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Abstract

The goal of this paper is to compute the full HOD of models of AD+ of the form

L(℘(R)) below “ADR + Θ is regular”. As part of this computation, we give a com-

putation of HOD|Θ left open in [3] for Θ a successor in the Solovay sequence. Our

work, when combined with [3], shows that in AD+ models of the form L(℘(R)) below

“ADR + Θ is regular”, HOD satisfies GCH.

1 Introduction

Throughout this paper, unless stated otherwise, we assume

V = L(℘(R))+AD+ + no AD+ model M containing R∪OR

satisfies “ADR + Θ is regular”1.

We call this assumption (∗). Under the smallness assumption (∗), we analyze full HOD,

extending the analysis in [3]. Our smallness assumption is made because of the fact that for

our computation, we rely heavily on the theory of hod mice, which is developed in [3] for

models satisfying the assumption2.

To put this work in a proper context, we recall a bit of history on the computation of

HOD. In L(R) under AD3, Harrington and Kechris show that HOD � CH. Let κ = ω
L(R)
1 .

Solovay shows that HOD � κ is measurable and Becker shows κ is the least measurable

1Under our hypothesis, “Strong Mouse Capturing” (SMC) holds. This notion will be introduced in Section
2.

2Recently, there has been significant progress made in understanding HOD of AD+ models up to the
theory “Θ = θα+1, where θα is the largest Suslin cardinal” (cf. [4]).

3It’s known that if L(R) � AD then L(R) � AD+.



in HOD. These were shown using descriptive set theory. Then Steel in [15] or [12] using

inner model theory shows HOD|Θ is a fine-structural mouse, which in particular implies

V HOD
Θ � GCH. Woodin (see [11]), building on Steel’s work, completes the full HOD analysis

in L(R) and shows HOD � GCH and furthermore shows that the full HOD of L(R) is a

hybrid mouse that contains some information about a certain iteration strategy of its initial

segments. A key fact used in the computation of HOD in L(R) is that if L(R) � AD

then L(R) � MC4. It’s natural to ask whether analogous results hold in the context of

AD+ +V = L(℘(R)). The HOD computation is an integral part of the structural analysis of

AD+ models and plays an important role in applications such as the core model induction.

Woodin has shown that under this assumption HOD � CH. Recently, Grigor Sargsyan in [3],

assuming (∗), proves Strong Mouse Capturing (SMC) (a generalization of MC) and computes

HOD|Θ for Θ being limit in the Solovay sequence and HOD|θα for Θ = θα+1 in a similar

sense as above under the assumption (∗).

This paper extends work of Steel, Woodin, and Sargsyan to the computation of full

HOD under (∗). There are two main cases. The case Θ is a limit in the Solovay sequence

(see Section 2), i.e. Θ = θα for some limit α, is dealt with in Section 3. There the HOD

computation is split into two cases depending on whether or not HOD � cof(Θ) is measurable.

Let M∞,M+
∞,N+

∞ be defined as in Section 3, we prove the following theorems.

Theorem 1.1. Assume (∗). Suppose V � “Θ = θα for some limit α” and HOD � “cof(Θ)

is not measurable”. Then HOD = L[M∞].

Theorem 1.2. Assume (∗). Suppose V � “Θ = θα for some limit α” and HOD � “cof(Θ)

is measurable”. Then

1. HOD = L[M∞,M+
∞].

2. HOD = L[N+
∞].

Theorem 1.1 and (2) of Theorem 1.2 imply that HOD is a hybrid (fine-structural) premouse.

In Section 4, assuming (∗), we compute full HOD in the case Θ = θ0 or Θ is a successor in

the Solovay sequence. Let M∞,Σ∞ be defined as in Section 4. Roughly, M∞ is a certain

direct limit extending HOD|Θ and Σ∞ is a fragment of the strategy for M∞|Θ on (finite

stacks of) normal trees in M∞. We outline the proof of the following theorem.

Theorem 1.3. Assume (∗). Suppose V � Θ = θ0 or V � Θ = θα+1 for some α. Then

HOD = L[M∞][Σ∞].

4MC stands for Mouse Capturing, which is the statement that if x, y ∈ R, then x ∈ OD(y) ⇔ x is in a
mouse over y.
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The reader familiar with the HOD computation in L(R) will not be surprised here. In

fact, this is where most of the main ideas in Section 4 come from. However, to make these

ideas work, we have to bring in the theory of hod mice from [3] and recent results on capturing

sets of reals by Σ-mice over R from [5].

Our work combined with Sargsyan’s work in [3] show that:

Corollary 1.4. Assume (∗). HOD � GCH.

The question of whether HOD of an arbitrary AD+ model satisfies GCH still remains open

and is one of the central open problems in descriptive inner model theory.

This work was done as part of the author’s PhD thesis at UC Berkeley under the super-

vision of Professor John Steel. The author would like to thank him for suggesting this topic,

his patience, and numerous helpful advice during the course of this project. The extent

to which this paper is in debt to Grigor Sargsyan’s work on hod mice will be apparent in

Chapters 3 and 4. The author would also like to thank him for numerous suggestions and

corrections on an older version of this paper.

2 Backgrounds

In this section, we recall some basic facts about AD+, hod mice, and a certain kind of Prikry

forcing. The reader familiar with this material can skip to Section 3.

2.1 Basic facts about AD+ and hod mice

We start with the definition of Woodin’s theory of AD+. In this paper, we identify R with

ωω. We use Θ to denote the sup of ordinals α such that there is a surjection π : R→ α.

Definition 2.1. AD+ is the theory ZF + AD + DCR and

1. for every set of reals A, there are a set of ordinals S and a formula ϕ such that

x ∈ A⇔ L[S, x] � ϕ[S, x]. (S, ϕ) is called an ∞-Borel code for A;

2. for every λ < Θ, for every continuous π : λω → ωω, for every A ⊆ R, the set π−1[A] is

determined.

AD+ is known to be equivalent to “AD + the set of Suslin cardinals is closed” (see [1]).

Another, perhaps more useful, equivalence of AD+ is “AD + Σ1 statements reflect to the

Suslin-co-Suslin sets” (see [8] for a more precise statement).

Definition 2.2 (AD+). The Solovay sequence is the sequence 〈θα | α ≤ Ω〉 where
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1. θ0 is the sup of ordinals β such that there is an OD surjection from R onto β;

2. if α > 0 is limit, then θα = sup{θβ | β < α};

3. if α = β + 1 and θβ < Θ (i.e. β < Ω), fixing a set A ⊆ R of Wadge rank θβ, θα is the

sup of ordinals γ such that there is an OD(A) surjection from R onto γ, i.e. θα = θA.

Note that the definition of θα for α = β + 1 in Definition 2.2 does not depend on the

choice of A. We recall some basic notions from descriptive set theory.

Suppose A ⊆ R and (N,Σ) is such that N is a transitive model of “ZFC−Replacement”
and Σ is an (ω1, ω1)-iteration strategy or just ω1-iteration strategy for N . We use o(N),

ORN , ORDN interchangably to denote the ordinal height of N . Suppose that δ is countable

in V but is an uncountable cardinal of N and suppose that T, U ∈ N are trees on ω× (δ+)N .

We say (T, U) locally Suslin captures A at δ over N if for any α ≤ δ and for N -generic

g ⊆ Coll(ω, α),

A ∩N [g] = p[T ]N [g] = RN [g]\p[U ]N [g].

We also say that N locally Suslin captures A at δ. We say that N locally captures A if

N locally captures A at any uncountable cardinal of N . We say (N,Σ) Suslin captures A

at δ, or (N, δ,Σ) Suslin captures A, if there are trees T, U ∈ N on ω × (δ+)N such that

whenever i : N → M comes from an iteration via Σ, (i(T ), i(U)) locally Suslin captures A

over M at i(δ). In this case we also say that (N, δ,Σ, T, U) Suslin captures A. We say (N,Σ)

Suslin captures A if for every countable δ which is an uncountable cardinal of N , (N,Σ)

Suslin captures A at δ. When δ is Woodin in N , one can perform genericity iterations on

N to make various objects generic over an iterate of N . This is where the concept of Suslin

capturing becomes interesting and useful. We exploit this fact on several occasions.

We say that Γ is a good pointclass if it is closed under recursive preimages, closed under

∃R, is ω-parametrized, and has the scale property. Furthermore, if Γ is closed under ∀R, then

we say that Γ is inductive-like.

We quote a couple of theorems of Woodin, which will be key in our HOD analysis.

Theorem 2.3 (Woodin, see [2]). Assume AD+. Let 〈θα | α ≤ Ω〉 be the Solovay sequence.

Suppose α = 0 or α = β + 1 for some β < Ω. Then HOD � θα is Woodin.

Theorem 2.4 (Woodin). Assume AD+ +V = L(℘(R)). Then HOD = L[P ] for some P ⊆ Θ

in HOD.

A proof of Theorem 2.4 can be found in [16, Theorem 3.1.9]. Next, we summarize some defi-

nitions and facts about hod mice that will be used in our computation. For basic definitions
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and notations that we omit, see [3]. The formal definition of a hod premouse P is given in

Definition 2.12 of [3]. Let us mention some basic first-order properties of P . There are an

ordinal λP and sequences 〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then P � δPα
is Woodin;

2. P(0) = Lpω(P|δ0)P ; for α < λP , P(α + 1) = (LpΣPα
ω (P|δα))P ; for limit α ≤ λP ,

P(α) = (Lp
⊕β<αΣPβ
ω (P|δα))P ;

3. P � ΣPα is a (ω, o(P), o(P))5-strategy for P(α) with hull condensation;

4. if α < β < λP then ΣPβ extends ΣPα .

We will write δP for δPλP and ΣP = ⊕β<λPΣPβ+1.

Definition 2.5. (P ,Σ) is a hod pair if P is a countable hod premouse and Σ is a (ω, ω1, ω1)

iteration strategy for P with hull condensation such that ΣP ⊆ Σ and this fact is preserved

by Σ-iterations.

