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My research interest in pure mathematics is in set theory and set-theoretic topology. My current research
focuses on studying models of various fragments of determinacy for games of infinite length on natural numbers
or reals, studying the connections between inner models, structures of sets of reals (like those of determined sets
in Polish spaces and quotient spaces of Polish spaces by various equivalence relations), hybrid structures (such as
HOD! of determinacy models), forcing, and strong combinatorial principles. I'm also interested in applications
of strong forcing axioms such as PFA and their connection with other combinatorial principles in set theory. As
mentioned, my other interest in pure mathematics is in set-theoretic topology, in particular the study of Ramsey-
like spaces on functions on infinite ordinals. Some of the techniques mentioned above are used in combination
with combinatorial techniques developed specifically to understand and solve various fundamental topological and
combinatorial problems in Ramsey-like spaces of functions on various infinite cardinals. This work has earned me
two regular NSF grants and currently an NSF CAREER grant. I describe this work in Section I.

My research interest in applied mathematics includes various aspects of mathematical finance and applied
statistics, and in deep learning as applied to computer vision. My work in computer vision, as part of a team of
industry expert, is being supported by a DARPA grant. I describe some ongoing work in this area in Section II.

Detailed information about me and my research can be found at https://math.unt.edu/~ntrang.

I. LOGIC AND SET THEORY

The research described below mostly belongs to an area of set theory called descriptive inner model theory (DIMT).
DIMT is an emerging field in set theory that explores deep connections between descriptive set theory (DST) and
inner model theory (IMT). DST studies a certain class of well-behaved subsets of the reals and of Polish spaces
(e.g. Borel sets, analytic sets) and has its roots in classical analysis, through work of Baire, Borel, Lebesgue, Lusin,
Suslin and others. One way a collection I' of subsets of a Polish space can be well-behaved is that they satisfy var-
ious regularity properties, e.g. they have the Baire property, every uncountable set in I' contains a perfect subset,
every set in I' is Lebesgue measurable. A cornerstone in the history of the subject is the discovery of the Axiom
of Determinacy (AD) by Mycielsky and Steinhaus in 1962. AD states that every infinite-length, two-person game
of perfect information where players take turns play integers is determined, i.e. one of the players has a winning
strategy. If every set in I' C P(R) is determined, then they have all the regularity properties listed above (and
more), and hence very well-behaved. AD contradicts the axiom of choice as the latter implies the existence of very
irregular sets like the Vitali set; however, inside a universe of ZFC, there may be many interesting sub-universes
(models) that satisfy AD, for instance, L(R) the minimal transitive class model of ZF that contains the reals may
satisfy AD. One important and fruitful branch of descriptive set theory studies structure theory of models of AD.
IMT forms one of the core subjects in modern set theory; its main objective is study “canonical” models of various
extensions of ZFC, called large cardinal azioms (or simply large cardinals) and construct such models under various
circumstances (e.g. see question (2) below). The large cardinal axioms form a linear hierarchy of axioms (in terms
of consistency strength) extending ZFC and every known, natural axiom in mathematics/set theory is decided by
one such axiom.? The first “canonical model” of large cardinals is Gédel’s constructible universe L, the minimal
model of ZFC. It is well-known that L cannot admit “very large” large cardinals; the Gddel’s inner model program,
a major program in inner model theory, aims to construct and analyze L-like models that can accommodate larger
large cardinals under various hypotheses. Benchmark properties that help determine the canonicity of these models
include the Generalized Continuum Hypothesis (GCH), Jensen’s O-principles (see Question (1), more details later).

DIMT uses tools from both DST and IMT to study and deepen the connection between canonical models of
large cardinals and canonical models of AD. One of the first significant developments in DIMT comes in the 1980’s
with works of Martin, Steel, Woodin and others; their work, for instance, shows that one can construct models of
AD (e.g. they showed AD holds in L(R)) assuming large cardinal axioms (those that involve the crucial notion of

LHOD stands for the class of “Hereditarily Ordinal Definable” sets, see [15] for a definition.
2By Godel’s incompleteness theorem, given any axiom (A) extending Peano Arithmetic, one can construct a sentence, albeit unnat-
ural, which is not decidable by (A).
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Woodin cardinals) and conversely, one can recover models of large cardinal axioms from models of AD. The key
to uncover these connections is to analyze structure theory of models of AD. Much of DIMT and my research go
along this line (e.g. see Question (1) below). The conjecture that “PFA has the exact consistency strength as that
of a supercompact cardinal” is one of the most longstanding and arguably important open problems in set theory.
Techniques recently developed in DIMT and to some extent from the research described here also enable us to make
significant progress in calibrating the consistency strength lower-bound for PFA (Question (2), to be discussed in
detail later).

We now describe these connections in more technical details in the next couple of paragraphs.®> One way of
formalizing this connection is through the Mouse Set Conjecture (MSC), which states that, assuming the AD or a
more technical version of it (AD™), then whenever a real x is ordinal definable from a real y, then z belongs to a
canonical model of large cardinal (mouse) over y. MSC conjectures that the most complicated form of definability
can be captured by canonical structures of large cardinals. An early instance of this is a well-known theorem of
Shoenfield that every Al real is in the Godel’s constructible universe L. Another instance is a theorem of W.H.
Woodin’s that in the minimal class model containing all the reals, L(R), if AD holds, then MSC holds. However,
the full MSC is open and is one of the main open problems in DIMT.* Instances of MSC have been proved in
determinacy models constructed by their sets of reals (much larger than L(R)) and these proofs typically obtain
canonical models of large cardinals (mice) that capture the relevant ordinal definable real by analyzing HOD of
the determinacy models. Hence, the key link between these two kinds of structures (models of large cardinals and
models of determinacy) is the HOD of the determinacy models. A central notion in the proof of MSC and the
analysis of HOD is the notion of hod mice (developed by G. Sargsyan, cf. [27], which built on and generalized
earlier unpublished work of H'W. Woodin), which features heavily in my research described here. Hod mice are
a type of models constructed from an extender sequence and a sequence of iteration strategies of its own initial
segments. The extender sequence allows hod mice to satisfy some large cardinal theory and the strategies allow
them to generate models of determinacy. Unlike pure extender models, there are many basic structural questions
that are still open for hod mice (to be discussed later).

Another way of exploring the determinacy/large cardinal connection is via the Core Model Induction (CMI),
which draws strength from natural theories such as PFA to inductively construct canonical models of determinacy
and those of large cardinals in a locked-step process by combining core model techniques (for constructing the core
model K) with descriptive set theory, in particular the scales analysis in L(R) and its generalizations. CMI is the
only known systematic method for computing lower-bound consistency strength of strong theories extending ZFC
and it is hoped that it will allow one to compute the exact strength of important theories such as PFA. CMI is
another central theme of my research. Much work has been done the last several years in developing techniques for
CMI and it’s only recently realized that constructing hod mice in non-AD™ contexts (e.g. in the context of PFA,
in contrast to Sargsyan’s constructions) is a key step in CMI.

A large part of my research described here is devoted to studying structural properties of hod mice, developing
methods for constructing hod mice in non-AD™ contexts, and applying these constructions in the core model
induction. One of the main goals is to construct determinacy models of “ADg + © is regular”, “AD™" + the largest
Suslin cardinal is on the Solovay sequence” (LSA) and beyond, from various theories such as PFA, the existence of
countably closed guessing models (cf. [17]) (see Section 2), and failures of the Unique Branch Hypothesis (UBH)
(see Section 2). These lower-bounds are beyond the reach of pure core model methods.

There are many problems in DIMT that I’ve been interested in and working on but my hope is to make progress
toward answering two fundamental questions in the area (to be discussed in details later):

(1) Is HOD of a determinacy model fine-structural (e.g. do the GCH,O hold in HOD)? What large cardinals
can HOD accommodate?

(2) What is the consistency strength of PFA?

