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Abstract

This is the second of two papers on the fine structure of HOD in models of the Axiom of
Determinacy (AD). Let M F ADg +V = L(p(R)). [1] shows that under a natural hypothesis
on the existence of iteration strategies, the basic fine structure theory for pure extender models
goes over to HOD™ . In this paper, we analyze the Dodd parameters and prove the analogs of
[7, Theorems 1.1, 1.2] for lbr hod pairs. The proof of these results relies on the condensation
theorems proved in [3]. In a sequel, we shall use these theorems to show that in HODM, O,

holds iff x is not subcompact.

1. INTRODUCTION

Let (M,X) be a mouse pair in the sense of [1]), so that M is either a pure extender premouse or

a least branch premouse. Let F = FM be the top extender of M, p = crt(F), 7 = pHM, and

Ar = i¥ (1) be the image of p under the F-ultrapower map. One can identify F' with i} | M||r,

so we set dom(F') = M||7. Let us recall some definitions from [(].

Definition 1.1. (1) If G is a short extender, then 7 is a cutpoint of G if and only if n < Ag and
for all a € [n]<* and f € dom(QG), ic(f)(a) < n.

(2) Let M be active, with last extender F = F'M; then

(i) M (or F) has type A iff there is no n < Ap such that 7 is a cutpoint of F,

(i) M (or F') has type B iff there is a largest 7 < Ap such that 7 is a cutpoint of F. We
write A}, for this 7.

(iii) M (or F) has type C iff Ap is a limit of cutpoints of F.

(3) M satisfies the Jensen Initial Segment Condition (ISC) if and only if whenever n < A is a
cutpoint of F', then there is a v such that Ey In=Fn.
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Dodd solidity is a form of condensation that applies to type B premice, so they are our focus

here.
Definition 1.2. Let M be active and F = F™; then
(a) Tas = crt(F)TM,

(b) letting 7 = Tas, for s C Ih(F) — 7 finite and o > 7, we say that « is an s-generator (of F') iff
a = crt(m) where 7 : Ult(M||7, F | aUs) — Ult(M]||r, F') is the canonical factor map.

_1

Definition 1.3. Let M be a pfs premouse of degree 0; then M is strongly 1-sound iff M is 1-solid
and M = Hull (p; (M) U p1(M)). .

In the terminology of [4], M is strongly 1-sound iff M = &€(M)~, that is M is its own strong
core, but with the degree changed back to 0. M is 1-sound iff M is 1-solid and M = Hull} (p; (M)U
{pr (M), pr(M)}) iff M = &(M)".

Definition 1.4. Let M be active and 1-sound, and F = F'M. Let 73y = crt(F) ™. We inductively
define the sequence (dy,...,d,) and p* as follows. Let

do = the largest generator of F, if it exists;
otherwise, let p* be the sup of the generators of F. If {dy,...,d;} are defined, let
di+1 = the largest {dp,...,d;} generator of F, if it exists;

otherwise, let p* be the sup of the {dp,...,d;}-generators of F.

Let
dy = (dp, . ..,dyp)
for n such that dy,...,d, exist and p* is the supremum of 75, U the {dy, ..., d,}-generators of F.
dyr is the Dodd parameter of M and py, = p* is the Dodd projectum of M. -

We also write dr for dys. dps may be empty; if not, then it is a strictly decreasing sequence of
ordinals. We write 7 for 7p; and p for crt(F') below. In either case, p}, > 7.
We assumed in 1.4 that M is 1-sound, and this is important. The definition is only appropriate

for 1-sound premice.

Remark 1.5. ¢ is an s-generator of F iff for all finite a C € and f € M, € # i¥(f)(aUs). By
definition, min(das) > p and in fact min(dyr) > 7. F [ pj, U dy generates all of F'; more precisely,

every x € M is of the form ¥ (f)(a U dy) for some finite a C p%; and some f € M.

The following proposition is an immediate corollary of the definitions given above. We shall

prove it in the next section.



Proposition 1.6. Assume M is an active Jensen premouse or an active lpm. Suppose M is
1-sound and deg(M) = 0; then

(a) Suppose n < pi; and T < pi;, then F' | (dyyUn) € M, and
(b) Py = maz{r, p1(M)}.
Definition 1.7. Let M be active and of type B and degree 0; then
(a) M (or dy) is Dodd solid at i iff i € dom(dps), and FM | (dps(i) U {das | i}) € M;

(b) M (or dps) is Dodd solid iff M is Dodd solid at all i € dom(dyy).

The main result of our paper is the following theorem.

Theorem 1.8 (Dodd solidity). Assume ADT. Let (M,¥) be a mouse pair such that M is active
of type B, with deg(M) = 0; then

(1) if M is strongly sound, then M is Dodd solid, and
(2) if M is 1-sound, then M is Dodd solid at all i such that dys(i) > p1(M).

Remark 1.9. (a) The proper initial segments of a pfs premouse must be 1-sound, but they may

not be strongly 1-sound. This is why we have isolated conclusion (2) of the theorem.

(b) In (2), one cannot demand that dj; be Dodd solid at @ when dps(i) = p1(M). For let M
be 1-sound but not strongly l-sound. Let N = €(M). Suppose that py(M) > 7. Since
M = Ulto(N, D) where D is the order zero measure of N on p1 (M), we have that p; (M) > 7.
The Dodd-solidity of N easily implies that dy; = ip(dy)U{p1 (M)}, with the solidity witness
for dy (i) being mapped by ip to the solidity witness for dy; (). Clearly, FN ¢ M, so M is
not Dodd solid at dom(dy).

The argument in 1.9(b) shows that 1.8(1) implies 1.8(2). More generally, one can define dj; for
arbitrary possibly unsound active M by

Definition 1.10. For M active type B with deg(M) = 0,
a) par is the least @ > 7 such that there is a finite d such that F' [ (o« Ud) ¢ M.
(b) da is the <*-least d such that F' | (pa; Ud) ¢ M.
4

Here <* is the lexicographic order on descending sequences of ordinals. The definition of dy is
parallel to the usual definition of the standard parameter. Our definition of das in 1.4 is really only

interesting in the case that M is strongly 1-sound, in which case dy; = dy. In general, dy = m(dn),



where N is the strong core of M and 7 is the anticore map; moreover m maps the Dodd solidity
witnesses for dy to corresponding witnesses for dpr. We give the simple proofs of these facts in the
last section of the paper.

Dodd solidity is a form of condensation appropriate to type B premice.! It is a strengthening
of the ms-initial segment condition. The first author proved Dodd solidity for ms-indexed mice
below superstrongs in [1]? and Martin Zeman proved it for A-indexed pure extender mice in [7].3
Our proof here applies to A-indexed mice, and it borrows in significant ways from Zeman’s [7]. The
main new element is that it incorporates comparison of iteration strategies. Nevertheless, when
specialized to the case of pure extender mice, where strategy comparison is not needed, our proof
seems to be simpler than Zeman’s.*

Dodd solidity is important in the proof that Jensen’s square principle holds in mice. In a sequel

to this paper, we shall use it and the Condensation Lemma in [3] to prove the following.

Theorem 1.11 (ADT). Let (M,X) be a mouse pair. Let k be a cardinal of M such that M E “k*

exists”; then in M, the following are equivalent.
1. O.
2. Uy <k
3. Kk is not subcompact.
n

4. The set of v < k™ such that M|v is extender-active is non-stationary in k™.

The paper is organized as follows. Section 2 recalls some basic facts about mouse pairs, and
proves some elementary facts about Dodd parameters, including Zeman’s characterization of them
as minimal generating parameters in the language of coherent structures. Section 3 proves Theorem
1.8. In Section 4, we describe the natural generalization of Theorem 1.8 to mice that are not 1-

sound.

2. PRELIMINARIES

We recall some basic facts about mouse pairs and Dodd parameters.

2.1. Mouse pairs

Two of the main definitions from [1] are

f M is 1-sound and type A, then p* = 7 and das = pas. If M is 1-sound and type C, then p* = A and dy = 0.
Thus Dodd solidity is trivial (modulo the solidity of pas!) in these cases.

2This would be roughly equivalent to proving parameter solidity for type A Jensen mice, but ms-indexing adds
some difficulty, centering on the stronger ms-ISC needed for comparison. Some version of that difficulty re-appears
in the proof of Dodd solidity for Jensen mice of type B,

3Schlutzenberg proved a strengthening of Dodd solidity for ms-mice in [2, Theorem 10.1].

4Formally, we give our proof for pfs premice, but it goes over without change to the A-indexed pure extender mice
of [7].



Definition 2.1. (M,Q) is a pure extender pair with scope Hy iff
(a) M is a pure extender pfs premouse.
(b) Q is a complete (w, §) iteration strategy for M°, and

(c) Q is internally lift-consistent, quasi-normalizes well, and has strong hull condensation.’

Definition 2.2. (M,Q) is a least branch hod pair (Ibr hod pair) with scope Hy iff
(a) M is an least branch premouse (lpm).
(b) Q is a complete (w, d) iteration strategy for M,
(c) € is internally lift-consistent, quasi-normalizes well, and has strong hull condensation, and

(d) € is pushforward consistent, that is, if s is by € with last model N, then ¥V C Q,, where
Q(t) = Q(s7t).7

_|
Definition 2.3. (M, Q) is a mouse pair iff it is either a pure extender pair or an lbr hod pair. -

In our context below, M will be countable,  will have scope H,,, and we shall assume AD™.
These are the simplest hypotheses under which to develop the theory of mouse pairs, and the main
results of [1] are all proved under them.

