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Abstract4

In the absence of the Axiom of Choice, the “small” cardinal ω1 can exhibit prop-5

erties more usually associated with large cardinals, such as strong compactness and6

supercompactness. For a local version of strong compactness, we say that ω1 is X-7

strongly compact (where X is any set) if there is a fine, countably complete measure8

on ℘ω1(X). Working in ZF + DC, we prove that the ℘(ω1)-strong compactness and9

℘(R)-strong compactness of ω1 are equiconsistent with AD and ADR +DC respectively,10

where AD denotes the Axiom of Determinacy and ADR denotes the Axiom of Real11

Determinacy. The ℘(R)-supercompactness of ω1 is shown to be slightly stronger than12

ADR +DC, but its consistency strength is not computed precisely. An equiconsistency13

result at the level of ADR without DC is also obtained.14
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1 Introduction26

We assume ZF + DC as our background theory unless otherwise stated. (However, we will27

sometimes weaken our choice principle to a fragment of DC.) In this setting, it is possible28

for ω1 to exhibit “large cardinal” properties such as strong compactness. The appropriate29

definition of strong compactness is made in terms of measures (ultrafilters) on sets of the30

form ℘ω1(X).31

Definition 1.1. Let X be an uncountable set. A measure µ on ℘ω1(X) is countably complete32

if it is closed under countable intersections and fine if it contains the set {σ ∈ ℘ω1(X) : x ∈33

σ} for all x ∈ X. We say that ω1 is X-strongly compact if there is a countably complete34

fine measure on ℘ω1(X).35

For uncountable sets X and Y , we will often use the elementary fact that if ω1 is X-36

strongly compact and there is a surjection from X to Y , then ω1 is Y -strongly compact as37

witnessed by a push-forward measure.38

In the absence of AC, it may become necessary to consider degrees X of strong compact-39

ness that are not wellordered. The first and most important example is X = R. The theory40

ZFC + “there is a measurable cardinal” is equiconsistent with the theory ZF + DC + “ω1 is41

R-strongly compact.” (For a proof of the forward direction, see Trang [19]. The reverse direc-42

tion is proved by noting that ω1 is ω1-strongly compact, hence measurable, and considering43

an inner model L(µ) where µ is a measure on ω1.)44

Another way to obtain R-strong compactness of ω1 that is more relevant to this paper45

is by the Axiom of Determinacy. If AD holds then by Martin’s cone theorem, for every set46

A ∈ ℘ω1(R) the property {x ∈ R : x ≤T d} ∈ A either holds for a cone of Turing degrees d47

or fails for a cone of Turing degrees d, giving a countably complete fine measure on ℘ω1(R).48

Besides R, another relevant degree of strong compactness is the cardinal Θ, which is49

defined as the least ordinal that is not a surjective image of R. In other words, Θ is the50

successor of the continuum in the sense of surjections. If the continuum can be wellordered51

then this is the same as the successor in the sense of injections (that is, c+.) However in52

general it can be much larger. For example, if AD holds then Θ is strongly inaccessible by53

Moschovakis’s coding lemma, but on the other hand there is no injection from ω1 into R.54

If ω1 is R-strongly compact, then pushing forward a measure witnessing this by surjec-55

tions, we see that ω1 is λ-strongly compact for every uncountable cardinal λ < Θ. In general56

all we can say is Θ ≥ ω2 and so this does not give anything beyond measurability of ω1. How-57

ever, it does suggest two marginal strengthenings of the hypothesis “ω1 is R-strongly com-58

pact” with the potential to increase the consistency strength beyond measurability. Namely,59

we may add the hypothesis “ω1 is ω2-strongly compact” or the hypothesis “ω1 is Θ-strongly60



compact.” We will consider both strengthenings and obtain equiconsistency results in both61

cases.62

In order to state and obtain sharper results, we first recall some combinatorial conse-63

quences of strong compactness. Let λ be an infinite cardinal and let ~C = (Cα : α ∈ lim(λ))64

be a sequence such that each set Cα is a club subset of α. The sequence ~C is coherent if for65

all β ∈ lim(λ) and all α ∈ lim(Cβ) we have Cα = Cβ ∩α. A thread for a coherent sequence ~C66

is a club subset D ⊂ λ such that for all α ∈ lim(D) we have Cα = D∩α. An infinite cardinal67

λ is called threadable if every coherent sequence of length λ has a thread. Threadability of68

λ is also known as ¬�(λ).69

The following result is a well-known consequence of the “discontinuous ultrapower” char-70

acterization of strong compactness. However, without AC  Loś’s theorem may fail for ul-71

trapowers of V , so we must verify that the argument can be done using ultrapowers of72

appropriate inner models instead.73

Lemma 1.2. Assume ZF + DC + “ω1 is λ-strongly compact” where λ is a cardinal of un-74

countable cofinality. Then λ is threadable.75

Proof. Let ~C = (Cα : α ∈ lim(λ)) be a coherent sequence such that each set Cα is a76

club in α. Consider the ZFC model L[{(α, β) : α ∈ Cβ}], which we abbreviate as L[~C].77

Let µ be a countably complete fine measure on ℘ω1(λ) and let j : L[~C] → Ult(L[~C], µ)78

be the corresponding ultrapower map, where the ultrapower is defined using all functions79

℘ω1(λ)→ L[~C] in V . The ultrapower is wellfounded by countable completeness and DC, so80

it has the form L[j(~C)]. Note that j is discontinuous at λ: for any ordinal α < λ, we have81

j(α) ≤ [σ 7→ supσ]µ < j(λ) where the first inequality holds because µ is fine and the second82

inequality holds because λ has uncountable cofinality.83

Now the argument continues as usual. We define the ordinal γ = sup j[λ] and note that84

γ < j(λ) and that j[λ] is an ω-club in γ. Therefore the set j[λ]∩ lim(j(~C)γ) is unbounded in85

γ, so its preimage S = j−1[lim(j(~C)γ)] is unbounded in λ. Note that the club Cα is an initial86

segment of Cβ whenever α, β ∈ S and α < β; this is easy to check using the elementarity87

of j and the coherence of j(~C). Therefore the union of clubs
⋃
α∈S Cα threads the sequence88

~C.89

If λ < Θ then DCR suffices in place of DC:90

Lemma 1.3. Assume ZF + DCR + “ω1 is R-strongly compact.” Let λ < Θ be a cardinal of91

uncountable cofinality. Then λ is threadable.92

Proof. Let ~C be a coherent sequence of length λ. First, note that we may pass to an93

inner model containing ~C where DC holds in addition to our other hypotheses. Namely,94
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let f : R → λ be a surjection, let µ be a fine, countably complete measure on ℘ω1(R),95

let C = {(α, β) : α ∈ Cβ}, and consider the model M = L(R)[f, µ, C], where the square96

brackets indicate that we are constructing from f , µ and C as predicates. (In the case of µ,97

this distinction is important: we are not putting all elements of µ into the model.)98

It can be easily verified that all of our hypotheses are downward absolute to the model99

M , and that our desired conclusion that ~C has a thread is upward absolute from M to V .100

In the model M every set is a surjective image of R × α for some ordinal α, so DC follows101

from DCR by a standard argument. Moreover, ω1 is λ-strongly compact in M by pushing102

forward the measure µ (restricted to M) by the surjection f , so the desired result follows103

from Lemma 1.2.104

A further combinatorial consequence of strong compactness of ω1 is the failure of Jensen’s105

square principle �ω1 . In fact ¬�ω1 follows from the assumption that ω2 is threadable or106

singular (note that successor cardinals may be singular in the absence of AC.)107

Lemma 1.4. Assume ZF. If ω2 is singular or threadable, then ¬�ω1.108

Proof. Suppose toward a contradiction that ω2 is singular or threadable and we have a �ω1-109

sequence (Cα : α ∈ lim(ω2)). If ω2 is singular, we do not need coherence of the sequence to110

reach a contradiction. Take any cofinal set Cω2 in ω2 of order type ≤ ω1 and recursively define111

a sequence of functions (fα : α ∈ [ω1, ω2]) such that each function fα is a surjection from ω1112

onto α, using our small cofinal sets Cα at limit stages. Then the function fω2 is a surjection113

from ω1 onto ω2, a contradiction. On the other hand, if ω2 is regular and threadable, take a114

thread Cω2 through the square sequence. Then by the usual argument the order type of Cω2115

is at most ω1 + ω, contradicting the regularity of ω2.116

Now we can state our equiconsistency results and prove their easier directions.117

Theorem 1.5. The following theories are equiconsistent:118

1. ZF + DC + AD.119

2. ZF + DC + “ω1 is ℘(ω1)-strongly compact.”120

3. ZF + DC + “ω1 is R-strongly compact and ω2-strongly compact.”121

4. ZF + DC + “ω1 is R-strongly compact and ¬�ω1.”122

Proof. (1) =⇒ (2): Under AD, Martin’s cone theorem implies that ω1 is R-strongly compact.123

There is a surjection from R onto ℘(ω1) by Moschovakis’s coding lemma, so ω1 is ℘(ω1)-124

strongly compact as well.125
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(2) =⇒ (3): This follows from the existence of surjections from ℘(ω1) onto R and ω2.126

(3) =⇒ (4): This follows from Lemmas 1.2 and 1.4.127

Con (4) =⇒ Con (1): In Sections 3 and 4, we will show that statement (4) implies128

ADL(R).129

Moving up the consistency strength hierarchy, the next natural target for an equiconsis-130

tency result is the theory ZF + ADR. Here ADR denotes the Axiom of Determinacy for real131

games, which has higher consistency strength than AD and cannot hold in L(R). To get132

a model of ADR we will need to augment our strong compactness hypothesis somehow, for133

example with a hypothesis on Θ or ℘(R). For any set X, we write DCX for the fragment of134

DC that allows us to choose ω-sequences of subsets of X.135

Theorem 1.6. The following theories are equiconsistent:136

1. ZF + ADR.137

2. ZF + DC℘(ω1) + “ω1 is R-strongly compact and Θ is singular.”138

Proof. Con (1) =⇒ Con (2): By Solovay [11], if ZF + ADR is consistent then so is ZF +139

ADR + “Θ is singular.” (In particular Solovay showed that the cofinality of Θ can be count-140

able, which implies the failure of DC.) Under ADR we have that ω1 is R-strongly compact141

by Martin’s measure (this just follows from AD) and we have DCR (this follows from uni-142

formization for total relations on R.) Moreover there is a surjection from R to ℘(ω1) by the143

coding lemma, so DCR can be strengthened to DC℘(ω1).144

Con (2) =⇒ Con (1): In Sections 5 and 6, we will show that if statement (2) holds,145

then statement (1) holds in an inner model of the form L(Ω∗,R) where Ω∗ ⊂ ℘(R). Note146

that statement (2) implies that ω2 is either singular (if ω2 = Θ) or threadable (if ω2 < Θ, by147

Lemma 1.3) so in either case we have ¬�ω1 by Lemma 1.4. Therefore we can make some use148

of the argument for Con (4) =⇒ Con (1) of Theorem 1.5 here, once we check that DC℘(ω1)149

suffices in place of DC for this argument.150

Finally, we will obtain an equiconsistency result at the level of ZF+DC+ADR. Note that151

this theory has stricly higher consistency strength than ZF+ADR. (By contrast, ZF+DC+AD152

and ZF + AD are equiconsistent by a theorem of Kechris.)153

Theorem 1.7. The following theories are equiconsistent:154

1. ZF + DC + ADR.155

2. ZF + DC + “ω1 is ℘(R)-strongly compact.”156
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3. ZF + DC + “ω1 is R-strongly compact and Θ-strongly compact.”157

4. ZF + DC + “ω1 is R-strongly compact and Θ is singular.”158

Proof. Con (1) =⇒ Con (2): By Solovay [11], under ZF + ADR we have DC if and only if159

Θ has uncountable cofinality, and in a minimal model of ZF + DC + ADR we have that Θ is160

singular of cofinality ω1. Assume that we are in such a minimal model of ZF + DC + ADR161

and take a cofinal increasing function π : ω1 → Θ.162

We can express ℘(R) as an increasing union
⋃
α<ω1

Γα where the pointclass Γα consists163

of all sets of reals of Wadge rank at most π(α). For each α < ω1 there is a surjection from R164

onto Γα, so ω1 is Γα-strongly compact. Moreover, ADR implies that there is a uniform way165

to choose, for each α < ω1, a countably complete fine measure µα on ℘ω1(Γα) witnessing this166

fact (namely the unique normal fine measure; see Woodin [23, Theorem 4].)167

Using a countably complete nonprincipal measure ν on ω1 (which exists because ω1 is168

ω1-strongly compact) we can assemble these measures µα into a countably complete fine169

measure µ∗ on ℘ω1(℘(R)) as follows: for A ⊆ ℘ω1(℘(R)), we say170

A ∈ µ∗ ⇐⇒ ∀∗ναA ∩ ℘ω1(Γα) ∈ µα.171

It’s easy to verify that µ∗ is countably complete because ν and the µα’s are countably172

complete. Likewise, it’s easy to verify that µ∗ is fine because ν is uniform and the µα’s are173

fine. Therefore the measure µ∗ witnesses that ω1 is ℘(R)-strongly compact, so statement (2)174

holds (in our minimal model of ZF + DC + ADR.)175

(2) =⇒ (3): This follows from the existence of surjections from ℘(R) onto R and Θ.176

Con (1) =⇒ Con (4): This follows by the aforementioned result of Solovay that in a177

minimal model of ZF + DC + ADR the cardinal Θ is singular of cofinality ω1 (and of course178

ω1 is R-strongly compact by Martin’s measure.)179

Con(3)∨Con(4) =⇒ Con(1): We will show in Sections 5 and 6 that if either statement180

(3) or statement (4) holds, then statement (1) holds in an inner model of the form L(Ω∗,R)181

where Ω∗ ⊂ ℘(R). The proof of Con(4) =⇒ Con(1) is similar to the proof of Con (2) =⇒182

