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1. INTRODUCTION

Suppose (P ,Σ) is a hod pair such that Σ has branch condensation (here P is countable). We

work under the assumption AD++Θ = ΘΣ + MC(Σ). Under this assumption, V = Lp
GΣ(R),

where Lp
GΣ(R) is the stack of countably iterable Θ-g-organized premice over R that project

to R as defined in [4]. A proof of this fact can be found in [1]. The construction of the

coherent sequence here is heavily based on the construction of �κ sequences in L[E] models

done in [3], though much complexity that appears in [3] due to the existence of pluripotent

L[E] levels that gives rise to protomice does not occur in our situation.

Before stating our main result, let us fix some notation. Let C = {τ < Θ | Lp
GΣ(R)|τ �

ZF− and there are no R-cardinals in Lp
GΣ(R)|τ}.1 Notice that C is a club in Θ by reflection

and the fact that Lp
GΣ(R)|Θ � ZF−. For each τ ∈ C, let Nτ be the least segment of Lp

GΣ(R)

such that there is an n < ω such that ρNτn ≥ τ and ρNτn+1 = R. Notice that o(Nτ ) > τ and

τ = ΘNτ . Furthermore, τ is a strong cutpoint of Nτ , that is τ is not measurable in Nτ and

there are no extenders on the sequence of Nτ that overlap τ .

Now, we’re ready to state our main result.

Theorem 1.1. There is a sequence ~D = 〈Dτ | τ ∈ C〉 with the following properties:

1. Dτ ⊆ τ ∩ C

2. Dτ is closed, and if cof(τ) > ω then Dτ is unbounded in τ .

3. if τ < τ , then Dτ = Dτ ∩ τ .

We say E is a thread through ~D if E ⊆ C is club in Θ and for every limit point α of E,

E∩α = Dα. We remark that by the construction, if Θ has uncountable cofinality in a parent

universe with the same reals, then the sequence ~D does not admit a thread since any thread

through ~D will produce anM�Lp
GΣ(R) such that ρMω = R and o(M) ≥ Θ. Contradiction.

1Here ZF− is ZF minus Powerset Axiom.



We note that by the same proof, we obtain the same result if we assumed V = Lp
gΣ(R),

i.e. V is the stack of countably iterable g-organized premice over R that project to R (see

[4]).

We remark that the construction below goes through for both Jensen indexing and

Mitchell-Steel indexing. In the construction of [3], Jensen indexing is used since it relies

on the appropriate condensation lemma for that indexing. Here, we simply replace instances

where the condensation lemma is used by a simple comparison argument, which does not

depend on any particular indexing scheme.

Finally, we remark that the sequence ~D can be turned into a coherent sequence ~D′ on Θ

in the sense of [2] by purely combinatorial means. The sequence ~D′ is similarly nonthreadable

in the sense above.

2. THE CONSTRUCTION

We fix some more notations. Here are some objects associated to each τ ∈ C. The notations

follow closely those of [3].

• 〈SE,GΣ
α (R) | α < Θ〉, 〈JE,GΣ

α (R) | α < Θ〉 are the Jensen’s S and J hierarchies relative

to GΣ and E, which is the extender sequence of Lp
GΣ(R).

• nτ is the unique n such that ρNτn ≥ τ and ρNτn+1 = R.

• pτ is the standard parameter for Nτ .

• ρτ = ρNτnτ .

• Hτ is the nτ -th reduct of Nτ .

• h̃τ = h̃nτ+1
Nτ

is the Σ
(nτ )
1 Skolem function of Nτ , so there is a set H̃τ such that y =

h̃τ (x, pτ ) where x ∈ R if and only if ∃z ∈ Hτ , (z, y, x, pτ ) ∈ H̃τ .

For more details and background on fine structure, see [3]. Our construction here resembles

that of the square sequence in [3] for the 〈Cα | α ∈ S0〉, where S0 is, roughly speaking, the

set over which the Jensen’s construction of square in L can be adapted in the L[E] context

in a straightforward manner. Here the set S0 in [3] is C.

We first define an approximation 〈Bτ | τ ∈ C〉 to our desired sequence 〈Dτ | τ ∈ C〉.

Definition 2.1. Let τ ∈ C, Bτ is the set of all τ ∈ C ∩ τ satisfying:

• nτ = nτ = n, and Nτ , Nτ are Θ-g-organized R-premice of the same type.2

2In Mitchell-Steel indexing, premice are of types I, II, III; in Jensen indexing, premice are of types
A,B,C.
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• There is a map σττ : Nτ → Nτ which is Σ
(nτ )
0 -preserving (with respect to the language

of Θ-g-organized R-premice) and such that

1. τ = cr(σττ ), and σττ (τ) = τ ;

2. σττ (pτ ) = pτ ;

3. for each α ∈ pτ , there is a generalized witness Qτ (α) for α with respect to Nτ and

pτ such that Qτ (α) ∈ rng(σττ ).