For the sake of definiteness, we shall prove Theorem 1.8 for Ibr hod pairs. The proof also works
for pure extender pairs, but by re-arranging a few things®, one can avoid strategy comparison in

that case, and thereby simplify it significantly.

2.2.  )A-separated iteration trees

The iteration trees we use below are A-separated plus trees. The notion is defined in [, Section 4.4],
and we summarize it here. Suppose M is a pfs premouse and F is an extender on the M-sequence,

then

e E7T is the extender with generators A\p U {\g} that represents iglt(M’E) o i where F is the

order zero total measure on A\g in Ult(M, E).
e MET)=\g.

o Ih(E*) =1h(E).

®See [4, 4.6.3].
5See [4, 5.4.4, 7.1.1, 7.1.9].
"See [4, 9.2.1].

8Mainly, one must replace use of the full Dodd-Jensen Lemma by use of the Weak Dodd-Jensen Lemma. Since
we are trying to prove a first order property of our pure extender mouse M, this can be done.



We say that an extender G is of plus type if G = ET for some extender E on the sequence of a pfs

premouse M; we let G= = E. In general, if E is an extender (of plus type or not)
o we let ¢(E) =1h(F) if E is of plus type; otherwise, (F) = A(E).

e if F is on the sequence of some premouse, then

The extended M -sequence consists of all E' such that £~ is on the M-sequence.

A plus tree T on a pfs premouse is like an ordinary normal tree, except that
i) We only require that E7 be on the extended M7 sequence
(i) y req o o Sequence,

ii) ET is applied to the longest possible initial segment of M7, where 8 is least such that
@ B
crt(ET) < X(EZ;), and

(iii) the length-increasing condition is weakened slightly.’

See [1, Definition 4.4.3] for the complete definition.

A \-separated tree is a plus tree in which every extender used along the tree is of plus type. The
weakening in (iii) above does not affect \-separated trees; that is, the lengths of the extenders used in
a A-separated tree are strictly increasing. Moreover, quasi-normalization coincides with embedding
normalization on stacks of A-separated plus trees. [4, Section 8.1] shows that A-separated trees are
enough for comparisons. For these and other reasons it is convenient to restrict one’s attention to
the way an iteration strategy > acts on stacks of A-separated trees. By Lemma 9.3.2 of [1], if (P, X)
is a mouse pair, then X is determined by its action on countable A-separated trees.

We shall use the notation associated to extender trees from [1, Section 6.3].

Definition 2.4. Let 7 be an iteration tree and o <p [3; then ez: 3 is the sequence of extenders

<EL1 |« <rn+1<g ) used in 7 on the branch from a to § (listed in increasing order). We let
T =l )

If 7 is A-separated and its base model is a premouse, then eZ; 5 can be recovered from the partial

branch embedding ig 6‘10 The recovery process relies on the Jensen ISC holding for the models in
T.

9The length-increasing condition is enough to guarantee that T'— pred(a + 1) is the least 8 such that crt(EJ) <
)\(Eg—) Thus none of the generators of a plus extender E, including the generator A(E), are moved later on a branch
in which F has been used.

9By successively extracting ET, for E the first missing whole initial segment of the current tail factor. See 3.25(2)
below.




2.3.  The mouse pair order

The basic results of inner model theory, such as the Comparison Lemma and the Dodd-Jensen
Lemma, are better stated and proved as results about mouse pairs than as results about mice, with
the notions of elementary submodel and iterate adjusted so that this is possible. For example, if
(H,V) and (M, X) are mouse pairs, then m: (H,¥) — (M, X) is elementary (resp. nearly elemen-
tary) iff 7 is elementary (nearly elementary) as a map from H to M, and ¥ = ¥7. We say that
(M,%) is an iterate of (H, V) iff there is a stack s on H such that s is by ¥, and ¥ = U,. It is a
non-dropping iterate iff the branch H-to-M does not drop. Assuming AD™ and that our pairs have
scope HC, [1] proves the following:

(1) If (M, %) is a mouse pair, H is a premouse, and 7: H — M is nearly elementary, then (H,X™)

is a mouse pair.

(2) If (H, V) is a mouse pair, and (M, ) is a non-dropping iterate of (H, ¥), then the iteration
map is: (H, V) — (M, X) is elementary in the category of pairs.
(3) (Dodd-Jensen) If (H,¥) is a mouse pair, (M, X) is an iterate of (H, ¥) via the stack s, and
w: (H,¥) — (M,X) is nearly elementary, then
(i) the branch H-to-M of s does not drop, and

(ii) for all n < o(H), is(n) < m(n), where i, is the iteration map.

(4) (Mouse order) Let (H, V) <* (M, X) iff there is a nearly elementary embedding of (H, ¥) into
some iterate of (M,3>); then <* is a prewellorder of the mouse pairs with scope HC in each

of the two types.

The prelinearity of the mouse pair order is the content of the Comparison Lemma for mouse
pairs. For pure extender pairs, it is proved in Theorem 8.4.5 of [1]. The proof for lbr hod pairs is

basically the same; it is Theorem 9.5.10 of [1].

2.4. Dodd parameters and coherent structures

The language £ of Ipms has symbols €, E, F, %, B, and 4. Here FM is the last (top) extender if M
is active, and FM = ) otherwise. EM is the sequence of extenders previously added, and ¥ and
BM contain information about an iteration strategy for M.

If M is active of type B, then letting
A%, = largest cutpoint of FM

F = FM we have
;VM _ (A?\J)—F’UR(M’FMTVI).



We usually write v,s for ¥. The Jensen Initial Segment Condition (Jensen ISC) requires that v/
indexes the largest cutpoint of F', that is

EY I XNy =F [ Xy

If M has type A or type C, then 4™ = 0.

The language of coherent structures is £ but without +, that is
L =L {3}

If M is an Ipm, then hy, is its canonical £ Skolem function, and h} is its canonical »£*-Skolem
function. For X C M, we let

har[X]) = HullM (X) = {has(p,a) | a € X<9 A g € BF},
[ X] = Hallp" (X) = {Bif(p,a) [a € X Np e X},

and let cHull (X) and cHullT’M(X ) be the transitive collapses of these hulls.!' A $£ hull of M is
just a Ef* hull that has v, in it, of course. Including % in £ guarantees that Zf hulls of M continue
to satisfy the Jensen ISC.'? ¥£" hulls may fail the Jensen ISC, and this fact is the main reason
that the proof of Dodd solidity involves difficulties beyond those solved by the proof of solidity for
the usual standard parameter.

The definitions of hys and h}, involve stratifying 3 relations according to where the witnesses
appear. For active M, this involves stratifying FM ia its fragments, and the resulting levels M?

are not premice. Here

Definition 2.5. Let M be an active Ipm and 3 < o(M), then M” is the £* structure that agrees
with M]||S3, except that M7 = FMn MJ|B. =

The map 3+ M? is 2™ over M.

Definition 2.6. For premice M of degree 0, we let pys = p1(M) and pyr = p1(M). We say that
M is a-sound iff o > ppr and M = hpslae U ppgs]. =

The following lemmas characterize the Dodd parameter in terms of Ef* definability.
If M is an lpm, we write Th)!(X) for the ¥£-theory in M of parameters in X, and Th’{’M(X)
for the Ef*—theory in M of parameters in X. When M is clear from the context, we omit it from

the notation.

Definition 2.7. Let M be an active Ipm; then pp; = crt(FM) and 7y = M;\Z[’M. =

" The notation suggests that has [X] is the image has “X of X under hys, which is not literally true, but “has[X]”
is less cluttered than “Hull} (X)”.
12There is some work required to show this in the case that M has type C, but the proof is elementary.



Lemma 2.8. Let M be an active lpm with deg(M) = 0. Let F = FM and 7 = 7). Let s C Ih(F)—7
be finite, a« > 7 and

m: Ult(M||m, F [ aUs) — Ult(M]||r, F)

Let N = Ult(M||r, F | aUs) and G be the Jensen completion of F | aUs; then m is ¥ -elementary

as a map
m:(N,G) — M.

Proof. 7 is £ elementary from N to M||o(M) by Los’s theorem. We need to see that 7 maps
fragments of G to fragments of F. Let crt(F) = p, and p < £ < 7 be such p,(M|{) = p. For F),
almost every v, we have hyye[v U p(M|€)] transitively collapses to M|E, for some &, with

oy M|&, — MIE.
the inverse of the collapse. Then
i 1 (ME) = [{u}, Avouy
and
i 1 (MIE) = [{u}, Avoy] i
Hence (i | (M|€)) =i | (M|€) as desired. O
Remark 2.9. The proof of Lemma 2.8 shows that F' | (o U s) is easily intertranslatable with

ThT’M(a U s). The proof does not show that 7 is Y£-elementary, or even that (N,G) satisfies the
Jensen ISC. We shall have to deal with this difficulty in the proof of Theorem 1.8.

Remark 2.10. Suppose F = FM and M is solid at i. It is natural to take F | (d;U{do,...,d;i—1}) to
be the Dodd solidity witness for M at i. Equivalently, using the translation in the last remark, we
might take Th*™ (d; U{dy, ..., d;_1}) to be the witness. Zeman [7] takes cHull}"™ (d; U{do, ..., d;_1})
to be the standard Dodd solidity witness at i. We don’t need to consider “generalized witnesses”,
because the standard Dodd solidity witnesses are preserved by Yo ultrapowers. That is true because
the natural prewellorder on Thf’M (X) has cofinality 7as if M is active, and 7y is a successor cardinal
in M.

