σ ∈ dom(Code)

is λ-uB. Then we define LpΣ,g(a), Wλ,Σ,g(a) and Kλ,Σ,g(a) in V [g] according to Definition 1.2. The

following connects the three stacks defined above.

Proposition 2.2. For every a ∈ HV
λ , Wλ,Σ(a) E Kλ,Σ(a) E LpΣ(a). Moreover, for any η < λ

and V -generic g ⊆ Coll(ω, η) or g ⊆ Coll(ω,< η), Wλ,Σ,g(a) EWλ,Σ(a), Kλ,Σ,g(a) E Kλ,Σ(a) and

LpΣ,g(a) E LpΣ(a).

Definition 2.3 (Hod pair below λ). Suppose now that (P,Σ) is a hod pair such that Σ ∈ dom(Code)

is λ+-uB. We say (P,Σ) is a hod pair below λ if Σ has branch condensation and whenever g ⊆
Coll(ω, λ) is V -generic, in V [g], Σg is ω1-fullness preserving.

Note that if κ ≤ λ and (P,Σ) is a hod pair below λ then (P,Σ) is a hod pair below κ. We are

now in a position to introduce the maximal model of AD+.

12Another way of stating our smallness assumption is the statement: “there are no hod mice P such that δP is an
inaccessible limit of Woodin cardinals in P.”

13This means that the trees project to complements in all < λ-generic extensions.
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Definition 2.4 (Maximal model of AD+ +Θ). Suppose µ < λ is a cardinal and g ⊆ Coll(ω,< µ)14

is V -generic. Suppose in V [g], (P,Σ) is a hod pair below λ. Then we let Sλ,Σµ,g = L(Kλ,Σ,g(RV [g])).

We also let

Mλ
µ,g = L(

⋃
(P,Σ) S

λ,Σ
µ,g ∩ ℘(R)) and Ωλ

µ,g =
⋃

(P,Σ) S
λ,Σ
µ,g ∩ ℘(R),

where the union is over all such hod pairs (P,Σ).

Thus far strategy mice have been discussed only in situations when the underlying set was

self-wellordered. However, Sλ,Σµ,g is a Σ-mouse over the set of reals15. Such hybrid mice were defined

in Section 2.10 of [4] and a more detailed treatment is given in [9]. We say that Sλ,Σµ,g is the λ-Σ-

maximal model of AD+ at µ, Mλ
µ,g is the λ-maximal model of AD+ at µ, and Ωλ

µ,g is the λ-maximal

point class of AD+ at µ. Our goal is to show that (under (†)) Mλ
µ,g is a model of “ADR + Θ is

regular”.

The next lemma connects various degrees of iterability. Below, if ξ ∈ Ord and N is a transitive

model of ZFC then we let Nξ = V N
ξ .

For the purposes of the next lemma, suppose µ < λ are such that µ is a strong cardinal

and λ is inaccessible. Let j : V → M be an embedding witnessing that µ is λ+-strong and let

g ⊆ Coll(ω,< µ) and h ⊆ Coll(ω,< j(µ)) be two generics such that g = h ∩ Coll(ω,< µ). Let

j+ : V [g]→ M [h] be the lift of j. Let W = V [g]. The following lemma comes from Lemma 2.5 of

[7].

Lemma 2.5. Suppose (P,Σ) is a hod pair below µ and a ∈ Vλ[g] is self-wellordered. Then

Wλ,Σ,g(a) =Wλ,Σ,h∩Coll(ω,<λ)(a) = Kλ,Σ,g(a) = Kµ,Σ,g(a) = (Wj(λ),j(Σ),h(a))M [h].

The following is an easy corollary of Lemma 2.5.

Corollary 2.6. Suppose µ < κ < λ and j : V → M are such that µ and κ are strong cardinals,

λ is inaccessible, j witness that µ is λ-strong and M � “κ is strong cardinal”. Let (P,Σ) be a

hod pair below µ which is λ-uB. Let g ⊆ Coll(ω,< κ) and h ⊆ Coll(ω,< j(µ)) be generic such

that g = h ∩ Coll(ω,< κ). Let j+ : V [g ∩ Coll(ω,< µ)] → M [h] be the lift of j. Then whenever

a ∈ Vλ[g],

Wλ,Σ,g(a) = Kκ,Σ,g(a) =Wλ,Σ,h∩Coll(ω,<λ)(a) = (Wj(λ),j(Σ),h(a))M [h].

The proof of the above is given in Section 2 of [7], so we omit it here. Now we develop some basic

notions in order to state Theorem 2.9 which we will use as a black box. Our core model induction

is a typical one: we have two uncountable cardinals κ < λ, the core model induction operators (cmi

operators) defined on bounded subsets of κ can be extended to act on bounded subsets of λ, and

14In this paper, µ is typically an inaccessible cardinal.
15Actually, we need that Sλ,Σµ,g is a Θ-g-organized Σ-mouse over RV [g] as defined in [9]; this is a slight modification

from the hierarchy of g-organized Σ-mice. This modification is needed (only for Σ-mice over R) so that the scales
analysis works out.
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for any such cmi operator F acting on bounded subsets of λ, the minimal F -closed mouse with one

Woodin cardinal exists and is λ-iterable.

The mouse operators that are constructed during core model induction have two additional

properties: they transfer and relativize well. More precisely, fix Σ ∈ dom(Code) which is λ-uB.

Given a Σ-mouse operator F ∈ dom(Codeλ), we say

1. (Relativizes well) F relativizes well if there is a formula φ(u, v, w) such that whenever X,Y ∈
dom(F ) and N are such that X ∈ L1(Y ) and N is a transitive rudimentarily closed set such

that Y, F (Y ) ∈ N then F (X) ∈ N and F (X) is the unique U such that N � φ[U,X, F (Y )].

2. (Transfers well) F transfers well if whenever X,Y ∈ dom(F ) are such that X is generic over

L1(Y ) then F (L1(Y )[X]) is obtained from F (Y ) via S-constructions (see Section 2.11 of [4])

and in particular, F (L1(Y ))[X] = F (L1(Y )[X]).

We are now in a position to introduce the core model induction operators that we will need in

this paper.

Definition 2.7 (Core model induction operator). Suppose |R| = κ, (P,Σ) is a hod pair below κ+.

We say F ∈ dom(Code) is a Σ core model induction operator or just Σ-cmi operator if one of the

following holds:

1. For some α ∈ Ord, letting M = Sκ
+,Σ

ω ||α, Γ = ΣM
1 , supple M � AD+ + MC(Σ) and one of

the following holds:

(a) F is a Σ-mouse operator which transfers and relativizes well.

(b) For some self-wellordered b ∈ HC and some Σ-premouse Q ∈ HCV over b, F is an

(ω1, ω1)-iteration strategy (above o(P)) for a (Σ,Γ)-suitable Q which is Γ-fullness pre-

serving, has branch condensation and is guided by some ~A = (Ai : i < ω) such that

~A ∈ ODM
b,Σ,x for some x ∈ b. Moreover, α ends either a weak or a strong gap in the

sense of [9].

(c) For some H ∈ dom(Code), H satisfies a or b above and for some n < ω, F is x →
M#,H

n (x) operator or for some b ∈ HC, F is the ω1-iteration strategy of M#,H
n (b).

2. For some α ∈ Ord, a ∈ HC and M E Wκ+,Σ(a) such that ρ(M) = a letting Λ be M’s

unique strategy, the above conditions hold for F with LΛ
κ+(R) used instead of Sκ

+,Σ
ω and Λ

used instead of Σ.

When Σ = ∅ then we omit it from our notation. Often times, when doing core model induction,

we have two uncountable cardinals κ < λ and we need to show that cmi operators in V Coll(ω,<κ)

can be extended to act on V
Coll(ω,<κ)
λ . This is a weaker notion than being λ-uB. We also need to

know that for any cmi operator F ∈ V Coll(ω,<κ), M#,F
1 -exists. We make these statements more

precise.
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Definition 2.8 (Lifting cmi operators). Suppose κ < λ are two cardinals such that κ is an inac-

cessible cardinal and suppose (P,Σ) is a hod pair below κ.