For a discussion on solidity witnesses and generalized witnesses, see [5] or [3]. The impor-

tant point is that being a generalized witness (being a Π
(nτ )
1 notion) is preserved downward

under the embeddings σττ .

Notice also that the maps σττ are uniquely determined (and the uniqueness of such maps

is not influenced by (3) in the definition). To see this, let a ∈ Nτ , then ∃x ∈ R, a = h̃τ (x, pτ );

this Σ
(n)
1 definition is preserved upwards by the Σ

(n)
0 map σττ and as στ̄ τ (x) = x for any real

x, σττ (a) = h̃τ (x, pτ ).

Lastly, the maps σττ are not cofinal at the n-th level, and hence not Σ
(n)
1 preserving.

Otherwise, by soundness of the Nτ ’s, the maps σττ are onto, hence Nτ = Nτ , which is not

possible.

Lemma 2.2. Let τ ∈ C, and τ ∗ < τ in Bτ . Then rng(στ∗τ ) ⊆ rng(σττ ).

Proof. First we show

sup((στ∗τ )
′′ωρτ∗) < sup((σττ )

′′ωρτ ) (2.1)

Suppose this is false. Pick an x ∈ R such that h̃τ (x, pτ ) = τ ∗, so there is a z ∈ Hτ

such that H̃τ (z, τ
∗, x, pτ ). Applying σττ , we get H̃τ (σττ (z), τ ∗, x, pτ ). Choose ζ < ωρτ such

that z ∈ SE,
GΣ

ζ
(R) and let ζ = σττ (ζ). By the failure of 2.1, there is a ζ∗ < ωρτ∗ such

that ζ ≤ ζ ′ = στ∗τ (ζ
∗). So the statement (∃un ∈ SE,

GΣ
ζ′ (R))(∃δn < τ)H̃τ (u

n, δn, x, pτ ) is a

Σ
(n)
0 formula held in Nτ , hence can be pulled back by στ∗τ . So hτ∗(x, pτ∗) is defined and

στ∗τ (hτ∗(x, pτ∗)) = τ ∗, which contradicts the fact that τ ∗ = cr(στ∗τ ). This proves 2.1.

2.1 can be used to show that ∀x ∈ R, h̃τ∗(x, pτ∗) is defined −→ h̃τ (x, pτ ) is defined.

To see this, we need to see that the relation (∃x0)(x0 = h̃τ (x, pτ )) is uniformly Σ
(n)
1 . This

follows from the fact that h̃τ is a good Σ
(n)
1 -function, so substituting h̃τ for v0 in the relation

(∃x0)(x0 = v0) yields the result. The rest is just as in the previous paragraph.

From the discussion in the previous paragraph, we know στ∗τ (h̃τ∗(x, pτ∗)) = σττ (h̃τ (x, pτ ))

whenever h̃τ∗(x, pτ∗) is defined. By soundness of Nτ∗ , we have the desired conclusion.

Remark 2.3. In the proof of the above lemma, (3) of Definition 2.1 is never used.
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Lemma 2.4. Let τ ∈ C and τ ∈ Bτ . Then Bτ ∩ τ = Bτ −min(Bτ ).

Proof. Let τ ∗ ∈ Bτ ∩ τ . We’ll show that τ ∗ ∈ Bτ . By the previous lemma, rng(στ∗τ ) ⊆
rng(σττ ), we can define the map σ : Nτ∗ → Nτ by σ = (σττ )

−1 ◦ στ∗τ . It’s easy to see

that σ satisfies all requirements in Definition 2.1 except maybe for item 3. But this is also

true because we can pull back the generalized witness by a Σ
(n)
0 map. Hence σ = στ∗τ and

τ ∗ ∈ Bτ .

Let τ ′ = min(Bτ ) and τ ∗ ∈ Bτ − τ ′. We may assume τ ∗ > τ ′. Define σ = σττ ◦ στ∗τ .
To show that σ = στ∗τ , it suffices to verify (3) of Definition 2.1 as the other conditions are

evident. If Q(α) ∈ rng(στ ′τ ) is a generalized witness for α ∈ pτ with respect to Nτ and pτ

then Q(α) ∈ rng(σ) by the previous lemma, so τ ∗ ∈ Bτ .