The following lemma gives an alternative characterization of generators for F' that we shall use

many times.
Lemma 2.11. For s C Ih(F) — 7 finite, o > 7. The following are equivalent:
1. « s an s-generator.
2. ¢ hjlaUs).
3. a = cri(m) where w: Ult(M||7, F | a«Us) — Ult(M]||r, F') is the canonical embedding.

Proof. (1) < (3) is the definition. (3) < (2) follows easily from Lemma 2.8. O



We characterize pj, in the case that M is 1-sound:
Proposition 2.12. Assume M is an active, 1-sound lpm then
(a) Suppose n < pi; and T < pi;, then F' [ (dyrUn) € M, and

(b) pyy = ma{T, p1(M)}.

Proof. We first prove (b) implies (a), let 7 < n < p},;. By part (b), pi; = p1(M). F [ (nUdr) can
be coded by a Y-subset of 1. Since 7 < p(M), F | (nUdy) € M, as desired.

For part (b), we first claim that p(M) = p1(M) < pj,. First, recall that 7 < pj,. By the
definition of das, M = h};[p}; U da]. Thus ThI’M(p}"w Udy) ¢ M and hence ThM (p* Udyy) ¢
M. This implies p1(M) < p*. Now suppose 7 < pi,;. We claim that p}, = pi1(M). Suppose
p1(M) < p};. Since p}, is a limit of das-generators and M = h},[p}, Uda], there is a dps-generator
1 € (p1(M), pir) such that p(M)U{ya} C hy[nUda]. This implies hy (o1 (M) U{p(M)U{ya}}] =
harlpit(M) U {p(M)}] = M C h};[nUdp]. The second equality follows from 1-soundness of M.
The last inclusion contradicts the fact that 7 is a djs-generator.

O

Definition 2.13. The parameter order <* is the lexicographical order on finite descending se-

quences of ordinals. .

If M is 1-sound, then pys is the <*-least parameter s such that M = hps[ppr U s]. The lemmas
above show that if M is 1-sound and active, then djy is the <* least s such that h%,[p%,Us] = M.13
This analogy breaks down if M is not 1-sound, because dj; has been defined as a minimal generating
parameter, and pys is defined as a minimal parameter from which one can Ef—deﬁne a new subset
of pas.

One can define dps in a way that preserves the analogy with p; (M) in the unsound case. We

discuss this in the last section.

2.5. Zeman’s exchange lemma
We prove a result of Zeman that shows just how dj; is related to pjs.

Definition 2.14. Let M be a type B lpm; then ej; is the <*-least parameter e such that vyy; €
Wirloa U e, part]. B

We shall often abuse notation by identifying ejs with its range, as we do for dy; and pjs.
Remark 2.15. It is easy to see that ey; C yar + 1 and is always defined. Clearly ey N pyr = 0.

Remark 2.16. Suppose 1 = ep(i); then 7 is the least 8 > pas such that yar € by, [B+1U {en |

i,pm — (B+ 1)}

BWe often identify pas and dps with their ranges.

MProof: The hulls in question all contain pas U par. If 8 > 7, then the hull contains ear, and hence vas is in it. If

pm < B < nand vy is in the hull, then var = h};(p1(M), ¢, a) for some a € pyf’ and ¢ <* epr, contradiction.

10



Lemma 2.17. Ifi € dom(eys), then ens(i) is ©5" -definable from parameters in {yar, par—enr (i), pr (M)}

Proof. By induction on i. Let § = ey (i) and p = p1(M) — 5. Recalling the stratification o — M®
in 2.5, for a < o(M), let

&a = least & such that vy € hy [+ 1U {eym | 4,0},

and let £, be undefined if there is no such £. Then the function o +— &, is ZT’M in the parameters
vy and p, and &, = 8 for all sufficiently large o < o(M). Finally, o < 0 = &, > &y, so &, changes
value only finitely often as « increases. Thus each &, is Ef* definable over M from ~vp; and ep [ ¢

and p. Our induction hypothesis finishes the proof. O

Theorem 2.18 (Zeman Exchange Lemma). Let M be type B and 1-sound; then dyr = (pprUens) —
™ -

Proof. Let d = dp;, p = pu, and e = epr. As we observed above, pNe = (). Suppose first that
e = (; we claim that then d = p — p*. For suppose that p — (n+1) =d — (n+ 1) and n > p*; then

nepeng¢hynUp—(n+1)]
e n¢hyhud—(n+1)]
& ed.

For the second line: let x =p— (n+1) =d — (n+1). Clearly, if n € h};[nUx] then n € hp[nU z].
But if n € hy[nU ], then n ¢ p, so p C nUz, so h}y,[nUz] = hynUz] because e = ), so
n € hy;[nUz]. Now by induction we get that p = d, and the theorem holds.

We now show by induction on
(x); Ifi € dom(e), then d — (e; +1) = (pUe) — (e; + 1) and e; € d.

Assume i = 0 or (%);—1. Let I be the open interval (e;,e;—1) if i > 0, and I = (ep, o(M)) otherwise.
Let n € I, and suppose by (“reverse”) induction that (p — (n+1))NI = (d—(n+1))N1I. Then as

above we get

nepen¢hynUp—(n+1)]

[
e n¢hunU(pUe) —(n+1)]
< n¢hunud—(n+1)]
en¢hyhud—(n+1)]
S ed.

The second line uses Lemma 2.17 to equate the two hulls. The third line uses our induction
hypothesis on 7, and the fourth uses e C nU (e — (n+ 1)) to equate the £* hull with the £ hull.

11



To finish the proof of (x); we must show that e; € d. But if not, let
B =max(pNe;,dne;);
then

hulB+1{e Ti,p—ei}] = hy[f +1,d— (5 +1)]
= M,

soym € hiy[B+1,{e [ i,p—e;}], contrary to 2.16.
This proves (x); for all i € dom(e). Now let ¢ be largest in dom(e). To finish the proof of the

Zeman Exchange Lemma, it will be enough to show that
(pNe)—p=dnNe;.
We argue as above. Suppose that n < e; and pNe; — (n+1) =dnNe; — (n+ 1) and n > p*; then

nepen¢hynUp—(n+1)]

[
e n¢hunU(pUe) —(n+1)]
e n¢huhud—(n+1)]
e n¢hynud—(n+1)]
S ned.

The second line uses Lemma 2.17 to equate the two hulls. The third line uses our induction
hypothesis on 7, and the fourth uses e C (e — (7 + 1)) to equate the £* hull with the £ hull. O

3. Proof of the main theorem

This section proves Theorem 1.8. We assume AD™ throughout the section. By the argument in
Remark 1.9(b), it is enough to prove 1.8(a). So let us assume that (M,3) is a strongly 1-sound
mouse pair of type B such that deg(M) = 0. For definiteness, we assume that M is an lpm.'®

Before we get to the main comparison arguments, we make some preliminary reductions.

3.1. Preliminary lemmas

Let F = M|k = crt(F), and 7 = 7ay = 7M. Let also p* = p%, and di = dpr(k). Assume toward
contradiction that M is not Dodd solid, and let ¢ be least such that M is not Dodd solid at 7. From

parameter solidity for M we get

Lemma 3.1. d; € eps. Hence d; < -

5Since deg(M) = 0, various complications in pfs fine structure to do with type 2 pfs premice will not arise.
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Proof. Let n = dp(i), and suppose n ¢ epr. By Theorem 2.18 n € pas, so since M is parameter
solid,
Th (nUpy — (n+1)) € M.

By Lemma 2.17,
er —n € hun,py — (n+ 1)),

so ThM (n U {pyr — (n+1),enr —n}) € M, so Thi™ (nU {dys 1 i}) € M. Thus M is Dodd solid at

i, contradiction. O

We have that F | (d; U{do,..,d;_1}) ¢ M, or equivalently, Thi"™ (d; U {dy, ...,d;_1}) ¢ M. Let
Q = cHull!™ (d; U {do, ..., d; _1})

and
c:Q—-M

be the anticollapse. By Lemma 2.8, letting G be the Jensen completion of F' | (d | iU d;),
Q= (Ult(M||7-> G)a G)a
and o is the factor map
M M
o(la, flg") = la fI"". (3.1)
Since d; is a generator of F', crt(o) = d;. Since d; € ey, we have
Lemma 3.2. vy, ¢ ran(o).

Proof. By Lemma 2.17, d; € h};[d; Upy — (di + 1) U {ym}]. Since pyr C du, if yur € Ry, di U
{do, ...,di—1}], then d; € h};[d; U {do,...,di—1}] = ran(o), contrary to d; = crt(o). O

The fact that M satisfies the Jensen ISC gives us some further limitations on d; and o.
Lemma 3.3.  (a) py N (Y, Ar) # 0.
(b) G = F® has a largest cutpoint Aos and a(A5) = Ay
(¢) If d; = var, then Q = cHullT’M()\}“w U(py — @)).
(d) The Jensen ISC fails for Q.

Proof. For (a): Suppose instead that py; C yar + 1; then since eq < var, dar € yar + 1. If eg = s,
then ey = {yam}, so i = 0 and d; = ~yps. But then M is Dodd solid at ¢ by the Jensen ISC. So
eo < ym. Clearly vas ¢ pas because it has an L-name. Thus dj; C «yps. But then M is Dodd solid
by the Jensen ISC, contradiction.