1. Lift(κ, λ,Σ) is the statement that for every generic g ⊆ Coll(ω,< κ), in V [g], for every every

Σg-cmi operator F there is an operator F ∗ ∈ dom(Codeλ) such that F = F ∗ � HC. In this

case we say F is λ-extendable. Such an F ∗ is necessarily unique as can be easily shown by a

Skolem hull argument16. If Lift(κ, λ,Σ) holds, g ⊆ Coll(ω,< κ) is generic, and F is a Σg-cmi

operator then we let F λ be its extended version.

2. We let Proj(κ, λ,Σ)17 be the conjunction of the following statements: Lift(κ, λ,Σ) and for

every generic g ⊆ Coll(ω,< κ), in V [g],

(a) for every Σg-cmi operator F , M#,F
1 exists and is λ-iterable.

(b) for every a ∈ Hω1, Kω1,Σ,g(a) =Wλ,Σ,g(a)

The following is the core model induction theorem that we will use.

Theorem 2.9. Suppose κ < λ are two uncountable cardinals and suppose (P,Σ) is a hod pair below

κ such that Proj(κ, λ,Σ) holds. Then for every generic g ⊆ Coll(ω,< κ), Sλ,Σκ,g � AD+ + θΣ = Θ.

We will not prove the theorem here as the proof of the theorem is very much like the proof of

the core model induction theorems in [5] (see Theorem 2.4 and Theorem 2.6), [8] (see Chapter 7)

and [10]. To prove the theorem we have to use the scales analysis for Sλ,Σκ,g (see [9]). For a relevant

discussion on how Theorem 2.9 is proved, see [7].

We end this section with the following useful fact on lifting strategies. Among other things it

can be used to show clause (b) of Proj(κ, λ,Σ). The following is Lemma 3.5 of [7].

Lemma 2.10 (Lifting cmi operators through strongness embeddings). Suppose κ < λ are such

that κ is a λ-strong cardinal. Then whenever (P,Σ) is a hod pair below κ, Lift(κ, λ,Σ) and clause

(b) of Proj(κ, λ,Σ) hold.

3. A CORE MODEL INDUCTION

Recall that we say µ reflects the set of strong cardinals (or µ is strong reflecting strongs) if µ is a

strong cardinal and for every λ > µ, there is an embedding j : V →M witnessing that µ is λ-strong

and such that for any cardinal κ ∈ [µ, λ), V � “κ is strong” iff M � “κ is strong”. We fix µ < κ < λ

such that λ is an inaccessible cardinal, µ and κ are strong such that µ is strong reflecting strongs

and κ is strong.

16Suppose H0, H1 ∈ dom(Code
V [g]
λ ) are two extensions of F . Working in V [g], let π : N → Hλ+ [g] be elementary

such that N is countable and H0, H1 ∈ rng(π). Let (H̄0, H̄1) = π−1(H0, H1). Then it follows from the definition of
being a Σ-cmi operator that H̄0 = H0 � N and H̄1 = H � N . However, since H0 � N = F � N = H1 � N , we get that
N � H̄0 = H̄1, contradiction!

17Proj stands for projective determinacy. The meaning is taken from clause (a).
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Suppose n ⊆ Coll(ω,< j(µ)) is V -generic. Let m = n∩Coll(ω,< κ) and g = m∩Coll(ω,< µ).

We also let j+ : V [g] → M [n] be the lift of j. Suppose also Proj(κ, λ,Ψ) holds for all hod pairs

(R,Ψ) below κ. We first prove (under the assumption (†)) that:

Theorem 3.1. Mλ
µ,g 6= S

λ,Ψ
µ,g for some hod pair (S,Ψ) below κ, where S ∈ Vµ[g], Ψ ∩ V [g] ∈ V [g].

We first restate the main theorem (Theorem 4.1) of [7] in our context. The proof of this theorem

is an easy generalization of that of Theorem 4.1 of [7] combined with Theorem 2.9, so we omit it.

Theorem 3.2. Suppose (R,Ψ) is a hod pair below κ such that Proj(κ, λ,Ψ) holds. Suppose (R,Ψ) ∈
Vµ[g]. Let P = (M∞)S

λ,Ψ
µ,g . Then in M [m], P has an (ω1, ω1)-iteration strategy Σ such that Σ is

extendable to a (j(µ), j(µ))-strategy that is j(µ)-fullness preserving. Moreover, there is a stack

~T ∈ HCV [m] on P according to Σ with last model Q such that π
~T exists and in V [m], (Q,ΣQ,~T )

is a hod pair below ω1 (so in particular, ΣQ,~T has branch condensation). Finally, in V [m] (or

equivalently in M [m]), S
λ,ΣQ,~T
κ,m � AD+ +θΨ < Θ.

Proof of Theorem 3.1. This basically follows from Theorem 3.2. We outline the argument. Suppose

not; then Mλ
µ,g = Sλ,Ψµ,g for some hod pair (R,Ψ) ∈ V [g] below κ, where R ∈ Vµ[g] and Ψ ∩ V [g] ∈

V [g]. Fix such a (R,Ψ). Applying Theorem 3.2 to (R,Ψ) and using elementarity of j+ and the

fact that κ is strong in M , we get that there is a hod pair (Q,Σ) below a strong cardinal κ∗ < µ

such that (Q,Σ) ∈ Vκ∗ [g∩Coll(ω,< κ∗)] and (Q,Σ) is also a hod pair below µ such that Σ /∈Mλ
µ,g

and Sλ,Σµ,g � AD+.18 This contradicts the definition of Mλ
µ,g.

The above theorem shows that the Solovay sequence of Ωλ
µ,g has limit length. We then prove:

Theorem 3.3. Suppose whenever (R,Ψ) is a hod pair below κ then Proj(κ, λ,Ψ) holds; so the

Solovay sequence of Ωλ
µ,g has limit length. Let P = (M∞)Ωλµ,g and P+ = Wλ,Σ−,g

ω (P), where Σ−

is the join of the strategies ΣP(α) of P(α) for all α < λP19. Let Θ be the height of the Wadge

hierarchy of Ωλ
µ,g (so Θ = o(P)). If P+ � Θ is singular, then there is an initial segment Γ of Ωλ

µ,g

such that “L(Γ) � ADR + Θ is regular”.

Proving Theorem 3.3 is the main task of our paper. The rest of the section is devoted to this

task. We follow arguments in [6]. Many of the main ideas of our proof come from [6]; however,

in this situation, we don’t know a priori that |P+|V < µ+ (unlike in the situation of [6]) and this

affects many of the key arguments given there. We now outline the proof of the theorem, making

use of results from [6] as much as possible.

Lemma 3.4. Suppose P EM E P+. Then ρω(M) ≥ Θ.

18To see that Σ is fullness preserving with respect to mice in Sλ,Ψµ,g , using the fact that κ∗ is strong, we get that
Σ is λ-fullness preserving in V [g ∩ Coll(ω,< κ∗)]. Suppose M is a λ-iterable sound (g-organized) Ψ-mouse over
a ∈ HCV [g] and ρω(M) = a, then by S-construction, M is (fine structurally) equivalent to a (g-organized), sound
Ψ-mouseM∗ over some a∗ ∈ Vµ[g∩Coll(ω,< κ∗)] and ρω(M∗) = a∗. This observation guarantees Σ is Sλ,Ψµ,g -fullness
preserving.

19ΣP(α) is simply the tail of a hod pair (Q,Λ) ∈ Ωλµ,g where M∞(Q,Λ) = P(α). Using j+, we can extend Λ to a
unique strategy, called Λ also, acting on stacks in j+(Ωλµ,g); so (P(α),ΣP(α)) is indeed a hod pair in j+(Ωλµ,g).
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Proof sketch. Fix such an M. Note that |M|V = µ since the assumption of Theorem 3.3 implies

Θ < µ+. The methods of [6], in particular Lemma 11.8, applied to M show that in fact ρω(M) ≥
Θ.

