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Abstract. The game of cops and robbers is a game played on graphs in which
some number of cops move along a graph to try to catch a singular robber. In
this paper, we examine the behavior of the cop number of graphs compared to
their subdivision graphs, which we will refer to as k-tunnel graphs. We prove
that for any graph, either every k-tunnel graph has the same cop number as
the original, or there is some tail of k for which the cop number of the k-tunnel
graphs increases by one.

1. Introduction

Throughout this paper, by a graph, we mean an irreflexive symmetric binary
relation on a set (vertices), that is an undirected graph with no loops (we allow
multiple edges between two vertices). Let G be a graph. For any point g ∈ G,
N(g) = {h ∈ G | h = g or E(g, h)}. N(g) consists of g and the neighbors of g. Since
G is undirected, g is a neighbor of h if and only if h is a neighbor of g. A path between
two points x and y in a graph G is a sequence of points x = g0, g1, . . . , gn−1, gn = y
such that for all 0 ≤ i ≤ n − 1, E(gi, gi+1). The length of a path g0, g1, . . . , gn is
n. For a graph G, the graph distance between two points g and h is equal to the
length of the shortest path connecting them. We will denote this distance ρG(g, h),
and will omit the G when there is no danger of confusion.

The game of cops and robbers is a two-player game played on a graph in which
player one controls some fixed number n of cops, while player two controls one
robber. We call this the n-cop game on the graph. On the first turn of the game,
player one places each cop on a vertex on the graph (we allow multiple cops to be on
the same vertex). Player two responds by placing the robber on a vertex. The game
proceeds over a countable sequence of turns. On each turn, player one moves each
cop to a neighbor of the vertex they are currently occupying and then player two
moves the robber to any neighbor of the vertex the robber is occupying. We note
that in either case, a cop or the robber could chose to remain on the same vertex.
Player one wins a run of the game if at some move, one of the cops is occupying the
same vertex as the robber; in this case, we say the robber was caught. Otherwise
player two wins. On a game with n cops, we will denote those cops by c1, c2, . . . , cn,
and denote the robber by r. For a more detailed introduction to the game of cops
and robbers, see [1]
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A strategy for a player is a rule that tells the player how to move given the
previous history of the game. As an abbreviation, if we have a strategy τ , we will
let τ(vr, v1, . . . , vn, t) denote what τ does on turn t when each cop ci is on vi, and
the robber is on vr. We view r as a symbol to denote the robber, not to be confused
with an integer i. This strategy may depend on the previous history of the game,
but we will suppress that in the notation. When we define a strategy we will just
define the initial moves by saying, “place the cops down on vertices v1, v2, . . . , vn

and robber on vertex vr. To denote an initial move for the robber, we will use the
notation τ(·, v1, . . . , vn, 0), since the robber is not positioned on the graph on turn
0.

Consider a graph G, where the robber plays against n cops. A game state s for
the game is a position in the game which we will denote as s = (gr, v1, . . . , vn, t, h) ∈
Gn+1 ×N. Here gr denotes the current position of the robber, v1 through vn denote
the position of ci, t denotes the current round of the game, and h is the history
of the game, i.e., the sequence of prior moves. On turn t = 0, the cops must pick
initial positions with no robber on the graph, and then the robber is allowed to
pick any vertex. We will usually suppress h in our notation as it plays no role in
our arguments. We say a player follows a strategy τ if for any game state s, the
move that player makes is given by τ(s).

A strategy τ is winning for the cops if, when the cops follow τ , then at some finite
turn t, there will be a game state s = (vr, v1, . . . , vn, t) such that τ(vr, v1, . . . , vn, t) =
(w1, w2, . . . , wn), and for some i, wi = gr. A strategy τ is winning for the robber if
when the robber follows τ he is never caught, i.e., gr ̸= vi.

For general graphs G, this game is an open game. It is shown in [2] that any
such game is determined, i.e., one of the players has a winning strategy.

Definition 1.1. The cop number of a graph G, denoted C(G) is the minimum
integer n such that player one has a winning strategy in the n-cop game on G. If
there is no such number, then C(G) = ∞.

When G is finite, then C(G) is necessarily finite with cop number at most |G|.
One fact about graphs in general is that the cops and robber game is always posi-

tional. A positional strategy is a strategy τ which only depends on the current round
of the game. In our notation, a positional strategy is where τ(gr, v1, . . . , vn, t, h) =
τ(gr, v1, . . . , vn).

Lemma 1.2. Whichever player has a winning strategy in a cops and robber game
on a graph G has a positional winning strategy.

Proof. (sketch) Say τ is a winning strategy for player one. The ordinal analysis of
open games (cf reference) assigns to each winning position of player one an ordinal
rank. Given a current position (vr, v1, . . . , vn) of the cops and robbers, let t and
h such that (vr, v1, . . . , t, h) minimizes the rank of the position in the open game.
Let τ ′(vr, v1 . . . , vn) = τ(vr, v1, . . . , vn, t, h). It is easy to check τ ′ is a positional
winning strategy for player one. The case where τ is winning for player two is
similar. □

The main result of this paper concerns the relation between the cop number of a
finite graph G, and the graph-theoretic subdivision of this graph. Informally recall
that a subdivision of a graph means we insert some number of vertices between
any two vertices of G. The k-tunnel graph associated to G is the subdivision of G
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where we put k − 1 vertices between any two vertices (defined formally in 2.1. We
let Gk denote the k-tunnel graph associated with G. Our first result, Theorem 2.4,
is that for any k, C(G) ≤ C(Gk) ≤ C(G) + 1. The other major result, Theorem
4.5, is that the cop number is either constant with k, or increases by one on some
tail of k-values for the tunnel graphs. We give an example where the cop number
is constant, and also an example where the cop number increases.

2. The Tunnel Version

In this section we look at what happens when we add “tunnels” to graphs. The
idea is we add a constant number of points between each vertex.

Definition 2.1. Given a graph G, and an integer k > 1 the k-tunnel graph of G,
denoted Gk, is the graph constructed in the following way. If x, y ∈ G are connected
by an edge, then put vertices x and y in Gk, and insert points g1, g2, . . . , gk−1 such
that E(x, g1), E(gk−1, y), and E(gi, gi+1) for all i.

The vertices x and y in Gk will be referred to as supervertices, and the points
g1, g2, . . . , gk−1 will be called tunnel vertices.

As an example, if we start with a graph G, and want to construct G2, then we
subdivide each edge of G, meaning that between any two points x and y of G, we
delete the edge connecting x and y, and insert a vertex g which is a neighbor of
both x and y. The tunnel graphs are denoted Gk because it takes k moves to get
from one supervertex to another.

The cop number can change between a graph and its tunnel version; for example,
consider the complete graph on 3 vertices. Then the 2-tunnel version of it is a 6-
cycle. The first graph has cop number 1, while the latter has cop number 2. We
will generalize this example later, but for now we can see this in figure 1.

