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Abstract

This is the second of two papers on the fine structure of HOD in models of the Axiom of

Determinacy (AD). Let M � ADR + V = L(℘(R)). [4] shows that under a natural hypothesis

on the existence of iteration strategies, the basic fine structure theory for pure extender models

goes over to HODM . In this paper, we analyze the Dodd parameters and prove the analogs of

[7, Theorems 1.1, 1.2] for lbr hod pairs. The proof of these results relies on the condensation

theorems proved in [3]. In a sequel, we shall use these theorems to show that in HODM , �κ
holds iff κ is not subcompact.

1. INTRODUCTION

Let (M,Σ) be a mouse pair in the sense of [4]), so that M is either a pure extender premouse or

a least branch premouse. Let F = ḞM be the top extender of M , µ = crt(F ), τ = µ+,M , and

λF = iMF (µ) be the image of µ under the F -ultrapower map. One can identify F with iMF � M ||τ ,

so we set dom(F ) = M ||τ . Let us recall some definitions from [6].

Definition 1.1. (1) If G is a short extender, then η is a cutpoint of G if and only if η ≤ λG and

for all a ∈ [η]<ω and f ∈ dom(G), iG(f)(a) < η.

(2) Let M be active, with last extender F = ḞM ; then

(i) M (or F ) has type A iff there is no η < λF such that η is a cutpoint of F ,

(ii) M (or F ) has type B iff there is a largest η < λF such that η is a cutpoint of F . We

write λ∗M for this η.

(iii) M (or F ) has type C iff λF is a limit of cutpoints of F .

(3) M satisfies the Jensen Initial Segment Condition (ISC) if and only if whenever η < λF is a

cutpoint of F , then there is a γ such that EMγ � η = F � η.

a
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Dodd solidity is a form of condensation that applies to type B premice, so they are our focus

here.

Definition 1.2. Let M be active and F = ḞM ; then

(a) τM = crt(F )+,M ,

(b) letting τ = τM , for s ⊆ lh(F )− τ finite and α ≥ τ , we say that α is an s-generator (of F ) iff

α = crt(π) where π : Ult(M ||τ, F � α ∪ s)→ Ult(M ||τ, F ) is the canonical factor map.

a

Definition 1.3. Let M be a pfs premouse of degree 0; then M is strongly 1-sound iff M is 1-solid

and M = HullM1 (ρ1(M) ∪ p1(M)). a

In the terminology of [4], M is strongly 1-sound iff M = C̄(M)−, that is M is its own strong

core, but with the degree changed back to 0. M is 1-sound iff M is 1-solid and M = HullM1 (ρ1(M)∪
{ρ1(M), p1(M)}) iff M = C(M)−.

Definition 1.4. Let M be active and 1-sound, and F = ḞM . Let τM = crt(F )+,M . We inductively

define the sequence 〈d0, . . . , dn〉 and ρ∗ as follows. Let

d0 = the largest generator of F , if it exists;

otherwise, let ρ∗ be the sup of the generators of F . If {d0, . . . , di} are defined, let

di+1 = the largest {d0, . . . , di} generator of F , if it exists;

otherwise, let ρ∗ be the sup of the {d0, . . . , di}-generators of F .

Let

dM = 〈d0, . . . , dn〉

for n such that d0, . . . , dn exist and ρ∗ is the supremum of τM ∪ the {d0, . . . , dn}-generators of F .

dM is the Dodd parameter of M and ρ∗M = ρ∗ is the Dodd projectum of M . a

We also write dF for dM . dM may be empty; if not, then it is a strictly decreasing sequence of

ordinals. We write τ for τM and µ for crt(F ) below. In either case, ρ∗M ≥ τ .

We assumed in 1.4 that M is 1-sound, and this is important. The definition is only appropriate

for 1-sound premice.

Remark 1.5. ξ is an s-generator of F iff for all finite a ⊂ ξ and f ∈ M , ξ 6= iMF (f)(a ∪ s). By

definition, min(dM ) > µ and in fact min(dM ) > τ . F � ρ∗M ∪ dM generates all of F ; more precisely,

every x ∈M is of the form iMF (f)(a ∪ dM ) for some finite a ⊂ ρ∗M and some f ∈M .

The following proposition is an immediate corollary of the definitions given above. We shall

prove it in the next section.
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Proposition 1.6. Assume M is an active Jensen premouse or an active lpm. Suppose M is

1-sound and deg(M) = 0; then

(a) Suppose η < ρ∗M and τ < ρ∗M , then F � (dM ∪ η) ∈M , and

(b) ρ∗M = max{τ, ρ1(M)}.

Definition 1.7. Let M be active and of type B and degree 0; then

(a) M (or dM ) is Dodd solid at i iff i ∈ dom(dM ), and ḞM � (dM (i) ∪ {dM � i}) ∈M ;

(b) M (or dM ) is Dodd solid iff M is Dodd solid at all i ∈ dom(dM ).

a

The main result of our paper is the following theorem.

Theorem 1.8 (Dodd solidity). Assume AD+. Let (M,Σ) be a mouse pair such that M is active

of type B, with deg(M) = 0; then

(1) if M is strongly sound, then M is Dodd solid, and

(2) if M is 1-sound, then M is Dodd solid at all i such that dM (i) > ρ1(M).

Remark 1.9. (a) The proper initial segments of a pfs premouse must be 1-sound, but they may

not be strongly 1-sound. This is why we have isolated conclusion (2) of the theorem.

(b) In (2), one cannot demand that dM be Dodd solid at i when dM (i) = ρ1(M). For let M

be 1-sound but not strongly 1-sound. Let N = C̄(M). Suppose that ρ1(M) ≥ τ . Since

M = Ult0(N,D) where D is the order zero measure of N on ρ1(M), we have that ρ1(M) > τ .

The Dodd-solidity of N easily implies that dM = iD(dN )∪{ρ1(M)}, with the solidity witness

for dN (i) being mapped by iD to the solidity witness for dM (i). Clearly, ḞN /∈ M , so M is

not Dodd solid at dom(dN ).

The argument in 1.9(b) shows that 1.8(1) implies 1.8(2). More generally, one can define dM for

arbitrary possibly unsound active M by

Definition 1.10. For M active type B with deg(M) = 0,

a) ρ̂M is the least α ≥ τ such that there is a finite d such that F � (α ∪ d) /∈M .

(b) d̂M is the <∗-least d such that F � (ρ̂M ∪ d) /∈M .

a

Here <∗ is the lexicographic order on descending sequences of ordinals. The definition of d̂M is

parallel to the usual definition of the standard parameter. Our definition of dM in 1.4 is really only

interesting in the case that M is strongly 1-sound, in which case dM = d̂M . In general, d̂M = π(dN ),
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where N is the strong core of M and π is the anticore map; moreover π maps the Dodd solidity

witnesses for dN to corresponding witnesses for d̂M . We give the simple proofs of these facts in the

last section of the paper.

Dodd solidity is a form of condensation appropriate to type B premice.1 It is a strengthening

of the ms-initial segment condition. The first author proved Dodd solidity for ms-indexed mice

below superstrongs in [1]2 and Martin Zeman proved it for λ-indexed pure extender mice in [7].3

Our proof here applies to λ-indexed mice, and it borrows in significant ways from Zeman’s [7]. The

main new element is that it incorporates comparison of iteration strategies. Nevertheless, when

specialized to the case of pure extender mice, where strategy comparison is not needed, our proof

seems to be simpler than Zeman’s.4

Dodd solidity is important in the proof that Jensen’s square principle holds in mice. In a sequel

to this paper, we shall use it and the Condensation Lemma in [3] to prove the following.

Theorem 1.11 (AD+). Let (M,Σ) be a mouse pair. Let κ be a cardinal of M such that M � “κ+

exists”; then in M , the following are equivalent.

1. �κ.

2. �κ,<κ.

3. κ is not subcompact.

4. The set of ν < κ+ such that M |ν is extender-active is non-stationary in κ+.

The paper is organized as follows. Section 2 recalls some basic facts about mouse pairs, and

proves some elementary facts about Dodd parameters, including Zeman’s characterization of them

as minimal generating parameters in the language of coherent structures. Section 3 proves Theorem

1.8. In Section 4, we describe the natural generalization of Theorem 1.8 to mice that are not 1-

sound.

2. PRELIMINARIES

We recall some basic facts about mouse pairs and Dodd parameters.

2.1. Mouse pairs

Two of the main definitions from [4] are

1If M is 1-sound and type A, then ρ∗ = τ and dM = pM . If M is 1-sound and type C, then ρ∗ = λF and dM = ∅.
Thus Dodd solidity is trivial (modulo the solidity of pM !) in these cases.

2This would be roughly equivalent to proving parameter solidity for type A Jensen mice, but ms-indexing adds
some difficulty, centering on the stronger ms-ISC needed for comparison. Some version of that difficulty re-appears
in the proof of Dodd solidity for Jensen mice of type B,

3Schlutzenberg proved a strengthening of Dodd solidity for ms-mice in [2, Theorem 10.1].
4Formally, we give our proof for pfs premice, but it goes over without change to the λ-indexed pure extender mice

of [7].
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Definition 2.1. (M,Ω) is a pure extender pair with scope Hδ iff

(a) M is a pure extender pfs premouse.

(b) Ω is a complete (ω, δ) iteration strategy for M5, and

(c) Ω is internally lift-consistent, quasi-normalizes well, and has strong hull condensation.6

a

Definition 2.2. (M,Ω) is a least branch hod pair (lbr hod pair) with scope Hδ iff

(a) M is an least branch premouse (lpm).

(b) Ω is a complete (ω, δ) iteration strategy for M ,

(c) Ω is internally lift-consistent, quasi-normalizes well, and has strong hull condensation, and

(d) Ω is pushforward consistent, that is, if s is by Ω with last model N , then Σ̇N ⊆ Ωs, where

Ωs(t) = Ω(sat).7

a

Definition 2.3. (M,Ω) is a mouse pair iff it is either a pure extender pair or an lbr hod pair. a

In our context below, M will be countable, Ω will have scope Hω1 , and we shall assume AD+.

These are the simplest hypotheses under which to develop the theory of mouse pairs, and the main

results of [4] are all proved under them.

For the sake of definiteness, we shall prove Theorem 1.8 for lbr hod pairs. The proof also works

for pure extender pairs, but by re-arranging a few things8, one can avoid strategy comparison in

that case, and thereby simplify it significantly.

2.2. λ-separated iteration trees

The iteration trees we use below are λ-separated plus trees. The notion is defined in [4, Section 4.4],

and we summarize it here. Suppose M is a pfs premouse and E is an extender on the M -sequence,

then

• E+ is the extender with generators λE ∪ {λE} that represents i
Ult(M,E)
F ◦ iME , where F is the

order zero total measure on λE in Ult(M,E).

• λ̂(E+) = λE .

• lh(E+) = lh(E).