Hod pairs typically arise in AD+-models, where ω1-iterability implies ω1 + 1-iterability.

In practice, we work with hod pairs (P ,Σ) such that Σ also has branch condensation. It

follows from [3] that Σ is pullback consistent, positional, and commuting. Such hod pairs

are particularly important for our computation as they are points in the direct limit system

giving rise to HOD. For hod pairs (MΣ,Σ), if Σ is a strategy with branch condensation and
~T is a stack on MΣ with last model N , ΣN ,~T is independent of ~T . Therefore, later on we

will omit the subscript ~T from ΣN,~T whenever Σ is a strategy with branch condensation and

MΣ is a hod mouse.

Definition 2.6. Suppose P and Q are two hod premice. Then P Ehod Q if there is α ≤ λQ

such that P = Q(α).

If P and Q are hod premice such that P Ehod Q then we say P is a hod initial segment

of Q. If (P ,Σ) is a hod pair, and Q Ehod P , say Q = P(α), then we let ΣQ be the strategy

of Q given by Σ. Note that ΣQ ∩ P = ΣPα ∈ P .

All hod pairs (P ,Σ) have the property that Σ has hull condensation and therefore, mice

relative to Σ (or Σ-mice) make sense. To state the Strong Mouse Capturing we need to

introduce the notion of Γ-fullness preservation. We fix some reasonable coding (we call

Code) of (ω, ω1, ω1)-strategies by sets of reals. Suppose (P ,Σ) is a hod pair. Let I(P ,Σ) be

5This just means ΣP
α acts on all stacks of ω-maximal, normal trees in P.
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the set (Q,ΣQ, ~T ) such that ~T is according to Σ such that i
~T exists and Q is the end model

of ~T and ΣQ is the ~T -tail of Σ. Let B(P ,Σ) be the set (Q,ΣQ, ~T ) such that there is some

R such that Q = R(α), ΣQ = ΣR(α) for some α < λR and (R,ΣR, ~T ) ∈ I(P ,Σ).

Definition 2.7. Suppose Σ is an iteration strategy with hull-condensation, a is a countable

transitive set such that MΣ ∈ a6 and Γ is a pointclass closed under boolean operations and

continuous images and preimages. Then LpΓ,Σ
ω1

(a) =
⋃
α<ω1

LpΓ,Σ
α (a) where

1. LpΓ,Σ
0 (a) = a ∪ {a}

2. LpΓ,Σ
α+1(a) = ∪{M : M is a sound Σ-mouse over LpΓ,Σ

α (a)7 projecting to LpΓ,Σ
α (a) and

having an iteration strategy in Γ}.

3. LpΓ,Σ
λ (a) =

⋃
α<λ LpΓ,Σ

α (a) for limit λ.

We let LpΓ,Σ(a) = LpΓ,Σ
1 (a).

Definition 2.8 (Γ-Fullness preservation). Suppose (P ,Σ) is a hod pair and Γ is a pointclass

closed under boolean operations and continuous images and preimages. Then Σ is a Γ-fullness

preserving if whenever (~T ,Q) ∈ I(P ,Σ), α + 1 ≤ λQ and η > δα is a strong cutpoint of

Q(α + 1), then

Q|(η+)Q(α+1) = LpΓ,ΣQ(α),~T (Q|η).

and

Q|(δ+
α )Q = LpΓ,⊕β<αΣQ(β+1),~T (Q|δQα ).

When Γ = ℘(R), we simply say fullness preservation; in this case, we also write Lp

(LpΣ) instead of LpΓ (LpΓ,Σ). A stronger notion of Γ-fullness preservation is super Γ-fullness

preservation. Similarly, when Γ = ℘(R), we simply say super fullness preservation.

Definition 2.9 (Super Γ-fullness preserving). Suppose (P ,Σ) is a hod pair and Γ is a

pointclass closed under boolean operations and continuous images and preimages. Σ is super

Γ-fullness preserving if it is Γ-fullness preserving and whenever (~T ,Q) ∈ I(P ,Σ), α < λQ

and x ∈ HC is generic over Q, then

LpΓ,ΣQ(α)(x) = {M | Q[x] � “M is a sound ΣQ(α)-mouse over x and ρω(M) = x”}.
6MΣ is the structure that Σ-iterates.
7By this we mean M has a unique (ω, ω1 + 1)-iteration strategy Λ above LpΓ,Σ

α (a) such that whenever
N is a Λ-iterate of M, then N is a Σ-premouse.
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Moreover, for such an M as above, letting Λ be the unique strategy for M, then for any

cardinal κ of Q[x], Λ � HQ[x]
κ ∈ Q[x].

By [3], hod pairs (P ,Σ) such that Σ is super fullness preserving exist under (∗). These

pairs typically come from hod pair (or Γ-hod pair) constructions (see [3, Lemma 3.2.3]). Hod

mice that go into the direct limit system that gives rise to HOD have strategies that are

super fullness preserving and have branch condensation. Here is the statement of the strong

mouse capturing.

Definition 2.10 (The Strong Mouse Capturing). The Strong Mouse Capturing (SMC) is

the statement: Suppose (P ,Σ) is a hod pair such that Σ has branch condensation and is

Γ-fullness preserving for some Γ. Then for any x, y ∈ R, x ∈ ODΣ(y) if and only if x is in

some Σ-mouse over 〈P , y〉.

When (P ,Σ) = ∅ in the statement of Definition 2.10 we get the ordinary Mouse Capturing

(MC). The Strong Mouse Set Conjecture (SMSC) just conjectures that SMC holds below a

superstrong.

Definition 2.11 (Strong Mouse Set Conjecture). Assume AD+ and that there is no mouse

with a superstrong cardinal. Then SMC holds.

Recall that by results of [3], SMSC holds assuming (∗). To prove that hod pairs exist in

AD+ models, we typically do a hod pair construction (or a Γ-hod pair construction for some

pointclass Γ). For the details of these constructions, see Definitions 2.1.8 and 2.2.5 in [3].

Suppose Γ is a pointclass closed under complements and under continuous preimages.

Suppose also that λP is limit. We let

Γ(P ,Σ) = {A | ∃(Q,ΣQ, ~T ) ∈ B(P ,Σ) A <w
8Code(ΣQ)}.

HP Γ = {(P ,Λ) | (P ,Λ) is a hod pair and Code(Λ) ∈ Γ},

and

MiceΓ = {(a,Λ,M) | a ∈ HC, a is self-wellordered transitive, Λ is an iteration

strategy such that (MΛ,Λ) ∈ HP Γ, MΛ ∈ a, and M E LpΓ,Λ(a)}.

If Γ = ℘(R), we let HP = HP Γ and Mice = MiceΓ. Suppose (MΣ,Σ) ∈ HP Γ. Let

MiceΓ
Σ = {(a,M) | (a,Σ,M) ∈MiceΓ}.

8Wadge reducible to
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2.2 A Prikry forcing

Let (P ,Σ) be a hod pair such that Σ has branch condensation and LpΣ(R) is defined and

satisfies AD+ (see [7] for a precise definition of LpΣ(R)). We briefly describe a notion of

Prikry forcing that will be useful in our HOD computation. The forcing P described here is

defined in LpΣ(R) and is a modification of the forcing defined in Section 6.6 of [9] or in [5].

All facts about this forcing are proved similarly as those in Section 6.6 of [9] so we omit all

proofs.

First, let T be the tree of a Σ2
1(Σ) scale on a universal Σ2

1(Σ) set U . Write Px for the

Σ-premouse9 coded by the real x. Let a be countable transitive, x ∈ R such that a is coded

by a real recursive in x. A normal iteration tree U on a 0-suitable Σ-premouse Q (see [5] or

Definition 4.1, where (Q,Σ) is defined to be 0-suitable) is short if for all limit ξ ≤ lh(U),

LpΣ(M(U|ξ)) � δ(U|ξ) is not Woodin. Otherwise, we say that U is maximal. We say that a

0-suitable Pz is short-tree iterable by Λ if for any short tree T on Pz, b = Λ(T ) is such that

MT
b is 0-suitable, and b has a Q-structure Q such that Q EMT

b . Put

Fxa = {Pz | z ≤T x,Pz is a short-tree iterable 0-suitable Σ-premouse over a}

For each a, for x in the cone in the previous claim, working in L[T, x], we can simultaneously

compare all Pz ∈ Fxa (using their short-tree iteration strategy) while doing the genericity

iterations to make all y such that y ≤T x generic over the common part of the final model

Qx,−a . This process (hence Qx,−a ) depends only on the Turing degree of x. Put

Qxa = LpΣ
ω(Qx,−a ), and δxa = o(Qx,−a ).

By the above discussion, Qxa, δxa depend only on the Turing degree of x. Here are some

properties obtained from the above process.

1. Fxa 6= ∅ for x of sufficiently large degree;

2. Qx,−a is full (no levels of Qxa project strictly below δxa);

3. Qxa � δxa is Woodin;

4. ℘(a) ∩Qxa = ℘(a) ∩ODT (a ∪ {a}) and ℘(δxa) ∩Qxa = ℘(δxa) ∩ODT (Qx,−
a ∪ {Qx,−

a });

5. δxa = ω
L[T,x]
1 .

Now for an increasing sequence ~d = 〈d0, ..., dn〉 of Turing degrees, and a countable transitive,

set

9To be entirely correct, we should call Px a reorganized Σ-premouse in the sense of [3, 2.10], but we
suppress this cumbersome name here.