C3 C6

Figure 1. The cop number goes up in the 2-tunnel

There are some relationships between the cop number of a graph and its tunnel
versions which we prove below. We will often have the G game and the Gk game
going on at the same time. Depending on the situation we will want to associate
the cops or robber in the Gk game with a supervertex so that we can place them
in the G game. We will call this a projection of the cops or the robber. We will
also sometimes want whichever side we are playing to commit a certain number of
moves (usually k). We will refer to these as k-moves. These notions will be defined
more precisely as they come up.

Given a graph G, and its k-tunnel graph Gk, we will define a projection function
from Gk to G. For a supervertex v of Gk, we let v∗ be the corresponding vertex
in G. We define the projection p(t, ci) of a cop ci at time t as follows. Suppose at
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time t = 0, ci is on a supervertex v, or is on a tunnel vertex vi that belongs to a
tunnel whose corresponding supervertices are v and w, where v < w, where < is a
fixed linear order on the supervertices. We then define

p(0, ci) =
{

v∗ if vi ̸= w

w∗ otherwise.

In other words, p(0, ci) is v∗ if ci is anywhere in the tunnel except at w; if ci is at
w, then p(0, ci) = w∗. Suppose t > 0 and p(t′, ci) have been defined for all t′ < t.
Suppose at time t, ci is at vertex vi which belongs to a tunnel whose endpoints are
v and w and suppose that p(t − 1, ci) is v∗. Then let

p(t, ci) =
{

v∗ if vi ̸= w

w∗ otherwise.
In other words, we define p(t, ci) to the the projection of the cop ci at time t − 1,
unless ci is at the other supervertex w, then we switch the projection of ci from v∗

to w∗. We define the function p(t, r) for the robber similarly.

Theorem 2.2. If C(G) = n, then C(Gk) ≤ n + 1, for k ≥ 1.

Proof. Suppose τ∗ is a strategy for n cops to catch the robber in G, and we define
a strategy τ for n + 1 cops in Gk. At any time t, if the robber is on vertex v in Gk,
let v∗ = p(v, t). To start, the strategy τ∗ will place each cop c′

i on a vertex vi of G.
Have τ place n cops c1, . . . , cn at the corresponding supervertices of Gk, and place
the n + 1st cop (the “extra cop”) cn+1 arbitrarily in Gk.

Throughout the game for Gk, the extra cop cn+1 will be dedicated to chasing the
robber r in the following precise sense. Suppose at some time, the robber moves
from vertex v1 of Gk to an adjacent vertex v2, and say cn+1 is currently at vertex
u1. Let p = u1, w1, w2, . . . wℓ = v1 be a path in Gk of minimal length. At the
next move in Gk (the cop’s turn), cn+1 will move from u1 to u2 = w1. We clearly
have that ρ(u2, v2) ≤ ρ(u1, v1). We will specify τ ′s moves for the other cops in
a moment, but we will have that the distance from cn+1 to r is a monotonically
decreasing function throughout the game. Roughly speaking, the role of cn+1 is to
eventually prevent the robber from “back-tracking” inside the tunnels. For the rest
of the game Gk, the extra cop cn+1 will always be following this rule. We will now
define what each cop ci does for 1 ≤ i ≤ n (so when we say ci, we really mean ci

where i ̸= n + 1).
At any given time, if the robber is not on a supervertex, then we will call the

destination supervertex the supervertex of the tunnel that the robber is in that does
not correspond to his projection. We say a robber backtracks if he moves away from
his destination vertex or passes.

We now define the strategy for the first n cops, who start on vi. We say t is a
good time if r and c1, . . . , cn are all on supervertices at time t. At a good time, τ will
have each ci pass. If t is not a good time, but t − 1 is, then let w be the destination
vertex for the robber at time t. We define the next k moves for the cops as follows.
If τ∗(w∗, v∗

1 , v∗
2 , . . . , v∗

n) = (w∗
1 , w∗

2 , . . . , w∗
n), then have ci move to wi over the next

k moves. At the end of the k moves, the robber is on a supervertex, we repeat the
strategy. If he is not on a supervertex (which implies he has backtracked), then τ
has ci pass until the time (if any) the robber moves to a supervertex. Once the
robber does move to a supervertex, the strategy repeats. By the definition of τ , at
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any time t, there will be some time t < t′ ≤ t + k such that all of the n cops will
be on supervertices.

We show τ is winning. We first observe that the robber can only backtrack
finitely often, as each time he does, cn+1 will get closer to him. We may assume
that there is some time T such that the robber will never backtrack after this time.
Let T ′ > T be a time such that all of the cops (besides possibly cn+1) are on
supervertices. Since there is no further backtracking, after at most k moves, the
robber will be on a supervertex (and the cops will still be on supervertices). Thus we
reach a time T ′′, such that the cops and robber will be on supervertices, and there
is no further backtracking by the robber. Since there is no further backtracking,
and by the definition of τ , every block of k moves in the Gk game corresponds to
one move in the G game. Because τ∗ is a winning strategy, after some number of
these blocks, one of the c∗

i catches the robber in G. By the definition of τ , ci will
have caught the robber in the Gk game.

□

K4 (K4)2

Figure 2. The cop number goes up in the 2-tunnel

C4 C8

Figure 3. The cop number doesn’t go up in the 2-tunnel

So adding in tunnels can increase the cop number by at most one. the example
above shows that this bound is achievable. The next result shows that the cop
number will never go down. i.e. adding tunnels can only help the robber.

Theorem 2.3. If C(G) = n, then C(Gk) ≥ n for any k > 0.
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Proof. Suppose that τ∗ is a winning strategy for the robber against n − 1 cops in
G (i.e., following τ∗ will allow the robber to never get caught). We will translate
τ∗ to a strategy τ for the robber to avoid n − 1 cops in Gk.

If v and w are supervertices in Gk, then we say that v and w are adjacent
(supervertices) in Gk if ρGk

(v, w) = k. Then in G, ρG(v∗, w∗) = 1.
First, at time t = 0, cops c1, . . . , cn−1 position themselves at some vertices in

Gk. For each 1 ≤ i ≤ n − 1, suppose ci is at vertex vi. Let v∗
i = p(0, ci) for

each i. Now τ∗(·, v∗
1 , . . . , v∗

n−1, 0) = v∗
r , which defines the vertex v0 in Gk. Define

τ(·, v1, . . . , vn−1, 0) = vr. There are no cops next to the robber in G, so every cop is
more than k away from the robber in Gk, i.e. ρGk

(vr, vi) > k for each 1 ≤ i ≤ n−1.
The strategy τ for the robber r in Gk, derived from τ∗, is as follows: suppose r is

at a supervertex v in Gk at time t = mk + 1 for m ≥ 0, so v∗ = p(t, r) is the vertex
corresponding to v in G. Suppose τ∗(v∗, v∗

1 , . . . , v∗
n−1, m + 1) = w∗. Let w be the

corresponding supervertex in Gk and let the tunnel joining v, w consist of points
u0 = v, u1, . . . , uk = w. In the next k moves in Gk, τ moves the robber through the
tunnel from v to w, i.e. for each i ∈ {1, . . . , k}, τ(ui, v1, . . . , vn−1, mk + i) = ui. We
note that if τ∗(v∗, v∗