5See [4, 4.6.3].
6See [4, 5.4.4, 7.1.1, 7.1.9].
7See [4, 9.2.1].
8Mainly, one must replace use of the full Dodd-Jensen Lemma by use of the Weak Dodd-Jensen Lemma. Since

we are trying to prove a first order property of our pure extender mouse M , this can be done.

5



We say that an extender G is of plus type if G = E+ for some extender E on the sequence of a pfs

premouse M ; we let G− = E. In general, if E is an extender (of plus type or not)

• we let ε(E) = lh(E) if E is of plus type; otherwise, ε(E) = λ(E).

• if E is on the sequence of some premouse, then

(i) λ̂(E) = λ(E) = λ̂(E+),

(ii) E− = E.

The extended M -sequence consists of all E such that E− is on the M -sequence.

A plus tree T on a pfs premouse is like an ordinary normal tree, except that

(i) We only require that ETα be on the extended MTα sequence,

(ii) ETα is applied to the longest possible initial segment of MTβ , where β is least such that

crt(ETα ) < λ̂(ETβ ), and

(iii) the length-increasing condition is weakened slightly.9

See [4, Definition 4.4.3] for the complete definition.

A λ-separated tree is a plus tree in which every extender used along the tree is of plus type. The

weakening in (iii) above does not affect λ-separated trees; that is, the lengths of the extenders used in

a λ-separated tree are strictly increasing. Moreover, quasi-normalization coincides with embedding

normalization on stacks of λ-separated plus trees. [4, Section 8.1] shows that λ-separated trees are

enough for comparisons. For these and other reasons it is convenient to restrict one’s attention to

the way an iteration strategy Σ acts on stacks of λ-separated trees. By Lemma 9.3.2 of [4], if (P,Σ)

is a mouse pair, then Σ is determined by its action on countable λ-separated trees.

We shall use the notation associated to extender trees from [4, Section 6.3].

Definition 2.4. Let T be an iteration tree and α ≤T β; then eTα,β is the sequence of extenders

〈ETη+1 | α <T η+ 1 ≤T β〉 used in T on the branch from α to β (listed in increasing order). We let

eTα = eT0,α. a

If T is λ-separated and its base model is a premouse, then eTα,β can be recovered from the partial

branch embedding îTα,β.10 The recovery process relies on the Jensen ISC holding for the models in

T .

9The length-increasing condition is enough to guarantee that T − pred(α+ 1) is the least β such that crt(ETα ) <
λ(ETβ ). Thus none of the generators of a plus extender E, including the generator λ̂(E), are moved later on a branch
in which E has been used.

10By successively extracting E+, for E the first missing whole initial segment of the current tail factor. See 3.25(2)
below.
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2.3. The mouse pair order

The basic results of inner model theory, such as the Comparison Lemma and the Dodd-Jensen

Lemma, are better stated and proved as results about mouse pairs than as results about mice, with

the notions of elementary submodel and iterate adjusted so that this is possible. For example, if

(H,Ψ) and (M,Σ) are mouse pairs, then π : (H,Ψ) → (M,Σ) is elementary (resp. nearly elemen-

tary) iff π is elementary (nearly elementary) as a map from H to M , and Ψ = Σπ. We say that

(M,Σ) is an iterate of (H,Ψ) iff there is a stack s on H such that s is by Ψ, and Σ = Ψs. It is a

non-dropping iterate iff the branch H-to-M does not drop. Assuming AD+ and that our pairs have

scope HC, [4] proves the following:

(1) If (M,Σ) is a mouse pair, H is a premouse, and π : H →M is nearly elementary, then (H,Σπ)

is a mouse pair.

(2) If (H,Ψ) is a mouse pair, and (M,Σ) is a non-dropping iterate of (H,Ψ), then the iteration

map is : (H,Ψ)→ (M,Σ) is elementary in the category of pairs.

(3) (Dodd-Jensen) If (H,Ψ) is a mouse pair, (M,Σ) is an iterate of (H,Ψ) via the stack s, and

π : (H,Ψ)→ (M,Σ) is nearly elementary, then

(i) the branch H-to-M of s does not drop, and

(ii) for all η < o(H), is(η) ≤ π(η), where is is the iteration map.

(4) (Mouse order) Let (H,Ψ) ≤∗ (M,Σ) iff there is a nearly elementary embedding of (H,Ψ) into

some iterate of (M,Σ); then ≤∗ is a prewellorder of the mouse pairs with scope HC in each

of the two types.

The prelinearity of the mouse pair order is the content of the Comparison Lemma for mouse

pairs. For pure extender pairs, it is proved in Theorem 8.4.5 of [4]. The proof for lbr hod pairs is

basically the same; it is Theorem 9.5.10 of [4].

2.4. Dodd parameters and coherent structures

The language L of lpms has symbols ∈, Ė, Ḟ, Σ̇, Ḃ, and γ̇. Here ḞM is the last (top) extender if M

is active, and ḞM = ∅ otherwise. ĖM is the sequence of extenders previously added, and Σ̇M and

ḂM contain information about an iteration strategy for M .

If M is active of type B, then letting

λ∗M = largest cutpoint of ḞM ,

F = ḞM , we have

γ̇M = (λ∗M )+,Ult(M,F �λ∗M ).
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We usually write γM for γ̇M . The Jensen Initial Segment Condition (Jensen ISC) requires that γM

indexes the largest cutpoint of F , that is

ĖMγ̇ � λ
∗
M = F � λ∗M .

If M has type A or type C, then γ̇M = 0.

The language of coherent structures is L but without γ̇, that is

L∗ = L − {γ̇}.

If M is an lpm, then hM is its canonical ΣL1 Skolem function, and h∗M is its canonical ΣL
∗

1 -Skolem

function. For X ⊆M , we let

hM [X] = HullM1 (X) = {hM (ϕ, a) | a ∈ X<ω ∧ ϕ ∈ ΣL1 },

h∗M [X] = Hull∗,M1 (X) = {h∗M (ϕ, a) | a ∈ X<ω ∧ ϕ ∈ ΣL
∗

1 },

and let cHullM1 (X) and cHull∗,M1 (X) be the transitive collapses of these hulls.11 A ΣL1 hull of M is

just a ΣL
∗

1 hull that has γM in it, of course. Including γ̇ in L guarantees that ΣL1 hulls of M continue

to satisfy the Jensen ISC.12 ΣL
∗

1 hulls may fail the Jensen ISC, and this fact is the main reason

that the proof of Dodd solidity involves difficulties beyond those solved by the proof of solidity for

the usual standard parameter.

The definitions of hM and h∗M involve stratifying Σ1 relations according to where the witnesses

appear. For active M , this involves stratifying ḞM via its fragments, and the resulting levels Mβ

are not premice. Here

Definition 2.5. Let M be an active lpm and β < o(M), then Mβ is the L∗ structure that agrees

with M ||β, except that ḞM
β

= ḞM ∩M ||β. a

The map β 7→Mβ is ΣL
∗

1 over M .

Definition 2.6. For premice M of degree 0, we let ρM = ρ1(M) and pM = p1(M). We say that

M is α-sound iff α ≥ ρM and M = hM [α ∪ pM ]. a

The following lemmas characterize the Dodd parameter in terms of ΣL
∗

1 definability.

If M is an lpm, we write ThM1 (X) for the ΣL1 -theory in M of parameters in X, and Th∗,M1 (X)

for the ΣL
∗

1 -theory in M of parameters in X. When M is clear from the context, we omit it from

the notation.

Definition 2.7. Let M be an active lpm; then µM = crt(ḞM ) and τM = µ+,M
M . a

11The notation suggests that hM [X] is the image hM“X of X under hM , which is not literally true, but “hM [X]”
is less cluttered than “HullM1 (X)”.

12There is some work required to show this in the case that M has type C, but the proof is elementary.

8



Lemma 2.8. Let M be an active lpm with deg(M) = 0. Let F = ḞM and τ = τM . Let s ⊆ lh(F )−τ
be finite, α ≥ τ and

π : Ult(M ||τ, F � α ∪ s)→ Ult(M ||τ, F )

Let N = Ult(M ||τ, F � α∪s) and G be the Jensen completion of F � α∪s; then π is ΣL
∗

1 -elementary

as a map

π : (N,G)→M .

Proof. π is ΣL1 elementary from N to M ||o(M) by Los’s theorem. We need to see that π maps

fragments of G to fragments of F . Let crt(F ) = µ, and µ < ξ < τ be such ρω(M |ξ) = µ. For Fµ

almost every ν, we have hM |ξ[ν ∪ p(M |ξ)] transitively collapses to M |ξν for some ξν with

σν : M |ξν →M |ξ.

the inverse of the collapse. Then

iNG � (M |ξ) = [{µ}, λν.σν ]NG

and

iMF � (M |ξ) = [{µ}, λν.σν ]MF .

Hence π(iNG � (M |ξ)) = iNF � (M |ξ) as desired.

Remark 2.9. The proof of Lemma 2.8 shows that F � (α ∪ s) is easily intertranslatable with

Th∗,M1 (α ∪ s). The proof does not show that π is ΣL1 -elementary, or even that (N,G) satisfies the

Jensen ISC. We shall have to deal with this difficulty in the proof of Theorem 1.8.

Remark 2.10. Suppose F = ḞM and M is solid at i. It is natural to take F � (di∪{d0, ..., di−1}) to

be the Dodd solidity witness for M at i. Equivalently, using the translation in the last remark, we

might take Th∗,M1 (di∪{d0, ..., di−1}) to be the witness. Zeman [7] takes cHull∗,M1 (di∪{d0, ..., di−1})
to be the standard Dodd solidity witness at i. We don’t need to consider “generalized witnesses”,

because the standard Dodd solidity witnesses are preserved by Σ0 ultrapowers. That is true because

the natural prewellorder on Th∗,M1 (X) has cofinality τM if M is active, and τM is a successor cardinal

in M .

The following lemma gives an alternative characterization of generators for F that we shall use

many times.

Lemma 2.11. For s ⊆ lh(F )− τ finite, α ≥ τ . The following are equivalent:

1. α is an s-generator.

2. α /∈ h∗M [α ∪ s].

3. α = crt(π) where π : Ult(M ||τ, F � α ∪ s)→ Ult(M ||τ, F ) is the canonical embedding.

Proof. (1)⇔ (3) is the definition. (3)⇔ (2) follows easily from Lemma 2.8.
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We characterize ρ∗M in the case that M is 1-sound:

Proposition 2.12. Assume M is an active, 1-sound lpm then

(a) Suppose η < ρ∗M and τ < ρ∗M , then F � (dM ∪ η) ∈M , and

(b) ρ∗M = max{τ, ρ1(M)}.

Proof. We first prove (b) implies (a), let τ ≤ η < ρ∗M . By part (b), ρ∗M = ρ1(M). F � (η ∪ dM ) can

be coded by a ΣL1 -subset of η. Since η < ρ(M), F � (η ∪ dM ) ∈M , as desired.