8



Q0(a) = Qd0
a and Qi+1(a) = Qdi+1

Qi(a) for i < n

We assume from here on that the degrees di+1’s are such that Qdi+1

Qi(a) are defined. For ~d as

above, write Q~d
i (a) = Qi(a) even though Qi(a) only depends on ~d|(i+ 1). Let µ be the cone

measure on the Turing degrees. We can then define our Prikry forcing P (over L(T,R)) as

follows. A condition (p, S) ∈ P just in case p = 〈Q~d
0(a), ...,Q~d

n(a)〉 for some ~d, S ∈ L(T,R) is a

“measure-one tree” consisting of stems q which either are initial segments or end-extensions

of p and such that (∀q = 〈Q~e0(a), ...,Q~ek(a)〉 ∈ S)(∀∗µd) let ~f = 〈~e(0), ..., ~e(k), d〉, we have

〈Q~f
0(a), ...,Q~f

(k+1)(a)〉 ∈ S. The ordering on P is defined as follows.

(p, S) 4 (q,W )⇔ p end-extends q, S ⊆ W , and ∀n ∈ dom(p)\ dom(q) (p|(n+ 1) ∈ W ).

P has the Prikry property, that is, for any formula ϕ(v) in the forcing language, for any

P-term τ in LpΣ(R), for any condition (p, S) ∈ P, there is a condition (p, S∗) 4 (p, S)

such that either (p, S∗) 
 ϕ[τ ] or (p, S∗) 
 ¬ϕ[τ ]. Let G be a P-generic over LpΣ(R),

〈Qi | i < ω〉 = ∪{p | ∃ ~X(p, ~X) ∈ G} and Q∞ =
⋃
iQi. Let δi be the largest Woodin cardinal

of Qi. Then

P (δi) ∩ L[T, 〈Qi | i < ω〉] ⊆ Qi,

and

L[T,Q∞] = L[T, 〈Qi | i < ω〉] � δi is Woodin.

Definition 2.12 (Derived models). Suppose M � ZFC and λ ∈ M is a limit of Woodin

cardinals in M . Let G ⊆ Col(ω,< λ) be generic over M . Let R∗G (or just R∗) be the

symmetric reals of M [G] and Hom∗G (or just Hom∗) be the set of A ⊆ R∗ in M(R∗) such

that there is a tree T such that A = p[T ] ∩ R∗ and there is some α < λ such that

M [G � α] � “T has a <-λ-complement”.

By the old derived model of M at λ, denoted by D(M,λ), we mean the model L(R∗, Hom∗).

By the new derived model of M at λ, denoted by D+(M,λ), we mean the model L(Γ,R∗),

where Γ is the closure under Wadge reducibility of the set of A ∈ M(R∗) ∩ ℘(R∗) such that

L(A,R∗) � AD+.

Theorem 2.13 (Woodin). Let M be a model of ZFC and λ ∈ M be a limit of Woodin

cardinals of M . Then D(M,λ) � AD+, D+(M,λ) � AD+. Furthermore, Hom∗ is the

pointclass of Suslin co-Suslin sets of D+(M,λ).
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Using the proof of Theorem 0.1 from [5], we get that (definably over) LpΣ(R)[G], there is a

Σ-premouse Q+
∞ extending Q∞ such that LpΣ(R) can be realized as a (new) derived model

of Q+
∞ at ωV1 , which is the limit of Woodin cardinals of Q+

∞. The Σ-premouse Q+
∞ is the

union of Σ-premice R over Q∞, where R is an S-translation of some M � LpΣ(R) (see [3]

for more on S-translations).

Finally, we remark that Theorem 0.1 of [5] shows that if (∗) holds and in addition, Θ = θ0

or Θ = θα+1 for some α, then there is a hod pair (P ,Σ) ((P ,Σ) = (∅, ∅) if Θ = θ0) such that

V = L(LpΣ(R))10. We write Lp(R) if Σ = ∅. This particular representation of V and the

discussion above will be useful for the HOD computation in Section 4.

3 The Limit Case

There are two cases: the easier case is when HOD � “cof(Θ) is not measurable”, and the

harder case is when HOD � “cof(Θ) is measurable”.

Here’s the direct limit system that gives us V HOD
Θ .

F = {(Q,Λ) | (Q,Λ) is a hod pair; Λ is fullness preserving and has branch condensation}.

The order on F is given by

(Q,Λ) ≤F (R,Ψ) ⇔ Q iterates to a hod initial segment of R.

≤F is directed and we can form the direct limit of F under the natural embeddings coming

from the comparison process. Let M∞ be the direct limit. By the computation in [3],

|M∞| = V HOD
Θ .

M∞ as a structure also has a predicate for its extender sequence and a predicate for a

sequence of strategies.

Proof of Theorem 1.1. To prove the theorem, suppose the equality is false. Then by Theorem

2.4, there is an A ⊆ Θ such that A ∈ HOD\L(M∞) (the fact that L(M∞) ⊆ HOD follows

from the definition ofM∞). By Σ1-reflection ([8, Theorem 1]), there is a transitive N coded

10By [3], Σ is in fact a (Θ,Θ)-iteration strategy and MΣ,]
1 is (Θ,Θ)-iterable. This is enough iterability to

define LpΣ(R) as in [7].
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by a Suslin co-Suslin set such that

N � ZF− + AD+ + V = L(℘(R)) + SMC + Θ exists and is limit in the Solovay sequence

+ HOD � “cof(Θ) is not measurable ” + “∃B ⊆ Θ(B ∈ HOD\L(M∞))”.

Take N to be the minimal such and let B witness the failure of the theorem in N . Let

Ω = ℘(R)N . Fix a coarsely-iterable mouse N∗x (in V) capturing a good pointclass Ω′ beyond

Ω, i.e. Ω ( ∆Ω′ (see [3] or [13, Theorem 10.3] for more on N∗x , where x is a real on some

cone where the operation x 7→ N∗x is defined). Let φ define B (for simplicity, we suppress

the ordinal parameter) i.e.

α ∈ B ⇔ N � φ[α].

There is a pair (P ,Σ), a limit ordinal λ, a sequence (Pγ,Σγ | γ < λ), such that:

1. (
⋃
γ<λPγ) � P ;

2. for all β < λ, Pβ is the β-th hod mouse in the Ω-hod pair construction of N∗x (so

λPβ = β). So if γ < η < λ, Pγ �hod Pη;

3. Σγ ∈ Ω is the corresponding strategy of Pγ which is Ω-fullness preserving, has branch

condensation;

4. P is the first model Q of the L[E,⊕γ<λΣγ][
⋃
γ<λPγ]-construction of N∗x such that

ρω(Q) < o(
⋃
γ<λP Pγ));

5. Σ is the induced strategy for P with branch condensation and extends �γ<λPΣγ;

That λ is limit and ρω(P) < o(
⋃
γ<λP Pγ) are because of the choice of N∗x ,Ω

′ and Θ being

limit in the Solovay sequence.

Let (δPβ | β < λ) be the Woodin cardinals of P below o(
⋃
γ<λP Pγ)). Let λP = λ and

δP = supγ<λδ
P
γ . We also use similar notations for Σ-iterates of P . For a Σ-iterate R

of P , we let ΣR be the tail of Σ. By going to a Σ-iterate if necessary, we assume that

(
⋃
γ<λP Pγ,�γ<λPΣγ) satisfies [3, Theorem 3.2.21] applied in N . This and the choice of P

imply that the direct limitM+
∞ of all Σ-iterates of P11 extends (M∞)N and (Σγ | γ < λ) is

cofinal in Ω. Hence, letting j : P →M+
∞ be the natural map, then M+

∞|j(δP) = (M∞)N .

Now pick a sequence 〈γi | i < ω〉 cofinal in λP such that δλPγi is Woodin in P , an

enumeration 〈xi | i < ω〉 of R and do a genericity iteration of P to successively make each xi

11P is what is called an “anomalous hod mouse” in [3]. See [3, Section 2.7] for how to iterate anomalous
hod mice.
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generic at appropriate image of δλPγi . Let Q be the end model of this process and i : P → Q
be the iteration embedding.12 We have that N is the derived model of Q at i(δP) and in

fact, P = Lβ(
⋃
γ<λPγ) for some β.

Let D be the derived model of M+
∞ at Θ and

π∞ :M∞ → (M∞)D

be the direct limit embedding given by the join of the strategies ofM∞’s hod initial segments

(this is the tail of ⊕γ<λΣγ). We claim that

α ∈ B ⇔ D � φ[π∞(α)] (†).

To see (†), suppose not and let α be a counter-example. So

N � φ[α]⇔ D � ¬φ[π∞(α)].

Let R be a Σ-iterate of P (R is countable) such that letting πR,∞ : R →M+
∞ be the direct

limit map, there is some α∗ ∈ R such that πR,∞(α∗) = α. We may assume Q is an iterate

of R and let πR,Q be the iteration map. Let

πQ,∞ : Q|δQ → (M∞)D(Q,δQ) = (M∞)N

be the direct limit map. Note that ΣQQ � (πR,Q(α∗) + 1) ∈ Q determines the map πQ,∞ �

(πR,Q(α∗) + 1). So the statement “N � φ[α]” is definable over Q via a formula ϕ from

parameters ΣQQ � (πR,Q(α∗) + 1) and πR,Q(α∗), i.e.

N � φ[α]⇔ Q � ϕ[ΣQQ � (πR,Q(α∗) + 1), πR,Q(α∗)].

By elementarity,

M+
∞ � ϕ[ΣM

+
∞

M+
∞
� (α + 1), α].

But this means D � φ[π∞(α)]. Contradiction.

(†) implies that B ∈M+
∞ = (L[M∞])N , which contradicts our assumption. Hence we’re

done.

Remark 3.1. It’s not clear that in the statement of Theorem 1.1, “M∞” can be replaced by

“V HOD
Θ ”.

12We actually don’t know that Σ can be extended to V Col(ω,R) but we can replace N by a countable
model. See [9, page 72] for the detail. From now on, we pretend that Σ is iterable in V Col(ω,R) without
further comment.
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Suppose HOD � cof(Θ) is measurable. The computation in this case is more complicated

due to the fact that iterations of a hod mouse P such that P � “cof(λP) is measurable” may

introduce new Woodin cardinals in the iterates above the pointwise images of λP .