Con (1) in Theorem 1.7, although one should note that the inner model L(Ω∗,R) does not183

simply absorb DC from V ; a bit more argument is required.184

The authors would like to thank the referee for a careful reading of this article and for185

pointing out several minor errors. The first author would like to thank the NSF for its186

generous support through grant DMS-1849295.187

7



2 Framework for the core model induction188

This section is an adaptation of the framework for the core model induction developed in189

[10] and [9], which in turn build on earlier formulations in [7]. For more detailed discussions190

on the notions defined below as well as results concerning them, see [10] and [9]. The first191

subsection imports some terminology from the theory of hybrid mice developed in [10] and192

[9]. The terminology in this subsection will be used in Subsection 2.3 to define core model193

induction operators and will be needed in many other places in the paper. The reader may194

skip them on the first read and come back when needed. Subsection 2.2 summarizes the195

theory of hod mice developed in [3]. Subsection 2.3 defines core model induction operators196

which are the operators we will construct in this paper.197

2.1 Ω-premice, strategy premice, and g-organized Ω-premice198

For a complete theory of F -premice for operators F , the reader is advised to read [9]; for a199

detailed treatment of strategy mice, the reader is advised to read [10, Sections 2,3]. We will200

use the terminology from these sources from now on.1201

The definition below is essentially [10, Definition 3.8]. For explanations about the nota-202

tions, see [10, Sections 2,3]. In the following definition, the objects Ω, ϕ,X,A, κ are defined203

as in [10, Section 3]. Roughly, Ω is either a κ-strategy or a mouse operator with nice con-204

densation properties defined on a cone of Hκ above A ∈ HC, ϕ is a formula in the language205

of strategy premice, and X codes the pair (Ω, ϕ).206

Definition 2.1. Let t = (Ω, ϕ,X,A, κ) be suitable and M = MX,#
1 (A). We say that M207

generically interprets Ω2 iff there are formulas Φ,Ψ in L+ and some γ > δM such that208

M|γ � Φ and for any non-dropping ΛX,κ
M -iterate N of M via a countable tree T based on209

M|δM,3 any N -cardinal δ, any γ ∈ Ord such that N|γ � Φ & “δ is Woodin”, and any g210

which is set-generic over N|γ (with g ∈ V ), we have that R =def (N|γ)[g] is closed under211

Ω, and Ω � R is defined over R by Ψ. We say such a pair (Φ,Ψ) generically determines t212

(or just Ω).213

Let A ∈ HC and let Ω be either an operator or an iteration strategy. We say that (Ω, A)214

(or just Ω) is nice iff (Ω, A) is suitable and (tΩ,A)2 generically interprets Ω.4 We say that215

1The theory of strategy mice can be developed as a special case of the general theory of operator mice
in [9] but the authors of the papers decided to define strategy mice as J -structures as this approach seems
more convenient and gave the right notation for proving strong condensation properties of strategy mice like
[10, Lemma 4.1].

2In [10, Definition 3.8], the terminology is: t determines itself on generic extensions. We will later define
a notion of generic determination which is slightly different.

3δM is the Woodin cardinal of M and ΛX,κM denotes the unique X-(0, κ)-iteration strategy for M.
4tΩ,A is a 5-tuple defined [10, page 27] and (tΩ,A)2 is the third component of tΩ,A.
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(Φ,Ψ) generically determines (Ω, A) iff (Φ,Ψ) generically determines tΩ,A.216

We fix a nice (Ω, A) (or just nice Ω; we will at times ignore A), X = (tΩ,A)2, M, ΛM = Λ,217

and (Φ,Ψ) for the rest of the section. We define MX
1 (A) from M in the standard way.218

See [10, Section 3] for a proof that if Ω = Σ is a strategy (of a hod mouse or suitable219

mouse) with branch condensation and is fullness preserving with respect to mice in some220

sufficiently closed, determined pointclass Γ or if Σ is the unique strategy of a sound Y -mouse221

for some operator Y ,MY,]
1 generically interprets Y , and Y condenses finely (see [9, Definition222

3.18]) then M generically interprets Ω.223

Definition 2.2 (Sargsyan, [3]). Let M be a transitive structure. Let Ġ be the name for the224

generic G ⊆ Col(ω,M) and let ẋĠ be the canonical name for the real coding {(n,m) | G(n) ∈225

G(m)}, where we identify G with
⋃
G. The tree TM for making M generically generic is the226

iteration tree T on M of maximal length such that:227

1. T is via Λ and is everywhere non-dropping.228

2. T � o(M) + 1 is the tree given by linearly iterating the first total measure of M and its229

images.230

3. Suppose lh(T ) ≥ o(M) + 2 and let α + 1 ∈ (o(M), lh(T )). Let δ = δ(MT
α ) and let231

B = B(MT
α ) be the extender algebra of MT

α at δ. Then ETα is the extender E with least232

index in MT
α such that for some condition p ∈ Col(ω,M), p 
“There is a B-axiom233

induced by E which fails for ẋĠ”.234

Assuming that M is sufficiently iterable, then TM exists and has successor length.235

The operator gΩ, defined in [10, Definition 3.42], and used in building g-organized Ω-236

premice, feeds in branches for such TM’s for various M C N , where N is a g-organized237

Ω-premouse. We will also ensure that being such a structure is first-order — other than238

wellfoundedness and the correctness of the branches — by allowing sufficient spacing between239

these branches (see [10, Remark 3.37]).240

[10] also defines the notion Θ-g-organized Ω-premouse. The difference between the two241

hierarchies is very minor (see the remark 2.5). The main difference is that in the latter242

hierarchy, say N is a Θ-g-organized Ω-premouse, and M C N is an “activation level”, i.e.243

branch information of TM is to be fed into the branch predicate of N , if there is a level244

M E R E N such that R = (M|o(M) + γ,EM|o(M)+γ, [0, γ)TM), where γ < lh(TM) and245

R � “Θ doesn’t exist”, then we stop feeding in further branch information of TM beyond246

the least such R. The reader can again see [10, Section 3] for a more extensive treatment of247

these notions.248
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If x is a transitive set, then o(x) is defined to be x∩Ord. IfM is a (hybrid) premouse over249

a transitive set x, then ρk(M) is the least ordinal ρ such that there is some set A ⊆ [x×ρ]<ω250

such that A is rΣk(M) but A /∈M.251

Suppose (Ω, A) is nice (Ω can be a mouse operator or an iteration strategy).5 Suppose Γ252

is an inductive-like pointclass that is determined. Let M = MX,]
1 (A) where X = (t(Ω,A))2;253

later on in the paper, we occasionally writeMΩ,]
1 (A) for M. Lp

gΩ(x) is defined as the stack of254

gΩ-premiceM over x such thatM is x-sound, there is some n such that ρn+1(M) ≤ o(x) <255

ρn(M) and every countable, transitiveM∗ embeddable intoM has an (n, ω1+1)-gΩ-iteration256

strategy ∆ for a transitive x. We define Lp
gΩ,Γ(x) similarly but demand additionally that257

∆ ∈ Γ. For N a gΩ-premouse, let Lp
gΩ
+ (N ) denotes the stack of all g-organized Ω-premice258

M such that either M = N , or N CM, N is a strong cutpoint of M, M is o(N )-sound,259

and there is n < ω such that ρn+1(M) ≤ o(N ) < ρn(M) and M is countably Y -(n, ω1 + 1)-260

iterable above o(N ). We define Lp
gΩ,Γ
+ (N ) similarly. These notions can be generalized to261

GΩ or any other operator in an obvious way (cf. [10, Definition 2.43]). We define LpGΩ(x)262

etc similarly. Θ-g-organized Ω-mice over R are important in the scales analysis generalizing263

Steel’s work in Lp(R) (see the remark below).264

Definition 2.3. Let Y ⊆ R. We say that Y is self-scaled iff there are scales on Y and R\Y265

which are projective (i.e., Σ1
n for some n < ω) in Y .266

Definition 2.4. Suppose Ω is nice and Y ⊆ R is self-scaled. We define Lp
gΩ(R, Y ) as the267

stack of all g-organized Ω-mice N over (Hω1 , Y ) (with parameter M). We similarly define268

Lp
GΩ(R, Y ) as the stack of all Θ-g-organized Ω-mice N over (Hω1 , Y ) (with parameter M).269

We also say (Θ-g-organized) Ω-premouse over (R,Y) to in fact mean over (Hω1 , Y ).270

Remark 2.5. Switching from the g-organized hierarchy to the Θ-g-organized hierarchy was271

for a purely technical purpose, so that various proofs concerning the scales analyses work out272

(it is not known to work for the g-organized hierarchy). The two hierarchies are very closely273

related. In fact, for Ω and Y as in Definition 2.4, ℘(R)∩ Lp
gΩ(R, Y ) = ℘(R)∩ Lp

GΩ(R, Y ).274

SupposeM is an initial segment of the first hierarchy andM is E-active. Note thatM � “Θ275

exists” and M|Θ is Ω-closed. By induction below ΘM, M|ΘM can be rearranged into an276

initial segment N ′ of the second hierarchy. Above ΘM, we simply copy the E-sequence and277

B-sequence6 from M over to obtain an N C Lp
GF(R, X) extending N ′. The converse is278

similar. Similarly, if Ω is such that LpΩ(R, Y ) is well-defined and Ω relativizes well, then279

℘(R) ∩ Lp
gΩ(R, Y ) = ℘(R) ∩ LpΩ(R, Y ). See [10, Remark 4.11].280

5From now on, we typically say “let Ω be a nice operator” in place of this. So Ω is either a mouse operator
in the sense of [9] or an iteration strategy as in [10].

6The E-sequence is the extender sequence of M and the B-sequence codes fragments of the strategy of
M.

10



Let Ω = Σ, where Σ is a nice iteration strategy that appears in core model induction281

applications, A ∈ HC transitive such that P ∈ J1(A), X be defined from (Ω, A) as above,282

and suppose M = MX,]
1 (A) exists. We have that M generically interprets (Ω, A). Also,283

the core model induction will give us that the code of Ω, Code(Ω) (under a natural coding284

of subsets of HC by subsets of R) is self-scaled. Thus, we can define Lp
GΩ(R,Code(Ω)) as285

above (assuming sufficient iterability of M). A core model induction is then used to prove286

that there is a maximal constructibly closed initial segment M of Lp
GΩ(R,Code(Ω)) that287

satisfies AD+. What’s needed to prove this is the scales analysis of Lp
GΩ(R,Code(Ω)) from288

the optimal hypothesis (similar to those used by Steel; see [15] and [14]). This is carried out289

in [10]; we will not go into details here.290

2.2 A very brief tale of hod mice291

In this paper, a hod premouse P is one defined as in [3]. The reader is advised to consult292

[3] for basic results and notations concerning hod premice and mice. Let us mention some293

basic first-order properties of a hod premouse P . There is an ordinal λP and sequences294

〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that295

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α = 0 or is a successor ordinal then296

P � δPα is Woodin; no other P-cardinals are Woodin cardinals of P ;297

2. P(0) = Lpω(P|δ0)P ; for α < λP , P(α + 1) = (Lp
gΣPα
ω (P|δα))P ; for limit α ≤ λP ,298

P(α) = (Lp
g⊕β<αΣPβ
ω (P|δα))P ;299

3. P � ΣPα is a (ω, o(P), o(P))7-strategy for P(α) with hull condensation;300

4. if α < β < λP then ΣPβ extends ΣPα .301

Hod mice in this paper are g-organized; this is so that S-constructions work out smoothly302

as in the pure L[E]-case. We will write δP for δPλP and ΣP = ⊕β<λPΣPβ . Note that P(0) is303

a pure extender model. Suppose P and Q are two hod premice. Then P Ehod Q if there304

is α ≤ λQ such that P = Q(α). We say then that P is a hod initial segment of Q. (P ,Σ)305

is a hod pair if P is a hod premouse and Σ is a strategy for P (acting on countable stacks306

of countable normal trees) such that ΣP ⊆ Σ and this fact is preserved under Σ-iterations.307

Typically, we will construct hod pairs (P ,Σ) such that Σ has hull condensation, branch308

condensation, and is Γ-fullness preserving for some pointclass Γ.309

The reader should consult [3] for the definition of B(Q,Σ), and I(Q,Σ). Roughly speak-310

ing, B(Q,Σ) is the collection of all hod pairs which are strict hod initial segments of a311

7This just means ΣPα acts on all stacks of ω-maximal, normal trees in P.
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Σ-iterate of Q and I(Q,Σ) is the collection of all Σ-iterates of Σ. In the case λQ is limit,312

Γ(Q,Σ) is the collection of A ⊆ R such that A is Wadge reducible to some Ψ for which there313

is some R such that (R,Ψ) ∈ B(Q,Σ). See [3] for the definition of Γ(Q,Σ) in the case λQ314

is a successor ordinal.315

[3] constructs under AD+ and the hypothesis that there are no models of “ADR + Θ316

is regular” hod pairs that are fullness preserving, positional, commuting, and have branch317

condensation. Such hod pairs are particularly important for our computation as they are318

points in the direct limit system giving rise to HOD of AD+ models. Under AD+, for hod319

pairs (MΣ,Σ), if Σ is a strategy with branch condensation and ~T is a stack onMΣ with last320

model N , ΣN ,~T is independent of ~T . Therefore, later on we will omit the subscript ~T from321

ΣN,~T whenever Σ is a strategy with branch condensation andMΣ is a hod mouse. In a core322

model induction, we don’t quite have, at the moment (MΣ,Σ) is constructed, an AD+-model323

M such that (MΣ,Σ) ∈M but we do know that every (R,Λ) ∈ B(MΣ,Σ) belongs to such324

a model. We then can show (using our hypothesis) that (MΣ,Σ) belongs to an AD+-model.325

2.3 Core model induction operators326

Let327

Ω∗ = {A ⊆ R | L(A,R) � AD+}.328

We assume329

(†): There is no model M containing all reals and ordinals such that M �330

ADR + “Θ is regular”.331

Under this smallness assumption, by work of G. Sargsyan in [3], Ω∗ is a Wadge hierarchy332

and furthermore, if M is a model of AD+ then M is a model of Strong Mouse Capturing333

(SMC). Operators that we construct in the core model induction will also have the following334

additional properties (besides being nice).335

In the following, a transitive structure N is closed under an operator Ω if whenever336

x ∈ dom(Ω) ∩N , then Ω(x) ∈ N .337

Definition 2.6 (relativizes well). Let Ω be an a Y -mouse operator for some operator Y .8338

We say that Ω relativizes well if there is a formula φ(x, y, z) such that for any a, b ∈ dom(Ω)339

such that a ∈ L1(b), whenever N is a transitive model of ZFC− such that N is closed under340

Y and a, b,Ω(b) ∈ N , then Ω(a) ∈ N and is the unique x ∈ N such that N � φ[x, a,Ω(b)].341

8Y may be the rud operator, in which case Ω is just a mouse operator in the usual sense.