For part (b), we first claim that ρ(M) = ρ1(M) ≤ ρ∗M . First, recall that τ ≤ ρ∗M . By the

definition of dM , M = h∗M [ρ∗M ∪ dM ]. Thus Th∗,M1 (ρ∗M ∪ dM ) /∈ M and hence ThM1 (ρ∗ ∪ dM ) /∈
M . This implies ρ1(M) ≤ ρ∗. Now suppose τ < ρ∗M . We claim that ρ∗M = ρ1(M). Suppose

ρ1(M) < ρ∗M . Since ρ∗M is a limit of dM -generators and M = h∗M [ρ∗M ∪dM ], there is a dM -generator

η ∈ (ρ1(M), ρ∗M ) such that p(M)∪{γM} ⊂ h∗M [η∪dM ]. This implies h∗M [ρ1(M)∪{p(M)∪{γM}}] =

hM [ρ1(M) ∪ {p(M)}] = M ⊆ h∗M [η ∪ dM ]. The second equality follows from 1-soundness of M .

The last inclusion contradicts the fact that η is a dM -generator.

Definition 2.13. The parameter order <∗ is the lexicographical order on finite descending se-

quences of ordinals. a

If M is 1-sound, then pM is the <∗-least parameter s such that M = hM [ρM ∪ s]. The lemmas

above show that if M is 1-sound and active, then dM is the <∗ least s such that h∗M [ρ∗M ∪s] = M .13

This analogy breaks down if M is not 1-sound, because dM has been defined as a minimal generating

parameter, and pM is defined as a minimal parameter from which one can ΣL1 -define a new subset

of ρM .

One can define dM in a way that preserves the analogy with p1(M) in the unsound case. We

discuss this in the last section.

2.5. Zeman’s exchange lemma

We prove a result of Zeman that shows just how dM is related to pM .

Definition 2.14. Let M be a type B lpm; then eM is the <∗-least parameter e such that γM ∈
h∗M [ρM ∪ {e, pM}]. a

We shall often abuse notation by identifying eM with its range, as we do for dM and pM .

Remark 2.15. It is easy to see that eM ⊂ γM + 1 and is always defined. Clearly eM ∩ pM = ∅.

Remark 2.16. Suppose η = eM (i); then η is the least β ≥ ρM such that γM ∈ h∗M [β + 1 ∪ {eM �
i, pM − (β + 1)}].14

13We often identify pM and dM with their ranges.
14Proof: The hulls in question all contain pM ∪ ρM . If β ≥ η, then the hull contains eM , and hence γM is in it. If

ρM ≤ β < η and γM is in the hull, then γM = h∗M (p1(M), c, a) for some a ∈ ρ<ωM and c <∗ eM , contradiction.
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Lemma 2.17. If i ∈ dom(eM ), then eM (i) is ΣL
∗

1 -definable from parameters in {γM , pM−eM (i), ρ1(M)}.

Proof. By induction on i. Let β = eM (i) and p = p1(M)− β. Recalling the stratification α 7→Mα

in 2.5, for α < o(M), let

ξα = least ξ such that γM ∈ h∗Mα [ξ + 1 ∪ {eM � i, p}],

and let ξα be undefined if there is no such ξ. Then the function α 7→ ξα is Σ∗,M1 in the parameters

γM and p, and ξα = β for all sufficiently large α < o(M). Finally, α < θ ⇒ ξα ≥ ξθ, so ξα changes

value only finitely often as α increases. Thus each ξα is ΣL
∗

1 definable over M from γM and eM � i

and p. Our induction hypothesis finishes the proof.

Theorem 2.18 (Zeman Exchange Lemma). Let M be type B and 1-sound; then dM = (pM ∪eM )−
τM .

Proof. Let d = dM , p = pM , and e = eM . As we observed above, p ∩ e = ∅. Suppose first that

e = ∅; we claim that then d = p− ρ∗. For suppose that p− (η + 1) = d− (η + 1) and η ≥ ρ∗; then

η ∈ p⇔ η /∈ hM [η ∪ p− (η + 1)]

⇔ η /∈ h∗M [η ∪ d− (η + 1)]

⇔ η ∈ d.

For the second line: let x = p− (η+ 1) = d− (η+ 1). Clearly, if η ∈ h∗M [η ∪ x] then η ∈ hM [η ∪ x].

But if η ∈ hM [η ∪ x], then η /∈ p, so p ⊆ η ∪ x, so h∗M [η ∪ x] = hM [η ∪ x] because e = ∅, so

η ∈ h∗M [η ∪ x]. Now by induction we get that p = d, and the theorem holds.

We now show by induction on i

(∗)i If i ∈ dom(e), then d− (ei + 1) = (p ∪ e)− (ei + 1) and ei ∈ d.

Assume i = 0 or (∗)i−1. Let I be the open interval (ei, ei−1) if i > 0, and I = (e0, o(M)) otherwise.

Let η ∈ I, and suppose by (“reverse”) induction that (p− (η+ 1))∩ I = (d− (η+ 1))∩ I. Then as

above we get

η ∈ p⇔ η /∈ hM [η ∪ p− (η + 1)]

⇔ η /∈ hM [η ∪ (p ∪ e)− (η + 1)]

⇔ η /∈ hM [η ∪ d− (η + 1)]

⇔ η /∈ h∗M [η ∪ d− (η + 1)]

⇔ η ∈ d.

The second line uses Lemma 2.17 to equate the two hulls. The third line uses our induction

hypothesis on η, and the fourth uses e ⊆ η ∪ (e− (η + 1)) to equate the L∗ hull with the L hull.
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To finish the proof of (∗)i we must show that ei ∈ d. But if not, let

β = max(p ∩ ei, d ∩ ei);

then

h∗M [β + 1, {e � i, p− ei}] = h∗M [β + 1, d− (β + 1)]

= M,

so γM ∈ h∗M [β + 1, {e � i, p− ei}], contrary to 2.16.

This proves (∗)i for all i ∈ dom(e). Now let i be largest in dom(e). To finish the proof of the

Zeman Exchange Lemma, it will be enough to show that

(p ∩ ei)− ρ∗ = d ∩ ei.

We argue as above. Suppose that η < ei and p ∩ ei − (η + 1) = d ∩ ei − (η + 1) and η ≥ ρ∗; then

η ∈ p⇔ η /∈ hM [η ∪ p− (η + 1)]

⇔ η /∈ hM [η ∪ (p ∪ e)− (η + 1)]

⇔ η /∈ hM [η ∪ d− (η + 1)]

⇔ η /∈ h∗M [η ∪ d− (η + 1)]

⇔ η ∈ d.

The second line uses Lemma 2.17 to equate the two hulls. The third line uses our induction

hypothesis on η, and the fourth uses e ⊆ (e− (η + 1)) to equate the L∗ hull with the L hull.

3. Proof of the main theorem

This section proves Theorem 1.8. We assume AD+ throughout the section. By the argument in

Remark 1.9(b), it is enough to prove 1.8(a). So let us assume that (M,Σ) is a strongly 1-sound

mouse pair of type B such that deg(M) = 0. For definiteness, we assume that M is an lpm.15

Before we get to the main comparison arguments, we make some preliminary reductions.

3.1. Preliminary lemmas

Let F = ḞM , κ = crt(F ), and τ = τM = κ+,M . Let also ρ∗ = ρ∗M and dk = dM (k). Assume toward

contradiction that M is not Dodd solid, and let i be least such that M is not Dodd solid at i. From

parameter solidity for M we get

Lemma 3.1. di ∈ eM . Hence di ≤ γM .

15Since deg(M) = 0, various complications in pfs fine structure to do with type 2 pfs premice will not arise.
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Proof. Let η = dM (i), and suppose η /∈ eM . By Theorem 2.18 η ∈ pM , so since M is parameter

solid,

ThM1 (η ∪ pM − (η + 1)) ∈M.

By Lemma 2.17,

eM − η ∈ hM [η, pM − (η + 1)],

so ThM1 (η ∪ {pM − (η + 1), eM − η}) ∈M , so Th∗,M1 (η ∪ {dM � i}) ∈M . Thus M is Dodd solid at

i, contradiction.

We have that F � (di ∪ {d0, .., di−1}) /∈M , or equivalently, Th∗,M1 (di ∪ {d0, ..., di−1}) /∈M . Let

Q = cHull∗,M1 (di ∪ {d0, ..., di−1})

and

σ : Q→M

be the anticollapse. By Lemma 2.8, letting G be the Jensen completion of F � (d � i ∪ di),

Q = (Ult(M ||τ,G), G),

and σ is the factor map

σ([a, f ]
M ||τ
G ) = [a, f ]

M ||τ
F . (3.1)

Since di is a generator of F , crt(σ) = di. Since di ∈ eM , we have

Lemma 3.2. γM /∈ ran(σ).

Proof. By Lemma 2.17, di ∈ h∗M [di ∪ pM − (di + 1) ∪ {γM}]. Since pM ⊆ dM , if γM ∈ h∗M [di ∪
{d0, ..., di−1}], then di ∈ h∗M [di ∪ {d0, ..., di−1}] = ran(σ), contrary to di = crt(σ).

The fact that M satisfies the Jensen ISC gives us some further limitations on di and σ.

Lemma 3.3. (a) pM ∩ (γM , λF ) 6= ∅.

(b) G = ḞQ has a largest cutpoint λ∗Q, and σ(λ∗Q) = λ∗M .

(c) If di = γM , then Q = cHull∗,M1 (λ∗M ∪ (pM − α)).

(d) The Jensen ISC fails for Q.

Proof. For (a): Suppose instead that pM ⊆ γM + 1; then since e0 ≤ γM , dM ⊆ γM + 1. If e0 = γM ,

then eM = {γM}, so i = 0 and di = γM . But then M is Dodd solid at i by the Jensen ISC. So

e0 < γM . Clearly γM /∈ pM because it has an L-name. Thus dM ⊆ γM . But then M is Dodd solid

by the Jensen ISC, contradiction.
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For (b): By (a), letting ν be least such that σ(ν) ≥ λ∗M , we have σ(ν) < λF . We claim ν

is a cutpoint of G. For suppose that a ∈ [ν]<ω and f : [κ]|a| → κ and i
Q||τ
G (f)(a) > ν; then

i
M ||τ
F (f)(σ(a)) > λ∗M . Since σ(a) ∈ [λ∗M ]<ω, this contradicts λ∗M being a cutpoint of F .16

Since ν is a cutpoint of G, σ(ν) is a cutpoint of F . For otherwise there is a fragment F ∩
([σ(ν) + 1]<ω ×M ||ξ) that witnesses σ(ν) is not a cutpoint of F , but this fragment is in ran(σ), so

G ∩ ([ν + 1]<ω ×M ||ξ) witnesses that ν is not a cutpoint of G.

Since λ∗M is the largest cutpoint of F below λF , we get that σ(ν) = λ∗M and ν = λ∗Q is the

largest cutpoint of ḞQ.

For (c): Let ψ : cHull∗,M1 (λ∗M ∪ (pM − α)) → M be the anticollapse. Then ψ � λ∗M = id, and

the proof of (b) shows that λ∗M ∈ ran(ψ). So ran(ψ) collapses to Q, as desired.