1 , . . . , v∗
n−1, m + 1) = v∗ then τ(v, v1, v2, . . . , vn−1, mk + i) = v

for 1 ≤ i < k. At time mk + k, r is either at v or at w.
We now proceed by induction to show the robber is always safe in Gk. As-

sume (by induction) that the robber is on a supervertex v at time t = mk, and
the projections of the cops and robbers at times 0, k, . . . , mk are consistent with
τ∗ (in the game G). Note that when t = 0, equivalently m = 0, the inductive
hypothesis is satisfied. Suppose v∗ is the vertex in G corresponding to v and
τ∗(v∗, v∗

1 , . . . , v∗
n−1, m + 1) = w∗. Let w be the supervertex in Gk that corresponds

to w∗; as mentioned above, ρGk
(w, v) is either k or 0. Now play according to τ ,

i.e. in the next k moves in Gk, move the robber from v to w precisely as described
above. We claim the robber does not get caught. If he were caught, then that
means there was a cop ci whose position is vi when the robber is at v at time t.
Furthermore, ρGk

(vi, w) ≤ k. Let v∗
i = p(t, ci). Therefore, in G, ρG(v∗

i , w∗) ≤ 1.
But τ∗(v∗, v∗

1 , . . . , v∗
n, m + 1) = w∗ and τ∗ is a winning strategy for the robber in

G, it is impossible for a cop to be at position v∗
i . Therefore, for each i, if cop ci is

at position vi in Gk when the robber is at position v, and the robber moves from
v to w in the next k moves according to τ ′, then ρGk

(vi, w) > k. This implies that
the robber can make such k moves and will be safe at w. Hence, he can evade the
cops indefinitely.

□

Combining the previous two theorems, we get.
Theorem 2.4. If C(G) = n, then n ≤ C(Gk) ≤ n + 1 for all k ≥ 2.
Corollary 2.5. If C(G) = n, and C(Gk) = n + 1 for some k > 0, then for any
m > 0, C(Gmk) = n + 1
Proof. Suppose C(G) = n and C(Gk) = n + 1. Then Gmk is the m-tunnel version
of Gk, so Gmk has cop number at least n + 1. But Gmk is a tunnel graph of G, so
it has cop number at most n + 1 □

3. Examples of Graphs for which the Cop Number Increases

In this section, we will provide a class of graphs such that for each n, there is a
graph that has cop number n, but the cop number of a tunnel graph is n + 1.
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Definition 3.1. We define the graph T n as follows. The vertex set is the set
V = {(a1, a2, . . . , an) | ai ∈ {−1, 0, 1}}. The edge set is the set E = {(x, y) |
there is a j such that xi = yi if i ̸= j, and xj ̸= yj}. In other words, two elements
are connected by an edge if there is exactly one coordinate on which they are
different.

Given an element x ∈ T n, we will write x as x = (x1, x2, . . . , xn). Since the
possible value of any coordinate of an element x ∈ T n is in {−1, 0, 1}, xj ̸= yj

implies that xj = yj ± 1 mod 3. Thus, x and y are neighbors if and only if there
is exactly one 1 ≤ i ≤ n such that xi = yi ± 1.

(−1, −1)

(−1, 0)

(−1, 1)

(0, −1)

(0, 0)

(0, 1)

(1, −1)

(1, 0)

(1, 1)

Lemma 3.2. Suppose C(G) = n, and τ is a winning strategy for n cops in G.
Then for any set of vertices h1, h2, . . . , hn ∈ G, there is a winning strategy σ where
ci starts on the vertex hi.

Proof. Define σ by first having σ place each cop ci on hi. Let τ be a winning
strategy for the cops, and suppose that τ places ci on a vertex gi. Have σ move
each ci from hi to gi (possibly have ci pass if the other cops have not yet gotten
to their respective gi). At this point, define σ to move the cops the same way τ
would, starting at the robber’s current position. □

Theorem 3.3. C(T n) = n.

Proof. We note that the proof of the claim is simple for n = 1, so we will assume
n ≥ 2. We first show C(T n) > n − 1. Start the game on the graph T n with n − 1
cops, and suppose each cop ci places down on some vertex vi in T n. We want to
show that the robber has a vertex he can place down on which is at least two away
from every cop. Any point x ∈ T n has 2n neighbors, so any cop can be within one of
at most 2n+1 points of T n. Therefore, there are at most (2n+1)(n−1) = 2n2−n−1
points that are within one vertex of the n−1 cops. T n has 3n vertices, so it suffices
to show that 2n2 − n − 1 < 3n for n ≥ 2. This however is easy to check. We will
say a cop is guarding a point if she is within one of that point.

This shows that there are more vertices of T n then there are guarded points.
Therefore, the robber will have a vertex he can place down on to start the game
which is at least two from every cop. Start his strategy τ by placing him down on
any such vertex. Inductively, assume it is the robber’s turn to move, and that the



8 STEPHEN JACKSON , CODY OLSEN, JOSIAH SWEATT, NAM TRANG, ANGELA YUAN

robber is on 0⃗ = (0, 0, . . . , 0) by shifting the coordinates of the cops and robbers
using the following method. If the robber is on the vertex (r1, r2, . . . , rn), then the
new coordinates of a cop or robber will be (v1 − r1, v2 − r2, . . . , vn − rn), where vi

is the ith coordinate of that cop or robber. Then the possible points the robber
can move to, other than the vertex he is on, are the vertices that have exactly one
nonzero coordinate. We will call this set N , and note that N has cardinality 2n.
We will show that there is always at least one point of N which has distance at
least two from every cop, and then define his strategy τ to always move to such a
point.

We claim that any one cop can guard at most two vertices of N . Since the robber
is on 0⃗, we always assume no cop is on 0⃗. Let ei = (0, . . . , 0, 1, 0, . . . , 0), where the
ith coordinate of ei is 1. Suppose first that a cop is guarding two points that are
nonzero on the same coordinate. Without loss of generality, we may assume the
coordinates are e1 and −e1 = (−1, 0, . . . , 0). We claim that for a cop to guard both
of these points, they must either be on e1 or −e1.

If a cop is guarding e1, she must be on a point of the form (±1, 0, 0, . . . ) or
(1, y2 . . . , yn), where yi ̸= 0 for exactly one 2 ≤ i ≤ n. The first case is what
we claimed, so suppose we are in the latter case. Then the shortest path from
(1, y2, . . . , yn) to −e1 is of length 2. This is true, since she must move once in the
first coordinate, and once in the ith coordinate. Thus, a cop on (1, y2, . . . , yn) is
not guarding (−1, 0, . . . , 0). Therefore, for a cop to be guarding both (1, 0, 0, . . . , 0)
and (−1, 0, 0, . . . , 0), she must be on (±1, 0, . . . , 0). Let x ∈ N be such that the
first coordinate of x is zero. Since the cop is on (±1, 0, 0, . . . , 0), the shortest path
to x must be of length 2, using a similar argument as above. Therefore, the cop
cannot guard e1, −e1, and another point of N .