13



For (b): By (a), letting v be least such that o(v) > A};, we have o(v) < Ap. We claim v
is a cutpoint of G. For suppose that a € [1]<“ and f : [k]lY — & and ig”T(f)(a) > v; then
ié‘f”T(f)(a(a)) > A%, Since o(a) € [A%,]<¥, this contradicts A%, being a cutpoint of F.16

Since v is a cutpoint of G, o(v) is a cutpoint of F. For otherwise there is a fragment F' N
([o(v) +1]<¥ x M||€) that witnesses o(v) is not a cutpoint of F', but this fragment is in ran(o), so
G N ([v+1]<¥ x M||§) witnesses that v is not a cutpoint of G.

Since A}, is the largest cutpoint of F' below Ap, we get that o(v) = A}, and v = Ay is the
largest cutpoint of F'@.

For (c): Let 1 cHull’l"M(A}kw U (pm — «)) = M be the anticollapse. Then ¢ [ A}, = id, and
the proof of (b) shows that A}, € ran(¢). So ran(t) collapses to @, as desired.

For (d): let v = v ™% where o(v) = A\%;. o maps the fragments of G | 7 to fragments of F | vy,
and o“y is cofinal in 7y, because o is the identity on 7.!7 If the Jensen ISC holds for @, then
G| veQ,socofy) =7, s0 o is continuous at . Thus o(v) = yas, S0 yar € ran(c), contrary to
3.2.

O

The following notion plays an important role in Zeman’s proof of Dodd solidity for Jensen mice

in [7]. It will play a similar role in our proof.

Definition 3.4. A potential active Jensen premouse (N, G) has a strong failure of the ISC at n if
and only if

(a) nis a cutpoint of G, n < Ag, and the Jensen completion of G | 7 is not on the N-sequence.
(b) Letting v = (n+)WV:CI) | we have v < (n)V.
_1

In the situation of 3.4, G | v would collapse v in N if the Jensen ISC held, but instead, N

collapses 7 in some way inconsistent with this.
Lemma 3.5. If d; < v, then Q has a strong failure of the ISC at its largest proper cutpoint )\22.

Proof. Again, let G = F9 and vQ = ()\22)+’U1t(Q’Gr’\?9). Part (a) of Definition 3.4 was shown in
3.3(c). For (b), we must see that yo < (/\Z?)J“Q. We showed in the proof of 3.3(c) that o [ vq is

cofinal in vy. It is therefore enough to prove

Claim 3.6. 3¢ € rng(o)(va < & < (X)) M),

Proof. Let a C d; U{dyp,...,d;—1} and h € M||T be such that

[CL, h](Q;' = Xég’

$Note here that M||T = Q||r.
TFor A C k in Q||r = M||r, o(i&7(A)) = i¥1"(A4), so o(iE1"(4) nv) = i7" (A) N o(v), which implies o”'7 is
cofinal in ~ys as claimed.
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so that [a, h]M = \%,. We may assume h: [k]'%l — k. We can assume a is large enough that for
some f: [k]lH — &,

(There is such an f because Ult(M||7, F | d; U {do, ...,d;}) = M|jo(M).) Now, for u € [r]ll let

g(uw) = sup{f(u,v) : f(u,0) < h(u) "M A (u,0) € [A(u)] Y.
It is clear that g(u) < h(u)™M for a.e. u. This implies [a,g]g < ()\*Q)+’Q. But also
v = laU{di}, fIE < o, gl

So [a, g]¥ € (var, (N3,) ). O

If o(v) € (var, (\3) M), then v € (vg, ()\22)+’Q), 50 Y < ()\22)+’Q, as desired.

Remark 3.7. [(] uses the Interpolation Lemma to prove this claim. Our proof just unpacks the

relevant part of that lemma.

3.2. A background construction

Fix a coarse strategy pair ((N*, €, w, F, V), ¥*) that captures 3, and let C be the maximal (w, F)
construction, with models M, ; and induced strategies Q, ;. Let 6* = §(w). By [3, Theorem 3.26],
(¥)(M, X) holds, so we can fix (1, 0) lex least such that (M,3) iterates to (My,0,2,,0), and for
all (v,1) <jex (10,0), (M, X) iterates strictly past (M,;,€Q,;). Let U,; be the unique A-separated
tree on M witnessing (M, X) iterates past (M, Q)18

We shall rule out d; < v by comparing (Q, X?) with the levels of C. We shall rule out d; = vy

with a more complicated phalanx comparison.

3.3. Ruling out d; < vy

Suppose that d; < var, so that @ has a strong failure of the Jensen ISC at its largest cutpoint. We
compare (@, ¥7) with the levels of C. Non-dropping iterates of (Q, %) also have strong failures of

the ISC, so (@, X7) cannot iterate into any such level. This will lead to a contradiction.

Remark 3.8. This part of the argument does not require a phalanx comparison, so it is simpler

than the d; = s case.

Q@ is not an lpm because the ISC fails. Nevertheless the strategy-regularity properties that
define lbr hod pairs make sense for (Q, X7),

Lemma 3.9. (Q, ¥7) has strong hull condensation, normalizes well, and is internally lift consistent

and pushforward consistent.

8Since deg(M) = 0, M is strongly stable, so all iterates of (M,X) have type 1.
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Proof. (Sketch.) (M,Y) is an lbr hod pair, so it has these properties. Lemma 9.2.3 of [1] shows
that if 7: (N, ¥) — (M,X) is X4-elementary and cofinal, then (N, ¥) has them, that is, (N, ¥) is
an lbr hod pair. In our case, ¢ is cofinal, but only Ef*—elementary. However, this is enough for the
proof that the strategy regularity properties hold for (@, %7). (But not enough to conclude that @

is an lpm, of course.) O

Continuing to adapt [1], we get

Lemma 3.10. Let (v,1) <iex (10,0), and suppose (Q,37) iterates strictly past (Mg, Qs1) for all
(B,k) <iex (,1); then (Q,X7) iterates past (M, ;,€,1).

Proof. We adapt the proof of [4, 9.5.2]. The proof that no strategy disagreements show up when
(Q,%7) is compared with (M, €2, ;) goes through without change. The proof that only the Q-side
moves involves the ISC for @), so we must look at it.

Let S be the tree on the -side, and

(va Ev) - (M§7 Z]SWJrl)

be the pair at v in S. (So (P, X0) = (Q,%X7).) Suppose toward contradiction that (P, X,)||n =
(My,la Q1/,l)
in [1], we get that [ = 0 and n = v. We have assumed that (v,1) <jex (10,0), so we may set

|n and Py|n # M, ;|n, and M, |n is active. Let v,l be the lex least counterexample. As

U=U.y.
Let F' = FMv0 and let F* be the background extender for F. Let j = i%. and s = crt(F) =
crt(j). We have
(a) F* backgrounds F'*.
(b) j(My,0)|{(v,0) = Myl|lv and Ih(F) = o(M,,) is a cardinal in j(M,,).*
(€ STy+1=4j(S) Iv+1.
; s _ ;(S5)
(d) j rMﬁ - Z[{/’j([{).
; u _ M)
(e) J me - Z&j(,g)'
(F) M| ()M = M ()M
Let
Ej={(a,X)]a€ [j(®)]“NXeMINaecjX)}
i(S)| -
N = ME]j(r)

= j(My,0))lj (k).

9See [4, Theorem 10.4.1].
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By (a) and (b), F™ < E;, F ¢ N, and every whole proper initial segment of F is in M, ¢, and hence
in N. That is

F | Ap = first whole initial segment K of E; such that K ¢ N.

Let
+ i(S

where 6 + 1 <j(s) j() and pd;(s)(0 + 1) = k. We have that G* < Ej, and G ¢ N, so F <G. If F
is on the sequence of M, ) then since P, = ng(s) and v < 0 and lh(E'jy(S)) > lh(F), F is on the
sequence of P, contradiction. Thus

F | Ar <G,

and F witnesses that Mg(s)llh(G) does not satisfy the Jensen ISC.
It follows that [0, 6];(s) does not drop, G' = FMé(S), and MJQ(S) has a strong failure of the ISC.

Letting
L=G |\

where A7, is the largest proper cutpoint of G, this implies that

)\I’N > supiz“sTV.

But FE; is the branch extender of zi (Z;()H), and j(U) is an ordinary plus tree in which all models
satisfy the Jensen ISC. This implies that whenever L is a cutpoint initial segment of Ej, )\JL“N =
supir “sT, contradiction. O

Corollary 3.11. d; = ;.

Proof. If d; < vy, then (@, 37) has a strong failure of the ISC. This is preserved by nondropping
iterations, so (@, X7) cannot iterate to any (M, ,2,;). It follows from Lemma 3.10 that (Q,X7)
iterates strictly past (M, 0,2,0)- Let S be the tree on (Q,X7) that witnesses this. The Dodd-
Jensen Lemma now leads to a contradiction.

Let 1h(S) = 6+ 1, and (P, ¥¢) be the pair at £ in S. let
T =08
be the copied tree, with pairs (Pg , Ez) and copy maps
oe: (Pe, Xe) — (P, X¢).
Since either [0,6)s drops or (My,0,82.0) < (FPp,¥s), we get that for 69 = o9 [ My, there is

(N, W) I (Py,%}) such that
Go: (Mpy,0,pg0) = (N, ¥)
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is X4~ elementary (not just ©£"). Moreover, [0,8)7 drops or (N, ¥) <1 (My, 0, 2y,)-
Let U = Uy, 0 and S+ 1 = 1h(U); then

Ggoifz: (M,5) — (N, W)

is Ef elementary. Since the branch of 7 to (N, ¥) drops, this contradicts the Dodd Jensen property
of 3. O
3.4. Ruling out d; = vps

We have now that d; = vps. Thus d; = epr(0), and dps [ i = pas | @ # (0 by 3.3.