For (d): let γ = ν+,Q where σ(ν) = λ∗M . σ maps the fragments of G � γ to fragments of F � γM ,

and σ“γ is cofinal in γM because σ is the identity on τ .17 If the Jensen ISC holds for Q, then

G � γ ∈ Q, so cofQ(γ) = τ , so σ is continuous at γ. Thus σ(γ) = γM , so γM ∈ ran(σ), contrary to

3.2.

The following notion plays an important role in Zeman’s proof of Dodd solidity for Jensen mice

in [7]. It will play a similar role in our proof.

Definition 3.4. A potential active Jensen premouse (N,G) has a strong failure of the ISC at η if

and only if

(a) η is a cutpoint of G, η < λG, and the Jensen completion of G � η is not on the N -sequence.

(b) Letting γ = (η+)Ult(N,G�η), we have γ < (η+)N .

a

In the situation of 3.4, G � γ would collapse γ in N if the Jensen ISC held, but instead, N

collapses γ in some way inconsistent with this.

Lemma 3.5. If di < γM , then Q has a strong failure of the ISC at its largest proper cutpoint λ∗Q.

Proof. Again, let G = ḞQ and γQ = (λ∗Q)+,Ult(Q,G�λ∗Q). Part (a) of Definition 3.4 was shown in

3.3(c). For (b), we must see that γQ < (λ∗Q)+,Q. We showed in the proof of 3.3(c) that σ � γQ is

cofinal in γM . It is therefore enough to prove

Claim 3.6. ∃ξ ∈ rng(σ)(γM < ξ < (λ∗M )+,M ).

Proof. Let a ⊆ di ∪ {d0, ..., di−1} and h ∈M ||τ be such that

[a, h]QG = λ∗Q,

16Note here that M ||τ = Q||τ .
17For A ⊂ κ in Q||τ = M ||τ , σ(i

Q||τ
G (A)) = i

M||τ
F (A), so σ(i

Q||τ
G (A) ∩ ν) = i

M||τ
F (A) ∩ σ(ν), which implies σ′′γ is

cofinal in γM as claimed.
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so that [a, h]MF = λ∗M . We may assume h : [κ]|a| → κ. We can assume a is large enough that for

some f : [κ]|a|+1 → κ,

[a ∪ {di}, f ]MF = γM .

(There is such an f because Ult(M ||τ, F � di ∪ {d0, ..., di}) = M ||o(M).) Now, for u ∈ [κ]|a| let

g(u) = sup{f(u, v) : f(u, v) < h(u)+,M ∧ (u, v) ∈ [h(u)]|a|+1}.

It is clear that g(u) < h(u)+,M for a.e. u. This implies [a, g]QG < (λ∗Q)+,Q. But also

γM = [a ∪ {di}, f ]MF < [a, g]MF .

So [a, g]MF ∈ (γM , (λ
∗
M )+,M ).

If σ(ν) ∈ (γM , (λ
∗
M )+,M ), then ν ∈ (γQ, (λ

∗
Q)+,Q), so γQ < (λ∗Q)+,Q, as desired.

Remark 3.7. [6] uses the Interpolation Lemma to prove this claim. Our proof just unpacks the

relevant part of that lemma.

3.2. A background construction

Fix a coarse strategy pair ((N∗,∈, w,F ,Ψ),Ψ∗) that captures Σ, and let C be the maximal (w,F)

construction, with models Mν,l and induced strategies Ων,l. Let δ∗ = δ(w). By [3, Theorem 3.26],

(∗)(M,Σ) holds, so we can fix 〈η0, 0〉 lex least such that (M,Σ) iterates to (Mη0,0,Ωη0,0), and for

all (ν, l) <lex (η0, 0), (M,Σ) iterates strictly past (Mν,l,Ων,l). Let Uν,l be the unique λ-separated

tree on M witnessing (M,Σ) iterates past (Mµ,l,Ων,l).
18

We shall rule out di < γM by comparing (Q,Σσ) with the levels of C. We shall rule out di = γM

with a more complicated phalanx comparison.

3.3. Ruling out di < γM

Suppose that di < γM , so that Q has a strong failure of the Jensen ISC at its largest cutpoint. We

compare (Q,Σσ) with the levels of C. Non-dropping iterates of (Q,Σσ) also have strong failures of

the ISC, so (Q,Σσ) cannot iterate into any such level. This will lead to a contradiction.

Remark 3.8. This part of the argument does not require a phalanx comparison, so it is simpler

than the di = γM case.

Q is not an lpm because the ISC fails. Nevertheless the strategy-regularity properties that

define lbr hod pairs make sense for (Q,Σσ),

Lemma 3.9. (Q,Σσ) has strong hull condensation, normalizes well, and is internally lift consistent

and pushforward consistent.

18Since deg(M) = 0, M is strongly stable, so all iterates of (M,Σ) have type 1.
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Proof. (Sketch.) (M,Σ) is an lbr hod pair, so it has these properties. Lemma 9.2.3 of [4] shows

that if π : (N,Ψ)→ (M,Σ) is ΣL1 -elementary and cofinal, then (N,Ψ) has them, that is, (N,Ψ) is

an lbr hod pair. In our case, σ is cofinal, but only ΣL
∗

1 -elementary. However, this is enough for the

proof that the strategy regularity properties hold for (Q,Σσ). (But not enough to conclude that Q

is an lpm, of course.)

Continuing to adapt [4], we get

Lemma 3.10. Let 〈ν, l〉 ≤lex 〈η0, 0〉, and suppose (Q,Σσ) iterates strictly past (Mβ,k,Ωβ,k) for all

〈β, k〉 <lex 〈ν, l〉; then (Q,Σσ) iterates past (Mν,l,Ων,l).

Proof. We adapt the proof of [4, 9.5.2]. The proof that no strategy disagreements show up when

(Q,Σσ) is compared with (Mν,l,Ων,l) goes through without change. The proof that only the Q-side

moves involves the ISC for Q, so we must look at it.

Let S be the tree on the Q-side, and

(Pγ ,Σγ) = (MSγ ,ΣS�γ+1)

be the pair at γ in S. (So (P0,Σ0) = (Q,Σσ).) Suppose toward contradiction that (Pγ ,Σγ)||η =

(Mν,l,Ων,l)||η and Pγ |η 6= Mν,l|η, and Mν,l|η is active. Let ν, l be the lex least counterexample. As

in [4], we get that l = 0 and η = ν. We have assumed that 〈ν, l〉 ≤lex 〈η0, 0〉, so we may set

U = Uν,0.

Let F = ḞMν,0 and let F ∗ be the background extender for F . Let j = iVF ∗ and κ = crt(F ) =

crt(j). We have

(a) F ∗ backgrounds F+.

(b) j(Mν,0)|〈ν, 0〉 = Mν,0||ν and lh(F ) = o(Mν,0) is a cardinal in j(Mν,0).19

(c) S � γ + 1 = j(S) � γ + 1.

(d) j �MSκ = i
j(S)
κ,j(κ).

(e) j �MUκ = i
j(U)
κ,j(κ).

(f) MSκ |(κ+)M
S
κ =MUκ |(κ+)M

U
κ .

Let

Ej = {(a,X) | a ∈ [j(κ)]<ω ∧X ∈MSκ ∧ a ∈ j(X)},

N =Mj(S)
j(κ) ||j(κ)

= j(Mν,0))||j(κ).

19See [4, Theorem 10.4.1].
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By (a) and (b), F+ �Ej , F /∈ N , and every whole proper initial segment of F is in Mν,0, and hence

in N . That is

F � λF = first whole initial segment K of Ej such that K /∈ N.

Let

G+ = E
j(S)
θ ,

where θ + 1 <j(S) j(κ) and pdj(S)(θ + 1) = κ. We have that G+ �Ej , and G /∈ N , so F �G. If F

is on the sequence of Mj(S)
θ then since Pγ =Mj(S)

γ and γ ≤ θ and lh(E
j(S)
γ ) > lh(F ), F is on the

sequence of Pγ , contradiction. Thus

F � λF �G,

and F witnesses that Mj(S)
θ |lh(G) does not satisfy the Jensen ISC.

It follows that [0, θ]j(S) does not drop, G = ḞM
j(S)
θ , and Mj(S)

θ has a strong failure of the ISC.

Letting

L = G � λ∗G,

where λ∗G is the largest proper cutpoint of G, this implies that

λ+,N
L > sup iL“κ+,N .

But Ej is the branch extender of i
j(U)
κ,j(κ), and j(U) is an ordinary plus tree in which all models

satisfy the Jensen ISC. This implies that whenever L is a cutpoint initial segment of Ej , λ
+,N
L =

sup iL“κ+,N , contradiction.

Corollary 3.11. di = γM .

Proof. If di < γM , then (Q,Σσ) has a strong failure of the ISC. This is preserved by nondropping

iterations, so (Q,Σσ) cannot iterate to any (Mν,l,Ων,l). It follows from Lemma 3.10 that (Q,Σσ)

iterates strictly past (Mη0,0,Ωη0,0). Let S be the tree on (Q,Σσ) that witnesses this. The Dodd-

Jensen Lemma now leads to a contradiction.

Let lh(S) = θ + 1, and (Pξ,Σξ) be the pair at ξ in S. let

T = σS

be the copied tree, with pairs (P ∗ξ ,Σ
∗
ξ) and copy maps

σξ : (Pξ,Σξ)→ (P ∗ξ ,Σ
∗
ξ).

Since either [0, θ)S drops or (Mη0,0,Ωη0,0) � (Pθ,Σθ), we get that for σ̄θ = σθ � Mη0,0, there is

(N,Ψ) � (P ∗θ ,Σ
∗
θ) such that

σ̄θ : (Mη0,0,Ωη0,0)→ (N,Ψ)
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is ΣL1 - elementary (not just ΣL
∗

1 ). Moreover, [0, θ)T drops or (N,Ψ) � (Mη0,0,Ωη0).

Let U = Uη0,0 and β + 1 = lh(U); then

σ̄θ ◦ iU0,β : (M,Σ)→ (N,Ψ)

is ΣL1 elementary. Since the branch of T to (N,Ψ) drops, this contradicts the Dodd Jensen property

of Σ.

3.4. Ruling out di = γM

We have now that di = γM . Thus di = eM (0), and dM � i = pM � i 6= ∅ by 3.3.

Our plan now is to use a phalanx comparison like the ones in the proofs of parameter solidity,

closure under initial segment, condensation, and other similar results. See for example [4, Theorem

9.6.2] for the template.

Let us summarize the eventually contradictory properties of (M,Q, σ, di) that we have accumu-

lated:

Definition 3.12. (N,P, ψ, α) is problematic iff

(1) N is an active, λ∗N -sound lpm of type B and degree 0,

(2) α = γN = eN (0) and pN − α 6= ∅,

(3) P = cHull∗,N1 (λ∗N ∪ (pN − α)), ψ : P → N is the anticollapse map, and α = crt(ψ), and

(4) ḞP /∈ N .

a

Lemma 3.13. (M,Q, σ, di) is problematic.