The three main aspects of my research are as follows: (a) connections between inner models, hybrid structures, and
canonical sets of reals; (b) applications of the structure theory of the three hierarchies in (a) and their connections;
(c) strong combinatorial principles, determinacy, and large cardinals through the lens of forcing. These three areas
will be described in the following three sections. There, I discuss selected problems that will generate interesting
results and progress in each area. Many of the important problems listed below are either (indirectly) related to or

3Non-logicians may want to simply skim this through.
41t is widely believed that a more fundamental property called generation of pointclasses or hod pair capturing. Current research
focuses on proving (instances of) this property.
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Figure 1: Consistency strength of various theories

(directly) elaborated from problems (1) and (2) above and hence quite ambitious. However, I think these problems
are worth pursuing as they are important for advancing the field. T have obtained results related to most of them
in the past.

The next 3 sections discuss aspects (a), (b), and (c) respectively of my research. Discussions related to questions
(1) and (2) are done at various points in Sections 1, 2, 3. If one is interested in the work done regarding questions
(1) and (2), one can simply read Sections 1 and 2. Other results and applications of the basic work described
Sections 1 and 2 are discussed in Section 3. To keep the document at a reasonable length, I only mention the main
results; a more detailed discussion of my previous work and background of some of the problems described here
can be found at https://www.math.unt.edu/~ntrang. Relative (consistency) strength between various theories I've
been studying are summarized in Figure 1.

1. INNER MODELS, HYBRID STRUCTURES, AND CANONICAL SETS OF REALS

The problem of analyzing HOD of AD" models has gradually grown into a central problem of inner model theory
and spurs the development of descriptive inner model theory. One main reason for its importance is that it provides
insights into the relationship between canonical inner models of large cardinals (pure extender models) and models
of AD" (as alluded to earlier). Unlike HOD of ZFC models which are more or less intractable from the point of
view of inner model theory, HOD of AD" models in some sense are very well-behaved and code up the AD™ models
in a canonical way; hence understanding HOD of such models provide more insights into the models themselves. It
turns out that HOD of an AD™ model (at least up to model of theories that we have been able to understand and
analyze) is a strategic extender model, a kind of hybrid structure that is constructible from a sequence of extenders
and iteration strategies of its own initial segments. In other words, HOD contains large cardinal information (coded
by its extender sequence) as well as information about the determinacy world (coded by its iteration strategy of its
own initial segments). The picture going forward is that one should think of HOD of AD" models as a bridge that
connects large cardinal universes and determinacy worlds. The three hierarchies: the pure extender models, the
AD™ models, and their HOD (the strategic extender models) are therefore intimately connected. The main goal
of descriptive inner model theory is to understand this interconnectedness. This kind of understanding has been
giving rise to many types of applications. For example, techniques from the HOD analysis allow one to calibrate
the exact consistency strength of determinacy theories by constructing inner models of large cardinals that are in
some sense have the same information as the corresponding determinacy model. Another source of applications is
through the core model induction, which relies heavily on our understanding of HOD of AD" models (see the next
section for a more detailed discussion of this topic).
Let NLE be the following statement: “there is no wi-iterable pure extender mouse with a long extender”.

Question 1.1. Assume NLE. Is HOD of an ADT model fine-structural? In particular, does HOD satisfy GCH,
Vi O, and O, hold?



This is question (1) above and I regard this as one of the central questions to tackle in his long-term research
plan. The conjecture is that the answer to the question is positive. The first breakthrough in answering Question
1.1 is by work of Steel and Woodin in the 1990’s [41] for L(R), the minimal model of AD" (if there are models
of ADT). In particular, Steel shows that HOD up to © in L(R) is a pure extender model of large cardinals and
Woodin, building on Steel’s work, shows that full HOD of L(R) is a strategic extender model (so HOD knows a
fragment of its own iteration strategy). The results and techniques in [11] provide a template for analyzing HOD
of bigger models of AD". For instance in 2009, Sargsyan [27] gives an analysis of HOD (up to ©) of all AD"
models up to ADg + © is regular. After results of Steel and Woodin, [27] is regarded as a landmark in the field
as it provides many useful techniques for constructing hod mice (strategic extender models that generate initial
segments of HOD). In paper (i) [49], T complete the full HOD analysis and answer positively Question 1.1, for AD"
models up to ADg + © is regular.

There has been progress in answering Question 1.1 for AD™ models beyond ADg + © is regular. In particular, a
very strong determinacy theory that is at the forefront of the subject and has been studied extensively by various
authors, including me, in recent years is called LSA or “AD" + © = 6,41 + 6, is the largest Suslin cardinal”.
LSA was isolated by Woodin in [55] but has not been known to be consistent until very recently. The general
structural theory of LSA as well as the HOD analysis for models of such theories is the subject of the upcoming
book by G. Sargsyan, and me [29]. The book proves the consistency of LSA and answers part of Question 1.1
positively by showing that HOD of models of LSA is a strategic extender model of a certain kind and so HOD
E GCH. However, the structure theory of HOD developed in [29] is so much more complicated than those in AD™
models up to ADg + © is regular that we were unable to fully prove that [J,< hold in HOD. However, I show in
[29] that HOD satisfies Vi [,; 2° by combining the techniques developed in [29] for hod mice and the construction
of O by Schimmerling-Zeman in [33]. The solution, as a result, is not strictly inner model theoretic; it carries some
descriptive set theoretic flavor and this seems essential since HOD carries with it information about determinacy
world after all. The non-uniformity of the hierarchy developed in [29] makes it very difficult to prove full OJ holds
in HOD; the hierarchy in [29] is too extender-biased. One way to tackle Question 1.1 is to develop an alternative
notion of hod mice in the realm of short-extenders that is simpler, more uniform, and has better condensation
properties. Such a work has been done by John Steel in [42]. The advantage of the hierarchy defined in [42] is that
we no longer need to "layer”; instead, strategies and extenders are fed into the models in a uniform way. Using
the results in [42], Steel and I recently were able to answer Question 1.1 for AD™ models much stronger than LSA.
More precisely, we show that

Theorem 1.2 (ADT). Assume ADg +V = L(P(R)) and NLE. Assume Hod Pair Capturing holds (see Question
1.4). Then in HOD, for all k: k is not subcompact if and only if O, holds.

[43] (joint with John Steel) proves the full condensation theorem for least branch mouse pairs (i.e. not just
condensation for models, but also for strategies)%; this is the first important hurdle that has been overcome on the
way to the characterization of [J in least branch hod mice. The next major step is to study the Dodd-parameters
for hod mice. Once this is done, putting together the characterization of O in HOD is fairly routine (cf. [11]).

However, despite its uniformity and its theory being fully developed up to the level of superstrong, constructing
least branch hod mice in core model induction applications is a challenge (roughly because the hierarchy grows too
fast). It is worthwhile to develop methods for constructing least branch hod mice that can be applied in a variety
of applications (to be discussed more in the next section); Theorem 1.2 will play a crucial role in such applications,
much like Schimmerling-Zeman’s characterization of [J in extender models has played a crucial role for applications
concerning such objects.

These kinds of results are important for various types of applications, one of which is to prove the consistency
of LSA from PFA (to be discussed in more details in the next section, cf. Question 2.1).

Since the structures of hod mice in [12] are similar to those of extender models; the proof of Theorem 1.2
naturally relies on the proof of O in extender models (cf. [33]). Two new ingredients of the proof are: the use of the
$B-operator in [35] to feed branch information of various trategies into a hod premouse and a method of phalanx
comparisons (similar to that used in [42]) used to prove a key condensation lemma.

In order to carry out the HOD analysis, generally, one has to prove structural theorems about the AD™ models.
The following are two central problems in descriptive inner model theory that one needs to address first before
answering Question 1.1 (for any particular AD" theory that one is studying). Recent developments in the theory of
hod mice (e.g. [42]) suggest that the answer to Question 1.1 can be answered in full generality assuming variations
of 1.3 or 1.4.

5[’,@72 is a slightly weaker combinatorial principle than 0.

6The paper also proves the full strategy condensation for the least branch hod mice and for ordinary L[E] mice with nice enough
strategies.