Our plan now is to use a phalanx comparison like the ones in the proofs of parameter solidity,
closure under initial segment, condensation, and other similar results. See for example [1, Theorem
9.6.2] for the template.

Let us summarize the eventually contradictory properties of (M, Q, o, d;) that we have accumu-
lated:

Definition 3.12. (N, P, v, «) is problematic iff
(1) N is an active, AN} -sound lpm of type B and degree 0,
(2) a=7n =en(0) and py — a # 0,
(3) P= cHull’l"N()\}‘\, U(pny —a)), ¥: P — N is the anticollapse map, and a = crt(¢), and

(4) FP ¢ N.

Lemma 3.13. (M,Q,0,d;) is problematic.

Proof. (1) is clear; in fact M is fully 1-sound. Lemma 3.3(a) and (c) imply the nontrivial part of
(2) and (3). (4) is our assumption that Dodd solidity has failed. O

Some observations:

Lemma 3.14. If (N, P,v, ) is problematic, then for F = FN and G = FP,
(a) Xy is inaccessible in N,
(b) Ay is a limit of cutpoints of F' and G,
(c) Ay = Ap is the largest cutpoint of F' and G, and

(d) a=\p)tF, so EF =0, and the Jensen ISC fails in P.
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Proof. For (a): We have a = crt(¢) = yn = (Ni)"F. Since A% is strongly inaccessible in N||yy,
it is strongly inaccessible in P. But ¥ (A}y) = A}, so A}y is strongly inaccessible in V.

For (b): Since F' [ Ay € N, by (a), working in N we can find club many cutpoints of F' below
Ay

The proof of Lemma 3.3(b) yields (c). Part (d) is clear. O

We shall reach a contradiction by comparing the phalanx

(I)O = ((M7 E)v (Q: Ea)v /\*M)

with (M, YD), indirectly, by iterating it to or past the levels of C. The definition of the coiterations
is very similar to that in the proof of solidity for the standard parameter in [4, 9.6.2], and the proof
that one of them succeeds is simpler than that in [1].2° One difference is that our exchange ordinal
is A}, rather than d;. This choice lets us avoid some anomalous cases that cause a fair amount of

difficulty in the parameter solidity proof.?!

We now define pseudo-iteration trees S, ; on ®q for certain (v,1) < (19,0). The definition is similar
to the definition of S,,; in [4, p. 420ff], so we'll go fast. Fix (v,1) < (19,0) for now, and assume
S, 1 is defined whenever (V/,1') <jex (v,1). Let U =U,,;, and for 7 < 1h(U), let

(Qo, o) = (MY, Susp041))

be the mouse pair at 6 in U. As we define S, we lift it to a padded tree T on (M, ) by copying.

We write
(P5,%5) = (M{ , S71041))

for the mouse pair at 6 in 7. For § < 1h(S), we have a nearly elementary copy map 7y from Mg
into /\/lg-. We attach the complete strategy ¥g = (£5)™ to MS . so that

(Po, To) = (Mg, (Z5)™)

is the (not quite mouse) pair at 6 in S. For the embeddings of S, T, and U we write

. .S
Za,,B = Za,ﬁ)
T

ta,8 = ta,p
javﬂ - 204,,6"

We also define a non-decreasing sequence of ordinals £y = 55 that measure agreement between

models of S, and tell us which model we should apply the next extender to.

20Mainly because we are relying on the fact that parameter solidity has already been proved, and M is 1-sound,
so the reductions in the last subsection are available.
21See [4, 4.10.4] and [5] for a discussion of these cases.
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The construction of S classifies nodes 6 < 1h(S) as either stable or unstable, with the current
last node always stable. If + is our current last node, we shall have have oy, g, for each unstable

0 < ~, that satisfy

(t)y: If @ < 7 is unstable, then
(i) [0,0]s does not drop, and all n <g 6 are unstable,
(i) e5 = ¥ for some T,

(iii) (Py, Ppt+1,09,g) is problematic,

(iv) ag =g g(ap) = supigg “ao, and for all n <g 6, crt(i,g) < o,
(V) Ap, = i00(Ap,) = supion“Ap,,

(vi) ep = inf(Ap,,€p+1), or 0 + 1 = and &g is not yet defined.

We start with
((P07 Z]O)a (Plv 21)70()’ Ozo) - (<M7 Z), (Qa Za)a g, di)'

0 is unstable, and 1 is stable. Both are roots of S. In 7, we let
(Fy, %) = (P1,51) = (M, %),
The copy maps from S to T are
o= id ,m = o.

0 and 1 are distinct roots of S. We say that 0 is unstable, and 1 is stable. Clearly (}); holds.

The construction of S takes place in rounds in which we either add one stable @, or one unstable
f and its stable successor 6 + 1. Thus the current last model is always stable, and all extenders
used in S are taken from stable models. If v is stable, then ¢, = /A\(E:Y9 ).

For a node 7 of S, we write pdg(7y) for the immediate <s-predecessor of S. We set

st(y) = the least stable 8 such that 6 <g ~,

and %2
pdg(st(7))) if pdg(st(v))) exists,

rt(y) =
st(y) otherwise.

The construction of S ends when we reach a stable 6 such that

(I) (Myyl,QVJ) < (Pg,zg), or (Pg,zg) = (MVJ,QVJ) and [rt(e),e]g dI‘OpS, or

(II) (Pp,Xp) < (My1,), and [rt(8), 0]s does not drop.

2Bquivalently &€ = rt(y) iff € <5 v and ef is the longest initial segment of ef that belongs to uext, If¢=0or
€ =0+1 for 0 unstable, then ef = . Otherwise ef # 0.
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If case (I) occurs, then we go on to define S, ;4. If case (II) occurs, we stop the construction.

We now describe how to extend & one more step. Suppose first that S has successor length
v + 1, where 7 is stable, and that (f), holds. Suppose (I), (II) above do not hold for 7, so that
there is a disagreement between (Py,3,) and (M, ;,Q,;).

It is convenient to isolate a certain special case.

Definition 3.15. v < 1h(S) is special iff v = 6 + 1, where 6 is unstable, and
() Potal(ag) = M,yf|ag, and

(ii) for some & > ayg, crt(Efg“) = \p,-

If ~ is special and 6 + 1 = ~, then we set

ES = order 0 measure of Py on Ap,

5
= EéDV, where £ > ay is least s.t. Crt(Ef”) — /\*Pw
8’7 = Qy,
)%
£g = )\pe.

As usual, pdg(y + 1) is the least £ such that crt(F) < e¢, which in this case is 7. There is no
dropping here. We let EZ’ = 7TV(E‘7S ), so that

Py = Ult(Py, ES),
'\T—i—l = Ult(P;a Tr’Y(E%/S)))

and 7,41 is given by the Shift Lemma. We declare v + 1 to be stable. (f),41 follows vacuously
from (f),.23
Suppose next that v is not special, and that the least disagreement between (Py,,) and

(M,,1,,;) involves only an extender E on the sequence of P,. That is,

(M1, Q1) Ib(E) = (Py, 55| [Ih(E).
Later, we shall prove that this is the case.?*

Set

S _ gt
ES = EY,
ey = A(E),

231f ~ is special, then Ef may not be the least disagreement between P, and M, ;, because we are using Jensen
indexing. Also, setting ey = ap means we are using ms-rules at this point. We are defining S this way so that it will
stay closer to U, which (we shall see) must use (Ea8)*.

22Qur convention is that R||¢ is the passive version of R|¢. The corresponding fact when v is special is that
M, 1|1 is passive, and we shall also prove that. See Claim 3.21.
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and if v = @ 4+ 1 where 6 is unstable®, let
g = inf(ey, \p,).
Let & be least such that crt(E) < eec. We let pdg(y + 1) = £.2° Let (3, k) be lex least such that
either p(Pe|(B,k)) <crt(E) or (B,k) = (6(P§),k(/\/lf)). Set
P’Y-‘rl :Ult(Pf‘(ﬁ7 k)a E+)727

and let %‘g 41 be the canonical embedding.
Now let
E'Z— =y (E)",

so that 7" [ v+2 and (P}, , ¥} ) are now determined, and my41: (P41, Xy41) = (P, E54) I8
determined by the Shift Lemma.

If £ is stable or (8,k) < (0(P¢),deg(P:)), then we declare v + 1 to be stable. (t)y41 follows
vacuously from (f),.

If ¢ is unstable and ET is not used in U, then again we declare v + 1 stable. Again, ()41
follows vacuously from ().

Finally, suppose ¢ is unstable and E71 is used in ¢4.?® Say Et = Eff Let 7 be such that

so in particular,

(Pe, %¢) = (Qr, Ar).

We have that pdy(pu+ 1) = 7 (see [1]), and

Si1= () (BY) = () (BY) = diy.

So we declare v+ 1 to be unstable and v + 2 stable. Let

Q1 = dgqr1(ag),
Py = Ult(Pety, ET)

041 = COpy map.

We have the diagram

%530 h(E) < ag because 7 is not special.

268 uses plus extenders, so letting Ef = GY, crt(E) # Ag. We have set ¢ = A(G), but in plus trees, 1h(G) and
Ac lead to the same pdg function.