Now suppose a cop is guarding two points of N which do not share a nonzero
coordinate, and the cop is not on 0⃗. Without loss of generality, we may assume
the cop guards e1 and e2. We claim a cop can guard these two points only if
she is on (1, 1, 0, . . . , 0). Suppose the cop is guarding e1. Then she must be on
a vertex of the form (±1, 0, 0, . . . ) or (1, y2 . . . , yn), where yi ̸= 0 for exactly one
2 ≤ i ≤ n. Neither of the points in the first case neighbor (0, 1, 0, . . . , 0), so a cop
on (±1, 0, . . . , 0) is not guarding e2. Now suppose a cop is on a point of the form
(1, y2, . . . , yn) as above. If y2 = 1, then the cop is guarding both of the points as
we claimed. If y2 = −1, then the shortest path from (1, −1, 0, . . . , 0) to e2 is of
length 2, contradicting that the cop was guarding (0, 1, . . . , 0). Otherwise, y2 = 0
and yi ̸= 0. The shortest path between (1, y2, y3, . . . ) and (0, 1, 0, . . . , 0) has length
at least 2, so she cannot be guarding e2,

Thus, a cop can guard at most two points of N , meaning the n − 1 cops can
guard at most 2n − 2 points of N . Therefore, we define τ for the robber by having
him move to any unguarded element of N on each of his turns.

We now show C(G) ≤ n, which will imply C(G) = n. We proceed by induction.
Suppose now that n cops have a winning strategy τ∗ in T n. We show that n + 1
cops can catch the robber in T n+1. Let T = {(a1, a2, . . . , an, 0) ∈ T n+1 : aj ∈
{−1, 0, 1}}. Define π : T → T n by π ((a1, a2, . . . , an, 0)) = (a1, a2, . . . , an). For a
point x ∈ T , let x∗ = π(x). We note x, y are neighbors in T if and only if x∗ and
y∗ are neighbors in T n.

Initially in T n, suppose ci starts on h∗
i . Have τ start ci on hi, where hi is the

point of T such that π(hi) = h∗
i , and cn+1 on hn. Now the robber starts the game
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(−1, −1)

(−1, 0)

(−1, 1)

(0, −1)

(0, 0)

(0, 1)

(1, −1)

(1, 0)

(1, 1)

C

with vr = (v1, . . . , vn, vn+1). At each stage of the game, define the ”fake robber"
f to be on vf = (v1, v2, . . . , vn, 0). Thus, vf will always be in T . The fake robber
moves according to the rules of the game since the robber does. Inductively, assume
that at time t, f is on vertex vf and each ci is on some vertex vi of T ; furthermore,
in T n, the robber is on v∗

f , and each ci is on v∗
i . If τ∗ moves ci from v∗

i to h∗
i , then

have τ move ci from vi to hi, and move cn+1 to hn.
Since τ is winning, after some finite number of turns, a cop and robber will be on

the same space in the T n game. If, in the T n game, the robber was caught by ci on
vertex z∗, then in T , ci and f will be on z. Then the first n coordinates of the robber
and ci will be the same, and the last coordinate will differ by at most one. At this
stage of the game, define τ to have ci follow the robber in the following sense. If the
robber moves from the vertex (v1, v2, . . . , vk, . . . vn+1) to (v1, v2, . . . , v′

k, . . . , vn+1),
have ci move from (v1, v2, . . . , vk, . . . , 0) to (v1, v2, . . . , v′

k, . . . , 0). This will induc-
tively mean the first n coordinates of ci and the robber’s vertices will be the same.
If the robber moves in the last coordinate, then ci can catch him, since the robber
either moved onto ci, or moved onto a vertex neighboring ci. Thus, the robber can
never move on the last coordinate without getting caught.

There are now n cops who aren’t following the robber. Relabel these cops to
be c1, c2, . . . , cn. The robber’s coordinates are of the form (v1, v2, . . . , vn+1), where
vn+1 ∈ {−1, 1}. Define τ to move c1, c2, . . . , cn so that each cop’s last coordinate
is vn+1. Let Tr = {(a0, a1, . . . , an, vn+1) ∈ T n+1 : aj ∈ {−1, 0, 1}}, and let the map
p : Tr → T n be defined by p(a1, a2, . . . , an, rn+1) = (a1, a2, . . . , an). Each cop ci is
on some vertex vi of Tr. Using Lemma 3.2, we may assume that τ∗ initially places
ci down on p(vi). Now we can repeat the algorithm above, but replacing π with p
to define τ for c1, c2, . . . , cn. We now argue that τ is a winning strategy. Since τ∗ is
winning, the cops will win in T n, so there will be a cop ci on the same vertex z∗ as
the robber in T n. Since the robber was not allowed to move in the last coordinate,
then he must have also been caught in T n+1 by ci on the vertex z.

□

Theorem 3.4. C(T n
2 ) = n + 1

Proof. By Theorems 2.2 and 2.3, n ≤ C(T n
2 ) ≤ n + 1, so it is enough to show

C(T n
2 ) > n. We will adopt the convention that if v is a supervertex of T n

2 , and
v∗ = (v1, . . . , vn) is the corresponding vertex of T n, then v will have coordinates
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(v1, . . . , vn). If n cops ci place down on vertices vi of T n
2 , then each cop can be

within 1 of at most 2 supervertices, meaning there are at most 2n supervertices
that the robber cannot place down on or else he will lose immediately. Since there
are 3n supervertices, the robber can place down safely on a supervertex. Define
the robber’s strategy τ by having the robber place down on any of these safe
supervertices. We now define τ to not move the robber if there is no cop next to
him.

We now show that if the robber is on a supervertex v, and there is a cop within
distance one of him in T n

2 , then there is always a supervertex v′ that is distance
two from the robber in T n

2 which is not within distance two of a cop. Let N be the
set of supervertices which are distance two from the robber. Then N has size 2n.

If the robber is on a supervertex v, and a cop ci is within one of him, then ci

must be in a tunnel, and the two endpoints of the tunnel are a vertex of N , and v.
Thus, a cop next to a robber can only guard one vertex of N . If any other cop cj is
in a tunnel, she is next to two supervertices x and y, and any other supervertex has
at least distance two from both x and y. Thus, she can only be within two moves
of at most two points of N .

It remains to show that a cop on a supervertex can be within two moves at
most two vertices of N . We will say a cop guards a supervertex w if she is
within two moves of w. If a cop on a supervertex is guarding ei and −ei =
(0, 0, . . . , −1, 0, . . . , 0), then we can use a similar argument as in the proof of theo-
rem 3.3 to show that it would take her more than two moves to move to any point
of N other than ei or −ei, as it always takes one move to get through a tunnel, and
then a second move to move to a supervertex. Similarly, a cop guarding ei and ej

for i ̸= j cannot be guarding another point of N .
We have shown that if there is a cop next to the robber, she is guarding at most

one point of N , and any other of the n − 1 cops can guard at most two points of N .
Thus, if there is some i such that wi is a neighbor of v, then the cops can guard at
most 1 + 2(n − 1) = 2n − 1 vertices of N . This means there will be a vertex v′ that
is within distance two of the robber, and there is no cop within distance two of v′.
v and v′ are adjacent supervertices We now define τ to move the robber to from v
to v′ in two moves

τ is winning, because in order for the cops to win, one cop must move to a
neighbor of the robber, but whenever a cop moves to a neighbor of the robber, the
robber can commit two moves to moving to a safe supervertex. □

4. Monotonicity

In this section, we will prove that if G is a graph, then the cop number is constant
for some tail of k-tunnel graphs of G.