12



Definition 2.7 (determines itself on generic extensions). Suppose Ω is an operator. We say342

that Ω determines itself on generic extensions if there is a formula φ(x, y, z) and a parameter343

c ∈ HC such that for any countable transitive structure N of ZFC− such that N contains c344

and is closed under Ω, for any generic extension N [g] of N in V , Ω ∩ N [g] ∈ N [g] and is345

definable over N [g] via (φ, c), i.e. for any e ∈ N [g] ∩ dom(Ω), Ω(e) = d if and only if d is346

the unique d′ ∈ N [g] such that N [g] � φ[c, d′, e].347

We are now in a position to introduce the core model induction operators that we will348

need in this paper. These are particular kinds of mouse operators (in the sense of [9, 3.43])349

that are constructed during the course of the core model induction. These operators can be350

shown to satisfy the sort of condensation described in [9, Section 3] (e.g. condense finely),351

relativize well, and determine themselves on generic extensions.352

Definition 2.8. Let Γ be an inductive-like pointclass. For x ∈ R, CΓ(x) denotes the set of353

all y ∈ R such that for some ordinal γ < ω1, y (as a subset of ω) is ∆Γ({γ, x}).354

Let x ∈ HC be transitive and let f : ω → x be a surjection. Then cf ∈ R denotes the355

code for (x,∈) determined by f . And CΓ(x) denotes the set of all y ∈ HC ∩ ℘(x) such that356

for all surjections f : ω → x we have f−1(y) ∈ CΓ(cf ).357

Definition 2.9. Let (Ω, A) be as above, t ∈ HC with M ∈ J1(t). Let 1 ≤ k < ω. A premouse358

N over t is Ω-Γ-k-suitable (or just k-suitable if Γ and Ω are clear from the context) iff there359

is a strictly increasing sequence 〈δi〉i<k such that360

1. ∀δ ∈ N , N �“δ is Woodin” if and only if ∃i < k (δ = δi).361

2. o(N ) = supi<ω(δ+i
k−1)N .362

3. If N|η is a strong cutpoint of N then N|(η+)N = Lp
gΩ,Γ
+ (N|η).363

4. Let ξ < o(N ), where N �“ξ is not Woodin”. Then CΓ(N|ξ) �“ξ is not Woodin”.364

We write δNi = δi; also let δN−1 = 0 and δNk = o(N ).9365

Let N be 1-suitable and let ξ ∈ o(N ) be a limit ordinal, such that N �“ξ isn’t Woodin”.366

Let Q / N be the Q-structure for ξ. Let α be such that ξ = o(N|α). If ξ is a strong367

cutpoint of N then Q / Lp
gΩ,Γ
+ (N|ξ) by 3. Assume now that N is reasonably iterable. If368

ξ is a strong cutpoint of Q, our mouse capturing hypothesis combined with 4 gives that369

Q / Lp
gΩ,Γ
+ (N|ξ). If ξ is an N -cardinal then indeed ξ is a strong cutpoint of Q, since N has370

only finitely many Woodins. If ξ is not a strong cutpoint of Q, then by definition, we do371

9We could also define a suitable premouse N as a Θ-g-organized F-premouse and all the results that
follow in this paper will be unaffected.
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not have Q / Lp
gΩ,Γ
+ (N|ξ). However, using ∗-translation (see [13]), one can find a level of372

Lp
gΩ,Γ
+ (N|ξ) which corresponds to Q (and this level is in CΓ(N|ξ)).373

If Ω is a nice operator and Σ is an iteration strategy for a Ω-Γ-1-suitable premouse P374

such that Σ has branch condensation and is Γ-fullness preserving (for some pointclass Γ),375

then we say that (P ,Σ) is a Ω-Γ-suitable pair or just Γ-suitable pair or just suitable pair if376

the pointclass and/or the operator Ω is clear from the context (this notion of suitability is377

not related to the one mentioned in Definition 2.1).378

Definition 2.10 (Core model induction operators). Suppose (P ,Σ) is a G-Ω∗-suitable pair379

for some nice operator G or a hod pair such that Σ has branch condensation and is Ω∗-fullness380

preserving. Let Ω = Σ (note that Ω is suitable). Assume Code(Ω) is self-scaled. We say J381

is a Σ-core model induction operator or just a Σ-cmi operator if one of the following holds:382

1. J is a nice Ω-mouse operator (or g-organized Ω-mouse operator) defined on a cone383

of Hω1 above some a ∈ Hω1. Furthermore, J condenses finely, relativizes well and384

determines itself on generic extensions.385

2. For some α ∈ OR such that α ends either a weak or a strong gap in the sense of [15]386

and [10], letting M = Lp
GΩ(R,Code(Ω))||α and Γ = (Σ1)M , M � AD+ +MC(Σ).10 For387

some transitive b ∈ Hω1 and some 1-suitable (or more fully Ω-Γ-1-suitable) Ω-premouse388

Q over b, J = Λ, where Λ is an (ω1, ω1)-iteration strategy for Q which is Γ-fullness389

preserving, has branch condensation and is guided by some self-justifying-system (sjs)390

~A = (Ai : i < ω) such that for some real x, for each i, Ai ∈ ODM
b,Σ,x and ~A seals the391

gap that ends at α.11
392

3 From Ω to M],Ω
1393

Suppose (P ,Σ) is a G-Ω∗-suitable pair for some nice operator G such that Σ has branch394

condensation and is Ω∗-fullness preserving. (Recall that Ω∗ is the pointclass of all sets of395

reals A such that L(A,R) � AD+.) As a special case we also allow (P ,Σ) = (∅, ∅); the396

analysis of this special case is enough to prove Theorem 1.5. In this section we assume the397

strong hypothesis398

ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1 .”399

10MC(Σ) stands for Mouse Capturing relative to Σ which says that for x, y ∈ R, x is OD(Σ, y) (or
equivalently x is OD(Ω, y)) iff x is in some g-organized Ω-mouse over y. SMC is the statement that for every
hod pair (P,Σ) such that Σ is fullness preserving and has branch condensation, MC(Σ) holds.

11This implies that ~A is Wadge cofinal in Env(Γ), where Γ = ΣM1 . Note that Env(Γ) = ℘(R)M if α ends

a weak gap and Env(Γ) = ℘(R)LpΣ(R)|(α+1) if α ends a strong gap.
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Note that this follows from any of the hypotheses of Theorems 1.5, 1.6, and 1.7.400

Let Ω be a Σ-CMI operator. (If (P ,Σ) = (∅, ∅) then Ω is an ordinary CMI operator of401

the kind typically used in proving ADL(R).) We will use our strong hypothesis to obtain the402

MΩ,]
1 operator, which is the relativization of the M]

1 operator to a fine-structural hierarchy403

where the levels are obtained by repeated applications of the Ω operator (rather than the rud404

operator, as in ordinary mice. Basically, for each x in dom(Ω), if Ω is a strategy, MΩ,]
1 (x)405

isMX,]
1 (x), where X = (Ω, ϕmin) and ϕmin is defined as in [10, Definition 3.2] and otherwise406

MΩ,]
1 (x) is defined as in [9].)407

The argument is similar to that used to obtain the ordinaryM]
1 operator from the failure408

of square at a measurable cardinal in ZFC. The relativization of the standard arguments409

from M]
1 to MΩ,]

1 presents no special problems, but working without the Axiom of Choice410

requires a bit of care because ultrapowers of V may fail to satisfy  Loś’s theorem. However,411

 Loś’s theorem does hold for ultrapowers of wellordered inner models of V , and more generally412

for ultraproducts of families of inner models that are uniformly wellordered in the sense that413

there is a function associating to each model a wellordering of that model.414

The relevance of Jensen’s square principle �κ here is that it holds for all infinite cardinals415

κ in all Mitchell–Steel extender models (mice) by Schimmerling and Zeman [6, Theorem 2].416

The proof of this result is sufficiently abstract that it relativizes from mice to Ω-mice in a417

straightforward manner. Therefore if �κ fails in V , we get a failure of covering: the successor418

of κ cannot be computed correctly by any Ω-mouse.419

Because we are not assuming the Axiom of Choice, we will not construct the core model420

in V but rather in an inner model H of V satisfying ZFC. This model H will be obtained as421

a kind of HOD. A method used by Schimmerling and Steel [5] to prove covering results for422

the core model of V can be adapted to the core model of H, provided that we can show that423

H is close enough to V in the relevant sense. We show this closeness by using Vopěnka’s424

theorem, similar to Schindler [8].425

The following lemma is the main result of this section. It will form the “successor step”426

in the proofs of the main theorems.427

Lemma 3.1. Assume ZF+DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1.” Let (P ,Σ) be a428

G-Ω∗-suitable pair for some nice operator G, a hod pair such that Σ has branch condensation429

and is Ω∗-fullness preserving, or (∅, ∅). Let Ω be a Σ-CMI operator defined on a cone in430

H(ω1) over some element a ∈ H(ω1). Then for every element x of this cone, MΩ,]
1 (x) exists.431

Proof. First, note that we may assume without loss of generality that full DC holds, by432

passing to the inner model L(℘(ω1),Σ,Ω)[µ] where we are constructing relative to a predicate433

µ for a fine countable complete measure on ℘ω1(R). The hypothesis and conclusion are434
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absolute to this inner model. In particular the model satisfies ¬�ω1 because it computes ω2435

correctly, and it satisfies DC℘(ω1) because it contains all countable sequences from ℘(ω1). In436

the inner model, this fragment of DC implies full DC by a standard argument using the fact437

that every set is the surjective image of ℘(ω1)×α for some ordinal α. Therefore we may use438

DC in the argument that follows.439

Note that because ω1 is measurable, the operators Ω] and Ω]] are also defined on the440

cone in H(ω1) over a. Let x ∈ H(ω1) be in the cone over a. Take a countably complete fine441

measure µ on ℘ω1(R). Because µ-almost every set σ contains a real coding x, for such σ we442

can define the inner model443

Hσ = HOD
LΩ] (σ)
{Ω,x} .

A few remarks on notation: The model LΩ](σ) is the proper class model that is obtained444

by iterating the top measure of Ω]](σ) out of the universe. It is closed under its version of445

Ω even above the point ωV1 up to which Ω was originally defined; however, we will only ever446

use the Ω operator of the model LΩ](σ) up to the least indiscernible of that model, which447

is the critical point of the top measure of Ω]](σ) and is countable in V . By the parameter448

Ω in the definition of Hσ, we really mean the restriction of Ω to the model LΩ](σ), which449

is amenable to that model because Ω relativizes well. There will not be any incompatibility450

between the various restrictions and extensions of Ω that we use, so we denote them all by451

“Ω”.452

Let ξσ denote the least indiscernible of LΩ](σ). Note that in the model Hσ we can do453

core model theory below ξσ: it is well-known that the existence of an external measure can454

substitute for measurability of ξσ in this regard. The operator Ω is amenable to Hσ (again455

because it relativizes well) and we can attempt the Kc,Ω(x) construction in Hσ up to the456

cardinal ξσ. This is like the ordinary Kc construction, except relativized to Ω and built over457

the set x (see [9, Definition 3.28] and [10, Definition 2.46]). By the KΩ existence dichotomy458

(see Schindler and Steel [7]) applied in the various models Hσ, one of the following two cases459

holds:460

1. For µ-almost every set σ ∈ ℘ω1(R), the model Hσ satisfies the statement thatMΩ,]
1 (x)461

exists and is ξσ-iterable by the (unique) Ω]-guided strategy.462

2. For µ-almost every set σ ∈ ℘ω1(R), the model Kσ, defined as the core model (KΩ(x))Hσ463

built up to ξσ, exists and has no Woodin cardinals.464

Claim 3.2. If case (1) of the KΩ existence dichotomy holds, then MΩ,]
1 (x) exists in V .465

Proof. For µ-almost every set σ ∈ ℘ω1(R), the premouse (MΩ,]
1 (x))Hσ exists by the case466

hypothesis. It is sound and projects to x, so it codes itself as a subset of x, which is467
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countable. Therefore by the countable completeness of µ we can fix a single Ω-premouse468

M over x such that M = (MΩ,]
1 (x))Hσ for µ-almost every set σ. We will show that M is469

ω1-iterable in V by the (unique) Ω]-guided iteration strategy. Then (ω1 + 1)-iterablity will470

follow by the measurability of ω1.471

Let T be a countable Ω]-guided putative iteration tree onM in V , where by “putative”472

we mean that its last model, if it has one, may fail to be an Ω-premouse. (Note that an473

Ω-premouse is required in particular to be wellfounded, and this is the only requirement474

if Ω = rud.) We want to show that if T has successor length, then its last model is an475

Ω-premouse, and if it has limit length, then it has a cofinal branch b such that MT
b is an476

Ω-premouse and Q(b, T )E Ω](M(T )).477

Take a real t that codes T . Then for µ-almost every set σ we have t ∈ σ by the fineness478

of µ. Fix a set σ such that Hσ satisfies the statement “MΩ,]
1 (x) exists and is ξσ-iterable,”479