Proof. (1) is clear; in fact M is fully 1-sound. Lemma 3.3(a) and (c) imply the nontrivial part of

(2) and (3). (4) is our assumption that Dodd solidity has failed.

Some observations:

Lemma 3.14. If (N,P, ψ, α) is problematic, then for F = ḞN and G = ḞP ,

(a) λ∗N is inaccessible in N ,

(b) λ∗N is a limit of cutpoints of F and G,

(c) λ∗N = λ∗P is the largest cutpoint of F and G, and

(d) α = (λ∗P )+,P , so EPα = ∅, and the Jensen ISC fails in P .
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Proof. For (a): We have α = crt(ψ) = γN = (λ∗N )+,P . Since λ∗N is strongly inaccessible in N ||γN ,

it is strongly inaccessible in P . But ψ(λ∗N ) = λ∗N , so λ∗N is strongly inaccessible in N .

For (b): Since F � λ∗N ∈ N , by (a), working in N we can find club many cutpoints of F below

λ∗N .

The proof of Lemma 3.3(b) yields (c). Part (d) is clear.

We shall reach a contradiction by comparing the phalanx

Φ0 = ((M,Σ), (Q,Σσ), λ∗M )

with (M,Σ), indirectly, by iterating it to or past the levels of C. The definition of the coiterations

is very similar to that in the proof of solidity for the standard parameter in [4, 9.6.2], and the proof

that one of them succeeds is simpler than that in [4].20 One difference is that our exchange ordinal

is λ∗M rather than di. This choice lets us avoid some anomalous cases that cause a fair amount of

difficulty in the parameter solidity proof.21

We now define pseudo-iteration trees Sν,l on Φ0 for certain (ν, l) ≤ (η0, 0). The definition is similar

to the definition of Sν,l in [4, p. 420ff], so we’ll go fast. Fix (ν, l) ≤ (η0, 0) for now, and assume

Sν′,l′ is defined whenever (ν ′, l′) <lex (ν, l). Let U = Uν,l, and for τ < lh(U), let

(Qθ,Λθ) = (MUθ ,ΣU�(θ+1))

be the mouse pair at θ in U . As we define S, we lift it to a padded tree T on (M,Σ) by copying.

We write

(P ∗θ ,Σ
∗
θ) = (MTθ ,ΣT �(θ+1))

for the mouse pair at θ in T . For θ < lh(S), we have a nearly elementary copy map πθ from MSθ
into MTθ . We attach the complete strategy Σθ = (Σ∗θ)

πθ to MSθ , so that

(Pθ,Σθ) = (MSθ , (Σ
∗
θ)
πθ)

is the (not quite mouse) pair at θ in S. For the embeddings of S, T , and U we write

iα,β = iSα,β,

i∗α,β = iTα,β,

jα,β = iTα,β.

We also define a non-decreasing sequence of ordinals εθ = εSθ that measure agreement between

models of S, and tell us which model we should apply the next extender to.

20Mainly because we are relying on the fact that parameter solidity has already been proved, and M is 1-sound,
so the reductions in the last subsection are available.

21See [4, 4.10.4] and [5] for a discussion of these cases.
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The construction of S classifies nodes θ < lh(S) as either stable or unstable, with the current

last node always stable. If γ is our current last node, we shall have have σθ, αθ, for each unstable

θ < γ, that satisfy

(†)γ: If θ < γ is unstable, then

(i) [0, θ]S does not drop, and all η <S θ are unstable,

(ii) eSθ = eUτ for some τ ,

(iii) (Pθ, Pθ+1, σθ, αθ) is problematic,

(iv) αθ = i0,θ(α0) = sup i0,θ“α0, and for all η <S θ, crt(iη,θ) < αη,

(v) λ∗Pθ = i0,θ(λ
∗
P0

) = sup i0,θ“λ
∗
Pθ

,

(vi) εθ = inf(λ∗Pθ , εθ+1), or θ + 1 = γ and εθ is not yet defined.

We start with

((P0,Σ0), (P1,Σ1), σ0, α0) = ((M,Σ), (Q,Σσ), σ, di).

0 is unstable, and 1 is stable. Both are roots of S. In T , we let

(P ∗0 ,Σ
∗
0) = (P ∗1 ,Σ

∗
1) = (M,Σ).

The copy maps from S to T are

π0 = id , π1 = σ.

0 and 1 are distinct roots of S. We say that 0 is unstable, and 1 is stable. Clearly (†)1 holds.

The construction of S takes place in rounds in which we either add one stable θ, or one unstable

θ and its stable successor θ + 1. Thus the current last model is always stable, and all extenders

used in S are taken from stable models. If γ is stable, then εγ = λ̂(ESγ ).

For a node γ of S, we write pdS(γ) for the immediate ≤S-predecessor of S. We set

st(γ) = the least stable θ such that θ ≤S γ,

and 22

rt(γ) =

pdS(st(γ))) if pdS(st(γ))) exists,

st(γ) otherwise.

The construction of S ends when we reach a stable θ such that

(I) (Mν,l,Ων,l) � (Pθ,Σθ), or (Pθ,Σθ) = (Mν,l,Ων,l) and [rt(θ), θ]S drops, or

(II) (Pθ,Σθ) � (Mν,l,Ων,l), and [rt(θ), θ]S does not drop.

22Equivalently ξ = rt(γ) iff ξ ≤S γ and eSξ is the longest initial segment of eSγ that belongs to Uext. If ξ = 0 or
ξ = θ + 1 for θ unstable, then eSξ = ∅. Otherwise eSξ 6= ∅.
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If case (I) occurs, then we go on to define Sν,l+1. If case (II) occurs, we stop the construction.

We now describe how to extend S one more step. Suppose first that S has successor length

γ + 1, where γ is stable, and that (†)γ holds. Suppose (I), (II) above do not hold for γ, so that

there is a disagreement between (Pγ ,Σγ) and (Mν,l,Ων,l).

It is convenient to isolate a certain special case.

Definition 3.15. γ < lh(S) is special iff γ = θ + 1, where θ is unstable, and

(i) Pθ+1|(αθ) = Mν,l||αθ, and

(ii) for some ξ ≥ αθ, crt(E
Pθ+1

ξ ) = λ∗Pθ .

a

If γ is special and θ + 1 = γ, then we set

ESγ = order 0 measure of Pγ on λ∗Pθ

= E
Pγ
ξ , where ξ ≥ αθ is least s.t. crt(E

Pγ
ξ ) = λ∗Pθ ,

εγ = αθ,

εθ = λ∗Pθ .

As usual, pdS(γ + 1) is the least ξ such that crt(E) < εξ, which in this case is γ. There is no

dropping here. We let ETγ = πγ(ESγ ), so that

Pγ+1 = Ult(Pγ , E
S
γ ),

P ∗γ+1 = Ult(P ∗γ , πγ(ESγ )),

and πγ+1 is given by the Shift Lemma. We declare γ + 1 to be stable. (†)γ+1 follows vacuously

from (†)γ .23

Suppose next that γ is not special, and that the least disagreement between (Pγ ,Σγ) and

(Mν,l,Ων,l) involves only an extender E on the sequence of Pγ . That is,

(Mν,l,Ων,l)|lh(E) = (Pγ ,Σγ)||lh(E).

Later, we shall prove that this is the case.24

Set

ESγ = E+,

εγ = λ(E),

23If γ is special, then ESγ may not be the least disagreement between Pγ and Mν,l, because we are using Jensen
indexing. Also, setting εγ = αθ means we are using ms-rules at this point. We are defining S this way so that it will
stay closer to U , which (we shall see) must use (E

Pθ
αθ )+.

24Our convention is that R||ξ is the passive version of R|ξ. The corresponding fact when γ is special is that
Mν,l|αγ−1 is passive, and we shall also prove that. See Claim 3.21.
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and if γ = θ + 1 where θ is unstable25, let

εθ = inf(εγ , λ
∗
Pθ

).

Let ξ be least such that crt(E) < εξ. We let pdS(γ + 1) = ξ.26 Let (β, k) be lex least such that

either ρ(Pξ|(β, k)) ≤crt(E) or (β, k) = (ô(Pξ), k(MSξ )). Set

Pγ+1 =Ult(Pξ|(β, k), E+),27

and let îSξ,γ+1 be the canonical embedding.

Now let

ETγ = πγ(E)+,

so that T � γ+ 2 and (P ∗γ+1,Σ
∗
γ+1) are now determined, and πγ+1 : (Pγ+1,Σγ+1)→ (P ∗γ+1,Σ

∗
γ+1) is

determined by the Shift Lemma.

If ξ is stable or (β, k) < 〈ô(Pξ), deg(Pξ)〉, then we declare γ + 1 to be stable. (†)γ+1 follows

vacuously from (†)γ .

If ξ is unstable and E+ is not used in U , then again we declare γ + 1 stable. Again, (†)γ+1

follows vacuously from (†)γ .

Finally, suppose ξ is unstable and E+ is used in U .28 Say E+ = EUµ . Let τ be such that

eSξ = eUτ ,

so in particular,

(Pξ,Σξ) = (Qτ ,Λτ ).

We have that pdU (µ+ 1) = τ (see [4]), and

eSγ+1 = (eSξ )a〈E+〉 = (eUτ )a〈E+〉 = eUµ+1.

So we declare γ + 1 to be unstable and γ + 2 stable. Let

αγ+1 = iξ,γ+1(αξ),

Pγ+2 = Ult(Pξ+1, E
+)

σγ+1 = copy map.

We have the diagram

25So lh(E) < αθ because γ is not special.
26S uses plus extenders, so letting ESξ = G+, crt(E) 6= λG. We have set εξ = λ(G), but in plus trees, lh(G) and

λG lead to the same pdS function.
27Recall E+ is the plus-type extender derived from E.
28Since we are not dropping in S at γ + 1, neither anomalous case applies.
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Pγ+1 Pγ+2

Pξ Pξ+1

σγ+1

iξ,γ+1 k

σξ

iξ,γ+1 = i
Pξ
E+ and k = i

Pξ+1

E+ , and σγ+1 is given by the Shift Lemma. In T we pad, that is,

P ∗γ+2 = P ∗γ+1.

Lemma 3.16. If γ + 1 is unstable, then (†)γ+2 holds.

Proof. Items (i), (ii), and (vi) are immediate from the definitions.

Let i = iξ,γ+1 = i
Pξ
E+ . Since αξ has cofinality τPξ in Pξ, i is continuous at αξ, moreover

crt(i) < λ∗Pξ . Thus (iv) holds.

i is ΣL1 -elementary, so i(λ∗Pξ) = λ∗Pγ+1
. Since λ∗Pξ is inaccessible in Pξ, i is continuous at λ∗Pξ .

Thus (v) holds.

Finally, we must see that (Pγ+1, Pγ+2, σγ+1, αγ+1) is problematic. Let p = p(Pξ) − αξ; then

i(p) = p(Pγ+1)−αγ+1 because i preserves the solidity witnesses.29 But notice that for κ = crt(E+),

καξ ∩ Pξ = καξ ∩ Pξ+1

by (iv) and (v) at ξ. Thus σγ+1 � αγ+1 = id , and

Pγ+2 = cHull
∗,Pγ+1

1 (αγ+1 ∪ {p(Pγ+1)− αγ+1}),

σγ+1 = the anticollapse map.