Definition 4.1. Suppose G is a graph, and k, m are positive integers. then Gk has
k − 1 points between tunnel vertices, and G1+m(k−1) has m(k − 1) tunnel points
between supervertices. Suppose x, y and x∗, y∗ are two corresponding neighboring
supervertices of G1+m(k−1) and Gk respectively, i.e. they came from the same
vertices of G. Let v1, v2, . . . , vm(k−1) be the tunnel vertices between x and y, and
let u1, u2, . . . , uk−1 be the tunnel vertices between x∗ and y∗, where v1 neighbors
x, and u1 neighbors x∗.

We define a map p : G1+m(k−1) → Gk as follows:
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p(v) =


x∗ if v = x

y∗ if v = y

ui if v = vm(i−1)+j , where 1 ≤ j ≤ m

We can now define an equivalence relation P in G1+m(k−1) by x and y in
G1+m(k−1) are in the same P equivalence class if p(x) = p(y).

Figure 4. A 3-tunnel shown on the left, and a 5-tunnel on the right

The following lemma is a special case of Lemma 4.4, but the argument is quite a
bit simpler, and omits a fair number of the factors that make lemma 4.4 complicated.

Lemma 4.2. If C(G) = n, and C(Gk) = n + 1, then C(Gj) = n + 1 for any j ≥ k
with j ∼= 1 mod k − 1

Proof. Suppose j = m(k−1)+1, where m ≥ 1. Given a point x in Gj , let x∗ = p(x).
We say a point x in a P equivalence class is extreme if it shares an edge with a
point in a different equivalence class. Suppose τ∗ is a strategy for the robber to
evade n cops in Gk. We will use it to show the robber can evade n cops in Gj ,
which will show C(Gj) = n + 1

We will define a strategy for the robber in which the robber can commit to
making m moves at a time. If the robber makes an m-move, it is possible for a cop
to move from a P class next to a supervertex to a supervertex, and then over to a
different P class. This means that If we use p to map the cops’ coordinates, then a
cop can move over two vertices in Gk, which would be an illegal move. We therefore
define a map π for each cop that will “fix" this issue. We will have a partial map
defined for specific values of t, which we will refer to as good times, t → t∗ mapping
specific times in the Gj game to times in the Gk game. Suppose t is in the domain
of the function. Then t+1 or t+m will be in the domain of the function depending
on whether the robber makes a 1-move or an m-move. We accordingly set (t + 1)∗

or (t + m)∗ to be t∗ + 1.
Let πi : Gj ×N → Gk be defined recursively. πi(v, 0) = v∗, where v is the initial

position of ci. Now suppose ci is on v at some good time s and moves to w when
the robber commits to a move. Then if the cop completes this (1 or m) move at
time t, we let:

πi(w, t) =


w∗ if w is a supervertex corresponding to a point in G.
w∗ if πi(v, s) = v∗ or v and w are in the same equivalence class.
v∗ if πi(v, s) ̸= v∗ and v and w lie in different equivalence classes.

We will define a cop on vertex v to be ahead if at stage t, π(v, t) ̸= v. i.e.
we are projecting a cop to be on a point of Gk which does not correspond to the
equivalence class of vertices she is in. We note here that at the initial step of the
game, no cop is ahead.

On the initial turn, the cops place themselves down on vertices v1, v2, . . . , vn in
Gj . Place the cops down on v∗

1 , v∗
2 , . . . , v∗

n in Gk. Let v∗ = τ∗(r, v∗
1 , . . . , v∗

n, 0). We
let τ(r, v1, . . . , vn) = v, where v is an extreme point such that p(v) = v∗. When the
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cops make their first move, no cop can catch the robber, or else there was a cop
next to the robber in Gj . This would imply there was a cop next to the robber in
Gk, violating τ∗ being winning.

We now define the robber’s strategy recursively. Suppose at turn t, the cops are
on v∗

1 , v∗
2 , . . . , v∗

n in Gk, the robber is at an extreme vertex r of an equivalence class
in Gj , the robber in Gk is on r∗. Let v∗ = τ∗(r∗, π1(v1, t), . . . , πn(vn, t), t∗). Let v
be the extreme vertex in p−1(v∗) which is closest to the robber. Then either v and
r are neighbors, or there are m − 1 tunnel vertices x1, x2, . . . , xm−1 between v and
r. If v and r are neighbors, let τ(r, v1, . . . , vn, t) = v. In the other case, have the
robber move from r to v. More precisely, suppose that x1 is the neighbor of r and
we let:

τ(r, v1, . . . , vn, t) = x1

τ(x1, v1
1 , . . . , v1

n, t + 1) = x2, for all neighbors v1
i of each vi.

. . .

τ(xm−1, vm−1
1 , . . . vm−1

n , t + m − 1) = v, for all neighbors vm−1
i of vm−2

i .

Using the above strategy, we note that the robber either makes a 1-move or an
m-move before he consults τ∗ for his next move. We will refer to either of these
moves as the robber committing to a move. Furthermore, he will make at most
k − 1 m-moves in a row before making a 1-move.

At any time good time t, let Ri(t) be the number of good times ci was ahead
since the last good time that ci was not ahead. If ci is in a tunnel, let x and y be
the supervertices corresponding to that tunnel, and assume that ci crossed over x
to get into the tunnel. We claim that the following hold for all good values of t.

(1) If ci on vertex v is ahead, then πi(v, t) is a neighbor of v∗.
(2) If ci on vertex v is ahead, then she is within m−1 of the class corresponding

to πi(v, t).
(3) If ci is ahead, then she is at least (k − 1 − R(t))m + 2 away from y.
(4) If ci is ahead on vertex v, then v∗ is closer to y∗ than πi(v, t).
(5) If the robber makes a 1-move, then Ri(t + 1) = 0.
(6) 0 ≤ R(t) ≤ k − 1

We prove the claim by induction on the value of Ri(t). Since the robber can only
make k − 1 m-moves in a row, (5) being true will always imply (6). If Ri(t) = 0,
1-4 and 6 are trivially satisfied, and (5) is easy to check. First suppose that ci gets
ahead, making Ri(t) = 1. Then she must have crossed a supervertex which would
have taken at least one move, and then had at most m − 1 moves left to head into
the tunnel class. She therefore must be at least m(k − 2) + 2 away from y, and at
most m − 1 from x, verifying (2) and (3). By definition of πi, πi(v, t) = x∗, where v
is the vertex the cop ended on, showing (1) and (4). Since a cop just got ahead, (5)
does not apply. If ci does not get ahead, then the hypotheses are vacuously true.