Recall that by [3], V HOD
Θ is the universe ofM∞ whereM∞ is the direct limit (under the

natural maps) of the directed system F . Let

M∗
∞ = Ult0(HOD, µ)|Θ,

where µ is the order zero measure on cofHOD(Θ). Let f : cofHOD(Θ) =def α → Θ be a

continuous and cofinal function in HOD. For each β < α, let Λβ be the strategy ofM∗
∞(f(β))

and Σβ be the strategy of M∞(f(β)). Let

M+
∞ = Ult0(HOD, µ)|(Θ+)Ult0(HOD,µ),

and

N+
∞ =

⋃
{M | M∞ EM, ρ(M) = Θ,M is a hybrid mouse satisfying property (†)}.

Here a mouse M satisfies property (†) if whenever π : M∗ → M is elementary, M∗ is

countable, transitive, and π(Θ∗) = Θ, then M∗ is a ⊕ξ<Θ∗Σ
∗
ξ-mouse for stacks above Θ∗,

where Σ∗ξ is the strategy for the hod mouse M∗(ξ) obtained by the following process: let

(P ,Σ) ∈ F and i : P → M∞ be the direct limit embedding such that the range of i

contains the range of π � M∗(ξ); Σ∗ξ is then defined to be the π ◦ i−1-pullback of Σ. It’s

easy to see that the strategy Σ∗ξ as defined doesn’t depend on the choice of (P ,Σ). This is

because if (P0,Σ0, i0) and (P1,Σ1, i1) are two possible choices to define Σ∗ξ , we can coiterate

(P0,Σ0) against (P1,Σ1) to a pair (R,Λ) and let ii : Pi → R be the iteration maps and

let i2 : R → M∞ be the direct limit embedding. Then Σ0 = Λi0 and Σ1 = Λi1 ; hence the

π ◦ i−1
0 -pullback of Σ0 is the same as the π ◦ i−1

1 -pullback of Σ1 because both are the same

as the π ◦ i−1
2 -pullback of Λ.

Proof of Theorem 1.2. To prove (1), first let jµ : HOD → Ult0(HOD, µ) be the canonical

ultrapower map. Let A ∈ HOD, A ⊆ Θ. By the computation of HOD below Θ, we know

that for each limit β < α,

A ∩ θf(β) ∈ |M∞(f(β))|.

This means

jµ(A) ∩Θ ∈M+
∞.
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We then have

γ ∈ A⇔ jµ(γ) ∈ jµ(A) ∩Θ.

Since jµ|Θ agrees with the canonical ultrapower map k :M∞ → Ult0(M∞, µ) on all ordinals

less than Θ, the above equivalence shows that A ∈ L(M∞,M+
∞). This proves (1).

Suppose the statement of (2) is false. There is an A ⊆ Θ such that A ∈ HOD\N+
∞. By

Σ1-reflection ([8, Theorem 1]), there is a transitive N coded by a Suslin co-Suslin set such

that

N � ZF− + DC + V = L(℘(R)) + SMC + “Θ exists and is limit in the Solovay sequence ”

+“HOD � cof(Θ) = α is measurable as witnessed by f”

+“∃A ⊆ Θ(A ∈ HOD\N+
∞)”.

Take N to be the minimal such and let A witness the failure of (2) in N . Let µ, jµ, M∞,

M+
∞, M∗

∞, N+
∞ be as above but relativized to N . Working in N , there is a sequence

〈Mβ | β < α, β is limit〉 ∈ HOD such that for each limit β < α, Mβ is the least hod initial

segment of M∞|θf(β) such that A ∩ θf(β) is definable over Mβ.

Let Ω = ℘(R)N . Fix an N∗x capturing a good pointclass beyond Ω. Now, we again do

the Ω-hod pair construction in N∗x to obtain a pair (Q,Λ) such that

1. there is a limit ordinal λQ such that for all γ < λQ, Qβ is a hod mouse with λQβ = β

and whose strategy Ψγ ∈ Ω is Ω-fullness preserving, has branch condensation;

2. if γ < η < λQ, Qγ �hod Qη;

3. Q is the first sound mouse from the L[E,�γ<λQΨγ][
⋃
γ<λQ Qγ]-construction done in

N∗x that has projectum ≤ o(
⋃
γ<λQ Qγ) and extends LpΩ,�

γ<λQΨγ (
⋃
γ<λQ Qγ) 13 and Λ

be the induced strategy of Q.

From the construction of Q and the properties of N , it’s easy to verify the following:

(a) Let δλQ = o(
⋃
γ<λQ Qγ) and η = o(LpΩ,�

γ<λQΨγ (
⋃
γ<λQ Qγ)). Then η = (δ+

λQ
)Q.

(b) Λ /∈ Ω.

(c) Q � δλQ has measurable cofinality.

Let M∞(Q,Λ) be the direct limit (under natural embeddings) of Λ-iterates of Q.

13If M� LpΩ,�γ<λQΨγ (
⋃
γ<λQ Qγ) and M extends

⋃
γ<λQ Qγ then M is a mouse in N in the sense that

N knows how to iterate M for stacks above o(
⋃
γ<λQ Qγ).
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Lemma 3.2. M∞(Q,Λ) exists.

Proof. First note that Λ is Ω-fullness preserving. To see this, suppose not. Let k : Q → R be

according to Λ witnessing this. It’s easy to see that the tail ΛR of Λ acting on R|k(η) is not

in Ω (otherwise, Λk
R = Λ by hull condensation and hence Λ ∈ Ω. Contradiction.) However,

�γ<λRΨR(γ) ∈ Ω since the iterate of N∗x by the lift-up of k thinks that the fragment of its

strategy inducing �γ<λRΨR(γ) is in Ω. Now suppose M is a �γ<λRΨR(γ)-mouse projecting

to δλR with strategy Ξ in Ω and M 5 R (again, Ξ acts on trees above δλR and moves the

predicates for �γ<λRΨR(γ) correctly). We can compare M and R (the comparison is above

δλR). Let M be the last model on the M side and R on the R side. Then R �M. Let

π : R → R be the iteration map from the comparison process and Σ be the π ◦ k-pullback

of the strategy of R. Hence Σ ∈ Ω since Ξ ∈ Ω. Σ acts on trees above δλQ and moves

the predicate for �γ<λQΨγ correctly by by our assumption on Ξ and branch condensation

of �γ<λQΨγ. These properties of Σ imply that Q� LpΩ,�
γ<λQΨγ (

⋃
γ<λQ Qγ). Contradiction.

For the case that there are α < λR, δRα ≤ η < δRη+1, and η is a strong cutpoint of R, andM
is a sound ΨR(α)-mouse projecting to η with iteration strategy in Ω, the proof is the same

as that of Theorem 3.7.6 in [3].

Now we show Λ has branch condensation (see Figure 1). The proof of this comes from

private conversations between the author and John Steel. We’d like to thank him for this.

For notational simplicity, we write Λ− for �γ<λQΨγ. Hence, Λ /∈ Ω and Λ− ∈ Ω. Suppose

Λ does not have branch condensation. We have a minimal counterexample as follows: there

are an iteration i : Q → R by Λ, a normal tree U on R in the window [ξ, γ) where ξ < γ

are two consecutive Woodins in R such that supi′′δλQ ≤ ξ, two distinct cofinal branches of

U : b and c = ΛR(U), an iteration map j : Q → S by Λ, and a map σ :MU
b → S such that

j = σ ◦ iUb ◦ i. We may also assume that if R is the first model along the main branch of

the stack from Q to R giving rise to i and iR,R : R → R be the natural map such that

iR,R(ξ) = ξ and iR,R(γ) = γ, then the extenders used to get from Q to R have generators

below ξ. This gives us sup(HullR(ξ ∪ {p}) ∩ γ) = γ where p is the standard parameter of

R. Let Φ = Λσ
S and Φ− = ⊕

ξ<λ
MU
b

ΦMUb (ξ). It’s easy to see that Φ− ∈ Ω. By the same proof

as in the previous paragraph, Φ is Ω-fullness preserving. This of course implies that MU
b is

Ω-full and Φ /∈ Ω.

Now we compareMU
b andMU

c . First we line up the strategies ofMU
b |δ(U) andMU

c |δ(U)

by iterating them into the (Ω-full) hod pair construction of some N∗y (where y codes (x,MU
c ,

MU
b )). This can be done because the strategies of MU

b |δ(U) and of MU
c |δ(U) have branch

condensation by Theorems 2.7.6 and 2.7.7 of [3]14. This process produces a single normal tree

14We note here that suppose (P,Σ) is a hod pair and P � δP has measurable cofinality. Then knowing
that all “lower level” strategies of all iterates of (P,Σ) has branch condensation does not tell us that Σ itself

15



Q R MU
c MW

d K

MU
b MW

a

S

i U , c W , d τ
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W , a

π
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σ

Figure 1: The proof of branch condensation of Λ in Lemma 3.2

W . Let a = Φ(W) and d = ΛMUc (W). Let X = HullR(ξ ∪ {p}) ∩ γ. Note that (iWa ◦ iUb )”X

⊆ δ(W) and iWd ◦ iUc ”X ⊆ δ(W). Now continue lining up MW
a and MW

d above δ(W) (using

the same process as above). We get π : MW
a → K and τ : MW

d → K (we indeed end up

with the same model K by our assumption on the pair (Λ,Λ−)). But then

(π ◦ iWa ◦ iUb )”X = (τ ◦ iWd ◦ iUc )”X.

But by the fact that (iWa ◦ iUb )”X ⊆ δ(W) and iWd ◦ iUc ”X ⊆ δ(W) and π agrees with τ above

δ(W), we get

(iWa ◦ iUb )”X = (iWd ◦ iUc )”X.