(MΩ,]
1 (x))Hσ =M, and t ∈ σ. By Vopěnka’s theorem applied in the model LΩ](σ), the real480

t is contained in a generic extension Hσ[g] of Hσ. In fact because ξσ is inaccessible in LΩ](σ)481

the poset from the proof of Vopěnka’s theorem (see, for example, Jech [2, Theorem 15.46])482

is in (Vξσ)Hσ .483

In Hσ the Ω-premouse M is ξσ-iterable by the Ω]-guided strategy, by our assumptions.484

Because the Ω] operator condenses finely (cf. [9, Section 3])12 and determines itself on generic485

extensions,13 a standard argument (see Schindler and Steel [7, Lemma 2.7.2]) shows thatM486

is still ξσ-iterable in Hσ[g] by the Ω]-guided iteration strategy there. We note here that since487

ξσ is countable, we really apply generic interpretability of Ω] to a countable submodel of Hσ,488

namely V Hσ
ξσ

.489

The model Hσ[g] sees that the tree T is Ω]-guided. Therefore in Hσ[g], if T has successor490

length, then the last model of T is a wellfounded Ω-premouse, and if T has limit length,491

then it has a cofinal branch b such thatMT
b is an Ω-premouse and Q(b, T )EΩ](M(T )). In492

either case this fact about T is absolute to V , giving the desired iterability.493

Claim 3.3. Case (2) of the KΩ existence dichotomy cannot hold.494

Proof. This case is where the hypothesis ¬�ω1 is used. BecauseHσ is defined as the HOD{Ω,x}495

of LΩ](σ), we can define the Vopěnka poset Pσ ∈ Hσ to make every countable set of countable496

ordinals in LΩ](σ) generic over Hσ. For a countable set of countable ordinals a of LΩ](σ),497

let gσ,a denote the Hσ-generic filter over Pσ induced by a, which has the property that498

12This is a more detailed version of “condenses well” in the literature.
13In the “gap in scales” case, the proof that the Ω] operator determines itself on generic extensions is

given by Schindler and Steel [7, Section 5.6, proof of Claim 1 in case n = 0]. The proof in the other cases is
a straightforward induction.
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a ∈ Hσ[gσ,a].
14 Note that Pσ ∈ (Vξσ)Hσ because ξσ is inaccessible in LΩ](σ).499

Define the ultraproducts

H = [σ 7→ Hσ]µ Ξ = [σ 7→ ξσ]µ

K = [σ 7→ Kσ]µ P = [σ 7→ Pσ]µ.

Every countable set of countable ordinals a in V is seen as a countable set of countable500

ordinals in LΩ](σ) for µ-almost every σ (by fineness applied to a real coding a) so we can501

define the ultraproduct502

ga = [σ 7→ gσ,a]µ.

Then applying  Loś’s theorem to uniformly wellordered families of structures is enough to503

establish the following facts.15
504

• H is an inner model of ZFC with a cardinal Ξ > ωV1 that is large enough to do core505

model theory below it.506

• K is the core model of H built up to Ξ, and it has no Woodin cardinals.507

• P ∈ (VΞ)H is a poset.508

• To each countable set of countable ordinals a in V we have assigned an H-generic filter509

ga ⊂ P such that a ∈ H[ga].510

Now let κ = ωV1 and define the µ-ultrapower map511

j : V → Ult(V, µ), crit(j) = κ.

Recall that j itself is not elementary, but its restrictions to wellordered inner models are512

elementary. (We remark that one could use any ultrapower map with critical point κ here;513

the measurability of ωV1 suffices for the following argument in place of R-strong compactness514

of ωV1 , although it is not clear that it would suffice for the previous argument.)515

Note that to every set A ⊂ κ in V we can assign a j(H)-generic filter gA ⊂ j(P) such516

that A ∈ j(H)[gA]. To see this, consider the sequence of generic filters ~gA = (gA∩α : α < κ),517

use the elementarity of the map j � L[H,A,~g], and define gA = j(~gA)κ.518

14Unlike in case (1), it is important here that the Vopěnka generic filter gσ,a is induced by a itself and
does not depend on the choice of a real coding a.

15If the measure µ were normal, then  Loś’s theorem could be applied to the models LΩ](σ) themselves to

yield a model LΩ](R) in which H, K, Ξ, and P could then be defined. But this is not possible in general, for
example under AD+V = L(R), where the hypothesis of the lemma holds for Ω = rud but R] does not exist.
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Because �κ fails in V , we have519

(κ+)j(K) < (κ+)V

by a result of Schimmerling and Zeman [6, Theorem 2] relativized to the operator j(Ω) and520

applied to the model j(K), which is the core model of j(H).521

Take a set A ⊂ κ in V coding a wellordering of κ of order type (κ+)j(K) and define g = gA.522

Because A ∈ j(H)[g] we get523

j(H)[g] � (κ+)j(K) < κ+.

Because g was added by a small forcing below the large cardinal j(Ξ) where j(K) was524

constructed, we have that j(K) is still the core model of j(H)[g].16 Therefore (and this is525

the crucial point) the model j(H)[g] sees the failure of covering for its own core model at526

κ, so we can apply the map j once more to get a contradiction by a standard argument,527

outlined below.528

Consider the restriction529

j � j(H)[g] : j(H)[g]→ j(j(H))[j(g)],

which is an elementary embedding. Because the domain j(H)[g] satisfies (κ+)j(K) < κ+, the530

further restriction j � ℘(κ)j(K) is in the codomain j(j(H))[j(g)] by a standard argument due531

to Kunen. Therefore we have532

F ∈ j(j(H))[j(g)]

where F is the (κ, j(κ))-extender over j(K) derived from the map j � ℘(κ)j(K). Note that

K|κ = j(K)|κ, and κ is an inaccessible cardinal in both ZFC models K and j(K) because it is

a measurable cardinal in V . Therefore j(K)|j(κ) = j(j(K))|j(κ), and j(κ) is an inaccessible

cardinal in both models j(K) and j(j(K)), so we have

(κ+)j(K) = (κ+)j(j(K)) < j(κ) and

℘(κ)j(K) = ℘(κ)j(j(K)).

Therefore the extender F can also be considered as an extender over j(j(K)), and it coheres533

with j(j(K)). Note that j(j(K)) is the core model of j(j(H))[j(g)]534

This extender F has superstrong type, and we can apply the maximality property of the535

16To make sense of the core model of j(H)[g] we are using the fact that j(H)’s version of the operator Ω
determines itself on generic extensions. Any failure of this gets reflected to a countable substructure N . By
fine condensation, the version of Ω in N is in fact Ω∩N . Now we apply the fact that Ω determines itself on
generic extensions of N to get a contradiction.
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core model [5, Theorem 2.3] in the model j(j(H))[j(g)] to show that every proper initial536

segment F � ν of F , where ν < j(κ), is on the sequence of the core model j(j(K)). Then in537

the core model j(j(K)), these initial segments will witness that κ is a Shelah cardinal. This538

will contradict our case hypothesis, which says that there are no Woodin cardinals in K.539

Let M = j(j(K)) and let F � ν, where ν < j(κ), be a proper initial segment of F . We540

want to see that the extender F � ν is on theM-sequence. Without loss of generality we may541

assume that ν is at least the common κ+ of the models j(K) andM. It suffices to show that542

the pair (M, F � ν) is weakly countably certified [5, Definition 2.2]. Working in the model543

j(H)[g], take a transitive, power admissible set N such that Nω ⊂ N , Vκ ∪ j(K)|((κ+)j(K) +544

1) ⊂ N , and |N | = κ. Stepping out to V for a moment and applying Kunen’s argument545

again, we have546

G ∈ j(j(H))[j(g)]

where G is the (κ, j(κ))-extender over N derived from j � ℘(κ)N . Now in the model547

j(j(H))[j(g)] it is easy to verify that the pair (N,G) is a weak A-certificate [5, Defini-548

tion 2.1] for (M, F � ν) whenever A is a countable subset of
⋃
n<ω ℘([κ]n) ∩M|ν,17 noting549

thatM|ν,M, and j(K) all have the same subsets of [κ]n (because ν is greater than or equal550

to the common κ+ of j(K) and M.)551

We have shown that if case (1) of the KΩ existence dichotomy holds, then the conclusion552

of the lemma holds, and we have shown that case (2) contradicts the hypothesis of the553

lemma, so the proof of the lemma is complete.554

We remark that because Ω is a Σ-CMI operator, the operator MΩ,]
1 given by the lemma555

is also a Σ-CMI operator.556

Corollary 3.4. Assume ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1.” Then PD557

holds.558

Proof. We show by induction on n < ω that the M]
n operator is total on H(ω1). The base559

case is the M]
0 operator, meaning the ordinary sharp operator, which is total on H(ω1)560

because ω1 is measurable. For the induction step we apply Lemma 3.1 to go from the561

operator Ω =M]
n to the operator MΩ,]

1 , which is stronger than M]
n+1. It follows from the562

existence of M]
n(x) for every n < ω and x ∈ R that Projective Determinacy holds.563

In the next section we will strengthen this conclusion to ADL(R) and thereby obtain an564

equiconsistency result (Theorem 1.5.)565

17Or indeed if A is equal to
⋃
n<ω ℘([κ]n) ∩M|ν itself; we don’t need countability, and we don’t need to

choose the certificate (N,G) differently depending on A (or on ν, for that matter.)
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4 The maximal model of AD+ + Θ = θΣ566

Throughout this section, we assume the hypothesis of Lemma 3.1, namely we assume567

ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1 .”568

Suppose (P ,Σ) is a G-Ω∗-suitable pair for some nice operator G such that Σ has branch569

condensation and is Ω∗-fullness preserving. As a special case we also allow (P ,Σ) = (∅, ∅);570

the analysis of this special case is enough to prove Theorem 1.5. We first define the “maximal571

pointclass of AD+ + Θ = θΣ”.572

Definition 4.1. Let (P ,Σ) be as above. Let573

ΩΣ =
⋃
{℘(R) ∩ L(A,R) | A ⊆ R and L(A,R) � AD+ + Θ = θΣ + MC(Σ)}.

We note that by (†), ΩΣ is a Wadge hierarchy. In the case (P ,Σ) = (∅, ∅), substitute θ0574

for θΣ and ordinary mouse capturing MC for MC(Σ). In this section, we will prove that575

L(ΩΣ,R) ∩ ℘(R) = ΩΣ. (4.1)

This has the consequence that L(ΩΣ,R) � AD+ + Θ = θΣ. The model L(ΩΣ,R) is called the576

“maximal model of AD+ + Θ = θΣ”.577

Let Ω = Σ. The proof of (4.1) depends on understanding models of ZF + AD+ + V =578

L(℘(R)) + Θ = θΣ + MC(Σ) as hybrid mice over R, Θ-g-organized as in Section 2.1. (In the579

case (P ,Σ) = (∅, ∅), we consider ordinary mice over R, namely levels of Lp(R), and we do580

not need Θ-g-organization by Remark 2.5. To keep the notations uniform in this section, we581

will use the notation Lp
GΩ(R,Code(Ω)) to denote Lp(R) in the case (P ,Σ) = (∅, ∅).)582

Ω is suitable andMΩ,]
1 generically interprets Ω.18 Let Λ be the unique (ω1+1)-Ω-iteration583

strategy for MΩ,]
1 . It can be shown to follow from the hypotheses of Theorems 1.6 and 1.7584

(in particular using the fact that every uncountable regular cardinal ≤ Θ is threadable) that585

the iteration strategy Λ can be extended to a unique (Θ + 1)-iteration strategy with branch586

condensation, which we will also call Λ. (This “strategy extension” step is not necessary for587

the case (P ,Σ) = (∅, ∅), so we postpone its proof until Section 5.)588

As in [10], we use Λ to define Lp
GΩ(R,Code(Ω)). The only thing to check is that (Θ +589

1)-iterability is sufficient to run the definition of Lp
GΩ(R,Code(Ω)) in [10]. Suppose by590

induction, we have defined a levelMCLp
GΩ(R,Code(Ω)) (in general, the following argument591

18By results of [10],MΩ,]
1 generically interprets Ω for (P,Σ) being a G-Ω-suitable pair or a hod pair where

Σ has branch condensation and is Ω-fullness preserving.
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works for any transitive structure M containing R such that there is a surjection from R592

onto M) and without loss of generality, we assume M is a tree activation level Nα+1 and593

we are trying to define the level Mα+1 (in the notation of [10, Definition 3.38]); this just594

means that Mα+1 is the first level above M by which we have fed in all necessary branch595

information about TM. It comes down to defining TM as in Definition 2.2. Working in the596

model N = L(M,R, f)[Σ],19 where f is a surjection from R onto M, we need to see that597

the genericity iteration that defines TM terminates in less than Θ many steps. Suppose not,598

letting T ∈ N be the corresponding tree of length Θ + 1. In N , letting γ be a large regular599

cardinal > Θ, we can construct some X ≺ Lγ(M,R, f)[Σ] that contains all relevant objects600

(in particular, R ∪M∪ {M} ⊂ X) and such that there is a surjection from R onto X. Let601

π : MX → X be the uncollapse map and let ξ = crit(π); then ξ < Θ and π(ξ) ≤ Θ. We602

note that π can be canonically extended to a map π+ : MX [G]→ Lγ(M,R, f)[Σ][G], where603

G ⊆ Col(ω,R) is L(M,R, f)[Σ]-generic. We also note that sinceM∪{M} ⊂ X, ξ > o(M).604

We can then use standard arguments (cf. [16, Theorem 3.11]), where X[G] plays the role of605

the countable hull X there, to conclude that lh(T ) < Θ. Contradiction. So TM is defined606

and has length < Θ.607

To prove (4.1), we need the following definition.608

Definition 4.2. We define sLp
GΩ(R,Code(Ω)) to be the union of thoseMCLp

GΩ(R,Code(Ω))609

such that whenever π : M∗ → M is elementary, P ∈ π−1(HC), and M∗ is countable and610

transitive, then M∗ is X-(ω1 + 1)-iterable with unique strategy Λ such that Λ � HC ∈M.611

We note that sLp
GΩ(R,Code(Ω)) is an initial segment of Lp

GΩ(R,Code(Ω))20 and it is612

trivially constructibly closed. Also, sLp
GΩ(R,Code(Ω)) � Θ = θΣ and the extender sequence613

of sLp
GΩ(R,Code(Ω)) is definable over sLp

GΩ(R,Code(Ω)) from Ω, which in turn is defin-614

able from Σ. In this section, we outline the core model induction up to the “last gap” of615

sLp
GΩ(R,Code(Ω)). This will show that616

sLp
GΩ(R,Code(Ω)) � AD+ + MC(Σ).21 (4.2)

From [13, Theorem 17.1] and [4], we know that ifM � V = L(℘(R))+AD++MC(Σ)+Θ = θΣ,617

then M � V = L(sLp
GΩ(R,Code(Ω))). This and equation 4.2 imply equation 4.1. It then618

suffices to prove equation 4.2.22 The rest of the section is devoted to this task.619

19By “Σ”, we mean the set {(T , β) : β ∈ Σ(T )}.
20The initial segment may be strict.
21Ordinal definability from Σ in the definition of MC(Σ) is in the language of set theory, not in the language

of sLp
GΩ(R,Code(Ω)), but by the paragraph above 4.2, this will not make a difference.