Inductively suppose the claims are satisfied for the current nonzero value of Ri(t),
and that Ri(t) < k − 1. If the robber makes a 1-move, then by (2), (5) is true,
and (1)-(4) become vacuously true. So we assume at time t the robber makes an
m-move. If ci is ahead at time t, then by (3), ci is at least (k − 1 − Ri(t))m + 2
away from y, so in m-moves, the cop can be at least (k − 1 − Ri(t))m + 2 − m =
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· · ·

1 2 3

· · ·

Figure 5. Cop over supervertex

(k − 1 − (Ri(t) + 1))m + 2 = (k − 1 − Ri(t + m))m + 2 away from y, verifying (3)
at time t + m.

Every P class is of size m, so ci cannot travel more than one P class in one
m-move, so (1) holds; furthermore, since ci was within m − 1 of πi(v, t), after m
moves, she takes at least one move to get to the extreme vertex of the class she
is in, and then m − 1 moves into the next class, implying (2). We can use similar
reasoning to show that (4) is true. If a cop was not ahead at time t, and then got
ahead, we can repeat the arguments of the case Ri(t) = 1. Finally if ci was not
ahead at times t or t + m, then (1)-(4) are vacuously true.

If Ri(t) = k − 1, then the robber must make a 1-move. By (2), no cops will be
ahead. Thus, the new value of Ri(t) will be 0, and (1)-(4) vacuously hold again.

We now show the robber can evade the cops indefinitely by showing that he will
not be caught whenever he commits to moving at some good time t. To do this,
we will show that for every value of Ri(t), the robber can safely commit to making
a move without being caught by ci.

Suppose that Ri(t) = 0; then if ci is on vi, πi(vi, t) = v∗
i . Suppose the robber

commits a move from vertex v to w, and ci is on vi. Whether the robber makes a
1-move or an m-move, it must have been the case that τ∗(v∗, v∗

1 , . . . , v∗
n, z) = w∗.

If the robber made a 1-move, ci cannot catch him or else v∗
i = πi(vi, t) must have

been w∗ or a neighbor of w∗. Thus, in Gk, the robber was caught on w∗ by ci,
violating τ∗ being winning. Next suppose the robber makes an m-move. We first
show that the robber cannot be caught by a cop who doesn’t get ahead. Towards
a contradiction, suppose the robber gets caught by ci who does get ahead. Then
ci must have been in a P class, crossed over a supervertex x, and moved at most
m − 1 vertices into a different P class. If the robber was caught on x, then he
started in one of the P classes adjacent to x. In either case, he moved to x∗, which
was adjacent to v∗

i , contradicting τ∗ being winning; therefore, the robber must have
been caught in the P class that ci moved to. Since the robber made an m-move,
and always moves to the closest vertex of a P class, he is m away from x. Since ci

must be within m − 1 of x after her move, she could not have caught the robber.
Suppose that 1 ≤ Ri(t) ≤ k−2 and that if ci is ahead, then they crossed over the

supervertex xi, and the supervertex on the other side of the tunnel is yi. Then ci is
within m − 1 of the class corresponding to πi(vi, t), and is at least (k, −1 − r)m + 2
away from the yi. If the robber makes a 1-move or an m-move, he will not get
caught by a cop who is not ahead using the same argument as in the Ri(t) = 0
case, so it suffices to show that the robber will never be caught by an ahead cop.

If the robber makes a 1-move, then for any cop ci, v∗
i = πi(vi, t + 1), i.e. the

cop is projected to the correct place. Thus, τ∗ would not move the robber to v∗
i ,

as that would violate τ∗ being winning. Therefore, the robber does not get caught
if he makes a 1-move. Assume next that the robber makes an m-move. Towards a
contradiction, suppose he is caught by an ahead cop ci. There are two cases; either
the robber moved to a supervertex, or he moved to a tunnel class of P .
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First assume the robber moved into a tunnel class to vertex w. If he was caught
in the class that he started in, then ci must have been in an adjacent class, say on
vertex vi. By the claims above, π(vi, t) must be a neighbor of v∗

i , implying that in
Gk, the robber and ci were at most distance two apart, and τ∗ moved the robber to
v∗

i . This contradicts τ∗ being winning; therefore, we may conclude that the robber
was caught on w. Using similar reasoning as above, ci did not start in the class the
robber moved to. By (2), ci was not on the extreme vertex distance m away from
w, so she could not have caught the robber in m moves. Therefore, if the robber
moves to a tunnel class of P , he will not be caught.

2 4 6 135

· · ·

2 1

· · ·

Figure 6. We see the projected game on the bottom is not violated

Finally suppose w is a supervertex. The robber cannot be caught by ci, as if w is
opposite ci, then the cop must be at least (k−1−Ri(t))m+2 ≥ (k−1−(k−2))m+2 =
m + 2 away from w. If ci used w to get ahead, then she can’t be within m of
the supervertex, or else she would be on w∗ in Gk, once again violating τ∗ being
winning.

If Ri(t) = k − 1, then the robber is forced to make a 1-move, in which case we
have already showed he will be safe. □

We now work towards proving a similar lemma which will allow us to prove our
monotonicity result. Suppose that k is an integer. Then G2k has 2k − 1 tunnel
vertices. If a and b are positive integers with a > b, then we will enlarge each of
the classes of G2k by starting with the first tunnel point, making it an equivalence
class of size a, moving to the next tunnel point, and making it size b.

Definition 4.3. Suppose G is a graph, and a, b and k are positive integers with
a > b.Suppose x,y and x∗, y∗ are two corresponding neighboring supervertices of
Gak+b(k−1) and G2k respectively. Let v1, v2, . . . , vak+b(k−1)−1 be the tunnel vertices
between x and y, and let u1, u2, . . . , u2k−1 be the tunnel vertices between x∗ and
y∗, where v1 neightbors x and u1 neighbors x∗. Let f(x) : Gak+b(k−1) → G2k be
defined by:

p(v) =


x∗ if v = x

y∗ if v = y

ui if i = 2m + 1 and v = vma+mb+j , where 1 ≤ j ≤ a

ui if i = 2m and v = vma+(m−1)b+j , where 1 ≤ j ≤ b

Lemma 4.4. If C(G) = n and C(G2k) = n + 1, then C(Gak+b(k−1)+1) = n + 1 for
any a, b ∈ N+ such that a > b.

Proof. Assume τ∗ is a winning strategy for the robber to evade n cops in G2k. Let
j = ak + b(k − 1) + 1, and for any vertex v of Gj , let v∗ = p(v). Suppose each cop
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ci places down on vi; then in G2k, place ci on v∗
i . Let v∗ = τ∗(r, v∗

1 , v∗
2 , . . . , v∗

n, 0).
In Gj , let τ(r, v1, v2, . . . , vn, 0) = v, where v is an extreme vertex corresponding to
v∗. v is not in a class next to a class a cop is in, or else τ∗ would have placed the
robber directly next to the corresponding cop in G2k, so no cop can catch him on
the first move.

Our strategy for the robber will allow him to commit to a 1-move, an a-move, or
a b-move. To do this, we will map certain special values of times t in Gj to times
t∗ in Gk. 0 will be called a good time. If t is a good time and the robber makes
a z-move, where z ∈ {1, a, b}. We will then say (t + z) is also a good time and let
(t + z)∗ = t∗ + 1.