This gives ran(iWa ) ∩ ran(iWd ) is cofinal in δ(W), which implies a = d. This in turns easily

implies b = c. Contradiction. Finally, let R and S be Λ-iterates of Q and let ΛR and ΛS

be the tails of Λ on R and S respectively. We want to show that R and S can be further

iterated (using ΛR and ΛS respectively) to the same model. To see this, we compare R
and S against the Ω-full hod pair construction of some N∗y (for some y coding (x,R,S)).

Then during the comparison, only R and S move (to say R∗ and S∗). It’s easy to see that

R∗ = S∗ and their strategies are the same (as the induced strategy of N∗y on its appropriate

background construction).

By the properties of (Q,Ψ) and Λ, we get that ρ(M∞(Q,Λ)) ≤ Θ and (HOD|Θ)N =

M∞(Q,Λ)|Θ. Let k be the least such that ρk+1(Q) ≤ δλQ .

Claim1. M∞(Q,Λ) /∈ N .

Proof. Suppose not. Let i : Q →M∞(Q,Λ) be the direct limit map according to Λ. By an

absoluteness argument (i.e. using the absoluteness of the illfoundedness of the tree built in

has branch condensation.
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N [g] for g ⊆ Col(ω, |M∞(Q,Λ)|) generic over N of approximations of a embedding from Q
intoM∞(Q,Λ) extending the iteration embedding according to �β<λQΨβ on Q|δλQ), we get

a map π such that

1. π ∈ N

2. π : Q →M∞(Q,Λ);

3. for each β < λQ, π|Q(β) is according to Ψβ.

4. π(p) = i(p) where p = pk(Q).

This implies that π = i ∈ N since Q is δλQ-sound and ρ(Q) ≤ δλ
Q

. But this map determines

Λ in N as follows: let T ∈ N be countable and be according to Λ, N can build a tree

searching for a cofinal branch b of T along with an embedding σ :MT
b →M∞(Q,Λ) such

that π = σ ◦ iTb . Using the fact that Λ has branch condensation, we easily get that Λ ∈ N .

But this is a contradiction.

Returning to the proof of (2), let j =def jµ : HOD→ Ult0(HOD, µ) andW = j(〈Mβ | β <
α, β is limit〉)(α). Let i :M∞(Q,Λ)→ Ultk(M∞(Q,Λ), µ) be the canonical map. Note that

A /∈M∞(Q,Λ). To see this, assume not, letR�M∞(Q,Λ) be the first level S ofM∞(Q,Λ)

such that A is definable over S.

Claim 2. R ∈ N .

Proof. Recall that W is the first level of M+
∞ such that j(A) ∩Θ is definable over W . Now

let

k : R → Ult0(R, µ) =def R∗

be the Σ0-ultrapower map. By the definition of W and R∗ and the fact that they are both

countably iterable, we get that W = R∗ ∈ N . Let p be the standard parameters for R. In

N , we can compute ThR0 (Θ ∪ p) as follows: for a formula ψ in the language of hod premice

and s ∈ Θ<ω,

(ψ, s) ∈ ThR0 (Θ ∪ p)⇔ (ψ, j(s)) ∈ ThR∗0 (Θ ∪ k(s)).

Since ThR
∗

0 (Θ ∪ k(s)) = ThW0 (Θ ∪ k(s)) ∈ N , j|Θ ∈ N , and k(s) ∈ W ∈ N , we get

ThR0 (Θ ∪ p) ∈ N . This shows R ∈ N .

To get a contradiction, we show R � N+
∞ by showing R is satisfies property (∗) in N .

Let K be a countable mouse embeddable into R by a map k ∈ N . Then we can compare

K and Q against the Ω-full hod pair construction of some N∗y just like in the argument on
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page 15; hence we may assume K � Q (Q � K can’t happen because then Λ ∈ N). The

minimality assumption on Q easily implies K�LpΩ,�
γ<λQΨγ (Q|δλQ). But then N can iterate

K for stacks on K above δλQ = δλK , which is what we want to show. The fact that R�N+
∞

contradicts A /∈ N+
∞.

Next, we note that Ult0(HOD, µ)|Θ = Ultk(M∞(Q,Λ), µ)|Θ and i|Θ = j|Θ. Let

R = ThM∞(Q,Λ)(Θ ∪ {p}) where p = pk(M∞(Q,Λ)) and S = ThUltk(M∞(Q,Λ),µ)(Θ ∪ {i(p)}).
We have that Mα and S are sound hybrid mice in the same hierarchy, hence by countable

iterability, we can conclude either Mα C S or S �Mα.

If Mα C S, then Mα ∈ Ultk(M∞(Q,Λ), µ). This implies A ∈ M∞(Q,Λ) by a compu-

tation similar to that in the proof of (1), i.e.

β ∈ A⇔M∞(Q,Λ) � (i|Θ)(β) ∈Mα.

This is a contradiction to the fact that A /∈ M∞(Q,Λ). Now suppose S �Mα. This

then implies S ∈ Ult0(HOD, µ), which in turns implies M∞(Q,Λ) ∈ HOD by the following

computation: for any formula φ and s ∈ Θ<ω,

(φ, s) ∈ R ⇔ HOD � (φ, (j|Θ)(s)) ∈ S.

This is a contradiction to the claim. This completes the proof of (2).

Theorem 1.2 completes our analysis of HOD for AD+ models of the form “V = L(℘(R))+

Θ = θα for some limit α” below “ADR + Θ is regular.”

4 The general successor case

Again, we assume (∗). Assume also that Θ = θ0 or Θ = θα+1 for some α. We prove Theorem

1.3 through a series of Lemmas in this section. The proof makes use of ideas from [6] and

[9].

First we need to compute HOD|Θ. By [3, Section 4.3], if Θ > θ0, then there is a hod pair

(P ,Σ) such that

(1) Σ is fullness preserving and has branch condensation;

(2) M+
∞(P ,Σ)|θα = HOD|θα, where M+

∞(P ,Σ) is the direct limit of all Σ-iterates of P .

By [5, Theorem 0.1], we may chose (P ,Σ) as above such that

(3) V = L(LpΣ(R)) (in the case Θ = θ0, (P ,Σ) = (∅, ∅) and V = L(Lp(R)).

18



It is clear that there is no hod pair (P ,Σ) satisfying (1) and (2) above when HOD|θα is

replaced by HOD|Θ as this would imply that Σ /∈ V . So to compute HOD|Θ, we need to

mimic the computation in [9, Section 7] or [6, Section 7]. The main idea is to use Σ1-reflection

to produce a “next hod pair” (P ,Σ) satisfying (1)-(3) above with respect to HOD|Θ of a

reflected universe (this idea originates from Woodin).

Definition 4.1 (n-suitable pair). (P ,Σ) is an n-suitable pair if there is δ such that (P|(δ+ω)P ,Σ)

is a hod pair and

1. P � ZFC - Replacement + “there are n Woodin cardinals, η0 < η1 < ... < ηn−1 above

δ”;

2. o(P) = supi<ω(ηn−1)+iP ;

3. P is a Σ-mouse over P|δ;

4. for any P-cardinal η > δ, if η is a strong cutpoint then P|(η+)P = LpΣ(P|η).

For P , δ as in the above definition, let P− = P|(δ+ω)P and

B(P−,Σ) = {B ⊆ ℘(R)× R× R | B is OD, for any (Q,Λ) iterate of (P−,Σ),

and for any (x, y) ∈ B(Q,Λ), x codes Q}.

In the above definition, we identify Λ with the set of reals Code(Λ). We also write “P is

Σ-n-suitable” for “(P ,Σ) is an n-suitable pair” . If (P−,Σ) = (∅, ∅), then each B ∈ B(∅, ∅)
can be canonically identified with an OD set of reals and hence B(∅, ∅) can be canonically

identified with the collection of OD sets of reals. Suppose B ∈ B(P−,Σ) and κ < o(P). Let

τPB,κ be the canonical term in P that captures B at κ i.e. for any g ⊆ Col(ω, κ) generic over

P
B(P−,Σ) ∩ P [g] = (τPB,κ)g.

For each m < ω, let

γP,ΣB,m = sup(HP1 (τP
B,(η+m

n−1)P
) ∩ η0),

HP,ΣB,m = HP1 (γP,ΣB,m ∪ {τ
P
B,(η+m

n−1)P
}),

γP,ΣB = supm<ωγ
P,Σ
B,m,

and

HP,ΣB =
⋃
m<ω

HP,ΣB,m.
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Similar definitions can be given for γP,Σ~B,m
, HP,Σ~B,m

, γP,Σ~B
, HP,Σ~B

for any finite sequence ~B ∈
B(P−,Σ). One just needs to include relevant terms for each element of ~B in each rele-

vant hull. The usual notions of B-iterability, strong B-iterability, and the corresponding

weak iteration games WG(P ,Σ), WG(P ,Σ, B) are defined in [3, Section 3.1]. Now we’re

ready to define our direct limit system. Let

F = {(P ,Σ, ~B) | ~B ∈ B(P−,Σ)<ω, (P−,Σ) satisfies (1)− (3), (P ,Σ) is n-suitable

for some n, and (P ,Σ) is strongly ~B-iterable}.

The ordering on F is defined as follows:

(P ,Σ, ~B) 4 (Q,Λ, ~C) ⇔ ~B ⊆ ~C, ∃r(r is a run of WG(P ,Σ, ~B) with the last model P∗

such that (P∗)− = Q−, Σ(P∗)− = Λ,P∗ = Q|(η+ω)Q

where Q � η > o(Q−) is Woodin).

Suppose (P,Σ, ~B) 4 (Q,Λ, ~C) then there is a unique map π
(P,Σ),(Q,∆)
~B

: HP,Σ~B
→ HQ,Λ~B

given

by strong ~B-iterability. (F ,4) is then directed. Let

M∞ = direct limit of (F ,4) under maps π
(P,Σ),(Q,∆)
~B

.

Also for each (P ,Σ, ~B) ∈ F , let

π
(P,Σ),∞
~B

: HP,Σ~B
→M∞

be the natural map.