2"Recall E¥ is the plus-type extender derived from E.

28Since we are not dropping in S at v + 1, neither anomalous case applies.
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Pyiy ——— Py

v+

T y41 k
Ps (T P€+1
leyrl = zgi and k = igﬂ“, and 0,41 is given by the Shift Lemma. In 7 we pad, that is,

2 = Pria
Lemma 3.16. If v + 1 is unstable, then (f)y42 holds.

Proof. Ttems (i), (ii), and (vi) are immediate from the definitions.

Let ¢ = i¢yp1 = zgi Since g has cofinality 7p, in P, i is continuous at ag, moreover
crt(i) < Ap,- Thus (iv) holds.

1 18 Zf-elementary, SO i()\*Pg) = )‘}wf Since )\}Sg is inaccessible in P, ¢ is continuous at )\*Pg.
Thus (v) holds.

Finally, we must see that (P11, Py12,0y41,®y41) is problematic. Let p = p(P¢) — ag; then

i(p) = p(Py41) — cy+1 because i preserves the solidity witnesses.?’ But notice that for k = crt(E™),
"{045 N Pg = Nag N P§+1
by (iv) and (v) at £&. Thus 0y41 [ ay41 = id , and

*, P,
Pyio = cHully "™ (g1 U {p(Py11) — aq41}),

0~+1 = the anticollapse map.

We are left to show the Dodd solidity witness

H = FP* ] (a1 U{p(Pyi) — ag})

is not in P,41. But letting
G = B | (ag U{p(Pe) — ac}).

we have that G ¢ P by (1)¢. G is coded by a set G C P||ag that is amenable to P||ag.?0 If
H € P, q, then

U #GNPlIB) € Py,

B<ag
Since ET is weakly amenable to P, we can apply Schlutzenberg’s Lemma (cf. [, 9.6.1(a)]) to
conclude that G € P¢, so G € P, contradiction.

29The natural prewellorder on the ¥ (equivalently Zf*) theories has cofinality 7as, so i preserves the standard
witnesses.
*Proof: Let h: T, — a¢ witness that cof ¢ (ag) = 7¢. Put (n,2) € G iff (n < 7p, and z C Ap, and z codes

G N ([h(n) U{p(Pe) — ag}h)]= x Peln).
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This finishes the proof of 3.16. O

Now suppose we are given S [ 0, where 6 is a limit ordinal. Let b = 3(7 | 0).

Case 1. There is a largest n € b such that 7 is unstable.
Fix n. There are two subcases.

(A) forally € b—(n+1), rt(y) = n+ 1. In this case, b — (n + 1) is a branch of S. Let S choose
this branch,

+1,0)s=b—(n+1),

and let M‘g be the direct limit of the M§ for sufficiently large v € b — (n+ 1). We define the
branch embedding iia a usual and 7y : Mg — Mg is given by the fact that the copy maps

commute with the branch embeddings. We declare 6 to be stable.

(B) forall y € b— (n+1), rt(y) =n. Let S choose
[07 0)3 = (b - 77) U [07 77]37

and let M‘g be the direct limit of the ./\/lf for sufficiently large v € b. Branch embeddings ii@
for v > n are defined as usual. 7y : Mg — /\/lz' is given by the fact that copy maps commute
with branch embeddings. We declare 6 to be stable.

Since 6 is stable, (1)y follows at once from Vy < 0 (}),.
Case 2. There are boundedly many unstable ordinals in b but no largest one.
We let 1 be the sup of the unstable ordinals in b. Let S choose

0,0)s = (b—n)U[0,n]s,

and define the corresponding objects as in case 1(B). We declare  stable, and again (})g is imme-
diate.
Case 3. There are arbitrarily large unstable ordinals in b. In this case, b is a disjoint union of

pairs {7, + 1} such that v is unstable and v + 1 is stable. We set
[0,0)s = {£ € b | £ is unstable},

and let ./\/l‘g be the direct limit of the M‘g’s for £ € b unstable. There is no dropping in model or
degree along [0,60)s. We define maps z‘g 9T as usual. If eg ¢ L{eXt, then we declare 0 stable and
(t)e is immediate.

Suppose that e‘g € U, We declare 0 unstable, and set

ag = igg(ao),
Pyiq = cHully™ (ap U dg | 4) where dg | i = i§ o(d™ | 4),

op = anticollapse map.
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Note that by our assumptions, dy [ i = p1(Fy) — ap. 6 + 1 is stable. As above, it is easy to
check

Lemma 3.17. (f)p+1 holds.

Now we are back to the case that our current initial segment of S, ; has a last stable node.

This finishes our construction of S = S, ; and 7. Note that every extender used in S is taken
from a stable node and every stable node, except the last model of & contributes exactly one
extender to S. The last model of S is stable.

Let us describe the failures of the ISC in S.

Lemma 3.18. The following are equivalent:
(a) P, does not satisfy the Jensen ISC,
(b) there is a stable root &+ 1 of S such that { +1 <g -~ and [£ + 1,7]s does not drop.

Proof. All unstable P, are premice, and if there is a premouse on the branch of S to v, then P, is a
premouse. Thus (a) implies (b). Conversely, if £ is unstable, then Pg; does not satisfy the Jensen
ISC because (P, Pei1,0¢, a¢) is problematic. If [£ 4 1,v]|s does not drop, then i¢y;, propagates
the failure of the ISC. Thus (b) implies (a). O

Remark 3.19. Suppose £ + 1 is a stable root of S, £ +1 <g 7, and [ + 1,7]s does not drop. Let
A= )\}E& = )\(Egg); then Efg I A is the first missing-from- P, whole proper initial segment of FP.

It may not be the only one.
Our definitions imply that stable roots that are extended without a drop are special.

Proposition 3.20. Suppose & + 1 is a stable root of S, £ +1 <g 7y, and [£ + 1,7]s does not drop;
then & + 1 is special and € +2 <g 7.

Proof. Let n+1 <g  be such that pdg(n+1) =£+1,and F = E;]S Ifh(E) < )\*P§ then e = e¢41,
so pdg(n + 1) < &, contradiction. Thus lh(E) > Ap, and g¢ = Ap,. Since I is total over Peiq,
Peyi|oe = Pylag = M, j|oe. This implies that £ + 1 is special.

Since £ + 1 is special, crt(E) < eeqy1 = a¢. If p > £+ 1 then crt(E) # Ap, because Ap, is
not measurable in P, (since Egﬂ has order 0). Thus crt(E) < Ap, = €¢ SO pdg(n +1) < ¢,
contradiction.

Thus n+ 1 =& + 2, as desired. O

Combining the arguments in [/, Lemma 9.6.5] with an additional element that deals with the

fact that extenders used in & may fail the Jensen ISC, we show

Lemma 3.21. Let vy be stable and suppose neither (1) nor (II) holds at y; then the least disagreement

between (Py, %) and (M, ;,Q,,) is an extender disagreement, and it is passive on the M, -side.
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Proof. The proof of [1, Lemma 9.6.5] shows that it is an extender disagreement. We shall not go
into the many details of that proof, but rather focus on the proof that the disagreement is passive
on the M, ; side. This is where the failure of the Jensen ISC in () adds a complication.

[nand Py |n # M,,|n, and M, |n

is active. Let v, be the lex least counterexample. As in [1], we get that [ = 0,7 = v. Again, to

So suppose toward contradiction that (P, %,)||n = (M., ;)

simplify the notation, we write S for S, 0, U for U, o etc.
Let F' = FMv0 and let F* be the background extender for F. Let j = i%. and s = crt(F) =
crt(7). We have

(a) F* backgrounds F't.

(b) 7(M,0)|{v,0) = M, o||v and 1h(F') = o(M,,) is a cardinal in j(]\/[,,’o).?’1

(F) ME|( )M = M ()M
Since our claim holds when S is replaced by U (by [1]), M, <MY for 7+ 1 = Ih(if). It follows
that U = j(U) [T+ 1,50 Qr = MJT(M), and
B — pt,

Let

By ={(a,X) [ a € [j(W)]™ A X € M Na € j(X)),
N = M| j(x)
= M k),

That is, Ej is the the common (short) (k,j(k)) extender of zi (;S()H) and zi (ijl(),_i). Let H be the first
whole initial segment K of E; such that K ¢ N. The Jensen ISC holds for the models of ¢ and

J(U), so H' must be used in j(Uf). But FT is used in j(U) and F* < Ej,s0 F | \p = H, i.e.
F | Ap = first whole initial segment K of E; such that K ¢ N.

Let
— g
Gt =E}",

where 0 + 1 <j(g5) j(k) and pd;s) (6 + 1) = k. We have that G | A\g < Ej, and G ¢ N, so by
the ISC for F, FF < G. If F is on the sequence of M]Q(S) then since P, = MZY(S) and v < 6 and

31See [4, Theorem 10.4.1].
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lh(E%(S)) > 1h(F), F is on the sequence of P,. Thus F' is not on the sequence of Mg(s), and
FAr<G | Mg <Ej,

and F witnesses that My|lh(G) does not satisfy the Jensen ISC.

By Lemma 3.18 we have a stable root y+ 1 such that p+1 <jg) 0 and (M, My41, 04, aﬂ)j(‘s)
is problematic. (In j(N*).) Letting R = Mﬂ(s) and W = Mi(fl), we have \p = A\ = A}, by
Remark 3.19. Moreover F = Efﬂ. So oy, = o(M, ). It follows that

v=p+l,
o
(P Puyr) = (MIS, M),
P
F = Eaﬁ,

and
W(S) _ .S U _ iU
eu( )—eu—eT—eT( ),

Claim 3.22. k <g p. In particular, k is unstable in S and j(S).