We assume throughout this section that |P+|V ≥ µ+. Otherwise, [6] applies and gives Theorem

3.3. By replacing j by the ultrapower embedding via the (µ, j(µ))-extender derived from j, we may

assume j[P+] is cofinal in j(P+).

Lemma 3.5. P+ � cof(λP) is measurable.

Proof. Suppose not. Recall we set Σ− = ⊕
α<λP+ ΣP(α). Let Ω = Ωλ

µ,g. We have Σ− acts on

P+. More precisely, whenever ~T (based on P) is according to Σ− and π
~T exists, then letting

Q = Ult(P+, E), where E is the (crt(π
~T ), supπ

~T [P])-extender derived from π
~T , then we can define

σ : Q → j(P+) as follows: for any f ∈ P+, any a ∈ (Q|δQ)<ω,

σ(iE(f)(a)) = j(f)(π
Σ−
~T ,Q
Q|δQ,∞(a)).

Using the fact that π
~T is continuous at δP

+
and j � P = πΣ−

P,∞, we get that σ is elementary,

σ ◦ iE = j � P+, and σ � δQ = π
Σ−
~T ,Q
Q,∞ � δ

Q. In particular, this implies that Q is well-founded.

It follows from Theorem 3.1 that (P+,Σ−) ∈ j+(Ωλ
µ,g). But then lettingM∞ be the direct limit

of all iterates of (P+,Σ−) in j+(Ωλ
µ,g), there is an embedding τ :M∞ → j(P+) with critical point

δM∞ . This implies thatM∞ is a hod initial segment of j(P+) andM∞ � “δM∞ is an inaccessible

limit of Woodin cardinals”. This contradicts our smallness assumption (†).

Definition 3.6 (Nice strategies). Suppose πP+,R : P+ → R, σ : R → j(P+) are Σ1-elementary.

Suppose j � P+ = σ ◦ πP+,R. Let α < λR. We say that an iteration strategy Σα for R(α) is nice

if and only if

(i) Σα is a j+(Ωλ
µ,g)-fullness preserving strategy for R(α) with branch condensation.

(ii) πΣα
R(α),∞ = σ′ � R(α) for some Σ1 elementary map σ′ : R → j(P+) such that j � P+ =

σ′ ◦ πP+,R (so Σα acts on all of R).

(iii) If πP+,R ∈M , then Σα �M ∈M .

Now, we construct a partial strategy Σ of P+ in V [n] with the following properties (using the

terminology of [6]):

(i) Σ extends Σ−.

(ii) Whenever ~T ∈Mj(µ) ∪Mκ[m] is a stack on P+, we say that ~T is according to Σ if:

(a) for all R a terminal node ([6, Definition 2.1]) of ~T , there is a map σR : R → j(P+) such

that

j � P+ = σR ◦ π
~T
P+,R.
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Furthermore, if Q and R are two terminal nodes and π
~T
Q,R exists then σQ = σR ◦ π

~T
Q,R.

(b) For all terminal nodes R, for all successor α < λR, letting σR be as above, there is a

unique {j(f) : f ∈ P+ ∧ j(f) is appropriate}-guided20, nice strategy ΣR(α) for R(α).

Furthermore, letting α = β + 1, then ΣR(α) extends ΣR(β).

(c) Letting R be as in (b), then whenever ~U on R is according to (the tail of) Σ and ~U is

based on R(α) for some α < λR, then ~U is according to ΣR(α).

In the above, we define Σ by inductively defining ΣR(α) for each α < λR, where R is a terminal

node on a stack ~T as above. First note that ΣP(α) is nice for each α < λP
+

(with clause (ii) in

Definition 3.6 being witnessed by j). Now suppose ~T ,R are as above. It is enough to define ΣR(α)

for α = β + 1, where by induction, we have that ΣR(β) is nice and the supremum of the generators

of ~TP+,R is ≤ δRβ .21 We prove a series of lemmas that eventually leads to the construction of ΣR(α).

Lemma 3.7. Let ~T ,R, σR, α, β be as above. Then R(α) is full in j+(Ωλ
µ,g).

Proof. Suppose not. As before we set Ω = Ωλ
µ,g and we have already assumed that ΣR(β) is nice, so

in particular, R(β) is j+(Ω)-full. Let ξ < j(µ) be M -inaccessible and (P∗,Ψ) ∈ Mξ be a Σ−-hod

pair in j+(Ω) witnessing R(α) is not full and λP
∗

is limit of countable cofinality (in P∗). More

precisely, there is a cutpoint ξ in R(α)\R(β) such that in Γ(P∗,Ψ), there is a ΣR(β)-mouseM such

that M � LpΣR(β)(R(α)|ξ)\R(α). The existence of such a pair (P∗,Ψ) follows from the fact that

j(µ) is strong in M and by boolean comparison. Note that no levels of P∗ extending P projects to

or below Θ. This is similar to the proof of Lemma 3.4. We assume that Ψ has branch condensation

and is j+(Ω)-fullness preserving.

Let σ = πP+,R and σ+ : P∗ → R∗ be the ultrapower map of P∗ by the (crt(σ), δR)-extender

derived from σ. Let σ+
R : R∗ → j(P∗) be defined as: for g ∈ P∗, a ∈ (δR)<ω,

σ+
R(σ+(g)(a)) = j(g)(σR(a)).

We have then that σ+
R is elementary and j � P∗ = σ+

R ◦ σ+.

In V , let Ṫ , Ṙ, Ṙ∗, Ṡ, Σ̇, σ̇, ˙σ+, ˙σR,
˙σ+
R ∈ V be canonical Coll(ω,< κ) names for ~T ,R,R∗,R(α),

Σβ, σ, σ
+, σR, σ

+
R respectively. Let γ be a sufficiently large regular cardinal in V [g] such that Vγ [g]

contains all relevant objects and let µ+ 1 ⊂ X ≺ Vγ [g] be of size µ and contain all relevant objects.

Let π : N → X be the uncollapse map. Let m̄ ∈ V [g] be Coll(ω, π−1(κ))-generic over N . For any

a ∈ X, let ā = π−1(a).

Let M =M],Ψ
ω and let Π be M’s j(µ)-strategy in M [n] (the M before is behind us now). We

assume also that (M,Π � V [g]) ∈ X. Let N be an iterate (below the first Woodin cardinal of M)

20Recall that this means ΣR(α) witnesses R(α) is strongly (j(f),ΣR(β))-iterable for all f ∈ P+ such that j(f) is

appropriate. Furthermore, for any correctly guided, non-dropping T according to ΣR(α), δ(T ) = supf∈P+(γ
MT

b
j(f) ).

21If α < λR is limit and cofR(α) is not measurable in R then we set ΣR(α) to be ⊕β<αΣR(β). If cofR(α) = κ is
measurable in R, then we let S = Ult(R, E) where E is the total extender on κ with the least index in R and we
define ΣR(α) by inductively defining ΣS(β) for β < λS .
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such that H =def H
M
ξ is generically generic22 over N for the extender algebra BNδ , where δ is the

first Woodin cardinal of N . Then in N [H][m], the following hold:

D(N [H][m]) � “in L(Γ(P∗,Ψ),R), R(α) is not full”,

where D(N [H][m]) is the derived model of N [H][m]. A similar fact holds of N̄ inside N [m̄]. In

fact, letting M = N̄ [H̄], then inside M, letting λ be the sup of M’s Woodin cardinals:

∅ 
Col(ω,<κ̄)
Col(ω,<λ) in the derived model, L(Γ(P̄∗, Ψ̄)) witnesses that Ṡ is not full. (3.1)

Note that

Ψ̄ = Ψπ � N and Π̄ = Ππ � N, (3.2)

and

π � π−1(j(P∗)) ◦ (
¯̇
σ+
R)m̄ =def τ ∈M [g], (3.3)

and

Ψπ = j(Ψ)j◦π = j(Ψ)τ◦(
¯̇
σ+)m̄ is Wadge reducible to Λ =def j(Ψ)τ . (3.4)

Combining 3.1, 3.2, and 3.4, letting W =
¯̇R∗m̄ and S = ¯̇S, we get in Ωλ

κ,m,

in L(Γ(W,Λ),R),S is not full. (3.5)

This means that if we perform an RV [m]-genericity iteration via Λ, then letting W∗ be the iterate,

inside D(W∗), we have

S is not full. (3.6)

This contradicts results in [4] on internal fullness of hod mice.