Clearly, M∞ ⊆ HOD. But first, we need to show F 6= ∅. In fact, we prove a stronger

statement.

Theorem 4.2. Suppose (P ,Σ) satisfies (1)-(3)15. Let B ∈ B(P ,Σ). Then for each 1 ≤ n <

ω, there is a Q such that Q− is a Σ-iterate of P−, (Q,ΣQ−) is n-suitable and (Q,ΣQ− , B) ∈
F .

Proof. Suppose not. By Σ1-reflection ([8, Theorem 1]), there is an transitive model N coded

by a Suslin, co-Suslin set of reals such that Code(Σ) ∈ ℘(R)N and

N � ZF− + AD+ + SMC + “Θ exists and is successor in the Solovay sequence ” +

“∃B ∈ B(P ,Σ)(@Q, n)((Q,Σ) is n-suitable and (Q,Σ, B) ∈ F)”.

15From now on, we use this to mean: either Θ > θ0 and (P,Σ) satisfies (1)-(3) or (P,Σ) = (∅, ∅).
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We take a minimal such N and fix a B ∈ B(P ,Σ)N witnessing the failure of the Theorem

in N . Using [13, Theorem 10.3] and the assumption on N , there is an x ∈ R and a tu-

ple 〈N∗x , δx,Σx〉 satisfying the conclusions of Theorem [13, Theorem 10.3] relative to Γ- a

good pointclass containing (℘(R)N , N ′s first order theory). Futhermore, let’s assume that

N∗x Suslin captures 〈A | A is projective in Σ〉). Let Ω = ℘(R)N . For simplicity, we show

that in N , there is a Σ-iterate (R,ΣR) such that there is a 1-suitable (S,ΣR) such that

(S,ΣR, B) ∈ F .

By the assumption on N , N � V = LpΣ(R). Now N∗x has club many (Σ2
1(Σ))Ω Woodins

below δx by a standard argument (see [10]). By performing the Ω-hod pair construction

in N∗x and iterating (P ,Σ) into this construction, we may assume (P ,Σ) comes from the

Ω-hod pair construction of N∗x . Now, the full background construction L[E,Σ][P ] done in

N∗x will reach a model having ω Woodins (which are the first ω (Σ2
1(Σ))Ω Woodins in N∗x)

and projecting across the sup of its first ω Woodins. Let Q be the first model in the con-

struction with that property. By coring down if necessary, we may assume that Q is sound.

Let 〈δQi | i < ω〉 be the first ω Woodins of Q above o(P). A similar self-explanatory no-

tation will be used to denote the Woodins of any Λ-iterate of Q. Hence ρω(Q) < supi<ωδi.

Let Λ (which extends Σ) be the strategy of Q induced from the background universe. Λ is

Ω-fullness preserving and has the Dodd-Jensen property. The following lemma shows that

an iterate of Λ is strongly B-iterable and in fact it shows a bit more.

Lemma 4.3. There is an iterate (R,ΛR) of (Q,Λ) with strong B-condensation in that if

i : R → S is according to ΛR and below δQ0 and j : R →W is such that there is a k :W → S
such that i = k ◦ j then i(τR

B,δR0
) = τS

B,δS0
, W is Ω-full, and k−1(τS

B,δS0
) = τW

B,j(δR0 )
.

Proof. That we get W being Ω-full is easy because Λ /∈ N . So we only need to prove the

other clauses. Suppose not. Using the property of Q and the relativized (to Σ) Prikry

forcing P in N , we get that for any n, there is an iterate R of Q (above δQ0 ) extending a

Prikry generic and having N as the (new) derived model (computed at the sup of the first

ω Woodins above o(P)). Furthermore, this property holds for any Λ iterate of Q. Without

going further into details of the techniques used in [5], we remark that if R is an R-genericity

iterate of Q, then the new derived model of R is N . In other words, once we know one such

R-genericity iterate of Q realizes N as its derived model then all R-genericity iterates of Q
do. Let (φ, s) define B over N , i.e.

(R,Ψ, x, y) ∈ B ⇔ N � φ[((R,Ψ, x, y)), s].

The following argument mirrors that of Lemma 3.2.15 in [3] though it’s not clear to the

author who this argument is orginially due to. The process below is described in Figure 2.
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From now to the end of the proof, all stacks on Q or its iterates thereof are below the δQ0 or

its image. By our assumption, there is 〈~Ti, ~Si,Qi,Ri, πi, σi, ji | i < ω〉 ∈ N such that

1. Q0 = Q; ~T0 is a stack on Q according to Λ with last model Q1; π0 = i
~T0 ; ~S0 is a stack

on Q with last model R0; σ0 = i
~S0 ; and j0 : R0 → Q1.

2. ~Ti is a stack on Qi according to Λ with last model Qi+1; πi = i
~Ti ; ~Si is a stack on Qi

with last model Ri; σi = i
~Si ; j0 : Ri → Qi+1.

3. for all k, πk = jk ◦ σk.

4. for all k, πk(τ
Qk
B,δ
Qk
0

) 6= τ
Qk+1

B,δ
Qk+1
0

or jk(τ
Rk
B,δ
Rk
0

) 6= τ
Qk+1

B,δ
Qk+1
0

.

LetQω be the direct limit of theQi’s under maps πi’s. First we rename 〈Qi,Ri, πi, σi, ji | i <
ω〉 into 〈Q0

i ,R0
i , π

0
i , σ

0
i , j

0
i | i < ω〉. We fix in V Col(ω,R) 〈xi | i < ω〉, a generic enumeration of

R16. Using our assumption on Q, we get 〈Qni ,Rn
i , π

n
i , σ

n
i , j

n
i , τ

n
1 , k

n
i | n, i ≤ ω〉 such that

1. Qωi is the direct limit of the Qni ’s under maps τni ’s for all i ≤ ω.

2. Rω
i is the direct limit of the Rn

i ’s under maps kni ’s for all i < ω.

3. Qnω is the direct limit of the Qni ’s under maps πni ’s.

4. for all n ≤ ω, i < ω, πni : Qni → Qni+1; σni : Qni → Rn
i ; jni : Rn

i → Qni+1 and πni = jni ◦σni .

5. Derived model of the Qni ’s, Rn
i ’s is N .

Then we start by iterating Q0
0 above δ

Q0
0

0 to Q1
0 to make x0-generic at δ

Q1
0

1 . During this

process, we lift the genericity iteration tree to all R0
n for n < ω and Q0

n for n ≤ ω. We pick

branches for the tree on Q0
0 by picking branches for the lift-up tree on Q0

ω using ΛQ0
ω
. Let

τ 0
0 : Q0

0 → Q1
0 be the iteration map and W be the end model of the lift-up tree on Q0

ω. We

then iterate the end model of the lifted tree on R0
0 to R1

0 to make x0 generic at δ
R1

0
1 with

branches being picked by lifting the iteration tree onto W and using the branches according

to ΛW . Let k0
0 : R0

0 → R1
0 be the iteration embedding, σ1

0 : Q1
0 → R1

0 be the natural map,

and X be the end model of the lifted tree on the W side. We then iterate the end model

of the lifted stack on Q0
1 to Q1

1 to make x0 generic at δ
Q1

1
1 with branches being picked by

lifting the tree to X and using branches picked by ΛX . Let τ 0
1 : Q0

1 → Q1
1 be the iteration

embedding, j1
0 : R1

0 → Q1
1 be the natural map, and π1

0 = j1
0 ◦ σ1

0. Continue this process of

making x0 generic for the later models R0
n’s and Q0

n’s for n < ω. We then let Q1
ω be the

16We don’t know that Q is iterable enough to do an R-genericity iteration, but we can work with a
countable substructure of N and enumerate the reals of this structure in V . Q then is sufficiently iterable
for the upcoming argument.
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Figure 2: The process in Theorem 4.2

direct limit of the Q1
n under maps π1

n’s. We then start at Q1
0 and repeat the above process

to make x1 generic appropriate iterates of δ
Q1

0
2 etc. This whole process define models and

maps 〈Qni ,Rn
i , π

n
i , σ

n
i , j

n
i , τ

n
1 , k

n
i | n, i ≤ ω〉 as described above. See Figure 2.

Note that by our construction, for all n < ω, the maps π0
n’s and τnω ’s are via Λ or its

appropriate tails; furthermore, Qωω is wellfounded and full (with respect to mice in N). This

in turns implies that the direct limits Qωn’s and Rω
n’s are wellfounded and full. We must then

have that for some k, for all n ≥ k, πωn(s) = s. This implies that for all n ≥ k

πωn(τ
Qωn
B,δ
Qωn
0

) = τ
Qωn+1

B,δ
Qωn+1
0

.

We can also assume that for all n ≥ k, σωn(s) = s, jωn (s) = s. Hence

σωn(τ
Qωn
B,δ
Qωn
0

) = τ
Rωn
B,δ
Rωn
0

.;
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jωn (τ
Rωn
B,δ
Rωn
0

) = τ
Qωn+1

B,δ
Qωn+1
0

.;

This is a contradiction, hence we finish the proof of the lemma.

The lemma easily implies a contradiction since we can just let our desired S beR|((δR0 )+ω)R.

Strong B-iterability of S inside N follows from the lemma and the fact that ΛR has the

Dodd-Jensen property. This finishes the proof of the theorem.

Remark 4.4. The proof of Theorem 4.2 also shows that if (P ,Σ) is n-suitable and (P ,Σ, B) ∈
F and C ∈ B(P−,Σ) then there is a B-iterate Q of P such that (Q,ΣQ− , B ⊕ C) ∈ F ; in

fact, Q has strong B ⊕ C-condensation as defined in the proof of Theorem 4.2.

It is easy to see that M∞|θα = HOD|θα. Let 〈ηi | i < ω〉 be the increasing enumeration

of Woodin cardinals in M∞ larger than θα. Theorem 4.2 is used to show that M∞ is large

enough in that

Lemma 4.5. 1. M∞ is well-founded.