Question 1.3 (Generation of pointclasses, GFP). Assume NLE. Given an ADY model M, suppose T' C P(R)M
is a strict Wadge initial segment of the Suslin co-Suslin sets. Is it possible to generate T' by an iterable (hybrid)
model?

Question 1.4 (Hod pair capturing, HPC). Assume NLE. Suppose A is Suslin co-Suslin. Is there a hod pair (P,X)
(in the sense of [/2]) such that A is Wadge reducible to X7

Quesion 1.3 asks whether strategic extender iterable structures (like hod mice) can generate complicated point-
classes of AD™. This is crucial for the HOD analysis since these iterable structures are used in direct limit systems
that generate initial segments of HOD; roughly speaking, the more complicated the pointclass generated by the
structure, the longer the initial segment of HOD can be captured by the corresponding direct limit system). The
positive answer to Quesion 1.3 is given up to LSA by (in chronological order): Steel and Woodin [41] in L(R), by

Woodin for a broader class of models [40], by Sargsyan [27] for a larger class still (up to minimal models of ADg +©
is regular), and finally by [29] in the minimal model of LSA.

Question 1.4 is, in spirit, similar to Question 1.3 but the notion of hod pairs is precisely given (in [12]). Again,
the framework in [42] hopefully will allow us to answer Question 1.4 for very general AD™ models.

To tackle Questions 1.3, and 1.4 for AD" theories beyond LSA, it seems that we need to understand hod mice
with certain properties and how to construct them (e.g. from PFA)7. We don’t seem to have a good understanding
of such objects (but see [12]); this topic is therefore at the forefront of descriptive inner model theory and is central
to my long-term research plan.

2. CORE MODEL INDUCTIONS, FORCING AXIOMS, AND COMPACTNESS
PRINCIPLES

The main sort of applications of the material discussed previously is in calibrating the consistency strength of set-
theoretic principles. The main tool for accomplishing this is the core model induction. The core model induction,
the only known systematic approach for computing lower-bound consistency strength, is pioneered by Woodin and
developed further by Steel, Schindler and others to construct models of AD' from strong set-theoretic principles
(cf. [34], [37], [3], [38]). The methods of these papers typically show AD™ holds in L(R) and manage to construct
models of slightly stronger AD™ theories. They are, however, insufficient to construct models of ADg + @ is regular,
LSA and beyond because of the lack of understanding of stronger AD™ models, F-mice for complicated operators F,
and the scales analysis in F-mice over R. There are many ingredients that need to be put together to accomplish
this task, some of which are: understanding HOD of complicated AD" models, i.e. those with “long” Solovay

sequence (e.g. see [27], [19], [29] by Sargsyan, Steel, and me), developing a general enough theory of F-mice and
various techniques for constructing new scales and pointclasses of determinacy (cf. T. Wilson [53], F. Schlutzenberg
and me [35]).

2.1. LOWER BOUNDS CONSISTENCY COMPUTATIONS AND FUTURE DEVELOPMENT OF THE
CORE MODEL INDUCTION

We discuss below several problems involving determining consistency strength of important set-theoretic principles.
The arguably most important one is Question (2) above.

Question 2.1. What is the consistency strength of PFA?

As mentioned above, [37], [30], the paper (i) [47], and the book [29] show that the strength of PFA is at least
that of LSA, which is a very strong determinacy principle.

Theorem 2.2 (Sargsyan-Trang). Assume PFA. Then there are inner models M such that M = LSA.®

However, LSA is shown to be consistent relative to a Woodin limit of Woodin cardinals (cf. [29]) and the
consensus amongst set theorists is that PFA should be as strong as a supercompact cardinal (it is well-known that
the upper bound for PFA is a supercompact, cf [2]). A complete answer to Question 2.1 is the holy grail of inner
model theory. From the point of view of descriptive inner model theory (this is the view I take), to completely
solve this problem, one needs to understand HOD of AD" models; in particular, one needs to resolve Questions
1.1, 1.3 and generalizations of Conjecture 1.4. Futhermore, at the level of ADg + © is regular and beyond, one
needs to do a significant amount of work to construct hod-like objects to eventually generate HOD of the AD™

7i.e. those with extenders overlapping Woodin cardinals.

8129] will appear in the ASL Lecture Notes in Logic series, published by the Cambridge University Press.



models; this is where the bulk of the construction is and seems to be hypothesis-dependent. For example, [29],
combining techniques for constructing K¢ from core model theory and techniques for analyzing HOD of AD™
models, introduces a strategic K¢ construction, whose outcome is a hod-like object M that generates HOD of an
LSA model (and hence the LSA model itself). The existence of M is established using covering arguments taking
advantage of PFA and my theorem (mentioned above) that M F Vi O, 2.

One short-coming of the construction in [29] is the fact that we are unable to prove that M is iterable (we get
around this by showing some definable hull of M is iterable and this suffices to get a model of LSA). However,
for going beyond LSA the iterability of M seems important. I wish to pursue this further as I think the methods
introduced by [29] has a lot of mileage in further advancing the solution of Question 2.1. More recently, we have
shown the following, which we believe is significant for our understanding of the CMI. In the below theorem, I',
is the pointclass of universally Baire sets and I'o,-sealing is the statement that for every set generic extension V|g]
of V and every set generic extension V[g][h] of V[g], L(T%") £ AD*, (T%9)# exists, and there is an elementary
embedding j : LTWY) L@,

Theorem 2.3 (Sargsyan-Trang). (i) (2018) Assume PFA. Then there is a hod pair (P,X) such that P is non-
tame.

(i) (2019) T so-sealing is consistent relative to the existence of a Woodin cardinal which is a limit of Woodin
cardinals (WLW).

We note that the existence of a non-tame hod pair is stronger than LSA. Hence the result in the above
theorem improves the conclusion of Theorem 2.2. The construction of a non-tame hod pair in Theorem 2.3 and the
above discussion about the difficulty of CMI past LSA appear to suggest that beyond LSA, one needs to construct
canonical third order objects, i.e. canonical subsets of I',. The threshold above which the methodology of CMI
needs to change from constructing second order objects (i.e. elements of I'y,) to third order objects is I'o-sealing.
The upcoming paper [31] obtains the exact consistency strength of I'w-sealing, discusses the importance of this
principle in set theory, as well as future developments of CMI. In particular, the paper isolates the following principle
and shows it is equiconsistent with I's-sealing (modulo a mild large cardinal assumption).

Definition 2.4 (LSA — over — UB, Sargsyan-Trang). For any set generic extension Vg] of V, in V]g|, there is a
set of reals A such that L(A,R) F LSA and T'w is the Suslin co-Suslin sets of L(A,R),

LSA — over — UB and its variations play a role in clarifying the relationship between the Martin’s Maximum
(MM) and (*)*, an extension of Woodin’s (x) axiom. Recent results show that MM an strengthening of MM,
implies (). However, by analyzing models of MM™* 4 LSA — over — UB, one can show that MM ™ does not imply
()"

The main conjecture from [31], which captures the change in the CMI methodology past I'.o-sealing, is the
following conjecture. Solving this conjecture is part of my long-term research goal.

Conjecture 2.5. Assume NLE and suppose there are unboundedly many Woodin cardinals and strong cardinals.
Let & be a limit of Woodin cardinals and strong cardinals such that either cof(k) = Kk or cof(k) = w. Then there is
a transitive model M of ZFC — Powerset such that

1. co(OrdN M) > k,

2. M has a largest cardinal v,

3. for any g C Coll(w, < k), letting R* = UQ<KRV[9”C"”(W"X”, in V(R*),
L(M,J,c,(M|a)*, Hom™,R) F AD.

In 2017, I observed that

Theorem 2.6. Assume PFA+ there is a Woodin cardinal. Then there are inner models that satisfy ZFC+ there is
a Woodin cardinal which is a limit of Woodin cardinals.