22Note that the statement “N C sLp
GΩ(R,Code(Ω))” is absolute between models containing R,N and

closed under Ω.
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The following definitions are obvious generalizations of those defined in [7].620

Definition 4.3. We say that the coarse mouse witness condition W ∗,gΩ
γ holds if, whenever621

U ⊆ R and both U and its complement have scales in Lp
GΩ(R,Code(Ω))|γ, then for all622

k < ω and x ∈ R there is a coarse (k, U)-Woodin-mouse M containing x, closed under623

the strategy Λ of MΩ,]
1 with an (ω1 + 1)-iteration strategy whose restriction to Hω1 is in624

Lp
GΩ(R,Code(Ω))|γ.23

625

Remark 4.4. By the proof of [7, Lemma 3.3.5], W ∗,gΩ
γ implies Lp

GΩ(R,Code(Ω))|γ � AD+.626

Definition 4.5. An ordinal γ is a critical ordinal in Lp
GΩ(R,Code(Ω)) if there is some U ⊆627

R such that U and R\U have scales in Lp
GΩ(R,Code(Ω))|(γ+1) but not in Lp

GΩ(R,Code(Ω))|γ.628

In other words, γ is critical in Lp
GΩ(R,Code(Ω)) just in case W ∗,gΩ

γ+1 does not follow trivially629

from W ∗,gΩ
γ .630

To any Σ1 formula θ(v) in the language of Lp
GΩ(R,Code(Ω)) we associate formulae θk(v)631

for k ∈ ω, such that θk is Σk, and for any γ and any real x,632

Lp
GΩ(R,Code(Ω))|(γ + 1) � θ[x] ⇐⇒ ∃k < ω Lp

GΩ(R,Code(Ω))|γ � θk[x].633

Definition 4.6. Suppose θ(v) is a Σ1 formula (in the language of set theory expanded by a634

name for R and a predicate for GΩ), and z is a real; then a 〈θ, z〉-prewitness is an ω-sound635

g-organized Ω-premouse N over z in which there are δ0 < · · · < δ9, S, and T such that N636

satisfies the formulae expressing637

(a) ZFC,638

(b) δ0, . . . , δ9 are Woodin,639

(c) S and T are trees on some ω × η which are absolutely complementing in V Col(ω,δ9), and640

(d) For some k < ω, p[T ] is the Σk+3-theory (in the language with names for each real and641

predicate for GΩ) of Lp
GΩ(R,Code(Ω))|γ, where γ is least such that Lp

GΩ(R,Code(Ω))|γ �642

θk[z].643

If N is also (ω, ω1, ω1+1)-iterable (as a g-organized Ω-mouse), then we call it a 〈θ, z〉-witness.644

Definition 4.7. We say that the fine mouse witness condition W
gΩ
γ holds if whenever θ(v)645

is a Σ1 formula (in the language L+ of g-organized Ω-premice (cf. [10])), z is a real, and646

Lp
GΩ(R,Code(Ω))|γ � θ[z], then there is a 〈θ, z〉-witness N whose

g
Ω-iteration strategy,647

when restricted to countable trees on N , is in Lp
GΩ(R,Code(Ω))|γ.648

23We demand the strategy has the property that iterates of M according to the strategy are closed under
Λ.
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Lemma 4.8. W ∗,gΩ
γ → W

gΩ
γ for limit γ.649

The proof of the above lemma is a straightforward adaptation of that of [7, Lemma 3.5.4].650

One main point is the use of the g-organization: g-organized Ω-mice behave well with respect651

to generic extensions in the sense that if P is a g-organized Ω-mouse and h is set generic652

over P then P [h] can be rearranged to a g-organized Ω-mouse over h.653

The induction is guided by the pattern of scales in Lp
GΩ(R,Code(Ω)) as analyzed in654

[10]. To show AD+ + MC(Σ) holds in sLp
GΩ(R,Code(Ω)), we show sLp

GΩ(R,Code(Ω)) �655

∀α (α is critical→ W ∗,gΩ
α ). Our plan is to show W ∗,gΩ

α+1 assuming W ∗,gΩ
α for α critical. Lemma656

3.1 and the subsequent corollary provide the base case for our induction. For α > 0, we have657

three cases:658

1. α is a successor of a critical ordinal, or α is a limit of critical ordinals and cf(α) = ω.659

2. α is an inadmissible limit of critical ordinals and cf(α) > ω.660

3. α ends a weak gap or is the successor of an ordinal that ends a strong gap. Say the661

gap is [γ, α∗], where α∗ = α if the gap is weak and α∗ + 1 = α if the gap is strong.662

Furthermore, sLp
GΩ(R,Code(Ω))|α � MC(Σ) + AD+ + Θ = θΣ.663

We deal with the easy case (1) first. In this case, let Γ = Σ
sLp

GΩ(R,Code(Ω))|α
1 . Then CΓ =664 ⋃

n<ω CΓn for some increasing sequence of scaled pointclasses 〈Γn | n < ω〉. By W ∗,gΩ
α , for665

each n, we have Σ-cmi operators 〈Km | m < ω〉 that collectively witness Det(
⋃
n Γn). Say666

each Km is defined on a cone above some fixed a ∈ HC. The desired mouse operator K0 is667

defined as follows: For each transitive and self-wellordered A ∈ HC coding a, J0(A) is the668

shortest initial segment M / Lp
gΩ(A) such that M � ZFC− and M is closed under Km for669

all m. J0 is total and trivially relativizes well and determines itself on generic extensions670

because the Km’s have these properties. We then use Lemma 3.1 to get that J1 =M],J0

1 is671

defined on the cone above a by arguments in the previous section. Inductively, we get that672

Jn+1 =M],Jn
1 is defined on the cone above a for all n and one easily gets that these operators673

are Σ-cmi operators. By Lemma 4.1.3 of [7], this implies W ∗,gΩ
α+1 .674

Now we’re on to the case where α is inadmissible and cf(α) > ω. Let φ(v0, v1) be a Σ1675

formula and x ∈ R be such that676

∀y ∈ R ∃β < α sLp
GΩ(R,Code(Ω))|β � φ[x, y],677

and letting β(x, y) be the least such β,

α = sup{β(x, y) | y ∈ R}.

We first define J0 on transitive and self-wellordered A ∈ HC coding x. For n < ω, let678
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φ∗n ≡ ∃γ (Lp
GΩ(R,Code(Ω))|γ � ∀i ∈ ω (i > 0⇒ φ((v)0, (v)i) ∧ (γ + ωn) exists)).679

For such an A as above, let M be an A-premouse and let G be a Col(ω,A)-generic filter

overM. ThenM[G] can be regarded as a g-organized Ω-mouse over z(G,A) where z(G,A)

is a real coding G,A and is obtained from G,A in some simple fashion.24 Also, let σA be a

term defined uniformly (in M) from A, x such that

(σGA)0 = x

and

{(σGA)i | i > 0} = {ρG | ρ ∈ L1(A) ∧ ρG ∈ R}.

Let ϕ be a sentence in the language of A-premice such that for any A-premouseM,M � ϕ
iff whenever G is M-generic for Col(ω,A), then for any n there is a γ < o(M) such that

M[z(G,A)]|γ is a 〈φ∗n, σGA〉-prewitness.

Then J0(A) is the shortest initial segment of Lp
gΩ(A) which satisfies ϕ, if it exists, and is680

undefined otherwise. Using the fact that W
gΩ
α holds, we get that J0(A) exists for all A ∈ HC681

coding x because α has uncountable cofinality and there are only countably many 〈φ∗n, ρGA〉.682

Also we can then define Jn as before. It’s easy to show again that the Jn’s relativize well683

and determine themselves on generic extensions, so they are Σ-cmi operators. This implies684

W ∗,gΩ
α+1 .685

Lastly, we consider the gap case. Using the notations as in case 3 above, let Γ =686

Σ
sLp

GΩ(R,Code(Ω))|γ
1 . If [γ, α∗] is a weak gap, then by the scales analysis at the end of a687

weak gap from [14] and [10], we can construct a self-justifying system (sjs) A Wadge-cofinal688

in ℘(R) ∩ sLp
GΩ(R,Code(Ω))|α∗.25 If [γ, α∗] is a strong gap, then by the Kechris–Woodin689

theorem, AD+ holds in sLp
GΩ(R,Code(Ω))|α, and again by results of [14], [10], and [21],690

we also get a self-justifying system A Wadge-cofinal in sLp
GΩ(R,Code(Ω))|α ∩ ℘(R). From691

A and arguments in [7, Section 5], there is a pair (Q,Λ) such that Q is Γ-suitable and Λ692

is the (ω1, ω1)-strategy for Q guided by A (see the next section for more details on self-693

justifying systems). Let J0 = Λ. We assume that A contains the universal Γ-set and hence694

the universal Γ̌-set.695

Claim 4.9. J0 determines itself on generic extensions.696

24This is one of the main reasons that we consider gΩ-mice; this is so that generic extensions of gΩ-mice
can be rearranged to gΩ-mice.

25This means A is a countable collection containing a universal Σ
sLp

GΩ(R,Code(Ω))|γ
1 set, closed under com-

plements and whenever A ∈ A, then there is a scale whose individual norms are coded by sets in A.
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Proof. Let N be a countable transitive structure of ZFC− such that N is closed under J0 (and697

hence under Λ). We simply describe a procedure that determines Λ on generic extensions698

of N ; the reader may gladly verify that this is enough to prove the claim. Let g ∈ V be699

generic over N ; we assume without loss of generality that g ⊆ Col(ω, κ) for some N -cardinal700

κ and N has a Col(ω, κ)-symmetric name Ȧ for A. Let T be a tree according to Λ of limit701

length in N [g] (the argument for stacks is similar). If T is short, we can find the Q-structure702

Q(T ) for T and this in turn determines the branch b = Λ(T ) ∈ N [g]. The Q-structure703

Q(M(T )) belongs to CΓ(M(T )) and can be computed using Ȧg; the point is the universal704

Γ̌-set belongs to A, so N [g] can use Ȧg to compute the CΓ-operator correctly.705

Suppose T is maximal. By boolean comparison (cf. [7, Section 5.4]), we can find a tree706

U ∈ N according to Λ such that707

(i) U is non-dropping with last model MU and branch embedding πU ;708

(ii) Λ(T ) = b is the unique branch in N [g] with last modelMT and branch embedding πT709

such that there is an elementary embedding τ :MT →MU with πU = τ ◦ πT .26
710

711

Furthermore, J0 is suitable (we can constructMJ0,]
1 by arguments in the previous section)712

andMJ0,]
1 generically interprets J0 by [10, Lemma 4.8]. Note that J0 and A are projectively713

equivalent in any reasonable coding. We can use Lemma 3.1 to show W ∗,gΩ
α+1 by constructing714

a sequence of operators (Jn : n < ω), where Jn+1 = MJn,]
1 for all n.27 This concludes the715

outline of the proof of 4.2 and 4.1.716

It now follows easily that we can strengthen the conclusion of Projective Determinacy in717

Corollary 3.4 to obtain the following result.718

Corollary 4.10. Assume ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1.” Then AD719

holds in L(R).720

This corollary completes the proof of Theorem 1.5. It also forms a significant first step721

in the proofs of Theorems 1.6 and 1.7.722

26The map τ is a fine-structural embedding. Typically, it is a k-embedding in the sense of [16] where k is
the degree of the tree T .

27These operators, again, can be shown to be Σ-cmi operators. Here and elsewhere, we suppress the formula
ϕmin defined in [10, Definition 3.2] from the definition of J1 = MJ0,]

1 ; to be entirely correct, according to

[10], J1 should be M(J0,ϕmin),]
1 .
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5 A model of AD+ + Θ > θΣ723

Suppose (P ,Σ) is a G-Ω∗-suitable pair for some nice operator G such that Σ has branch724

condensation and is Ω∗-fullness preserving. As a special case we also allow (P ,Σ) = (∅, ∅).725

In the previous section we showed (under our strong hypotheses plus a smallness assumption)726

that there is a maximal model of AD+ + V = L(℘(R)) + Θ = θΣ containing all reals and727

ordinals. This model has the form L(ΩΣ,R) where L(ΩΣ,R) ∩ ℘(R) = ΩΣ. In this section,728

we will go just beyond this model to obtain a model of AD+ + Θ > θΣ containing all reals729

and ordinals.730

Define the pointclass731

Γ = (Σ2
1(Code(Σ))Ω∗ .