The above lemma tells us that the sequence 〈Bτ | τ ∈ C〉 is almost coherent. Inspecting

the proof of the lemma, it’s easy to see that condition (3) in the Definition 2.1 is the reason

full coherency may fail. We now modify the sequence 〈Bτ | τ ∈ C〉 a bit to get full coherency.

For τ ∈ C, we let

• τ(0) = τ

• τ(i+ 1) = min(Bτ(i))

• lτ = the least i such that Bτ(i) = ∅

Notice that for any τ ∈ C, lτ is defined and is less than ω. Now for any τ ∈ C,

• Dτ = Bτ(0) ∪Bτ(1) ∪ ... ∪Bτ(lτ−1), and

• for any τ ∗ ∈ Dτ , στ∗τ = στ(1)τ(0) ◦ στ(2)τ(1) ◦ ... ◦ στ∗τ(j) where j is such that τ ∗ ∈ Bτ(j).

Note that the maps στ∗τ are unique with critical point τ ∗, sending τ ∗ to τ , and pτ∗ to

pτ .

Lemma 2.5. The sequence 〈Dτ | τ ∈ C〉 is coherent.

Proof. Let τ ∈ C and τ ∗ ∈ Dτ . First it is easy to see that

min(Bτ∗) ∈ Dτ , Bτ∗ = Dτ ∩ [min(Bτ∗), τ
∗) (2.2)

Now define τ ∗(i) from τ ∗ the same way τ(i) is defined from τ . Using (2.2), it is easy to see

that Dτ∗ must be an initial segment of Dτ .

It remains to prove for every τ ∈ C, Dτ is closed and if cof(τ) > ω, Dτ is unbounded.
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Lemma 2.6. Suppose τ ∈ C and cof(τ) > ω. Then Dτ is unbounded in τ .

Proof. We first assume Nτ is E-active, that is, Nτ = 〈JE,GΣ
α (R), Fτ 〉, where Fτ 6= ∅ is the

(amenable code) for the top extender of Nτ . Say cr(Fτ ) = κ and ϑ = (κ+)Nτ . Note that

κ > τ ; this is because Fτ is R-complete over Nτ and τ = ΘNτ , as discussed above, is a strong

cutpoint for Nτ . We may assume n = 1, where ωρNτn+1 = R, and ωρNτn ≥ τ . Let τ ∗ < τ . We

want to show there is a τ̃ ∈ Dτ such that τ̃ ≥ τ ∗.

First, let X = h̃τ ({τ ∗,P} ∪ {pτ}). Then X is countable Σ1 substructure of Nτ . Let

σ : N → Nτ be the inverse of the collapse and σ(κ, ϑ, τ , p, κ) = (κ, ϑ, τ, pτ , κ). Note that

τ < κ and ϑ = (κ+)N .

Now let τ̃ = sup(σ′′τ). Then τ ∗ < τ̃ because we put τ ∗ in X, and τ̃ < τ because X is

countable and cof(τ) > ω. We claim that τ̃ ∈ Dτ .

By [4, Lemma 3.10], N is Θ-g-organized. Suppose N = 〈JE,
GΣ

α (R), F 〉. Then N is a

R-premouse of the same type as Nτ as an R-premouse. Let Ñ be the ultrapower of N by the

extender induced by σ with generators in R and the ultrapower is formed using functions

f ∈ N ; so Ñ is isomorphic to {σ(f)(x) | f ∈ N ∧ x ∈ R}. Let σ̃ be the ultrapower map

and σ′ : Ñ → Nτ be the natural map. So σ = σ′ ◦ σ̃. It’s not hard to see that Los theorem

holds and σ′ is Σ0 preserving, hence Ñ is wellfounded. From now on, we identify Ñ with its

transitive collapse.

Now, Ñ contains all the reals. We need to see that Ñ is a Θ-g-organized R-premouse of

the same type as Nτ . The fact that Ñ is Θ-g-organized follows from [4, Lemma 3.10] and

the fact that σ′ embeds Ñ into the Θ-g-organized R-premouse Nτ . Now σ̃ is Σ0 and cofinal

and cr(F̄ ) ≥ τ̄ = cr(σ̃). This implies the top extender of Ñ measures all sets in Ñ and hence

Ñ is a premouse (and not a protomouse).