So with an extra, mild large cardinal assumption, we can improve the lower-bound of Theorem 2.2 significantly.
Unfortunately, the method of Theorem 2.6 does not seem to generalize. So it seems to me the right approach to
systematically studying the universe of sets and its canonical structures in the presence of strong forcing axioms
like PFA is continue to generalize the approach of [29] and of Theorem 2.3.

In light of the work above, a more concrete conjecture regarding PFA and HOD of models of AD" can be made
(at least in the region of short-extender models).



Conjecture 2.7. Assume PFA holds. Then there is a model M of ADT such that HODM & “there is a superstrong
cardinal”.

2.2. OTHER COMBINATORIAL PRINCIPLES

We now discuss other combinatorial principles which are important in their own rights. We first discuss consistency
strength of various types of ideals. The following is conjectured by Woodin (part of problem 12 in [55]).

Conjecture 2.8. ADgr+0O is regular is equiconsistent with CH + there is and w1 -dense ideal on wy.

In a recent joint-work with G. Sargsyan and T. Wilson, we have shown the following variations of Woodin’s
conjecture. These are, to the best of my knowledge, the first natural combinatorial principles (extending ZFC) that
are equiconsistent with ADr+0 is regular. We need the following definitions.

Definition 2.9. An ideal T on P, (R) is strong if
(a) T is precipitious, and
(b) whenever G is generic, letting jo : V — Ult(V,G) be the ultrapower map, then jg(w;) = ¢T.

Definition 2.10. An ideal T on P,, (R) is pseudo-homogeneous if whenever G C Pz is V-generic with jg : V —
Ul(V,G) be the corresponding ultrapower map, for all a €, s €, for all A C \* for some A < ¢T, 6 is a formula
in the language of set theory, the statement

UV, G) E Ola, ja(s), jalAll
is independent of the choice of G.
Theorem 2.11. Con(2) implies Con(1) and Con(3) implies Con(1), where
1. ADgr+0 is regular.

2. CH+ there is an wi-dense ideal T on wy such that letting G be V -generic filter for the forcing induced by T,
and j : V — M be the generic ultrapower embedding, then M C M in V[G], j | @ € V for every ordinal «.

3. the nonstationary ideal on P, (R) is strong and pseudo-homogeneous.

Then early this year, the full conjecture was finally resolved (with additional collaborations with D. Adolf and
M. Zeman). So we have the following theorem.

Theorem 2.12 (Adolf-Sargsyan-T.-Wilson-Zeman, 2022). Con(2) implies Con(1) and Con(8) implies Con(1),
where

1. ADRr+O is regular.
2. CH+ there is an wi-dense ideal on wy.
3. the nonstationary ideal on Py, (R) is strong and pseudo-homogeneous.

The converse has been shown by Woodin. So we indeed establish the equiconsistencies of these theories. See
[1] for a full account of these theorems.”

The following question samples four important theories. Below, guessing models are the strongest known
generalizations of the tree property. The existence of k-guessing models implies the tree property at x. wi-

guessing models were first introduced by Viale and Weiss [52], and the obvious formulations of x-guessing models
(for k > wq) are introduced in [51] and [47]. And MM(k) is the Martin Maximum for posets of size at most  for a
cardinal k.

Question 2.13. (a) What is the consistency strength of =0, for some singular strong limit k?

(b) What is the consistency strength of =0, + =(k) for a reqular k > N3 such that k¥ = k and 2<% = x#10

9[1] has been accepted to the Journal of the American Mathematical Society.
100(«r) says that there is a sequence of (Cs : B < a) such that Cg is a club subset of 8, Cg N~y = C for every limit point v of Cg,

and there is no “thread” through the sequence, i.e. there is no club C' in a such that for any limit point 8 of C, C N 3 = Cp.



(c) What is the consistency strength of MM(c™)?
(d) What is the consistency strength of the existence of wi-guessing models?
The constructions in [47] and [29] actually can be used to construct models of LSA from the following principles:
(I) GCH + there is a cardinal » such that x is countably closed and for all « € [k, x*4], =0(a);
(IT) there exist stationary many wo-guessing models that are countably closed;
(III) there exists a strongly compact cardinal.

T hope that these methods can be applied to the situations in Question 2.13. More precisely, since (a), (b), (¢)
above are local principles, there is less room to work with so the exact methods used above don’t seem to work here.
However, I expect that appropriate refinements of these methods can be used to make some progress, at least in
constructing models of ADg + © is regular from (a), (b), and (c). Regarding (d), note that wi-guessing models are
not countably closed (unlike the situation for we-guessing models), so some of the covering arguments used in [17]
don’t work for (d). However, I hope that frequent extension techniques and covering arguments without countable
closure in [21] can be adapted to tackle (d). To the best of my knowledge, (b), (c), and (d) have lower-bound
roughly that of ADg + DC (by [16]) and (a) has lower-bound ADg (by [37] and [30]).

Conjecture 2.14. The consistency strength of MM(c) is exactly that of ADg + © is regular.

Woodin in [55], using Py,.x forcing techniques shows that MM(c) holds in a Py,.x-generic extension of any model
of ADg + © is regular. Neeman and Schimmerling [22], using a different method, also force MM(c) from a large
cardinal property much weaker than supercompact. MM(c) is of interest by set theorists since it implies various
combinatorial principles at H,,, for instance, it decides the size of the continuum, the powerset of w; (they both
equal Ry), it implies the nonstationary ideal on wy is saturated and the weak reflection principle WRP,(w,). Steel
and Zoble [38] show that MM(c) implies AD holds in L(R) and this result is one of the first core model induction
arguments there was. I expect that the knowledge from recent work can be used to improve the lower-bound of
MM(c). The advantage here is that we now understand models of ADr + © is regular very well, much better
than when Steel and Zoble proved their result; furthermore, more techniques have been discovered in constructing
models of determinacy since.

Question 2.15. Show that the failure of UBH for nice trees imply the existence of models of LSA.

As mentioned, UBH for nice trees (normal, non-overlapping, and extenders are sufficiently closed in the models
they are chosen from) is central in constructing canonical inner models of large cardinals (up to supercompact
and beyond). Counterexamples of UBH for non-nice trees have been constructed by Neeman, Steel, and Woodin
(discussed above). One way of enforcing the belief that UBH for nice trees is true is to show that the failure of
the principle has very high consistency strength. Martin and Steel [18] took the first step along this direction
by showing that the failure of UBH implies the existence of a Woodin cardinal (in some inner model). Steel [39]
improves this to AD-®) (and a bit beyond this in some cases). The methods Steel uses are traditional core model

theoretic methods. Sargsyan and me in [28] and [32], using the core model induction, improve upon Steel’s results
significantly and show that the failure of UBH for nice trees implies the existence of models of ADg + © is regular.
As mentioned above, the methods developed in [28] and [32] are different from those developed in [47] and [29]

etc. since we cannot use covering-type arguments in this case; in particular, it is not obvious that the strategic K¢
construction introduced above converges in this situation (after all, the theorem that M satisfies Vx 0O, 2 does not
seem useful here). New methods for constructing models of LSA are needed here.

The set of questions concerns compactness principles on w; in the context of ZF 4+ DC, a topic that has been
important to me since his student days at UC Berkeley and plays a major part in his thesis [46]. The first one
addresses the uniqueness problem for canonical models of AD" + w; is R-supercompact (i.e. AD™ models of the
form L(R)[u]).

Conjecture 2.16. Assume AD or ZFC. Then there is at most one AD" -model of the form L(R)[u] where u is the
Solovay measure on P, (R) in the model.

This conjecture grows out of a question asked by Woodin [54] in the 1980’s. The question asks whether assuming
determinacy, there must be at most one canonical model of ADT 4 w; is R-supercompact. Woodin in [74] shows
that assuming determinacy, if w; is R-supercompact then there must be a unique measure witnessing this. So the



question about the uniqueness of models is natural and resembles the situation regarding uniqueness of minimal
models of one measurable cardinal (which Kunen gives a positive answer to).