Proof. k = crt(FT), so k = ig (ko) where ko = crt(F0). For a <g pu let

Ra = iO,a(HO)a

and let £ <g p be least such that k = k¢. Since & is inaccessible, { > &.

Suppose toward contradiction that £ > k, and let n + 1 <g £ with n > &, and

pdg(n+1) =7 <=k

So v and 7 + 1 are unstable. Let E+ = E;? ; then K < A(E) because the A\(E,) increase strictly

with a. Also, crt(E) < K since otherwise s, = k¢ = . But then
fprt = i+ () > A(E) > r,

so k¢ > K, contradiction.
Thus &€ =k, so k <g p. O

By the claim, ¢ = ¥ and e < 6‘3. It follows that ¥ < e¥; that is,

k <y T.

Also, P, = Q, which improves the agreement given in (f) above. Finally, crt(i. ) > & or k = p,
so P, agrees with P, up to some inaccessible of P;; that is > x. The relevant diagram is Figure 1.

Notice that p+1 is special in j(S), because (P11, Xu11)| o = J(My0, Qo)) |ap = (Myo, Qu0)||op.
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Ji(U) J(S)

Qi) Piw)
()
0+1,5(k)
) pIS)
it 1() o+
ZARNe
-3 (S)
ZZH-Q,@

} J(S)
Q! Gt s
D D

Qr, F P,LL<O.—P,LL+17H
Ui
F
i“
Qx P,
i%’ﬁ z‘g’,{
M M+—— Q
(o))}

Figure 1: Diagram if F' = FMvo ig an extender disagreement in the phalanx comparison. P; = @y,

i(S j(U ~ . . . .
P, =Q,, and P;((N)) = Q;EH)). Ft=FDand F [ A\p 9G | Ag. i§,, =¥, and i, =¥ .
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Let

i(S)
D= Eiﬂ

= order 0 measure of P, 1 on Ap.

Claim 3.23. Let B, = )" ; then Pyuy1||B, < Ult(Py, F).

Proof. Let N be a level of P,41 projecting to a,. We can apply the condensation theorem of [3]
to o, [ N. Since crt(o,) = ay, = Ih(F'), the “ultrapower away” conclusion of the theorem holds, as
desired. In other words, N < Ult(P,, F'). Since N is arbitrary, we have P,41||8, < Ult(P,, F) as

claimed. O
Claim 3.24. FT = F-then-D.

Proof. By definition, F'* = F-then-E, where F is the order 0 measure of Ult(Q, F) on A\r. But
Ult(Qx, F) = Ult(Pyx, F), and Ult(Py, F) agrees with Ult(P,, ') below ip(p), where p is the first
inaccessible of Py strictly above x. Since ip(p) > B, we get E = D from Claim 3.23. O

Let
H = Fhe,

Since (P, Put1,0p, ) is problematic, H ¢ P,. Letting o,(q) = p(P,) — o, we have that H is

equivalent to H [ A\p Uq =G | Ap Ut, where t = Zi(fl) o(q) . But Q; = P,, so it will be enough for

a contradiction to show:

Claim 3.25. . For any finitet C A\g, G [ Ap Ut € Q.

Proof. We have that F* = EZ®) and F+ < Ej, s0 k =pdj)(T +1) and 7+ 1 <ju j(k). Let

* J(S
N=i8) (),
p= least § € [u+1,0];s) s-t. \* < crt(zﬁe)
§ = least B € [T+ 1,5(kK)]jw) s-t- A" < crt(i /38( ()))
Subclaim 1. G | A* is the (k, \*)-extender derived from zi(_fl)p oip.

Proof. Recall H = FPut1; then for A C &,

ZF(A) = ZH(A) NAr,
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so for k = iifl),p’
koip(A)=k(ig(A) NAp)
= ix(m)(A) N k(AF)
=ig(A4)N A*,
as desired. O

Subclaim 2. ei(ill),é = ei(f%,p'

Proof. Let s = ej(?), so that

R,

—~ Jju
s=(FT) eJT(_H)f.

We can recover s from E; [ A* by looking at missing-from-/N initial segments of tail factors. More

precisely, let

RO - QR”%—’_’QK’
ko =il | Ro,
W = kO(RO)v

Eo = Ey, = Ej | \*.

Then s(0) = ET, where E is the shortest whole initial segment of Ey such that F ¢ N. (That
is, s(0) = F'*.) Let Ry = Ult(Ro,s(0)) and k1: Ry — W be the factor map; then R; < MJT(JZ;?

and k1 = Zi(fl)g | Ry. Letting Ey = Ej,, we let s(1) = ET, where F is the shortest whole initial

segment of Ej such that £ ¢ N. And so on.

But Ej [ A* = G | A*, and so by Subclaim 1 E; [ A\* is the extender (over the same Ry) of
#6S)

Yl p O UF- Further,

.5 (S) . g(S) . . g(S) .
il OUF =149 , OUD OUF = Ty 1 o ) O lp+.

Thus the recovery process above must yield

~ J(S
s=(FT) eiL(JrQ)’p.

This proves Subclaim 2. g

Subclaim 3. In j(S), every extender in ran(ei(f%,p) is very close®? to the model to which it is applied.

Proof. Let r = ei(f; ,- By the proof of [1, 4.5.7] it is enough to show that all extenders used in r
(S)

are very close to the models to which they are applied.?* Suppose that E = EZy
let

is used in r, and

pdjsy(a+1) =B € [u+2p)js)-

32F is very close to N iff E, € N for all finite a C 1h(E).
33[4, 4.5.7] is stated for plus trees, whereas j(S) is a pseudo-tree, but the difference is not relevant to the proof.
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By [4, 4.5.3(1)] we may assume that 8 <;s) a. Let n+1 be least in (3, al;s). By [4, 4.5.7(2)(iv)],

we are done unless Mn+(1 ) = Ma’i(l ) and B~ = k:(FMa+1 ), where k = (iy41007% H)J(S). But
the branch [u + 1, p);(s) does not drop, so ./\/la’i(ls) = Mé( ), and E = k(i #(H)ﬂ(H)) But then
crt(E) < ey, so B < p, contradiction. O

J(U)
T+1

Proof. Let r = eigl)g i(fQ) ,- Let W; be the model to which r() is applied in j(S) and Z; the
model to which r(i) is applied in j(U). Thus

Subclaim 4. In j(U), every extender in ran(e 5) is very close to the model to which it is applied.

S
Wo = A

- Ult( nt1o D)
Zy = MY = Ult(Qy, )
= Ult(Ult(Q, F), D).

Let 8= A P74 then by Claim 3.23, P, 1[|8 QUIt(P,, F), and hence P, 41]|8 < Ult(Qy, F). But
then ip propagates this agreement to ip(3) = )\FF’WO. That is

Wol AT < 7.
This agreement propagate under the r [ k ultrapowers, so
Wi|liy s (Ap) T < Z,,
for all £ < dom(r). But for k& € dom(r),

crt(r(k:)) < ’iﬁk()\p)

by our definition of p. Since 7(k) is very close to Wy, every r(k), belongs to Wy||i,jx(Ap)THWe,
and hence belongs to Z, as desired. ]

We have not quite reached A\g on the U side yet. There is one more extender to go. Let

&1 = least a <) j(k) s.b Ag < ert(iZY)).

Subclaim 5. pd;q)(§1) = & moreover, letting Et = Egl(u)l, we have

(a) crt(E) =\, Ap = Ag, and F has type A, and

(b) E is very close to ./\/lé(u).

Proof. For (a): Ag and X\* are cutpoints of E;. Moreover, \* = zi(fl)p()\ ), A\g = zugrl)p()\H), and

Ar is the largest proper cutpoint of H. It follows that \* is the largest proper cutpoint of G.
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Also

A= th(—f%,p OiD OiF(li)
=Y o (n)
ju

=i Eg)(/ﬁ)

S0) crt( A () )) < \*, so then crt(i {(u() )) = A\* by our choice of &.

Let K+ = E]SH) where n+1 <) j(k) and pd;y(n+1) = &. Since Ak is a cutpoint of Ej;, we
have A\g < Ag. But Ag < A\g, since otherwise K | Ag € N by the Jensen ISC, which is impossible
because i), maps ()\*)J“N cofinally into )\G’N, and hence collapses it. Thus A\g = Ag. It follows
that K = F and n+ 1 =¢&;.

If v is a proper cutpoint of E, then ~ is a cutpoint of GG strictly between \* and Ag. So there
are no such . This finishes the proof of (a)

For (b), we apply [4, 4.5.3(1)]. We may assume that { <j;y a, where § = a + 1. Let

17+ 1 be least in (&, « ]g(U By [4, 4.5.7(2)(iv)], we are done unless /\/ln’fr(lU) = Ma’i(l ) and E =

(in+1,a © an)J(U) (FMa+1 ). But the branch [0, o + 1]y does not drop, so M., = Mp | = Mg

in j(U). Thus E = g(g)(K) where K = 10(2])( M) But E has type A and '™ has type B, so this

impossible. This proves (b). O

We can now finish the proof of Claim 3.25. Let I be the branch extender of ¢’ (+1) £ that is,

J(U)

I = E}, where k = Zr+1 &

By [4, 4.5.7], I is very close to MT(+1) Thus

1€ M,
Since MJ(H) agrees with Ult(M](u) F7T) below ip+(k), we have /\/lTJrl llip+(K) € M — MY, so
I € MZ;_{

But Ft ¢ Mu, and from F' and I; one can recover G | A\p Ut. (Let K be the extender of
F*-then-I;; then K | A\p Ut = G | A\p Ut.) This proves Claim 3.25. O

That in turn completes the proof of Lemma 3.21. O

Lemma 3.26. For some (v,1) < (10,0), the construction of S, stops for reason (II), that is,
letting 0 + 1 =1h(S,),
(Po,20) 4 (Myu, ),

and [rt(0),0]s does not drop.
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Proof. We use the Dodd-Jensen argument in the proof of 3.11.