Similar to Lemma 4.2, we will define a partial function πi : Gj × N → G2k.πi

will compromise between projecting ci to G2k, and making sure that every move
in the smaller game is a legal one. Let πi(v, 0) = v∗, where v is the initial position
of ci. Inductively, assume that πi has been defined for a good time s and vertex v.
Then if at the next good time t, ci is on w, we define πi as follows:

πi(w, t) =



w∗ if w is a supervertex corresponding to a point in G.
w∗ if v and w are in the same equivalence class.
w∗ if πi(v, s) = v∗, and w∗ is a neighbor of v∗

w∗ if πi(v, s) = w∗ and w∗ ̸= v∗

x∗ if πi(v, s) = v∗, and x∗ is the unique class between w∗ and v∗

v∗ if πi(v, s) ̸= v∗, πi(v, s) ̸= w∗ and v and w lie in different equivalence classes.

We define a a cop ci on vertex vi as being poorly projected at a good time t if
πi(vi, t) ̸= v∗

i . We will say she is ahead if she started on an a-class, moved over a
supervertex, and then moved into a different a-class to become poorly projected. A
cop can get ahead on either an a-move or a b-move. A cop ci is pseudoahead if she
started on an a-class, moved over a b-class, and then moved into a different a-class
to become poorly projected. We note that a cop can only get pseudoahead on an
a-move, meaning she would be at most a − b away from the b-class she crossed.
Since the next move is at most a b-move, she will no longer be pseudoahead at the
end of the next move.

We will now define the robber’s strategy recursively. Suppose at a good time t,
the cops are on v∗

1 , v∗
2 . . . , v∗

n in G2k, the robber is at an extreme vertex r of an equiv-
alence class in Gj , and the robber in G2k is on r∗. Let v∗ = τ∗(r∗, π1(v1, t), . . . , πn(vn, t), t∗).
Let v be the extreme vertex in p−1(v∗) which is closest to the robber. Then there
are three possibilities. v and r are neighbors, there are a−1 tunnel vertices between
v and r, or there are b−1 tunnel vertices between v and r. If v and r are neighbors,
let τ(r, v1, . . . , vn, t) = v. Otherwise, have the robber move from r to v. We will
define τ in the case that the robber makes an a-move, and the case for a b-move
will be similar. Suppose that x1, . . . , xa−1 are the tunnel vertices between r and v,
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and that x1 is a neighbor of r. Then we define τ by:

τ(r, v1, . . . , vn, t) = x1

τ(x1, v1
1 , . . . , v1

n, t + 1) = x2, for all neighbors v1
i of each vi.

. . .

τ(xa−1, va−1
1 , . . . va−1

n , t + a − 1) = v, for all neighbors va−1
i of va−2

i .

We note that the robber will make at most 2k − 1 non-1-moves in a row, and
will never make two consecutive a or b moves in a row.

For any good time t, let Ri(t) be the number of good times ci since the last good
time that ci was not poorly projected. Let Fi : N → N be defined by Fi(t) = t − k,
where k is the greatest good time with k ≤ t such that Ri(k) = 0. If ci is on vertex
v in a tunnel, let xi and yi be the supervertices corresponding to that tunnel, and
assume that ci crossed over xi to get into the tunnel. Then we claim the following
hold for all good times t.

(1) πi(v, t) is a neighbor of v∗

(2) If the move the robber made at the good time previous to t was an a-move,
then ci is within a − 1 of the class corresponding to πi(v, t).

(3) If the move the robber made at the good time previous to t was b-move,
then ci is within b − 1 of the class corresponding to πi(v, t).

(4) If ci is ahead, then she is at least ak + b(k − 1) − Fi(t) + 2 away from yi.
(5) If ci on vertex v is ahead, then v∗ is closer to y∗ than πi(v, t).
(6) If the previous move was a 1-move, then Ri(t) = 0.
(7) 0 ≤ Ri(t) ≤ 2k − 1

We prove the claim by induction based on the value of Ri(t). We will assume the
induction assumptions hold at a good time t and show they hold at the next good
time s. At any stage, if (6)t is true, then (7)t will also be true, since the robber
can make at most 2k − 1 non 1-moves in a row. Similarly, if (1)t, (2)t, and (3)t are
true at a good time t by induction, then if the next move is a 1-move, (6)t+1 will
be true.

If Ri(t) = 0, then (1)t − (5)t are vacuously true, and (6)t is simple to check. If
Ri(t) = 2k + 1, then we know the robber is forced to make a 1-move, so by (6)t,
Ri(t + 1) will be zero.

We next consider the case where ci is not ahead and gets ahead, i.e., Ri(t) = 0 to
Ri(s) = 1. Since Ri(t) = 0, if the robber makes an a-move, then if ci gets ahead, she
started on an a-class, made at least one move to the neighboring supervertex, and
had at most a−1 moves left to move into the next class. If the previous move was a
b-move, then she could only move b−1 times in that class, meaning (2)s and (3)s are
satisfied. In either case, the distance from xi to yi is ak+b(k−1)+1, and she moved
at most a−1 steps away from xi. She is therefore at most ak+b(k−1)−(a−1)+1 >
ak + b(k − 1) − Fi(1) + 2 moves away from yi, satisfying (4)s. (5)s is true, since
πi(vi, s) is xi.

Assume 1 ≤ Ri(t) < 2k − 1. If the move the robber made at the last good
time before t was an a-move, then by (2)t and (4)t, ci is within a − 1 of the class
corresponding to πi(vi, t), and is at least ak + b(k − 1) − F (t) + 2 away from yi. If
the robber makes a b-move, then (2)t+b will be vacuously true. By (4)t, ci won’t
move to yi, as ak + b(k − 1) − F (t) + 2 > b; therefore, she must be moving to a
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class of size at least b. It will take ci at least one move to get to the extreme vertex
of the class she is in, and then she can move at most b − 1 into the next class, so
(1)t+b, (3)t+b and (5)t+b will be true. Since the cop was allowed at most b moves,
she is at least ak + b(k − 1) − F (t) + 2 − b = ak + b(k − 1) − F (t + b) + 2 away from
yi, implying (4)t+b.

Now suppose the move that was made at the last good time before t was a b-
move. By (3)t , ci is within b−1 of the class corresponding to πi(v, t). If the robber
makes an a-move, then (3)t+a will be vacuously true. If ci is on an a-class, it will
take her at least a − (b − 1) = a − b + 1 moves to get to the extreme vertex of her
class, giving her at most b − 1 moves left to move into the next class. This implies
she can at most move into the next b-class, so (1)t+a, (2)t+a and (5)t+a will be true.
If ci was in a b-class, then it will take her at least one move to get to the end of the
b-class, and then she has at most a − 1 moves remaining. In either case, (4)t+a is
true, as ci can be at most ak + b(k − 1) − F (t) + 2 − a = ak + b(k − 1) − F (t + a) + 2
away from the supervertex.