The question had been open for more than 30 years until very recently. In a joint work with D. Rodriguez [24],
we answer the question positively in the AD case and Rodriguez, by refining the techniques in [24], has settled the
conjecture fully. The main techniques grow out of the my HOD analysis in [50]; the main point is that the HOD
analysis allows us to compare and line up hod mice in different AD"-models of the form L(R)[x] and conclude that
on a cone of reals z, HOD,, of the models are the same. This implies the model must be the same via Vopenka-like
forcing methods developed by Woodin. In [24], we also make significant progress towards settling Conjecture 2.16
by showing the conjecture is true if one assumes additionally a very mild large cardinal property. Without the
additional large cardinal assumption, it seems one needs to understand better the universally Baire sets in V' and
develops some methods for constructing iterable models with large cardinals in the case that there are distinct such
models.

Moving on to higher forms of compactness, in [48], the T. Wilson and I investigate various forms of compactness
on w; (beyond R-strong compactness and supercompactness). The main results of [48] show that for a fixed set
X, the principles “w; is X-strongly compact” and “w; is X-supercompact” are generally not equiconsistent (this is
certainly the case for X = P(R) as shown in [18]) but they seem to interleave in consistency strength. The paper
[48] develops techniques for carrying out the core model induction in contexts where the full axiom of choice fails;
these techniques along with the HOD analysis in [27] and [29] can hopefully shed new lights on the full answers to
the following question, Question 2.17. The techniques developed in [48] also give unexpected and surprising results.
For example, one of the consequences of methods from [18] is a result of T. Wilson’s and mine that under a certain
smallness assumption, ADy is equivalent to Blackwell-ADg. This is a higher analogue of similar results of Martin
and Neeman regarding Blackwell-AD [19].

Question 2.17. What is the exact consistency strength of wy is strongly compact (supercompact)? Is “ZF + DC+w;
strong compact” equiconsistent with “ZF 4+ DC + wy supercompact”?

In a recent work, G. Sargsyan and I, using techniques in [29], have obtained models of LSA from “AD + w; is
supercompact”. One should not need AD in the above.

3. COMBINATORICS, FORCING, AND LARGE CARDINALS

Classification of cardinals under determinacy requires deep understanding of combinatorial properties of such
cardinals (like the weak and strong partition properties) and sometimes analyses of HOD-like objects. Woodin,
under ADg + DC, has classified all cardinals below [w1]<“*. For example, Woodin shows that there are exactly
5 uncountable cardinals < [w;], namely R,wi, R U wi, R x wy, [w1]®. Under ADT + =ADg, the picture is much
more complicated. For example, there are > © many distinct cardinals between R and R x wy; these cardinals
are determined by Turing invariant functions from the Turing degrees into w;. Also, not much is know about
classifications of cardinals obtained from quotient spaces of the Polish space R by various equivalence relations on
R (like the Vitali relation Ey, E; etc.). We do not know if there are any cardinals strictly between R x w; and
[wi].

Problem 3.1. Classify cardinals under [w3]<“* under AD™.

We expect that the zoo of cardinals below [w3]<“3 is vast (evidence is given above). Perhaps, under ADg, it
is simplier. Why ws? ws is singular (both in V' and in HOD) while w; and wy are regular in V' and strongly
inaccessible in HOD. For instance, one can show [w]*! is strictly larger than [w;]<“* (and similarly to ws) based
on this observation and the fact that HOD thinks [w]“* is strictly larger than [w;]<“* (and similarly to ws). One
can’t do this for w3 and hence some new methods are needed here to show [w3]“? is strictly larger than [w3]<“s (or
to refute this).

Combinatorial calculations at wy are typically pulled back to combinatorics on w; (e.g. the (weak) partition
property on wy is proved using the partition property on wi). One important separation in this hierarchy is: show
that [wa] <2 is strictly above [wy]¥*. This is a good test for the intuition above and the fact that we know [w;]|<*?
is strictly above [w1]“. Behind many of these calculations concerning comparing cardinals under AD and studying
other combinatorial objects like almost-disjoint families, trees (Suslin, Aronszajn, etc.) on some cardinal kK < ©,
we are able to isolate some fundamental properties of functions under AD, like continuity and monotonicity. Here
are questions about such properties that we are exploring and have produced partial results.

Ramsey famously showed that the set of natural numbers, w, satisfies the finite partition relations w — (w)4
for each k < w, i.e. for any (coloring) function ® : [w]® — 2, there is an infinite homogeneous set for ®, i.e. an



infinite set C' C w such that ® | [C]* is constant. The infinite exponent partition relation w — (w)4 (also called

the Ramsey property for all partitions) is a natural generalization that is not compatible with the axiom of choice.
However, simple definable partitions such as Borel or analytic partitions always satisfy the Ramsey property (see
[12] and [36]).

Mathias, in his celebrated work [20], studied the almost everywhere behavior of functions on the Ramsey space
[w]¥ of functions from w to w such as when every function ® : [w]“ — R is Ramsey almost everywhere continuous
or every relation. R C [w]*“ x R has a Ramsey almost everywhere uniformization.

In past and ongoing joint work with W. Chan and S. Jackson, which has resulted in a series of papers (see for
example [9, 5, 6]), we attempt to study similar properties for functions on the Ramsey-like spaces [k]" (or [£]€) for
infinite cardinals k > € and apply these properties to various applications in set theory and set-theoretic topology, in
particular the study of cardinalities without the axiom of choice (or with limited choice). This research program not
only is fruitful in attacking fundamental problems about these function spaces but also has applications in various
problems in studying combinatorial objects in the context of AD. For instance, [7] characterizes the existence of
maximal almost disjoint families on every cardinal & in natural models of AD". The main theorem of the paper is
the following; here B(k) is the set of bounded subsets of &.

Theorem 3.2 (Chan-Jackson-T.). Assume ADV. If k < © is a cardinal and cof(k) > w then there are no mazimal
P.(k) or B(k) almost disjoint families A so that =(]A| < cof(k)).

Assume ADT +V = L(P(R)). If x is a cardinal so that w < cof(k) < ©, then there are no mazimal P, (k) or
B(k) almost disjoint families A so that =(|A| < cof(k)).

Unsurprisingly, (almost everywhere) continuity and monotonicity of functions on these spaces are false in ZFC.
However, under the Ramsey property, for instance x — (k)4, we can prove monotonicity for functions on the space
[k]7. A set C' C k is club in & if it is closed (under the topology induced by the well-order of the ordinals below )
and unbounded in k. ON denotes the class of ordinals. The cofinality of a cardinal x is the length of the shortest
increasing, unbounded, and continuous sequence in k.

Theorem 3.3 (Chan-Jackson-Trang, [8]). Suppose k — (k)5. For any function ® : [k]" — ON, there is C club in
Kk so that for all f,g € [C]"1, if for all a < k, f(a) < g(a), then ®(f) < ®(g).

See [8] for a much more detailed analysis and refinements of the above theorem as well as several theorems on
(almost everywhere) continuity of functions of Ramsey-like spaces, which is a more fundamental property and is
used (along with other combinatorial techniques we developed) to establish monotonicity results like the above.
The following is a representative theorem about continuity on these spaces.

Theorem 3.4 (Chan-Jackson-Trang, [38]). Suppose k is a cardinal, € < k is a limit ordinal with cofinality cof(e) = w,
and £ — (k)5*¢ holds. For any function ® : [k]® — ON, there is a club C C K and a § < so that for all

f,.9€[Cl* = ON,if f16=g10, and sup(f) = sup(g), then (f) = 2(g).

Lastly, I discuss a recent joint project with D. Ikegami concerning forcings that preserve of the Axiom of
Determinacy. The basic questions that we would like to tackle are

Problem 3.5. Assume AD™ + DC. Classify what forcings P with the property that whenever g C P is V-generic:
1. there is an elementary embedding j : V' — V[g] definable over Vg|;

2. Vg E AD*.

We first remark that in ZF 4+ DC, there are IP and j satisfying (1) above. Such an example has been constructed
by Woodin. Also, it is possible for j in (1) to be nontrivial, yet j is the identity on all ordinals.