We are left to show the Dodd solidity witness

H = ḞPγ+1 � (αγ+1 ∪ {p(Pγ+1)− αγ+1})

is not in Pγ+1. But letting

G = ḞPξ � (αξ ∪ {p(Pξ)− αξ}),

we have that G /∈ Pξ by (†)ξ. G is coded by a set Ḡ ⊆ Pξ||αξ that is amenable to P ||αξ.30 If

H ∈ Pγ+1, then ⋃
β<αξ

i(Ḡ ∩ P ||β) ∈ Pγ+1.

Since E+ is weakly amenable to Pξ, we can apply Schlutzenberg’s Lemma (cf. [4, 9.6.1(a)]) to

conclude that Ḡ ∈ Pξ, so G ∈ Pξ, contradiction.

29The natural prewellorder on the ΣL1 (equivalently ΣL
∗

1 ) theories has cofinality τM , so i preserves the standard
witnesses.

30Proof: Let h : τPξ → αξ witness that cofPξ (αξ) = τξ. Put 〈η, z〉 ∈ Ḡ iff (η < τPξ and z ⊆ λ∗Pξ
and z codes

G ∩ ([h(η) ∪ {p(Pξ)− αξ})]<ω × Pξ||η).
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This finishes the proof of 3.16.

Now suppose we are given S � θ, where θ is a limit ordinal. Let b = Σ(T � θ).

Case 1. There is a largest η ∈ b such that η is unstable.

Fix η. There are two subcases.

(A) for all γ ∈ b− (η + 1), rt(γ) = η + 1. In this case, b− (η + 1) is a branch of S. Let S choose

this branch,

[η + 1, θ)S = b− (η + 1),

and let MSθ be the direct limit of the MSγ for sufficiently large γ ∈ b− (η + 1). We define the

branch embedding iSγ,θ a usual and πθ : MSθ → MTθ is given by the fact that the copy maps

commute with the branch embeddings. We declare θ to be stable.

(B) for all γ ∈ b− (η + 1), rt(γ) = η. Let S choose

[0, θ)S = (b− η) ∪ [0, η]S ,

and let MSθ be the direct limit of the MSγ for sufficiently large γ ∈ b. Branch embeddings iSγ,θ
for γ ≥ η are defined as usual. πθ :MSθ →MTθ is given by the fact that copy maps commute

with branch embeddings. We declare θ to be stable.

Since θ is stable, (†)θ follows at once from ∀γ < θ (†)γ .

Case 2. There are boundedly many unstable ordinals in b but no largest one.

We let η be the sup of the unstable ordinals in b. Let S choose

[0, θ)S = (b− η) ∪ [0, η]S ,

and define the corresponding objects as in case 1(B). We declare θ stable, and again (†)θ is imme-

diate.

Case 3. There are arbitrarily large unstable ordinals in b. In this case, b is a disjoint union of

pairs {γ, γ + 1} such that γ is unstable and γ + 1 is stable. We set

[0, θ)S = {ξ ∈ b | ξ is unstable},

and let MSθ be the direct limit of the MSξ ’s for ξ ∈ b unstable. There is no dropping in model or

degree along [0, θ)S . We define maps iSξ,θ, πθ as usual. If eSθ /∈ Uext, then we declare θ stable and

(†)θ is immediate.

Suppose that eSθ ∈ Uext. We declare θ unstable, and set

αθ = i0,θ(α0),

Pθ+1 = cHull∗,Pθ1 (αθ ∪ dθ � i) where dθ � i = iS0,θ(d
M � i),

σθ = anticollapse map.
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Note that by our assumptions, dθ � i = p1(Pθ) − αθ. θ + 1 is stable. As above, it is easy to

check

Lemma 3.17. (†)θ+1 holds.

Now we are back to the case that our current initial segment of Sν,l has a last stable node.

This finishes our construction of S = Sν,l and T . Note that every extender used in S is taken

from a stable node and every stable node, except the last model of S contributes exactly one

extender to S. The last model of S is stable.

Let us describe the failures of the ISC in S.

Lemma 3.18. The following are equivalent:

(a) Pγ does not satisfy the Jensen ISC,

(b) there is a stable root ξ + 1 of S such that ξ + 1 ≤S γ and [ξ + 1, γ]S does not drop.

Proof. All unstable Pγ are premice, and if there is a premouse on the branch of S to γ, then Pγ is a

premouse. Thus (a) implies (b). Conversely, if ξ is unstable, then Pξ+1 does not satisfy the Jensen

ISC because (Pξ, Pξ+1, σξ, αξ) is problematic. If [ξ + 1, γ]S does not drop, then iξ+1,γ propagates

the failure of the ISC. Thus (b) implies (a).

Remark 3.19. Suppose ξ + 1 is a stable root of S, ξ + 1 ≤S γ, and [ξ + 1, γ]S does not drop. Let

λ∗ = λ∗Pξ = λ(E
Pξ
αξ ); then E

Pξ
αξ � λ is the first missing-from-Pγ whole proper initial segment of ḞPγ .

It may not be the only one.

Our definitions imply that stable roots that are extended without a drop are special.

Proposition 3.20. Suppose ξ + 1 is a stable root of S, ξ + 1 <S γ, and [ξ + 1, γ]S does not drop;

then ξ + 1 is special and ξ + 2 ≤S γ.

Proof. Let η+1 ≤S γ be such that pdS(η+1) = ξ+1, and E = ESη . If lh(E) < λ∗Pξ then εξ = εξ+1,

so pdS(η + 1) ≤ ξ, contradiction. Thus lh(E) > λ∗Pξ and εξ = λ∗Pξ . Since E is total over Pξ+1,

Pξ+1|αξ = Pη|αξ = Mν,l|αξ. This implies that ξ + 1 is special.

Since ξ + 1 is special, crt(E) < εξ+1 = αξ. If η > ξ + 1 then crt(E) 6= λ∗Pξ because λ∗Pξ is

not measurable in Pη (since ESξ+1 has order 0). Thus crt(E) < λ∗Pξ = εξ, so pdS(η + 1) ≤ ξ,

contradiction.

Thus η + 1 = ξ + 2, as desired.

Combining the arguments in [4, Lemma 9.6.5] with an additional element that deals with the

fact that extenders used in S may fail the Jensen ISC, we show

Lemma 3.21. Let γ be stable and suppose neither (I) nor (II) holds at γ; then the least disagreement

between (Pγ ,Σγ) and (Mν,l,Ων,l) is an extender disagreement, and it is passive on the Mν,l-side.
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Proof. The proof of [4, Lemma 9.6.5] shows that it is an extender disagreement. We shall not go

into the many details of that proof, but rather focus on the proof that the disagreement is passive

on the Mν,l side. This is where the failure of the Jensen ISC in Q adds a complication.

So suppose toward contradiction that (Pγ ,Σγ)||η = (Mν,l,Ων,l)||η and Pγ |η 6= Mν,l|η, and Mν,l|η
is active. Let ν, l be the lex least counterexample. As in [4], we get that l = 0, η = ν. Again, to

simplify the notation, we write S for Sν,0, U for Uν,0 etc.

Let F = ḞMν,0 and let F ∗ be the background extender for F . Let j = iVF ∗ and κ = crt(F ) =

crt(j). We have

(a) F ∗ backgrounds F+.

(b) j(Mν,0)|〈ν, 0〉 = Mν,0||ν and lh(F ) = o(Mν,0) is a cardinal in j(Mν,0).31

(c) S � γ + 1 = j(S) � γ + 1.

(d) j �MSκ = i
j(S)
κ,j(κ).

(e) j �MUκ = i
j(U)
κ,j(κ).

(f) MSκ |(κ+)M
S
κ =MUκ |(κ+)M

U
κ .

Since our claim holds when S is replaced by U (by [4]), Mν,0 �MUτ for τ + 1 = lh(U). It follows

that U = j(U) � τ + 1, so Qτ =Mj(U)
τ , and

Ej(U)
τ = F+.

Let

Ej = {(a,X) | a ∈ [j(κ)]<ω ∧X ∈MUκ ∧ a ∈ j(X)},

N =Mj(U)
j(κ) ||j(κ)

=Mj(S)
j(κ) ||j(κ),

That is, Ej is the the common (short) (κ, j(κ)) extender of i
j(S)
κ,j(κ) and i

j(U)
κ,j(κ). Let H be the first

whole initial segment K of Ej such that K /∈ N . The Jensen ISC holds for the models of U and

j(U), so H+ must be used in j(U). But F+ is used in j(U) and F+ � Ej , so F � λF = H, i.e.

F � λF = first whole initial segment K of Ej such that K /∈ N.

Let

G+ = E
j(S)
θ ,

where θ + 1 <j(S) j(κ) and pdj(S)(θ + 1) = κ. We have that G � λG � Ej , and G /∈ N , so by

the ISC for F , F � G. If F is on the sequence of Mj(S)
θ then since Pγ = Mj(S)

γ and γ ≤ θ and

31See [4, Theorem 10.4.1].
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lh(E
j(S)
γ ) > lh(F ), F is on the sequence of Pγ . Thus F is not on the sequence of Mj(S)

θ , and

F � λF �G � λG � Ej ,

and F witnesses that Mθ|lh(G) does not satisfy the Jensen ISC.

By Lemma 3.18 we have a stable root µ+ 1 such that µ+ 1 ≤j(S) θ and (Mµ,Mµ+1, σµ, αµ)j(S)

is problematic. (In j(N∗).) Letting R = Mj(S)
µ and W = Mj(S)

µ+1, we have λF = λ∗R = λ∗W by

Remark 3.19. Moreover F = ERαµ . So αµ = o(Mν,0). It follows that

γ = µ+ 1,

(Pµ, Pµ+1) = (Mj(S)
µ ,Mj(S)

µ+1),

F = E
Pµ
αµ ,

and

ej(S)
µ = eSµ = eUτ = ej(U)

τ .

Claim 3.22. κ ≤S µ. In particular, κ is unstable in S and j(S).

Proof. κ = crt(ḞPµ), so κ = i0,µ(κ0) where κ0 = crt(ḞP0). For α ≤S µ let

κα = i0,α(κ0),

and let ξ ≤S µ be least such that κ = κξ. Since κ is inaccessible, ξ ≥ κ.

Suppose toward contradiction that ξ > κ, and let η + 1 ≤S ξ with η ≥ κ, and

pdS(η + 1) = γ < κ.

So γ and η + 1 are unstable. Let E+ = ESη ; then κ ≤ λ(E) because the λ(Eα) increase strictly

with α. Also, crt(E) ≤ κγ since otherwise κγ = κξ = κ. But then

κη+1 = iE+(κγ) > λ(E) ≥ κ,

so κξ > κ, contradiction.

Thus ξ = κ, so κ ≤S µ.