2. M∞|η0 = HOD|Θ. In particular, η0 = Θ.

Proof. We prove (1) and (2) simultaneously. For a similar argument, see Lemma 3.3.2 in [3].

Toward a contradiction, suppose not. By Σ1-reflection (Theorem [8, Theorem 1]), there is a

transitive model N coded by a Suslin, co-Suslin set of reals such that Code(Σ) ∈ ℘(R)N and

N � ZF− + DC + SMC + “Θ exists and is successor in the Solovay sequence ” +

“(1) and (2) do not both hold”.

We take a minimal such N and let Ω = ℘(R)N . We get N � V = LpΣ(R) and a (Q,Λ)

with the property that for all B ∈ B(P,Σ)N , there is a Λ iterate R of Q that with strong

B-condensation (by Lemma 4.3). (Q,Λ) also has the property that any Λ iterate R of Q
can be further iterated by ΛR to S such that N is the derived model of S.

Fix 〈αi | i < ω〉 a cofinal in ΘΩ sequence of ordinals. Such a sequence exists since

Ω = Env((Σ2
1(Σ))N). For the rest of the proof, we write HOD for HODN , Θ for ΘN etc. For

each n, let

Dn = {(R,Ψ, x, y) | (R,Ψ) is a hod pair equivalent to (P ,Σ), x codes R,

y ∈ the least ODN
Ψ set of reals with Wadge rank ≥ αn}

Clearly, for all n, Dn ∈ B(P ,Σ)N . Without loss of generality, we may assume Λ has strong

Dn-condensation for each n. Let ~D = 〈Dn | n < ω〉. Before proving the next claim, let us
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introduce the following notion. First let for a set A(A ⊆ R or A ∈ B(P ,Σ)), τQ,0A,m be the

canonical capturing term for A in Q at (δ+m
0 )Q. Set

γQ,0Di,m
= sup{HQ1 (P ∪ {τQ,0Di,m

}) ∩ δ0};

γQ,0Di
= supm<ωγ

Q,0
Di,m

.

Claim 1. For any Λ-iterate (S,Υ) of Q. Suppose i : Q → S is the itaration map. Then

i(δ0) = supi<ωγ
S,0
Di
.

Proof. Working in N , by the minimality of N , we can let 〈Ai | i < ω〉 be a sequence of ODN
Σ

self-justifying system such that A0 is a universal Σ2
1(Σ) set; A1 = R\A0 (see [14]). Suppose

φi and si ∈ OR<ω are such that

x ∈ Ai ⇔ N � φi[Σ, si, x]

Now for each i, let

A∗i = {(R,Ψ, x, y) | (R,Ψ) is a hod pair equivalent to (P ,Σ), x codes R,

N � φi[Ψ, si, y]}

Aside from the assumption about (Q,Λ) above, we also assume Λ is guided by 〈Ai | i < ω〉
for stacks above P and below δ0. This is possible by relativizing to Σ the proof of a similar

fact in the case Θ = θ0. This means

δ0 = supi<ωγ
Q,0
A∗i
.

This fact in turns implies

δ0 = supi<ωγ
Q,0
Di
.

To see this, fix an A∗i . We show that there is a j such that γQ,0Dj
≥ γQ,0A∗i

. Fix a real coding P
and let j be such that

w(Ai) = w((A∗i )(P,Σ,x)) ≤ w((Dj)(P,Σ,x)).

Let z be a real witnessing the reduction. Then there is a map i : Q → R such that

1. i is according to Λ and the iteration is above Q− = P ;

2. z is generic for the extender algebra A of R at δR.
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Note that i(τQA∗i ) = τRA∗i , i(τ
Q
Dj

) = τRDj , and R[z] � τA∗i ≤w τDj via z. Hence τRA∗i ∈ X =

{τ ∈ RA | (∃p ∈ A)(p 
R τ ≤w τDj via ż)} and |X|R < δR (by the fact that the extender

algebra A is δR-cc). But X is definable over R from τRDj , hence |X|R < γR,0Dj
. Since τRA∗i ∈ X,

γR,0A∗i
≤ γR,0Dj

which in turns implies γQ,0A∗i
≤ γQ,0Dj

.

Now to finish the claim, let (S,Υ) be a Λ iterate of Q. Suppose i : Q → S is the iteration

map. Let R = i(P) and ΣQ be the tail of Σ under the iteration. We claim that

i(δ0) = supi<ωγ
S,0
Di
. (†)

This is easily seen to finish the proof of Claim 1. To see (†), we repeat the proof of the

previous part applied to (S,Υ) and 〈Bi | i < ω〉, a ODN
ΣQ

self-justifying system where B0 is

a universal Σ2
1(ΣQ); B1 = R\B0. We may assume (S,Υ) is guided by 〈Bi | i < ω〉 for stacks

above R and below i(δ0). Now we are in the position to apply the exact same argument as

above and conclude that (†) holds. Hence we’re done.

The proof of claim 1 shows Λ is guided by 〈Di | i < ω〉. Since Λ also has strong Di-

condensation for each i, Λ has branch condensation. Therefore, the direct limit M∞(Q,Λ)

is defined and is wellfounded. This implies that in N ,M∞ is wellfounded. Let 〈δi | i < ω〉 be

the first ω Woodins of Q above Q− and iQ,ΛQ,∞ : Q →M∞(Q,Λ) be the iteration embedding

according to Λ and 〈ηn | n < ω〉 = 〈iQ,ΛQ,∞(δi) | i < ω〉. For (R,ΛR) and iterate of (Q,Λ), let

iR,ΛRR,∞ have the obvious meaning and iQ,ΛQ,R be the iteration map according to Λ. Note that in

N , M∞(Q,Λ)|ηn =M∞|ηn for all n.

Claim 2. |M∞(Q,Λ)|η0| = V HOD
η0

. (†)

Proof. To show (†), it is enough to show that if A ⊆ α < η0 and A is OD then A ∈
M∞(Q,Λ). To see this, let i be such that γ

M∞(Q,Λ),0
Di

> α (such an i exists by the proof of

Claim 1). Let

C = {(R,Ψ, x, y) | (R,Ψ) is a hod pair equivalent to (P ,Σ), x codes R, y codes (N, γ)

such that (N ,Ψ) is 1-suitable, N is strongly Di iterable via a

quasi-strategy Φ extending Ψ, γ < γN ,0Di
, π

(N ,Ψ),∞
Di

(γ) ∈ A}.

By replacing Q by an iterate we may assume (Q,Λ) is C-iterable. Let τQC = τQ
C,(δ+ω

0 )Q
and

26



τC = i
(Q,Λ)
Q,∞ (τQC ). The following equivalence is easily shown by a standard computation:

ξ ∈ A ⇔ M∞(Q,Λ) �
Col(ω,η+ω
0 ) “if x codes iQ,ΛQ,∞(P), y codes (M∞(Q,Λ)|η+ω

0 , ξ)

then (x, y) ∈ τC”.

For the reader’s convenience, we show why the above equivalence holds. First suppose ξ ∈ A.

Let (S,Ξ) ∈ I(Q,Λ) be such that there is a γ < γS,0Di
and iS,ΞS,∞(γ) = ξ. Then we have (letting

ν = iQ,ΛQ,S(δ0))

S �
Col(ω,ν+ω) “if x codes iQ,ΛQ,S(P), y codes (S|ν+ω, γ) then (x, y) ∈ iQ,ΛQ,S(τQ,ΛC )”.

By applying iS,ΞS,∞ to this ,we get

M∞(Q,Λ) �
Col(ω,η+ω
0 ) “if x codes iQ,ΛQ,∞(P), y codes (M∞(Q,Λ)|η+ω

0 , ξ) then (x, y) ∈ τC”.

Now to show (⇐), let (S,Ξ) ∈ I(Q,Λ) be such that for some γ < γS,0Di
, ξ = iS,ΞS,∞(γ). Let

ν = iQ,ΛQ,S(δ0), we have

S �
Col(ω,ν+ω) “if x codes iQ,ΛQ,S(P), y codes (S|ν+ω, γ) then (x, y) ∈ iQ,ΛQ,S(τQ,ΛC )”.

This means there is a quasi-strategy Ψ on S(0) (S(0) = S|(ν+ω)S) such that (S(0), iQ,ΛQ,S(Σ)) is

1-suitable, Ψ extends iQ,ΛQ,S(Σ)), and Ψ is Di-iterable. We need to see that π
(S(0),iQ,ΛQ,S(Σ)),∞
Di

(γ) =

ξ. But this is true by the choice of Di, ξ = iS,ΞS,∞(γ), and the fact that Ψ agrees with Ξ on

how ordinals below γS,0Di
are mapped.

The equivalence above shows A ∈M∞(Q,Λ), hence completes the proof of (†).

(†) in turns shows that η0 is a cardinal in HOD and η0 ≤ Θ (otherwise, V HOD
η0

=

|M∞(Q,Λ)|η0| � Θ is not Woodin while HOD � Θ is Woodin).

Claim 3. η0 ≥ Θ.

Proof. Suppose toward a contradiction that η0 < Θ. Let Q(0) = Q|(δ+ω
0 )Q, Λ0 = Λ|Q(0),

and M∞(Q,Λ)(0) = M∞(Q,Λ)|(η+ω
0 )M∞(Q,Λ). Let π = i � Q(0); so π is according to Λ0.

By the Coding Lemma and our assumption that η0 < Θ, π,M∞(Q,Λ)(0) ∈ N . From this,

we can show Λ0 ∈ N by the following computation: Λ0(~T ) = b if and only if

1. the part of ~T based on P is according to Σ;

2. if i
~T
b exists then there is a σ :M~T

b →M∞(Q,Λ)(0) such that π = σ ◦ i~Tb ;
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3. ~T aM~T
b is Q-structure guided.