Clearly, if (1) holds then (2) holds. Some partial answers have been known. For instance, we know that if
V = L(X) for some set X and P adds a real then (1) fails. The method for proving this, unfortunately does not
work for general AD' models. We hope to bring in tools discussed in Sections 1 and 2 into understanding the
model V[g]. In particular, in the region where the HOD analysis holds, we hope to have a clearer picture of how
the sets of reals in V[g] are related to those in V. Our conjecture regarding (1) above is that no P has the property
that there is an elementary j : V' — VJ[g]. This would be the corresponding result to Kunen’s famous theorem for
ZFC models.

Results regarding (2) we have obtained are as follows. First, Jackson and Chan, inspired by previous partial
results of Tkegami and I, have shown that if AD' holds and © is regular, then any forcing P C R will destroy AD™,
see [1]. Recently, Tkegami and I have improved their result and get rid of the assumption Theta is regular. So we
have the following theorem.

11'We tacitly assume all functions are increasing.
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Theorem 3.6 (Chan-Jackson, Tkegami-T.). Assume AD". Suppose P C R is a forcing poset. Then VP = -AD™.

Furthermore, Tkegami and I have shown that if ADT +V = L(P(R)) holds, then letting P, = ADD(k,2)"0P
be the forcing for adding a subset of & using conditions in HOD of length < &, then VF* £ AD™.

II. APPLIED MATH

4. MATHEMATICAL FINANCE, GRAPHS AND MATRICES

I am interested in various aspects of mathematical finance. In a joint ongoing project with M. Foreman and D.
Brownstone, we are interested in: empirically verifying how accurate asset pricing theories such as the Capital
Asset Pricing Model (CAPM), the Arbitrage Pricing Theory (APT) and its variations are, and in designing novel
methodologies for predicting stock prices using short-time series of stock data (e.g. stock data of the previous 6
months).

The methodology is as follows (this is the first approximation). Suppose we have N independent and identically
distributed (iid) random variables X7,..., Xy. X, represents the data on the i-th stock. In practice, we get a time
series of stock returns and these series are (approximately) given by the X;’s. Given a threshold 0 < 6 < 1, we
randomly sample (without replacements) within the set X = {Xy,..., Xy} until we capture 1 —§ of the variance of
the stocks.'? In particular, if X represents the stocks in the S& P 500 and say § = 0.1, we use the random sampling
method to obtain a set P C X such that when regress the S&P 500 stocks on P, we get a R? > 1 —6 = 0.9. We
repeat this process to get averages and confidence intervals. The advantage of this method is that we reach the
regression threshold with a relatively small number of stocks (e.g. 15) for the S&P 500; this is more feasible than
trying to compute the eigenvalues of a 500 x 500 matrix. However, this methodology is flawed. Figure 2 represents
the residuals of other stocks when projected onto the hyperplane spanned by P.

In the above figure, the method did not pick up various sectors that are highly correlated; these correlations
are meaningful economically. When we add these stocks into our portfolio, the number of stocks is close to 30
(on average). This suggests better algorithms for constructing random portfolios such as “cluster sampling” ala
the census bureau. The high correlations means that our random selections have not touched these sectors — we
should artificially pick from those sectors and revise our assumption about the uniform distribution of coupons.
We haven’t done this study yet. We also hope to apply the same methodology (and its improvements) to other
collections of stock index, like the Russell 2000 etc. The hope is to increase the robustness of our methods (i.e. the
bigger the stock universe is, the better it approximates the “whole economy”) and to empirically verify whether
theories like APT hold up when pricing stocks in various sectors of the economy.

The following conjecture is a more general statement that captures our attempts above. The idea is in order to
capture enough of the total variance, we need enough “dimensions”, i.e. the hyperplane generated by the stocks
we sample must be “close enough” to all the stocks in the original collection. Below, for any two random variables

12This is a variation of the Coupon Collection Problem.
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Figure 3: Sharpe ratio comparisons

X,Y, let Cov(X,Y) = (X,Y) be the covariance of the X,Y; let Var(X) = ||X||? be the variance of X.!3 For
a hyperplane P and a random variable X, we let X% be the projection of X onto P. In the following, we let
C = ({X;,X;))1<i,j<n be the covariance matrix of {Xi,...,Xn}; by the Singular Valued Decomposition (SVD)
theorem, we get a diagonal matrix matrix D = diag()\?,...,\%) and a unitary matrix U such that D = UTCU.
We also have an orthogonal set of vectors {Y1, ..., Yy} with the property that (V;,Y;) = A2

Conjecture 4.1 (Unindexed version). For any 0 < A < min;<nA?, for any I C{1,..., N}, for anyd =3, ., A2+
A, there is €(0) and H C {Xy,..., XN} such that letting P be the hyperplane generated by H, the following are
equivalent:
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One can also state the indexed version of the above conjecture. We have reasons to believe the conjectures are
true in cases of interest, namely when a small number of eigenvalues of C are much larger than the rest. We hope
that the conjectures (and its generalizations) will shed light on the relationships between the sampling method
(better yet, its improvements) and pricing models. In particular, we hope to show that no reasonable number of
factors (e.g. Ross [20], Fama-French [10]) can capture (most of) the economy (in terms of returns of stocks and
bonds).

The paper [11] is one along this direction. The Capital Asset Pricing Model (CAPM) is a ubiquitous tool
for financial applications, from asset management to corporate decision making. It is simply stated, has elegant
consequences and has easily applicable corollaries. Unfortunately, due to inherent estimation difficulties it is difficult
to check directly. This paper describes a mathematical technique, the Census Taker Method (CTM) which bypasses
these estimation difficulties and makes conservative estimates of efficient frontiers. A direct application is to show
that the S&P 500 does not realize returns anywhere close to its efficient frontier (see Figure 3, where it is shown
that the Sharpe ratio of the S&P 500 is nowhere closed to that of estimated long efficient frontiers using CTM,
hence the Sharpe ratio of the S&P 500 is very far from actual efficient frontiers).'* Thus a central corollary of the

131t is not a coincidence that we denote Cov and Var as inner product and norm. The are indeed the Lo inner product and norm of
real-valued functions on the sample space. We treat a random variable as a vector in the L2 space.
14The figure is the result of running the CTM on S&P 500 stock data.
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CAPM, at least as used in practice, is empirically false.
In ongoing joint-work with Prof. K. Song at UNT, we are interested in the following problem.

Problem 4.2. Given an n x n, symmetric matrizc A = (a; ;). Find a X such that
1. A+ M\, is diagonally dominant.'®
2. ||A+ Myul|oo — ||Al|so is minimal.'S

3. (A+ A,)7 1 emists, and (A+ \L,) "L, D((A+ AL,) ™) can be computed or approzimated efficiently in a stable
fashion.'”

This general problem is of interest in many applications, including in machine learning and statistics. The
matrix A is typically the Hessian matrix of some appropriate function or the covariance matrix that come from
data that arise in applications. In many cases, it is numerically unstable to compute A~!. We may, instead, want
to “perturb” A and define a matrix B (in our case B = A 4+ AI,,) that is slightly different from A (see requirement
(2)) and yet, we can compute or approximate B! efficiently and the computations are numerically stable.

In many applications, it is often times okay to use B~! as a substitute for A~!. For instance, in optimization or
machine learning, one can execute the line search algorithm using the Newton’s method applied to a given function
f: at step k, the k-th search direction is xx = xx_1 + €xpx, Where p = H,:lVf(:Ek,l) and Hy_q is the Hessian of
f at the point z;_; and € is the step size. For convex f, Newton’s method guarantees convergence, but it usually
is not feasible to compute H ! at each step. By replacing Hy by By that satisfies certain conditions (like B, !
can be computed efficiently and the condition numbers of the By’s are uniformly bounded, cf [23]), we can still
guarantee convergence and efficiency in execution the line search.