Note that we have Γ = (Σ2
1(Code(Σ))ΩΣ ; this is because if a set of reals A ∈ Ω∗ witnesses732

a Σ2
1(Code(Σ)) fact about a real x, then there is a set of reals in ∆2

1(Code(Σ), x)L(A,R)
733

witnessing the same fact about x by Woodin’s ∆2
1 basis theorem relativized to x and Code(Σ)734

and applied in the model L(A,R), and such a set of reals can be shown to be in ΩΣ.735

Recall from Section 4 that (under our smallness assumption) the maximal model L(ΩΣ,R)736

of AD+ +Θ = θΣ is, up to its Θ, a hybrid mouse over R of the form sLp
GΩ(R,Code(Ω)) where737

we have defined the operator Ω = Σ. We remind the reader that Code(Ω) is self-scaled.738

In particular we have739

ΩΣ = ℘(R) ∩ sLp
GΩ(R,Code(Ω)),

so we can reformulate our pointclass as740

Γ = (Σ2
1)sLp

GΩ(R,Code(Ω)) = (Σ2
1)sLp

GΩ(R,Code(Ω))|α

where α = (δ2
1)sLp

GΩ(R,Code(Ω)) is the ordinal beginning the last gap of sLp
GΩ(R,Code(Ω)).741

(Recall that by Σ2
1 we mean to include Ω, or equivalently Σ, as a parameter. By self-iterability742

it makes no difference whether we also include the extender sequence as a parameter.)743

Like the pointclass considered in the “gap in scales” case of the core model induction744

in Section 4, the pointclass Γ is an inductive-like pointclass with the scale property. Our745

next task is to find the next scaled pointclass, or (what is roughly equivalent) to build746

a scale on a complete Γ̌ set. Unlike in Section 4, this next scaled pointclass cannot be747

found within sLp
GΩ(R,Code(Ω)). The reason is that the complete Γ̌ set

{
(x, y) ∈ R × R :748

y /∈ ODsLp
GΩ(R,Code(Ω))

x

}
cannot have any uniformization in sLp

GΩ(R,Code(Ω)), and therefore749

cannot have any scale in sLp
GΩ(R,Code(Ω)), by a standard argument.750
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We will use our strong hypotheses (as in Theorems 1.6 and 1.7) to build a scale on a751

complete Γ̌ set. Each prewellordering of this scale will be in L(ΩΣ,R), or equivalently in752

sLp
GΩ(R,Code(Ω)), although the sequence of prewellorderings cannot be, as we just saw.753

More directly, what we will show is that the prewellorderings are in a pointclass Env(Γ),754

the envelope of Γ. The notion of envelope was used by Martin to identify the next scaled755

pointclass after an inductive-like scaled pointclass in the AD context; see Jackson [1]. We756

will need its adaptation to the partial determinacy context as defined in the second author’s757

thesis [20] (see also the subsequent article [21].)758

It turns out that Env(Γ) ⊂ L(ΩΣ,R), and in fact Env(Γ) consists exactly of the sets of759

reals that are ordinal-definable from Σ in the model L(ΩΣ,R), but we will not be able to760

see this until later. For now we must use the following “local” definition of the envelope761

in terms of the ambiguous pointclass ∆Γ = Γ ∩ Γ̌ and in terms of the notion of “∆Γ in an762

ordinal parameter.” This notion can be defined in general, but here we can take the following763

characterization as a definition: a set of reals is ∆Γ in an ordinal parameter if and only if it764

is ∆1-definable over sLp
GΩ(R,Code(Ω))|α from ordinals (and Ω, or equivalently Σ.)765

Definition 5.1. The envelope of Γ, denoted by Env(Γ), is the pointclass consisting of all766

pointsets A such that, for every countable σ ⊂ R, there is a pointset A′ that is ∆Γ in an767

ordinal parameter and satisfies A ∩ σ = A′ ∩ σ.768

The boldface pointclass Env(Γ) is defined similarly but allowing a real parameter. That769

is, A ∈ Env(Γ) if there is a real x such that for every countable σ ⊂ R there is a pointset770

A′ that is ∆Γ(x) in an ordinal parameter and satisfies A ∩ σ = A′ ∩ σ.771

The following fact about envelopes is crucial for our argument. It is essentially proved in772

the thesis [20] (which deals with generic large cardinal properties of ω1 in ZFC rather than773

with large cardinal properties of ω1 in ZF+DC, but the argument carries over to the present774

context.) An easier version with “scale” replaced by “semiscale” is proved in the article [21],775

and a special case of the scale construction appears in another article [22].776

Lemma 5.2 (Wilson). Assume ZF+DC. Let Γ be an inductive-like pointclass with the scale777

property. Suppose that ω1 is Env(Γ)-strongly compact. Then there is a scale on a universal778

Γ̌ set, each of whose prewellorderings is in Env(Γ).779

We will also need the fact that if ZF + DCR holds and the boldface ambiguous part ∆Γ780

of the pointclass Γ is determined, as it is here, then Env(Γ) is determined and projectively781

closed (Wilson [20, 21]; based on work of Kechris, Woodin, and Martin.) Therefore Wadge’s782

lemma applies to it, as one can easily verify that the relevant games are determined. More-783

over, the Wadge preordering of Env(Γ)28 is a prewellordering: otherwise by DCR we could784

28Really a preordering of pairs {B,¬B} where B ∈ Env(Γ).
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choose a sequence of pointsets in Env(Γ) that was strictly decreasing in the Wadge ordering,785

but then by the proof of the Martin–Monk theorem we get a contradiction. (Again one can786

easily verify that the relevant games are determined.)787

Note that the prewellorderings of a scale as in Lemma 5.2 must be Wadge-cofinal in788

Env(Γ); otherwise the sequence of prewellorderings itself would be coded by a set of reals789

in Env(Γ), which is impossible as mentioned above. From such a scale, it then follows by790

a general argument (see Jackson [1] and the straightforward adaptation [20, Section 4.3] to791

the partial determinacy context) that we can obtain a self-justifying system contained in792

Env(Γ):29
793

Lemma 5.3. Assume ZF+DC. Let Γ be an inductive-like pointclass with the scale property794

such that ∆Γ is determined. Suppose that ω1 is Env(Γ)-strongly compact. Then there is a795

self-justifying system A ⊂ Env(Γ) containing a universal Γ set.796

We will use this lemma together with the hypotheses of Theorems 1.6 or 1.7 to obtain797

a self-justifying system A ⊂ Env(Γ) containing a universal Γ set. We begin with the798

observation that the length of the Wadge prewellordering of Env(Γ) is at most Θ by the799

usual argument: the initial segment corresponding to a set B ∈ Env(Γ) is the image of R800

under the function y 7→ g−1
y [B], where gy denotes the continuous function coded by the real801

y. Moreover, the lightface envelope Env(Γ) admits a wellordering (essentially an ultrapower802

of the canonical wellordering of the ∆Γ-in-an-ordinal sets by Martin’s cone measure, which803

measures the relevant sets by Env(Γ)-determinacy.)804

Lemma 5.4. Let Γ be an inductive-like pointclass with the scale property such that ∆Γ is805

determined. Assume ZF + DC + “ω1 is Θ-strongly compact.” Then there is a self-justifying806

system A ⊂ Env(Γ) containing a universal Γ set.807

Proof. Consider the restriction of the Wadge prewellordering of Env(Γ) to the lightface808

envelope Env(Γ). We can refine this prewellordering to a wellordering by taking its lexico-809

graphical product with a wellordering of Env(Γ), which exists, as mentioned above. This810

refinement has the property that its length is at most Θ, because its initial segment below811

any set A ∈ Env(Γ) is contained in the Wadge-initial segment {B ∈ Env(Γ) : B ≤W A}.812

(It’s not clear whether the original wellordering of Env(Γ) described above has this prop-813

erty.) Therefore our hypothesis implies that ω1 is Env(Γ)-strongly compact, and the desired814

conclusion follows by Lemma 5.3.815

29We don’t know if it is possible to obtain a self-justifying system contained in the lightface envelope, but
this will not matter for our application.
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Lemma 5.5. Let Γ be an inductive-like pointclass with the scale property such that ∆Γ is816

determined. Assume ZF + DCR + “ω1 is R-strongly compact and Θ is singular.” Then there817

is a self-justifying system A ⊂ Env(Γ) containing a universal Γ set.818

Proof. Let < be a wellordering of Env(Γ) that refines the Wadge prewellordering (as in the819

previous proof) and therefore has length at most Θ. Using the hypothesis that Θ is singular820

to deal with the apparent possibility that < has length equal to Θ, we can obtain a function821

f : R → Env(Γ) that is cofinal with respect to < and therefore also cofinal with respect to822

the Wadge prewellordering of Env(Γ). Then we can define a partial surjection from R × R823

onto Env(Γ) by mapping (x, y) ∈ R×R to the preimage of the set f(x) under the continuous824

function coded by the real y, whenever this preimage happens to be in Env(Γ).825

Therefore there is a surjection from R onto Env(Γ), and by our hypothesis that ω1 is826

R-strongly compact, it follows that ω1 is Env(Γ)-strongly compact. We could now apply827

Lemma 5.3 to obtain the desired conclusion, except for the problem that we only have DCR828

in place of DC. This problem can be solved by passing to an inner model.829

Take a fine, countably complete measure µ on ℘ω1(Env(Γ)) and consider the model830

L(X)[µ] where X = Env(Γ)ω ∪ R. In V we have DCR and we have a surjection from R831

to X, so we have DCX . Because an ω-sequence of elements of X can be coded by a single832

element of X, we have DCX in L(X)[µ] as well. In L(X)[µ] every set is a surjective image833

of X × ξ for some ordinal ξ, so DC follows from DCX by a standard argument. Then we can834

apply Lemma 5.3 in L(X)[µ] and note that the conclusion is upward absolute to V .835

Now that we have obtained a self-justifying system A = (Ai : i < ω) sealing the envelope836

of Γ, we may proceed as in the “gap in scales” case of Section 4 to get a pair (Q,Λ) such837

that Q is a Γ-suitable g-organized Ω-premouse and Λ is the (ω1, ω1)-iteration strategy for Q838

guided by A. A slight difference from Section 4 is caused by the fact that, at this stage in839

the argument, we do not know how to rule out the possibility that the pointclass Env(Γ) is840

strictly larger than the pointclass ΩΣ = ℘(R) ∩ sLp
GΩ(R,Code(Ω)).841

However, this difference does not create any problem because the important thing is842

that every set A ∈ Env(Γ) (and in particular every set Ai in our self-justifying system A)843

has the property that, for a cone of b ∈ HC, the hybrid lower part mouse Lp
gΩ,Γ(b) has a844

Col(ω, b)-term for a set of reals that locally captures A. (If A is in the lightface envelope845

then the base of the cone is ∅ and this holds for all b ∈ HC.) For a proof, see Wilson [20,846

Section 4.2]. This local term-capturing property is sufficient to make sense of the notion of847

A-iterability, to prove the existence of A-iterable g-organized and Θ-g-organized Ω-premice,848

and to get an iteration strategy Λ guided by the self-justifying system A. The adaptation849

of existing proofs to this context is straightforward.850
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Defining the Σ-CMI operator F = Λ, we can then use Lemma 3.1 to construct a sequence851

of Σ-CMI operators (Jn : n < ω), where J0 = F and Jn+1 =M],Jn
1 for all n > 0. Because A852

and F are projectively equivalent (in any reasonable coding) this shows the existence of a853

determined projective-like hierarchy just beyond Env(Γ), and therefore beyond the maximal854

model of AD+ + Θ = θΣ.855

To continue further and get a model of ZF + AD+ + Θ > θΣ, we proceed along the lines856

of Section 4. The difference is that now the operator F is here to stay: we must consider857

F -hybrid mice from this point on, and never return to considering Ω-hybrid mice because858

they cannot give us anything new.859

Our model of AD+ +Θ > θΣ will be obtained as the maximal model of AD+ +Θ = θΛ and860

θΣ will be the penultimate member of its Solovay sequence. The existence of this maximal861

model is established by the results of Section 4 with the suitable pair (Q,Λ) and its associated862

operator F in place of the hod pair (or suitable pair, or empty pair) (P ,Σ) and its associated863

operator Ω. (For this reason it is important that we allowed suitable pairs as well as hod864

pairs and empty pairs in Sections 3 and 4.)865

To obtain the maximal model of AD+ + Θ = θΛ, it remains only to show that Λ can be866

extended to a (Θ + 1)-iteration strategy with branch condensation. (In fact, we will show867

that it can be extended to a Θ+-iteration strategy with branch condensation.) As remarked868

in Section 4, this strategy extension is necessary to define the model sLp
GF(R,Code(F)) via869

g-organization, which in turn is necessary to analyze the pattern of scales in this model.870

Note that because the iteration strategy Λ is guided by a self-justifying system, it has871

branch condensation and hull condensation and the set of reals coding it is Suslin. Accord-872

ingly, we can use the following lemma to extend Λ. Our argument is based on Schindler and873

Steel [7, Lemmas 2.1.11 and 2.1.12], but some adaptations are necessary in the absence of874

AC. A similar argument is also found in Steel [12].875

Before proving the lemma (which will take the remainder of this section) let us note876

that the hypothesis that every uncountable regular cardinal ≤ Θ is threadable follows from877

the hypotheses of Theorems 1.6 and 1.7. In particular, it follows from the hypothesis ZF +878

DC+ “ω1 is Θ-strongly compact” and also from the hypothesis ZF+DCR + “ω1 is R-strongly879

compact and Θ is singular.” Note also that the conclusion that the extension of Λ has hull880

condensation, together with the fact that the original ω1-iteration strategy Λ has branch881

condensation, implies that the extended strategy also has branch condensation by an easy882

Skolem hull argument. (We can take the Skolem hull in an inner model of ZFC, so that no883

choice is required.)884

Lemma 5.6. Assume that ZF holds and let Λ be an ω1-iteration strategy with hull con-885
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densation for a premouse30 Q. Assume that Code(Λ) is Suslin. Let η be an uncountable886

cardinal and assume that every uncountable regular cardinal ≤ η is threadable. Then Λ has887

a (necessarily unique) extension to an η+-iteration strategy with hull condensation.888

Proof. Let T be a putative iteration tree on Q of length less than η+ and such that every889

countable hull of T is by Λ. (A putative iteration tree is like an iteration tree except that890

its last model, if it has one, is allowed to be illfounded.) What we want to show is that if T891

has a last model, then this last model is wellfounded, and if T has limit length, then it has892

a unique cofinal wellfounded branch b such that every countable hull T̄ _b̄ of T _b is also by893