Definition 3.8. For f ⊆ δP and f ∈ P+. We say an M� P+ is f-nice if ρω(M) = Θ, f ∈ M,

M � Θ is the largest cardinal, and j �M is cofinal in j(M).

Fix an appropriate f ∈ P+. LetM�P+ be f -nice; note that the set of f -niceM’s is unbounded

in P+. We construct a strategy Σf witnessing R(α) is strongly (j(f),ΣR(β))-iterable. First, we

construct a realizable strategy for R(α). Let τM = j �M. Note that τM ∈ M and by f -niceness

of M, πP+,R � M is cofinal in πP+,R(M). By absoluteness, ΣR(β) ∈ M [n], and the fact that

πP+,R(M) is countable in M [n], there is in M [n] an elementary σM : πP+,R(M) → j(M) such

that

• σM ◦ πP+,R �M = τM.

• σM � R(β) = π
ΣR(β)

R(β),∞.

22See [4, Section 2.10] for the definition.
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Let Σ′ = j(P)σMR(α) be the ΣM-pullback of R(α). By constructions in [6, Section 11], whenever

S is a nondropping Σ′-iterate of R(α), then there is an embedding σS : S → σM(R(α)) such that

σS ◦ πΣ′

R(α),S = σM � R(α).

Remark 3.9. The above construction, though stated as a definition for a strategy of R(α) in

V [m] as part of defining a partial strategy Σ for P+, indeed gives an inductive definition of a

strategy ΛM ∈M [n] for M for stacks in Mj(µ)[n]; the reason is because τM ∈M . Furthermore by

construction, given any ΛM-iterate S of M, there is some σ : S → j(M) such that σ ◦ πM,S = j �

M.

Lemma 3.10. All nondropping Σ′-iterates of R(α) are j+(Ωλ
µ,g)-full. Furthermore, Σ′ has branch

condensation and is positional and commuting.

Proof sketch. The proof is almost the same as that of Lemma 3.7. We only outline the main

changes. Let S be a non dropping Σ′-iterate of R(α) and suppose S is not full. Let (P∗,Ψ) be as

in the proof of Lemma 3.7 witnessing this. Let E be the (crt(πP+,R), δR)-extender derived from

πP+,R. Let Q = Ult(P∗, E), N ′ = iQE(M), and N = Ult(M, E).

Claim 3.11. N ′ = N = πP+,R(M) and iQE �M = iME = πP+,R �M.

Proof. We just prove N = πP+,R(M) and iME = πP+,R �M. By definition of E and the choice of

M, there is a factor map l : N → πP+,R(M) such that crt(l) ≥ δR and l is cofinal in πP+,R(M).

Note that both N and πP+,R(M) both satisfy δR is the largest cardinal. This means that l is the

identity. Similarly, N ′ = πP+,R(M) and iQE = πP+,R �M.

Now as in the proof of Lemma 3.7, π =def πP+,R lifts to π+ : P∗ → Q and there is a map

σQ : Q → j(P∗) extending σM (this uses the claim) such that σQ ◦ π+ = j � P∗.
Now, τ =def π

Σ′

R(α),S can be extended to τ+ : Q → S+ (τ+ is simply the ultrapower map by the

(crt(τ), δS)-extender derived from τ) and there is a map σS+ : S+ → j(P∗) such that σQ = σS+◦τ+.

The rest of the proof is just like that of Lemma 3.7.

That Σ′ has branch condensation, is positional and commuting follows from [4, Lemma 3.26]

and the fact that cof(δP) is measurable in P+ since Σ′ can be taken to be the pullback of some

hod pair (R,Λ) in j+(Ωλ
µ,g) such that λR is limit and Λ has branch condensation and is fullness

preserving.

Now we reset our notations. Let f ⊆ δP and f ∈ P+; letM be f -nice, and τM = j �M. Again,

note that τM ∈ M . We now define the notion of (f,M)-condensation. Suppose in M [n], S is a

hod premouse such that S is τM-realizable, that is, there are maps π :M→ S and τS : S → j(M)

in M [n] such that τM = τS ◦π. Letting ΣτS = j(P)τS , we define the set Af,M,τS as follows: for any

Σ1 formula φ, for any s ∈ (S|δS)<ω,

(φ, s) ∈ Af,M,τS ⇔ j(M) � φ[π
ΣτS
S(γ),∞(s), τM(f)],

where γ is such that s ∈ S(γ). We also let
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Tf,M = {(φ, s) | φ is a Σ1 formula, s ∈ (P)<ω, and M � φ[s, f ]}.

In the following definition, we reuse the notions just defined.

Definition 3.12. We say τS has (f,M)-condensation (in M [n]) if whenever W is τS-realizable

as witnessed by (π∗, τW), then π∗(π(Tf,M)) = Af,M,τW .

The following theorem and its proof is from [6], but here we apply it to M.

Theorem 3.13 ((f,M)-condensation lemma). τM has (f,M)-condensation.

Proof. Working in M [n], let µ ≤ ν < j(µ) be such that ν is M -inaccessible. Let Rν be the direct

limit of all hod pairs (W,Σ) such that W ∈M [n∩Coll(ω,< ν)], Σ is j+(Ωλ
µ,g)-fullness preserving,

positional, commuting, and has branch condensation. Let Yν =
⋃
α<λRν π

ΣRν (α)

Rν(α),∞[Rν(α)]. Let

X ⊂ j(M) be countable in M [n]23. Let R∗ν be the transitive collapse of H
j(M)
1 (X ∪ Yν) and σν

be the uncollapse map. We say that ν is X-good if σν � δR
∗
ν =

⋃
α<λRν π

ΣRν (α)

Rν(α),∞. The proof of [6,

Lemma 11.9] shows that there are cofinally many ν < j(µ) that are X-good for any such X. When

X = τM[M], and ν is X-good, we say ν is a good point.

For a good point ν, we can define an iteration strategy Λν (for stacks in Mj(µ)[n]) for R∗ν the

same way ΛM was defined in Remark 3.9, but using σν instead of j. Λν has the following properties:

• Whenever S is a nondropping Λν-iterate of R∗ν , S|δS is j+(Ωλ
µ,g)-full24. Furthermore, for each

α < λS , (Λν)S(α) has branch condensation.

• Letting S be as above, there is a map σ : S → j(M) such that σ ◦ πR∗ν ,S = σν .

Let Mν be the direct limit of all Λν-iterates in j+(Ωλ
µ,g) and mν be the σν-realization map given

by the construction of Λν .

As in the proof of [6, Lemma 11.15], it suffices to show:

there is a τM[M]-good ν such that σν has (f,M)-condensation. (3.7)

The proof of this now is just that of [6, Lemma 11.15] using remarks in Lemma 3.10 and the fact

that τM ∈ M (this replaces the hypothesis |P+|V < µ+ used in [6, Lemma 11.9]). We outline the

proof here for the reader’s convenience.

Suppose 3.7 fails. We can then find a sequence (Qi, πi, τi, ki, ψi, νi : i < ω) ∈M [n] such that

1. ν0 = µ, R0 =M, and (νi : i < ω) is an increasing sequence of good points,

2. for i < ω, Qi is σνi-realizable as witness by (πi, τi) and ki : Qi → R∗νi+1
=def Ri+1 is given by

ki = σ−1
νi ◦ τi

23τM[M] is an example of such an X.
24S is not full at the top, so we can’t demand more than this.
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3. for i < ω, σνi [Ri] ⊆ rng(σνi+1), ψi = σ−1
νi+1
◦ σνi and for i < m, letting ψi,m = σ−1

νm ◦ σνi and

fi = ψ0,i(f), πi(Tfi,Ri) 6= Afi,Qi,τi (i.e., (Qi, πi, τi) witnesses that σνi doesn’t have (fi,Ri)-
condensation).