The standard algorithm for computing B~! has O(n?®) complexity. Much more efficient algorithms have been
designed for various special types of matrices (banded matrices, sparse matrices etc.), see [13]. Our approach to
resolving the above problem is via computing the Neumann expansion of B = A + AI,,. (cf. [15]). We can show
that if X is chosen such that B is diagonally dominant and positive definite, then we can approximate B~! using the
first p many terms of the Neumann expansion of B~! for a relatively small p. p depends on various characteristics
of A but our numerical experiments show that in most cases, p << n.

In many applications, one often does not care about B~!, but instead computing/approximating D(B~1)
becomes the focus. We can achieve this via the method of probing vectors (and very efficiently in the case where A
is sufficiently sparse, see [15] for a detailed complexity analysis of this method).!® We just highlight one interesting
aspect of this method and how it connects computational linear algebra with graph theory. We define the adjacency
graph G(B) = (V, E) associated with the symmetric matrix B = (b; ;) as follows: the vertices V. = {b; : i < n},
where b; is the i-th column of B, and (a;,a;) € E if and only if j # i and b; j # 0. A key point in the probing
vectors method is in coming up with algorithms for coloring the graph G(B). An efficient algorithm using a small
number p << n of colors will result in an efficient approximation of D(B~1!), see [15]. Our experiments indicate
that this method is very numerically stable and has worked very well for certain classes of matrices A (e.g. sparse
matrices). Furthermore, I have proven relevant theorems that give bounds on the chromatic number of G(B) for a
class of matrices B that we are interested in (e.g. for B which are block diagonal with a small number of non-zero
entries off of the diagonal blocks, then the chromatic number is bounded by the size of the largest block, or more
generally, if B is symmetric with only 2k many nonzero entries, then the chromatic number is O(Vk)).

An ongoing work on matrix factorization concerns the following conjecture on the exact cancellations of Cholesky
factorizations of symmetric positive definite matrices (SPD). In the following, let A = LLT be the Cholesky
factorization of A = (a;;) for 1 < ¢,j < n; here L = (I;;) is lower-triangular. We say that an (7, j) element is an
ezact cancellation if a;; # 0 but 1;; = 0. We say (¢,7) is a fill-in if a;; = 0 but [;; # 0. These concepts have received
considerable attention from applied mathematicians and computer scientists (see [17, 25]) as they are useful in
constructing efficient factorizations of sparse SPDs. In particular, a graph structure (called elimination graph) has
been used to prove that assuming the Cholesky factorization of an irreducible matrix A (or its permutation) has no
exact cancellations, then some permutation of A produces a Cholesky factorization with no fill-ins. However, the
question of whether Cholesky factorizations of some permutation of A will suffer no exact cancellations remains
open. In practice, since matrices have entries that are floating point numbers, having no exact cancellations almost
always occur. However, from the mathematical perspective, the following conjecture is very interesting.

157, is the n x n identity matrix. A matrix (a; ;) is diagonally dominant if for every 4, |a; ;| > 2 laigl-

16We can replace the co-norm by other matrix norms. It is not too important what norm we use.

7D(A) is the matrix whose entries along the diagonal are the diagonal entries of A and whose off-diagonal entries are 0.

181n practice, if our matrix A is not sparse, but has many non-zero entries that are very close to 0, we threshold A, by considering
considering the matrix A¢ for some small €, where the (7, j)-entry of A¢ is a;,j if |a; ;| > € and is 0 otherwise.
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Conjecture 4.3. Given an SPD A, there is a permutation A’ = PT AP of A such that the Cholesky factorization
of A’ has no exact cancellations.

The conjecture has been proven to be true for matrices up to 5 x 5 (by continuing work of mine and an
undergraduate student). With Joseph Prein (a graduate student working under my supervision), we have shown
the following general theorem. The first Schur’s complement of and n xn SPD A is defined to be the (n—1) x (n—1)

matrix SM = (a5))ij>2 — g (ar)k>2(ak1) f>o-

Theorem 4.4. Given an irreducible SPD A. There is a permutation A’ = PT AP of A such that there is a column
in S that has no exact cancellations.

Since the Schur’s complement is used in the inductive definition of Cholesky factorization that produces the
columns of L, we hope this will be important in settling the full conjecture. My undergraduate student is exploring
various ideas related to this.

In another joint work with students, we have finished a paper (with a graduate student and two undergrads)
on the topic of games on a certain types of graphs, called partition graphs. The paper deals with the games of
Cops and Robber on tunnel graphs. We prove several theorems that relate the cop number of the game on a given
graph G and the corresponding game on the n-tunnel graph G,, (basically the cop number can increase by at most
one). The paper, entitled ”On the cop number of subdivisions of graphs”, has been submitted to the Journal of
Combinatorics, [14].

Many related problems in these areas are suitable as research topics for undergraduate students and early
graduate students. For instance, I believe motivated undergraduates can undertake projects similar to the above
(on various types of games on graphs). Sparse matrix approximations is another area where graph-theoretic
techniques can be applied (approximation of inverse of sparse matrices, efficient approximations of solutions of
linear equations of sparse matrices etc.) and undergraduate students can participate in research projects.

5. DEEP LEARNING AND COMPUTER VISION

Regarding industry work, I'm part of a team of industry experts working on bio-inspired, adaptive artificial intelli-
gence (Al) systems that are suitable for many types of applications, including image processing, image recognition,
feature extractions etc. Our company is working on a DARPA funded project that uses our technology to solve
certain problems/tasks DARPA is interested in.

The research project, funded by DARPA, is on designing and building an in-pixel intelligent system as described
Figure 5. The system emulates the saccadic eye movement (hence bio-inspired) in processing visual information.
It consists of the design of a chip that processes images with resolution 1k x 1k, produces a sparsification (10x-
reduction) of the image (called the P, F, and the L features), and doing all of this with a constraint in power
consumption (at most 250 mWatts per image). The sparse images retain enough visual information so that the
back-end (an image detection/recognition system) can be used to perform various tasks on them (like training
on these sparse images and feeding the information back into the on-chip memory and the focal plane). The
whole system is a close-loop system that achieves high-accuracy (in terms of its primary task, namely recognition,
detection and tracking) and at the same time is low-power and fast (at least 100 frames per second). See Figure 5
for a block diagram of the system. The technology used here has potential for commercialization and many other
applications in computer vision. This is another key research direction that I plan to pursue in the next several
years. The main goal is to refine and improve the above technology and build around that core technology so that
it’s easy to adapt to various applications.

One major potential application in computer vision is to design “compact” neural network models that offer
comparable performance to “deep” neural networks but take much less time to train. For instance, one of the
sparsification techniques mentioned above have the potential to help reduce the size of the networks for certain
computer vision tasks (like image detection). The technology allows us to isolate “good” features as opposed
to obtaining them via training convolutional networks with many layers and each layer has many filters (i.e.,
features) to train. This is the key point of my current research in this direction. If successful, we hope to obtain
convolutional neural networks that consist of very few convolutional layers (e.g., 1 to 2 layers) in contrast to current
state-of-the-art neural networks (e.g., the YOLO models and its variations) that may contain dozens of such layers.

This is another area that undergraduates can take part in research. For instance, I am mentoring an intern, who
is a senior undergraduate at UC Irvine, at the company I'm working with on some work related to computer vision
and deep learning. I would envision many projects that undergraduates can participate in (e.g., build convolutional

19P is called a permutation matrix.
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neural networks that perform certain tasks in computer vision). Students will learn very interesting mathematical
ideas (like convolutions, back-propagation, logistic regression, and many more that go into the building blocks of
a neural network) and practical programming skills. These are absolutely important skills, I believe, that a STEM
student (in most disciplines) should acquire.

[9]

[10]

[11]

[12]

[13]

[14]

References

Sargsyan Grigor Trang Nam Wilson Trevor Adolf, Dominik and Martin Zeman. Ideals and strong axioms of
determinacy. arXiv preprint arXiv:2111.06220, 2022.

James E Baumgartner. Iterated forcing. Surveys in set theory, 87:1-59, 1983.

Daniel Busche and Ralf Schindler. The strength of choiceless patterns of singular and weakly compact cardinals.
Annals of Pure and Applied Logic, 159(1):198-248, 2009.