We now show that τ is a winning strategy for the robber. We will do this by
showing that if the robber has not yet been caught at a good time t, and for all
i, ci’s position in G2k is consistent with τ , then if he makes a 1-move, an a-move,
or a b-move, he will be safe for all times between t and the next good time. To do
this, we will show he is not caught by ci based on the value of Ri(t). ***

We first claim that at any good time t, it will never be the case that the robber
is in an a or b class C1, commits to making an a or b-move into a different class
C2, and there is a cop ci in C1. The robber must make a 1-move to enter the
tunnel, so there was some good time t such that for each ci, πi(vi, t) = v∗

i . At this
time, a cop cannot be in the same class as the robber, or else v∗

i is in the same
class as the robber in G2k. From this position, if the robber makes an a-move or
b-move into another class, he will be moving towards a supervertex y and away
from a supervertex x. If ci is between the robber and x before the robber makes
his a or b move, then πi(vi, t) will be between the robber’s position and x∗ in G2k.
Similarly, if ci is between the robber and y when Ri(vi, t) = 0, then πi(vi, t) is
between the robber and y∗ in G2k. πi and v∗ in G2k can move at most one class
between successive good times, and if v∗ is adjacent to πi(vi, t) for a good time t,
then τ will not move the robber into the class corresponding to πi(vi, t). Thus, for
the next good time s, πi(vi, s) can be in the same class as the robber, but ci would
catch the robber before he could make it to the next class.

If Ri(t) = 0, then, πi(vi, t) = v∗
i . If the robber makes a 1-move, ci cannot catch

him, else the robber’s position in G2k is the same as ci, contradicting τ∗ being
winning. If the robber makes an a-move or a b-move, he will never be caught by
a cop who does not get ahead or pseudoahead, or else the robber would have been
caught by ci on πi(vi, t) = v∗

i , meaning that the robber lost while following τ∗. If
the robber makes a b-move, then he must be moving to the extreme vertex v of an
a-class; furthermore, he will be at least a moves away from a supervertex. If ci does
gets ahead on the robber’s b-move, then she will be at most b − 1 steps into the
a-class she moved into to, so she could not have caught him. If the robber makes
an a-move to a vertex x, then the class corresponding to x neighbors two a-classes.
For ci to catch the robber, she must either be on x itself, or within a moves of x.
In either case, πi(vi, t) neighbors x∗, so since τ∗ is winning, the robber would not
have moved to x.
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Assume 1 ≤ Ri(t) < 2k−1. We note that for this to be possible, the robber must
have previously made an a-move or a b-move at the last good time. If the robber
makes a b-move, he must move from a b-class to an extreme vertex x of an a-class.
If ci is ahead at time t, and is in the a-class the robber is moving to, then by (1)t,
the robber would be moving to a class that neighbors ci in G2k, a contradiction.
The only other class within b moves of the vertex the robber is moving to is the
b-class he is in. If an ahead cop is in this class, then by (1)t, πi(vi, t) neighbors that
class, so τ∗ will move the robber away from πi(vi, t). It is possible that a cop ci is
pseudoahead, but if that is the case, πi(vi, t) is a neighbor of the a-class she is in,
and ci is at most b − 1 moves into that a-class. Since the robber is on a b-class,
he won’t move to the a-class ci is on, as in G2k, the corresponding class neighbors
πi(vi, t). Thus, the robber can never be caught by a pseudoahead cop.

Suppose now that the robber makes an a-move. Then he is either moving towards
a b-class or a supervertex. If he’s moving towards a b-class B then for ci to catch
him, she must be within a of the point he is moving to. She will not be in B, or else
by (1)t, πi(vi, t), will be a neighboring class, meaning τ∗ moved the robber into the
cop in G2k. If she is in the a-class A neighboring B, and πi(vi, t) is not the point
corresponding to B, then by (3)t, she is within b − 1 of πi(vi, t). It will take her at
least a − (b − 1) moves to leave A, so she will have b − 1 moves left to move into B.
This means she cannot catch the robber. If the robber is moving to a supervertex
x, then by (4)t, any ahead cop whose projection is not x is at least

ak + b(k − 1) − F (t) + 2 >= ak + b(k − 1) − (a(k − 1) + b(k − 1)) + 2
= a + 2

moves away from x, so she cannot catch the robber in a moves.
If Ri(t) = 2k −1, then the robber must make a 1-move, so he will not get caught

using the same argument as in the 0 ≤ Ri(t) ≤ 2k − 1 case.

a b a

· · · · · ·

2 4 68 1357

· · · · · ·

2 1

Figure 7. We see the projected game strategy on the bottom is violated

□

With the previous two proofs, we can prove that the cop number of tunnel
graphs is eventually monotonic in the sense that if C(G) = n, then either for all
k ∈ N, C(Gk) = n, or there is some m ∈ N such that for all k > m, C(Gk) = n + 1.
We will call a number m good if C(G) = n, but C(Gm) = n + 1.

Lemma 4.5. If C(G) = n, and C(G2k) = n+1, for some integer k then C(Gz) =
n + 1 for z ≥ 2k2 − 2k + 2
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Proof. By lemma 4.2 and lemma 4.4, we have that C(Gak+b(k−1)+1) = n + 1 for
any a ≥ b > 0. Lemma 4.4 allows us to substitute a > b, while lemma 4.2 allows
us to let a = b.

We claim any number greater than or equal to 2k2 − 2k + 2 is good. To do this,
we will first argue that every number in the interval [2k2 − 2k + 2, 2k2 − k + 1]
equals ak + b(k − 1) + 1 for some a and b, where a ≥ b > 0. Since this interval is a
complete set of representatives mod k, by increasing a it is clear we can represent
any integer z ≥ 2k2 − 2k + 2 as ak + b(k − 1) + 1, where a ≥ b > 0. If a = b = k,
then we get that 2k2 − k + 1 is of the desired form. If b ∈ {1, 2, . . . , k − 1}, let
a = 2k − b − 1 > b. Then

(2k − b − 1)k + b(k − 1) + 1 = 2k2 − k − b + 1
Since 0 ≤ b ≤ k − 1, we get that

2k2 − 2k + 2 ≤ 2k2 − k − b + 1 ≤ 2k2 − k + 1
Therefore, as b ranges over the interval [1, k], all of the numbers in [2k2 − 2k +

2, 2k2 − k + 1] are represented.
□

If the cop number first goes up at an even number, we can just use the above
bound. If the cop number is odd, we can double it first, and then apply the above
theorem.

Theorem 4.6. If C(G) = n, and C(Gk) = n + 1. Then C(Gm) = n + 1 for each
m ≥ 2k2 − 2k + 2.

Proof. Since C(Gk) = n + 1, C(G2k) = n + 1 by corollary 2.5; thus we may apply
Lemma 4.5. □

The bound in 4.6 is not always optimal. For example, if C(G3) = n + 1, then
Theorem 4.6 states that we are guaranteed all numbers m ≥ 14 are good. But
in fact, we can show all m ≥ 9 are good. To see this, lemma 4.2 states that
C(G1+2k) = n + 1 for any natural number k. Thus, any odd number after 3 is
good, so in particular, every odd prime is good. Thus, any multiple of an odd
prime is good by Corollary 2.5. On the other hand, we claim 16 is good. Since 3 is
good, 6 is also good. But then, 6 + 2(6 − 1) = 16 is good. Therefore, we see that
any number bigger than 8 must be good, because it is either divisible by an odd
prime, or is divisible by 16.
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