Let now ν be a good point such that supi<ω νi < ν < j(µ) and letting X = ∪i<ω(τi[Qi] ∪
σνi [Rνi ]), X ⊆ rng(σν). Let (S∗,Φ∗) ∈ j+(Ωλ

µ,g) be a hod pair below j(µ) such that Mν /

M∞(S∗,Φ∗)25 and λS is limit with cofinality ω in S∗. Let B = m−1
ν (j(f)). Let now σi = m−1

ν ◦σνi
and τ∗i = m−1

ν ◦ τi. Notice now that we can define the notion of (fi,Ri)-condensation also for the

embeddings σi. We leave it to the reader to fill in the definition. Now notice that we have that

4. for i < ω, Qi is σi-realizable as witness by (πi, τ
∗
i ) and ki : Qi → Ri+1 is given by ki = σ−1

i ◦τ∗i

5. (Qi, πi, τ∗i ) witnesses that σi doesn’t have (fi,Ri)-condensation.

The importance of this move is that the badness of (Qi,Ri, πi, τ∗i , ki, ψi, σi : i < ω) can now be wit-

nessed in the derived model of S∗ as computed by Φ∗. More precisely, letting Σi = ⊕α<λRiΛνi(α)

and Ψi = (τi-pullback of j(Σi)
h),

(1): in M [n], letting N = D(S∗,Φ∗) = L(Γ(S∗,Φ∗),R), in N , there is a formula

θ(u, v) and a finite set of ordinals t such that for every i, (φ, s) ∈ Tfi,Ri if and only if

θ[πΣi
Ri(α),∞(s), t] where α is the least such that s ∈ [δRiα ]<ω. However, in N , for each i,

there is a pair (φi, si) ∈ TQi,πi(fi) such that ¬θ[πΨi
Qi(α),∞(si), t] where α is the least such

that s ∈ [δQiα ]<ω.

Suppose K is a transitive model of AD+ and b = ((Mi,Σi),Ni, γi, li, ξi, C : i < ω) ∈ K is such

that (Mi,Ni, γi, li, ξi, C : i < ω) ∈ HCK . Suppose θ(u, v) is a formula and t is a finite sequence

of ordinals. We write K � “(b, θ(u, v), t) is bad” if in K, letting K∗ = L({D ⊆ R : w(D) ≤ t(0)})
then b ∈ K∗ and in K∗

6. for every i < ω,Mi is a hod premouse such that λMi is limit and Σi is an ω1-iteration strategy

for Mi|δMi with the property that for every α < λMi , (Σi)Mi(α) has branch condensation

and is fullness preserving,

7. for every i, ξi :Mi →Mi+1,

8. for every i, Ni is a ξi-realizable as witnessed by (γi, li),

9. for every α < λNi , letting Ψi = (li-pullback of Σi), (Ψi)Ni(α) has branch condensation and is

fullness preserving,

10. C ∈M0 ∩ ℘(δMi) and letting C0 = C and Ci+1 = ξi(Ci), for every i,

(φ, s) ∈ TCi,Mi if and only if θ[πΣi
Mi(α),∞(s), t]

25The direct limit is taken inside j+(Ωλµ,g).
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where α is least such that s ∈ [δMi
α ]<ω but for every i, there is (φi, si) ∈ Tγi(Ci),Ni such that

¬θ[πΨi
Ni(α),∞(s), t] where α is least such that si ∈ [δNiα ]<ω.

In M [n], let (W∗,Π∗) be a (P+,Σ−)-hod pair such that W∗ ∈ Mγ [g] for some M -cardinal

γ < j(µ) but greater than ν, Π∗ is a (j(λ), j(λ))-strategy that is j+(Ωλ
µ,g)-fullness preserving,

Π∗ ∩ j+(Ωλ
µ,g) ∈ (Ωλ

µ,g), and Γ(W∗,Π∗) = Γ(S∗,Φ∗) in j+(Ωλ
µ,g). Let b = ((Ri,Σi),Qi, πi, ki, ψi, fi :

i < ω). We can then rewrite (1) in terms of (W∗,Π∗) and get that

(2): in M [h], letting N = D(W∗,Π∗) = L(Γ(W∗,Π∗),R), in N , there is a formula

θ(u, v) and a finite set of ordinals t such that (b, θ(u, v), t) is bad.

Let then N ∗ = N#,Π∗,⊕i<ωΣi
ω . Let N be an iterate of N ∗ via the canonical iteration strategy

of N ∗ such that HM
γ is generically generic over the extender algebra of N at its bottom Woodin

cardinal. We can now witness (3) inside N [HM
γ ][hγ ] as follows:

(3): D(N [HM
γ ][hγ ]) � “letting N = D(W∗,Π∗) = L(Γ(W∗,Π∗),R), in N , there is a

formula θ(u, v) and a finite set of ordinals t such that (b, θ(u, v), t) is bad”.

We will get a contradiction using (3). Notice that the sequence a = (Ri, ψi,Σi, fi : i < ω) ∈M .

However, the sequence (Qi, πi, ki : i < ω) may not be in M . Let then d ∈MColl(ω,<γ) be a name for

(Qi, πi, ki : i < ω). Let ζ = (j(µ)+)M , and let π : P [g]→ (HM
ζ )[g] be such that P ∈ V , cp(π) > µ,

|P |V = µ, and all relevant objects are contained in rng(π). Let M = π−1(N ), e = π−1(a) and

c = π−1(d). Let for i < ω, e(i) = (Ki, ξi, Σ̄i, gi : i < ω) and (W,Π) = π−1(W∗,Π∗). Also we let

γ̄ = π−1(γ). By elementarity, (3) gives that

(4): whenever m̄ ⊆ Coll(ω,< π−1(j(µ))) is P [g]-generic then in P [g][m̄], letting k̄ =

m̄∩Coll(ω,< γ̄) d = dg∗k̄, for i < ω, d(i) = (Si, γi, li) and g = ((Ki, Σ̄i),Si, γi, li, ξi, gi :

i < ω), D(M[HP
γ̄ ][g ∗ k̄]) � “letting N = D(W,Π) = L(Γ(W,Π),R), in N , there is a

formula θ(u, v) and a finite set of ordinals t such that (g, θ(u, v), t) is bad”.

Using genericity iterations we can completely internalize (5) to M∗ =M[HPγ̄ ] and get that

(5): inM∗, there is a name d∗ ∈ (M∗)Coll(ω,<γ̄) such that whenever k̄ ⊆ Coll(ω,< γ̄)

isM∗-generic then letting d = d∗
k̄
, for i < ω, d(i) = (Si, γi, li) and g = ((Ki, Σ̄i),Si, γi, li, ξi, gi :

i < ω), D(M∗[k̄]) � “letting N = D(W,Π) = L(Γ(W,Π),R), in N , there is a formula

θ(u, v) and a finite set of ordinals t such that (g, θ(u, v), t) is bad”.

Work now in M [n]. Notice that for every i, Σ̄i = ((π-pullback of Σi)) � P and Π = ((π-pullback

of Π∗)) � P . In what follows, we abuse our notation and let for every i, Σ̄i = (π-pullback of Σi)
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and Π = (π-pullback of Π∗) in all M [n]. It then follows that in M [n], M is a Π ⊕ (⊕i<ωΣ̄i)-

mouse. Let now C = D(W,Π). It is easy to see that (5) gives (Si, γi, li : i < ω) such that if

g = ((Ki, Σ̄i),Si, γi, li, ξi, gi : i < ω)

(6): in C, there is a formula θ(u, v) and a finite set of ordinals t such that (g, θ(u, v), t)

is bad.