By the claim, eSκ = eUκ and eSκ � eSµ . It follows that eUκ � eUτ ; that is,

κ ≤U τ.

Also, Pκ = Qκ, which improves the agreement given in (f) above. Finally, crt(iκ,µ) > κ or κ = µ,

so Pκ agrees with Pµ up to some inaccessible of Pκ that is > κ. The relevant diagram is Figure 1.

Notice that µ+1 is special in j(S), because (Pµ+1,Σµ+1)||αµ = j((Mν,0,Ων,0))|αµ = (Mν,0,Ων,0)||αµ.
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M

Qκ

Q
j(U)
τ+1

Qτ , F

Q
j(U)
j(κ)

iU0,κ

iUκ,τ

F

i
j(U)
τ+1,j(κ)

D

M

Pκ

Pµ Pµ+1, H

P
j(S)
µ+2

P
j(S)
θ , G

P
j(S)
θ+1

P
j(S)
j(κ)

Q

iS0,κ

iSκ,µ

G+

i
j(S)
θ+1,j(κ)

D

i
j(S)
µ+2,θ

σ0

σµ

Figure 1: Diagram if F = ḞMν,0 is an extender disagreement in the phalanx comparison. Pκ = Qκ,

Pµ = Qτ , and P
j(S)
j(κ) = Q

j(U)
j(κ) . F

+ = FaD and F � λF �G � λG. iS0,κ = iU0,κ and iSκ,µ = iUκ,τ .
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Let

D = E
j(S)
µ+1

= order 0 measure of Pµ+1 on λF .

Claim 3.23. Let βµ = α
+,Pµ+1
µ ; then Pµ+1||βµ � Ult(Pµ, F ).

Proof. Let N be a level of Pµ+1 projecting to αµ. We can apply the condensation theorem of [3]

to σµ � N . Since crt(σµ) = αµ = lh(F ), the “ultrapower away” conclusion of the theorem holds, as

desired. In other words, N � Ult(Pµ, F ). Since N is arbitrary, we have Pµ+1||βµ � Ult(Pµ, F ) as

claimed.

Claim 3.24. F+ = F -then-D.

Proof. By definition, F+ = F -then-E, where E is the order 0 measure of Ult(Qκ, F ) on λF . But

Ult(Qκ, F ) = Ult(Pκ, F ), and Ult(Pκ, F ) agrees with Ult(Pµ, F ) below iF (ρ), where ρ is the first

inaccessible of Pκ strictly above κ. Since iF (ρ) > βµ, we get E = D from Claim 3.23.

Let

H = ḞPµ+1 .

Since (Pµ, Pµ+1, σµ, αµ) is problematic, H /∈ Pµ. Letting σµ(q) = p(Pµ) − αµ, we have that H is

equivalent to H � λF ∪ q = G � λF ∪ t, where t = i
j(S)
µ+1,θ(q) . But Qτ = Pµ, so it will be enough for

a contradiction to show:

Claim 3.25. . For any finite t ⊆ λG, G � λF ∪ t ∈ Qτ .

Proof. We have that F+ = E
j(U)
τ and F+ � Ej , so κ = pdj(U)(τ + 1) and τ + 1 <j(U) j(κ). Let

λ∗ = i
j(S)
µ+1,θ(λF ),

ρ = least β ∈ [µ+ 1, θ]j(S) s.t. λ∗ < crt(i
j(S
β,θ ),

ξ = least β ∈ [τ + 1, j(κ)]j(U) s.t. λ∗ ≤ crt(i
j(U)
β,j(κ)).

Subclaim 1. G � λ∗ is the (κ, λ∗)-extender derived from i
j(S)
µ+1,ρ ◦ iF .

Proof. Recall H = ḞPµ+1 ; then for A ⊆ κ,

iF (A) = iH(A) ∩ λF ,
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so for k = i
j(S)
µ+1,ρ,

k ◦ iF (A) = k(iH(A) ∩ λF )

= ik(H)(A) ∩ k(λF )

= iG(A) ∩ λ∗,

as desired. �

Subclaim 2. e
j(U)
τ+1,ξ = e

j(S)
µ+2,ρ.

Proof. Let s = e
j(U)
κ,ξ , so that

s = 〈F+〉_ej(U)
τ+1,ξ.

We can recover s from Ej � λ∗ by looking at missing-from-N initial segments of tail factors. More

precisely, let

R0 = Qκ|κ+,Qκ ,

k0 = i
j(U)
κ,ξ � R0,

W = k0(R0),

E0 = Ek0 = Ej � λ
∗.

Then s(0) = E+, where E is the shortest whole initial segment of E0 such that E /∈ N . (That

is, s(0) = F+.) Let R1 = Ult(R0, s(0)) and k1 : R1 → W be the factor map; then R1 �Mj(U)
τ+1

and k1 = i
j(U)
τ+1,ξ � R1. Letting E1 = Ek1 , we let s(1) = E+, where E is the shortest whole initial

segment of E1 such that E /∈ N . And so on.

But Ej � λ∗ = G � λ∗, and so by Subclaim 1 Ej � λ∗ is the extender (over the same R0) of

i
j(S)
µ+1,ρ ◦ iF . Further,

i
j(S)
µ+1,ρ ◦ iF = i

j(S)
µ+2,ρ ◦ iD ◦ iF = i

j(S)
µ+2,ρ ◦ iF+ .

Thus the recovery process above must yield

s = 〈F+〉_ej(S)
µ+2,ρ.

This proves Subclaim 2. �

Subclaim 3. In j(S), every extender in ran(e
j(S)
µ+2,ρ) is very close32 to the model to which it is applied.

Proof. Let r = e
j(S)
µ+2,ρ. By the proof of [4, 4.5.7] it is enough to show that all extenders used in r

are very close to the models to which they are applied.33 Suppose that E = E
j(S)
α is used in r, and

let

pdj(S)(α+ 1) = β ∈ [µ+ 2, ρ)j(S).

32E is very close to N iff Ea ∈ N for all finite a ⊂ lh(E).
33[4, 4.5.7] is stated for plus trees, whereas j(S) is a pseudo-tree, but the difference is not relevant to the proof.
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By [4, 4.5.3(1)] we may assume that β <j(S) α. Let η+ 1 be least in (β, α]j(S). By [4, 4.5.7(2)(iv)],

we are done unless M∗,j(S)
η+1 = M∗,j(S)

α+1 and E− = k(ḞM
∗,j(S)
α+1 ), where k = (iη+1,α ◦ i∗η+1)j(S). But

the branch [µ + 1, ρ)j(S) does not drop, so M∗,j(S)
α+1 = Mj(S)

β , and E = k(i
j(U)
µ+1,β(H)). But then

crt(E) < εµ, so β ≤ µ, contradiction. �

Subclaim 4. In j(U), every extender in ran(e
j(U)
τ+1,ξ) is very close to the model to which it is applied.

Proof. Let r = e
j(U)
τ+1,ξ = e

j(S)
µ+2,ρ. Let Wi be the model to which r(i) is applied in j(S) and Zi the

model to which r(i) is applied in j(U). Thus

W0 =Mj(S)
µ+2

= Ult(Pµ+1, D),

Z0 =M(U)
τ+1 = Ult(Qκ, F

+)

= Ult(Ult(Qκ, F ), D).

Let β = λ
++,Pµ+1

F ; then by Claim 3.23, Pµ+1||β�Ult(Pµ, F ), and hence Pµ+1||β�Ult(Qκ, F ). But

then iD propagates this agreement to iD(β) = λ++,W0

D . That is

W0||λ++,W0

D � Z0.

This agreement propagate under the r � k ultrapowers, so

Wk||ir�k(λD)++,Wk � Zk

for all k ≤ dom(r). But for k ∈ dom(r),

crt(r(k)) ≤ ir�k(λD)

by our definition of ρ. Since r(k) is very close to Wk, every r(k)a belongs to Wk||ir�k(λD)++,Wk ,

and hence belongs to Zk, as desired. �

We have not quite reached λG on the U side yet. There is one more extender to go. Let

ξ1 = least α <j(U) j(κ) s.t. λG ≤ crt(i
j(U)
α,j(κ)).

Subclaim 5. pdj(U)(ξ1) = ξ; moreover, letting E+ = E
j(U)
ξ1−1, we have

(a) crt(E) = λ∗, λE = λG, and E has type A, and

(b) E is very close to Mj(U)
ξ .

Proof. For (a): λG and λ∗ are cutpoints of Ej . Moreover, λ∗ = i
j(S)
µ+1,ρ(λF ), λG = i

j(S)
µ+1,ρ(λH), and

λF is the largest proper cutpoint of H. It follows that λ∗ is the largest proper cutpoint of G.
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Also

λ∗ = i
j(S)
µ+2,ρ ◦ iD ◦ iF (κ)

= i
j(U)
τ+1,ξ ◦ iF+(κ)

= i
j(U)
κ,ξ (κ),

so crt(i
j(U)
ξ,j(κ)) ≤ λ

∗, so then crt(i
j(U)
ξ,j(κ)) = λ∗ by our choice of ξ.

Let K+ = E
j(U)
η+1 where η+ 1 <j(U) j(κ) and pdj(U)(η+ 1) = ξ. Since λK is a cutpoint of Ej , we

have λG ≤ λK . But λK ≤ λG, since otherwise K � λG ∈ N by the Jensen ISC, which is impossible

because iK�λG maps (λ∗)+,N cofinally into λ+,N
G , and hence collapses it. Thus λK = λG. It follows

that K = E and η + 1 = ξ1.

If γ is a proper cutpoint of E, then γ is a cutpoint of G strictly between λ∗ and λG. So there

are no such γ. This finishes the proof of (a)

For (b), we apply [4, 4.5.3(1)]. We may assume that ξ <j(U) α, where ξ1 = α + 1. Let

η + 1 be least in (ξ, α]j(U). By [4, 4.5.7(2)(iv)], we are done unless M∗,j(U)
η+1 = M∗,j(U)

α+1 and E =

(iη+1,α ◦ i∗η+1)j(U)(ḞM
∗,j(U)
α+1 ). But the branch [0, α+ 1]j(U) does not drop, so M∗α+1 = M∗η+1 =Mξ

in j(U). Thus E = i
j(U)
ξ,α (K), where K = i

j(U)
0,ξ (ḞM ). But E has type A and ḞM has type B, so this

impossible. This proves (b). �

We can now finish the proof of Claim 3.25. Let I be the branch extender of i
j(U)
τ+1,ξ1

, that is,

I = Ek, where k = i
j(U)
τ+1,ξ1

.

By [4, 4.5.7], I is very close to Mj(U)
τ+1 . Thus

It ∈Mj(U)
τ+1 .

SinceMj(U)
τ+1 agrees with Ult(Mj(U)

τ , F+) below iF+(κ), we haveMj(U)
τ+1 ||iF+(κ) ∈Mj(U)

τ =MUτ , so

It ∈MUτ .

But F+ ∈ MUτ , and from F+ and It one can recover G � λF ∪ t. (Let K be the extender of

F+-then-It; then K � λF ∪ t = G � λF ∪ t.) This proves Claim 3.25.