Λ (in which case our extension of Λ can and must choose this branch.)894

In the case that T has a last model, it is easy to see that the last model must be895

wellfounded; otherwise by taking a Skolem hull (of Lη+ [Q, T ], say, so that no choice is896

required) we may obtain a countable hull of T whose last model is illfounded, but the last897

model of the hull must be wellfounded because the hull is by the iteration strategy Λ.898

Now suppose that T has limit length. This case will require a bit more work. First we899

note that it suffices to find some cofinal branch b of T such that every countable hull T̄ _b̄900

of T _b is by Λ; then a Skolem hull argument shows that there can be at most one such901

branch and that any such branch is wellfounded. Let q be a real coding the premouse Q.902

We consider two subcases.903

1. lh(T ) has uncountable cofinality.904

In this subcase, we use the general fact about iteration trees that the sequence of branches905

[0, α)T for limit ordinals α < lh(T ) is a coherent sequence of clubs. Here lh(T ) is threadable906

(equivalently, has threadable cofinality,) so the tree T has a unique cofinal branch b obtained907

by threading this coherent sequence. Let T̄ _b̄ be a countable hull of T _b. We want to show908

that T̄ _b̄ is by Λ.909

Let x be a real coding T̄ _b̄. The model N = L[q, T , b,Λ, x]31 satisfies AC and therefore910

�ω, whereas V satisfies “ω1 is threadable” and therefore ¬�ω, so ωN1 < ω1. Note that the911

model N sees that T̄ _b̄ is a hull of T _b by the absoluteness of wellfoundedness for the tree912

of attempts to build a map lh(T̄ )→ lh(T ) witnessing this (or we could just put such a map913

into the model.) The model N also sees, of course, that lh(T ) has uncountable cofinality.914

Working in N , by a Skolem hull argument we can take a hull T ∗_b∗ of T _b such that915

lh(T ∗) has cardinalilty and cofinality ω1 and T̄ _b̄ is a hull of T ∗_b∗. Because the tree T ∗916

30By a premouse here we mean an F-premouse where F is an operator that condenses finely (such as the
core model induction operators that we consider in this paper.) Alternatively we could use coarse mice here,
because we will only need the extended strategy for genericity iterations.

31We are abusing notation here. For example, instead of Λ itself as a predicate we mean {(U , ξ) : ξ ∈ Λ(U)}.
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is countable in V the branch Λ(T ∗) is defined, and the model N can see it. In N the tree917

T ∗ can have at most one cofinal branch because its length has uncountable cofinality, so918

Λ(T ∗) = b∗. Therefore the hull T ∗_b∗ is by Λ, and by hull condensation its hull T̄ _b̄ is also919

by Λ, as desired.920

2. lh(T ) has countable cofinality.921

In this subcase, we define an elementary substructure X ≺ Lη+ [Q, T ] in V to be appropri-922

ate if Q∪{Q, T } ⊂ X, X is countable, and X∩ lh(T ) is cofinal in lh(T ). For an appropriate923

elementary substructure X ≺ Lη+ [Q, T ], let σX : MX → X denote the uncollapse map of924

X, define the tree TX = σ−1
X (T ) on Q, and note that TX is a hull of T as witnessed by the925

map σX � lh(TX).926

Furthermore, for any two appropriate elementary substructures X, Y ≺ Lη+ [Q, T ] such927

that X ⊂ Y , let σXY : MX → MY denote the factor map σ−1
Y ◦ σX and note that TX is a928

hull of TY as witnessed by the map σXY � lh(TX).929

We say that an elementary substructure X ≺ Lη+ [Q, T ] is stable if it is appropriate and930

for every appropriate elementary substructure Y ≺ Lη+ [Q, T ] such that X ⊂ Y we have931

Λ(TX) = σ−1
XY [Λ(TY )].

Note that an equivalent condition would be σX [Λ(TX)] ⊂ σY [Λ(TY )] because distinct cofinal932

branches are eventually disjoint.933

Assume for the moment that there is a stable elementary substructure X ≺ Lη+ [Q, T ].934

Then we can define the branch b of T to be the downward closure of the set σX [Λ(TX)] in935

the T -ordering. For every appropriate elementary substructure Y ≺ Lη+ [Q, T ] such that936

X ⊂ Y , we have σ−1
Y [b] = Λ(TY ). Moreover, the tree T _Y σ−1

Y [b] is a hull of T _b.32 Therefore937

club many countable hulls of T _b are by Λ and we can argue as in subcase (1) that every938

countable hull of T _b is by Λ.939

So assume toward a contradiction that there is no stable X. Let S be a tree on ω×Ord940

that projects to Code(Λ), let f : ω → lh(T ) be a cofinal map, and define the model N ′ =941

L[q, T , S, f ]. (Recall that q is a real coding the premouseQ.) Note that the model N ′ satisfies942

the statement “there is no stable X” as well as V does: for any appropriate elementary943

substructure X ≺ Lη+ [Q, T ] in N ′, we may use the absoluteness of wellfoundedness of the944

tree of attempts to find an appropriate elementary substructure Y ≺ Lη+ [Q, T ] such that945

X ⊂ Y but Λ(TX) 6= σ−1
XY [Λ(TY )]. (We may use the tree S to witness values of Λ.)946

32In general if Ū is a hull of an iteration tree U as witnessed by a map σ : lh(Ū) → lh(U), c is a cofinal
branch of U , and c ∩ range(σ) is cofinal in lh(U), then Ū_σ−1[c] is a hull of U_c.
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Define γ = ωN
′

1 and note that γ < ω1, just as for the modelN in the uncountable cofinality947

case. In the model N ′ we can build a continuous, ⊂-increasing sequence (Xα : α ≤ γ) of948

appropriate elementary substructures of Lη+ [Q, T ] such that949

Λ(Tα) 6= σ−1
α,α+1[Λ(Tα+1)]

for all α < γ, where we define Tα = TXα , σα = σXα , etc.950

Define the cofinal branch b = Λ(Tγ) of Tγ and note that this branch is in the model N ′951

because it can be computed using the tree S ∈ N ′. For all sufficiently large α < γ the952

intersection b∩σα,γ[lh(Tα)] is cofinal in lh(Tγ), which implies that the tree T _α σ−1
α,γ[b] is a hull953

of T _γ b. So by hull condensation we have σ−1
α,γ[b] = Λ(Tα) for all such α, and by considering954

such an α and its successor we get Λ(Tα) = σ−1
α,α+1[Λ(Tα+1)], a contradiction.955

Remark 5.7. The proof above is given in the case Q is a coarse premouse. In the case956

Q is a (fine-structural) F-premouse for some F , one only needs slight modifications. In957

particular, one needs to require that the last model of the tree T in the proof is a well-founded958

F-premouse.959

6 Ω∗ is constructibly closed960

The main theorem of this section is the following.961

Theorem 6.1 (ZF + DCR). Assume there is no transitive AD+ model M containing R∪OR962

such that there is a pointclass Γ ( ℘(R)M with L(Γ) ∩ ℘(R) = Γ and L(Γ) � ADR + DC.963

Then L(Ω∗) ∩ ℘(R) = Ω∗.964

Remark 6.2. We note that the smallness assumption in Theorem 6.1 is stronger than (†).965

It allows for the existence of a minimal model of “ADR + DC” but not much more. The966

Solovay sequence of the minimal model of “ADR + DC” has length ω1. We will use (†+) to967

denote this hypothesis.968

We assume (†+) throughout this section. Suppose the Solovay sequence of Ω∗ is of969

successor length.33 Then by Section 4, Ω∗ = ℘(R) ∩M , where for some operator F ,970

33The Solovay sequence (θα : α < γ) of a pointclass Ω∗ with the property that if A ∈ Ω∗, then L(A,R) �
AD+ and ℘(R)∩L(A,R) ⊆ Ω∗ is defined as follows. θ0 is the supremum of α such that there is some A ∈ Ω∗

and some ODL(A,R) surjection π : R→ α. If λ < γ is limit, then θγ = supα<λθα. If θα has been defined and
α + 1 < γ, then letting A ∈ Ω∗ be of Wadge rank θα, θα+1 is the supremum of β such that there is some
B ∈ Ω∗ and some OD(A)L(B,R) surjection π : R→ β.
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M =
⋃
{MC Lp

GF(R,Code(F)) | M � AD+ ∧M is self-iterable},34
971

and furthermore, Section 4 also shows that972

℘(R) ∩M = ℘(R) ∩ L(M).973

Clearly, this then shows that Ω∗ = ℘(R) ∩ L(Ω∗).974

Suppose now the Solovay sequence of Ω∗ is of limit length. Let H be the direct limit of975

all hod pairs (Q,Λ) ∈ Ω∗ such that Λ has branch condensation and is Ω∗-fullness preserving.976

H is a union of hod premice and by (†) and [3], H has ordinal height ΘΩ∗ .35 Let λ be the977

length of the Solovay sequence of Ω∗, so λ is a limit ordinal. By the smallness assumption of978

the theorem, λ ≤ ω1. From now on, we write Θ∗ for ΘΩ∗ and θ∗α for each θΩ∗
α on the Solovay979

sequence of Ω∗.980

The following is the main lemma.981

Lemma 6.3 (ZF + DCR). There is no ME L[H] such that H ∈M and ρω(M) < Θ∗.982

Proof. Suppose not. Let N EL[H] be least such that ρω(N ) < Θ∗. Let B ∈ Ω∗ be of Wadge983

rank θ∗n+1 where n < λ is such that ρω(N ) ≤ θ∗n and θ∗n ≥ υ, where υ is the N -cofinality of984

λ. Suppose k is the least such that ρk+1(N ) < Θ∗; we may assume ρk+1(N ) ≤ θ∗n. Let M =985

Lγ(R, B,N ), where γ is some sufficiently large cardinal so that Lγ(R, B,N ) � ZF− + DC.986

For countable σ ≺M containing all relevant objects, let πσ : Mσ →M be the transitive987

uncollapse map whose range is σ. Such a σ exists by DC in L(R, B,N ). For each such σ,988

let πσ(Hσ,Θσ, λσ,Nσ, Bσ, υσ) = (H,Θ∗, λ,N , B, υ). Let Σ−σ = ⊕α<λσΣHσ(α). Note that for989

each α < λσ, ΣHσ(α) acts on all countable stacks as it is the pullback of some hod pair (R,Λ)990

with the property that M∞(R,Λ) = H(πσ(α)).991

Let σ ≺ M be such that ωMσ
1 > n; this is possible since n < λ ≤ ω1. ΣHσ(n+1) is Ω∗-992

fullness preserving and has branch condensation. This follows from the choice of B, which993

gives that (Hσ(n+1),ΣHσ(n+1)) is a tail of some hod pair (Q,Λ) ∈Mσ such that Q has n+1994

Woodin cardinals and Λ has branch condensation and is Ω∗-fullness preserving. We let Σn
σ995

be the fragment of Σ−σ for stacks on Nσ above δNσn . Note that Σn
σ is an iteration strategy of996

Nσ above δNσn since Σn
σ-iterations are above υσ, which may be measurable in Nσ, and hence997

does not create new Woodin cardinals. Σn
σ has branch condensation. We then have that998

Σn
σ ∈ Ω∗; otherwise, by results in the previous sections, we can show L(Σn

σ,R) � AD+ and999

34This means whenever M∗ is countable and transitive and there is an elementary embedding from M∗
into M, then M∗ is (ω, ω1 + 1)-F-iterable in M.

35In fact, the universe of H is precisely the set of all bounded subsets A of ΘΩ∗
such that A is OD in

L(B,R) for some B ∈ Ω∗.
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this contradicts the definition of Ω∗.36 Also, by [3, Theorem 3.26], Σn
σ is Γ-fullness preserving1000

where Γ =def Γ(Nσ,Σn
σ).1001

We then consider the directed system F of tuples (Q,Λ) where Q agrees with Nσ up to1002

δNσn , and (Q,Λ) is Dodd–Jensen equivalent to (Hσ,Σ
n
σ), that is (Q,Λ) and (Hσ,Σ

n
σ) coiterate1003

(above δNσn ) to a hod pair (R,Ψ). F can be characterized as the directed system of hod1004

pairs (Q,Λ) extending (Nσ(n),ΣNσ(n)) such that Γ(Q,Λ) = Γ, Λ has branch condensation1005

and is Γ-fullness preserving. We note that F is ODΣHσ(n)
in L(C,R) for some C ∈ Ω∗. We1006

fix such a C; so L(C,R) � AD+ + SMC. Let A ⊆ δNσn witness ρk+1(Nσ) ≤ δNσn . Then1007

A is ODΣHσ(n)
in L(C,R). By SMC in L(C,R) and the fact that Nσ(n + 1) is Ω∗-full,1008

A ∈ LpΣHσ(n)(Nσ|δNσn ) ∈ Nσ. This contradicts the definition of A.1009

For α < λ, let us write ℘θα(R) for (℘θα(R))Ω∗ and Σα for ΣHα . We also need the following1010

notation: let (P ,Σ) ∈ Ω∗ be a hod pair, let M]
P,Σ =MΣ,]

ω be the minimal P-sound, active1011

Σ-mouse with ω many Woodin cardinals δ
MP,Σ
0 < δ

MP,Σ
1 < . . . , and let δ

MP,Σ
ω = supi δ

MP,Σ
i .37

1012

Finally, we let MP,Σ =MΣ
ω be the corresponding proper class mouse obtained from M]

P,Σ1013

by iterating the top extender OR many times. We remind the reader that at this point, we1014

assume that λ is a limit ordinal.1015

Lemma 6.4 (ZF + DCR). Fix s ∈ (Θ∗)<ω and α < λ be such that s ∈ (θ∗α)<ω. Then for any1016

formula ψ and any hod pair (Q,Λ) ∈ Ω∗ such that Λ is Ω∗-fullness preserving, has branch1017

condensation, and Γ(Q,Λ) = ℘θα(R),1018

L(Λ,R) � ψ[s] ⇐⇒ Mα,∞ � “the derived model satisfies ψ[iΣαH(α),∞(s)]” (∗)

where Mα,∞ is the direct limit of all iterates of MQ,Λ below δ
MQ,Λ
0 via its canonical strategy1019

and the derived model is computed at δ
Mα,∞
ω .1020

Proof. Fix s, ψ, α, and (Q,Λ) as in the statement of the lemma. First we note that Σα is a1021

tail of Λ. Let P =MQ,Λ and let Σ be the canonical strategy of P extending Λ. Note that1022

for any Σ-iterate P∗ of P , we can iterate P∗ using Σ to some P ′ such that L(Λ,R) is the1023

derived model of P ′ at δP
′

ω .38 We may assume also that s is in the range of the direct limit1024

map from P into Mα,∞.1025

Suppose the left hand side of the equivalence fails, that is1026

L(Λ,R) � ¬ψ[s].1027

36We also have that Σnσ is the join of countably many sets of reals, each of which is in Ω∗ and hence is
Suslin co-Suslin. This implies that Σnσ is self-scaled.