Fix then θ(u, v) and t as in (6). Let Ei be the (δKi , δKi+1)-extender derived from ξi and Fi be

(δKi , δSi)-extender derived from γi. Let K+
0 = W, S+

i = Ult(Ki, Fi) and K+
i+1 = Ult(K+

i , Ei). Let

pi = σνi ◦ (π � Ki). Then we have that pi, γi, ξi and li extend to p+
i : K+

i → j(W), γ+
i : K+

i → S
+
i ,

ξ+
i : K+

i → K
+
i+1 and l+i : S+

i → K
+
i+1 such that p+

i = p+
i+1 ◦ ξ

+
i and ξ+

i = l+i ◦ γ
+
i .

By a standard argument (e.g. see [13, Lemma 4.3]), we can simultaneously iterate (K+
i ,S

+
i :

i < ω) using strategies Πi = (p+
i -pullback of π(Π)) and Ωi = (l+i ◦ p

+
i -pullback of π(Π)) to make

RM [n]-generic. Such genericity iterations have been used by many authors. The details of such

genericity iterations are spelled out in Definition 1.35 of [5]. The outcome of this iteration is a

sequence of models (Ki,ω,Si,ω : i < ω) and embeddings (ξi,ω, γi,ω, li,ω : i < ω) with the property

that ξi,ω : Ki,ω → Ki+1,ω, γi,ω : Ki,ω → Si,ω, li,ω : Si,ω → Ki+1,ω and for every i < ω, ξi,ω = li,ω ◦ξi,ω.

Moreover, the iterations K+
i -to-Ki,ω and Si-to-Si,ω are above respectively δKi and δSi . Let then

Ci = D(Ki,ω) and Di = D(Si,ω). One important remark is that for every i < ω, Ki,ω is a Σ̄i-hod

premouse and Si,ω is a Ψi-premouse where Ψi = (li-pullback of Σ̄i). Another important remark is

that Ci ⊆ Di ⊆ Ci+1. The most important remark, however, is that the the construction of the

sequences (Ki,ω,Si,ω : i < ω) and (ξi,ω, γi,ω, li,ω : i < ω) guarantees that the direct limit of Ki,ω

under ξi,ω is well-founded. Let then n be such that for every m ≥ n, ξm,ω(t) = t. It then follows

from (6) and the fact that for every i < ω, C ⊆ Ci and C ⊆ Di that

(7): for every i < ω, in Ci, for every (φ, s) such that φ is a formula and s ∈ [δKi ]<ω,

Ki � φ[s,Bi] if and only if θ[πΣ̄i
Ki(α),∞(s), t] where α < λKi is least such that s ∈ [δKiα ]<ω.

(8): for every i, in Di, there is a formula φ and s ∈ [δSi ]<ω such that Si � φ[s, γi(Bi)]

and ¬θ[πΨi
Si(α),∞(s), t] where α < λSi is least such that s ∈ [δSiα ]<ω.

It follows from elementarity of γi,ω, (7) and the fact that if i ≥ n then γi,ω(t) = t that

(9): for every i ≥ n, in Di, for every (φ, s) such that φ is a formula and s ∈ [δSi ]<ω

and Si � φ[s, γi(Bi)] if and only if θ[πΨi
Si(α),∞(s), t] where α < λSi is least such that

s ∈ [δSiα ]<ω.

Clearly (8) and (9) contradict one another. This completes the proof of the theorem.
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Lemmas 3.10 and 3.13 immediately give us the following corollary.

Lemma 3.14. Let f,M, σM,R,Σ′ be defined prior to Remark 3.9. Let σ′M : πP+,R(M)→ j(M)

be defined by: σ′M(πP+,R(g)(a)) = τM(g)(πΣ′

R(α),∞(a)) for all g ∈ M and a ∈ R(α)<ω. Then

σ′M ∈M [n] is Σ1-elementary, and

πΣ′

R(α),∞ � H
R(α)
f = σ′M � H

R(α)
f . (3.8)

Furthermore, Σ′ is commuting, positional, witnesses R(α) is strongly (ΣR(β), j(f))-iterable and has

branch condensation.

Proof. First, Σ1-elementarity of σ′M follows from Theorem 3.13 and the fact that M is g-suitable

for every g ⊆ δP and g ∈M.

By changing M if necessary, we can assume that ρ1(M) = δP and there is some h ∈ M
such that h ⊆ δP and f , τ

R(α)
Bf ,κ

, γ
R(α)
f are Σ1 computable in πP+,R(M) from πP+,R(h) for all

κ ∈ {((δRα )+n)R | n < ω}. Then applying Lemma 3.13 to (h,M), we get 3.8. The second clause

follows from Lemma 3.10.

Working in V [n], we fix an enumeration 〈gk | k < ω〉 and 〈fk = j(gk) | k < ω〉 of {f | f ∈
P+ ∧ j(f) is appropriate} and {j(f) | f ∈ P+ ∧ j(f) is appropriate} respectively, so that whenever

H
R(α)
fk

⊆ HR(α)
fl

then k ≤ l. Note that for any k, there is some l ≥ k such that H
R(α)
fk

⊆ HR(α)
fl

.

For each l and fl-suitable M, fix strategy Λl ∈ M [n] for R(α) extending ΣR(β), map τ ′M,l

satisfying Lemma 3.14 for fl. We also demand for l ≤ k such that H
R(α)
fl

⊆ HR(α)
fk

,

πΛk � HR(α)
fl

= πΛl � HR(α)
fl

. (3.9)

We plan to construct strategy ΣR(α) by taking “limit” of the Λl’s as follows. For simplicity,

suppose T ∈Mj(µ)[n] is a normal, correctly guided, maximal tree on R(α)26 using extenders above

R(β). Let M(T )+ be the end model of the tree T .27 For each n, let bn = Λn(T ). We let

ΣR(α)(T ) = b, where

ξ ∈ b⇔ ∃k∀l ≥ k(ξ ∈ bl). (3.10)

Let H be the transitive collapse of
⋃
nH

M(T )+

fn
and τ be the uncollapse map. We want to show

that

(i) b is cofinal in T ;

(ii) H =M(T )+ and τ is the identity. This gives that ΣR(α) is fullness preserving;

(iii) ΣR(α) acts on all ofR and is σ′R-realizable for some Σ1 elementary embedding σ′R : R → j(P+)

such that σ′R ◦ πP+,R = j � P+;

26If T is short, then there is a unique branch b given by the Q-structure.
27Recall that maximal trees always have the last model; regardless of whether there is a cofinal branch.
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(iv) ΣR(α) has branch condensation and is guided by {j(f) | f ∈ P+ ∧ j(f) is appropriate}.

Lemma 3.15. H =M(T )+ and τ is the identity.

Proof. Let π =
⋃
l π

Λl
M(T )+,∞ � H

M(T )+

fl
and k = π ◦ τ . Note that

R(α) =
⋃
lH
R(α)
fl

.

This is because every x ∈ R(α) has the form πP+,R(gl � (δRβ + 1))(a) for some l < ω and some

a ∈ (R|δRβ )<ω and R(β)∪{πP+,R(gk � δRβ + 1)} ⊂ HR(α)
fk

for all k.28 This means that there is a Σ1

map i : R(α)→ H. Furthermore, letting E be the (crt(i), δH)-extender derived from i, then E gives

the ultrapower map i+ : R → H+ =def Ult(R, E) extending i. Letting k+(i+(g)(a)) = σR(g)(k(a)),

we have that: k+ ◦ i+ = σR.

Now we can use the proof of Lemma 3.7 to conclude that H is full. If τ is not the identity,

then letting γ = crt(τ), we have: γ is Woodin in H, τ(γ) = δ(T ) is Woodin in M(T )+, and

H �M(T )+. Since H is full, γ is Woodin in M(T )+. This contradicts the fact that there are no

Woodin cardinals in M(T )+ between δRβ and δ(T ).