That in turn completes the proof of Lemma 3.21.

Lemma 3.26. For some (ν, l) ≤ (η0, 0), the construction of Sν,l stops for reason (II), that is,

letting θ + 1 = lh(Sν,l),
(Pθ,Σθ) � (Mν,l,Ων,l),

and [rt(θ), θ]S does not drop.
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Proof. We use the Dodd-Jensen argument in the proof of 3.11.

Suppose not, and let S = Sη0,0 and θ + 1 = lh(S). We adopt the notation above, so that

(Pξ,Σξ) is the pair at ξ in S, T = ( id, σ)S, and (P ∗ξ ,Σ
∗
ξ) is the pair at ξ in T . The copy maps are

πξ : (Pξ,Σξ)→ (P ∗ξ ,Σ
∗
ξ).

U = Uη0,0 iterates (M,Σ) to (Mη0,0,Ωη0,0), while S iterates it strictly past. More precisely, let

γ + 1 = lh(U) and (Qξ,Λξ) be the pair at ξ in U ; then

(Qγ ,Λγ) = (Mη0,0,Ωη0,0) � (Pθ,Σθ).

Let iα,β, i
∗
α,β, and jα,β be the branch embeddings of S, T , and U ,

Since either [0, θ)S drops or (Mη0,0,Ωη0,0) � (Pθ,Σθ), we get that for σ̄θ = σθ � Mη0,0, there is

(N,Ψ) � (P ∗θ ,Σ
∗
θ) such that

σ̄θ : (Mη0,0,Ωη0,0)→ (N,Ψ)

is ΣL1 - elementary. Moreover, [0, θ)T drops or (N,Ψ) � (P ∗θ ,Σ
∗
θ). But then

σ̄θ ◦ j0,γ : (M,Σ)→ (N,Ψ)

is ΣL1 elementary, and maps (M,Σ) to a iterate along a branch that has dropped, contradiction.

Now fix (ν, l) ≤ (η0, k0) as in the 3.26. Let S = Sν,l, U = Uν,l, and T = ( id , σ0)S be the lift of

S defined above. Let us adopt the rest of the notation above for the nodes and branch embeddings

of these trees, the copy maps, the problematic tuples, and so on. Let γ + 1 = lh(U), so that

(Pθ,Σθ) � (Mν,l,Ων,l) � (Qγ ,Λγ).

Lemma 3.27. For some unstable ξ, rt(θ) = ξ + 1.

Proof. Suppose the claim is false. Then

(i) either rt(θ) is unstable,

(ii) or rt(θ) is stable, and rt(θ) is a limit of unstable ξ <S rt(θ).

In either case, 0 ≤S rt(θ) ≤S θ and [0, θ]S does not drop. Let i = i0,θ, and i∗ = i∗0,θ be the

branch embeddings of S and T . The relevant diagram is

P ∗θ Pθ

M M

πθ

i∗ i

id
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Note first that i is elementary in the category of mouse pairs, because

Σ = (Σ∗θ)
i∗

= (Σ∗θ)
πθ◦i

= ((Σ∗θ)
πθ)i

= Σi
θ.

Thus we can apply Dodd-Jensen:

Subclaim 1. (Pθ,Σθ) = (Qγ ,Λγ) and [0, γ]U does not drop.

Proof. We have that i : (M,Σ) → (Pθ,Σθ) is elementary, and (Pθ,Σθ) � (Qγ ,Λγ). Since (M,Σ) is

a mouse pair, Dodd-Jensen gives the desired conclusion.

�

It follows that 〈ν, l〉 = 〈η0, 0〉. Let j = j0,γ .

Subclaim 2. i = j

Proof. j is an iteration map, so i(η) ≤ j(η) for all η. Since i∗ is an iteration map

πθ ◦ i(η) = i∗(η) ≤ πθ ◦ j(η)

for all η. Applying π−1
θ , we get that i(η) ≤ j(η) for all η.

�

Subclaim 3. rt(θ) is is not a limit ordinal.

Proof. Suppose ξ = rt(θ) is a limit ordinal. Since ξ is a limit of unstables, ran(eSξ ) consists of

extenders used in U , and hence extenders of the form E+ where E is on the sequence of a premouse

with the ISC. It follows that the eSξ can be recovered from i = j by looking at E+ for E the first

missing whole initial segment of the current tail factor. Thus eSξ � eUγ , so eSξ = eUτ for some τ . But

then ξ is unstable, contrary to ξ = rt(θ).

�

By Subclaim 3 rt(θ) = η + 1 where β = pdS(η + 1) is unstable. Let τ be such that eSβ = eUτ .

Since eSβ � eSθ = eUγ , we have that τ <U γ and eUτ,γ = eSβ,θ. In particular, eSη+1 ∈ Uext, so η + 1 is

unstable, contradiction.

This proves Lemma 3.27.

By Lemma 3.27 and Lemma 3.18, Pθ does not satisfy the Jensen ISC. On the other hand,

Pθ �Mν,l, so Pθ does satisfy the Jensen ISC. This contradiction completes the proof of Theorem

1.8 in the case that di = γM .
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4. Dodd solidity for unsound structures

In this section, we work with a possibly unsound mouse pair (M,Σ) such that M is of type B and

deg(M) = 0. As before, we let F = ḞM , µ = crt(F ), and τ = (µ)+,M . Recall Definition 1.10:

• ρ̂M is the least α ≥ τ such that there is a finite d such that F � (α ∪ d) /∈M .

• d̂M is the <∗-least d such that F � (ρ̂M ∪ d) /∈M .

Lemma 4.1. Suppose M is strongly 1-sound; then dM = d̂M and ρ∗M = ρ̂M .

Proof. ρ̂M ≤ ρ∗M because h∗M (ρ∗M ∪ dM ) = M , so F � (ρ∗M ∪ dM ) /∈ M . For the reverse inequality,

let η < ρ∗M and c ∈ [o(M)]<ω; we must see that F � (η ∪ c) ∈ M . Let a ⊂ ρ∗M be finite such that

c = h∗M (a, dM ). Let γ = max(η,max(a) + 1). By Proposition 2.12(a)34, F � (γ ∪ dM ) ∈ M . Thus

F � (η ∪ c) ∈M , as desired.

d̂M ≤∗ dM by definition and the fact that ρ∗M = ρ̂M . If d̂M <∗ dM , by Theorem 1.8, F �

(ρ∗M ∪ d) ∈M , contradiction. So d̂M = dM .

Definition 4.2. For i ∈ dom(d̂M ),

W i
M = Th∗,M1 (d̂M (i) ∪ {d̂M (0), ..., d̂M (i− 1)}).

We say that M is Dodd solid at i iff W i
M ∈ M . We say M is Dodd solid iff M is Dodd solid at all

i ∈ dom(d̂M ). a

Equivalently, we could take W i
M to be F � (d̂M (i) ∪ {d̂M (0), ..., d̂M (i − 1)}). The W i

M are

the (standard) Dodd solidity witnesses for d̂M . We don’t need generalized witnesses, because the

standard ones are preserved by Σ0 ultrapowers.

Theorem 4.3. Suppose (M,Σ) is a mouse pair of type B and degree 0; then M is Dodd solid.

Proof. Let N be the strong core of M ; that is, N = C̄(M)−. Since N is strongly 1-sound, d̂N = dN

and ρ∗N = ρ̂N . Let σ : N → M be the anticore map and (τN , γN ) = σ−1(τ, γM ). We have

crt(σ) ≥ ρ1(N) = ρ1(M).

Claim 1. ran(σ) is cofinal in τ , τ+,M , and o(M).

Proof. M = Ult0(N, s), where s is a sequence of extenders that are close to the models to which

they are applied, moreover σ is the ultrapower map.The claim follows. �

The natural prewellorder of W i
N has cofinality τN in N , so we easily get

Claim 2. Suppose that Th∗,N1 (β ∪ {c}) ∈ N ; then σ(Th∗,N1 (β ∪ {c})) = Th∗,M1 (σ(β) ∪ {σ(c)}), so

Th∗,M1 (σ(β) ∪ {σ(c)}) ∈M .

34Here we use 1-soundness of M .
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It follows that for i ∈ dom(dN ), σ(W i
N ) = Th∗,M1 (σ(dN (i)∪{σ(dN (0), ..., σ(dN (i− 1))}) ∈M . This

leads at once to

Claim 3.

(a) ρ̂M = supσ“ρ∗N , and

(b) d̂M = σ(dN ).

Proof. For (a): We have that ρ̂N = ρ∗N = max(ρ1(N), τM ). Suppose first ρ∗N = ρ1(N) ≥ τN ; then

ρ∗N = supσ“ρ∗N = ρ1(M) ≥ τM = τN .

Clearly ρ1(M) ≤ ρ̂M . On the other hand, Th∗,N1 (ρ∗N ∪ dN ) /∈ N and σ � ρ∗N = id , so Th∗,M1 (ρ∗N ∪
σ(dN )) /∈M . This implies ρ̂M ≤ ρ1(M). Thus ρ̂M = supσ“ρ∗N .

Suppose next that ρ∗N = τN > ρ1(N). Thus supσ“ρ∗N = τM . Since Th∗,N1 (τN ∪ dN ) /∈ N , by

Schlutzenberg’s lemma Th∗,M1 (τM ∪ σ(dN ) /∈ M . (Note that the theories are amenable to N and

M respectively.) Thus τM ≤ ρ̂M , so τM = ρ̂M , as desired.

For (b), we have Th∗,M1 (ρ̂M ∪ σ(dN )) /∈ M by (a) and Schlutzenberg’s lemma. Thus d̂M ≤∗

σ(dN ). Suppose toward contradiction that i is least such that ˆdM (i) < σ(dN (i)), and let α =

dN (i). By Claim 2, and induction, σ(W i
N ) = Th∗,M1 (σ(α) ∪ {d̂M (0), ..., d̂M (i − 1))} ∈ M , so

Th∗,M1 (d̂M (i) + 1 ∪ {d̂M (0), ..., d̂M (i− 1))} ∈M , contradiction.

�

Combining Claims 2 and 3, we get that σ(W i
N ) = W i

M ∈ M , for all i ∈ dom(dN ) = dom(d̂M ).

That finishes the proof of Theorem 4.3.

We also get a version of the Zeman Exchange Lemma for unsound M .

Lemma 4.4. Suppose (M,Σ) is a mouse pair of type B and degree 0; then d̄M = (pM ∪ eM )− τM
and pM ∩ eM = ∅.

Proof. Let N = C̄1(M)−, and let σ : N → M be the anticore map. Thus σ(τN ) = τM . Since N is

strongly 1-sound, Theorem 2.18 gives us that dN = d̄N = (pN ∪ eN ) − τN and pN ∩ eN = ∅. We

showed in the proof of 4.3 that σ(dN ) = d̂M . Clearly σ(pN ) = pM , so it is enough to show that

σ(eN ) = eM . This is a straightforward calculation, based on the fact that σ(γN ) = γM . We leave

it to the reader.
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