Suppose not, and let S = S,;0 and 6§ + 1 = 1h(S). We adopt the notation above, so that
(Pe,X¢) is the pair at £ in S, T = (id, 0)S, and (Pg, 22) is the pair at £ in 7. The copy maps are
e (Pe,Xe) — (Pg*,EE).

U = Uy, o iterates (M, X) to (My,,0,82,,0), while S iterates it strictly past. More precisely, let
v+ 1 =1h(U) and (Q¢, A¢) be the pair at £ in U; then

(Q’WA’Y) = (Mno,o’ Qﬁo,o) < (Py, Xg).

Let iq,,1;, 3, and jo g be the branch embeddings of S, T, and U,
Since either [0,6)g drops or (M0, 2ny,0) < (Pg, Xg), we get that for 69 = o [ My, 0, there is
(N, V) < (Py,%}) such that
70 (Mpy0,p,0) = (N, )

is $£- elementary. Moreover, [0,0)r drops or (N, ¥) <1 (P;,%7). But then
70 © joy: (M, ) = (N, ¥)

is Ef elementary, and maps (M, ) to a iterate along a branch that has dropped, contradiction.
O

Now fix (v,1) < (no, ko) as in the 3.26. Let S = S,;, U =U,;, and T = (id , 09)S be the lift of
S defined above. Let us adopt the rest of the notation above for the nodes and branch embeddings
of these trees, the copy maps, the problematic tuples, and so on. Let v+ 1 = lh(i/), so that

(P97 20) d (Mu,la Qu,l> d (Qva A’Y)'
Lemma 3.27. For some unstable &, rt(0) = € + 1.
Proof. Suppose the claim is false. Then
(i) either rt(6) is unstable,
(ii) or rt(0) is stable, and rt(6) is a limit of unstable £ <g rt(6).

In either case, 0 <g rt(f) <g 6 and [0,6]s does not drop. Let i = ipp, and i* = ige be the
branch embeddings of S and 7. The relevant diagram is

*
Py 1o

M—M
id
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Note first that ¢ is elementary in the category of mouse pairs, because

Thus we can apply Dodd-Jensen:

Subclaim 1. (Py,¥p) = (Q,A,) and [0, ]y does not drop.

Proof. We have that i: (M,X) — (Py, ¥g) is elementary, and (Py, ) < (Q~, Ay). Since (M, X) is

a mouse pair, Dodd-Jensen gives the desired conclusion.

]
It follows that (v,1) = (10,0). Let j = jo 5.
Subclaim 2. i = j
Proof. j is an iteration map, so i(n) < j(n) for all . Since i* is an iteration map
mp 0 i(n) = 1" (n) < mg o j(n)
for all n. Applying 7r9_1, we get that i(n) < j(n) for all 7.
]

Subclaim 3. rt(6) is is not a limit ordinal.

Proof. Suppose £ = rt(f) is a limit ordinal. Since £ is a limit of unstables, ran(e‘g ) consists of

extenders used in U, and hence extenders of the form ET where E is on the sequence of a premouse
with the ISC. It follows that the eg can be recovered from i = j by looking at ET for E the first
missing whole initial segment of the current tail factor. Thus e‘g < elj , SO e‘g = éY for some 7. But

then ¢ is unstable, contrary to & = rt(6).

O

By Subclaim 3 rt(f) = n + 1 where = pdg(n + 1) is unstable. Let 7 be such that eg =Y,

Since eg < e‘g = e%’, we have that 7 <y v and ezfﬁ = e‘g’g. In particular, eﬁﬂ € Z/leXt, son+1is
unstable, contradiction.

This proves Lemma 3.27. O

By Lemma 3.27 and Lemma 3.18, Py does not satisfy the Jensen ISC. On the other hand,
Py <M, ;, so Py does satisfy the Jensen ISC. This contradiction completes the proof of Theorem
1.8 in the case that d; = vyy. ]
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4. Dodd solidity for unsound structures

In this section, we work with a possibly unsound mouse pair (M, ) such that M is of type B and
deg(M) = 0. As before, we let F = FM_ = crt(F), and 7 = (). Recall Definition 1.10:

e p)s is the least o > 7 such that there is a finite d such that F' [ (a¢Ud) ¢ M.
e dy is the <*-least d such that F | (pyy Ud) & M.
Lemma 4.1. Suppose M is strongly 1-sound; then dy; = dy and P = PM-

Proof. py < pjy because by, (phy Uda) = M, so F | (py, Udar) ¢ M. For the reverse inequality,
let n < p}; and ¢ € [o(M)]<¥; we must see that F' [ (nUc) € M. Let a C p}, be finite such that
¢ = hi;(a,dpr). Let v = max(n, max(a) + 1). By Proposition 2.12(a)3*, F' | (yUdy) € M. Thus
F [ (nUc) e M, as desired.

CZM <* dp; by definition and the fact that p}, = pp. If CZM <* dpr, by Theorem 1.8, F' |
(pt,Ud) € M, contradiction. So dys = dyy. O

Definition 4.2. For i € dom(dyy),

Wir = Th (das (5) U {dar (0), oy dar (i — 1)}).
We say that M is Dodd solid at i iff Wi, € M. We say M is Dodd solid iff M is Dodd solid at all
i € dom(dy). 4

Equivalently, we could take Wi, to be F | (dp(i) U {dps(0),...,drs (i — 1)}). The Wi, are
the (standard) Dodd solidity witnesses for dy;. We don’t need generalized witnesses, because the

standard ones are preserved by g ultrapowers.
Theorem 4.3. Suppose (M,3) is a mouse pair of type B and degree 0; then M is Dodd solid.

Proof. Let N be the strong core of M; that is, N = €(M)~. Since N is strongly 1-sound, dy = dy
and p% = pn. Let ¢ : N — M be the anticore map and (7y,vn) = o~ 1(7,70). We have
cri(o) = p1(N) = pr(M).

Claim 1. ran(o) is cofinal in 7, 7™ and o(M).

Proof. M = Ultg(N, s), where s is a sequence of extenders that are close to the models to which
they are applied, moreover o is the ultrapower map.The claim follows. ]

The natural prewellorder of W}V has cofinality 7y in IV, so we easily get

Claim 2. Suppose that Thi™ (3 U {c}) € N; then o(Thi™ (8 U {c})) = ThiM(c(8) U {o(c)}), so
Thi™ (0(8) U{o(c)}) € M.

34Here we use 1-soundness of M.
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It follows that for i € dom(dy), o(Wk) = Th*{’M(a(dN(i) U{o(dn(0),...,0(dn(i—1))}) € M. This

leads at once to
Claim 3.
(a) pm =supo“pl, and

(b) dy = o(dn).
Proof. For (a): We have that pn = pj = max(p1(N), 7ar). Suppose first py, = p1(N) > 7n; then
pNy =supopy = p1(M) = Ta = Tn.

Clearly p1(M) < pas. On the other hand, Thi™ (p% Udy) ¢ N and o | p = id , so Thi™ (p% U
o(dn)) ¢ M. This implies ppr < p1(M). Thus par = sup o “piy.

Suppose next that py = 7v > p1(IN). Thus supo“p};, = 7. Since ThT’N(TN Udn) ¢ N, by
Schlutzenberg’s lemma ThT’M(TM Uo(dy) ¢ M. (Note that the theories are amenable to N and
M respectively.) Thus mar < par, S0 Tar = par, as desired.

For (b), we have ThT’M(ﬁM Uo(dy)) ¢ M by (a) and Schlutzenberg’s lemma. Thus dy; <*
o(dy). Suppose toward contradiction that i is least such that dy (i) < o(dy(i)), and let a =
dn(i). By Claim 2, and induction, o(W},) = ThT’M(O'(Oé) U {dpr(0),...,dps(i — 1))} € M, so
Thi™M (dar (i) + 1 U {dar(0), ..., dpr(i — 1))} € M, contradiction.

U
Combining Claims 2 and 3, we get that o(W4) = Wi, € M, for all i € dom(dy) = dom(dy).
That finishes the proof of Theorem 4.3. O

We also get a version of the Zeman Exchange Lemma for unsound M.

Lemma 4.4. Suppose (M,Y) is a mouse pair of type B and degree 0; then dy = (payr Uenr) — Tm
and pyr Ney = 0.

Proof. Let N = €;(M)~, and let ¢ : N — M be the anticore map. Thus o(7y) = Ta. Since N is
strongly 1-sound, Theorem 2.18 gives us that dy = dy = (py Uen) — 7 and py Ney = . We
showed in the proof of 4.3 that o(dy) = dy. Clearly o(pN) = pum, so it is enough to show that
o(en) = epr. This is a straightforward calculation, based on the fact that o(yy) = yar. We leave
it to the reader. O
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