William Chan and Stephen Jackson. The destruction of the axiom of determinacy by forcings on when 6 is
regular. Israel Journal of Mathematics, 241(1):119-138, 2021.

William Chan, Stephen Jackson, and Nam Trang. More definable combinatorics around the first and second
uncountable cardinal. submitted, available at https://math.unt.edu/~ntrang, 2020.

William Chan, Stephen Jackson, and Nam Trang. Countable length everywhere club uniformization. to appear
on the Journal of Symbolic Logic, available at https://math.unt.edu/~ntrang, 2021.

William Chan, Stephen Jackson, and Nam Trang. Almost disjoint families under determinacy. 2022. submitted,
available at https://math.unt.edu/~ntrang.

William Chan, Stephen Jackson, and Nam Trang. Almost everywhere behavior of functions according to
partition measures. submitted, available at https://math.unt.edu/~ntrang, 2022.

William Chan, Stephen Jackson, and Nam Trang. The size of the class of countable sequences of ordinals.
Transactions of the American Mathematical Society, 375(03):1725-1743, 2022.

Eugene F Fama and Kenneth R French. Common risk factors in the returns on stocks and bonds. Journal of
financial economics, 33(1):3-56, 1993.

Matt Foreman, Nam Trang, and David Brownstone. An empirical refutation of CAPM. In preparation,
2020-2021.

Fred Galvin and Karel Prikry. Borel sets and ramsey’s theorem1. The Journal of Symbolic Logic, 38(2):193-198,
1973.

Gene H Golub and Charles F Van Loan. Matrix computations johns hopkins university press. Baltimore and
London, 1996.

STEPHEN JACKSON, CODY OLSEN, JOSIAH SWEATT, NAM TRANG, and ANGELA YUAN. On the
cop number of subdivisions of graphs. 2022. submitted to the Journal of Combinatorics.

15



[15]

[16]

[17]

[18]
[19]

[20]
[21]

[22]

[23]
[24]
[25]

[26]
[27]

28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]

[39]

Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third
millennium edition, revised and expanded.

R. Jensen, E. Schimmerling, R. Schindler, and J. R. Steel. Stacking mice. J. Symbolic Logic, 74(1):315-335,
2009.

Joseph WH Liu. The role of elimination trees in sparse factorization. SIAM journal on matriz analysis and
applications, 11(1):134-172, 1990.

D. A. Martin and J. R. Steel. Iteration trees. J. Amer. Math. Soc., 7(1):1-73, 1994.

Donald A Martin, Itay Neeman, and Marco Vervoort. The strength of blackwell determinacy. The Journal of
Symbolic Logic, 68(02):615-636, 2003.

Adrian RD Mathias. Happy families. Annals of Mathematical logic, 12(1):59-111, 1977.

William J Mitchell and Ernest Schimmerling. Weak covering without countable closure. Mathematical Research
Letters, 2:595-610, 1995.

Itay Neeman and Ernest Schimmerling. Hierarchies of forcing axioms i. The Journal of Symbolic Logic,
73(01):343-362, 2008.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.
D. Rodriguez and N. Trang. L(R, ) is unique. Advances in Mathematics, 2018.

Donald J Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear
equations. In Graph theory and computing, pages 183-217. Elsevier, 1972.

Stephen A Ross. Neoclassical finance. Princeton University Press, 2009.

G. Sargsyan. Hod mice and the mouse set conjecture, volume 236 of Memoirs of the American Mathematical
Society. American Mathematical Society, 2014.

G. Sargsyan and N. Trang. Non-tame mice from tame failures of the unique branch hypothesis. Canadian
Journal of Mathematics, 66(4):903-923, 2014.

G. Sargsyan and N. Trang. The largest Suslin axiom. 2016.

Grigor Sargsyan. Nontame mouse from the failure of square at a singular strong limit cardinal. Journal of
Mathematical Logic, 14(01):1450003, 2014.

Grigor Sargsyan and Nam Trang. The exact consistency strength of generic absoluteness for universally Baire
sets. 2019. Available at math.rutgers.edu/~gs481/.

S. Sargsyan and N. Trang. Tame failures of the unique branch hypothesis and models of ADgr + 8 is regular.
submitted to the Journal of Mathematical Logic, 2014.

Ernest Schimmerling and Martin Zeman. Characterization of [J, in core models. Journal of Mathematical
Logic, 4(01):1-72, 2004.

R. Schindler and J. R. Steel. The core model induction. available at http://www.math.uni-
muenster.de/logik/Personen/rds/. 2013.

F. Schlutzenberg and N. Trang. Scales in hybrid mice over R. arXiv preprint arXiv:1210.7258v4, 2016.
Jack Silver. Every analytic set is ramsey. The Journal of Symbolic Logic, 35(1):60-64, 1970.
J. R. Steel. PFA implies ADY®) J. Symbolic Logic, 70(4):1255-1296, 2005.

John Steel and Stuart Zoble. Determinacy from strong reflection. Transactions of the American Mathematical
Society, 366(8):4443-4490, 2014.

John R Steel. Core models with more woodin cardinals. The Journal of Symbolic Logic, 67(03):1197-1226,
2002.

16



[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]
[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

John R Steel. Derived models associated to mice. Computational prospects of infinity. Part 1. Tutorials,
14:105-193, 2008.

John R Steel and W Hugh Woodin. HOD as a core model. In Ordinal definability and recursion theory: Cabal
Seminar, volume 3, 2012.

J.R. Steel. Normalizing iteration trees and comparing iteration strategies. available at
https://math.berkeley.edu/~ steel /papers/strategycomparejuly2016.pdf, 2016.

J.R. Steel and Nam Trang. Condensation for mouse pairs. submitted to the Journal of Symbolic Logic, 2018.
J.R. Steel and Nam Trang. Characterization of (J in hod of AD™ models. In preparation, 2022.

Jok M Tang and Yousef Saad. A probing method for computing the diagonal of a matrix inverse. Numerical
Linear Algebra with Applications, 19(3):485-501, 2012.

N. Trang. Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction. PhD thesis, UC
Berkeley, 2013.

N. Trang. PFA and guessing models. Israel Journal of Mathematics, pages 607-667, 2016.

N. Trang and T. Wilson. Determinacy from strong compactness of wi. submitted to the Annals of Pure and
Applied Logic, 2016.

Nam Trang. HOD in natural models of AD". Annals of Pure and Applied Logic, 165(10):1533-1556, 2014.

Nam Trang. Structure theory of L(R, u) and its applications. The Journal of Symbolic Logic, 80(01):29-55,
2015.

Matteo Viale. Guessing models and generalized laver diamond. Annals of Pure and Applied Logic,
163(11):1660-1678, 2012.

Matteo Viale and Christoph Weifl. On the consistency strength of the proper forcing axiom. Advances in
Mathematics, 228(5):2672-2687, 2011.

Trevor M Wilson. The envelope of a pointclass under a local determinacy hypothesis. Annals of Pure and
Applied Logic, 2015.

W. H. Woodin. AD and the uniqueness of the supercompact measures on P, (A). In Cabal Seminar 79-81,
pages 67-71. Springer, 1983.

W. H. Woodin. The aziom of determinacy, forcing axioms, and the nonstationary ideal, volume 1 of de Gruyter
Series in Logic and its Applications. Walter de Gruyter & Co., Berlin, 1999.

17



	INNER MODELS, HYBRID STRUCTURES, AND CANONICAL SETS OF REALS
	CORE MODEL INDUCTIONS, FORCING AXIOMS, AND COMPACTNESS PRINCIPLES
	LOWER BOUNDS CONSISTENCY COMPUTATIONS AND FUTURE DEVELOPMENT OF THE CORE MODEL INDUCTION
	OTHER COMBINATORIAL PRINCIPLES

	COMBINATORICS, FORCING, AND LARGE CARDINALS
	MATHEMATICAL FINANCE, GRAPHS AND MATRICES
	DEEP LEARNING AND COMPUTER VISION