Let x ∈ Ñ ; so x = σ̃(f)(a) for some f ∈ N and a ∈ R. But f = h̃N(b, p) for some

b ∈ R, so σ̃(f) = hÑ(b, p̃), where p̃ = σ̃(p) = σ′−1(pτ ). So x = h̃Ñ(b, p̃)(a). This gives

ωρn+1

Ñ
= R, τ̃ ≤ ωρÑn , and p̃ ∈ RÑ . Solidity of Ñ is guaranteed by the fact that σ′ : Ñ → Nτ

is Σ
(n)
0 -preserving. Since rng(σ) ⊆ rng(σ′), rng(σ′) contains a generalized witness for σ′(β)

for each β ∈ p̃. This shows p̃ is the standard parameter for Ñ and Ñ is sound.

Finally, we show Ñ = Nτ̃ by showing that Ñ � Nτ . Note that Ñ 6= Nτ because τ̃ is a

cardinal in Ñ but τ̃ < τ and hence cannot be a cardinal in Nτ . Ñ is countably iterable since

it is embeddable into Nτ . Hence Ñ � Nτ by a simple comparison argument using the fact

that both are sound, Θ-g-organized premice over R projecting to R.3

3In [3], this is where the index-dependent condensation lemma is used to show the corresponding fact
about levels of L[E]. In our case, things are greatly simplified as R is a “strong cutpoint” of both Ñ and
Nτ ; hence, we can show Ñ �Nτ by directly comparing them. The argument that neither side moves during
the comparison is the same as that in the proof that two sound mice projecting to ω are lined up.
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Now suppose Nτ is either B-active (that is, the top predicate of Nτ codes a branch) or

passive. Let N̄, Ñ, σ̃, σ′, τ̃ be defined as above. Again, by [4, Lemma 3.10], Ñ is a countably

iterable Θ-g-organized, R-sound mouse over R. The same argument as above shows Ñ = Nτ̃ .

This completes the proof of the lemma.

Lemma 2.7. Suppose τ ∈ C. Then Dτ is closed.

Proof. Let τ̃ be a limit point of Dτ . We need to see that τ̃ ∈ Dτ . First, note that τ̃ ∈ C as C

is closed. Now form the direct limit 〈Ñ, στ∗τ̃ | τ ∗ ∈ Dτ 〉 of the direct system 〈Nτ∗ , σττ∗ | τ ≤
τ ∗, and τ , τ ∗ ∈ Dτ ∩ τ̃〉. The direct limit Ñ is well-founded as we can define a map σ from

Ñ into Nτ in an obvious manner. So from now on, we identify Ñ with its transitive collapse.

The following properties are evident: for τ ∗ ∈ Dτ ∩ τ̃ ,

• στ∗τ̃ is Σ
(n)
0 -preserving;

• σ ◦ στ∗τ̃ = στ∗τ ;

• τ̃ = στ∗τ̃ (τ
∗);

• τ̃ = cr(σ) and σ(τ̃) = τ .

To see that Ñ is a premouse of the same type as Nτ , just notice that the direct limit maps

(into Ñ) preserve Π2 properties upwards on a tail-end (cf. [3, Lemma 3.8]); Ñ is also Θ-g-

organized by [4, Lemma 3.10] since Nτ is such and σ is sufficiently elementary.

Now let p̃ = στ∗τ̃ (pτ∗) for some τ ∗ < τ̃ . Given x ∈ Ñ , there is an x∗ ∈ Nτ∗ for some

τ ∗ ∈ Dτ ∩ τ̃ such that στ∗τ̃ (x
∗) = x. By R-soundness of Nτ∗ , x

∗ = h̃n+1
τ∗ (a, pτ∗) for some

a ∈ R. Since Σ
(n)
1 facts are preserved upwards by the direct limit maps, x = h̃n+1

Ñ
(a, p̃). This

implies Ñ = h̃n+1

Ñ
(R∪ p̃), hence ωρn+1

Ñ
= R and p̃ ∈ Rn+1

Ñ
, that is, p̃ is a very good parameter

for Ñ .

Next, we need to see that p̃ is the standard parameter for Ñ to conclude that Ñ is R-

sound. To see this, notice that rng(στ∗τ ) ⊂ rng(σ), σ(p̃) = pτ , and στ∗τ (pτ∗) = pτ for any

τ ∗ ∈ Dτ ∩ τ̃ . This implies that rng(σ) contains a generalized witness for each α ∈ pτ with

respect to Nτ and pτ . The above facts imply that p̃ is indeed the standard parameter for

Ñ , and hence Ñ is R-sound. Consequently, Ñ = Nτ̃ and σ = στ̃ τ by a similar interpolation

argument as in Lemma 2.6. This gives us that τ̃ ∈ Dτ .
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