By branch condensation of Λ0, (1),(2), and (3) indeed define Λ0 in N . This means Λ0 is

ODN from Σ (and some real x); hence Λ0 ∈ N . So suppose γ = w(Code(Λ0)) < ΘΩ. In N,

let

B = {(R,Ψ, x, y) | (R,Ψ) is a hod pair equivalent to (P ,Σ), x codes R, y ∈ AR
where AR is the least OD(Code(Ψ)) set such that w(AR) > γ}

Then B ∈ B(P ,Σ)N . We may assume Λ0 respects B. It is then easy to see that whenever

(R,ΛR) ∈ I(Q(0),Λ0) (also let S /R be the iterate of P), w(Code(ΛR)) ≥ w(AR) because

ΛR can compute membership of AR by performing genericity iterations (above S) to make

reals generic. This means w(Code(ΛR)) > γ = w(Code(Λ0)). This contradicts the fact that

w(Code(ΛR)) = w(Code(Λ0)).

Claim 3 implies then that η0 = Θ. Therefore, claims 2 and 3 give a contradiction to our

initial assumption in N . This completes the proof of the lemma.

Now we define a strategy Σ∞ forM∞ extending the strategy Σ−∞ ofM−
∞ = HOD|θα. Let

(P ,Σ, A) ∈ F and suppose P is Σ-n-suitable with 〈δi | i < n〉 being the sequence of Woodins

of P above P−, let τM∞A,k = common value of πP,Σ~B,∞
(τPA,δk). Σ∞ will be defined (in V) for trees

onM∞|η0 inM∞. For k ≥ n,M∞ � “Col(ω, ηn)×Col(ω, ηk) 
 (τM∞A,n )g = (τM∞A,k )h∩M∞[g]”

where g is Col(ω, ηn) generic and h is Col(ω, ηk) generic and (τM∞A,n )g is understood to be

A(M−∞,Σ−∞) ∩M∞[g]. This is just saying that the terms cohere with one another.

Let λM∞ = supi<ωηi. Let G be Col(ω, λM∞) generic over M∞. Then let R∗G =⋃
i<ω RM∞[G�ηi] be the symmetric reals and A∗G :=

⋃
k(τ
M∞
A,k )G|ηk .

Proposition 4.6. For all A ∈ B(M−
∞,Σ

−
∞), L(A∗G,R∗G) � AD+

Proof. We briefly sketch the proof of this since the techniques involved have been fully spelled

out in the proof of previous lemmas. If not, using Σ1-reflection, we obtain a model N (of a

sufficient fragment of ZF+DC) coded by a Suslin co-Suslin set such that in N , V = LpΣ(R)

and the statement of the Proposition fails. Next we get a pair (Q,Λ) as in the proof of

Theorem 4.2. The direct limit M∞(Q,Λ) extends MN
∞. By the discussion in Section 2.2, a

Λ-iterate of Q realizes N as its new derived model.

Working in N , let A ⊆ B(M−
∞,Σ

−
∞) be the least OD set such that L(A∗G,R∗G) 2 AD+.

Then there is an iterate M of Q having preimages of all the terms τM∞A,k for k < ω. Now

further iterate M to M′ such that M′ realizes N as its derived model; M′ exists by the

discussion in Section 2.2. By Theorem 2.12, M′ thinks that its derived model satisfies that
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L(A(P,Σ),R) � AD+, where we reuse (P ,Σ) for an equivalent (but possibly different) hod pair

from the original one; by elementarity,M thinks the same about the set of reals interpreted

by 〈τMA,k | k < ω〉 in its derived model. Now iterate M to M∞(Q,Λ). By elementarity and

the fact that M∞(Q,Λ) extends MN
∞, L(A∗G,R∗G) � AD+. This is a contradiction.

Definition 4.7. Given a normal tree T ∈ M∞ and T is based on M∞|θ0. T is by Σ∞ if

the following hold (the definition is similar for finite stacks):

• If T is short then Σ picks the branch guided by the Q-structure (as computed in M∞).

• If T is maximal then Σ∞(T ) = the unique cofinal branch b which moves τM∞A,0 correctly

for all A ∈ OD such that there is some (P ,Σ, A) ∈ F i.e. for each such A, ib(τ
M∞
A,0 ) =

τ
MTb
A∗,0.

Lemma 4.8. Given any such T as above, Σ∞(T ) exists.

Proof sketch. Suppose not. Again reflect the failure to a model N coded by a Suslin co-

Suslin set. We may assume N � V = LpΣ(R) where (P ,Σ) is a hod pair giving us HOD|θα.

Just as in the previous proposition, we then get a next mouse Q with strategy Λ such that

MN
∞�M∞(Q,Λ). Λ has the property that for all A ∈ B(P,Σ), there is a Λ-iterate (M,ΛM)

of Q such that ΛM strongly respects A (see [3, Section 3.1] for the definition). This easily

gives us a contradiction.

It is evident that L[M∞][Σ∞] ⊆ HOD. Next, we show M∞ and Σ∞ capture all un-

bounded subsets of Θ in HOD. In L[M∞][Σ∞], first construct (using Σ∞) a mouse M+
∞

extending M∞ such that o(M∞) is the largest cardinal of M+
∞ as follows:

1. Let R∗G be the symmetric reals obtained from a generic G overM∞ of Col(ω,< λM∞).

2. For each A∗G (defined as above) (we know L(R∗G, A∗G) � AD+), S-translate the hybrid

mice over R∗G in this model to hybrid mice S extending M∞. Let SA be the union of

such S, then D+(SA, λM∞) = L(R∗G, A∗G).

3. Let M+
∞ =

⋃
A SA.

By a Σ1-reflection argument as above and the proof of [5, Theorem 0.1], we get 17

(a) The translated mice overM∞ are all compatible, don’t project across o(M∞); hence 3.

above makes sense.

17Suppose one of (a), (b), (c) fails. Using Σ1-reflection, let N,Q,Λ,Σ,M∞(Q,Λ) be as in Lemma 4.2. Let
Q′ be a Λ-iterate of Q such that Q′ realizes N as its derived model and Σ′ be the corresponding tail of Σ. It’s
first order over Q′ that Q′ is the union of all S-translations of Σ′-mice over R in L(A,R) for Code(Σ′) <w A
and A is OD in N . By elementarity, in N ,M+

∞ =M∞(Q,Λ). Then (a)− (c) easily follows. Contradiction.
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(b) M+
∞ is independent of G; in particular, M+

∞ ∈ V .

(c) M+
∞ contains as its initial segments all translation of R∗G-mice in D+(M+

∞, λ
M∞).

(a)-(c) intuitively gives us thatM+
∞ contains enough mice to compute HOD. We remark

that M+
∞ = M∞ in the analysis of HOD in L(R) (cf. [9]). In general, though, the two

premice could be distinct.

The following is the key lemma.

Lemma 4.9. HOD ⊆ L[M∞][Σ∞]

Proof. Using Theorem 2.4, we know HOD = L[P ] for some P ⊆ Θ. Therefore, it is enough

to show P ∈ L[M∞][Σ∞]. Let φ be a formula defining P , i.e.

α ∈ P ⇔ V � φ[α].

We suppress the ordinal parameter here. Now in L(M∞,Σ∞) let

π :M∞|(η++
0 )M∞ → (M∞)D

+(M+
∞,λM∞ )

where π is according to Σ∞.

Claim. α ∈ P ⇔ D+(M+
∞, λ

M∞) � φ[π(α)]. (†)

Proof. Otherwise, Σ1-reflect the failure of (†) as before to get a model N coded by a Suslin

co-Suslin set, a hod pair (P ,Σ) giving us HOD|θα such that

N � ZF + DC + AD+ + V = LpΣ(R) + (∃α)(φ[α] < D+(M+
∞,Σ∞) � φ[π(α)]).

Fix such an α. We may assume N is minimal with the above property. As before, let Q,Λ be

as in the proof of Theorem 4.2. We may assume Λ is guided by ~D where ~D = 〈Dn | n < ω〉
is defined as in Lemma 4.5. It’s easy to see thatM+

∞ =M∞(Q,Λ). Let σ : Q|((δQ0 )++)Q →
(M∞)D

+(Q,λQ) be the direct limit map by Λ. By replacing Q by a Λ-iterate far enough

into the direct limit system given by Λ if necessary, we may assume σ(α) = α for some α.

Working in N , it then remains to see that:

D+(M+
∞, λ

M∞) � φ[π(α)]⇔ D+(Q, λQ) � φ[σ(α)]. (∗∗)

To see that (∗∗) holds, first let i : Q → Q′ be according to Λ and Q′ realizes N as its

derived model. We need to see that the fragment of ΛQ′ that defines i(σ(α)) can be defined

in D+(Q′, λQ′). This then will give the equivalence in (∗∗). Because α < η0, α < δ0, pick an

n such that such that γQ,0Dn,0
> α so
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γQ
′,0

Dn,0
> i(α).

Let

σ′ : Q′|((δQ′0 )++)Q
′ → (M∞)D

+(Q′,λQ′ ).

be the direct limit map given by ΛQ′ .

Then the fragment of ΛQ′ that defines σ′(i(α)) is definable from Dn (and Q′|(δQ′0 )) in

D+(Q′, λQ′) and in fact i(σ(α)) = σ′(i(α)). By elementarity, (∗∗) follows.

The equivalence (∗∗) gives us a contradiction.

The claim clearly implies P ∈ L[M∞][Σ∞].

Lemma 4.9 implies HOD = L[M∞][Σ∞], hence completes the proof of Theorem 1.3.

Proof of Corollary 1.4. The case Θ being limit in the Solovay sequence is really a conse-

quence of [3]. Recall that by [3], HOD|Θ � GCH. In the case Θ is a successor in the Solovay

sequence, the proof of Theorem 1.3 shows that HOD|Θ � GCH.

Now Woodin has shown that if AD+ + V = L(℘(R)) holds, then HOD = L[P ] for some

P ⊆ Θ (see [16] for a proof). This means

∀α ≥ Θ HOD � 2α = α+.

This completes our proof of Corollary 1.4.
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