Lemma 3.15 proves (ii); furthermore, it implies that supγ
M(T )+

fn
= δ(T ). This means that b is

cofinal in T , hence proves (i) (see [8, Theorem 5.4.14] for an argument). We also get that ΣR(α)

is guided by {fn | n < ω} (and is the unique such strategy). At this point, we don’t know that

ΣR(α) ∈M [n] and has branch condensation. The following is the main technical lemma.

Lemma 3.16 (Notations as above). The following hold:

1. ΣR(α) acts on all of R and whenever i : R → S is according to ΣR(α), there are embeddings

σ′R : R → j(P+) such that j � P+ = σ′R ◦ πP+,R and τ : S → j(P+) such that σ′R = τ ◦ i and

τ � S(i(α)) = πΦ
S(i(α)),∞, where Φ is the i-tail of ΣR(α).

2. ΣR(α) has branch condensation.

3. If πP+,R ∈M , then ΣR(α) is in j+(Ωλ
µ,g).

Proof. For (1), the map σ′R is defined as follows: for any x ∈ R, letting x = πP+,R(gl)(a) for some

l < ω and a ∈ (δRα )<ω, then letting k ≥ l be such that a ∈ HR(α)
fk

σ′R(x) = j(gl)(π
Λk
R(α),∞(a)) = fl(π

Λk
R(α),∞(a)).

The map is well-defined by line 3.9. Using Theorem 3.13, we can show that σ′R is Σ1 elementary as

follows. Suppose ϕ is Σ1 and x, gl, a are as above (we may increase l and assume x = πP
+,R(gl)(a)

and a ∈ HR(α)
fl

). Suppose

j(P+) � ϕ[fl(π
Λl
R(α),∞(a))]⇔ R 2 ϕ[x].

28πP+,R(gk � δRβ + 1) ⊂ H
R(α)
fk

holds by elementarity of πP+,R and the fact that the corresponding containment

holds in P+.
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Since ϕ is Σ1 and j[P+] is cofinal in j(P+), we can find some M � P+ such that the above is

equivalent to

j(M) � ϕ[fl(π
Λl
R(α),∞(a))]⇔ πP+,R(M) 2 ϕ[x].

This contradicts Theorem 3.13 applied toM, fl. Theorem 3.13 also gives that j � P+ = σ′R ◦πP+,R

and

σ′R � R(α) = π
ΣR(α)

R(α),∞. (3.11)

By Lemma 3.15, S(i(α)) =
⋃
lH
S(i(α))
fl

. Now define τ : S → j(P+) as follows. Let ~U be the stack

giving rise to i and Λ = (ΣS(i(β)))~U . For x ∈ S, say x = i(g)(a) for some g ∈ R and a ∈ S(i(α))<ω,

and say g = πP+,R(gl)(b) for some b ∈ R(β)<ω, we let

τ(x) = fl(π
Λ
S(i(β)),∞(i(b)))(πΦ

S(i(α)),∞(a)).

Using line 3.11, we get that τ is Σ1 elementary and τ ◦ i = σ′R. This proves (1). The following

claim proves (2).

Claim 3.17. ΣR(α) has branch condensation.

Proof. Suppose not. Then there are a (non dropping) stack ~W with last model S ∈ M [n] and a

normal tree T of limit length based on a window (δSβ∗ , δ
S
α∗) such that

1. β∗ = π
~W(β), α∗ = π

~W(α) = β∗ + 1.

2. ~W and T are according to ΣR(α).

3. generators of ~W are below δSβ∗ .

4. ΣS(β∗), ~W has branch condensation.

5. Let b = ΣS, ~W(T ). There are a cofinal branch c 6= b, an iteration map i : R → Y according to

ΣR(α), and a σ :MTc → Y such that σ ◦ πTc ◦ π
~W = i.

We proceed to obtain a contradiction. Let τ : Y → j(P+) come from the construction of ΣR(α) and

σS : S → j(P+) be the realization map. By arguments above and the fact that MTc realizes into

j(P+) via τ ◦i and τ ◦i factors into σS , there is a strategy Λ such that πΛ
MTc (α∗),∞ = ψ �MTc (α∗) for

some ψ such that j � P+ = ψ◦πTc ◦π
~W and Λ witnesses thatMTc (α∗) is strongly (S(β∗), fk)-iterable

for all k < ω. This means ΛMTc (α∗) = ΣMTb (α∗), ~WaT ab.

Let Ψ = ΣMTb (α∗), ~WaT ab. Let φ :MTb → j(P+) be the realization map. Note that

φ �MTb (α∗) = ψ �MTc (α∗) = πΛ
MTc (α∗),∞ = πΨ

MTb (α∗),∞.

Now we aim to show b = c, which contradicts our assumption.

By assumptions on W, we have

δSα∗ = sup(A), where A = {γ < δSα∗ | ∃g ∈ P+∃b ∈ (δRβ )<ω∃a ∈ (δSβ∗)
<ω γ = πW(πP+,R(g)(b))(a)}.
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For each γ = πW(πP+,R(g)(b))(a) ∈ A,

ψ ◦ πTc (γ) = j(g)(π
ΨMT

b
(α∗)(π

~W(b), a)). (3.12)

And

φ ◦ πTb (γ) = j(g)(π
ΨMT

b
(α∗)(π

~W(b), a)). (3.13)

Since φ �MTb (α∗) = ψ �MTc (α∗), we get that

πTc (γ) = πTb (γ). (3.14)

3.12, 3.13, and 3.14 imply rng(πTb ) ∩ rng(πTc ) is cofinal in δ(T ). So b = c. Contradiction.

Now we show that ΣR(α) ∩M ∈ M in the case πP+,R ∈ M . In this case, R ∈ M . Note also

that the construction of ΣR(α) doesn’t depend on the enumeration of the set {j(f) | f ∈ P+} in

V [n]; it only depends on the set itself. So in fact, ΣR(α) � V ∈ V .

Claim 3.18. ΣR(α) �M ∈M .

Proof. Suppose first R ∈ Mκ. As noted before, ΣR(α) ∩Mκ ∈ M (since Mκ+1 = Vκ+1). Using the

fact that κ is strong in M , we can lift ΣR(α)∩Mκ to a strategy Λ in Mj(µ) acting on trees in Mj(µ),

and Λ has branch condensation and is j+(Ωλ
µ,g)-fullness preserving. We claim that ΣR(α) ∩M =

Λ ∈M . Suppose not. Then by a standard fact, cofV (δRα ) = ω.29 Let 〈xn | n < ω〉 be cofinal in δRα

and say, xn = πP+,R(hn)(an) for some hn ∈ P+ and an ∈ R(β).

From our assumption, ((δP)+)P
+

= µ+. Hence, there is some N � P+ such that ρω(N ) = δP ,

{hn | n < ω} ⊆ N and in P+, cof(o(N )) = ω. Let N be the least that contains some such hn’s and

let p be the standard parameter of N so for each n, hn is definable in N from p and some a ∈ P.

Note that we can assume πP+,R[δP ] ⊆ R(β). This means sup(A) = δRα , where

A = {g(x) | g ∈ πP+,R(N ) ∧ x ∈ R(β)}.

By the choice of N and the fact that A can be computed in R, δRα is singular in R. Contradiction.

Now assume R ∈ Mj(µ)\Mκ. Note that whenever W ∈ Vκ[m] = Mκ[m] is such that there is

an embedding π : W → R with π(γ) = α and there is an embedding π∗ : P+ → W such that

πP+,R = π◦π∗, thenW(γ) has a nice strategy as witnessed by some realization map i :W → j(P+)

such that the strategy restricted to Mκ[m] has branch condensation. Let h : M → N witness κ

is j(µ)+-strong in M and we may assume h = iMF for some extender F ; h can be extended to a

map, which we also call h, from M [m] to N [p] for some V -generic p ⊆ Col(ω,< h(κ)) such that

p � Col(ω,< j(µ)) = n. Then by absoluteness, in N [n], there is an embedding π from R into

h(R) such that h(πP+,R) = π ◦ πP+,R. And hence there is a strategy Λ ∈ M [n] of R with branch

29There is a tree U ∈ M of limit length with ΣR(α)(T ) = b 6= c = Λ(T ). Hence cofV (δ(U)) = ω. Since δRα is
mapped cofinally into δ(U) by either branch embedding , cofV (δRα ) = ω
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condensation acting on stacks in Mj(µ)[n] = Nj(µ)[n] based on R(α) such that Λ � M ∈ M30. By

the same argument as above, we get that Λ �M = ΣR(α) �M .