37Sections 3 and 4 show that M]
P,Σ exists and its canonical strategy is in Ω∗.

38This is analogous to the fact that L(R) is the derived model of an iterate of Mω.
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Work in V Col(ω,R) and let {(Pn,Σn) | n < ω ∧ (Pn,Σn) ∈ I(P ,Σ)} be cofinal in the directed1028

system of Σ-iterates below δP0 ; here we take (P0,Σ0) = (P ,Σ).39 For m ≤ n < ω, let1029

in : Pn → Pn+1 be the iteration map and let im,n : Pm → Pn and im,∞ : Pm → Mα,∞1030

be the natural maps. Set s0 = i−1
0,∞(s) and let sn = i0,n(s0). Let (Pωk : k < ω) and1031

(πk,l : Pωk → Pωl : k ≤ l < ω) come from the simultaneous R-genericity iteration construction1032

described in [17, Lemma 6.50]. We also let ji : Pi → Pωi be the iteration map; here the1033

iterations are above the si’s, i.e.1034

ji(si) = si.1035

By properties of the construction, for k ≤ l < ω1036

jl ◦ ik,l = πk,l ◦ jk.1037

Let Pωω be the direct limit of Pωk under the embeddings πk,l and let πi,ω : Pωi → Pωω and1038

jω :Mα,∞ → Pωω be the natural maps. Note that jω(s) = s.1039

By our assumptions, for each i,1040

Pωi � 1 
 “the derived model satisfies ¬ψ[s] and s = iPωi ,∞(si)”.1041

Let k be such that for all l ≥ k, πl,l+1(s) = s (k exists because Pωω is well-founded), and let1042

s∗ = πk,ω(s). By elementarity,1043

Pωω � 1 
 “the derived model satisfies ¬ψ[s∗] and s∗ = iPωω ,∞(s)”.1044

By elementarity of jω and the fact that jω(s) = s, we get1045

Mα,∞ � 1 
 “the derived model satisfies ¬ψ[iΣαH(α),∞(s)]”.1046

Contradiction. The other direction is proved similarly.1047

Remark 6.5. The right hand side of (∗) can be defined in H from Σα uniformly in Σα.1048

This is because the right hand side of (∗) is equivalent to the statement: in the derived model1049

of L[H] at the supremum of its Woodin cardinals, the model L(Σα,R∗) satisfies ψ[iΣαH(α),∞],1050

where R∗ is the Col(ω,<Θ)-symmetric reals over L[H] induced by some g ⊆ Col(ω,< Θ).1051

This, in turn, is because we can do an R∗-genericity iteration of Mα,∞ in L[H][g].1052

39There is an awkward point here. We don’t know that (P,Σ) is iterable in V Col(ω,R), but we can run
the argument below inside an L[T, x] where T is a tree projecting to some universal Γ set A and Γ is an
inductive-like, scaled pointclass beyond ℘θα(R) and x ∈ R codes P as well as the reduction of A to Code(Σ).
We may also assume (∗) is absolute between Ω and the model L[T, x]’s version of Ω. Since R ∩ L[T, x] is
countable, we can proceed with the argument below pretending that V is L[T, x], with appropriate definitions
of objects Mα,∞,Λ etc.
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Recall from [18] the following version of the Vopěnka algebra. For each α < λ, let P∗α be1053

the boolean algebra ({A ⊆ ℘(ξ)n | n < ω ∧ ξ < θα ∧ ∃B ∈ Ω∗A ∈ ODL(B,R)},⊆) and let1054

Pα ∈ H ∩ ℘(θα) be the isomorphic copy of P∗α. It’s clear that for each α, P∗α and Pα are OD1055

in L(℘θβ(R)) for any β > α and the definition is uniform in α. Furthermore, for α < β, there1056

is a natural embedding of P∗α into P∗β (and hence from Pα into Pβ) and these embeddings are1057

also OD in L(℘θγ (R)) for any γ > β and again, the definition is uniform in α and β. Let1058

P be the direct limit of the Pα’s under the natural embeddings. The following corollary of1059

Lemma 6.4 shows that P ∈ L[H]. We note that in the corollary below, the language of the1060

structure L[H] has the predicate for the sequence of strategies {Σα | α < λ}.1061

Corollary 6.6. For each α < λ, Pα is definable in L[H] from {θα+1,Σα+1}, uniformly in1062

α. Similarly, for α < β, the natural embedding from Pα into Pβ is definable in L[H] from1063

{θα+1, θβ+1,Σα+1,Σβ+1}, uniformly in α and β. Consequently, P ∈ L[H].1064

Proof. We just prove the first clause; the proof of the second clause is similar. Fix any β > α1065

and let (Q,Λ), (P ,Σ), andMβ,∞ be defined as in the proof of Lemma 6.4 but for Σβ. Note1066

that Pα ∈ H(β). By Lemma 6.4,1067

L[H] � 1 
 in the derived model, L(Σβ,R∗) satisfies “iH(β),∞(Pα) is the Vopěnka algebra at1068

iH(β),∞(θα)”.1069

The above gives a uniform definition of Pα from {θβ,Σβ} inside L[H] for any β > α.1070

Clearly, the third clause follows from the first two clauses.1071

Using Corollary 6.6 and [18, Theorem 4.3.19], we can conclude that1072

• L[H](Ω∗) is a symmetric extension of L[H] via P.1073

• ℘(R) ∩ L[H](Ω∗) = Ω∗.1074

These, in particular, imply L(Ω∗) ∩ ℘(R) = Ω∗. This completes the proof of Theorem 6.1.1075

Lemma 6.3 shows that VΘΩ ∩ L[H] = |H|. In the case L[H] � “the set of Woodin1076

cardinals has limit order type”, let M be the derived model of L[H] (at the supremum of1077

L[H]’s Woodin cardinals). Then M � ADR (cf. [3, Section 3.3]). This, combined with the1078

result of the previous section, proves Theorem 1.6; Theorem 6.1 proves something stronger,1079

namely, Ω∗ is constructibly closed.1080

Lemma 6.7. If DC holds and the order type of the Woodin cardinals of H is a limit ordinal,1081

then cf(Θ∗) > ω and L[H](Ω∗) � ADR + DC.1082
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Proof. Suppose cf(Θ∗) = ω. Let M be a transitive structure containing H+ ∪ Ω∗ for H+ =1083

L[H]|γ, where γ > Θ∗ is a regular cardinal in L[H]. Let σ ≺M be countable such that σ is1084

cofinal in Θ∗; the existence of such a σ follows from DC. Now the πσ-realizable strategy Σσ1085

defined in the proof of Lemma 6.3 acts on π−1
σ (H+). Σσ on stacks below Θσ is simply Σ−σ in1086

this case; by replacing (Nσ,Σσ) by an iterate, we may assume Σσ has branch condensation.1087

We can show then that Σσ ∈ Ω∗ as before. Furthermore, letting i be the direct limit map1088

from π−1
σ (H+) into the direct limit M∞ of all of its Σσ-iterates in Ω∗, then by elementarity1089

πσ � Θσ = i � Θσ.1090

So i is cofinal in Θ∗ and H is the direct limit of hod initial segments of π−1
σ (H) via Σσ. Let1091

Ω = Σσ. By a core model induction through sLp
GΩ(R,Code(Ω)) like in the previous sections,1092

we get a hod pair (Q,Λ) ∈ Ω∗ such that letting Q∞ be the direct limit of all Λ-iterates of1093

Q, HCQ∞. This contradicts the definition of H.1094

The second clause follows immediately from the first clause and [11].1095

We have completed the proof of the following theorems.1096

Theorem 6.8 (ZF + DCR). Suppose Ω∗ = {A ⊆ R | L(A,R) � AD+} and (†+) holds.1097

Suppose Ω∗ 6= ∅ and for every suitable pair (P ,Σ) or hod pair (P ,Σ) such that Σ has branch1098

condensation and is Ω∗-fullness preserving, Σ ∈ Ω∗. If the Solovay sequence of Ω∗ has limit1099

length, then Ω∗ = L(Ω∗,R) ∩ ℘(R) and L(Ω∗,R) � ADR.1100

Theorem 6.9 (ZF + DC). Suppose Ω∗ = {A ⊆ R | L(A,R) � AD+} and (†+) holds. Sup-1101

pose Ω∗ 6= ∅ and for every suitable pair (P ,Σ) or hod pair (P ,Σ) such that Σ has branch1102

condensation and is Ω∗-fullness preserving, Σ ∈ Ω∗. If the Solovay sequence of Ω∗ has limit1103

length, then L(Ω∗,R) ∩ ℘(R) = Ω∗ and L(Ω∗,R) � ADR + DC.1104

Together with the results of the previous section, the above theorems complete the proof1105

of Theorems 1.6 and 1.7.1106

7 Further results, questions, and open problems1107

We first mention a few natural questions regarding possible weakenings of the hypotheses of1108

Theorems 1.5 and 1.7. (In some cases one could also formulate versions with fragments of1109

DC along the lines of 1.6.)1110

Question 7.1. What are the consistency strengths of the following theories:1111

1. ZF + DC + “ω1 is ω2-strongly compact”?1112
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2. ZF + DC + “ω1 is Θ-strongly compact”?1113

Are they equiconsistent with ZF + DC + AD and ZF + DC + ADR respectively?1114

One could try to weaken the compactness hypotheses further:1115

Question 7.2. What are the consistency strengths of the following theories:1116

1. ZF + DC + “ω1 is threadable and ¬�ω1”?1117

2. ZF + DC + “every uncountable regular cardinal ≤ Θ is threadable”?1118

Are they equiconsistent with ZF + DC + AD and ZF + DC + ADR respectively?1119

However, it may be overly ambitious at present to seek a positive answer especially in1120

case 2; one could try to answer the following question first:1121

Question 7.3. What is the consistency strength of the theory ZF + DC + “ω1 is R-strongly1122

compact and Θ is threadable”? Is it equiconsistent with ZF + DC + ADR?1123

We mention a corollary of the proof of Theorem 1.5.1124

Theorem 7.4. The following theories are equiconsistent:1125

1. ZF + DC + AD1126

2. ZF + DC + “ω1 is R-strongly compact and Θ > ω2.”1127

Proof. (1) =⇒ (2): As mentioned in Section 1, the statement “ω1 is R-strongly compact”1128

is a consequence of the existence of the Turing cone measure, which follows from AD, and1129

the statement Θ > ω2 follows from the Moschovakis coding lemma.1130

(2) =⇒ (1): Using a push-forward measure, it’s easy to see that statement (2) above1131

implies statement (3) of Theorem 1.5.1132

If we strengthen statement (2) above to “ω1 is R-supercompact and Θ > ω2”,40 then1133

we obtain an equiconsistency with “there are ω2 many Woodin cardinals”, which is strictly1134

stronger than AD. This is a result of Woodin (see [19]). Similarly, if we strengthen statement1135

(2) of Theorem 1.7 to ZF + DC+ “ω1 is ℘(R)-supercompact” then we obtain the sharp for a1136

model of ADR + DC. To see this, note that from the result of Theorem 1.7, we get a model1137

L(Ω∗,R) � ADR + DC, where Ω∗ ⊆ ℘(R). Fix a countably complete, fine, normal measure µ1138

on ℘ω1(℘(R)). Then note that by normality,1139

40We say that ω1 is X-supercompact if there is a countably complete, fine, normal measure µ on ℘ω1(X).
µ is normal on ℘ω1

(X) if whenever F : ℘ω1
(X)→ ℘ω1

(X) is such that {σ | F (σ) ⊆ σ ∧ F (σ) 6= ∅} ∈ µ then
there is some x ∈ X such that the set {σ | x ∈ F (σ)} ∈ µ.
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∀∗µσ L(Ω∗σ,Rσ) � ADR + DC,1140

where we have that Ω∗ = [σ 7→ Ω∗σ]µ and R = [σ 7→ Rσ]µ. Now, ∀∗µσ (Ω∗σ,Rσ)] exists; by1141

normality again, the sharp for L(Ω∗,R) exists. This demonstrates that the theory ZF + DC+1142

“ω1 is ℘(R)-supercompact” is strictly stronger than ZF + DC+“ω1 is ℘(R)-strongly compact.”1143

However, we don’t know its exact consistency strength.1144

Question 7.5. What is the exact consistency strength of ZF + DC+“ω1 is ℘(R)-supercompact”?1145

We end with the following set of questions.1146

Question 7.6. What are the consistency strengths of the following theories:1147

1. “ZF + DC + “ω1 is ℘(℘(R))-strongly compact”?1148

2. “ZF + DC + “ω1 is ℘(℘(R))-supercompact”?1149

3. “ZF + DC + ω1 is strongly compact”?1150

4. “ZF + DC + ω1 is supercompact”?1151

In particular, are the theories (3) and (4) equiconsistent?1152

It’s worth noting that Woodin (unpublished) has shown the theory “ZF + DC + ω1 is1153

supercompact” is consistent relative to a proper class of Woodin limits of Woodin cardinals.1154

We hope the techniques in this paper when combined with the theory of hod mice would1155

allow us to make significant progress in answering these questions.1156
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