We now prove (3). Let Λ be as in the proof of Claim 3.18; so Λ ∈ M [n], Λ has branch

condensation and is j+(Ωλ
µ,g)-fullness preserving. It’s enough to prove Λ = ΣR(α) so that ΣR(α) ∈

M [n]; (3) then follows from Proj(j(κ), j(λ),ΣR(α)). The equality follows from an argument similar

to the proof of Claim 3.17 and the fact that for any k : R →M in M [n] according to Λ and ΣR(α),

there is an i : R → S according to Λ � M = ΣR(α) � M such that there is some map σ : M→ S
such that σ ∈M [n] and σ ◦ k = i31. This completes the proof of the lemma.

We have finished the construction of a partial strategy Σ acting on trees in Mj(µ) ∪Mκ[m].

During the course of the construction, we also showed that non-dropping iterates R of Σ are

j+(Ωλ
µ,g)-full and there is a Σ1 elementary embedding σR : R → j(P+) such that σR ◦ πP+,R = j �

P+, and for each α < λR, σR � R|δRα is the iteration map according to the σR-nice strategy Σα

constructed above. Next we show branch condensation of Σ.

Lemma 3.19. Σ has branch condensation.

Proof. Suppose not. Then as in [4], we can find a “minimal place” where branch condensation fails.

More precisely, there are a (non dropping) stack ~W with last model R and a normal tree T of limit

length based on a window (δRα , δ
R
α+1) such that

1. ~W and T are according to Σ.

2. generators of ~W are below δRα .

3. ΣR(α), ~W has branch condensation.

4. Let b = ΣR, ~W(T ). There are a cofinal branch c 6= b, an iteration map i : P+ → S according

to Σ, and a σ :MTc → S such that σ ◦ πTc ◦ π
~W = i.

The rest of the proof is just as in the proof of Claim 3.17.

Let Λ = Σ � Mκ[m] ∈ M [m]. Using the fact that κ is strong in M , we extend Λ to a strategy

Λ+ ∈ M [n] such that Λ+ acts on all stacks in Mj(µ)[n], has branch condensation, and is j(Ωλ
µ,g)-

fullness preserving. Furthermore, since Σ ∩Mκ ∈M , we also get that Λ+ �M ∈M .

30From the point of view of Ult(V, F )[n], the strategy Λ is {iVF (j(f)) | f ∈ P+}-guided, acts on trees in iVF (M)[n]
and doesn’t depend on any generic enumeration of the set {iVF (j(f)) | f ∈ P+}, so if in addition W ∈ Mκ, then Λ’s
restriction to Nj(µ) = Mj(µ) = iVF (M)j(µ) is in M even though we first collapsed R to ω in N to find an embedding
from R into π(R).

31Suppose ~WaT is according to both strategies, ~W is on R(β) and T on M ~W is such that b = ΛMT (T ) 6= c =
(ΣR(α))MT (T ). Then there is some iteration i : R → S according Λ �M = ΣR(α) �M such that there are iteration
maps σ0 : MTb → S according to the tail of Λ and σ1 : MTc → S according to the tail of ΣR(α). We can then run
the proof of Claim 3.17 to get that b = c.
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Lemma 3.20. Σ �M ⊆ Λ+ �M ∈M .

Proof. Suppose Σ �M * Λ+ �M . Then there are in M a (non dropping) stack ~W with last model

R and a normal tree T of limit length based on a window (δRα , δ
R
α+1) such that

1. ~W and T are according to both strategies.

2. generators of ~W are below δRα .

3. Let b = ΣR, ~W(T ) and c = Λ+

R, ~W
(T ). Then b 6= c.

This means in V as well as in M , cof(δRα+1) = ω. The rest of the proof is just as in the proof of

Claim 3.18.

Let Ψ = Λ+ � M = Σ � M . By generic comparison using the fact that Λ+ has branch

condensation and is j+(Ωλ
µ,g)-fullness preserving (see [4]), we get:

For any Λ+-iterate R of P+, letting i : P+ → R be the iteration map, there is a

Ψ-iterate S of P+ such that, letting h : P+ → S be the iteration map, there is a map

σ : R → S such that h = σ ◦ i. In fact, σ is a Λ+-iteration map.

Using the above paragraph and the properties of Σ, lettingM∞(P+,Λ+) be the direct limit of

(all countable) Λ+-iterates of P+ in M [n], then there is a Σ1 elementary map τ :M∞(P+,Λ+)→
P+ such that τ ◦ πΛ+

P+,∞ = j � P+ and crt(τ) = δM∞(P+,Λ+).

The map τ is defined as follows: for any x ∈ M∞(P+,Λ+), let R ∈ M be a Ψ-iterate of P+

such that there is some y ∈ R such that πΨR
R,∞(y) = x. Now by construction of Ψ, there is a map

τR : R → j(P+) such that j � P+ = τR ◦ πΨ
P+,R and τR � δR agrees with the iteration map by Ψ.

We then let τ(x) = τR(y).

Lemma 3.21. (P+,Σ) is a hod pair below κ in V [m] and (P+,Σ � HCM [n]) ∈ j+(Ωλ
µ,g).

Proof. The second clause follows from the first clause and Proj(j(κ), j(λ),Σ) in M . It suffices to

prove the first clause. Let l = m ∩ Coll(ω, ν) where µ < ν < κ and P+ is countable in V Coll(ω,ν)

and let a = {f | f ∈ P+ ∧ f is appropriate} and b = {j(f) | f ∈ P+ ∧ f is appropriate}. Let

φ(P+, a, b, ~T ) be the formula stating “~T is a stack on P+ according to Σ”. Fix ξ >> j(µ) and let

X ≺ Vξ[l] be countable in V [l] and X contains all relevant objects and o(P+) ⊂ X. Let π : N → X

be the uncollapse map and (b̄, κ̄) = π−1(b, κ). Let m̄ ∈ V [l] be N -generic for a poset in HN
κ̄ . Let

~T ∈M [m̄]. Then we claim that

M [m̄] � φ[P+, a, b̄, ~T ]⇔ V [l] � φ[P+, a, b, ~T ]. (3.15)

Suppose ~T = 〈Tα,Mα | α ≤ η〉 and suppose Tη is based on Mη(γ + 1) for some γ. Suppose by

induction, 3.15 holds for ~T |α for all α < η. We now show 3.15 holds for Tη. But 3.15 holds for Tη
because π[b̄] = b and so Tη is b̄-guided in M [m̄] if and only if Tη is b-guided in V [l].
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The above definition of τ and Lemma 3.21 imply that the direct limit M∞(P+,Λ+) is in

j+(Ωλ
µ,g) andM∞(P+,Λ+) � δM∞(P+,Λ+) is regular. By [4], in M [n], L(Γ(P+,Λ+),R) � ADR + Θ

is regular. Theorem 3.3 follows from elementarity.

The conclusion of Theorem 3.3 contradicts our smallness assumption (†). So there must be a

model of “ADR + Θ is regular”.

4. THE STRENGTH OF FAILURE OF UBH FOR TAME TREES

In this section, we prove Theorem 0.2. The proof of [7, Lemma 5.2] shows that whenever (R,Ψ) is

a hod pair below κ, then Proj(κ, λ,Ψ). The hypothesis of Theorems 3.2 and 3.3 is satisfied. These

theorems in turns imply the conclusion of Theorem 0.2.
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